Loading...
1/*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/uio.h>
23#include <linux/iocontext.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
27#include <linux/export.h>
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
30#include <linux/cgroup.h>
31
32#include <trace/events/block.h>
33
34/*
35 * Test patch to inline a certain number of bi_io_vec's inside the bio
36 * itself, to shrink a bio data allocation from two mempool calls to one
37 */
38#define BIO_INLINE_VECS 4
39
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
55struct bio_set *fs_bio_set;
56EXPORT_SYMBOL(fs_bio_set);
57
58/*
59 * Our slab pool management
60 */
61struct bio_slab {
62 struct kmem_cache *slab;
63 unsigned int slab_ref;
64 unsigned int slab_size;
65 char name[8];
66};
67static DEFINE_MUTEX(bio_slab_lock);
68static struct bio_slab *bio_slabs;
69static unsigned int bio_slab_nr, bio_slab_max;
70
71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72{
73 unsigned int sz = sizeof(struct bio) + extra_size;
74 struct kmem_cache *slab = NULL;
75 struct bio_slab *bslab, *new_bio_slabs;
76 unsigned int new_bio_slab_max;
77 unsigned int i, entry = -1;
78
79 mutex_lock(&bio_slab_lock);
80
81 i = 0;
82 while (i < bio_slab_nr) {
83 bslab = &bio_slabs[i];
84
85 if (!bslab->slab && entry == -1)
86 entry = i;
87 else if (bslab->slab_size == sz) {
88 slab = bslab->slab;
89 bslab->slab_ref++;
90 break;
91 }
92 i++;
93 }
94
95 if (slab)
96 goto out_unlock;
97
98 if (bio_slab_nr == bio_slab_max && entry == -1) {
99 new_bio_slab_max = bio_slab_max << 1;
100 new_bio_slabs = krealloc(bio_slabs,
101 new_bio_slab_max * sizeof(struct bio_slab),
102 GFP_KERNEL);
103 if (!new_bio_slabs)
104 goto out_unlock;
105 bio_slab_max = new_bio_slab_max;
106 bio_slabs = new_bio_slabs;
107 }
108 if (entry == -1)
109 entry = bio_slab_nr++;
110
111 bslab = &bio_slabs[entry];
112
113 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
114 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
115 SLAB_HWCACHE_ALIGN, NULL);
116 if (!slab)
117 goto out_unlock;
118
119 bslab->slab = slab;
120 bslab->slab_ref = 1;
121 bslab->slab_size = sz;
122out_unlock:
123 mutex_unlock(&bio_slab_lock);
124 return slab;
125}
126
127static void bio_put_slab(struct bio_set *bs)
128{
129 struct bio_slab *bslab = NULL;
130 unsigned int i;
131
132 mutex_lock(&bio_slab_lock);
133
134 for (i = 0; i < bio_slab_nr; i++) {
135 if (bs->bio_slab == bio_slabs[i].slab) {
136 bslab = &bio_slabs[i];
137 break;
138 }
139 }
140
141 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
142 goto out;
143
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
149 kmem_cache_destroy(bslab->slab);
150 bslab->slab = NULL;
151
152out:
153 mutex_unlock(&bio_slab_lock);
154}
155
156unsigned int bvec_nr_vecs(unsigned short idx)
157{
158 return bvec_slabs[idx].nr_vecs;
159}
160
161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
162{
163 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
164
165 if (idx == BIOVEC_MAX_IDX)
166 mempool_free(bv, pool);
167 else {
168 struct biovec_slab *bvs = bvec_slabs + idx;
169
170 kmem_cache_free(bvs->slab, bv);
171 }
172}
173
174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
175 mempool_t *pool)
176{
177 struct bio_vec *bvl;
178
179 /*
180 * see comment near bvec_array define!
181 */
182 switch (nr) {
183 case 1:
184 *idx = 0;
185 break;
186 case 2 ... 4:
187 *idx = 1;
188 break;
189 case 5 ... 16:
190 *idx = 2;
191 break;
192 case 17 ... 64:
193 *idx = 3;
194 break;
195 case 65 ... 128:
196 *idx = 4;
197 break;
198 case 129 ... BIO_MAX_PAGES:
199 *idx = 5;
200 break;
201 default:
202 return NULL;
203 }
204
205 /*
206 * idx now points to the pool we want to allocate from. only the
207 * 1-vec entry pool is mempool backed.
208 */
209 if (*idx == BIOVEC_MAX_IDX) {
210fallback:
211 bvl = mempool_alloc(pool, gfp_mask);
212 } else {
213 struct biovec_slab *bvs = bvec_slabs + *idx;
214 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
215
216 /*
217 * Make this allocation restricted and don't dump info on
218 * allocation failures, since we'll fallback to the mempool
219 * in case of failure.
220 */
221 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
222
223 /*
224 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
225 * is set, retry with the 1-entry mempool
226 */
227 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
228 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
229 *idx = BIOVEC_MAX_IDX;
230 goto fallback;
231 }
232 }
233
234 return bvl;
235}
236
237static void __bio_free(struct bio *bio)
238{
239 bio_disassociate_task(bio);
240
241 if (bio_integrity(bio))
242 bio_integrity_free(bio);
243}
244
245static void bio_free(struct bio *bio)
246{
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 __bio_free(bio);
251
252 if (bs) {
253 if (bio_flagged(bio, BIO_OWNS_VEC))
254 bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
255
256 /*
257 * If we have front padding, adjust the bio pointer before freeing
258 */
259 p = bio;
260 p -= bs->front_pad;
261
262 mempool_free(p, bs->bio_pool);
263 } else {
264 /* Bio was allocated by bio_kmalloc() */
265 kfree(bio);
266 }
267}
268
269void bio_init(struct bio *bio)
270{
271 memset(bio, 0, sizeof(*bio));
272 atomic_set(&bio->__bi_remaining, 1);
273 atomic_set(&bio->__bi_cnt, 1);
274}
275EXPORT_SYMBOL(bio_init);
276
277/**
278 * bio_reset - reinitialize a bio
279 * @bio: bio to reset
280 *
281 * Description:
282 * After calling bio_reset(), @bio will be in the same state as a freshly
283 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
284 * preserved are the ones that are initialized by bio_alloc_bioset(). See
285 * comment in struct bio.
286 */
287void bio_reset(struct bio *bio)
288{
289 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
290
291 __bio_free(bio);
292
293 memset(bio, 0, BIO_RESET_BYTES);
294 bio->bi_flags = flags;
295 atomic_set(&bio->__bi_remaining, 1);
296}
297EXPORT_SYMBOL(bio_reset);
298
299static struct bio *__bio_chain_endio(struct bio *bio)
300{
301 struct bio *parent = bio->bi_private;
302
303 if (!parent->bi_error)
304 parent->bi_error = bio->bi_error;
305 bio_put(bio);
306 return parent;
307}
308
309static void bio_chain_endio(struct bio *bio)
310{
311 bio_endio(__bio_chain_endio(bio));
312}
313
314/*
315 * Increment chain count for the bio. Make sure the CHAIN flag update
316 * is visible before the raised count.
317 */
318static inline void bio_inc_remaining(struct bio *bio)
319{
320 bio_set_flag(bio, BIO_CHAIN);
321 smp_mb__before_atomic();
322 atomic_inc(&bio->__bi_remaining);
323}
324
325/**
326 * bio_chain - chain bio completions
327 * @bio: the target bio
328 * @parent: the @bio's parent bio
329 *
330 * The caller won't have a bi_end_io called when @bio completes - instead,
331 * @parent's bi_end_io won't be called until both @parent and @bio have
332 * completed; the chained bio will also be freed when it completes.
333 *
334 * The caller must not set bi_private or bi_end_io in @bio.
335 */
336void bio_chain(struct bio *bio, struct bio *parent)
337{
338 BUG_ON(bio->bi_private || bio->bi_end_io);
339
340 bio->bi_private = parent;
341 bio->bi_end_io = bio_chain_endio;
342 bio_inc_remaining(parent);
343}
344EXPORT_SYMBOL(bio_chain);
345
346static void bio_alloc_rescue(struct work_struct *work)
347{
348 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
349 struct bio *bio;
350
351 while (1) {
352 spin_lock(&bs->rescue_lock);
353 bio = bio_list_pop(&bs->rescue_list);
354 spin_unlock(&bs->rescue_lock);
355
356 if (!bio)
357 break;
358
359 generic_make_request(bio);
360 }
361}
362
363static void punt_bios_to_rescuer(struct bio_set *bs)
364{
365 struct bio_list punt, nopunt;
366 struct bio *bio;
367
368 /*
369 * In order to guarantee forward progress we must punt only bios that
370 * were allocated from this bio_set; otherwise, if there was a bio on
371 * there for a stacking driver higher up in the stack, processing it
372 * could require allocating bios from this bio_set, and doing that from
373 * our own rescuer would be bad.
374 *
375 * Since bio lists are singly linked, pop them all instead of trying to
376 * remove from the middle of the list:
377 */
378
379 bio_list_init(&punt);
380 bio_list_init(&nopunt);
381
382 while ((bio = bio_list_pop(current->bio_list)))
383 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
384
385 *current->bio_list = nopunt;
386
387 spin_lock(&bs->rescue_lock);
388 bio_list_merge(&bs->rescue_list, &punt);
389 spin_unlock(&bs->rescue_lock);
390
391 queue_work(bs->rescue_workqueue, &bs->rescue_work);
392}
393
394/**
395 * bio_alloc_bioset - allocate a bio for I/O
396 * @gfp_mask: the GFP_ mask given to the slab allocator
397 * @nr_iovecs: number of iovecs to pre-allocate
398 * @bs: the bio_set to allocate from.
399 *
400 * Description:
401 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
402 * backed by the @bs's mempool.
403 *
404 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
405 * always be able to allocate a bio. This is due to the mempool guarantees.
406 * To make this work, callers must never allocate more than 1 bio at a time
407 * from this pool. Callers that need to allocate more than 1 bio must always
408 * submit the previously allocated bio for IO before attempting to allocate
409 * a new one. Failure to do so can cause deadlocks under memory pressure.
410 *
411 * Note that when running under generic_make_request() (i.e. any block
412 * driver), bios are not submitted until after you return - see the code in
413 * generic_make_request() that converts recursion into iteration, to prevent
414 * stack overflows.
415 *
416 * This would normally mean allocating multiple bios under
417 * generic_make_request() would be susceptible to deadlocks, but we have
418 * deadlock avoidance code that resubmits any blocked bios from a rescuer
419 * thread.
420 *
421 * However, we do not guarantee forward progress for allocations from other
422 * mempools. Doing multiple allocations from the same mempool under
423 * generic_make_request() should be avoided - instead, use bio_set's front_pad
424 * for per bio allocations.
425 *
426 * RETURNS:
427 * Pointer to new bio on success, NULL on failure.
428 */
429struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
430{
431 gfp_t saved_gfp = gfp_mask;
432 unsigned front_pad;
433 unsigned inline_vecs;
434 unsigned long idx = BIO_POOL_NONE;
435 struct bio_vec *bvl = NULL;
436 struct bio *bio;
437 void *p;
438
439 if (!bs) {
440 if (nr_iovecs > UIO_MAXIOV)
441 return NULL;
442
443 p = kmalloc(sizeof(struct bio) +
444 nr_iovecs * sizeof(struct bio_vec),
445 gfp_mask);
446 front_pad = 0;
447 inline_vecs = nr_iovecs;
448 } else {
449 /* should not use nobvec bioset for nr_iovecs > 0 */
450 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
451 return NULL;
452 /*
453 * generic_make_request() converts recursion to iteration; this
454 * means if we're running beneath it, any bios we allocate and
455 * submit will not be submitted (and thus freed) until after we
456 * return.
457 *
458 * This exposes us to a potential deadlock if we allocate
459 * multiple bios from the same bio_set() while running
460 * underneath generic_make_request(). If we were to allocate
461 * multiple bios (say a stacking block driver that was splitting
462 * bios), we would deadlock if we exhausted the mempool's
463 * reserve.
464 *
465 * We solve this, and guarantee forward progress, with a rescuer
466 * workqueue per bio_set. If we go to allocate and there are
467 * bios on current->bio_list, we first try the allocation
468 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
469 * bios we would be blocking to the rescuer workqueue before
470 * we retry with the original gfp_flags.
471 */
472
473 if (current->bio_list && !bio_list_empty(current->bio_list))
474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
475
476 p = mempool_alloc(bs->bio_pool, gfp_mask);
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
480 p = mempool_alloc(bs->bio_pool, gfp_mask);
481 }
482
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
487 if (unlikely(!p))
488 return NULL;
489
490 bio = p + front_pad;
491 bio_init(bio);
492
493 if (nr_iovecs > inline_vecs) {
494 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
495 if (!bvl && gfp_mask != saved_gfp) {
496 punt_bios_to_rescuer(bs);
497 gfp_mask = saved_gfp;
498 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
499 }
500
501 if (unlikely(!bvl))
502 goto err_free;
503
504 bio_set_flag(bio, BIO_OWNS_VEC);
505 } else if (nr_iovecs) {
506 bvl = bio->bi_inline_vecs;
507 }
508
509 bio->bi_pool = bs;
510 bio->bi_flags |= idx << BIO_POOL_OFFSET;
511 bio->bi_max_vecs = nr_iovecs;
512 bio->bi_io_vec = bvl;
513 return bio;
514
515err_free:
516 mempool_free(p, bs->bio_pool);
517 return NULL;
518}
519EXPORT_SYMBOL(bio_alloc_bioset);
520
521void zero_fill_bio(struct bio *bio)
522{
523 unsigned long flags;
524 struct bio_vec bv;
525 struct bvec_iter iter;
526
527 bio_for_each_segment(bv, bio, iter) {
528 char *data = bvec_kmap_irq(&bv, &flags);
529 memset(data, 0, bv.bv_len);
530 flush_dcache_page(bv.bv_page);
531 bvec_kunmap_irq(data, &flags);
532 }
533}
534EXPORT_SYMBOL(zero_fill_bio);
535
536/**
537 * bio_put - release a reference to a bio
538 * @bio: bio to release reference to
539 *
540 * Description:
541 * Put a reference to a &struct bio, either one you have gotten with
542 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
543 **/
544void bio_put(struct bio *bio)
545{
546 if (!bio_flagged(bio, BIO_REFFED))
547 bio_free(bio);
548 else {
549 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
550
551 /*
552 * last put frees it
553 */
554 if (atomic_dec_and_test(&bio->__bi_cnt))
555 bio_free(bio);
556 }
557}
558EXPORT_SYMBOL(bio_put);
559
560inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
561{
562 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
563 blk_recount_segments(q, bio);
564
565 return bio->bi_phys_segments;
566}
567EXPORT_SYMBOL(bio_phys_segments);
568
569/**
570 * __bio_clone_fast - clone a bio that shares the original bio's biovec
571 * @bio: destination bio
572 * @bio_src: bio to clone
573 *
574 * Clone a &bio. Caller will own the returned bio, but not
575 * the actual data it points to. Reference count of returned
576 * bio will be one.
577 *
578 * Caller must ensure that @bio_src is not freed before @bio.
579 */
580void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
581{
582 BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
583
584 /*
585 * most users will be overriding ->bi_bdev with a new target,
586 * so we don't set nor calculate new physical/hw segment counts here
587 */
588 bio->bi_bdev = bio_src->bi_bdev;
589 bio_set_flag(bio, BIO_CLONED);
590 bio->bi_rw = bio_src->bi_rw;
591 bio->bi_iter = bio_src->bi_iter;
592 bio->bi_io_vec = bio_src->bi_io_vec;
593}
594EXPORT_SYMBOL(__bio_clone_fast);
595
596/**
597 * bio_clone_fast - clone a bio that shares the original bio's biovec
598 * @bio: bio to clone
599 * @gfp_mask: allocation priority
600 * @bs: bio_set to allocate from
601 *
602 * Like __bio_clone_fast, only also allocates the returned bio
603 */
604struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605{
606 struct bio *b;
607
608 b = bio_alloc_bioset(gfp_mask, 0, bs);
609 if (!b)
610 return NULL;
611
612 __bio_clone_fast(b, bio);
613
614 if (bio_integrity(bio)) {
615 int ret;
616
617 ret = bio_integrity_clone(b, bio, gfp_mask);
618
619 if (ret < 0) {
620 bio_put(b);
621 return NULL;
622 }
623 }
624
625 return b;
626}
627EXPORT_SYMBOL(bio_clone_fast);
628
629/**
630 * bio_clone_bioset - clone a bio
631 * @bio_src: bio to clone
632 * @gfp_mask: allocation priority
633 * @bs: bio_set to allocate from
634 *
635 * Clone bio. Caller will own the returned bio, but not the actual data it
636 * points to. Reference count of returned bio will be one.
637 */
638struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
639 struct bio_set *bs)
640{
641 struct bvec_iter iter;
642 struct bio_vec bv;
643 struct bio *bio;
644
645 /*
646 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
647 * bio_src->bi_io_vec to bio->bi_io_vec.
648 *
649 * We can't do that anymore, because:
650 *
651 * - The point of cloning the biovec is to produce a bio with a biovec
652 * the caller can modify: bi_idx and bi_bvec_done should be 0.
653 *
654 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
655 * we tried to clone the whole thing bio_alloc_bioset() would fail.
656 * But the clone should succeed as long as the number of biovecs we
657 * actually need to allocate is fewer than BIO_MAX_PAGES.
658 *
659 * - Lastly, bi_vcnt should not be looked at or relied upon by code
660 * that does not own the bio - reason being drivers don't use it for
661 * iterating over the biovec anymore, so expecting it to be kept up
662 * to date (i.e. for clones that share the parent biovec) is just
663 * asking for trouble and would force extra work on
664 * __bio_clone_fast() anyways.
665 */
666
667 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
668 if (!bio)
669 return NULL;
670
671 bio->bi_bdev = bio_src->bi_bdev;
672 bio->bi_rw = bio_src->bi_rw;
673 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
674 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
675
676 if (bio->bi_rw & REQ_DISCARD)
677 goto integrity_clone;
678
679 if (bio->bi_rw & REQ_WRITE_SAME) {
680 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
681 goto integrity_clone;
682 }
683
684 bio_for_each_segment(bv, bio_src, iter)
685 bio->bi_io_vec[bio->bi_vcnt++] = bv;
686
687integrity_clone:
688 if (bio_integrity(bio_src)) {
689 int ret;
690
691 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
692 if (ret < 0) {
693 bio_put(bio);
694 return NULL;
695 }
696 }
697
698 return bio;
699}
700EXPORT_SYMBOL(bio_clone_bioset);
701
702/**
703 * bio_add_pc_page - attempt to add page to bio
704 * @q: the target queue
705 * @bio: destination bio
706 * @page: page to add
707 * @len: vec entry length
708 * @offset: vec entry offset
709 *
710 * Attempt to add a page to the bio_vec maplist. This can fail for a
711 * number of reasons, such as the bio being full or target block device
712 * limitations. The target block device must allow bio's up to PAGE_SIZE,
713 * so it is always possible to add a single page to an empty bio.
714 *
715 * This should only be used by REQ_PC bios.
716 */
717int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
718 *page, unsigned int len, unsigned int offset)
719{
720 int retried_segments = 0;
721 struct bio_vec *bvec;
722
723 /*
724 * cloned bio must not modify vec list
725 */
726 if (unlikely(bio_flagged(bio, BIO_CLONED)))
727 return 0;
728
729 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
730 return 0;
731
732 /*
733 * For filesystems with a blocksize smaller than the pagesize
734 * we will often be called with the same page as last time and
735 * a consecutive offset. Optimize this special case.
736 */
737 if (bio->bi_vcnt > 0) {
738 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
739
740 if (page == prev->bv_page &&
741 offset == prev->bv_offset + prev->bv_len) {
742 prev->bv_len += len;
743 bio->bi_iter.bi_size += len;
744 goto done;
745 }
746
747 /*
748 * If the queue doesn't support SG gaps and adding this
749 * offset would create a gap, disallow it.
750 */
751 if (bvec_gap_to_prev(q, prev, offset))
752 return 0;
753 }
754
755 if (bio->bi_vcnt >= bio->bi_max_vecs)
756 return 0;
757
758 /*
759 * setup the new entry, we might clear it again later if we
760 * cannot add the page
761 */
762 bvec = &bio->bi_io_vec[bio->bi_vcnt];
763 bvec->bv_page = page;
764 bvec->bv_len = len;
765 bvec->bv_offset = offset;
766 bio->bi_vcnt++;
767 bio->bi_phys_segments++;
768 bio->bi_iter.bi_size += len;
769
770 /*
771 * Perform a recount if the number of segments is greater
772 * than queue_max_segments(q).
773 */
774
775 while (bio->bi_phys_segments > queue_max_segments(q)) {
776
777 if (retried_segments)
778 goto failed;
779
780 retried_segments = 1;
781 blk_recount_segments(q, bio);
782 }
783
784 /* If we may be able to merge these biovecs, force a recount */
785 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
786 bio_clear_flag(bio, BIO_SEG_VALID);
787
788 done:
789 return len;
790
791 failed:
792 bvec->bv_page = NULL;
793 bvec->bv_len = 0;
794 bvec->bv_offset = 0;
795 bio->bi_vcnt--;
796 bio->bi_iter.bi_size -= len;
797 blk_recount_segments(q, bio);
798 return 0;
799}
800EXPORT_SYMBOL(bio_add_pc_page);
801
802/**
803 * bio_add_page - attempt to add page to bio
804 * @bio: destination bio
805 * @page: page to add
806 * @len: vec entry length
807 * @offset: vec entry offset
808 *
809 * Attempt to add a page to the bio_vec maplist. This will only fail
810 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
811 */
812int bio_add_page(struct bio *bio, struct page *page,
813 unsigned int len, unsigned int offset)
814{
815 struct bio_vec *bv;
816
817 /*
818 * cloned bio must not modify vec list
819 */
820 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
821 return 0;
822
823 /*
824 * For filesystems with a blocksize smaller than the pagesize
825 * we will often be called with the same page as last time and
826 * a consecutive offset. Optimize this special case.
827 */
828 if (bio->bi_vcnt > 0) {
829 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
830
831 if (page == bv->bv_page &&
832 offset == bv->bv_offset + bv->bv_len) {
833 bv->bv_len += len;
834 goto done;
835 }
836 }
837
838 if (bio->bi_vcnt >= bio->bi_max_vecs)
839 return 0;
840
841 bv = &bio->bi_io_vec[bio->bi_vcnt];
842 bv->bv_page = page;
843 bv->bv_len = len;
844 bv->bv_offset = offset;
845
846 bio->bi_vcnt++;
847done:
848 bio->bi_iter.bi_size += len;
849 return len;
850}
851EXPORT_SYMBOL(bio_add_page);
852
853struct submit_bio_ret {
854 struct completion event;
855 int error;
856};
857
858static void submit_bio_wait_endio(struct bio *bio)
859{
860 struct submit_bio_ret *ret = bio->bi_private;
861
862 ret->error = bio->bi_error;
863 complete(&ret->event);
864}
865
866/**
867 * submit_bio_wait - submit a bio, and wait until it completes
868 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
869 * @bio: The &struct bio which describes the I/O
870 *
871 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
872 * bio_endio() on failure.
873 */
874int submit_bio_wait(int rw, struct bio *bio)
875{
876 struct submit_bio_ret ret;
877
878 rw |= REQ_SYNC;
879 init_completion(&ret.event);
880 bio->bi_private = &ret;
881 bio->bi_end_io = submit_bio_wait_endio;
882 submit_bio(rw, bio);
883 wait_for_completion_io(&ret.event);
884
885 return ret.error;
886}
887EXPORT_SYMBOL(submit_bio_wait);
888
889/**
890 * bio_advance - increment/complete a bio by some number of bytes
891 * @bio: bio to advance
892 * @bytes: number of bytes to complete
893 *
894 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
895 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
896 * be updated on the last bvec as well.
897 *
898 * @bio will then represent the remaining, uncompleted portion of the io.
899 */
900void bio_advance(struct bio *bio, unsigned bytes)
901{
902 if (bio_integrity(bio))
903 bio_integrity_advance(bio, bytes);
904
905 bio_advance_iter(bio, &bio->bi_iter, bytes);
906}
907EXPORT_SYMBOL(bio_advance);
908
909/**
910 * bio_alloc_pages - allocates a single page for each bvec in a bio
911 * @bio: bio to allocate pages for
912 * @gfp_mask: flags for allocation
913 *
914 * Allocates pages up to @bio->bi_vcnt.
915 *
916 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
917 * freed.
918 */
919int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
920{
921 int i;
922 struct bio_vec *bv;
923
924 bio_for_each_segment_all(bv, bio, i) {
925 bv->bv_page = alloc_page(gfp_mask);
926 if (!bv->bv_page) {
927 while (--bv >= bio->bi_io_vec)
928 __free_page(bv->bv_page);
929 return -ENOMEM;
930 }
931 }
932
933 return 0;
934}
935EXPORT_SYMBOL(bio_alloc_pages);
936
937/**
938 * bio_copy_data - copy contents of data buffers from one chain of bios to
939 * another
940 * @src: source bio list
941 * @dst: destination bio list
942 *
943 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
944 * @src and @dst as linked lists of bios.
945 *
946 * Stops when it reaches the end of either @src or @dst - that is, copies
947 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
948 */
949void bio_copy_data(struct bio *dst, struct bio *src)
950{
951 struct bvec_iter src_iter, dst_iter;
952 struct bio_vec src_bv, dst_bv;
953 void *src_p, *dst_p;
954 unsigned bytes;
955
956 src_iter = src->bi_iter;
957 dst_iter = dst->bi_iter;
958
959 while (1) {
960 if (!src_iter.bi_size) {
961 src = src->bi_next;
962 if (!src)
963 break;
964
965 src_iter = src->bi_iter;
966 }
967
968 if (!dst_iter.bi_size) {
969 dst = dst->bi_next;
970 if (!dst)
971 break;
972
973 dst_iter = dst->bi_iter;
974 }
975
976 src_bv = bio_iter_iovec(src, src_iter);
977 dst_bv = bio_iter_iovec(dst, dst_iter);
978
979 bytes = min(src_bv.bv_len, dst_bv.bv_len);
980
981 src_p = kmap_atomic(src_bv.bv_page);
982 dst_p = kmap_atomic(dst_bv.bv_page);
983
984 memcpy(dst_p + dst_bv.bv_offset,
985 src_p + src_bv.bv_offset,
986 bytes);
987
988 kunmap_atomic(dst_p);
989 kunmap_atomic(src_p);
990
991 bio_advance_iter(src, &src_iter, bytes);
992 bio_advance_iter(dst, &dst_iter, bytes);
993 }
994}
995EXPORT_SYMBOL(bio_copy_data);
996
997struct bio_map_data {
998 int is_our_pages;
999 struct iov_iter iter;
1000 struct iovec iov[];
1001};
1002
1003static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1004 gfp_t gfp_mask)
1005{
1006 if (iov_count > UIO_MAXIOV)
1007 return NULL;
1008
1009 return kmalloc(sizeof(struct bio_map_data) +
1010 sizeof(struct iovec) * iov_count, gfp_mask);
1011}
1012
1013/**
1014 * bio_copy_from_iter - copy all pages from iov_iter to bio
1015 * @bio: The &struct bio which describes the I/O as destination
1016 * @iter: iov_iter as source
1017 *
1018 * Copy all pages from iov_iter to bio.
1019 * Returns 0 on success, or error on failure.
1020 */
1021static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
1022{
1023 int i;
1024 struct bio_vec *bvec;
1025
1026 bio_for_each_segment_all(bvec, bio, i) {
1027 ssize_t ret;
1028
1029 ret = copy_page_from_iter(bvec->bv_page,
1030 bvec->bv_offset,
1031 bvec->bv_len,
1032 &iter);
1033
1034 if (!iov_iter_count(&iter))
1035 break;
1036
1037 if (ret < bvec->bv_len)
1038 return -EFAULT;
1039 }
1040
1041 return 0;
1042}
1043
1044/**
1045 * bio_copy_to_iter - copy all pages from bio to iov_iter
1046 * @bio: The &struct bio which describes the I/O as source
1047 * @iter: iov_iter as destination
1048 *
1049 * Copy all pages from bio to iov_iter.
1050 * Returns 0 on success, or error on failure.
1051 */
1052static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1053{
1054 int i;
1055 struct bio_vec *bvec;
1056
1057 bio_for_each_segment_all(bvec, bio, i) {
1058 ssize_t ret;
1059
1060 ret = copy_page_to_iter(bvec->bv_page,
1061 bvec->bv_offset,
1062 bvec->bv_len,
1063 &iter);
1064
1065 if (!iov_iter_count(&iter))
1066 break;
1067
1068 if (ret < bvec->bv_len)
1069 return -EFAULT;
1070 }
1071
1072 return 0;
1073}
1074
1075static void bio_free_pages(struct bio *bio)
1076{
1077 struct bio_vec *bvec;
1078 int i;
1079
1080 bio_for_each_segment_all(bvec, bio, i)
1081 __free_page(bvec->bv_page);
1082}
1083
1084/**
1085 * bio_uncopy_user - finish previously mapped bio
1086 * @bio: bio being terminated
1087 *
1088 * Free pages allocated from bio_copy_user_iov() and write back data
1089 * to user space in case of a read.
1090 */
1091int bio_uncopy_user(struct bio *bio)
1092{
1093 struct bio_map_data *bmd = bio->bi_private;
1094 int ret = 0;
1095
1096 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1097 /*
1098 * if we're in a workqueue, the request is orphaned, so
1099 * don't copy into a random user address space, just free
1100 * and return -EINTR so user space doesn't expect any data.
1101 */
1102 if (!current->mm)
1103 ret = -EINTR;
1104 else if (bio_data_dir(bio) == READ)
1105 ret = bio_copy_to_iter(bio, bmd->iter);
1106 if (bmd->is_our_pages)
1107 bio_free_pages(bio);
1108 }
1109 kfree(bmd);
1110 bio_put(bio);
1111 return ret;
1112}
1113EXPORT_SYMBOL(bio_uncopy_user);
1114
1115/**
1116 * bio_copy_user_iov - copy user data to bio
1117 * @q: destination block queue
1118 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1119 * @iter: iovec iterator
1120 * @gfp_mask: memory allocation flags
1121 *
1122 * Prepares and returns a bio for indirect user io, bouncing data
1123 * to/from kernel pages as necessary. Must be paired with
1124 * call bio_uncopy_user() on io completion.
1125 */
1126struct bio *bio_copy_user_iov(struct request_queue *q,
1127 struct rq_map_data *map_data,
1128 const struct iov_iter *iter,
1129 gfp_t gfp_mask)
1130{
1131 struct bio_map_data *bmd;
1132 struct page *page;
1133 struct bio *bio;
1134 int i, ret;
1135 int nr_pages = 0;
1136 unsigned int len = iter->count;
1137 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1138
1139 for (i = 0; i < iter->nr_segs; i++) {
1140 unsigned long uaddr;
1141 unsigned long end;
1142 unsigned long start;
1143
1144 uaddr = (unsigned long) iter->iov[i].iov_base;
1145 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1146 >> PAGE_SHIFT;
1147 start = uaddr >> PAGE_SHIFT;
1148
1149 /*
1150 * Overflow, abort
1151 */
1152 if (end < start)
1153 return ERR_PTR(-EINVAL);
1154
1155 nr_pages += end - start;
1156 }
1157
1158 if (offset)
1159 nr_pages++;
1160
1161 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1162 if (!bmd)
1163 return ERR_PTR(-ENOMEM);
1164
1165 /*
1166 * We need to do a deep copy of the iov_iter including the iovecs.
1167 * The caller provided iov might point to an on-stack or otherwise
1168 * shortlived one.
1169 */
1170 bmd->is_our_pages = map_data ? 0 : 1;
1171 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1172 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1173 iter->nr_segs, iter->count);
1174
1175 ret = -ENOMEM;
1176 bio = bio_kmalloc(gfp_mask, nr_pages);
1177 if (!bio)
1178 goto out_bmd;
1179
1180 if (iter->type & WRITE)
1181 bio->bi_rw |= REQ_WRITE;
1182
1183 ret = 0;
1184
1185 if (map_data) {
1186 nr_pages = 1 << map_data->page_order;
1187 i = map_data->offset / PAGE_SIZE;
1188 }
1189 while (len) {
1190 unsigned int bytes = PAGE_SIZE;
1191
1192 bytes -= offset;
1193
1194 if (bytes > len)
1195 bytes = len;
1196
1197 if (map_data) {
1198 if (i == map_data->nr_entries * nr_pages) {
1199 ret = -ENOMEM;
1200 break;
1201 }
1202
1203 page = map_data->pages[i / nr_pages];
1204 page += (i % nr_pages);
1205
1206 i++;
1207 } else {
1208 page = alloc_page(q->bounce_gfp | gfp_mask);
1209 if (!page) {
1210 ret = -ENOMEM;
1211 break;
1212 }
1213 }
1214
1215 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1216 break;
1217
1218 len -= bytes;
1219 offset = 0;
1220 }
1221
1222 if (ret)
1223 goto cleanup;
1224
1225 /*
1226 * success
1227 */
1228 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1229 (map_data && map_data->from_user)) {
1230 ret = bio_copy_from_iter(bio, *iter);
1231 if (ret)
1232 goto cleanup;
1233 }
1234
1235 bio->bi_private = bmd;
1236 return bio;
1237cleanup:
1238 if (!map_data)
1239 bio_free_pages(bio);
1240 bio_put(bio);
1241out_bmd:
1242 kfree(bmd);
1243 return ERR_PTR(ret);
1244}
1245
1246/**
1247 * bio_map_user_iov - map user iovec into bio
1248 * @q: the struct request_queue for the bio
1249 * @iter: iovec iterator
1250 * @gfp_mask: memory allocation flags
1251 *
1252 * Map the user space address into a bio suitable for io to a block
1253 * device. Returns an error pointer in case of error.
1254 */
1255struct bio *bio_map_user_iov(struct request_queue *q,
1256 const struct iov_iter *iter,
1257 gfp_t gfp_mask)
1258{
1259 int j;
1260 int nr_pages = 0;
1261 struct page **pages;
1262 struct bio *bio;
1263 int cur_page = 0;
1264 int ret, offset;
1265 struct iov_iter i;
1266 struct iovec iov;
1267
1268 iov_for_each(iov, i, *iter) {
1269 unsigned long uaddr = (unsigned long) iov.iov_base;
1270 unsigned long len = iov.iov_len;
1271 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272 unsigned long start = uaddr >> PAGE_SHIFT;
1273
1274 /*
1275 * Overflow, abort
1276 */
1277 if (end < start)
1278 return ERR_PTR(-EINVAL);
1279
1280 nr_pages += end - start;
1281 /*
1282 * buffer must be aligned to at least hardsector size for now
1283 */
1284 if (uaddr & queue_dma_alignment(q))
1285 return ERR_PTR(-EINVAL);
1286 }
1287
1288 if (!nr_pages)
1289 return ERR_PTR(-EINVAL);
1290
1291 bio = bio_kmalloc(gfp_mask, nr_pages);
1292 if (!bio)
1293 return ERR_PTR(-ENOMEM);
1294
1295 ret = -ENOMEM;
1296 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1297 if (!pages)
1298 goto out;
1299
1300 iov_for_each(iov, i, *iter) {
1301 unsigned long uaddr = (unsigned long) iov.iov_base;
1302 unsigned long len = iov.iov_len;
1303 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 unsigned long start = uaddr >> PAGE_SHIFT;
1305 const int local_nr_pages = end - start;
1306 const int page_limit = cur_page + local_nr_pages;
1307
1308 ret = get_user_pages_fast(uaddr, local_nr_pages,
1309 (iter->type & WRITE) != WRITE,
1310 &pages[cur_page]);
1311 if (ret < local_nr_pages) {
1312 ret = -EFAULT;
1313 goto out_unmap;
1314 }
1315
1316 offset = offset_in_page(uaddr);
1317 for (j = cur_page; j < page_limit; j++) {
1318 unsigned int bytes = PAGE_SIZE - offset;
1319
1320 if (len <= 0)
1321 break;
1322
1323 if (bytes > len)
1324 bytes = len;
1325
1326 /*
1327 * sorry...
1328 */
1329 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1330 bytes)
1331 break;
1332
1333 len -= bytes;
1334 offset = 0;
1335 }
1336
1337 cur_page = j;
1338 /*
1339 * release the pages we didn't map into the bio, if any
1340 */
1341 while (j < page_limit)
1342 put_page(pages[j++]);
1343 }
1344
1345 kfree(pages);
1346
1347 /*
1348 * set data direction, and check if mapped pages need bouncing
1349 */
1350 if (iter->type & WRITE)
1351 bio->bi_rw |= REQ_WRITE;
1352
1353 bio_set_flag(bio, BIO_USER_MAPPED);
1354
1355 /*
1356 * subtle -- if __bio_map_user() ended up bouncing a bio,
1357 * it would normally disappear when its bi_end_io is run.
1358 * however, we need it for the unmap, so grab an extra
1359 * reference to it
1360 */
1361 bio_get(bio);
1362 return bio;
1363
1364 out_unmap:
1365 for (j = 0; j < nr_pages; j++) {
1366 if (!pages[j])
1367 break;
1368 put_page(pages[j]);
1369 }
1370 out:
1371 kfree(pages);
1372 bio_put(bio);
1373 return ERR_PTR(ret);
1374}
1375
1376static void __bio_unmap_user(struct bio *bio)
1377{
1378 struct bio_vec *bvec;
1379 int i;
1380
1381 /*
1382 * make sure we dirty pages we wrote to
1383 */
1384 bio_for_each_segment_all(bvec, bio, i) {
1385 if (bio_data_dir(bio) == READ)
1386 set_page_dirty_lock(bvec->bv_page);
1387
1388 put_page(bvec->bv_page);
1389 }
1390
1391 bio_put(bio);
1392}
1393
1394/**
1395 * bio_unmap_user - unmap a bio
1396 * @bio: the bio being unmapped
1397 *
1398 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1399 * a process context.
1400 *
1401 * bio_unmap_user() may sleep.
1402 */
1403void bio_unmap_user(struct bio *bio)
1404{
1405 __bio_unmap_user(bio);
1406 bio_put(bio);
1407}
1408EXPORT_SYMBOL(bio_unmap_user);
1409
1410static void bio_map_kern_endio(struct bio *bio)
1411{
1412 bio_put(bio);
1413}
1414
1415/**
1416 * bio_map_kern - map kernel address into bio
1417 * @q: the struct request_queue for the bio
1418 * @data: pointer to buffer to map
1419 * @len: length in bytes
1420 * @gfp_mask: allocation flags for bio allocation
1421 *
1422 * Map the kernel address into a bio suitable for io to a block
1423 * device. Returns an error pointer in case of error.
1424 */
1425struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426 gfp_t gfp_mask)
1427{
1428 unsigned long kaddr = (unsigned long)data;
1429 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430 unsigned long start = kaddr >> PAGE_SHIFT;
1431 const int nr_pages = end - start;
1432 int offset, i;
1433 struct bio *bio;
1434
1435 bio = bio_kmalloc(gfp_mask, nr_pages);
1436 if (!bio)
1437 return ERR_PTR(-ENOMEM);
1438
1439 offset = offset_in_page(kaddr);
1440 for (i = 0; i < nr_pages; i++) {
1441 unsigned int bytes = PAGE_SIZE - offset;
1442
1443 if (len <= 0)
1444 break;
1445
1446 if (bytes > len)
1447 bytes = len;
1448
1449 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1450 offset) < bytes) {
1451 /* we don't support partial mappings */
1452 bio_put(bio);
1453 return ERR_PTR(-EINVAL);
1454 }
1455
1456 data += bytes;
1457 len -= bytes;
1458 offset = 0;
1459 }
1460
1461 bio->bi_end_io = bio_map_kern_endio;
1462 return bio;
1463}
1464EXPORT_SYMBOL(bio_map_kern);
1465
1466static void bio_copy_kern_endio(struct bio *bio)
1467{
1468 bio_free_pages(bio);
1469 bio_put(bio);
1470}
1471
1472static void bio_copy_kern_endio_read(struct bio *bio)
1473{
1474 char *p = bio->bi_private;
1475 struct bio_vec *bvec;
1476 int i;
1477
1478 bio_for_each_segment_all(bvec, bio, i) {
1479 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1480 p += bvec->bv_len;
1481 }
1482
1483 bio_copy_kern_endio(bio);
1484}
1485
1486/**
1487 * bio_copy_kern - copy kernel address into bio
1488 * @q: the struct request_queue for the bio
1489 * @data: pointer to buffer to copy
1490 * @len: length in bytes
1491 * @gfp_mask: allocation flags for bio and page allocation
1492 * @reading: data direction is READ
1493 *
1494 * copy the kernel address into a bio suitable for io to a block
1495 * device. Returns an error pointer in case of error.
1496 */
1497struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498 gfp_t gfp_mask, int reading)
1499{
1500 unsigned long kaddr = (unsigned long)data;
1501 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502 unsigned long start = kaddr >> PAGE_SHIFT;
1503 struct bio *bio;
1504 void *p = data;
1505 int nr_pages = 0;
1506
1507 /*
1508 * Overflow, abort
1509 */
1510 if (end < start)
1511 return ERR_PTR(-EINVAL);
1512
1513 nr_pages = end - start;
1514 bio = bio_kmalloc(gfp_mask, nr_pages);
1515 if (!bio)
1516 return ERR_PTR(-ENOMEM);
1517
1518 while (len) {
1519 struct page *page;
1520 unsigned int bytes = PAGE_SIZE;
1521
1522 if (bytes > len)
1523 bytes = len;
1524
1525 page = alloc_page(q->bounce_gfp | gfp_mask);
1526 if (!page)
1527 goto cleanup;
1528
1529 if (!reading)
1530 memcpy(page_address(page), p, bytes);
1531
1532 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533 break;
1534
1535 len -= bytes;
1536 p += bytes;
1537 }
1538
1539 if (reading) {
1540 bio->bi_end_io = bio_copy_kern_endio_read;
1541 bio->bi_private = data;
1542 } else {
1543 bio->bi_end_io = bio_copy_kern_endio;
1544 bio->bi_rw |= REQ_WRITE;
1545 }
1546
1547 return bio;
1548
1549cleanup:
1550 bio_free_pages(bio);
1551 bio_put(bio);
1552 return ERR_PTR(-ENOMEM);
1553}
1554EXPORT_SYMBOL(bio_copy_kern);
1555
1556/*
1557 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1558 * for performing direct-IO in BIOs.
1559 *
1560 * The problem is that we cannot run set_page_dirty() from interrupt context
1561 * because the required locks are not interrupt-safe. So what we can do is to
1562 * mark the pages dirty _before_ performing IO. And in interrupt context,
1563 * check that the pages are still dirty. If so, fine. If not, redirty them
1564 * in process context.
1565 *
1566 * We special-case compound pages here: normally this means reads into hugetlb
1567 * pages. The logic in here doesn't really work right for compound pages
1568 * because the VM does not uniformly chase down the head page in all cases.
1569 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1570 * handle them at all. So we skip compound pages here at an early stage.
1571 *
1572 * Note that this code is very hard to test under normal circumstances because
1573 * direct-io pins the pages with get_user_pages(). This makes
1574 * is_page_cache_freeable return false, and the VM will not clean the pages.
1575 * But other code (eg, flusher threads) could clean the pages if they are mapped
1576 * pagecache.
1577 *
1578 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1579 * deferred bio dirtying paths.
1580 */
1581
1582/*
1583 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1584 */
1585void bio_set_pages_dirty(struct bio *bio)
1586{
1587 struct bio_vec *bvec;
1588 int i;
1589
1590 bio_for_each_segment_all(bvec, bio, i) {
1591 struct page *page = bvec->bv_page;
1592
1593 if (page && !PageCompound(page))
1594 set_page_dirty_lock(page);
1595 }
1596}
1597
1598static void bio_release_pages(struct bio *bio)
1599{
1600 struct bio_vec *bvec;
1601 int i;
1602
1603 bio_for_each_segment_all(bvec, bio, i) {
1604 struct page *page = bvec->bv_page;
1605
1606 if (page)
1607 put_page(page);
1608 }
1609}
1610
1611/*
1612 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1613 * If they are, then fine. If, however, some pages are clean then they must
1614 * have been written out during the direct-IO read. So we take another ref on
1615 * the BIO and the offending pages and re-dirty the pages in process context.
1616 *
1617 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1618 * here on. It will run one put_page() against each page and will run one
1619 * bio_put() against the BIO.
1620 */
1621
1622static void bio_dirty_fn(struct work_struct *work);
1623
1624static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1625static DEFINE_SPINLOCK(bio_dirty_lock);
1626static struct bio *bio_dirty_list;
1627
1628/*
1629 * This runs in process context
1630 */
1631static void bio_dirty_fn(struct work_struct *work)
1632{
1633 unsigned long flags;
1634 struct bio *bio;
1635
1636 spin_lock_irqsave(&bio_dirty_lock, flags);
1637 bio = bio_dirty_list;
1638 bio_dirty_list = NULL;
1639 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1640
1641 while (bio) {
1642 struct bio *next = bio->bi_private;
1643
1644 bio_set_pages_dirty(bio);
1645 bio_release_pages(bio);
1646 bio_put(bio);
1647 bio = next;
1648 }
1649}
1650
1651void bio_check_pages_dirty(struct bio *bio)
1652{
1653 struct bio_vec *bvec;
1654 int nr_clean_pages = 0;
1655 int i;
1656
1657 bio_for_each_segment_all(bvec, bio, i) {
1658 struct page *page = bvec->bv_page;
1659
1660 if (PageDirty(page) || PageCompound(page)) {
1661 put_page(page);
1662 bvec->bv_page = NULL;
1663 } else {
1664 nr_clean_pages++;
1665 }
1666 }
1667
1668 if (nr_clean_pages) {
1669 unsigned long flags;
1670
1671 spin_lock_irqsave(&bio_dirty_lock, flags);
1672 bio->bi_private = bio_dirty_list;
1673 bio_dirty_list = bio;
1674 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1675 schedule_work(&bio_dirty_work);
1676 } else {
1677 bio_put(bio);
1678 }
1679}
1680
1681void generic_start_io_acct(int rw, unsigned long sectors,
1682 struct hd_struct *part)
1683{
1684 int cpu = part_stat_lock();
1685
1686 part_round_stats(cpu, part);
1687 part_stat_inc(cpu, part, ios[rw]);
1688 part_stat_add(cpu, part, sectors[rw], sectors);
1689 part_inc_in_flight(part, rw);
1690
1691 part_stat_unlock();
1692}
1693EXPORT_SYMBOL(generic_start_io_acct);
1694
1695void generic_end_io_acct(int rw, struct hd_struct *part,
1696 unsigned long start_time)
1697{
1698 unsigned long duration = jiffies - start_time;
1699 int cpu = part_stat_lock();
1700
1701 part_stat_add(cpu, part, ticks[rw], duration);
1702 part_round_stats(cpu, part);
1703 part_dec_in_flight(part, rw);
1704
1705 part_stat_unlock();
1706}
1707EXPORT_SYMBOL(generic_end_io_acct);
1708
1709#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1710void bio_flush_dcache_pages(struct bio *bi)
1711{
1712 struct bio_vec bvec;
1713 struct bvec_iter iter;
1714
1715 bio_for_each_segment(bvec, bi, iter)
1716 flush_dcache_page(bvec.bv_page);
1717}
1718EXPORT_SYMBOL(bio_flush_dcache_pages);
1719#endif
1720
1721static inline bool bio_remaining_done(struct bio *bio)
1722{
1723 /*
1724 * If we're not chaining, then ->__bi_remaining is always 1 and
1725 * we always end io on the first invocation.
1726 */
1727 if (!bio_flagged(bio, BIO_CHAIN))
1728 return true;
1729
1730 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1731
1732 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1733 bio_clear_flag(bio, BIO_CHAIN);
1734 return true;
1735 }
1736
1737 return false;
1738}
1739
1740/**
1741 * bio_endio - end I/O on a bio
1742 * @bio: bio
1743 *
1744 * Description:
1745 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1746 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1747 * bio unless they own it and thus know that it has an end_io function.
1748 **/
1749void bio_endio(struct bio *bio)
1750{
1751again:
1752 if (!bio_remaining_done(bio))
1753 return;
1754
1755 /*
1756 * Need to have a real endio function for chained bios, otherwise
1757 * various corner cases will break (like stacking block devices that
1758 * save/restore bi_end_io) - however, we want to avoid unbounded
1759 * recursion and blowing the stack. Tail call optimization would
1760 * handle this, but compiling with frame pointers also disables
1761 * gcc's sibling call optimization.
1762 */
1763 if (bio->bi_end_io == bio_chain_endio) {
1764 bio = __bio_chain_endio(bio);
1765 goto again;
1766 }
1767
1768 if (bio->bi_end_io)
1769 bio->bi_end_io(bio);
1770}
1771EXPORT_SYMBOL(bio_endio);
1772
1773/**
1774 * bio_split - split a bio
1775 * @bio: bio to split
1776 * @sectors: number of sectors to split from the front of @bio
1777 * @gfp: gfp mask
1778 * @bs: bio set to allocate from
1779 *
1780 * Allocates and returns a new bio which represents @sectors from the start of
1781 * @bio, and updates @bio to represent the remaining sectors.
1782 *
1783 * Unless this is a discard request the newly allocated bio will point
1784 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1785 * @bio is not freed before the split.
1786 */
1787struct bio *bio_split(struct bio *bio, int sectors,
1788 gfp_t gfp, struct bio_set *bs)
1789{
1790 struct bio *split = NULL;
1791
1792 BUG_ON(sectors <= 0);
1793 BUG_ON(sectors >= bio_sectors(bio));
1794
1795 /*
1796 * Discards need a mutable bio_vec to accommodate the payload
1797 * required by the DSM TRIM and UNMAP commands.
1798 */
1799 if (bio->bi_rw & REQ_DISCARD)
1800 split = bio_clone_bioset(bio, gfp, bs);
1801 else
1802 split = bio_clone_fast(bio, gfp, bs);
1803
1804 if (!split)
1805 return NULL;
1806
1807 split->bi_iter.bi_size = sectors << 9;
1808
1809 if (bio_integrity(split))
1810 bio_integrity_trim(split, 0, sectors);
1811
1812 bio_advance(bio, split->bi_iter.bi_size);
1813
1814 return split;
1815}
1816EXPORT_SYMBOL(bio_split);
1817
1818/**
1819 * bio_trim - trim a bio
1820 * @bio: bio to trim
1821 * @offset: number of sectors to trim from the front of @bio
1822 * @size: size we want to trim @bio to, in sectors
1823 */
1824void bio_trim(struct bio *bio, int offset, int size)
1825{
1826 /* 'bio' is a cloned bio which we need to trim to match
1827 * the given offset and size.
1828 */
1829
1830 size <<= 9;
1831 if (offset == 0 && size == bio->bi_iter.bi_size)
1832 return;
1833
1834 bio_clear_flag(bio, BIO_SEG_VALID);
1835
1836 bio_advance(bio, offset << 9);
1837
1838 bio->bi_iter.bi_size = size;
1839}
1840EXPORT_SYMBOL_GPL(bio_trim);
1841
1842/*
1843 * create memory pools for biovec's in a bio_set.
1844 * use the global biovec slabs created for general use.
1845 */
1846mempool_t *biovec_create_pool(int pool_entries)
1847{
1848 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1849
1850 return mempool_create_slab_pool(pool_entries, bp->slab);
1851}
1852
1853void bioset_free(struct bio_set *bs)
1854{
1855 if (bs->rescue_workqueue)
1856 destroy_workqueue(bs->rescue_workqueue);
1857
1858 if (bs->bio_pool)
1859 mempool_destroy(bs->bio_pool);
1860
1861 if (bs->bvec_pool)
1862 mempool_destroy(bs->bvec_pool);
1863
1864 bioset_integrity_free(bs);
1865 bio_put_slab(bs);
1866
1867 kfree(bs);
1868}
1869EXPORT_SYMBOL(bioset_free);
1870
1871static struct bio_set *__bioset_create(unsigned int pool_size,
1872 unsigned int front_pad,
1873 bool create_bvec_pool)
1874{
1875 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1876 struct bio_set *bs;
1877
1878 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1879 if (!bs)
1880 return NULL;
1881
1882 bs->front_pad = front_pad;
1883
1884 spin_lock_init(&bs->rescue_lock);
1885 bio_list_init(&bs->rescue_list);
1886 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1887
1888 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1889 if (!bs->bio_slab) {
1890 kfree(bs);
1891 return NULL;
1892 }
1893
1894 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1895 if (!bs->bio_pool)
1896 goto bad;
1897
1898 if (create_bvec_pool) {
1899 bs->bvec_pool = biovec_create_pool(pool_size);
1900 if (!bs->bvec_pool)
1901 goto bad;
1902 }
1903
1904 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1905 if (!bs->rescue_workqueue)
1906 goto bad;
1907
1908 return bs;
1909bad:
1910 bioset_free(bs);
1911 return NULL;
1912}
1913
1914/**
1915 * bioset_create - Create a bio_set
1916 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1917 * @front_pad: Number of bytes to allocate in front of the returned bio
1918 *
1919 * Description:
1920 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1921 * to ask for a number of bytes to be allocated in front of the bio.
1922 * Front pad allocation is useful for embedding the bio inside
1923 * another structure, to avoid allocating extra data to go with the bio.
1924 * Note that the bio must be embedded at the END of that structure always,
1925 * or things will break badly.
1926 */
1927struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1928{
1929 return __bioset_create(pool_size, front_pad, true);
1930}
1931EXPORT_SYMBOL(bioset_create);
1932
1933/**
1934 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1935 * @pool_size: Number of bio to cache in the mempool
1936 * @front_pad: Number of bytes to allocate in front of the returned bio
1937 *
1938 * Description:
1939 * Same functionality as bioset_create() except that mempool is not
1940 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1941 */
1942struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1943{
1944 return __bioset_create(pool_size, front_pad, false);
1945}
1946EXPORT_SYMBOL(bioset_create_nobvec);
1947
1948#ifdef CONFIG_BLK_CGROUP
1949
1950/**
1951 * bio_associate_blkcg - associate a bio with the specified blkcg
1952 * @bio: target bio
1953 * @blkcg_css: css of the blkcg to associate
1954 *
1955 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
1956 * treat @bio as if it were issued by a task which belongs to the blkcg.
1957 *
1958 * This function takes an extra reference of @blkcg_css which will be put
1959 * when @bio is released. The caller must own @bio and is responsible for
1960 * synchronizing calls to this function.
1961 */
1962int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1963{
1964 if (unlikely(bio->bi_css))
1965 return -EBUSY;
1966 css_get(blkcg_css);
1967 bio->bi_css = blkcg_css;
1968 return 0;
1969}
1970EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1971
1972/**
1973 * bio_associate_current - associate a bio with %current
1974 * @bio: target bio
1975 *
1976 * Associate @bio with %current if it hasn't been associated yet. Block
1977 * layer will treat @bio as if it were issued by %current no matter which
1978 * task actually issues it.
1979 *
1980 * This function takes an extra reference of @task's io_context and blkcg
1981 * which will be put when @bio is released. The caller must own @bio,
1982 * ensure %current->io_context exists, and is responsible for synchronizing
1983 * calls to this function.
1984 */
1985int bio_associate_current(struct bio *bio)
1986{
1987 struct io_context *ioc;
1988
1989 if (bio->bi_css)
1990 return -EBUSY;
1991
1992 ioc = current->io_context;
1993 if (!ioc)
1994 return -ENOENT;
1995
1996 get_io_context_active(ioc);
1997 bio->bi_ioc = ioc;
1998 bio->bi_css = task_get_css(current, io_cgrp_id);
1999 return 0;
2000}
2001EXPORT_SYMBOL_GPL(bio_associate_current);
2002
2003/**
2004 * bio_disassociate_task - undo bio_associate_current()
2005 * @bio: target bio
2006 */
2007void bio_disassociate_task(struct bio *bio)
2008{
2009 if (bio->bi_ioc) {
2010 put_io_context(bio->bi_ioc);
2011 bio->bi_ioc = NULL;
2012 }
2013 if (bio->bi_css) {
2014 css_put(bio->bi_css);
2015 bio->bi_css = NULL;
2016 }
2017}
2018
2019#endif /* CONFIG_BLK_CGROUP */
2020
2021static void __init biovec_init_slabs(void)
2022{
2023 int i;
2024
2025 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2026 int size;
2027 struct biovec_slab *bvs = bvec_slabs + i;
2028
2029 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2030 bvs->slab = NULL;
2031 continue;
2032 }
2033
2034 size = bvs->nr_vecs * sizeof(struct bio_vec);
2035 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2036 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2037 }
2038}
2039
2040static int __init init_bio(void)
2041{
2042 bio_slab_max = 2;
2043 bio_slab_nr = 0;
2044 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2045 if (!bio_slabs)
2046 panic("bio: can't allocate bios\n");
2047
2048 bio_integrity_init();
2049 biovec_init_slabs();
2050
2051 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2052 if (!fs_bio_set)
2053 panic("bio: can't allocate bios\n");
2054
2055 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2056 panic("bio: can't create integrity pool\n");
2057
2058 return 0;
2059}
2060subsys_initcall(init_bio);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/uio.h>
10#include <linux/iocontext.h>
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/export.h>
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
17#include <linux/cgroup.h>
18#include <linux/blk-cgroup.h>
19#include <linux/highmem.h>
20#include <linux/sched/sysctl.h>
21#include <linux/blk-crypto.h>
22
23#include <trace/events/block.h>
24#include "blk.h"
25#include "blk-rq-qos.h"
26
27/*
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
30 */
31#define BIO_INLINE_VECS 4
32
33/*
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
36 * unsigned short
37 */
38#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
39static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
40 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
41};
42#undef BV
43
44/*
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
47 */
48struct bio_set fs_bio_set;
49EXPORT_SYMBOL(fs_bio_set);
50
51/*
52 * Our slab pool management
53 */
54struct bio_slab {
55 struct kmem_cache *slab;
56 unsigned int slab_ref;
57 unsigned int slab_size;
58 char name[8];
59};
60static DEFINE_MUTEX(bio_slab_lock);
61static struct bio_slab *bio_slabs;
62static unsigned int bio_slab_nr, bio_slab_max;
63
64static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65{
66 unsigned int sz = sizeof(struct bio) + extra_size;
67 struct kmem_cache *slab = NULL;
68 struct bio_slab *bslab, *new_bio_slabs;
69 unsigned int new_bio_slab_max;
70 unsigned int i, entry = -1;
71
72 mutex_lock(&bio_slab_lock);
73
74 i = 0;
75 while (i < bio_slab_nr) {
76 bslab = &bio_slabs[i];
77
78 if (!bslab->slab && entry == -1)
79 entry = i;
80 else if (bslab->slab_size == sz) {
81 slab = bslab->slab;
82 bslab->slab_ref++;
83 break;
84 }
85 i++;
86 }
87
88 if (slab)
89 goto out_unlock;
90
91 if (bio_slab_nr == bio_slab_max && entry == -1) {
92 new_bio_slab_max = bio_slab_max << 1;
93 new_bio_slabs = krealloc(bio_slabs,
94 new_bio_slab_max * sizeof(struct bio_slab),
95 GFP_KERNEL);
96 if (!new_bio_slabs)
97 goto out_unlock;
98 bio_slab_max = new_bio_slab_max;
99 bio_slabs = new_bio_slabs;
100 }
101 if (entry == -1)
102 entry = bio_slab_nr++;
103
104 bslab = &bio_slabs[entry];
105
106 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
107 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 SLAB_HWCACHE_ALIGN, NULL);
109 if (!slab)
110 goto out_unlock;
111
112 bslab->slab = slab;
113 bslab->slab_ref = 1;
114 bslab->slab_size = sz;
115out_unlock:
116 mutex_unlock(&bio_slab_lock);
117 return slab;
118}
119
120static void bio_put_slab(struct bio_set *bs)
121{
122 struct bio_slab *bslab = NULL;
123 unsigned int i;
124
125 mutex_lock(&bio_slab_lock);
126
127 for (i = 0; i < bio_slab_nr; i++) {
128 if (bs->bio_slab == bio_slabs[i].slab) {
129 bslab = &bio_slabs[i];
130 break;
131 }
132 }
133
134 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135 goto out;
136
137 WARN_ON(!bslab->slab_ref);
138
139 if (--bslab->slab_ref)
140 goto out;
141
142 kmem_cache_destroy(bslab->slab);
143 bslab->slab = NULL;
144
145out:
146 mutex_unlock(&bio_slab_lock);
147}
148
149unsigned int bvec_nr_vecs(unsigned short idx)
150{
151 return bvec_slabs[--idx].nr_vecs;
152}
153
154void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
155{
156 if (!idx)
157 return;
158 idx--;
159
160 BIO_BUG_ON(idx >= BVEC_POOL_NR);
161
162 if (idx == BVEC_POOL_MAX) {
163 mempool_free(bv, pool);
164 } else {
165 struct biovec_slab *bvs = bvec_slabs + idx;
166
167 kmem_cache_free(bvs->slab, bv);
168 }
169}
170
171struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172 mempool_t *pool)
173{
174 struct bio_vec *bvl;
175
176 /*
177 * see comment near bvec_array define!
178 */
179 switch (nr) {
180 case 1:
181 *idx = 0;
182 break;
183 case 2 ... 4:
184 *idx = 1;
185 break;
186 case 5 ... 16:
187 *idx = 2;
188 break;
189 case 17 ... 64:
190 *idx = 3;
191 break;
192 case 65 ... 128:
193 *idx = 4;
194 break;
195 case 129 ... BIO_MAX_PAGES:
196 *idx = 5;
197 break;
198 default:
199 return NULL;
200 }
201
202 /*
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
205 */
206 if (*idx == BVEC_POOL_MAX) {
207fallback:
208 bvl = mempool_alloc(pool, gfp_mask);
209 } else {
210 struct biovec_slab *bvs = bvec_slabs + *idx;
211 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
212
213 /*
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
217 */
218 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
219
220 /*
221 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
222 * is set, retry with the 1-entry mempool
223 */
224 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
225 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
226 *idx = BVEC_POOL_MAX;
227 goto fallback;
228 }
229 }
230
231 (*idx)++;
232 return bvl;
233}
234
235void bio_uninit(struct bio *bio)
236{
237#ifdef CONFIG_BLK_CGROUP
238 if (bio->bi_blkg) {
239 blkg_put(bio->bi_blkg);
240 bio->bi_blkg = NULL;
241 }
242#endif
243 if (bio_integrity(bio))
244 bio_integrity_free(bio);
245
246 bio_crypt_free_ctx(bio);
247}
248EXPORT_SYMBOL(bio_uninit);
249
250static void bio_free(struct bio *bio)
251{
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
255 bio_uninit(bio);
256
257 if (bs) {
258 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
264 p -= bs->front_pad;
265
266 mempool_free(p, &bs->bio_pool);
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
271}
272
273/*
274 * Users of this function have their own bio allocation. Subsequently,
275 * they must remember to pair any call to bio_init() with bio_uninit()
276 * when IO has completed, or when the bio is released.
277 */
278void bio_init(struct bio *bio, struct bio_vec *table,
279 unsigned short max_vecs)
280{
281 memset(bio, 0, sizeof(*bio));
282 atomic_set(&bio->__bi_remaining, 1);
283 atomic_set(&bio->__bi_cnt, 1);
284
285 bio->bi_io_vec = table;
286 bio->bi_max_vecs = max_vecs;
287}
288EXPORT_SYMBOL(bio_init);
289
290/**
291 * bio_reset - reinitialize a bio
292 * @bio: bio to reset
293 *
294 * Description:
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
299 */
300void bio_reset(struct bio *bio)
301{
302 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
303
304 bio_uninit(bio);
305
306 memset(bio, 0, BIO_RESET_BYTES);
307 bio->bi_flags = flags;
308 atomic_set(&bio->__bi_remaining, 1);
309}
310EXPORT_SYMBOL(bio_reset);
311
312static struct bio *__bio_chain_endio(struct bio *bio)
313{
314 struct bio *parent = bio->bi_private;
315
316 if (!parent->bi_status)
317 parent->bi_status = bio->bi_status;
318 bio_put(bio);
319 return parent;
320}
321
322static void bio_chain_endio(struct bio *bio)
323{
324 bio_endio(__bio_chain_endio(bio));
325}
326
327/**
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the @bio's parent bio
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
338void bio_chain(struct bio *bio, struct bio *parent)
339{
340 BUG_ON(bio->bi_private || bio->bi_end_io);
341
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
344 bio_inc_remaining(parent);
345}
346EXPORT_SYMBOL(bio_chain);
347
348static void bio_alloc_rescue(struct work_struct *work)
349{
350 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351 struct bio *bio;
352
353 while (1) {
354 spin_lock(&bs->rescue_lock);
355 bio = bio_list_pop(&bs->rescue_list);
356 spin_unlock(&bs->rescue_lock);
357
358 if (!bio)
359 break;
360
361 submit_bio_noacct(bio);
362 }
363}
364
365static void punt_bios_to_rescuer(struct bio_set *bs)
366{
367 struct bio_list punt, nopunt;
368 struct bio *bio;
369
370 if (WARN_ON_ONCE(!bs->rescue_workqueue))
371 return;
372 /*
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
378 *
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
381 */
382
383 bio_list_init(&punt);
384 bio_list_init(&nopunt);
385
386 while ((bio = bio_list_pop(¤t->bio_list[0])))
387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 current->bio_list[0] = nopunt;
389
390 bio_list_init(&nopunt);
391 while ((bio = bio_list_pop(¤t->bio_list[1])))
392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 current->bio_list[1] = nopunt;
394
395 spin_lock(&bs->rescue_lock);
396 bio_list_merge(&bs->rescue_list, &punt);
397 spin_unlock(&bs->rescue_lock);
398
399 queue_work(bs->rescue_workqueue, &bs->rescue_work);
400}
401
402/**
403 * bio_alloc_bioset - allocate a bio for I/O
404 * @gfp_mask: the GFP_* mask given to the slab allocator
405 * @nr_iovecs: number of iovecs to pre-allocate
406 * @bs: the bio_set to allocate from.
407 *
408 * Description:
409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 * backed by the @bs's mempool.
411 *
412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 * always be able to allocate a bio. This is due to the mempool guarantees.
414 * To make this work, callers must never allocate more than 1 bio at a time
415 * from this pool. Callers that need to allocate more than 1 bio must always
416 * submit the previously allocated bio for IO before attempting to allocate
417 * a new one. Failure to do so can cause deadlocks under memory pressure.
418 *
419 * Note that when running under submit_bio_noacct() (i.e. any block
420 * driver), bios are not submitted until after you return - see the code in
421 * submit_bio_noacct() that converts recursion into iteration, to prevent
422 * stack overflows.
423 *
424 * This would normally mean allocating multiple bios under
425 * submit_bio_noacct() would be susceptible to deadlocks, but we have
426 * deadlock avoidance code that resubmits any blocked bios from a rescuer
427 * thread.
428 *
429 * However, we do not guarantee forward progress for allocations from other
430 * mempools. Doing multiple allocations from the same mempool under
431 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
432 * for per bio allocations.
433 *
434 * RETURNS:
435 * Pointer to new bio on success, NULL on failure.
436 */
437struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438 struct bio_set *bs)
439{
440 gfp_t saved_gfp = gfp_mask;
441 unsigned front_pad;
442 unsigned inline_vecs;
443 struct bio_vec *bvl = NULL;
444 struct bio *bio;
445 void *p;
446
447 if (!bs) {
448 if (nr_iovecs > UIO_MAXIOV)
449 return NULL;
450
451 p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
452 front_pad = 0;
453 inline_vecs = nr_iovecs;
454 } else {
455 /* should not use nobvec bioset for nr_iovecs > 0 */
456 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
457 nr_iovecs > 0))
458 return NULL;
459 /*
460 * submit_bio_noacct() converts recursion to iteration; this
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
467 * underneath submit_bio_noacct(). If we were to allocate
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
478 */
479
480 if (current->bio_list &&
481 (!bio_list_empty(¤t->bio_list[0]) ||
482 !bio_list_empty(¤t->bio_list[1])) &&
483 bs->rescue_workqueue)
484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
485
486 p = mempool_alloc(&bs->bio_pool, gfp_mask);
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
490 p = mempool_alloc(&bs->bio_pool, gfp_mask);
491 }
492
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
497 if (unlikely(!p))
498 return NULL;
499
500 bio = p + front_pad;
501 bio_init(bio, NULL, 0);
502
503 if (nr_iovecs > inline_vecs) {
504 unsigned long idx = 0;
505
506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
511 }
512
513 if (unlikely(!bvl))
514 goto err_free;
515
516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
519 }
520
521 bio->bi_pool = bs;
522 bio->bi_max_vecs = nr_iovecs;
523 bio->bi_io_vec = bvl;
524 return bio;
525
526err_free:
527 mempool_free(p, &bs->bio_pool);
528 return NULL;
529}
530EXPORT_SYMBOL(bio_alloc_bioset);
531
532void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
533{
534 unsigned long flags;
535 struct bio_vec bv;
536 struct bvec_iter iter;
537
538 __bio_for_each_segment(bv, bio, iter, start) {
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
542 bvec_kunmap_irq(data, &flags);
543 }
544}
545EXPORT_SYMBOL(zero_fill_bio_iter);
546
547/**
548 * bio_truncate - truncate the bio to small size of @new_size
549 * @bio: the bio to be truncated
550 * @new_size: new size for truncating the bio
551 *
552 * Description:
553 * Truncate the bio to new size of @new_size. If bio_op(bio) is
554 * REQ_OP_READ, zero the truncated part. This function should only
555 * be used for handling corner cases, such as bio eod.
556 */
557void bio_truncate(struct bio *bio, unsigned new_size)
558{
559 struct bio_vec bv;
560 struct bvec_iter iter;
561 unsigned int done = 0;
562 bool truncated = false;
563
564 if (new_size >= bio->bi_iter.bi_size)
565 return;
566
567 if (bio_op(bio) != REQ_OP_READ)
568 goto exit;
569
570 bio_for_each_segment(bv, bio, iter) {
571 if (done + bv.bv_len > new_size) {
572 unsigned offset;
573
574 if (!truncated)
575 offset = new_size - done;
576 else
577 offset = 0;
578 zero_user(bv.bv_page, offset, bv.bv_len - offset);
579 truncated = true;
580 }
581 done += bv.bv_len;
582 }
583
584 exit:
585 /*
586 * Don't touch bvec table here and make it really immutable, since
587 * fs bio user has to retrieve all pages via bio_for_each_segment_all
588 * in its .end_bio() callback.
589 *
590 * It is enough to truncate bio by updating .bi_size since we can make
591 * correct bvec with the updated .bi_size for drivers.
592 */
593 bio->bi_iter.bi_size = new_size;
594}
595
596/**
597 * guard_bio_eod - truncate a BIO to fit the block device
598 * @bio: bio to truncate
599 *
600 * This allows us to do IO even on the odd last sectors of a device, even if the
601 * block size is some multiple of the physical sector size.
602 *
603 * We'll just truncate the bio to the size of the device, and clear the end of
604 * the buffer head manually. Truly out-of-range accesses will turn into actual
605 * I/O errors, this only handles the "we need to be able to do I/O at the final
606 * sector" case.
607 */
608void guard_bio_eod(struct bio *bio)
609{
610 sector_t maxsector;
611 struct hd_struct *part;
612
613 rcu_read_lock();
614 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
615 if (part)
616 maxsector = part_nr_sects_read(part);
617 else
618 maxsector = get_capacity(bio->bi_disk);
619 rcu_read_unlock();
620
621 if (!maxsector)
622 return;
623
624 /*
625 * If the *whole* IO is past the end of the device,
626 * let it through, and the IO layer will turn it into
627 * an EIO.
628 */
629 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
630 return;
631
632 maxsector -= bio->bi_iter.bi_sector;
633 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
634 return;
635
636 bio_truncate(bio, maxsector << 9);
637}
638
639/**
640 * bio_put - release a reference to a bio
641 * @bio: bio to release reference to
642 *
643 * Description:
644 * Put a reference to a &struct bio, either one you have gotten with
645 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
646 **/
647void bio_put(struct bio *bio)
648{
649 if (!bio_flagged(bio, BIO_REFFED))
650 bio_free(bio);
651 else {
652 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
653
654 /*
655 * last put frees it
656 */
657 if (atomic_dec_and_test(&bio->__bi_cnt))
658 bio_free(bio);
659 }
660}
661EXPORT_SYMBOL(bio_put);
662
663/**
664 * __bio_clone_fast - clone a bio that shares the original bio's biovec
665 * @bio: destination bio
666 * @bio_src: bio to clone
667 *
668 * Clone a &bio. Caller will own the returned bio, but not
669 * the actual data it points to. Reference count of returned
670 * bio will be one.
671 *
672 * Caller must ensure that @bio_src is not freed before @bio.
673 */
674void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
675{
676 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
677
678 /*
679 * most users will be overriding ->bi_disk with a new target,
680 * so we don't set nor calculate new physical/hw segment counts here
681 */
682 bio->bi_disk = bio_src->bi_disk;
683 bio->bi_partno = bio_src->bi_partno;
684 bio_set_flag(bio, BIO_CLONED);
685 if (bio_flagged(bio_src, BIO_THROTTLED))
686 bio_set_flag(bio, BIO_THROTTLED);
687 bio->bi_opf = bio_src->bi_opf;
688 bio->bi_ioprio = bio_src->bi_ioprio;
689 bio->bi_write_hint = bio_src->bi_write_hint;
690 bio->bi_iter = bio_src->bi_iter;
691 bio->bi_io_vec = bio_src->bi_io_vec;
692
693 bio_clone_blkg_association(bio, bio_src);
694 blkcg_bio_issue_init(bio);
695}
696EXPORT_SYMBOL(__bio_clone_fast);
697
698/**
699 * bio_clone_fast - clone a bio that shares the original bio's biovec
700 * @bio: bio to clone
701 * @gfp_mask: allocation priority
702 * @bs: bio_set to allocate from
703 *
704 * Like __bio_clone_fast, only also allocates the returned bio
705 */
706struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
707{
708 struct bio *b;
709
710 b = bio_alloc_bioset(gfp_mask, 0, bs);
711 if (!b)
712 return NULL;
713
714 __bio_clone_fast(b, bio);
715
716 bio_crypt_clone(b, bio, gfp_mask);
717
718 if (bio_integrity(bio)) {
719 int ret;
720
721 ret = bio_integrity_clone(b, bio, gfp_mask);
722
723 if (ret < 0) {
724 bio_put(b);
725 return NULL;
726 }
727 }
728
729 return b;
730}
731EXPORT_SYMBOL(bio_clone_fast);
732
733const char *bio_devname(struct bio *bio, char *buf)
734{
735 return disk_name(bio->bi_disk, bio->bi_partno, buf);
736}
737EXPORT_SYMBOL(bio_devname);
738
739static inline bool page_is_mergeable(const struct bio_vec *bv,
740 struct page *page, unsigned int len, unsigned int off,
741 bool *same_page)
742{
743 size_t bv_end = bv->bv_offset + bv->bv_len;
744 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
745 phys_addr_t page_addr = page_to_phys(page);
746
747 if (vec_end_addr + 1 != page_addr + off)
748 return false;
749 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
750 return false;
751
752 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
753 if (*same_page)
754 return true;
755 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
756}
757
758/*
759 * Try to merge a page into a segment, while obeying the hardware segment
760 * size limit. This is not for normal read/write bios, but for passthrough
761 * or Zone Append operations that we can't split.
762 */
763static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
764 struct page *page, unsigned len,
765 unsigned offset, bool *same_page)
766{
767 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
768 unsigned long mask = queue_segment_boundary(q);
769 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
770 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
771
772 if ((addr1 | mask) != (addr2 | mask))
773 return false;
774 if (bv->bv_len + len > queue_max_segment_size(q))
775 return false;
776 return __bio_try_merge_page(bio, page, len, offset, same_page);
777}
778
779/**
780 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
781 * @q: the target queue
782 * @bio: destination bio
783 * @page: page to add
784 * @len: vec entry length
785 * @offset: vec entry offset
786 * @max_sectors: maximum number of sectors that can be added
787 * @same_page: return if the segment has been merged inside the same page
788 *
789 * Add a page to a bio while respecting the hardware max_sectors, max_segment
790 * and gap limitations.
791 */
792int bio_add_hw_page(struct request_queue *q, struct bio *bio,
793 struct page *page, unsigned int len, unsigned int offset,
794 unsigned int max_sectors, bool *same_page)
795{
796 struct bio_vec *bvec;
797
798 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
799 return 0;
800
801 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
802 return 0;
803
804 if (bio->bi_vcnt > 0) {
805 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
806 return len;
807
808 /*
809 * If the queue doesn't support SG gaps and adding this segment
810 * would create a gap, disallow it.
811 */
812 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
813 if (bvec_gap_to_prev(q, bvec, offset))
814 return 0;
815 }
816
817 if (bio_full(bio, len))
818 return 0;
819
820 if (bio->bi_vcnt >= queue_max_segments(q))
821 return 0;
822
823 bvec = &bio->bi_io_vec[bio->bi_vcnt];
824 bvec->bv_page = page;
825 bvec->bv_len = len;
826 bvec->bv_offset = offset;
827 bio->bi_vcnt++;
828 bio->bi_iter.bi_size += len;
829 return len;
830}
831
832/**
833 * bio_add_pc_page - attempt to add page to passthrough bio
834 * @q: the target queue
835 * @bio: destination bio
836 * @page: page to add
837 * @len: vec entry length
838 * @offset: vec entry offset
839 *
840 * Attempt to add a page to the bio_vec maplist. This can fail for a
841 * number of reasons, such as the bio being full or target block device
842 * limitations. The target block device must allow bio's up to PAGE_SIZE,
843 * so it is always possible to add a single page to an empty bio.
844 *
845 * This should only be used by passthrough bios.
846 */
847int bio_add_pc_page(struct request_queue *q, struct bio *bio,
848 struct page *page, unsigned int len, unsigned int offset)
849{
850 bool same_page = false;
851 return bio_add_hw_page(q, bio, page, len, offset,
852 queue_max_hw_sectors(q), &same_page);
853}
854EXPORT_SYMBOL(bio_add_pc_page);
855
856/**
857 * __bio_try_merge_page - try appending data to an existing bvec.
858 * @bio: destination bio
859 * @page: start page to add
860 * @len: length of the data to add
861 * @off: offset of the data relative to @page
862 * @same_page: return if the segment has been merged inside the same page
863 *
864 * Try to add the data at @page + @off to the last bvec of @bio. This is a
865 * useful optimisation for file systems with a block size smaller than the
866 * page size.
867 *
868 * Warn if (@len, @off) crosses pages in case that @same_page is true.
869 *
870 * Return %true on success or %false on failure.
871 */
872bool __bio_try_merge_page(struct bio *bio, struct page *page,
873 unsigned int len, unsigned int off, bool *same_page)
874{
875 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
876 return false;
877
878 if (bio->bi_vcnt > 0) {
879 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
880
881 if (page_is_mergeable(bv, page, len, off, same_page)) {
882 if (bio->bi_iter.bi_size > UINT_MAX - len) {
883 *same_page = false;
884 return false;
885 }
886 bv->bv_len += len;
887 bio->bi_iter.bi_size += len;
888 return true;
889 }
890 }
891 return false;
892}
893EXPORT_SYMBOL_GPL(__bio_try_merge_page);
894
895/**
896 * __bio_add_page - add page(s) to a bio in a new segment
897 * @bio: destination bio
898 * @page: start page to add
899 * @len: length of the data to add, may cross pages
900 * @off: offset of the data relative to @page, may cross pages
901 *
902 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
903 * that @bio has space for another bvec.
904 */
905void __bio_add_page(struct bio *bio, struct page *page,
906 unsigned int len, unsigned int off)
907{
908 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
909
910 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
911 WARN_ON_ONCE(bio_full(bio, len));
912
913 bv->bv_page = page;
914 bv->bv_offset = off;
915 bv->bv_len = len;
916
917 bio->bi_iter.bi_size += len;
918 bio->bi_vcnt++;
919
920 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
921 bio_set_flag(bio, BIO_WORKINGSET);
922}
923EXPORT_SYMBOL_GPL(__bio_add_page);
924
925/**
926 * bio_add_page - attempt to add page(s) to bio
927 * @bio: destination bio
928 * @page: start page to add
929 * @len: vec entry length, may cross pages
930 * @offset: vec entry offset relative to @page, may cross pages
931 *
932 * Attempt to add page(s) to the bio_vec maplist. This will only fail
933 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
934 */
935int bio_add_page(struct bio *bio, struct page *page,
936 unsigned int len, unsigned int offset)
937{
938 bool same_page = false;
939
940 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
941 if (bio_full(bio, len))
942 return 0;
943 __bio_add_page(bio, page, len, offset);
944 }
945 return len;
946}
947EXPORT_SYMBOL(bio_add_page);
948
949void bio_release_pages(struct bio *bio, bool mark_dirty)
950{
951 struct bvec_iter_all iter_all;
952 struct bio_vec *bvec;
953
954 if (bio_flagged(bio, BIO_NO_PAGE_REF))
955 return;
956
957 bio_for_each_segment_all(bvec, bio, iter_all) {
958 if (mark_dirty && !PageCompound(bvec->bv_page))
959 set_page_dirty_lock(bvec->bv_page);
960 put_page(bvec->bv_page);
961 }
962}
963EXPORT_SYMBOL_GPL(bio_release_pages);
964
965static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
966{
967 const struct bio_vec *bv = iter->bvec;
968 unsigned int len;
969 size_t size;
970
971 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
972 return -EINVAL;
973
974 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
975 size = bio_add_page(bio, bv->bv_page, len,
976 bv->bv_offset + iter->iov_offset);
977 if (unlikely(size != len))
978 return -EINVAL;
979 iov_iter_advance(iter, size);
980 return 0;
981}
982
983#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
984
985/**
986 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
987 * @bio: bio to add pages to
988 * @iter: iov iterator describing the region to be mapped
989 *
990 * Pins pages from *iter and appends them to @bio's bvec array. The
991 * pages will have to be released using put_page() when done.
992 * For multi-segment *iter, this function only adds pages from the
993 * next non-empty segment of the iov iterator.
994 */
995static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
996{
997 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
998 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
999 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1000 struct page **pages = (struct page **)bv;
1001 bool same_page = false;
1002 ssize_t size, left;
1003 unsigned len, i;
1004 size_t offset;
1005
1006 /*
1007 * Move page array up in the allocated memory for the bio vecs as far as
1008 * possible so that we can start filling biovecs from the beginning
1009 * without overwriting the temporary page array.
1010 */
1011 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1012 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1013
1014 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1015 if (unlikely(size <= 0))
1016 return size ? size : -EFAULT;
1017
1018 for (left = size, i = 0; left > 0; left -= len, i++) {
1019 struct page *page = pages[i];
1020
1021 len = min_t(size_t, PAGE_SIZE - offset, left);
1022
1023 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1024 if (same_page)
1025 put_page(page);
1026 } else {
1027 if (WARN_ON_ONCE(bio_full(bio, len)))
1028 return -EINVAL;
1029 __bio_add_page(bio, page, len, offset);
1030 }
1031 offset = 0;
1032 }
1033
1034 iov_iter_advance(iter, size);
1035 return 0;
1036}
1037
1038static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1039{
1040 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1041 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1042 struct request_queue *q = bio->bi_disk->queue;
1043 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1044 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1045 struct page **pages = (struct page **)bv;
1046 ssize_t size, left;
1047 unsigned len, i;
1048 size_t offset;
1049
1050 if (WARN_ON_ONCE(!max_append_sectors))
1051 return 0;
1052
1053 /*
1054 * Move page array up in the allocated memory for the bio vecs as far as
1055 * possible so that we can start filling biovecs from the beginning
1056 * without overwriting the temporary page array.
1057 */
1058 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1059 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1060
1061 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1062 if (unlikely(size <= 0))
1063 return size ? size : -EFAULT;
1064
1065 for (left = size, i = 0; left > 0; left -= len, i++) {
1066 struct page *page = pages[i];
1067 bool same_page = false;
1068
1069 len = min_t(size_t, PAGE_SIZE - offset, left);
1070 if (bio_add_hw_page(q, bio, page, len, offset,
1071 max_append_sectors, &same_page) != len)
1072 return -EINVAL;
1073 if (same_page)
1074 put_page(page);
1075 offset = 0;
1076 }
1077
1078 iov_iter_advance(iter, size);
1079 return 0;
1080}
1081
1082/**
1083 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1084 * @bio: bio to add pages to
1085 * @iter: iov iterator describing the region to be added
1086 *
1087 * This takes either an iterator pointing to user memory, or one pointing to
1088 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1089 * map them into the kernel. On IO completion, the caller should put those
1090 * pages. If we're adding kernel pages, and the caller told us it's safe to
1091 * do so, we just have to add the pages to the bio directly. We don't grab an
1092 * extra reference to those pages (the user should already have that), and we
1093 * don't put the page on IO completion. The caller needs to check if the bio is
1094 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1095 * released.
1096 *
1097 * The function tries, but does not guarantee, to pin as many pages as
1098 * fit into the bio, or are requested in *iter, whatever is smaller. If
1099 * MM encounters an error pinning the requested pages, it stops. Error
1100 * is returned only if 0 pages could be pinned.
1101 */
1102int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1103{
1104 const bool is_bvec = iov_iter_is_bvec(iter);
1105 int ret;
1106
1107 if (WARN_ON_ONCE(bio->bi_vcnt))
1108 return -EINVAL;
1109
1110 do {
1111 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1112 if (WARN_ON_ONCE(is_bvec))
1113 return -EINVAL;
1114 ret = __bio_iov_append_get_pages(bio, iter);
1115 } else {
1116 if (is_bvec)
1117 ret = __bio_iov_bvec_add_pages(bio, iter);
1118 else
1119 ret = __bio_iov_iter_get_pages(bio, iter);
1120 }
1121 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1122
1123 if (is_bvec)
1124 bio_set_flag(bio, BIO_NO_PAGE_REF);
1125 return bio->bi_vcnt ? 0 : ret;
1126}
1127EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1128
1129static void submit_bio_wait_endio(struct bio *bio)
1130{
1131 complete(bio->bi_private);
1132}
1133
1134/**
1135 * submit_bio_wait - submit a bio, and wait until it completes
1136 * @bio: The &struct bio which describes the I/O
1137 *
1138 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1139 * bio_endio() on failure.
1140 *
1141 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1142 * result in bio reference to be consumed. The caller must drop the reference
1143 * on his own.
1144 */
1145int submit_bio_wait(struct bio *bio)
1146{
1147 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1148 unsigned long hang_check;
1149
1150 bio->bi_private = &done;
1151 bio->bi_end_io = submit_bio_wait_endio;
1152 bio->bi_opf |= REQ_SYNC;
1153 submit_bio(bio);
1154
1155 /* Prevent hang_check timer from firing at us during very long I/O */
1156 hang_check = sysctl_hung_task_timeout_secs;
1157 if (hang_check)
1158 while (!wait_for_completion_io_timeout(&done,
1159 hang_check * (HZ/2)))
1160 ;
1161 else
1162 wait_for_completion_io(&done);
1163
1164 return blk_status_to_errno(bio->bi_status);
1165}
1166EXPORT_SYMBOL(submit_bio_wait);
1167
1168/**
1169 * bio_advance - increment/complete a bio by some number of bytes
1170 * @bio: bio to advance
1171 * @bytes: number of bytes to complete
1172 *
1173 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1174 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1175 * be updated on the last bvec as well.
1176 *
1177 * @bio will then represent the remaining, uncompleted portion of the io.
1178 */
1179void bio_advance(struct bio *bio, unsigned bytes)
1180{
1181 if (bio_integrity(bio))
1182 bio_integrity_advance(bio, bytes);
1183
1184 bio_crypt_advance(bio, bytes);
1185 bio_advance_iter(bio, &bio->bi_iter, bytes);
1186}
1187EXPORT_SYMBOL(bio_advance);
1188
1189void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1190 struct bio *src, struct bvec_iter *src_iter)
1191{
1192 struct bio_vec src_bv, dst_bv;
1193 void *src_p, *dst_p;
1194 unsigned bytes;
1195
1196 while (src_iter->bi_size && dst_iter->bi_size) {
1197 src_bv = bio_iter_iovec(src, *src_iter);
1198 dst_bv = bio_iter_iovec(dst, *dst_iter);
1199
1200 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1201
1202 src_p = kmap_atomic(src_bv.bv_page);
1203 dst_p = kmap_atomic(dst_bv.bv_page);
1204
1205 memcpy(dst_p + dst_bv.bv_offset,
1206 src_p + src_bv.bv_offset,
1207 bytes);
1208
1209 kunmap_atomic(dst_p);
1210 kunmap_atomic(src_p);
1211
1212 flush_dcache_page(dst_bv.bv_page);
1213
1214 bio_advance_iter(src, src_iter, bytes);
1215 bio_advance_iter(dst, dst_iter, bytes);
1216 }
1217}
1218EXPORT_SYMBOL(bio_copy_data_iter);
1219
1220/**
1221 * bio_copy_data - copy contents of data buffers from one bio to another
1222 * @src: source bio
1223 * @dst: destination bio
1224 *
1225 * Stops when it reaches the end of either @src or @dst - that is, copies
1226 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1227 */
1228void bio_copy_data(struct bio *dst, struct bio *src)
1229{
1230 struct bvec_iter src_iter = src->bi_iter;
1231 struct bvec_iter dst_iter = dst->bi_iter;
1232
1233 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1234}
1235EXPORT_SYMBOL(bio_copy_data);
1236
1237/**
1238 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1239 * another
1240 * @src: source bio list
1241 * @dst: destination bio list
1242 *
1243 * Stops when it reaches the end of either the @src list or @dst list - that is,
1244 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1245 * bios).
1246 */
1247void bio_list_copy_data(struct bio *dst, struct bio *src)
1248{
1249 struct bvec_iter src_iter = src->bi_iter;
1250 struct bvec_iter dst_iter = dst->bi_iter;
1251
1252 while (1) {
1253 if (!src_iter.bi_size) {
1254 src = src->bi_next;
1255 if (!src)
1256 break;
1257
1258 src_iter = src->bi_iter;
1259 }
1260
1261 if (!dst_iter.bi_size) {
1262 dst = dst->bi_next;
1263 if (!dst)
1264 break;
1265
1266 dst_iter = dst->bi_iter;
1267 }
1268
1269 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1270 }
1271}
1272EXPORT_SYMBOL(bio_list_copy_data);
1273
1274void bio_free_pages(struct bio *bio)
1275{
1276 struct bio_vec *bvec;
1277 struct bvec_iter_all iter_all;
1278
1279 bio_for_each_segment_all(bvec, bio, iter_all)
1280 __free_page(bvec->bv_page);
1281}
1282EXPORT_SYMBOL(bio_free_pages);
1283
1284/*
1285 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1286 * for performing direct-IO in BIOs.
1287 *
1288 * The problem is that we cannot run set_page_dirty() from interrupt context
1289 * because the required locks are not interrupt-safe. So what we can do is to
1290 * mark the pages dirty _before_ performing IO. And in interrupt context,
1291 * check that the pages are still dirty. If so, fine. If not, redirty them
1292 * in process context.
1293 *
1294 * We special-case compound pages here: normally this means reads into hugetlb
1295 * pages. The logic in here doesn't really work right for compound pages
1296 * because the VM does not uniformly chase down the head page in all cases.
1297 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1298 * handle them at all. So we skip compound pages here at an early stage.
1299 *
1300 * Note that this code is very hard to test under normal circumstances because
1301 * direct-io pins the pages with get_user_pages(). This makes
1302 * is_page_cache_freeable return false, and the VM will not clean the pages.
1303 * But other code (eg, flusher threads) could clean the pages if they are mapped
1304 * pagecache.
1305 *
1306 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1307 * deferred bio dirtying paths.
1308 */
1309
1310/*
1311 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1312 */
1313void bio_set_pages_dirty(struct bio *bio)
1314{
1315 struct bio_vec *bvec;
1316 struct bvec_iter_all iter_all;
1317
1318 bio_for_each_segment_all(bvec, bio, iter_all) {
1319 if (!PageCompound(bvec->bv_page))
1320 set_page_dirty_lock(bvec->bv_page);
1321 }
1322}
1323
1324/*
1325 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1326 * If they are, then fine. If, however, some pages are clean then they must
1327 * have been written out during the direct-IO read. So we take another ref on
1328 * the BIO and re-dirty the pages in process context.
1329 *
1330 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1331 * here on. It will run one put_page() against each page and will run one
1332 * bio_put() against the BIO.
1333 */
1334
1335static void bio_dirty_fn(struct work_struct *work);
1336
1337static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1338static DEFINE_SPINLOCK(bio_dirty_lock);
1339static struct bio *bio_dirty_list;
1340
1341/*
1342 * This runs in process context
1343 */
1344static void bio_dirty_fn(struct work_struct *work)
1345{
1346 struct bio *bio, *next;
1347
1348 spin_lock_irq(&bio_dirty_lock);
1349 next = bio_dirty_list;
1350 bio_dirty_list = NULL;
1351 spin_unlock_irq(&bio_dirty_lock);
1352
1353 while ((bio = next) != NULL) {
1354 next = bio->bi_private;
1355
1356 bio_release_pages(bio, true);
1357 bio_put(bio);
1358 }
1359}
1360
1361void bio_check_pages_dirty(struct bio *bio)
1362{
1363 struct bio_vec *bvec;
1364 unsigned long flags;
1365 struct bvec_iter_all iter_all;
1366
1367 bio_for_each_segment_all(bvec, bio, iter_all) {
1368 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1369 goto defer;
1370 }
1371
1372 bio_release_pages(bio, false);
1373 bio_put(bio);
1374 return;
1375defer:
1376 spin_lock_irqsave(&bio_dirty_lock, flags);
1377 bio->bi_private = bio_dirty_list;
1378 bio_dirty_list = bio;
1379 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1380 schedule_work(&bio_dirty_work);
1381}
1382
1383static inline bool bio_remaining_done(struct bio *bio)
1384{
1385 /*
1386 * If we're not chaining, then ->__bi_remaining is always 1 and
1387 * we always end io on the first invocation.
1388 */
1389 if (!bio_flagged(bio, BIO_CHAIN))
1390 return true;
1391
1392 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1393
1394 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1395 bio_clear_flag(bio, BIO_CHAIN);
1396 return true;
1397 }
1398
1399 return false;
1400}
1401
1402/**
1403 * bio_endio - end I/O on a bio
1404 * @bio: bio
1405 *
1406 * Description:
1407 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1408 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1409 * bio unless they own it and thus know that it has an end_io function.
1410 *
1411 * bio_endio() can be called several times on a bio that has been chained
1412 * using bio_chain(). The ->bi_end_io() function will only be called the
1413 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1414 * generated if BIO_TRACE_COMPLETION is set.
1415 **/
1416void bio_endio(struct bio *bio)
1417{
1418again:
1419 if (!bio_remaining_done(bio))
1420 return;
1421 if (!bio_integrity_endio(bio))
1422 return;
1423
1424 if (bio->bi_disk)
1425 rq_qos_done_bio(bio->bi_disk->queue, bio);
1426
1427 /*
1428 * Need to have a real endio function for chained bios, otherwise
1429 * various corner cases will break (like stacking block devices that
1430 * save/restore bi_end_io) - however, we want to avoid unbounded
1431 * recursion and blowing the stack. Tail call optimization would
1432 * handle this, but compiling with frame pointers also disables
1433 * gcc's sibling call optimization.
1434 */
1435 if (bio->bi_end_io == bio_chain_endio) {
1436 bio = __bio_chain_endio(bio);
1437 goto again;
1438 }
1439
1440 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1441 trace_block_bio_complete(bio->bi_disk->queue, bio);
1442 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1443 }
1444
1445 blk_throtl_bio_endio(bio);
1446 /* release cgroup info */
1447 bio_uninit(bio);
1448 if (bio->bi_end_io)
1449 bio->bi_end_io(bio);
1450}
1451EXPORT_SYMBOL(bio_endio);
1452
1453/**
1454 * bio_split - split a bio
1455 * @bio: bio to split
1456 * @sectors: number of sectors to split from the front of @bio
1457 * @gfp: gfp mask
1458 * @bs: bio set to allocate from
1459 *
1460 * Allocates and returns a new bio which represents @sectors from the start of
1461 * @bio, and updates @bio to represent the remaining sectors.
1462 *
1463 * Unless this is a discard request the newly allocated bio will point
1464 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1465 * neither @bio nor @bs are freed before the split bio.
1466 */
1467struct bio *bio_split(struct bio *bio, int sectors,
1468 gfp_t gfp, struct bio_set *bs)
1469{
1470 struct bio *split;
1471
1472 BUG_ON(sectors <= 0);
1473 BUG_ON(sectors >= bio_sectors(bio));
1474
1475 /* Zone append commands cannot be split */
1476 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1477 return NULL;
1478
1479 split = bio_clone_fast(bio, gfp, bs);
1480 if (!split)
1481 return NULL;
1482
1483 split->bi_iter.bi_size = sectors << 9;
1484
1485 if (bio_integrity(split))
1486 bio_integrity_trim(split);
1487
1488 bio_advance(bio, split->bi_iter.bi_size);
1489
1490 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1491 bio_set_flag(split, BIO_TRACE_COMPLETION);
1492
1493 return split;
1494}
1495EXPORT_SYMBOL(bio_split);
1496
1497/**
1498 * bio_trim - trim a bio
1499 * @bio: bio to trim
1500 * @offset: number of sectors to trim from the front of @bio
1501 * @size: size we want to trim @bio to, in sectors
1502 */
1503void bio_trim(struct bio *bio, int offset, int size)
1504{
1505 /* 'bio' is a cloned bio which we need to trim to match
1506 * the given offset and size.
1507 */
1508
1509 size <<= 9;
1510 if (offset == 0 && size == bio->bi_iter.bi_size)
1511 return;
1512
1513 bio_advance(bio, offset << 9);
1514 bio->bi_iter.bi_size = size;
1515
1516 if (bio_integrity(bio))
1517 bio_integrity_trim(bio);
1518
1519}
1520EXPORT_SYMBOL_GPL(bio_trim);
1521
1522/*
1523 * create memory pools for biovec's in a bio_set.
1524 * use the global biovec slabs created for general use.
1525 */
1526int biovec_init_pool(mempool_t *pool, int pool_entries)
1527{
1528 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1529
1530 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1531}
1532
1533/*
1534 * bioset_exit - exit a bioset initialized with bioset_init()
1535 *
1536 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1537 * kzalloc()).
1538 */
1539void bioset_exit(struct bio_set *bs)
1540{
1541 if (bs->rescue_workqueue)
1542 destroy_workqueue(bs->rescue_workqueue);
1543 bs->rescue_workqueue = NULL;
1544
1545 mempool_exit(&bs->bio_pool);
1546 mempool_exit(&bs->bvec_pool);
1547
1548 bioset_integrity_free(bs);
1549 if (bs->bio_slab)
1550 bio_put_slab(bs);
1551 bs->bio_slab = NULL;
1552}
1553EXPORT_SYMBOL(bioset_exit);
1554
1555/**
1556 * bioset_init - Initialize a bio_set
1557 * @bs: pool to initialize
1558 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1559 * @front_pad: Number of bytes to allocate in front of the returned bio
1560 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1561 * and %BIOSET_NEED_RESCUER
1562 *
1563 * Description:
1564 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1565 * to ask for a number of bytes to be allocated in front of the bio.
1566 * Front pad allocation is useful for embedding the bio inside
1567 * another structure, to avoid allocating extra data to go with the bio.
1568 * Note that the bio must be embedded at the END of that structure always,
1569 * or things will break badly.
1570 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1571 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1572 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1573 * dispatch queued requests when the mempool runs out of space.
1574 *
1575 */
1576int bioset_init(struct bio_set *bs,
1577 unsigned int pool_size,
1578 unsigned int front_pad,
1579 int flags)
1580{
1581 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1582
1583 bs->front_pad = front_pad;
1584
1585 spin_lock_init(&bs->rescue_lock);
1586 bio_list_init(&bs->rescue_list);
1587 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1588
1589 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1590 if (!bs->bio_slab)
1591 return -ENOMEM;
1592
1593 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1594 goto bad;
1595
1596 if ((flags & BIOSET_NEED_BVECS) &&
1597 biovec_init_pool(&bs->bvec_pool, pool_size))
1598 goto bad;
1599
1600 if (!(flags & BIOSET_NEED_RESCUER))
1601 return 0;
1602
1603 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1604 if (!bs->rescue_workqueue)
1605 goto bad;
1606
1607 return 0;
1608bad:
1609 bioset_exit(bs);
1610 return -ENOMEM;
1611}
1612EXPORT_SYMBOL(bioset_init);
1613
1614/*
1615 * Initialize and setup a new bio_set, based on the settings from
1616 * another bio_set.
1617 */
1618int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1619{
1620 int flags;
1621
1622 flags = 0;
1623 if (src->bvec_pool.min_nr)
1624 flags |= BIOSET_NEED_BVECS;
1625 if (src->rescue_workqueue)
1626 flags |= BIOSET_NEED_RESCUER;
1627
1628 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1629}
1630EXPORT_SYMBOL(bioset_init_from_src);
1631
1632static void __init biovec_init_slabs(void)
1633{
1634 int i;
1635
1636 for (i = 0; i < BVEC_POOL_NR; i++) {
1637 int size;
1638 struct biovec_slab *bvs = bvec_slabs + i;
1639
1640 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1641 bvs->slab = NULL;
1642 continue;
1643 }
1644
1645 size = bvs->nr_vecs * sizeof(struct bio_vec);
1646 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1647 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1648 }
1649}
1650
1651static int __init init_bio(void)
1652{
1653 bio_slab_max = 2;
1654 bio_slab_nr = 0;
1655 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1656 GFP_KERNEL);
1657
1658 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1659
1660 if (!bio_slabs)
1661 panic("bio: can't allocate bios\n");
1662
1663 bio_integrity_init();
1664 biovec_init_slabs();
1665
1666 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1667 panic("bio: can't allocate bios\n");
1668
1669 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1670 panic("bio: can't create integrity pool\n");
1671
1672 return 0;
1673}
1674subsys_initcall(init_bio);