Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public Licens
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
  16 *
  17 */
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/uio.h>
  23#include <linux/iocontext.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/kernel.h>
  27#include <linux/export.h>
  28#include <linux/mempool.h>
  29#include <linux/workqueue.h>
  30#include <linux/cgroup.h>
 
 
 
 
  31
  32#include <trace/events/block.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33
  34/*
  35 * Test patch to inline a certain number of bi_io_vec's inside the bio
  36 * itself, to shrink a bio data allocation from two mempool calls to one
  37 */
  38#define BIO_INLINE_VECS		4
  39
  40/*
  41 * if you change this list, also change bvec_alloc or things will
  42 * break badly! cannot be bigger than what you can fit into an
  43 * unsigned short
  44 */
  45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  47	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  48};
  49#undef BV
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51/*
  52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  53 * IO code that does not need private memory pools.
  54 */
  55struct bio_set *fs_bio_set;
  56EXPORT_SYMBOL(fs_bio_set);
  57
  58/*
  59 * Our slab pool management
  60 */
  61struct bio_slab {
  62	struct kmem_cache *slab;
  63	unsigned int slab_ref;
  64	unsigned int slab_size;
  65	char name[8];
  66};
  67static DEFINE_MUTEX(bio_slab_lock);
  68static struct bio_slab *bio_slabs;
  69static unsigned int bio_slab_nr, bio_slab_max;
  70
  71static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  72{
  73	unsigned int sz = sizeof(struct bio) + extra_size;
  74	struct kmem_cache *slab = NULL;
  75	struct bio_slab *bslab, *new_bio_slabs;
  76	unsigned int new_bio_slab_max;
  77	unsigned int i, entry = -1;
  78
  79	mutex_lock(&bio_slab_lock);
 
  80
  81	i = 0;
  82	while (i < bio_slab_nr) {
  83		bslab = &bio_slabs[i];
  84
  85		if (!bslab->slab && entry == -1)
  86			entry = i;
  87		else if (bslab->slab_size == sz) {
  88			slab = bslab->slab;
  89			bslab->slab_ref++;
  90			break;
  91		}
  92		i++;
  93	}
  94
  95	if (slab)
  96		goto out_unlock;
  97
  98	if (bio_slab_nr == bio_slab_max && entry == -1) {
  99		new_bio_slab_max = bio_slab_max << 1;
 100		new_bio_slabs = krealloc(bio_slabs,
 101					 new_bio_slab_max * sizeof(struct bio_slab),
 102					 GFP_KERNEL);
 103		if (!new_bio_slabs)
 104			goto out_unlock;
 105		bio_slab_max = new_bio_slab_max;
 106		bio_slabs = new_bio_slabs;
 107	}
 108	if (entry == -1)
 109		entry = bio_slab_nr++;
 110
 111	bslab = &bio_slabs[entry];
 112
 113	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 114	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
 115				 SLAB_HWCACHE_ALIGN, NULL);
 116	if (!slab)
 117		goto out_unlock;
 118
 119	bslab->slab = slab;
 120	bslab->slab_ref = 1;
 121	bslab->slab_size = sz;
 122out_unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123	mutex_unlock(&bio_slab_lock);
 124	return slab;
 
 
 
 125}
 126
 127static void bio_put_slab(struct bio_set *bs)
 128{
 129	struct bio_slab *bslab = NULL;
 130	unsigned int i;
 131
 132	mutex_lock(&bio_slab_lock);
 133
 134	for (i = 0; i < bio_slab_nr; i++) {
 135		if (bs->bio_slab == bio_slabs[i].slab) {
 136			bslab = &bio_slabs[i];
 137			break;
 138		}
 139	}
 140
 141	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 142		goto out;
 143
 
 
 144	WARN_ON(!bslab->slab_ref);
 145
 146	if (--bslab->slab_ref)
 147		goto out;
 148
 
 
 149	kmem_cache_destroy(bslab->slab);
 150	bslab->slab = NULL;
 151
 152out:
 153	mutex_unlock(&bio_slab_lock);
 154}
 155
 156unsigned int bvec_nr_vecs(unsigned short idx)
 157{
 158	return bvec_slabs[idx].nr_vecs;
 159}
 160
 161void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
 162{
 163	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
 164
 165	if (idx == BIOVEC_MAX_IDX)
 166		mempool_free(bv, pool);
 167	else {
 168		struct biovec_slab *bvs = bvec_slabs + idx;
 
 169
 170		kmem_cache_free(bvs->slab, bv);
 171	}
 
 
 
 
 
 
 172}
 173
 174struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
 175			   mempool_t *pool)
 176{
 177	struct bio_vec *bvl;
 178
 179	/*
 180	 * see comment near bvec_array define!
 181	 */
 182	switch (nr) {
 183	case 1:
 184		*idx = 0;
 185		break;
 186	case 2 ... 4:
 187		*idx = 1;
 188		break;
 189	case 5 ... 16:
 190		*idx = 2;
 191		break;
 192	case 17 ... 64:
 193		*idx = 3;
 194		break;
 195	case 65 ... 128:
 196		*idx = 4;
 197		break;
 198	case 129 ... BIO_MAX_PAGES:
 199		*idx = 5;
 200		break;
 201	default:
 202		return NULL;
 203	}
 204
 205	/*
 206	 * idx now points to the pool we want to allocate from. only the
 207	 * 1-vec entry pool is mempool backed.
 208	 */
 209	if (*idx == BIOVEC_MAX_IDX) {
 210fallback:
 211		bvl = mempool_alloc(pool, gfp_mask);
 212	} else {
 213		struct biovec_slab *bvs = bvec_slabs + *idx;
 214		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
 215
 216		/*
 217		 * Make this allocation restricted and don't dump info on
 218		 * allocation failures, since we'll fallback to the mempool
 219		 * in case of failure.
 220		 */
 221		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 
 222
 223		/*
 224		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
 225		 * is set, retry with the 1-entry mempool
 226		 */
 227		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 228		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
 229			*idx = BIOVEC_MAX_IDX;
 230			goto fallback;
 231		}
 232	}
 233
 234	return bvl;
 235}
 236
 237static void __bio_free(struct bio *bio)
 238{
 239	bio_disassociate_task(bio);
 240
 
 
 
 
 241	if (bio_integrity(bio))
 242		bio_integrity_free(bio);
 
 
 243}
 
 244
 245static void bio_free(struct bio *bio)
 246{
 247	struct bio_set *bs = bio->bi_pool;
 248	void *p;
 249
 250	__bio_free(bio);
 251
 252	if (bs) {
 253		if (bio_flagged(bio, BIO_OWNS_VEC))
 254			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
 255
 256		/*
 257		 * If we have front padding, adjust the bio pointer before freeing
 258		 */
 259		p = bio;
 260		p -= bs->front_pad;
 261
 262		mempool_free(p, bs->bio_pool);
 263	} else {
 264		/* Bio was allocated by bio_kmalloc() */
 265		kfree(bio);
 266	}
 267}
 268
 269void bio_init(struct bio *bio)
 270{
 271	memset(bio, 0, sizeof(*bio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272	atomic_set(&bio->__bi_remaining, 1);
 273	atomic_set(&bio->__bi_cnt, 1);
 
 
 
 
 
 274}
 275EXPORT_SYMBOL(bio_init);
 276
 277/**
 278 * bio_reset - reinitialize a bio
 279 * @bio:	bio to reset
 
 
 280 *
 281 * Description:
 282 *   After calling bio_reset(), @bio will be in the same state as a freshly
 283 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 284 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 285 *   comment in struct bio.
 286 */
 287void bio_reset(struct bio *bio)
 288{
 289	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
 290
 291	__bio_free(bio);
 292
 293	memset(bio, 0, BIO_RESET_BYTES);
 294	bio->bi_flags = flags;
 295	atomic_set(&bio->__bi_remaining, 1);
 
 
 
 
 296}
 297EXPORT_SYMBOL(bio_reset);
 298
 299static struct bio *__bio_chain_endio(struct bio *bio)
 300{
 301	struct bio *parent = bio->bi_private;
 302
 303	if (!parent->bi_error)
 304		parent->bi_error = bio->bi_error;
 305	bio_put(bio);
 306	return parent;
 307}
 308
 309static void bio_chain_endio(struct bio *bio)
 310{
 311	bio_endio(__bio_chain_endio(bio));
 312}
 313
 314/*
 315 * Increment chain count for the bio. Make sure the CHAIN flag update
 316 * is visible before the raised count.
 317 */
 318static inline void bio_inc_remaining(struct bio *bio)
 319{
 320	bio_set_flag(bio, BIO_CHAIN);
 321	smp_mb__before_atomic();
 322	atomic_inc(&bio->__bi_remaining);
 323}
 324
 325/**
 326 * bio_chain - chain bio completions
 327 * @bio: the target bio
 328 * @parent: the @bio's parent bio
 329 *
 330 * The caller won't have a bi_end_io called when @bio completes - instead,
 331 * @parent's bi_end_io won't be called until both @parent and @bio have
 332 * completed; the chained bio will also be freed when it completes.
 333 *
 334 * The caller must not set bi_private or bi_end_io in @bio.
 335 */
 336void bio_chain(struct bio *bio, struct bio *parent)
 337{
 338	BUG_ON(bio->bi_private || bio->bi_end_io);
 339
 340	bio->bi_private = parent;
 341	bio->bi_end_io	= bio_chain_endio;
 342	bio_inc_remaining(parent);
 343}
 344EXPORT_SYMBOL(bio_chain);
 345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346static void bio_alloc_rescue(struct work_struct *work)
 347{
 348	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 349	struct bio *bio;
 350
 351	while (1) {
 352		spin_lock(&bs->rescue_lock);
 353		bio = bio_list_pop(&bs->rescue_list);
 354		spin_unlock(&bs->rescue_lock);
 355
 356		if (!bio)
 357			break;
 358
 359		generic_make_request(bio);
 360	}
 361}
 362
 363static void punt_bios_to_rescuer(struct bio_set *bs)
 364{
 365	struct bio_list punt, nopunt;
 366	struct bio *bio;
 367
 
 
 368	/*
 369	 * In order to guarantee forward progress we must punt only bios that
 370	 * were allocated from this bio_set; otherwise, if there was a bio on
 371	 * there for a stacking driver higher up in the stack, processing it
 372	 * could require allocating bios from this bio_set, and doing that from
 373	 * our own rescuer would be bad.
 374	 *
 375	 * Since bio lists are singly linked, pop them all instead of trying to
 376	 * remove from the middle of the list:
 377	 */
 378
 379	bio_list_init(&punt);
 380	bio_list_init(&nopunt);
 381
 382	while ((bio = bio_list_pop(current->bio_list)))
 383		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 
 384
 385	*current->bio_list = nopunt;
 
 
 
 386
 387	spin_lock(&bs->rescue_lock);
 388	bio_list_merge(&bs->rescue_list, &punt);
 389	spin_unlock(&bs->rescue_lock);
 390
 391	queue_work(bs->rescue_workqueue, &bs->rescue_work);
 392}
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394/**
 395 * bio_alloc_bioset - allocate a bio for I/O
 396 * @gfp_mask:   the GFP_ mask given to the slab allocator
 397 * @nr_iovecs:	number of iovecs to pre-allocate
 
 
 398 * @bs:		the bio_set to allocate from.
 399 *
 400 * Description:
 401 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 402 *   backed by the @bs's mempool.
 403 *
 404 *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 405 *   always be able to allocate a bio. This is due to the mempool guarantees.
 406 *   To make this work, callers must never allocate more than 1 bio at a time
 407 *   from this pool. Callers that need to allocate more than 1 bio must always
 408 *   submit the previously allocated bio for IO before attempting to allocate
 409 *   a new one. Failure to do so can cause deadlocks under memory pressure.
 410 *
 411 *   Note that when running under generic_make_request() (i.e. any block
 412 *   driver), bios are not submitted until after you return - see the code in
 413 *   generic_make_request() that converts recursion into iteration, to prevent
 414 *   stack overflows.
 415 *
 416 *   This would normally mean allocating multiple bios under
 417 *   generic_make_request() would be susceptible to deadlocks, but we have
 418 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 419 *   thread.
 420 *
 421 *   However, we do not guarantee forward progress for allocations from other
 422 *   mempools. Doing multiple allocations from the same mempool under
 423 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 424 *   for per bio allocations.
 425 *
 426 *   RETURNS:
 427 *   Pointer to new bio on success, NULL on failure.
 428 */
 429struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
 
 
 430{
 431	gfp_t saved_gfp = gfp_mask;
 432	unsigned front_pad;
 433	unsigned inline_vecs;
 434	unsigned long idx = BIO_POOL_NONE;
 435	struct bio_vec *bvl = NULL;
 436	struct bio *bio;
 437	void *p;
 438
 439	if (!bs) {
 440		if (nr_iovecs > UIO_MAXIOV)
 441			return NULL;
 442
 443		p = kmalloc(sizeof(struct bio) +
 444			    nr_iovecs * sizeof(struct bio_vec),
 445			    gfp_mask);
 446		front_pad = 0;
 447		inline_vecs = nr_iovecs;
 448	} else {
 449		/* should not use nobvec bioset for nr_iovecs > 0 */
 450		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
 451			return NULL;
 452		/*
 453		 * generic_make_request() converts recursion to iteration; this
 454		 * means if we're running beneath it, any bios we allocate and
 455		 * submit will not be submitted (and thus freed) until after we
 456		 * return.
 457		 *
 458		 * This exposes us to a potential deadlock if we allocate
 459		 * multiple bios from the same bio_set() while running
 460		 * underneath generic_make_request(). If we were to allocate
 461		 * multiple bios (say a stacking block driver that was splitting
 462		 * bios), we would deadlock if we exhausted the mempool's
 463		 * reserve.
 464		 *
 465		 * We solve this, and guarantee forward progress, with a rescuer
 466		 * workqueue per bio_set. If we go to allocate and there are
 467		 * bios on current->bio_list, we first try the allocation
 468		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
 469		 * bios we would be blocking to the rescuer workqueue before
 470		 * we retry with the original gfp_flags.
 471		 */
 472
 473		if (current->bio_list && !bio_list_empty(current->bio_list))
 474			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 475
 476		p = mempool_alloc(bs->bio_pool, gfp_mask);
 477		if (!p && gfp_mask != saved_gfp) {
 478			punt_bios_to_rescuer(bs);
 479			gfp_mask = saved_gfp;
 480			p = mempool_alloc(bs->bio_pool, gfp_mask);
 
 
 
 
 
 
 
 481		}
 482
 483		front_pad = bs->front_pad;
 484		inline_vecs = BIO_INLINE_VECS;
 485	}
 486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487	if (unlikely(!p))
 488		return NULL;
 
 
 489
 490	bio = p + front_pad;
 491	bio_init(bio);
 
 492
 493	if (nr_iovecs > inline_vecs) {
 494		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
 495		if (!bvl && gfp_mask != saved_gfp) {
 496			punt_bios_to_rescuer(bs);
 497			gfp_mask = saved_gfp;
 498			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
 499		}
 500
 501		if (unlikely(!bvl))
 502			goto err_free;
 503
 504		bio_set_flag(bio, BIO_OWNS_VEC);
 505	} else if (nr_iovecs) {
 506		bvl = bio->bi_inline_vecs;
 
 
 507	}
 508
 509	bio->bi_pool = bs;
 510	bio->bi_flags |= idx << BIO_POOL_OFFSET;
 511	bio->bi_max_vecs = nr_iovecs;
 512	bio->bi_io_vec = bvl;
 513	return bio;
 514
 515err_free:
 516	mempool_free(p, bs->bio_pool);
 517	return NULL;
 518}
 519EXPORT_SYMBOL(bio_alloc_bioset);
 520
 521void zero_fill_bio(struct bio *bio)
 522{
 523	unsigned long flags;
 524	struct bio_vec bv;
 525	struct bvec_iter iter;
 526
 527	bio_for_each_segment(bv, bio, iter) {
 528		char *data = bvec_kmap_irq(&bv, &flags);
 529		memset(data, 0, bv.bv_len);
 530		flush_dcache_page(bv.bv_page);
 531		bvec_kunmap_irq(data, &flags);
 532	}
 533}
 534EXPORT_SYMBOL(zero_fill_bio);
 535
 536/**
 537 * bio_put - release a reference to a bio
 538 * @bio:   bio to release reference to
 
 
 
 
 
 
 
 
 
 
 539 *
 540 * Description:
 541 *   Put a reference to a &struct bio, either one you have gotten with
 542 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
 543 **/
 544void bio_put(struct bio *bio)
 545{
 546	if (!bio_flagged(bio, BIO_REFFED))
 547		bio_free(bio);
 548	else {
 549		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
 550
 551		/*
 552		 * last put frees it
 553		 */
 554		if (atomic_dec_and_test(&bio->__bi_cnt))
 555			bio_free(bio);
 556	}
 557}
 558EXPORT_SYMBOL(bio_put);
 559
 560inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
 561{
 562	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
 563		blk_recount_segments(q, bio);
 564
 565	return bio->bi_phys_segments;
 
 
 566}
 567EXPORT_SYMBOL(bio_phys_segments);
 568
 569/**
 570 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 571 * 	@bio: destination bio
 572 * 	@bio_src: bio to clone
 573 *
 574 *	Clone a &bio. Caller will own the returned bio, but not
 575 *	the actual data it points to. Reference count of returned
 576 * 	bio will be one.
 577 *
 578 * 	Caller must ensure that @bio_src is not freed before @bio.
 579 */
 580void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 581{
 582	BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
 
 583
 584	/*
 585	 * most users will be overriding ->bi_bdev with a new target,
 586	 * so we don't set nor calculate new physical/hw segment counts here
 587	 */
 588	bio->bi_bdev = bio_src->bi_bdev;
 589	bio_set_flag(bio, BIO_CLONED);
 590	bio->bi_rw = bio_src->bi_rw;
 591	bio->bi_iter = bio_src->bi_iter;
 592	bio->bi_io_vec = bio_src->bi_io_vec;
 593}
 594EXPORT_SYMBOL(__bio_clone_fast);
 595
 596/**
 597 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 598 *	@bio: bio to clone
 599 *	@gfp_mask: allocation priority
 600 *	@bs: bio_set to allocate from
 601 *
 602 * 	Like __bio_clone_fast, only also allocates the returned bio
 
 
 
 603 */
 604struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 605{
 606	struct bio *b;
 607
 608	b = bio_alloc_bioset(gfp_mask, 0, bs);
 609	if (!b)
 610		return NULL;
 611
 612	__bio_clone_fast(b, bio);
 
 613
 614	if (bio_integrity(bio)) {
 615		int ret;
 616
 617		ret = bio_integrity_clone(b, bio, gfp_mask);
 
 
 618
 619		if (ret < 0) {
 620			bio_put(b);
 621			return NULL;
 
 
 
 
 622		}
 
 623	}
 624
 625	return b;
 
 
 
 
 
 
 
 
 
 626}
 627EXPORT_SYMBOL(bio_clone_fast);
 628
 629/**
 630 * 	bio_clone_bioset - clone a bio
 631 * 	@bio_src: bio to clone
 632 *	@gfp_mask: allocation priority
 633 *	@bs: bio_set to allocate from
 634 *
 635 *	Clone bio. Caller will own the returned bio, but not the actual data it
 636 *	points to. Reference count of returned bio will be one.
 
 
 
 
 
 637 */
 638struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
 639			     struct bio_set *bs)
 640{
 641	struct bvec_iter iter;
 642	struct bio_vec bv;
 643	struct bio *bio;
 
 644
 645	/*
 646	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
 647	 * bio_src->bi_io_vec to bio->bi_io_vec.
 648	 *
 649	 * We can't do that anymore, because:
 650	 *
 651	 *  - The point of cloning the biovec is to produce a bio with a biovec
 652	 *    the caller can modify: bi_idx and bi_bvec_done should be 0.
 653	 *
 654	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if
 655	 *    we tried to clone the whole thing bio_alloc_bioset() would fail.
 656	 *    But the clone should succeed as long as the number of biovecs we
 657	 *    actually need to allocate is fewer than BIO_MAX_PAGES.
 658	 *
 659	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code
 660	 *    that does not own the bio - reason being drivers don't use it for
 661	 *    iterating over the biovec anymore, so expecting it to be kept up
 662	 *    to date (i.e. for clones that share the parent biovec) is just
 663	 *    asking for trouble and would force extra work on
 664	 *    __bio_clone_fast() anyways.
 665	 */
 
 
 666
 667	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
 668	if (!bio)
 669		return NULL;
 670
 671	bio->bi_bdev		= bio_src->bi_bdev;
 672	bio->bi_rw		= bio_src->bi_rw;
 673	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
 674	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
 675
 676	if (bio->bi_rw & REQ_DISCARD)
 677		goto integrity_clone;
 
 
 
 678
 679	if (bio->bi_rw & REQ_WRITE_SAME) {
 680		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
 681		goto integrity_clone;
 
 
 
 682	}
 
 
 683
 684	bio_for_each_segment(bv, bio_src, iter)
 685		bio->bi_io_vec[bio->bi_vcnt++] = bv;
 686
 687integrity_clone:
 688	if (bio_integrity(bio_src)) {
 689		int ret;
 690
 691		ret = bio_integrity_clone(bio, bio_src, gfp_mask);
 692		if (ret < 0) {
 693			bio_put(bio);
 694			return NULL;
 695		}
 696	}
 697
 698	return bio;
 699}
 700EXPORT_SYMBOL(bio_clone_bioset);
 701
 702/**
 703 *	bio_add_pc_page	-	attempt to add page to bio
 704 *	@q: the target queue
 705 *	@bio: destination bio
 706 *	@page: page to add
 707 *	@len: vec entry length
 708 *	@offset: vec entry offset
 709 *
 710 *	Attempt to add a page to the bio_vec maplist. This can fail for a
 711 *	number of reasons, such as the bio being full or target block device
 712 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 713 *	so it is always possible to add a single page to an empty bio.
 714 *
 715 *	This should only be used by REQ_PC bios.
 716 */
 717int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
 718		    *page, unsigned int len, unsigned int offset)
 719{
 720	int retried_segments = 0;
 721	struct bio_vec *bvec;
 722
 723	/*
 724	 * cloned bio must not modify vec list
 725	 */
 726	if (unlikely(bio_flagged(bio, BIO_CLONED)))
 727		return 0;
 728
 729	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
 730		return 0;
 731
 732	/*
 733	 * For filesystems with a blocksize smaller than the pagesize
 734	 * we will often be called with the same page as last time and
 735	 * a consecutive offset.  Optimize this special case.
 736	 */
 737	if (bio->bi_vcnt > 0) {
 738		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
 739
 740		if (page == prev->bv_page &&
 741		    offset == prev->bv_offset + prev->bv_len) {
 742			prev->bv_len += len;
 743			bio->bi_iter.bi_size += len;
 744			goto done;
 745		}
 746
 747		/*
 748		 * If the queue doesn't support SG gaps and adding this
 749		 * offset would create a gap, disallow it.
 750		 */
 751		if (bvec_gap_to_prev(q, prev, offset))
 752			return 0;
 753	}
 
 
 754
 755	if (bio->bi_vcnt >= bio->bi_max_vecs)
 756		return 0;
 
 757
 758	/*
 759	 * setup the new entry, we might clear it again later if we
 760	 * cannot add the page
 761	 */
 762	bvec = &bio->bi_io_vec[bio->bi_vcnt];
 763	bvec->bv_page = page;
 764	bvec->bv_len = len;
 765	bvec->bv_offset = offset;
 766	bio->bi_vcnt++;
 767	bio->bi_phys_segments++;
 768	bio->bi_iter.bi_size += len;
 769
 770	/*
 771	 * Perform a recount if the number of segments is greater
 772	 * than queue_max_segments(q).
 773	 */
 774
 775	while (bio->bi_phys_segments > queue_max_segments(q)) {
 
 
 
 
 
 776
 777		if (retried_segments)
 778			goto failed;
 
 779
 780		retried_segments = 1;
 781		blk_recount_segments(q, bio);
 
 
 
 782	}
 783
 784	/* If we may be able to merge these biovecs, force a recount */
 785	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
 786		bio_clear_flag(bio, BIO_SEG_VALID);
 787
 788 done:
 789	return len;
 
 
 
 
 790
 791 failed:
 792	bvec->bv_page = NULL;
 793	bvec->bv_len = 0;
 794	bvec->bv_offset = 0;
 795	bio->bi_vcnt--;
 796	bio->bi_iter.bi_size -= len;
 797	blk_recount_segments(q, bio);
 798	return 0;
 799}
 800EXPORT_SYMBOL(bio_add_pc_page);
 801
 802/**
 803 *	bio_add_page	-	attempt to add page to bio
 804 *	@bio: destination bio
 805 *	@page: page to add
 806 *	@len: vec entry length
 807 *	@offset: vec entry offset
 808 *
 809 *	Attempt to add a page to the bio_vec maplist. This will only fail
 810 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 811 */
 812int bio_add_page(struct bio *bio, struct page *page,
 813		 unsigned int len, unsigned int offset)
 814{
 815	struct bio_vec *bv;
 816
 817	/*
 818	 * cloned bio must not modify vec list
 819	 */
 820	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 821		return 0;
 822
 823	/*
 824	 * For filesystems with a blocksize smaller than the pagesize
 825	 * we will often be called with the same page as last time and
 826	 * a consecutive offset.  Optimize this special case.
 827	 */
 828	if (bio->bi_vcnt > 0) {
 829		bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 830
 831		if (page == bv->bv_page &&
 832		    offset == bv->bv_offset + bv->bv_len) {
 833			bv->bv_len += len;
 834			goto done;
 835		}
 836	}
 837
 838	if (bio->bi_vcnt >= bio->bi_max_vecs)
 839		return 0;
 840
 841	bv		= &bio->bi_io_vec[bio->bi_vcnt];
 842	bv->bv_page	= page;
 843	bv->bv_len	= len;
 844	bv->bv_offset	= offset;
 845
 846	bio->bi_vcnt++;
 847done:
 848	bio->bi_iter.bi_size += len;
 849	return len;
 850}
 851EXPORT_SYMBOL(bio_add_page);
 852
 853struct submit_bio_ret {
 854	struct completion event;
 855	int error;
 856};
 857
 858static void submit_bio_wait_endio(struct bio *bio)
 859{
 860	struct submit_bio_ret *ret = bio->bi_private;
 
 
 
 
 
 
 
 
 
 861
 862	ret->error = bio->bi_error;
 863	complete(&ret->event);
 
 
 
 
 864}
 865
 866/**
 867 * submit_bio_wait - submit a bio, and wait until it completes
 868 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 869 * @bio: The &struct bio which describes the I/O
 
 
 870 *
 871 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 872 * bio_endio() on failure.
 
 
 873 */
 874int submit_bio_wait(int rw, struct bio *bio)
 
 875{
 876	struct submit_bio_ret ret;
 877
 878	rw |= REQ_SYNC;
 879	init_completion(&ret.event);
 880	bio->bi_private = &ret;
 881	bio->bi_end_io = submit_bio_wait_endio;
 882	submit_bio(rw, bio);
 883	wait_for_completion_io(&ret.event);
 
 
 
 884
 885	return ret.error;
 886}
 887EXPORT_SYMBOL(submit_bio_wait);
 888
 889/**
 890 * bio_advance - increment/complete a bio by some number of bytes
 891 * @bio:	bio to advance
 892 * @bytes:	number of bytes to complete
 
 
 893 *
 894 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 895 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 896 * be updated on the last bvec as well.
 897 *
 898 * @bio will then represent the remaining, uncompleted portion of the io.
 899 */
 900void bio_advance(struct bio *bio, unsigned bytes)
 
 901{
 902	if (bio_integrity(bio))
 903		bio_integrity_advance(bio, bytes);
 904
 905	bio_advance_iter(bio, &bio->bi_iter, bytes);
 
 
 
 
 906}
 907EXPORT_SYMBOL(bio_advance);
 908
 909/**
 910 * bio_alloc_pages - allocates a single page for each bvec in a bio
 911 * @bio: bio to allocate pages for
 912 * @gfp_mask: flags for allocation
 913 *
 914 * Allocates pages up to @bio->bi_vcnt.
 915 *
 916 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
 917 * freed.
 918 */
 919int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
 920{
 921	int i;
 922	struct bio_vec *bv;
 
 
 
 
 923
 924	bio_for_each_segment_all(bv, bio, i) {
 925		bv->bv_page = alloc_page(gfp_mask);
 926		if (!bv->bv_page) {
 927			while (--bv >= bio->bi_io_vec)
 928				__free_page(bv->bv_page);
 929			return -ENOMEM;
 930		}
 931	}
 
 
 
 
 
 
 932
 933	return 0;
 
 
 
 
 
 934}
 935EXPORT_SYMBOL(bio_alloc_pages);
 936
 937/**
 938 * bio_copy_data - copy contents of data buffers from one chain of bios to
 939 * another
 940 * @src: source bio list
 941 * @dst: destination bio list
 
 
 942 *
 943 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 944 * @src and @dst as linked lists of bios.
 
 945 *
 946 * Stops when it reaches the end of either @src or @dst - that is, copies
 947 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 
 948 */
 949void bio_copy_data(struct bio *dst, struct bio *src)
 
 950{
 951	struct bvec_iter src_iter, dst_iter;
 952	struct bio_vec src_bv, dst_bv;
 953	void *src_p, *dst_p;
 954	unsigned bytes;
 955
 956	src_iter = src->bi_iter;
 957	dst_iter = dst->bi_iter;
 958
 959	while (1) {
 960		if (!src_iter.bi_size) {
 961			src = src->bi_next;
 962			if (!src)
 963				break;
 964
 965			src_iter = src->bi_iter;
 966		}
 967
 968		if (!dst_iter.bi_size) {
 969			dst = dst->bi_next;
 970			if (!dst)
 971				break;
 972
 973			dst_iter = dst->bi_iter;
 
 
 
 
 
 
 
 974		}
 
 
 
 975
 976		src_bv = bio_iter_iovec(src, src_iter);
 977		dst_bv = bio_iter_iovec(dst, dst_iter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978
 979		bytes = min(src_bv.bv_len, dst_bv.bv_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981		src_p = kmap_atomic(src_bv.bv_page);
 982		dst_p = kmap_atomic(dst_bv.bv_page);
 983
 984		memcpy(dst_p + dst_bv.bv_offset,
 985		       src_p + src_bv.bv_offset,
 986		       bytes);
 987
 988		kunmap_atomic(dst_p);
 989		kunmap_atomic(src_p);
 
 990
 991		bio_advance_iter(src, &src_iter, bytes);
 992		bio_advance_iter(dst, &dst_iter, bytes);
 
 
 
 
 
 993	}
 994}
 995EXPORT_SYMBOL(bio_copy_data);
 996
 997struct bio_map_data {
 998	int is_our_pages;
 999	struct iov_iter iter;
1000	struct iovec iov[];
1001};
1002
1003static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
1004					       gfp_t gfp_mask)
1005{
1006	if (iov_count > UIO_MAXIOV)
1007		return NULL;
1008
1009	return kmalloc(sizeof(struct bio_map_data) +
1010		       sizeof(struct iovec) * iov_count, gfp_mask);
 
 
 
 
 
1011}
1012
1013/**
1014 * bio_copy_from_iter - copy all pages from iov_iter to bio
1015 * @bio: The &struct bio which describes the I/O as destination
1016 * @iter: iov_iter as source
1017 *
1018 * Copy all pages from iov_iter to bio.
1019 * Returns 0 on success, or error on failure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020 */
1021static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
 
1022{
1023	int i;
1024	struct bio_vec *bvec;
1025
1026	bio_for_each_segment_all(bvec, bio, i) {
1027		ssize_t ret;
1028
1029		ret = copy_page_from_iter(bvec->bv_page,
1030					  bvec->bv_offset,
1031					  bvec->bv_len,
1032					  &iter);
1033
1034		if (!iov_iter_count(&iter))
1035			break;
1036
1037		if (ret < bvec->bv_len)
1038			return -EFAULT;
1039	}
1040
1041	return 0;
 
1042}
 
1043
1044/**
1045 * bio_copy_to_iter - copy all pages from bio to iov_iter
1046 * @bio: The &struct bio which describes the I/O as source
1047 * @iter: iov_iter as destination
 
 
1048 *
1049 * Copy all pages from bio to iov_iter.
1050 * Returns 0 on success, or error on failure.
1051 */
1052static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
 
1053{
1054	int i;
1055	struct bio_vec *bvec;
1056
1057	bio_for_each_segment_all(bvec, bio, i) {
1058		ssize_t ret;
1059
1060		ret = copy_page_to_iter(bvec->bv_page,
1061					bvec->bv_offset,
1062					bvec->bv_len,
1063					&iter);
1064
1065		if (!iov_iter_count(&iter))
1066			break;
 
1067
1068		if (ret < bvec->bv_len)
1069			return -EFAULT;
1070	}
1071
1072	return 0;
1073}
 
1074
1075static void bio_free_pages(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
1076{
1077	struct bio_vec *bvec;
1078	int i;
1079
1080	bio_for_each_segment_all(bvec, bio, i)
1081		__free_page(bvec->bv_page);
 
 
 
 
1082}
 
1083
1084/**
1085 *	bio_uncopy_user	-	finish previously mapped bio
1086 *	@bio: bio being terminated
 
 
 
 
 
 
 
 
1087 *
1088 *	Free pages allocated from bio_copy_user_iov() and write back data
1089 *	to user space in case of a read.
1090 */
1091int bio_uncopy_user(struct bio *bio)
 
1092{
1093	struct bio_map_data *bmd = bio->bi_private;
1094	int ret = 0;
 
 
1095
1096	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1097		/*
1098		 * if we're in a workqueue, the request is orphaned, so
1099		 * don't copy into a random user address space, just free
1100		 * and return -EINTR so user space doesn't expect any data.
1101		 */
1102		if (!current->mm)
1103			ret = -EINTR;
1104		else if (bio_data_dir(bio) == READ)
1105			ret = bio_copy_to_iter(bio, bmd->iter);
1106		if (bmd->is_our_pages)
1107			bio_free_pages(bio);
1108	}
1109	kfree(bmd);
1110	bio_put(bio);
1111	return ret;
1112}
1113EXPORT_SYMBOL(bio_uncopy_user);
1114
1115/**
1116 *	bio_copy_user_iov	-	copy user data to bio
1117 *	@q:		destination block queue
1118 *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1119 *	@iter:		iovec iterator
1120 *	@gfp_mask:	memory allocation flags
1121 *
1122 *	Prepares and returns a bio for indirect user io, bouncing data
1123 *	to/from kernel pages as necessary. Must be paired with
1124 *	call bio_uncopy_user() on io completion.
1125 */
1126struct bio *bio_copy_user_iov(struct request_queue *q,
1127			      struct rq_map_data *map_data,
1128			      const struct iov_iter *iter,
1129			      gfp_t gfp_mask)
1130{
1131	struct bio_map_data *bmd;
1132	struct page *page;
1133	struct bio *bio;
1134	int i, ret;
1135	int nr_pages = 0;
1136	unsigned int len = iter->count;
1137	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1138
1139	for (i = 0; i < iter->nr_segs; i++) {
1140		unsigned long uaddr;
1141		unsigned long end;
1142		unsigned long start;
1143
1144		uaddr = (unsigned long) iter->iov[i].iov_base;
1145		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1146			>> PAGE_SHIFT;
1147		start = uaddr >> PAGE_SHIFT;
1148
1149		/*
1150		 * Overflow, abort
1151		 */
1152		if (end < start)
1153			return ERR_PTR(-EINVAL);
1154
1155		nr_pages += end - start;
1156	}
1157
1158	if (offset)
1159		nr_pages++;
 
 
 
 
 
1160
1161	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1162	if (!bmd)
1163		return ERR_PTR(-ENOMEM);
 
1164
1165	/*
1166	 * We need to do a deep copy of the iov_iter including the iovecs.
1167	 * The caller provided iov might point to an on-stack or otherwise
1168	 * shortlived one.
1169	 */
1170	bmd->is_our_pages = map_data ? 0 : 1;
1171	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1172	iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1173			iter->nr_segs, iter->count);
1174
1175	ret = -ENOMEM;
1176	bio = bio_kmalloc(gfp_mask, nr_pages);
1177	if (!bio)
1178		goto out_bmd;
1179
1180	if (iter->type & WRITE)
1181		bio->bi_rw |= REQ_WRITE;
 
 
 
1182
1183	ret = 0;
 
 
 
 
 
 
1184
1185	if (map_data) {
1186		nr_pages = 1 << map_data->page_order;
1187		i = map_data->offset / PAGE_SIZE;
1188	}
1189	while (len) {
1190		unsigned int bytes = PAGE_SIZE;
1191
1192		bytes -= offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193
1194		if (bytes > len)
1195			bytes = len;
 
 
 
 
 
1196
1197		if (map_data) {
1198			if (i == map_data->nr_entries * nr_pages) {
1199				ret = -ENOMEM;
1200				break;
1201			}
1202
1203			page = map_data->pages[i / nr_pages];
1204			page += (i % nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205
1206			i++;
1207		} else {
1208			page = alloc_page(q->bounce_gfp | gfp_mask);
1209			if (!page) {
1210				ret = -ENOMEM;
1211				break;
1212			}
1213		}
1214
1215		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1216			break;
 
 
 
 
 
 
1217
1218		len -= bytes;
1219		offset = 0;
1220	}
1221
1222	if (ret)
1223		goto cleanup;
1224
1225	/*
1226	 * success
1227	 */
1228	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
1229	    (map_data && map_data->from_user)) {
1230		ret = bio_copy_from_iter(bio, *iter);
1231		if (ret)
1232			goto cleanup;
1233	}
1234
1235	bio->bi_private = bmd;
1236	return bio;
1237cleanup:
1238	if (!map_data)
1239		bio_free_pages(bio);
1240	bio_put(bio);
1241out_bmd:
1242	kfree(bmd);
1243	return ERR_PTR(ret);
1244}
1245
1246/**
1247 *	bio_map_user_iov - map user iovec into bio
1248 *	@q:		the struct request_queue for the bio
1249 *	@iter:		iovec iterator
1250 *	@gfp_mask:	memory allocation flags
1251 *
1252 *	Map the user space address into a bio suitable for io to a block
1253 *	device. Returns an error pointer in case of error.
 
 
 
 
 
 
 
 
 
 
 
1254 */
1255struct bio *bio_map_user_iov(struct request_queue *q,
1256			     const struct iov_iter *iter,
1257			     gfp_t gfp_mask)
1258{
1259	int j;
1260	int nr_pages = 0;
1261	struct page **pages;
1262	struct bio *bio;
1263	int cur_page = 0;
1264	int ret, offset;
1265	struct iov_iter i;
1266	struct iovec iov;
1267
1268	iov_for_each(iov, i, *iter) {
1269		unsigned long uaddr = (unsigned long) iov.iov_base;
1270		unsigned long len = iov.iov_len;
1271		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272		unsigned long start = uaddr >> PAGE_SHIFT;
1273
1274		/*
1275		 * Overflow, abort
1276		 */
1277		if (end < start)
1278			return ERR_PTR(-EINVAL);
1279
1280		nr_pages += end - start;
1281		/*
1282		 * buffer must be aligned to at least hardsector size for now
1283		 */
1284		if (uaddr & queue_dma_alignment(q))
1285			return ERR_PTR(-EINVAL);
1286	}
1287
1288	if (!nr_pages)
1289		return ERR_PTR(-EINVAL);
1290
1291	bio = bio_kmalloc(gfp_mask, nr_pages);
1292	if (!bio)
1293		return ERR_PTR(-ENOMEM);
1294
1295	ret = -ENOMEM;
1296	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1297	if (!pages)
1298		goto out;
1299
1300	iov_for_each(iov, i, *iter) {
1301		unsigned long uaddr = (unsigned long) iov.iov_base;
1302		unsigned long len = iov.iov_len;
1303		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304		unsigned long start = uaddr >> PAGE_SHIFT;
1305		const int local_nr_pages = end - start;
1306		const int page_limit = cur_page + local_nr_pages;
1307
1308		ret = get_user_pages_fast(uaddr, local_nr_pages,
1309				(iter->type & WRITE) != WRITE,
1310				&pages[cur_page]);
1311		if (ret < local_nr_pages) {
1312			ret = -EFAULT;
1313			goto out_unmap;
1314		}
1315
1316		offset = offset_in_page(uaddr);
1317		for (j = cur_page; j < page_limit; j++) {
1318			unsigned int bytes = PAGE_SIZE - offset;
1319
1320			if (len <= 0)
1321				break;
1322			
1323			if (bytes > len)
1324				bytes = len;
1325
1326			/*
1327			 * sorry...
1328			 */
1329			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1330					    bytes)
1331				break;
1332
1333			len -= bytes;
1334			offset = 0;
1335		}
1336
1337		cur_page = j;
1338		/*
1339		 * release the pages we didn't map into the bio, if any
1340		 */
1341		while (j < page_limit)
1342			put_page(pages[j++]);
1343	}
1344
1345	kfree(pages);
1346
1347	/*
1348	 * set data direction, and check if mapped pages need bouncing
1349	 */
1350	if (iter->type & WRITE)
1351		bio->bi_rw |= REQ_WRITE;
1352
1353	bio_set_flag(bio, BIO_USER_MAPPED);
1354
1355	/*
1356	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1357	 * it would normally disappear when its bi_end_io is run.
1358	 * however, we need it for the unmap, so grab an extra
1359	 * reference to it
1360	 */
1361	bio_get(bio);
1362	return bio;
1363
1364 out_unmap:
1365	for (j = 0; j < nr_pages; j++) {
1366		if (!pages[j])
1367			break;
1368		put_page(pages[j]);
1369	}
1370 out:
1371	kfree(pages);
1372	bio_put(bio);
1373	return ERR_PTR(ret);
1374}
 
1375
1376static void __bio_unmap_user(struct bio *bio)
1377{
1378	struct bio_vec *bvec;
1379	int i;
1380
1381	/*
1382	 * make sure we dirty pages we wrote to
1383	 */
1384	bio_for_each_segment_all(bvec, bio, i) {
1385		if (bio_data_dir(bio) == READ)
1386			set_page_dirty_lock(bvec->bv_page);
1387
1388		put_page(bvec->bv_page);
1389	}
1390
1391	bio_put(bio);
1392}
1393
1394/**
1395 *	bio_unmap_user	-	unmap a bio
1396 *	@bio:		the bio being unmapped
1397 *
1398 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1399 *	a process context.
1400 *
1401 *	bio_unmap_user() may sleep.
 
 
1402 */
1403void bio_unmap_user(struct bio *bio)
1404{
1405	__bio_unmap_user(bio);
1406	bio_put(bio);
1407}
1408EXPORT_SYMBOL(bio_unmap_user);
1409
1410static void bio_map_kern_endio(struct bio *bio)
1411{
1412	bio_put(bio);
1413}
1414
1415/**
1416 *	bio_map_kern	-	map kernel address into bio
1417 *	@q: the struct request_queue for the bio
1418 *	@data: pointer to buffer to map
1419 *	@len: length in bytes
1420 *	@gfp_mask: allocation flags for bio allocation
1421 *
1422 *	Map the kernel address into a bio suitable for io to a block
1423 *	device. Returns an error pointer in case of error.
1424 */
1425struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1426			 gfp_t gfp_mask)
1427{
1428	unsigned long kaddr = (unsigned long)data;
1429	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1430	unsigned long start = kaddr >> PAGE_SHIFT;
1431	const int nr_pages = end - start;
1432	int offset, i;
1433	struct bio *bio;
1434
1435	bio = bio_kmalloc(gfp_mask, nr_pages);
1436	if (!bio)
1437		return ERR_PTR(-ENOMEM);
1438
1439	offset = offset_in_page(kaddr);
1440	for (i = 0; i < nr_pages; i++) {
1441		unsigned int bytes = PAGE_SIZE - offset;
1442
1443		if (len <= 0)
1444			break;
1445
1446		if (bytes > len)
1447			bytes = len;
1448
1449		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1450				    offset) < bytes) {
1451			/* we don't support partial mappings */
1452			bio_put(bio);
1453			return ERR_PTR(-EINVAL);
1454		}
1455
1456		data += bytes;
1457		len -= bytes;
1458		offset = 0;
1459	}
 
 
 
 
1460
1461	bio->bi_end_io = bio_map_kern_endio;
1462	return bio;
1463}
1464EXPORT_SYMBOL(bio_map_kern);
1465
1466static void bio_copy_kern_endio(struct bio *bio)
1467{
1468	bio_free_pages(bio);
1469	bio_put(bio);
 
 
 
1470}
 
1471
1472static void bio_copy_kern_endio_read(struct bio *bio)
 
1473{
1474	char *p = bio->bi_private;
1475	struct bio_vec *bvec;
1476	int i;
 
 
 
1477
1478	bio_for_each_segment_all(bvec, bio, i) {
1479		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1480		p += bvec->bv_len;
1481	}
1482
1483	bio_copy_kern_endio(bio);
 
 
 
 
 
1484}
 
1485
1486/**
1487 *	bio_copy_kern	-	copy kernel address into bio
1488 *	@q: the struct request_queue for the bio
1489 *	@data: pointer to buffer to copy
1490 *	@len: length in bytes
1491 *	@gfp_mask: allocation flags for bio and page allocation
1492 *	@reading: data direction is READ
1493 *
1494 *	copy the kernel address into a bio suitable for io to a block
1495 *	device. Returns an error pointer in case of error.
1496 */
1497struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1498			  gfp_t gfp_mask, int reading)
1499{
1500	unsigned long kaddr = (unsigned long)data;
1501	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1502	unsigned long start = kaddr >> PAGE_SHIFT;
1503	struct bio *bio;
1504	void *p = data;
1505	int nr_pages = 0;
1506
1507	/*
1508	 * Overflow, abort
1509	 */
1510	if (end < start)
1511		return ERR_PTR(-EINVAL);
1512
1513	nr_pages = end - start;
1514	bio = bio_kmalloc(gfp_mask, nr_pages);
1515	if (!bio)
1516		return ERR_PTR(-ENOMEM);
1517
1518	while (len) {
1519		struct page *page;
1520		unsigned int bytes = PAGE_SIZE;
1521
1522		if (bytes > len)
1523			bytes = len;
1524
1525		page = alloc_page(q->bounce_gfp | gfp_mask);
1526		if (!page)
1527			goto cleanup;
1528
1529		if (!reading)
1530			memcpy(page_address(page), p, bytes);
1531
1532		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1533			break;
1534
1535		len -= bytes;
1536		p += bytes;
1537	}
1538
1539	if (reading) {
1540		bio->bi_end_io = bio_copy_kern_endio_read;
1541		bio->bi_private = data;
1542	} else {
1543		bio->bi_end_io = bio_copy_kern_endio;
1544		bio->bi_rw |= REQ_WRITE;
1545	}
1546
1547	return bio;
 
 
 
1548
1549cleanup:
1550	bio_free_pages(bio);
1551	bio_put(bio);
1552	return ERR_PTR(-ENOMEM);
1553}
1554EXPORT_SYMBOL(bio_copy_kern);
1555
1556/*
1557 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1558 * for performing direct-IO in BIOs.
1559 *
1560 * The problem is that we cannot run set_page_dirty() from interrupt context
1561 * because the required locks are not interrupt-safe.  So what we can do is to
1562 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1563 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1564 * in process context.
1565 *
1566 * We special-case compound pages here: normally this means reads into hugetlb
1567 * pages.  The logic in here doesn't really work right for compound pages
1568 * because the VM does not uniformly chase down the head page in all cases.
1569 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1570 * handle them at all.  So we skip compound pages here at an early stage.
1571 *
1572 * Note that this code is very hard to test under normal circumstances because
1573 * direct-io pins the pages with get_user_pages().  This makes
1574 * is_page_cache_freeable return false, and the VM will not clean the pages.
1575 * But other code (eg, flusher threads) could clean the pages if they are mapped
1576 * pagecache.
1577 *
1578 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1579 * deferred bio dirtying paths.
1580 */
1581
1582/*
1583 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1584 */
1585void bio_set_pages_dirty(struct bio *bio)
1586{
1587	struct bio_vec *bvec;
1588	int i;
1589
1590	bio_for_each_segment_all(bvec, bio, i) {
1591		struct page *page = bvec->bv_page;
1592
1593		if (page && !PageCompound(page))
1594			set_page_dirty_lock(page);
1595	}
1596}
1597
1598static void bio_release_pages(struct bio *bio)
1599{
1600	struct bio_vec *bvec;
1601	int i;
1602
1603	bio_for_each_segment_all(bvec, bio, i) {
1604		struct page *page = bvec->bv_page;
1605
1606		if (page)
1607			put_page(page);
1608	}
1609}
1610
1611/*
1612 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1613 * If they are, then fine.  If, however, some pages are clean then they must
1614 * have been written out during the direct-IO read.  So we take another ref on
1615 * the BIO and the offending pages and re-dirty the pages in process context.
1616 *
1617 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1618 * here on.  It will run one put_page() against each page and will run one
1619 * bio_put() against the BIO.
1620 */
1621
1622static void bio_dirty_fn(struct work_struct *work);
1623
1624static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1625static DEFINE_SPINLOCK(bio_dirty_lock);
1626static struct bio *bio_dirty_list;
1627
1628/*
1629 * This runs in process context
1630 */
1631static void bio_dirty_fn(struct work_struct *work)
1632{
1633	unsigned long flags;
1634	struct bio *bio;
1635
1636	spin_lock_irqsave(&bio_dirty_lock, flags);
1637	bio = bio_dirty_list;
1638	bio_dirty_list = NULL;
1639	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1640
1641	while (bio) {
1642		struct bio *next = bio->bi_private;
1643
1644		bio_set_pages_dirty(bio);
1645		bio_release_pages(bio);
1646		bio_put(bio);
1647		bio = next;
1648	}
1649}
1650
1651void bio_check_pages_dirty(struct bio *bio)
1652{
1653	struct bio_vec *bvec;
1654	int nr_clean_pages = 0;
1655	int i;
1656
1657	bio_for_each_segment_all(bvec, bio, i) {
1658		struct page *page = bvec->bv_page;
1659
1660		if (PageDirty(page) || PageCompound(page)) {
1661			put_page(page);
1662			bvec->bv_page = NULL;
1663		} else {
1664			nr_clean_pages++;
1665		}
1666	}
1667
1668	if (nr_clean_pages) {
1669		unsigned long flags;
1670
1671		spin_lock_irqsave(&bio_dirty_lock, flags);
1672		bio->bi_private = bio_dirty_list;
1673		bio_dirty_list = bio;
1674		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1675		schedule_work(&bio_dirty_work);
1676	} else {
1677		bio_put(bio);
1678	}
1679}
1680
1681void generic_start_io_acct(int rw, unsigned long sectors,
1682			   struct hd_struct *part)
1683{
1684	int cpu = part_stat_lock();
1685
1686	part_round_stats(cpu, part);
1687	part_stat_inc(cpu, part, ios[rw]);
1688	part_stat_add(cpu, part, sectors[rw], sectors);
1689	part_inc_in_flight(part, rw);
1690
1691	part_stat_unlock();
1692}
1693EXPORT_SYMBOL(generic_start_io_acct);
1694
1695void generic_end_io_acct(int rw, struct hd_struct *part,
1696			 unsigned long start_time)
1697{
1698	unsigned long duration = jiffies - start_time;
1699	int cpu = part_stat_lock();
1700
1701	part_stat_add(cpu, part, ticks[rw], duration);
1702	part_round_stats(cpu, part);
1703	part_dec_in_flight(part, rw);
1704
1705	part_stat_unlock();
1706}
1707EXPORT_SYMBOL(generic_end_io_acct);
1708
1709#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1710void bio_flush_dcache_pages(struct bio *bi)
1711{
1712	struct bio_vec bvec;
1713	struct bvec_iter iter;
1714
1715	bio_for_each_segment(bvec, bi, iter)
1716		flush_dcache_page(bvec.bv_page);
1717}
1718EXPORT_SYMBOL(bio_flush_dcache_pages);
1719#endif
1720
1721static inline bool bio_remaining_done(struct bio *bio)
1722{
1723	/*
1724	 * If we're not chaining, then ->__bi_remaining is always 1 and
1725	 * we always end io on the first invocation.
1726	 */
1727	if (!bio_flagged(bio, BIO_CHAIN))
1728		return true;
1729
1730	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1731
1732	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1733		bio_clear_flag(bio, BIO_CHAIN);
1734		return true;
1735	}
1736
1737	return false;
1738}
1739
1740/**
1741 * bio_endio - end I/O on a bio
1742 * @bio:	bio
1743 *
1744 * Description:
1745 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1746 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1747 *   bio unless they own it and thus know that it has an end_io function.
 
 
 
 
1748 **/
1749void bio_endio(struct bio *bio)
1750{
1751again:
1752	if (!bio_remaining_done(bio))
1753		return;
 
 
 
 
 
 
 
 
 
1754
1755	/*
1756	 * Need to have a real endio function for chained bios, otherwise
1757	 * various corner cases will break (like stacking block devices that
1758	 * save/restore bi_end_io) - however, we want to avoid unbounded
1759	 * recursion and blowing the stack. Tail call optimization would
1760	 * handle this, but compiling with frame pointers also disables
1761	 * gcc's sibling call optimization.
1762	 */
1763	if (bio->bi_end_io == bio_chain_endio) {
1764		bio = __bio_chain_endio(bio);
1765		goto again;
1766	}
1767
 
 
 
1768	if (bio->bi_end_io)
1769		bio->bi_end_io(bio);
1770}
1771EXPORT_SYMBOL(bio_endio);
1772
1773/**
1774 * bio_split - split a bio
1775 * @bio:	bio to split
1776 * @sectors:	number of sectors to split from the front of @bio
1777 * @gfp:	gfp mask
1778 * @bs:		bio set to allocate from
1779 *
1780 * Allocates and returns a new bio which represents @sectors from the start of
1781 * @bio, and updates @bio to represent the remaining sectors.
1782 *
1783 * Unless this is a discard request the newly allocated bio will point
1784 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1785 * @bio is not freed before the split.
1786 */
1787struct bio *bio_split(struct bio *bio, int sectors,
1788		      gfp_t gfp, struct bio_set *bs)
1789{
1790	struct bio *split = NULL;
1791
1792	BUG_ON(sectors <= 0);
1793	BUG_ON(sectors >= bio_sectors(bio));
1794
1795	/*
1796	 * Discards need a mutable bio_vec to accommodate the payload
1797	 * required by the DSM TRIM and UNMAP commands.
1798	 */
1799	if (bio->bi_rw & REQ_DISCARD)
1800		split = bio_clone_bioset(bio, gfp, bs);
1801	else
1802		split = bio_clone_fast(bio, gfp, bs);
1803
 
1804	if (!split)
1805		return NULL;
1806
1807	split->bi_iter.bi_size = sectors << 9;
1808
1809	if (bio_integrity(split))
1810		bio_integrity_trim(split, 0, sectors);
1811
1812	bio_advance(bio, split->bi_iter.bi_size);
1813
 
 
 
1814	return split;
1815}
1816EXPORT_SYMBOL(bio_split);
1817
1818/**
1819 * bio_trim - trim a bio
1820 * @bio:	bio to trim
1821 * @offset:	number of sectors to trim from the front of @bio
1822 * @size:	size we want to trim @bio to, in sectors
 
 
 
1823 */
1824void bio_trim(struct bio *bio, int offset, int size)
1825{
1826	/* 'bio' is a cloned bio which we need to trim to match
1827	 * the given offset and size.
1828	 */
1829
1830	size <<= 9;
1831	if (offset == 0 && size == bio->bi_iter.bi_size)
1832		return;
1833
1834	bio_clear_flag(bio, BIO_SEG_VALID);
1835
1836	bio_advance(bio, offset << 9);
1837
1838	bio->bi_iter.bi_size = size;
 
 
 
1839}
1840EXPORT_SYMBOL_GPL(bio_trim);
1841
1842/*
1843 * create memory pools for biovec's in a bio_set.
1844 * use the global biovec slabs created for general use.
1845 */
1846mempool_t *biovec_create_pool(int pool_entries)
1847{
1848	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1849
1850	return mempool_create_slab_pool(pool_entries, bp->slab);
1851}
1852
1853void bioset_free(struct bio_set *bs)
 
 
 
 
 
 
1854{
 
1855	if (bs->rescue_workqueue)
1856		destroy_workqueue(bs->rescue_workqueue);
 
1857
1858	if (bs->bio_pool)
1859		mempool_destroy(bs->bio_pool);
1860
1861	if (bs->bvec_pool)
1862		mempool_destroy(bs->bvec_pool);
1863
1864	bioset_integrity_free(bs);
1865	bio_put_slab(bs);
1866
1867	kfree(bs);
1868}
1869EXPORT_SYMBOL(bioset_free);
1870
1871static struct bio_set *__bioset_create(unsigned int pool_size,
1872				       unsigned int front_pad,
1873				       bool create_bvec_pool)
1874{
1875	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1876	struct bio_set *bs;
1877
1878	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1879	if (!bs)
1880		return NULL;
1881
1882	bs->front_pad = front_pad;
1883
1884	spin_lock_init(&bs->rescue_lock);
1885	bio_list_init(&bs->rescue_list);
1886	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1887
1888	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1889	if (!bs->bio_slab) {
1890		kfree(bs);
1891		return NULL;
1892	}
1893
1894	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1895	if (!bs->bio_pool)
1896		goto bad;
1897
1898	if (create_bvec_pool) {
1899		bs->bvec_pool = biovec_create_pool(pool_size);
1900		if (!bs->bvec_pool)
1901			goto bad;
1902	}
1903
1904	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1905	if (!bs->rescue_workqueue)
1906		goto bad;
1907
1908	return bs;
1909bad:
1910	bioset_free(bs);
1911	return NULL;
1912}
 
1913
1914/**
1915 * bioset_create  - Create a bio_set
 
1916 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1917 * @front_pad:	Number of bytes to allocate in front of the returned bio
 
 
1918 *
1919 * Description:
1920 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1921 *    to ask for a number of bytes to be allocated in front of the bio.
1922 *    Front pad allocation is useful for embedding the bio inside
1923 *    another structure, to avoid allocating extra data to go with the bio.
1924 *    Note that the bio must be embedded at the END of that structure always,
1925 *    or things will break badly.
1926 */
1927struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1928{
1929	return __bioset_create(pool_size, front_pad, true);
1930}
1931EXPORT_SYMBOL(bioset_create);
1932
1933/**
1934 * bioset_create_nobvec  - Create a bio_set without bio_vec mempool
1935 * @pool_size:	Number of bio to cache in the mempool
1936 * @front_pad:	Number of bytes to allocate in front of the returned bio
1937 *
1938 * Description:
1939 *    Same functionality as bioset_create() except that mempool is not
1940 *    created for bio_vecs. Saving some memory for bio_clone_fast() users.
1941 */
1942struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
 
 
 
1943{
1944	return __bioset_create(pool_size, front_pad, false);
1945}
1946EXPORT_SYMBOL(bioset_create_nobvec);
1947
1948#ifdef CONFIG_BLK_CGROUP
1949
1950/**
1951 * bio_associate_blkcg - associate a bio with the specified blkcg
1952 * @bio: target bio
1953 * @blkcg_css: css of the blkcg to associate
1954 *
1955 * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will
1956 * treat @bio as if it were issued by a task which belongs to the blkcg.
1957 *
1958 * This function takes an extra reference of @blkcg_css which will be put
1959 * when @bio is released.  The caller must own @bio and is responsible for
1960 * synchronizing calls to this function.
1961 */
1962int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
1963{
1964	if (unlikely(bio->bi_css))
1965		return -EBUSY;
1966	css_get(blkcg_css);
1967	bio->bi_css = blkcg_css;
1968	return 0;
1969}
1970EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1971
1972/**
1973 * bio_associate_current - associate a bio with %current
1974 * @bio: target bio
1975 *
1976 * Associate @bio with %current if it hasn't been associated yet.  Block
1977 * layer will treat @bio as if it were issued by %current no matter which
1978 * task actually issues it.
1979 *
1980 * This function takes an extra reference of @task's io_context and blkcg
1981 * which will be put when @bio is released.  The caller must own @bio,
1982 * ensure %current->io_context exists, and is responsible for synchronizing
1983 * calls to this function.
1984 */
1985int bio_associate_current(struct bio *bio)
1986{
1987	struct io_context *ioc;
1988
1989	if (bio->bi_css)
1990		return -EBUSY;
 
1991
1992	ioc = current->io_context;
1993	if (!ioc)
1994		return -ENOENT;
1995
1996	get_io_context_active(ioc);
1997	bio->bi_ioc = ioc;
1998	bio->bi_css = task_get_css(current, io_cgrp_id);
1999	return 0;
2000}
2001EXPORT_SYMBOL_GPL(bio_associate_current);
2002
2003/**
2004 * bio_disassociate_task - undo bio_associate_current()
2005 * @bio: target bio
2006 */
2007void bio_disassociate_task(struct bio *bio)
2008{
2009	if (bio->bi_ioc) {
2010		put_io_context(bio->bi_ioc);
2011		bio->bi_ioc = NULL;
2012	}
2013	if (bio->bi_css) {
2014		css_put(bio->bi_css);
2015		bio->bi_css = NULL;
 
 
2016	}
2017}
2018
2019#endif /* CONFIG_BLK_CGROUP */
 
 
 
 
 
2020
2021static void __init biovec_init_slabs(void)
2022{
2023	int i;
2024
2025	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
2026		int size;
2027		struct biovec_slab *bvs = bvec_slabs + i;
2028
2029		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2030			bvs->slab = NULL;
2031			continue;
2032		}
2033
2034		size = bvs->nr_vecs * sizeof(struct bio_vec);
2035		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2036                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2037	}
2038}
2039
2040static int __init init_bio(void)
2041{
2042	bio_slab_max = 2;
2043	bio_slab_nr = 0;
2044	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2045	if (!bio_slabs)
2046		panic("bio: can't allocate bios\n");
2047
2048	bio_integrity_init();
2049	biovec_init_slabs();
2050
2051	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
2052	if (!fs_bio_set)
2053		panic("bio: can't allocate bios\n");
2054
2055	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2056		panic("bio: can't create integrity pool\n");
2057
2058	return 0;
2059}
2060subsys_initcall(init_bio);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5#include <linux/mm.h>
   6#include <linux/swap.h>
   7#include <linux/bio.h>
   8#include <linux/blkdev.h>
   9#include <linux/uio.h>
  10#include <linux/iocontext.h>
  11#include <linux/slab.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/export.h>
  15#include <linux/mempool.h>
  16#include <linux/workqueue.h>
  17#include <linux/cgroup.h>
  18#include <linux/highmem.h>
  19#include <linux/sched/sysctl.h>
  20#include <linux/blk-crypto.h>
  21#include <linux/xarray.h>
  22
  23#include <trace/events/block.h>
  24#include "blk.h"
  25#include "blk-rq-qos.h"
  26#include "blk-cgroup.h"
  27
  28#define ALLOC_CACHE_THRESHOLD	16
  29#define ALLOC_CACHE_SLACK	64
  30#define ALLOC_CACHE_MAX		256
  31
  32struct bio_alloc_cache {
  33	struct bio		*free_list;
  34	struct bio		*free_list_irq;
  35	unsigned int		nr;
  36	unsigned int		nr_irq;
  37};
  38
  39static struct biovec_slab {
  40	int nr_vecs;
  41	char *name;
  42	struct kmem_cache *slab;
  43} bvec_slabs[] __read_mostly = {
  44	{ .nr_vecs = 16, .name = "biovec-16" },
  45	{ .nr_vecs = 64, .name = "biovec-64" },
  46	{ .nr_vecs = 128, .name = "biovec-128" },
  47	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
 
 
 
 
 
  48};
  49
  50static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
  51{
  52	switch (nr_vecs) {
  53	/* smaller bios use inline vecs */
  54	case 5 ... 16:
  55		return &bvec_slabs[0];
  56	case 17 ... 64:
  57		return &bvec_slabs[1];
  58	case 65 ... 128:
  59		return &bvec_slabs[2];
  60	case 129 ... BIO_MAX_VECS:
  61		return &bvec_slabs[3];
  62	default:
  63		BUG();
  64		return NULL;
  65	}
  66}
  67
  68/*
  69 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  70 * IO code that does not need private memory pools.
  71 */
  72struct bio_set fs_bio_set;
  73EXPORT_SYMBOL(fs_bio_set);
  74
  75/*
  76 * Our slab pool management
  77 */
  78struct bio_slab {
  79	struct kmem_cache *slab;
  80	unsigned int slab_ref;
  81	unsigned int slab_size;
  82	char name[8];
  83};
  84static DEFINE_MUTEX(bio_slab_lock);
  85static DEFINE_XARRAY(bio_slabs);
 
  86
  87static struct bio_slab *create_bio_slab(unsigned int size)
  88{
  89	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
 
 
 
 
  90
  91	if (!bslab)
  92		return NULL;
  93
  94	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
  95	bslab->slab = kmem_cache_create(bslab->name, size,
  96			ARCH_KMALLOC_MINALIGN,
  97			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
  98	if (!bslab->slab)
  99		goto fail_alloc_slab;
 
 
 
 
 
 
 
 100
 101	bslab->slab_ref = 1;
 102	bslab->slab_size = size;
 103
 104	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
 105		return bslab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107	kmem_cache_destroy(bslab->slab);
 108
 109fail_alloc_slab:
 110	kfree(bslab);
 111	return NULL;
 112}
 113
 114static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
 115{
 116	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
 117}
 118
 119static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
 120{
 121	unsigned int size = bs_bio_slab_size(bs);
 122	struct bio_slab *bslab;
 123
 124	mutex_lock(&bio_slab_lock);
 125	bslab = xa_load(&bio_slabs, size);
 126	if (bslab)
 127		bslab->slab_ref++;
 128	else
 129		bslab = create_bio_slab(size);
 130	mutex_unlock(&bio_slab_lock);
 131
 132	if (bslab)
 133		return bslab->slab;
 134	return NULL;
 135}
 136
 137static void bio_put_slab(struct bio_set *bs)
 138{
 139	struct bio_slab *bslab = NULL;
 140	unsigned int slab_size = bs_bio_slab_size(bs);
 141
 142	mutex_lock(&bio_slab_lock);
 143
 144	bslab = xa_load(&bio_slabs, slab_size);
 
 
 
 
 
 
 145	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 146		goto out;
 147
 148	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
 149
 150	WARN_ON(!bslab->slab_ref);
 151
 152	if (--bslab->slab_ref)
 153		goto out;
 154
 155	xa_erase(&bio_slabs, slab_size);
 156
 157	kmem_cache_destroy(bslab->slab);
 158	kfree(bslab);
 159
 160out:
 161	mutex_unlock(&bio_slab_lock);
 162}
 163
 164void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
 
 
 
 
 
 165{
 166	BUG_ON(nr_vecs > BIO_MAX_VECS);
 167
 168	if (nr_vecs == BIO_MAX_VECS)
 169		mempool_free(bv, pool);
 170	else if (nr_vecs > BIO_INLINE_VECS)
 171		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
 172}
 173
 174/*
 175 * Make the first allocation restricted and don't dump info on allocation
 176 * failures, since we'll fall back to the mempool in case of failure.
 177 */
 178static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
 179{
 180	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
 181		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 182}
 183
 184struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
 185		gfp_t gfp_mask)
 186{
 187	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
 188
 189	if (WARN_ON_ONCE(!bvs))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190		return NULL;
 
 191
 192	/*
 193	 * Upgrade the nr_vecs request to take full advantage of the allocation.
 194	 * We also rely on this in the bvec_free path.
 195	 */
 196	*nr_vecs = bvs->nr_vecs;
 
 
 
 
 
 197
 198	/*
 199	 * Try a slab allocation first for all smaller allocations.  If that
 200	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
 201	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
 202	 */
 203	if (*nr_vecs < BIO_MAX_VECS) {
 204		struct bio_vec *bvl;
 205
 206		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
 207		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
 208			return bvl;
 209		*nr_vecs = BIO_MAX_VECS;
 
 
 
 
 
 210	}
 211
 212	return mempool_alloc(pool, gfp_mask);
 213}
 214
 215void bio_uninit(struct bio *bio)
 216{
 217#ifdef CONFIG_BLK_CGROUP
 218	if (bio->bi_blkg) {
 219		blkg_put(bio->bi_blkg);
 220		bio->bi_blkg = NULL;
 221	}
 222#endif
 223	if (bio_integrity(bio))
 224		bio_integrity_free(bio);
 225
 226	bio_crypt_free_ctx(bio);
 227}
 228EXPORT_SYMBOL(bio_uninit);
 229
 230static void bio_free(struct bio *bio)
 231{
 232	struct bio_set *bs = bio->bi_pool;
 233	void *p = bio;
 234
 235	WARN_ON_ONCE(!bs);
 
 
 
 
 
 
 
 
 
 
 236
 237	bio_uninit(bio);
 238	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
 239	mempool_free(p - bs->front_pad, &bs->bio_pool);
 
 
 240}
 241
 242/*
 243 * Users of this function have their own bio allocation. Subsequently,
 244 * they must remember to pair any call to bio_init() with bio_uninit()
 245 * when IO has completed, or when the bio is released.
 246 */
 247void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
 248	      unsigned short max_vecs, blk_opf_t opf)
 249{
 250	bio->bi_next = NULL;
 251	bio->bi_bdev = bdev;
 252	bio->bi_opf = opf;
 253	bio->bi_flags = 0;
 254	bio->bi_ioprio = 0;
 255	bio->bi_status = 0;
 256	bio->bi_iter.bi_sector = 0;
 257	bio->bi_iter.bi_size = 0;
 258	bio->bi_iter.bi_idx = 0;
 259	bio->bi_iter.bi_bvec_done = 0;
 260	bio->bi_end_io = NULL;
 261	bio->bi_private = NULL;
 262#ifdef CONFIG_BLK_CGROUP
 263	bio->bi_blkg = NULL;
 264	bio->bi_issue.value = 0;
 265	if (bdev)
 266		bio_associate_blkg(bio);
 267#ifdef CONFIG_BLK_CGROUP_IOCOST
 268	bio->bi_iocost_cost = 0;
 269#endif
 270#endif
 271#ifdef CONFIG_BLK_INLINE_ENCRYPTION
 272	bio->bi_crypt_context = NULL;
 273#endif
 274#ifdef CONFIG_BLK_DEV_INTEGRITY
 275	bio->bi_integrity = NULL;
 276#endif
 277	bio->bi_vcnt = 0;
 278
 279	atomic_set(&bio->__bi_remaining, 1);
 280	atomic_set(&bio->__bi_cnt, 1);
 281	bio->bi_cookie = BLK_QC_T_NONE;
 282
 283	bio->bi_max_vecs = max_vecs;
 284	bio->bi_io_vec = table;
 285	bio->bi_pool = NULL;
 286}
 287EXPORT_SYMBOL(bio_init);
 288
 289/**
 290 * bio_reset - reinitialize a bio
 291 * @bio:	bio to reset
 292 * @bdev:	block device to use the bio for
 293 * @opf:	operation and flags for bio
 294 *
 295 * Description:
 296 *   After calling bio_reset(), @bio will be in the same state as a freshly
 297 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 298 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 299 *   comment in struct bio.
 300 */
 301void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
 302{
 303	bio_uninit(bio);
 
 
 
 304	memset(bio, 0, BIO_RESET_BYTES);
 
 305	atomic_set(&bio->__bi_remaining, 1);
 306	bio->bi_bdev = bdev;
 307	if (bio->bi_bdev)
 308		bio_associate_blkg(bio);
 309	bio->bi_opf = opf;
 310}
 311EXPORT_SYMBOL(bio_reset);
 312
 313static struct bio *__bio_chain_endio(struct bio *bio)
 314{
 315	struct bio *parent = bio->bi_private;
 316
 317	if (bio->bi_status && !parent->bi_status)
 318		parent->bi_status = bio->bi_status;
 319	bio_put(bio);
 320	return parent;
 321}
 322
 323static void bio_chain_endio(struct bio *bio)
 324{
 325	bio_endio(__bio_chain_endio(bio));
 326}
 327
 
 
 
 
 
 
 
 
 
 
 
 328/**
 329 * bio_chain - chain bio completions
 330 * @bio: the target bio
 331 * @parent: the parent bio of @bio
 332 *
 333 * The caller won't have a bi_end_io called when @bio completes - instead,
 334 * @parent's bi_end_io won't be called until both @parent and @bio have
 335 * completed; the chained bio will also be freed when it completes.
 336 *
 337 * The caller must not set bi_private or bi_end_io in @bio.
 338 */
 339void bio_chain(struct bio *bio, struct bio *parent)
 340{
 341	BUG_ON(bio->bi_private || bio->bi_end_io);
 342
 343	bio->bi_private = parent;
 344	bio->bi_end_io	= bio_chain_endio;
 345	bio_inc_remaining(parent);
 346}
 347EXPORT_SYMBOL(bio_chain);
 348
 349struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
 350		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
 351{
 352	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
 353
 354	if (bio) {
 355		bio_chain(bio, new);
 356		submit_bio(bio);
 357	}
 358
 359	return new;
 360}
 361EXPORT_SYMBOL_GPL(blk_next_bio);
 362
 363static void bio_alloc_rescue(struct work_struct *work)
 364{
 365	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 366	struct bio *bio;
 367
 368	while (1) {
 369		spin_lock(&bs->rescue_lock);
 370		bio = bio_list_pop(&bs->rescue_list);
 371		spin_unlock(&bs->rescue_lock);
 372
 373		if (!bio)
 374			break;
 375
 376		submit_bio_noacct(bio);
 377	}
 378}
 379
 380static void punt_bios_to_rescuer(struct bio_set *bs)
 381{
 382	struct bio_list punt, nopunt;
 383	struct bio *bio;
 384
 385	if (WARN_ON_ONCE(!bs->rescue_workqueue))
 386		return;
 387	/*
 388	 * In order to guarantee forward progress we must punt only bios that
 389	 * were allocated from this bio_set; otherwise, if there was a bio on
 390	 * there for a stacking driver higher up in the stack, processing it
 391	 * could require allocating bios from this bio_set, and doing that from
 392	 * our own rescuer would be bad.
 393	 *
 394	 * Since bio lists are singly linked, pop them all instead of trying to
 395	 * remove from the middle of the list:
 396	 */
 397
 398	bio_list_init(&punt);
 399	bio_list_init(&nopunt);
 400
 401	while ((bio = bio_list_pop(&current->bio_list[0])))
 402		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 403	current->bio_list[0] = nopunt;
 404
 405	bio_list_init(&nopunt);
 406	while ((bio = bio_list_pop(&current->bio_list[1])))
 407		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 408	current->bio_list[1] = nopunt;
 409
 410	spin_lock(&bs->rescue_lock);
 411	bio_list_merge(&bs->rescue_list, &punt);
 412	spin_unlock(&bs->rescue_lock);
 413
 414	queue_work(bs->rescue_workqueue, &bs->rescue_work);
 415}
 416
 417static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
 418{
 419	unsigned long flags;
 420
 421	/* cache->free_list must be empty */
 422	if (WARN_ON_ONCE(cache->free_list))
 423		return;
 424
 425	local_irq_save(flags);
 426	cache->free_list = cache->free_list_irq;
 427	cache->free_list_irq = NULL;
 428	cache->nr += cache->nr_irq;
 429	cache->nr_irq = 0;
 430	local_irq_restore(flags);
 431}
 432
 433static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
 434		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
 435		struct bio_set *bs)
 436{
 437	struct bio_alloc_cache *cache;
 438	struct bio *bio;
 439
 440	cache = per_cpu_ptr(bs->cache, get_cpu());
 441	if (!cache->free_list) {
 442		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
 443			bio_alloc_irq_cache_splice(cache);
 444		if (!cache->free_list) {
 445			put_cpu();
 446			return NULL;
 447		}
 448	}
 449	bio = cache->free_list;
 450	cache->free_list = bio->bi_next;
 451	cache->nr--;
 452	put_cpu();
 453
 454	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
 455	bio->bi_pool = bs;
 456	return bio;
 457}
 458
 459/**
 460 * bio_alloc_bioset - allocate a bio for I/O
 461 * @bdev:	block device to allocate the bio for (can be %NULL)
 462 * @nr_vecs:	number of bvecs to pre-allocate
 463 * @opf:	operation and flags for bio
 464 * @gfp_mask:   the GFP_* mask given to the slab allocator
 465 * @bs:		the bio_set to allocate from.
 466 *
 467 * Allocate a bio from the mempools in @bs.
 
 
 468 *
 469 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 470 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 471 * callers must never allocate more than 1 bio at a time from the general pool.
 472 * Callers that need to allocate more than 1 bio must always submit the
 473 * previously allocated bio for IO before attempting to allocate a new one.
 474 * Failure to do so can cause deadlocks under memory pressure.
 475 *
 476 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 477 * bios are not submitted until after you return - see the code in
 478 * submit_bio_noacct() that converts recursion into iteration, to prevent
 479 * stack overflows.
 480 *
 481 * This would normally mean allocating multiple bios under submit_bio_noacct()
 482 * would be susceptible to deadlocks, but we have
 483 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 484 * thread.
 485 *
 486 * However, we do not guarantee forward progress for allocations from other
 487 * mempools. Doing multiple allocations from the same mempool under
 488 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 489 * for per bio allocations.
 490 *
 491 * Returns: Pointer to new bio on success, NULL on failure.
 
 492 */
 493struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
 494			     blk_opf_t opf, gfp_t gfp_mask,
 495			     struct bio_set *bs)
 496{
 497	gfp_t saved_gfp = gfp_mask;
 
 
 
 
 498	struct bio *bio;
 499	void *p;
 500
 501	/* should not use nobvec bioset for nr_vecs > 0 */
 502	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
 503		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505	if (opf & REQ_ALLOC_CACHE) {
 506		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
 507			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
 508						     gfp_mask, bs);
 509			if (bio)
 510				return bio;
 511			/*
 512			 * No cached bio available, bio returned below marked with
 513			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
 514			 */
 515		} else {
 516			opf &= ~REQ_ALLOC_CACHE;
 517		}
 
 
 
 518	}
 519
 520	/*
 521	 * submit_bio_noacct() converts recursion to iteration; this means if
 522	 * we're running beneath it, any bios we allocate and submit will not be
 523	 * submitted (and thus freed) until after we return.
 524	 *
 525	 * This exposes us to a potential deadlock if we allocate multiple bios
 526	 * from the same bio_set() while running underneath submit_bio_noacct().
 527	 * If we were to allocate multiple bios (say a stacking block driver
 528	 * that was splitting bios), we would deadlock if we exhausted the
 529	 * mempool's reserve.
 530	 *
 531	 * We solve this, and guarantee forward progress, with a rescuer
 532	 * workqueue per bio_set. If we go to allocate and there are bios on
 533	 * current->bio_list, we first try the allocation without
 534	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
 535	 * blocking to the rescuer workqueue before we retry with the original
 536	 * gfp_flags.
 537	 */
 538	if (current->bio_list &&
 539	    (!bio_list_empty(&current->bio_list[0]) ||
 540	     !bio_list_empty(&current->bio_list[1])) &&
 541	    bs->rescue_workqueue)
 542		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 543
 544	p = mempool_alloc(&bs->bio_pool, gfp_mask);
 545	if (!p && gfp_mask != saved_gfp) {
 546		punt_bios_to_rescuer(bs);
 547		gfp_mask = saved_gfp;
 548		p = mempool_alloc(&bs->bio_pool, gfp_mask);
 549	}
 550	if (unlikely(!p))
 551		return NULL;
 552	if (!mempool_is_saturated(&bs->bio_pool))
 553		opf &= ~REQ_ALLOC_CACHE;
 554
 555	bio = p + bs->front_pad;
 556	if (nr_vecs > BIO_INLINE_VECS) {
 557		struct bio_vec *bvl = NULL;
 558
 559		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
 
 560		if (!bvl && gfp_mask != saved_gfp) {
 561			punt_bios_to_rescuer(bs);
 562			gfp_mask = saved_gfp;
 563			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
 564		}
 
 565		if (unlikely(!bvl))
 566			goto err_free;
 567
 568		bio_init(bio, bdev, bvl, nr_vecs, opf);
 569	} else if (nr_vecs) {
 570		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
 571	} else {
 572		bio_init(bio, bdev, NULL, 0, opf);
 573	}
 574
 575	bio->bi_pool = bs;
 
 
 
 576	return bio;
 577
 578err_free:
 579	mempool_free(p, &bs->bio_pool);
 580	return NULL;
 581}
 582EXPORT_SYMBOL(bio_alloc_bioset);
 583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584/**
 585 * bio_kmalloc - kmalloc a bio
 586 * @nr_vecs:	number of bio_vecs to allocate
 587 * @gfp_mask:   the GFP_* mask given to the slab allocator
 588 *
 589 * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
 590 * using bio_init() before use.  To free a bio returned from this function use
 591 * kfree() after calling bio_uninit().  A bio returned from this function can
 592 * be reused by calling bio_uninit() before calling bio_init() again.
 593 *
 594 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
 595 * function are not backed by a mempool can fail.  Do not use this function
 596 * for allocations in the file system I/O path.
 597 *
 598 * Returns: Pointer to new bio on success, NULL on failure.
 599 */
 600struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601{
 602	struct bio *bio;
 
 603
 604	if (nr_vecs > UIO_MAXIOV)
 605		return NULL;
 606	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
 607}
 608EXPORT_SYMBOL(bio_kmalloc);
 609
 610void zero_fill_bio(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 611{
 612	struct bio_vec bv;
 613	struct bvec_iter iter;
 614
 615	bio_for_each_segment(bv, bio, iter)
 616		memzero_bvec(&bv);
 
 
 
 
 
 
 
 617}
 618EXPORT_SYMBOL(zero_fill_bio);
 619
 620/**
 621 * bio_truncate - truncate the bio to small size of @new_size
 622 * @bio:	the bio to be truncated
 623 * @new_size:	new size for truncating the bio
 
 624 *
 625 * Description:
 626 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 627 *   REQ_OP_READ, zero the truncated part. This function should only
 628 *   be used for handling corner cases, such as bio eod.
 629 */
 630static void bio_truncate(struct bio *bio, unsigned new_size)
 631{
 632	struct bio_vec bv;
 633	struct bvec_iter iter;
 634	unsigned int done = 0;
 635	bool truncated = false;
 
 636
 637	if (new_size >= bio->bi_iter.bi_size)
 638		return;
 639
 640	if (bio_op(bio) != REQ_OP_READ)
 641		goto exit;
 642
 643	bio_for_each_segment(bv, bio, iter) {
 644		if (done + bv.bv_len > new_size) {
 645			unsigned offset;
 646
 647			if (!truncated)
 648				offset = new_size - done;
 649			else
 650				offset = 0;
 651			zero_user(bv.bv_page, bv.bv_offset + offset,
 652				  bv.bv_len - offset);
 653			truncated = true;
 654		}
 655		done += bv.bv_len;
 656	}
 657
 658 exit:
 659	/*
 660	 * Don't touch bvec table here and make it really immutable, since
 661	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
 662	 * in its .end_bio() callback.
 663	 *
 664	 * It is enough to truncate bio by updating .bi_size since we can make
 665	 * correct bvec with the updated .bi_size for drivers.
 666	 */
 667	bio->bi_iter.bi_size = new_size;
 668}
 
 669
 670/**
 671 * guard_bio_eod - truncate a BIO to fit the block device
 672 * @bio:	bio to truncate
 
 
 673 *
 674 * This allows us to do IO even on the odd last sectors of a device, even if the
 675 * block size is some multiple of the physical sector size.
 676 *
 677 * We'll just truncate the bio to the size of the device, and clear the end of
 678 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 679 * I/O errors, this only handles the "we need to be able to do I/O at the final
 680 * sector" case.
 681 */
 682void guard_bio_eod(struct bio *bio)
 
 683{
 684	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 685
 686	if (!maxsector)
 687		return;
 688
 689	/*
 690	 * If the *whole* IO is past the end of the device,
 691	 * let it through, and the IO layer will turn it into
 692	 * an EIO.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693	 */
 694	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
 695		return;
 696
 697	maxsector -= bio->bi_iter.bi_sector;
 698	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
 699		return;
 700
 701	bio_truncate(bio, maxsector << 9);
 702}
 
 
 703
 704static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
 705				   unsigned int nr)
 706{
 707	unsigned int i = 0;
 708	struct bio *bio;
 709
 710	while ((bio = cache->free_list) != NULL) {
 711		cache->free_list = bio->bi_next;
 712		cache->nr--;
 713		bio_free(bio);
 714		if (++i == nr)
 715			break;
 716	}
 717	return i;
 718}
 719
 720static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
 721				  unsigned int nr)
 722{
 723	nr -= __bio_alloc_cache_prune(cache, nr);
 724	if (!READ_ONCE(cache->free_list)) {
 725		bio_alloc_irq_cache_splice(cache);
 726		__bio_alloc_cache_prune(cache, nr);
 
 
 
 
 
 727	}
 
 
 728}
 
 729
 730static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731{
 732	struct bio_set *bs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733
 734	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
 735	if (bs->cache) {
 736		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
 
 
 
 737
 738		bio_alloc_cache_prune(cache, -1U);
 
 
 
 
 
 739	}
 740	return 0;
 741}
 742
 743static void bio_alloc_cache_destroy(struct bio_set *bs)
 744{
 745	int cpu;
 746
 747	if (!bs->cache)
 748		return;
 
 
 
 
 
 
 
 
 
 749
 750	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
 751	for_each_possible_cpu(cpu) {
 752		struct bio_alloc_cache *cache;
 
 753
 754		cache = per_cpu_ptr(bs->cache, cpu);
 755		bio_alloc_cache_prune(cache, -1U);
 756	}
 757	free_percpu(bs->cache);
 758	bs->cache = NULL;
 759}
 760
 761static inline void bio_put_percpu_cache(struct bio *bio)
 762{
 763	struct bio_alloc_cache *cache;
 764
 765	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
 766	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
 767		put_cpu();
 768		bio_free(bio);
 769		return;
 770	}
 771
 772	bio_uninit(bio);
 
 
 773
 774	if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
 775		bio->bi_next = cache->free_list;
 776		cache->free_list = bio;
 777		cache->nr++;
 778	} else {
 779		unsigned long flags;
 780
 781		local_irq_save(flags);
 782		bio->bi_next = cache->free_list_irq;
 783		cache->free_list_irq = bio;
 784		cache->nr_irq++;
 785		local_irq_restore(flags);
 786	}
 787	put_cpu();
 
 788}
 
 789
 790/**
 791 * bio_put - release a reference to a bio
 792 * @bio:   bio to release reference to
 
 
 
 793 *
 794 * Description:
 795 *   Put a reference to a &struct bio, either one you have gotten with
 796 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
 797 **/
 798void bio_put(struct bio *bio)
 799{
 800	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
 801		BUG_ON(!atomic_read(&bio->__bi_cnt));
 802		if (!atomic_dec_and_test(&bio->__bi_cnt))
 803			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804	}
 805	if (bio->bi_opf & REQ_ALLOC_CACHE)
 806		bio_put_percpu_cache(bio);
 807	else
 808		bio_free(bio);
 
 
 
 
 
 
 
 
 
 809}
 810EXPORT_SYMBOL(bio_put);
 
 
 
 
 
 811
 812static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
 813{
 814	bio_set_flag(bio, BIO_CLONED);
 815	bio->bi_ioprio = bio_src->bi_ioprio;
 816	bio->bi_iter = bio_src->bi_iter;
 817
 818	if (bio->bi_bdev) {
 819		if (bio->bi_bdev == bio_src->bi_bdev &&
 820		    bio_flagged(bio_src, BIO_REMAPPED))
 821			bio_set_flag(bio, BIO_REMAPPED);
 822		bio_clone_blkg_association(bio, bio_src);
 823	}
 824
 825	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
 826		return -ENOMEM;
 827	if (bio_integrity(bio_src) &&
 828	    bio_integrity_clone(bio, bio_src, gfp) < 0)
 829		return -ENOMEM;
 830	return 0;
 831}
 832
 833/**
 834 * bio_alloc_clone - clone a bio that shares the original bio's biovec
 835 * @bdev: block_device to clone onto
 836 * @bio_src: bio to clone from
 837 * @gfp: allocation priority
 838 * @bs: bio_set to allocate from
 839 *
 840 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
 841 * bio, but not the actual data it points to.
 842 *
 843 * The caller must ensure that the return bio is not freed before @bio_src.
 844 */
 845struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
 846		gfp_t gfp, struct bio_set *bs)
 847{
 848	struct bio *bio;
 849
 850	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
 851	if (!bio)
 852		return NULL;
 853
 854	if (__bio_clone(bio, bio_src, gfp) < 0) {
 855		bio_put(bio);
 856		return NULL;
 857	}
 858	bio->bi_io_vec = bio_src->bi_io_vec;
 859
 860	return bio;
 861}
 862EXPORT_SYMBOL(bio_alloc_clone);
 863
 864/**
 865 * bio_init_clone - clone a bio that shares the original bio's biovec
 866 * @bdev: block_device to clone onto
 867 * @bio: bio to clone into
 868 * @bio_src: bio to clone from
 869 * @gfp: allocation priority
 870 *
 871 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
 872 * The caller owns the returned bio, but not the actual data it points to.
 
 873 *
 874 * The caller must ensure that @bio_src is not freed before @bio.
 875 */
 876int bio_init_clone(struct block_device *bdev, struct bio *bio,
 877		struct bio *bio_src, gfp_t gfp)
 878{
 879	int ret;
 
 880
 881	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
 882	ret = __bio_clone(bio, bio_src, gfp);
 883	if (ret)
 884		bio_uninit(bio);
 885	return ret;
 886}
 887EXPORT_SYMBOL(bio_init_clone);
 888
 889/**
 890 * bio_full - check if the bio is full
 891 * @bio:	bio to check
 892 * @len:	length of one segment to be added
 
 
 893 *
 894 * Return true if @bio is full and one segment with @len bytes can't be
 895 * added to the bio, otherwise return false
 896 */
 897static inline bool bio_full(struct bio *bio, unsigned len)
 898{
 899	if (bio->bi_vcnt >= bio->bi_max_vecs)
 900		return true;
 901	if (bio->bi_iter.bi_size > UINT_MAX - len)
 902		return true;
 903	return false;
 904}
 905
 906static inline bool page_is_mergeable(const struct bio_vec *bv,
 907		struct page *page, unsigned int len, unsigned int off,
 908		bool *same_page)
 909{
 910	size_t bv_end = bv->bv_offset + bv->bv_len;
 911	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
 912	phys_addr_t page_addr = page_to_phys(page);
 913
 914	if (vec_end_addr + 1 != page_addr + off)
 915		return false;
 916	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
 917		return false;
 918	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
 919		return false;
 920
 921	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
 922	if (*same_page)
 923		return true;
 924	else if (IS_ENABLED(CONFIG_KMSAN))
 925		return false;
 926	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
 927}
 
 928
 929/**
 930 * __bio_try_merge_page - try appending data to an existing bvec.
 931 * @bio: destination bio
 932 * @page: start page to add
 933 * @len: length of the data to add
 934 * @off: offset of the data relative to @page
 935 * @same_page: return if the segment has been merged inside the same page
 936 *
 937 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 938 * useful optimisation for file systems with a block size smaller than the
 939 * page size.
 940 *
 941 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 942 *
 943 * Return %true on success or %false on failure.
 944 */
 945static bool __bio_try_merge_page(struct bio *bio, struct page *page,
 946		unsigned int len, unsigned int off, bool *same_page)
 947{
 948	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 949		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950
 951	if (bio->bi_vcnt > 0) {
 952		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 
 
 953
 954		if (page_is_mergeable(bv, page, len, off, same_page)) {
 955			if (bio->bi_iter.bi_size > UINT_MAX - len) {
 956				*same_page = false;
 957				return false;
 958			}
 959			bv->bv_len += len;
 960			bio->bi_iter.bi_size += len;
 961			return true;
 962		}
 963	}
 964	return false;
 965}
 966
 967/*
 968 * Try to merge a page into a segment, while obeying the hardware segment
 969 * size limit.  This is not for normal read/write bios, but for passthrough
 970 * or Zone Append operations that we can't split.
 971 */
 972static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
 973				 struct page *page, unsigned len,
 974				 unsigned offset, bool *same_page)
 975{
 976	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 977	unsigned long mask = queue_segment_boundary(q);
 978	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
 979	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
 980
 981	if ((addr1 | mask) != (addr2 | mask))
 982		return false;
 983	if (bv->bv_len + len > queue_max_segment_size(q))
 984		return false;
 985	return __bio_try_merge_page(bio, page, len, offset, same_page);
 986}
 987
 988/**
 989 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 990 * @q: the target queue
 991 * @bio: destination bio
 992 * @page: page to add
 993 * @len: vec entry length
 994 * @offset: vec entry offset
 995 * @max_sectors: maximum number of sectors that can be added
 996 * @same_page: return if the segment has been merged inside the same page
 997 *
 998 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 999 * and gap limitations.
1000 */
1001int bio_add_hw_page(struct request_queue *q, struct bio *bio,
1002		struct page *page, unsigned int len, unsigned int offset,
1003		unsigned int max_sectors, bool *same_page)
1004{
1005	struct bio_vec *bvec;
1006
1007	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1008		return 0;
1009
1010	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1011		return 0;
 
1012
1013	if (bio->bi_vcnt > 0) {
1014		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
1015			return len;
1016
1017		/*
1018		 * If the queue doesn't support SG gaps and adding this segment
1019		 * would create a gap, disallow it.
1020		 */
1021		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
1022		if (bvec_gap_to_prev(&q->limits, bvec, offset))
1023			return 0;
1024	}
 
 
1025
1026	if (bio_full(bio, len))
1027		return 0;
 
 
 
1028
1029	if (bio->bi_vcnt >= queue_max_segments(q))
1030		return 0;
 
 
 
1031
1032	bvec = &bio->bi_io_vec[bio->bi_vcnt];
1033	bvec->bv_page = page;
1034	bvec->bv_len = len;
1035	bvec->bv_offset = offset;
1036	bio->bi_vcnt++;
1037	bio->bi_iter.bi_size += len;
1038	return len;
1039}
1040
1041/**
1042 * bio_add_pc_page	- attempt to add page to passthrough bio
1043 * @q: the target queue
1044 * @bio: destination bio
1045 * @page: page to add
1046 * @len: vec entry length
1047 * @offset: vec entry offset
1048 *
1049 * Attempt to add a page to the bio_vec maplist. This can fail for a
1050 * number of reasons, such as the bio being full or target block device
1051 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1052 * so it is always possible to add a single page to an empty bio.
1053 *
1054 * This should only be used by passthrough bios.
1055 */
1056int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1057		struct page *page, unsigned int len, unsigned int offset)
1058{
1059	bool same_page = false;
1060	return bio_add_hw_page(q, bio, page, len, offset,
1061			queue_max_hw_sectors(q), &same_page);
1062}
1063EXPORT_SYMBOL(bio_add_pc_page);
1064
1065/**
1066 * bio_add_zone_append_page - attempt to add page to zone-append bio
1067 * @bio: destination bio
1068 * @page: page to add
1069 * @len: vec entry length
1070 * @offset: vec entry offset
1071 *
1072 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1073 * for a zone-append request. This can fail for a number of reasons, such as the
1074 * bio being full or the target block device is not a zoned block device or
1075 * other limitations of the target block device. The target block device must
1076 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1077 * to an empty bio.
1078 *
1079 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1080 */
1081int bio_add_zone_append_page(struct bio *bio, struct page *page,
1082			     unsigned int len, unsigned int offset)
1083{
1084	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1085	bool same_page = false;
 
 
 
 
 
 
 
 
1086
1087	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1088		return 0;
1089
1090	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
1091		return 0;
 
1092
1093	return bio_add_hw_page(q, bio, page, len, offset,
1094			       queue_max_zone_append_sectors(q), &same_page);
1095}
1096EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1097
1098/**
1099 * __bio_add_page - add page(s) to a bio in a new segment
1100 * @bio: destination bio
1101 * @page: start page to add
1102 * @len: length of the data to add, may cross pages
1103 * @off: offset of the data relative to @page, may cross pages
1104 *
1105 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
1106 * that @bio has space for another bvec.
1107 */
1108void __bio_add_page(struct bio *bio, struct page *page,
1109		unsigned int len, unsigned int off)
1110{
1111	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
 
 
 
 
1112
1113	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
1114	WARN_ON_ONCE(bio_full(bio, len));
 
 
1115
1116	bv->bv_page = page;
1117	bv->bv_offset = off;
1118	bv->bv_len = len;
1119
1120	bio->bi_iter.bi_size += len;
1121	bio->bi_vcnt++;
 
 
 
1122}
1123EXPORT_SYMBOL_GPL(__bio_add_page);
1124
1125/**
1126 *	bio_add_page	-	attempt to add page(s) to bio
1127 *	@bio: destination bio
1128 *	@page: start page to add
1129 *	@len: vec entry length, may cross pages
1130 *	@offset: vec entry offset relative to @page, may cross pages
1131 *
1132 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1133 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1134 */
1135int bio_add_page(struct bio *bio, struct page *page,
1136		 unsigned int len, unsigned int offset)
1137{
1138	bool same_page = false;
 
1139
1140	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1141		if (bio_full(bio, len))
1142			return 0;
1143		__bio_add_page(bio, page, len, offset);
1144	}
1145	return len;
1146}
1147EXPORT_SYMBOL(bio_add_page);
1148
1149/**
1150 * bio_add_folio - Attempt to add part of a folio to a bio.
1151 * @bio: BIO to add to.
1152 * @folio: Folio to add.
1153 * @len: How many bytes from the folio to add.
1154 * @off: First byte in this folio to add.
1155 *
1156 * Filesystems that use folios can call this function instead of calling
1157 * bio_add_page() for each page in the folio.  If @off is bigger than
1158 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1159 * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1160 *
1161 * Return: Whether the addition was successful.
 
1162 */
1163bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1164		   size_t off)
1165{
1166	if (len > UINT_MAX || off > UINT_MAX)
1167		return false;
1168	return bio_add_page(bio, &folio->page, len, off) > 0;
1169}
1170
1171void __bio_release_pages(struct bio *bio, bool mark_dirty)
1172{
1173	struct bvec_iter_all iter_all;
1174	struct bio_vec *bvec;
1175
1176	bio_for_each_segment_all(bvec, bio, iter_all) {
1177		if (mark_dirty && !PageCompound(bvec->bv_page))
1178			set_page_dirty_lock(bvec->bv_page);
1179		put_page(bvec->bv_page);
 
 
 
1180	}
 
 
 
1181}
1182EXPORT_SYMBOL_GPL(__bio_release_pages);
1183
1184void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185{
1186	size_t size = iov_iter_count(iter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187
1188	WARN_ON_ONCE(bio->bi_max_vecs);
1189
1190	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1191		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1192		size_t max_sectors = queue_max_zone_append_sectors(q);
1193
1194		size = min(size, max_sectors << SECTOR_SHIFT);
1195	}
1196
1197	bio->bi_vcnt = iter->nr_segs;
1198	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1199	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1200	bio->bi_iter.bi_size = size;
1201	bio_set_flag(bio, BIO_NO_PAGE_REF);
1202	bio_set_flag(bio, BIO_CLONED);
1203}
1204
1205static int bio_iov_add_page(struct bio *bio, struct page *page,
1206		unsigned int len, unsigned int offset)
1207{
1208	bool same_page = false;
1209
1210	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1211		__bio_add_page(bio, page, len, offset);
1212		return 0;
1213	}
 
 
 
 
 
1214
1215	if (same_page)
1216		put_page(page);
1217	return 0;
1218}
1219
1220static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1221		unsigned int len, unsigned int offset)
1222{
1223	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1224	bool same_page = false;
1225
1226	if (bio_add_hw_page(q, bio, page, len, offset,
1227			queue_max_zone_append_sectors(q), &same_page) != len)
1228		return -EINVAL;
1229	if (same_page)
1230		put_page(page);
1231	return 0;
1232}
1233
1234#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
 
 
 
 
 
1235
1236/**
1237 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1238 * @bio: bio to add pages to
1239 * @iter: iov iterator describing the region to be mapped
1240 *
1241 * Pins pages from *iter and appends them to @bio's bvec array. The
1242 * pages will have to be released using put_page() when done.
1243 * For multi-segment *iter, this function only adds pages from the
1244 * next non-empty segment of the iov iterator.
1245 */
1246static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1247{
1248	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1249	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1250	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1251	struct page **pages = (struct page **)bv;
1252	unsigned int gup_flags = 0;
1253	ssize_t size, left;
1254	unsigned len, i = 0;
1255	size_t offset, trim;
1256	int ret = 0;
1257
1258	/*
1259	 * Move page array up in the allocated memory for the bio vecs as far as
1260	 * possible so that we can start filling biovecs from the beginning
1261	 * without overwriting the temporary page array.
1262	 */
1263	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1264	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1265
1266	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1267		gup_flags |= FOLL_PCI_P2PDMA;
 
 
 
1268
1269	/*
1270	 * Each segment in the iov is required to be a block size multiple.
1271	 * However, we may not be able to get the entire segment if it spans
1272	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1273	 * result to ensure the bio's total size is correct. The remainder of
1274	 * the iov data will be picked up in the next bio iteration.
1275	 */
1276	size = iov_iter_get_pages(iter, pages,
1277				  UINT_MAX - bio->bi_iter.bi_size,
1278				  nr_pages, &offset, gup_flags);
1279	if (unlikely(size <= 0))
1280		return size ? size : -EFAULT;
1281
1282	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1283
1284	trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1285	iov_iter_revert(iter, trim);
1286
1287	size -= trim;
1288	if (unlikely(!size)) {
1289		ret = -EFAULT;
1290		goto out;
1291	}
1292
1293	for (left = size, i = 0; left > 0; left -= len, i++) {
1294		struct page *page = pages[i];
 
 
 
 
 
 
1295
1296		len = min_t(size_t, PAGE_SIZE - offset, left);
1297		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1298			ret = bio_iov_add_zone_append_page(bio, page, len,
1299					offset);
1300			if (ret)
1301				break;
1302		} else
1303			bio_iov_add_page(bio, page, len, offset);
1304
 
1305		offset = 0;
1306	}
1307
1308	iov_iter_revert(iter, left);
1309out:
1310	while (i < nr_pages)
1311		put_page(pages[i++]);
 
 
 
 
 
 
 
 
1312
1313	return ret;
 
 
 
 
 
 
 
 
1314}
1315
1316/**
1317 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1318 * @bio: bio to add pages to
1319 * @iter: iov iterator describing the region to be added
1320 *
1321 * This takes either an iterator pointing to user memory, or one pointing to
1322 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1323 * map them into the kernel. On IO completion, the caller should put those
1324 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1325 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1326 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1327 * completed by a call to ->ki_complete() or returns with an error other than
1328 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1329 * on IO completion. If it isn't, then pages should be released.
1330 *
1331 * The function tries, but does not guarantee, to pin as many pages as
1332 * fit into the bio, or are requested in @iter, whatever is smaller. If
1333 * MM encounters an error pinning the requested pages, it stops. Error
1334 * is returned only if 0 pages could be pinned.
1335 */
1336int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 
 
1337{
1338	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1339
1340	if (iov_iter_is_bvec(iter)) {
1341		bio_iov_bvec_set(bio, iter);
1342		iov_iter_advance(iter, bio->bi_iter.bi_size);
1343		return 0;
 
 
1344	}
1345
1346	do {
1347		ret = __bio_iov_iter_get_pages(bio, iter);
1348	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
 
 
 
 
 
 
1349
1350	return bio->bi_vcnt ? 0 : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351}
1352EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1353
1354static void submit_bio_wait_endio(struct bio *bio)
1355{
1356	complete(bio->bi_private);
 
 
 
 
 
 
 
 
 
 
 
 
 
1357}
1358
1359/**
1360 * submit_bio_wait - submit a bio, and wait until it completes
1361 * @bio: The &struct bio which describes the I/O
1362 *
1363 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1364 * bio_endio() on failure.
1365 *
1366 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1367 * result in bio reference to be consumed. The caller must drop the reference
1368 * on his own.
1369 */
1370int submit_bio_wait(struct bio *bio)
1371{
1372	DECLARE_COMPLETION_ONSTACK_MAP(done,
1373			bio->bi_bdev->bd_disk->lockdep_map);
1374	unsigned long hang_check;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375
1376	bio->bi_private = &done;
1377	bio->bi_end_io = submit_bio_wait_endio;
1378	bio->bi_opf |= REQ_SYNC;
1379	submit_bio(bio);
 
 
 
 
 
 
 
 
1380
1381	/* Prevent hang_check timer from firing at us during very long I/O */
1382	hang_check = sysctl_hung_task_timeout_secs;
1383	if (hang_check)
1384		while (!wait_for_completion_io_timeout(&done,
1385					hang_check * (HZ/2)))
1386			;
1387	else
1388		wait_for_completion_io(&done);
1389
1390	return blk_status_to_errno(bio->bi_status);
 
1391}
1392EXPORT_SYMBOL(submit_bio_wait);
1393
1394void __bio_advance(struct bio *bio, unsigned bytes)
1395{
1396	if (bio_integrity(bio))
1397		bio_integrity_advance(bio, bytes);
1398
1399	bio_crypt_advance(bio, bytes);
1400	bio_advance_iter(bio, &bio->bi_iter, bytes);
1401}
1402EXPORT_SYMBOL(__bio_advance);
1403
1404void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1405			struct bio *src, struct bvec_iter *src_iter)
1406{
1407	while (src_iter->bi_size && dst_iter->bi_size) {
1408		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1409		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1410		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1411		void *src_buf = bvec_kmap_local(&src_bv);
1412		void *dst_buf = bvec_kmap_local(&dst_bv);
1413
1414		memcpy(dst_buf, src_buf, bytes);
 
 
 
1415
1416		kunmap_local(dst_buf);
1417		kunmap_local(src_buf);
1418
1419		bio_advance_iter_single(src, src_iter, bytes);
1420		bio_advance_iter_single(dst, dst_iter, bytes);
1421	}
1422}
1423EXPORT_SYMBOL(bio_copy_data_iter);
1424
1425/**
1426 * bio_copy_data - copy contents of data buffers from one bio to another
1427 * @src: source bio
1428 * @dst: destination bio
 
 
 
1429 *
1430 * Stops when it reaches the end of either @src or @dst - that is, copies
1431 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1432 */
1433void bio_copy_data(struct bio *dst, struct bio *src)
 
1434{
1435	struct bvec_iter src_iter = src->bi_iter;
1436	struct bvec_iter dst_iter = dst->bi_iter;
 
 
 
 
1437
1438	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1439}
1440EXPORT_SYMBOL(bio_copy_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441
1442void bio_free_pages(struct bio *bio)
1443{
1444	struct bio_vec *bvec;
1445	struct bvec_iter_all iter_all;
1446
1447	bio_for_each_segment_all(bvec, bio, iter_all)
1448		__free_page(bvec->bv_page);
 
 
1449}
1450EXPORT_SYMBOL(bio_free_pages);
1451
1452/*
1453 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1454 * for performing direct-IO in BIOs.
1455 *
1456 * The problem is that we cannot run set_page_dirty() from interrupt context
1457 * because the required locks are not interrupt-safe.  So what we can do is to
1458 * mark the pages dirty _before_ performing IO.  And in interrupt context,
1459 * check that the pages are still dirty.   If so, fine.  If not, redirty them
1460 * in process context.
1461 *
1462 * We special-case compound pages here: normally this means reads into hugetlb
1463 * pages.  The logic in here doesn't really work right for compound pages
1464 * because the VM does not uniformly chase down the head page in all cases.
1465 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1466 * handle them at all.  So we skip compound pages here at an early stage.
1467 *
1468 * Note that this code is very hard to test under normal circumstances because
1469 * direct-io pins the pages with get_user_pages().  This makes
1470 * is_page_cache_freeable return false, and the VM will not clean the pages.
1471 * But other code (eg, flusher threads) could clean the pages if they are mapped
1472 * pagecache.
1473 *
1474 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1475 * deferred bio dirtying paths.
1476 */
1477
1478/*
1479 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1480 */
1481void bio_set_pages_dirty(struct bio *bio)
1482{
1483	struct bio_vec *bvec;
1484	struct bvec_iter_all iter_all;
1485
1486	bio_for_each_segment_all(bvec, bio, iter_all) {
1487		if (!PageCompound(bvec->bv_page))
1488			set_page_dirty_lock(bvec->bv_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489	}
1490}
1491
1492/*
1493 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1494 * If they are, then fine.  If, however, some pages are clean then they must
1495 * have been written out during the direct-IO read.  So we take another ref on
1496 * the BIO and re-dirty the pages in process context.
1497 *
1498 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1499 * here on.  It will run one put_page() against each page and will run one
1500 * bio_put() against the BIO.
1501 */
1502
1503static void bio_dirty_fn(struct work_struct *work);
1504
1505static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1506static DEFINE_SPINLOCK(bio_dirty_lock);
1507static struct bio *bio_dirty_list;
1508
1509/*
1510 * This runs in process context
1511 */
1512static void bio_dirty_fn(struct work_struct *work)
1513{
1514	struct bio *bio, *next;
 
1515
1516	spin_lock_irq(&bio_dirty_lock);
1517	next = bio_dirty_list;
1518	bio_dirty_list = NULL;
1519	spin_unlock_irq(&bio_dirty_lock);
1520
1521	while ((bio = next) != NULL) {
1522		next = bio->bi_private;
1523
1524		bio_release_pages(bio, true);
 
1525		bio_put(bio);
 
1526	}
1527}
1528
1529void bio_check_pages_dirty(struct bio *bio)
1530{
1531	struct bio_vec *bvec;
1532	unsigned long flags;
1533	struct bvec_iter_all iter_all;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535	bio_for_each_segment_all(bvec, bio, iter_all) {
1536		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1537			goto defer;
 
 
 
 
1538	}
 
 
 
 
 
 
 
 
 
 
 
1539
1540	bio_release_pages(bio, false);
1541	bio_put(bio);
1542	return;
1543defer:
1544	spin_lock_irqsave(&bio_dirty_lock, flags);
1545	bio->bi_private = bio_dirty_list;
1546	bio_dirty_list = bio;
1547	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1548	schedule_work(&bio_dirty_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549}
 
 
1550
1551static inline bool bio_remaining_done(struct bio *bio)
1552{
1553	/*
1554	 * If we're not chaining, then ->__bi_remaining is always 1 and
1555	 * we always end io on the first invocation.
1556	 */
1557	if (!bio_flagged(bio, BIO_CHAIN))
1558		return true;
1559
1560	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1561
1562	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1563		bio_clear_flag(bio, BIO_CHAIN);
1564		return true;
1565	}
1566
1567	return false;
1568}
1569
1570/**
1571 * bio_endio - end I/O on a bio
1572 * @bio:	bio
1573 *
1574 * Description:
1575 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1576 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1577 *   bio unless they own it and thus know that it has an end_io function.
1578 *
1579 *   bio_endio() can be called several times on a bio that has been chained
1580 *   using bio_chain().  The ->bi_end_io() function will only be called the
1581 *   last time.
1582 **/
1583void bio_endio(struct bio *bio)
1584{
1585again:
1586	if (!bio_remaining_done(bio))
1587		return;
1588	if (!bio_integrity_endio(bio))
1589		return;
1590
1591	rq_qos_done_bio(bio);
1592
1593	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1594		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1595		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1596	}
1597
1598	/*
1599	 * Need to have a real endio function for chained bios, otherwise
1600	 * various corner cases will break (like stacking block devices that
1601	 * save/restore bi_end_io) - however, we want to avoid unbounded
1602	 * recursion and blowing the stack. Tail call optimization would
1603	 * handle this, but compiling with frame pointers also disables
1604	 * gcc's sibling call optimization.
1605	 */
1606	if (bio->bi_end_io == bio_chain_endio) {
1607		bio = __bio_chain_endio(bio);
1608		goto again;
1609	}
1610
1611	blk_throtl_bio_endio(bio);
1612	/* release cgroup info */
1613	bio_uninit(bio);
1614	if (bio->bi_end_io)
1615		bio->bi_end_io(bio);
1616}
1617EXPORT_SYMBOL(bio_endio);
1618
1619/**
1620 * bio_split - split a bio
1621 * @bio:	bio to split
1622 * @sectors:	number of sectors to split from the front of @bio
1623 * @gfp:	gfp mask
1624 * @bs:		bio set to allocate from
1625 *
1626 * Allocates and returns a new bio which represents @sectors from the start of
1627 * @bio, and updates @bio to represent the remaining sectors.
1628 *
1629 * Unless this is a discard request the newly allocated bio will point
1630 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1631 * neither @bio nor @bs are freed before the split bio.
1632 */
1633struct bio *bio_split(struct bio *bio, int sectors,
1634		      gfp_t gfp, struct bio_set *bs)
1635{
1636	struct bio *split;
1637
1638	BUG_ON(sectors <= 0);
1639	BUG_ON(sectors >= bio_sectors(bio));
1640
1641	/* Zone append commands cannot be split */
1642	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1643		return NULL;
 
 
 
 
 
1644
1645	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1646	if (!split)
1647		return NULL;
1648
1649	split->bi_iter.bi_size = sectors << 9;
1650
1651	if (bio_integrity(split))
1652		bio_integrity_trim(split);
1653
1654	bio_advance(bio, split->bi_iter.bi_size);
1655
1656	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1657		bio_set_flag(split, BIO_TRACE_COMPLETION);
1658
1659	return split;
1660}
1661EXPORT_SYMBOL(bio_split);
1662
1663/**
1664 * bio_trim - trim a bio
1665 * @bio:	bio to trim
1666 * @offset:	number of sectors to trim from the front of @bio
1667 * @size:	size we want to trim @bio to, in sectors
1668 *
1669 * This function is typically used for bios that are cloned and submitted
1670 * to the underlying device in parts.
1671 */
1672void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1673{
1674	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1675			 offset + size > bio_sectors(bio)))
1676		return;
1677
1678	size <<= 9;
1679	if (offset == 0 && size == bio->bi_iter.bi_size)
1680		return;
1681
 
 
1682	bio_advance(bio, offset << 9);
 
1683	bio->bi_iter.bi_size = size;
1684
1685	if (bio_integrity(bio))
1686		bio_integrity_trim(bio);
1687}
1688EXPORT_SYMBOL_GPL(bio_trim);
1689
1690/*
1691 * create memory pools for biovec's in a bio_set.
1692 * use the global biovec slabs created for general use.
1693 */
1694int biovec_init_pool(mempool_t *pool, int pool_entries)
1695{
1696	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1697
1698	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1699}
1700
1701/*
1702 * bioset_exit - exit a bioset initialized with bioset_init()
1703 *
1704 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1705 * kzalloc()).
1706 */
1707void bioset_exit(struct bio_set *bs)
1708{
1709	bio_alloc_cache_destroy(bs);
1710	if (bs->rescue_workqueue)
1711		destroy_workqueue(bs->rescue_workqueue);
1712	bs->rescue_workqueue = NULL;
1713
1714	mempool_exit(&bs->bio_pool);
1715	mempool_exit(&bs->bvec_pool);
 
 
 
1716
1717	bioset_integrity_free(bs);
1718	if (bs->bio_slab)
1719		bio_put_slab(bs);
1720	bs->bio_slab = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721}
1722EXPORT_SYMBOL(bioset_exit);
1723
1724/**
1725 * bioset_init - Initialize a bio_set
1726 * @bs:		pool to initialize
1727 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1728 * @front_pad:	Number of bytes to allocate in front of the returned bio
1729 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1730 *              and %BIOSET_NEED_RESCUER
1731 *
1732 * Description:
1733 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1734 *    to ask for a number of bytes to be allocated in front of the bio.
1735 *    Front pad allocation is useful for embedding the bio inside
1736 *    another structure, to avoid allocating extra data to go with the bio.
1737 *    Note that the bio must be embedded at the END of that structure always,
1738 *    or things will break badly.
1739 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1740 *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1741 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1742 *    to dispatch queued requests when the mempool runs out of space.
 
 
 
 
 
 
 
1743 *
 
 
 
1744 */
1745int bioset_init(struct bio_set *bs,
1746		unsigned int pool_size,
1747		unsigned int front_pad,
1748		int flags)
1749{
1750	bs->front_pad = front_pad;
1751	if (flags & BIOSET_NEED_BVECS)
1752		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1753	else
1754		bs->back_pad = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755
1756	spin_lock_init(&bs->rescue_lock);
1757	bio_list_init(&bs->rescue_list);
1758	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
 
 
 
 
 
 
 
 
 
 
 
 
 
1759
1760	bs->bio_slab = bio_find_or_create_slab(bs);
1761	if (!bs->bio_slab)
1762		return -ENOMEM;
1763
1764	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1765		goto bad;
 
1766
1767	if ((flags & BIOSET_NEED_BVECS) &&
1768	    biovec_init_pool(&bs->bvec_pool, pool_size))
1769		goto bad;
 
 
 
1770
1771	if (flags & BIOSET_NEED_RESCUER) {
1772		bs->rescue_workqueue = alloc_workqueue("bioset",
1773							WQ_MEM_RECLAIM, 0);
1774		if (!bs->rescue_workqueue)
1775			goto bad;
 
 
 
 
1776	}
1777	if (flags & BIOSET_PERCPU_CACHE) {
1778		bs->cache = alloc_percpu(struct bio_alloc_cache);
1779		if (!bs->cache)
1780			goto bad;
1781		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1782	}
 
1783
1784	return 0;
1785bad:
1786	bioset_exit(bs);
1787	return -ENOMEM;
1788}
1789EXPORT_SYMBOL(bioset_init);
1790
1791static int __init init_bio(void)
1792{
1793	int i;
1794
1795	bio_integrity_init();
 
 
1796
1797	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1798		struct biovec_slab *bvs = bvec_slabs + i;
 
 
1799
1800		bvs->slab = kmem_cache_create(bvs->name,
1801				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1802				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1803	}
 
1804
1805	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1806					bio_cpu_dead);
 
 
 
 
 
 
 
 
1807
1808	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1809			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1810		panic("bio: can't allocate bios\n");
1811
1812	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1813		panic("bio: can't create integrity pool\n");
1814
1815	return 0;
1816}
1817subsys_initcall(init_bio);