Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29#include <linux/cache.h>
30
31#include <asm/cacheflush.h>
32#include <asm/cpu-type.h>
33#include <asm/pgtable.h>
34#include <asm/war.h>
35#include <asm/uasm.h>
36#include <asm/setup.h>
37
38static int mips_xpa_disabled;
39
40static int __init xpa_disable(char *s)
41{
42 mips_xpa_disabled = 1;
43
44 return 1;
45}
46
47__setup("noxpa", xpa_disable);
48
49/*
50 * TLB load/store/modify handlers.
51 *
52 * Only the fastpath gets synthesized at runtime, the slowpath for
53 * do_page_fault remains normal asm.
54 */
55extern void tlb_do_page_fault_0(void);
56extern void tlb_do_page_fault_1(void);
57
58struct work_registers {
59 int r1;
60 int r2;
61 int r3;
62};
63
64struct tlb_reg_save {
65 unsigned long a;
66 unsigned long b;
67} ____cacheline_aligned_in_smp;
68
69static struct tlb_reg_save handler_reg_save[NR_CPUS];
70
71static inline int r45k_bvahwbug(void)
72{
73 /* XXX: We should probe for the presence of this bug, but we don't. */
74 return 0;
75}
76
77static inline int r4k_250MHZhwbug(void)
78{
79 /* XXX: We should probe for the presence of this bug, but we don't. */
80 return 0;
81}
82
83static inline int __maybe_unused bcm1250_m3_war(void)
84{
85 return BCM1250_M3_WAR;
86}
87
88static inline int __maybe_unused r10000_llsc_war(void)
89{
90 return R10000_LLSC_WAR;
91}
92
93static int use_bbit_insns(void)
94{
95 switch (current_cpu_type()) {
96 case CPU_CAVIUM_OCTEON:
97 case CPU_CAVIUM_OCTEON_PLUS:
98 case CPU_CAVIUM_OCTEON2:
99 case CPU_CAVIUM_OCTEON3:
100 return 1;
101 default:
102 return 0;
103 }
104}
105
106static int use_lwx_insns(void)
107{
108 switch (current_cpu_type()) {
109 case CPU_CAVIUM_OCTEON2:
110 case CPU_CAVIUM_OCTEON3:
111 return 1;
112 default:
113 return 0;
114 }
115}
116#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118static bool scratchpad_available(void)
119{
120 return true;
121}
122static int scratchpad_offset(int i)
123{
124 /*
125 * CVMSEG starts at address -32768 and extends for
126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
127 */
128 i += 1; /* Kernel use starts at the top and works down. */
129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
130}
131#else
132static bool scratchpad_available(void)
133{
134 return false;
135}
136static int scratchpad_offset(int i)
137{
138 BUG();
139 /* Really unreachable, but evidently some GCC want this. */
140 return 0;
141}
142#endif
143/*
144 * Found by experiment: At least some revisions of the 4kc throw under
145 * some circumstances a machine check exception, triggered by invalid
146 * values in the index register. Delaying the tlbp instruction until
147 * after the next branch, plus adding an additional nop in front of
148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149 * why; it's not an issue caused by the core RTL.
150 *
151 */
152static int m4kc_tlbp_war(void)
153{
154 return (current_cpu_data.processor_id & 0xffff00) ==
155 (PRID_COMP_MIPS | PRID_IMP_4KC);
156}
157
158/* Handle labels (which must be positive integers). */
159enum label_id {
160 label_second_part = 1,
161 label_leave,
162 label_vmalloc,
163 label_vmalloc_done,
164 label_tlbw_hazard_0,
165 label_split = label_tlbw_hazard_0 + 8,
166 label_tlbl_goaround1,
167 label_tlbl_goaround2,
168 label_nopage_tlbl,
169 label_nopage_tlbs,
170 label_nopage_tlbm,
171 label_smp_pgtable_change,
172 label_r3000_write_probe_fail,
173 label_large_segbits_fault,
174#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 label_tlb_huge_update,
176#endif
177};
178
179UASM_L_LA(_second_part)
180UASM_L_LA(_leave)
181UASM_L_LA(_vmalloc)
182UASM_L_LA(_vmalloc_done)
183/* _tlbw_hazard_x is handled differently. */
184UASM_L_LA(_split)
185UASM_L_LA(_tlbl_goaround1)
186UASM_L_LA(_tlbl_goaround2)
187UASM_L_LA(_nopage_tlbl)
188UASM_L_LA(_nopage_tlbs)
189UASM_L_LA(_nopage_tlbm)
190UASM_L_LA(_smp_pgtable_change)
191UASM_L_LA(_r3000_write_probe_fail)
192UASM_L_LA(_large_segbits_fault)
193#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194UASM_L_LA(_tlb_huge_update)
195#endif
196
197static int hazard_instance;
198
199static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
200{
201 switch (instance) {
202 case 0 ... 7:
203 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204 return;
205 default:
206 BUG();
207 }
208}
209
210static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
211{
212 switch (instance) {
213 case 0 ... 7:
214 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215 break;
216 default:
217 BUG();
218 }
219}
220
221/*
222 * pgtable bits are assigned dynamically depending on processor feature
223 * and statically based on kernel configuration. This spits out the actual
224 * values the kernel is using. Required to make sense from disassembled
225 * TLB exception handlers.
226 */
227static void output_pgtable_bits_defines(void)
228{
229#define pr_define(fmt, ...) \
230 pr_debug("#define " fmt, ##__VA_ARGS__)
231
232 pr_debug("#include <asm/asm.h>\n");
233 pr_debug("#include <asm/regdef.h>\n");
234 pr_debug("\n");
235
236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243#endif
244#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
245 if (cpu_has_rixi) {
246#ifdef _PAGE_NO_EXEC_SHIFT
247 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
248 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
249#endif
250 }
251#endif
252 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
253 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
254 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
255 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
256 pr_debug("\n");
257}
258
259static inline void dump_handler(const char *symbol, const u32 *handler, int count)
260{
261 int i;
262
263 pr_debug("LEAF(%s)\n", symbol);
264
265 pr_debug("\t.set push\n");
266 pr_debug("\t.set noreorder\n");
267
268 for (i = 0; i < count; i++)
269 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
270
271 pr_debug("\t.set\tpop\n");
272
273 pr_debug("\tEND(%s)\n", symbol);
274}
275
276/* The only general purpose registers allowed in TLB handlers. */
277#define K0 26
278#define K1 27
279
280/* Some CP0 registers */
281#define C0_INDEX 0, 0
282#define C0_ENTRYLO0 2, 0
283#define C0_TCBIND 2, 2
284#define C0_ENTRYLO1 3, 0
285#define C0_CONTEXT 4, 0
286#define C0_PAGEMASK 5, 0
287#define C0_BADVADDR 8, 0
288#define C0_ENTRYHI 10, 0
289#define C0_EPC 14, 0
290#define C0_XCONTEXT 20, 0
291
292#ifdef CONFIG_64BIT
293# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
294#else
295# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
296#endif
297
298/* The worst case length of the handler is around 18 instructions for
299 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
300 * Maximum space available is 32 instructions for R3000 and 64
301 * instructions for R4000.
302 *
303 * We deliberately chose a buffer size of 128, so we won't scribble
304 * over anything important on overflow before we panic.
305 */
306static u32 tlb_handler[128];
307
308/* simply assume worst case size for labels and relocs */
309static struct uasm_label labels[128];
310static struct uasm_reloc relocs[128];
311
312static int check_for_high_segbits;
313static bool fill_includes_sw_bits;
314
315static unsigned int kscratch_used_mask;
316
317static inline int __maybe_unused c0_kscratch(void)
318{
319 switch (current_cpu_type()) {
320 case CPU_XLP:
321 case CPU_XLR:
322 return 22;
323 default:
324 return 31;
325 }
326}
327
328static int allocate_kscratch(void)
329{
330 int r;
331 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
332
333 r = ffs(a);
334
335 if (r == 0)
336 return -1;
337
338 r--; /* make it zero based */
339
340 kscratch_used_mask |= (1 << r);
341
342 return r;
343}
344
345static int scratch_reg;
346static int pgd_reg;
347enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
348
349static struct work_registers build_get_work_registers(u32 **p)
350{
351 struct work_registers r;
352
353 if (scratch_reg >= 0) {
354 /* Save in CPU local C0_KScratch? */
355 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
356 r.r1 = K0;
357 r.r2 = K1;
358 r.r3 = 1;
359 return r;
360 }
361
362 if (num_possible_cpus() > 1) {
363 /* Get smp_processor_id */
364 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
365 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
366
367 /* handler_reg_save index in K0 */
368 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
369
370 UASM_i_LA(p, K1, (long)&handler_reg_save);
371 UASM_i_ADDU(p, K0, K0, K1);
372 } else {
373 UASM_i_LA(p, K0, (long)&handler_reg_save);
374 }
375 /* K0 now points to save area, save $1 and $2 */
376 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
377 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
378
379 r.r1 = K1;
380 r.r2 = 1;
381 r.r3 = 2;
382 return r;
383}
384
385static void build_restore_work_registers(u32 **p)
386{
387 if (scratch_reg >= 0) {
388 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
389 return;
390 }
391 /* K0 already points to save area, restore $1 and $2 */
392 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
393 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
394}
395
396#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
397
398/*
399 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
400 * we cannot do r3000 under these circumstances.
401 *
402 * Declare pgd_current here instead of including mmu_context.h to avoid type
403 * conflicts for tlbmiss_handler_setup_pgd
404 */
405extern unsigned long pgd_current[];
406
407/*
408 * The R3000 TLB handler is simple.
409 */
410static void build_r3000_tlb_refill_handler(void)
411{
412 long pgdc = (long)pgd_current;
413 u32 *p;
414
415 memset(tlb_handler, 0, sizeof(tlb_handler));
416 p = tlb_handler;
417
418 uasm_i_mfc0(&p, K0, C0_BADVADDR);
419 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
420 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
421 uasm_i_srl(&p, K0, K0, 22); /* load delay */
422 uasm_i_sll(&p, K0, K0, 2);
423 uasm_i_addu(&p, K1, K1, K0);
424 uasm_i_mfc0(&p, K0, C0_CONTEXT);
425 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
426 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
427 uasm_i_addu(&p, K1, K1, K0);
428 uasm_i_lw(&p, K0, 0, K1);
429 uasm_i_nop(&p); /* load delay */
430 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
431 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
432 uasm_i_tlbwr(&p); /* cp0 delay */
433 uasm_i_jr(&p, K1);
434 uasm_i_rfe(&p); /* branch delay */
435
436 if (p > tlb_handler + 32)
437 panic("TLB refill handler space exceeded");
438
439 pr_debug("Wrote TLB refill handler (%u instructions).\n",
440 (unsigned int)(p - tlb_handler));
441
442 memcpy((void *)ebase, tlb_handler, 0x80);
443 local_flush_icache_range(ebase, ebase + 0x80);
444
445 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
446}
447#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
448
449/*
450 * The R4000 TLB handler is much more complicated. We have two
451 * consecutive handler areas with 32 instructions space each.
452 * Since they aren't used at the same time, we can overflow in the
453 * other one.To keep things simple, we first assume linear space,
454 * then we relocate it to the final handler layout as needed.
455 */
456static u32 final_handler[64];
457
458/*
459 * Hazards
460 *
461 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462 * 2. A timing hazard exists for the TLBP instruction.
463 *
464 * stalling_instruction
465 * TLBP
466 *
467 * The JTLB is being read for the TLBP throughout the stall generated by the
468 * previous instruction. This is not really correct as the stalling instruction
469 * can modify the address used to access the JTLB. The failure symptom is that
470 * the TLBP instruction will use an address created for the stalling instruction
471 * and not the address held in C0_ENHI and thus report the wrong results.
472 *
473 * The software work-around is to not allow the instruction preceding the TLBP
474 * to stall - make it an NOP or some other instruction guaranteed not to stall.
475 *
476 * Errata 2 will not be fixed. This errata is also on the R5000.
477 *
478 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479 */
480static void __maybe_unused build_tlb_probe_entry(u32 **p)
481{
482 switch (current_cpu_type()) {
483 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
484 case CPU_R4600:
485 case CPU_R4700:
486 case CPU_R5000:
487 case CPU_NEVADA:
488 uasm_i_nop(p);
489 uasm_i_tlbp(p);
490 break;
491
492 default:
493 uasm_i_tlbp(p);
494 break;
495 }
496}
497
498/*
499 * Write random or indexed TLB entry, and care about the hazards from
500 * the preceding mtc0 and for the following eret.
501 */
502enum tlb_write_entry { tlb_random, tlb_indexed };
503
504static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
505 struct uasm_reloc **r,
506 enum tlb_write_entry wmode)
507{
508 void(*tlbw)(u32 **) = NULL;
509
510 switch (wmode) {
511 case tlb_random: tlbw = uasm_i_tlbwr; break;
512 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
513 }
514
515 if (cpu_has_mips_r2_r6) {
516 if (cpu_has_mips_r2_exec_hazard)
517 uasm_i_ehb(p);
518 tlbw(p);
519 return;
520 }
521
522 switch (current_cpu_type()) {
523 case CPU_R4000PC:
524 case CPU_R4000SC:
525 case CPU_R4000MC:
526 case CPU_R4400PC:
527 case CPU_R4400SC:
528 case CPU_R4400MC:
529 /*
530 * This branch uses up a mtc0 hazard nop slot and saves
531 * two nops after the tlbw instruction.
532 */
533 uasm_bgezl_hazard(p, r, hazard_instance);
534 tlbw(p);
535 uasm_bgezl_label(l, p, hazard_instance);
536 hazard_instance++;
537 uasm_i_nop(p);
538 break;
539
540 case CPU_R4600:
541 case CPU_R4700:
542 uasm_i_nop(p);
543 tlbw(p);
544 uasm_i_nop(p);
545 break;
546
547 case CPU_R5000:
548 case CPU_NEVADA:
549 uasm_i_nop(p); /* QED specifies 2 nops hazard */
550 uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 tlbw(p);
552 break;
553
554 case CPU_R4300:
555 case CPU_5KC:
556 case CPU_TX49XX:
557 case CPU_PR4450:
558 case CPU_XLR:
559 uasm_i_nop(p);
560 tlbw(p);
561 break;
562
563 case CPU_R10000:
564 case CPU_R12000:
565 case CPU_R14000:
566 case CPU_R16000:
567 case CPU_4KC:
568 case CPU_4KEC:
569 case CPU_M14KC:
570 case CPU_M14KEC:
571 case CPU_SB1:
572 case CPU_SB1A:
573 case CPU_4KSC:
574 case CPU_20KC:
575 case CPU_25KF:
576 case CPU_BMIPS32:
577 case CPU_BMIPS3300:
578 case CPU_BMIPS4350:
579 case CPU_BMIPS4380:
580 case CPU_BMIPS5000:
581 case CPU_LOONGSON2:
582 case CPU_LOONGSON3:
583 case CPU_R5500:
584 if (m4kc_tlbp_war())
585 uasm_i_nop(p);
586 case CPU_ALCHEMY:
587 tlbw(p);
588 break;
589
590 case CPU_RM7000:
591 uasm_i_nop(p);
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 uasm_i_nop(p);
595 tlbw(p);
596 break;
597
598 case CPU_VR4111:
599 case CPU_VR4121:
600 case CPU_VR4122:
601 case CPU_VR4181:
602 case CPU_VR4181A:
603 uasm_i_nop(p);
604 uasm_i_nop(p);
605 tlbw(p);
606 uasm_i_nop(p);
607 uasm_i_nop(p);
608 break;
609
610 case CPU_VR4131:
611 case CPU_VR4133:
612 case CPU_R5432:
613 uasm_i_nop(p);
614 uasm_i_nop(p);
615 tlbw(p);
616 break;
617
618 case CPU_JZRISC:
619 tlbw(p);
620 uasm_i_nop(p);
621 break;
622
623 default:
624 panic("No TLB refill handler yet (CPU type: %d)",
625 current_cpu_type());
626 break;
627 }
628}
629
630static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
631 unsigned int reg)
632{
633 if (cpu_has_rixi && _PAGE_NO_EXEC) {
634 if (fill_includes_sw_bits) {
635 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
636 } else {
637 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
638 UASM_i_ROTR(p, reg, reg,
639 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
640 }
641 } else {
642#ifdef CONFIG_PHYS_ADDR_T_64BIT
643 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
644#else
645 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
646#endif
647 }
648}
649
650#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
651
652static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
653 unsigned int tmp, enum label_id lid,
654 int restore_scratch)
655{
656 if (restore_scratch) {
657 /* Reset default page size */
658 if (PM_DEFAULT_MASK >> 16) {
659 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
660 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
661 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
662 uasm_il_b(p, r, lid);
663 } else if (PM_DEFAULT_MASK) {
664 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
665 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
666 uasm_il_b(p, r, lid);
667 } else {
668 uasm_i_mtc0(p, 0, C0_PAGEMASK);
669 uasm_il_b(p, r, lid);
670 }
671 if (scratch_reg >= 0)
672 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
673 else
674 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
675 } else {
676 /* Reset default page size */
677 if (PM_DEFAULT_MASK >> 16) {
678 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
679 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
680 uasm_il_b(p, r, lid);
681 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
682 } else if (PM_DEFAULT_MASK) {
683 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
684 uasm_il_b(p, r, lid);
685 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
686 } else {
687 uasm_il_b(p, r, lid);
688 uasm_i_mtc0(p, 0, C0_PAGEMASK);
689 }
690 }
691}
692
693static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
694 struct uasm_reloc **r,
695 unsigned int tmp,
696 enum tlb_write_entry wmode,
697 int restore_scratch)
698{
699 /* Set huge page tlb entry size */
700 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
701 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
702 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
703
704 build_tlb_write_entry(p, l, r, wmode);
705
706 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
707}
708
709/*
710 * Check if Huge PTE is present, if so then jump to LABEL.
711 */
712static void
713build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
714 unsigned int pmd, int lid)
715{
716 UASM_i_LW(p, tmp, 0, pmd);
717 if (use_bbit_insns()) {
718 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
719 } else {
720 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
721 uasm_il_bnez(p, r, tmp, lid);
722 }
723}
724
725static void build_huge_update_entries(u32 **p, unsigned int pte,
726 unsigned int tmp)
727{
728 int small_sequence;
729
730 /*
731 * A huge PTE describes an area the size of the
732 * configured huge page size. This is twice the
733 * of the large TLB entry size we intend to use.
734 * A TLB entry half the size of the configured
735 * huge page size is configured into entrylo0
736 * and entrylo1 to cover the contiguous huge PTE
737 * address space.
738 */
739 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
740
741 /* We can clobber tmp. It isn't used after this.*/
742 if (!small_sequence)
743 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
744
745 build_convert_pte_to_entrylo(p, pte);
746 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
747 /* convert to entrylo1 */
748 if (small_sequence)
749 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
750 else
751 UASM_i_ADDU(p, pte, pte, tmp);
752
753 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
754}
755
756static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
757 struct uasm_label **l,
758 unsigned int pte,
759 unsigned int ptr)
760{
761#ifdef CONFIG_SMP
762 UASM_i_SC(p, pte, 0, ptr);
763 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
764 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
765#else
766 UASM_i_SW(p, pte, 0, ptr);
767#endif
768 build_huge_update_entries(p, pte, ptr);
769 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
770}
771#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
772
773#ifdef CONFIG_64BIT
774/*
775 * TMP and PTR are scratch.
776 * TMP will be clobbered, PTR will hold the pmd entry.
777 */
778static void
779build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
780 unsigned int tmp, unsigned int ptr)
781{
782#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
783 long pgdc = (long)pgd_current;
784#endif
785 /*
786 * The vmalloc handling is not in the hotpath.
787 */
788 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
789
790 if (check_for_high_segbits) {
791 /*
792 * The kernel currently implicitely assumes that the
793 * MIPS SEGBITS parameter for the processor is
794 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
795 * allocate virtual addresses outside the maximum
796 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
797 * that doesn't prevent user code from accessing the
798 * higher xuseg addresses. Here, we make sure that
799 * everything but the lower xuseg addresses goes down
800 * the module_alloc/vmalloc path.
801 */
802 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
803 uasm_il_bnez(p, r, ptr, label_vmalloc);
804 } else {
805 uasm_il_bltz(p, r, tmp, label_vmalloc);
806 }
807 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
808
809 if (pgd_reg != -1) {
810 /* pgd is in pgd_reg */
811 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
812 } else {
813#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
814 /*
815 * &pgd << 11 stored in CONTEXT [23..63].
816 */
817 UASM_i_MFC0(p, ptr, C0_CONTEXT);
818
819 /* Clear lower 23 bits of context. */
820 uasm_i_dins(p, ptr, 0, 0, 23);
821
822 /* 1 0 1 0 1 << 6 xkphys cached */
823 uasm_i_ori(p, ptr, ptr, 0x540);
824 uasm_i_drotr(p, ptr, ptr, 11);
825#elif defined(CONFIG_SMP)
826 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
827 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
828 UASM_i_LA_mostly(p, tmp, pgdc);
829 uasm_i_daddu(p, ptr, ptr, tmp);
830 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
831 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
832#else
833 UASM_i_LA_mostly(p, ptr, pgdc);
834 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
835#endif
836 }
837
838 uasm_l_vmalloc_done(l, *p);
839
840 /* get pgd offset in bytes */
841 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
842
843 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
844 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
845#ifndef __PAGETABLE_PMD_FOLDED
846 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
847 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
848 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
849 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
850 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
851#endif
852}
853
854/*
855 * BVADDR is the faulting address, PTR is scratch.
856 * PTR will hold the pgd for vmalloc.
857 */
858static void
859build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
860 unsigned int bvaddr, unsigned int ptr,
861 enum vmalloc64_mode mode)
862{
863 long swpd = (long)swapper_pg_dir;
864 int single_insn_swpd;
865 int did_vmalloc_branch = 0;
866
867 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
868
869 uasm_l_vmalloc(l, *p);
870
871 if (mode != not_refill && check_for_high_segbits) {
872 if (single_insn_swpd) {
873 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
874 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
875 did_vmalloc_branch = 1;
876 /* fall through */
877 } else {
878 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
879 }
880 }
881 if (!did_vmalloc_branch) {
882 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
883 uasm_il_b(p, r, label_vmalloc_done);
884 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
885 } else {
886 UASM_i_LA_mostly(p, ptr, swpd);
887 uasm_il_b(p, r, label_vmalloc_done);
888 if (uasm_in_compat_space_p(swpd))
889 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
890 else
891 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
892 }
893 }
894 if (mode != not_refill && check_for_high_segbits) {
895 uasm_l_large_segbits_fault(l, *p);
896 /*
897 * We get here if we are an xsseg address, or if we are
898 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
899 *
900 * Ignoring xsseg (assume disabled so would generate
901 * (address errors?), the only remaining possibility
902 * is the upper xuseg addresses. On processors with
903 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
904 * addresses would have taken an address error. We try
905 * to mimic that here by taking a load/istream page
906 * fault.
907 */
908 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
909 uasm_i_jr(p, ptr);
910
911 if (mode == refill_scratch) {
912 if (scratch_reg >= 0)
913 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
914 else
915 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
916 } else {
917 uasm_i_nop(p);
918 }
919 }
920}
921
922#else /* !CONFIG_64BIT */
923
924/*
925 * TMP and PTR are scratch.
926 * TMP will be clobbered, PTR will hold the pgd entry.
927 */
928static void __maybe_unused
929build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
930{
931 if (pgd_reg != -1) {
932 /* pgd is in pgd_reg */
933 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
934 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
935 } else {
936 long pgdc = (long)pgd_current;
937
938 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
939#ifdef CONFIG_SMP
940 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
941 UASM_i_LA_mostly(p, tmp, pgdc);
942 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
943 uasm_i_addu(p, ptr, tmp, ptr);
944#else
945 UASM_i_LA_mostly(p, ptr, pgdc);
946#endif
947 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
948 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
949 }
950 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
951 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
952 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
953}
954
955#endif /* !CONFIG_64BIT */
956
957static void build_adjust_context(u32 **p, unsigned int ctx)
958{
959 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
960 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
961
962 switch (current_cpu_type()) {
963 case CPU_VR41XX:
964 case CPU_VR4111:
965 case CPU_VR4121:
966 case CPU_VR4122:
967 case CPU_VR4131:
968 case CPU_VR4181:
969 case CPU_VR4181A:
970 case CPU_VR4133:
971 shift += 2;
972 break;
973
974 default:
975 break;
976 }
977
978 if (shift)
979 UASM_i_SRL(p, ctx, ctx, shift);
980 uasm_i_andi(p, ctx, ctx, mask);
981}
982
983static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
984{
985 /*
986 * Bug workaround for the Nevada. It seems as if under certain
987 * circumstances the move from cp0_context might produce a
988 * bogus result when the mfc0 instruction and its consumer are
989 * in a different cacheline or a load instruction, probably any
990 * memory reference, is between them.
991 */
992 switch (current_cpu_type()) {
993 case CPU_NEVADA:
994 UASM_i_LW(p, ptr, 0, ptr);
995 GET_CONTEXT(p, tmp); /* get context reg */
996 break;
997
998 default:
999 GET_CONTEXT(p, tmp); /* get context reg */
1000 UASM_i_LW(p, ptr, 0, ptr);
1001 break;
1002 }
1003
1004 build_adjust_context(p, tmp);
1005 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1006}
1007
1008static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1009{
1010 /*
1011 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1012 * Kernel is a special case. Only a few CPUs use it.
1013 */
1014 if (config_enabled(CONFIG_PHYS_ADDR_T_64BIT) && !cpu_has_64bits) {
1015 int pte_off_even = sizeof(pte_t) / 2;
1016 int pte_off_odd = pte_off_even + sizeof(pte_t);
1017#ifdef CONFIG_XPA
1018 const int scratch = 1; /* Our extra working register */
1019
1020 uasm_i_addu(p, scratch, 0, ptep);
1021#endif
1022 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1023 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
1024 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1025 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1026 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1027 UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
1028#ifdef CONFIG_XPA
1029 uasm_i_lw(p, tmp, 0, scratch);
1030 uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
1031 uasm_i_lui(p, scratch, 0xff);
1032 uasm_i_ori(p, scratch, scratch, 0xffff);
1033 uasm_i_and(p, tmp, scratch, tmp);
1034 uasm_i_and(p, ptep, scratch, ptep);
1035 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1036 uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
1037#endif
1038 return;
1039 }
1040
1041 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1042 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1043 if (r45k_bvahwbug())
1044 build_tlb_probe_entry(p);
1045 build_convert_pte_to_entrylo(p, tmp);
1046 if (r4k_250MHZhwbug())
1047 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1048 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1049 build_convert_pte_to_entrylo(p, ptep);
1050 if (r45k_bvahwbug())
1051 uasm_i_mfc0(p, tmp, C0_INDEX);
1052 if (r4k_250MHZhwbug())
1053 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1054 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1055}
1056
1057struct mips_huge_tlb_info {
1058 int huge_pte;
1059 int restore_scratch;
1060 bool need_reload_pte;
1061};
1062
1063static struct mips_huge_tlb_info
1064build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1065 struct uasm_reloc **r, unsigned int tmp,
1066 unsigned int ptr, int c0_scratch_reg)
1067{
1068 struct mips_huge_tlb_info rv;
1069 unsigned int even, odd;
1070 int vmalloc_branch_delay_filled = 0;
1071 const int scratch = 1; /* Our extra working register */
1072
1073 rv.huge_pte = scratch;
1074 rv.restore_scratch = 0;
1075 rv.need_reload_pte = false;
1076
1077 if (check_for_high_segbits) {
1078 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1079
1080 if (pgd_reg != -1)
1081 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1082 else
1083 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1084
1085 if (c0_scratch_reg >= 0)
1086 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1087 else
1088 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1089
1090 uasm_i_dsrl_safe(p, scratch, tmp,
1091 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1092 uasm_il_bnez(p, r, scratch, label_vmalloc);
1093
1094 if (pgd_reg == -1) {
1095 vmalloc_branch_delay_filled = 1;
1096 /* Clear lower 23 bits of context. */
1097 uasm_i_dins(p, ptr, 0, 0, 23);
1098 }
1099 } else {
1100 if (pgd_reg != -1)
1101 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1102 else
1103 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1104
1105 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1106
1107 if (c0_scratch_reg >= 0)
1108 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1109 else
1110 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1111
1112 if (pgd_reg == -1)
1113 /* Clear lower 23 bits of context. */
1114 uasm_i_dins(p, ptr, 0, 0, 23);
1115
1116 uasm_il_bltz(p, r, tmp, label_vmalloc);
1117 }
1118
1119 if (pgd_reg == -1) {
1120 vmalloc_branch_delay_filled = 1;
1121 /* 1 0 1 0 1 << 6 xkphys cached */
1122 uasm_i_ori(p, ptr, ptr, 0x540);
1123 uasm_i_drotr(p, ptr, ptr, 11);
1124 }
1125
1126#ifdef __PAGETABLE_PMD_FOLDED
1127#define LOC_PTEP scratch
1128#else
1129#define LOC_PTEP ptr
1130#endif
1131
1132 if (!vmalloc_branch_delay_filled)
1133 /* get pgd offset in bytes */
1134 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1135
1136 uasm_l_vmalloc_done(l, *p);
1137
1138 /*
1139 * tmp ptr
1140 * fall-through case = badvaddr *pgd_current
1141 * vmalloc case = badvaddr swapper_pg_dir
1142 */
1143
1144 if (vmalloc_branch_delay_filled)
1145 /* get pgd offset in bytes */
1146 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1147
1148#ifdef __PAGETABLE_PMD_FOLDED
1149 GET_CONTEXT(p, tmp); /* get context reg */
1150#endif
1151 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1152
1153 if (use_lwx_insns()) {
1154 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1155 } else {
1156 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1157 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1158 }
1159
1160#ifndef __PAGETABLE_PMD_FOLDED
1161 /* get pmd offset in bytes */
1162 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1163 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1164 GET_CONTEXT(p, tmp); /* get context reg */
1165
1166 if (use_lwx_insns()) {
1167 UASM_i_LWX(p, scratch, scratch, ptr);
1168 } else {
1169 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1170 UASM_i_LW(p, scratch, 0, ptr);
1171 }
1172#endif
1173 /* Adjust the context during the load latency. */
1174 build_adjust_context(p, tmp);
1175
1176#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1177 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1178 /*
1179 * The in the LWX case we don't want to do the load in the
1180 * delay slot. It cannot issue in the same cycle and may be
1181 * speculative and unneeded.
1182 */
1183 if (use_lwx_insns())
1184 uasm_i_nop(p);
1185#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1186
1187
1188 /* build_update_entries */
1189 if (use_lwx_insns()) {
1190 even = ptr;
1191 odd = tmp;
1192 UASM_i_LWX(p, even, scratch, tmp);
1193 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1194 UASM_i_LWX(p, odd, scratch, tmp);
1195 } else {
1196 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1197 even = tmp;
1198 odd = ptr;
1199 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1200 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1201 }
1202 if (cpu_has_rixi) {
1203 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1204 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1205 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1206 } else {
1207 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1208 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1209 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1210 }
1211 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1212
1213 if (c0_scratch_reg >= 0) {
1214 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1215 build_tlb_write_entry(p, l, r, tlb_random);
1216 uasm_l_leave(l, *p);
1217 rv.restore_scratch = 1;
1218 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1219 build_tlb_write_entry(p, l, r, tlb_random);
1220 uasm_l_leave(l, *p);
1221 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1222 } else {
1223 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224 build_tlb_write_entry(p, l, r, tlb_random);
1225 uasm_l_leave(l, *p);
1226 rv.restore_scratch = 1;
1227 }
1228
1229 uasm_i_eret(p); /* return from trap */
1230
1231 return rv;
1232}
1233
1234/*
1235 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1236 * because EXL == 0. If we wrap, we can also use the 32 instruction
1237 * slots before the XTLB refill exception handler which belong to the
1238 * unused TLB refill exception.
1239 */
1240#define MIPS64_REFILL_INSNS 32
1241
1242static void build_r4000_tlb_refill_handler(void)
1243{
1244 u32 *p = tlb_handler;
1245 struct uasm_label *l = labels;
1246 struct uasm_reloc *r = relocs;
1247 u32 *f;
1248 unsigned int final_len;
1249 struct mips_huge_tlb_info htlb_info __maybe_unused;
1250 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1251
1252 memset(tlb_handler, 0, sizeof(tlb_handler));
1253 memset(labels, 0, sizeof(labels));
1254 memset(relocs, 0, sizeof(relocs));
1255 memset(final_handler, 0, sizeof(final_handler));
1256
1257 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1258 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1259 scratch_reg);
1260 vmalloc_mode = refill_scratch;
1261 } else {
1262 htlb_info.huge_pte = K0;
1263 htlb_info.restore_scratch = 0;
1264 htlb_info.need_reload_pte = true;
1265 vmalloc_mode = refill_noscratch;
1266 /*
1267 * create the plain linear handler
1268 */
1269 if (bcm1250_m3_war()) {
1270 unsigned int segbits = 44;
1271
1272 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1273 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1274 uasm_i_xor(&p, K0, K0, K1);
1275 uasm_i_dsrl_safe(&p, K1, K0, 62);
1276 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1277 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1278 uasm_i_or(&p, K0, K0, K1);
1279 uasm_il_bnez(&p, &r, K0, label_leave);
1280 /* No need for uasm_i_nop */
1281 }
1282
1283#ifdef CONFIG_64BIT
1284 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1285#else
1286 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1287#endif
1288
1289#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1290 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1291#endif
1292
1293 build_get_ptep(&p, K0, K1);
1294 build_update_entries(&p, K0, K1);
1295 build_tlb_write_entry(&p, &l, &r, tlb_random);
1296 uasm_l_leave(&l, p);
1297 uasm_i_eret(&p); /* return from trap */
1298 }
1299#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1300 uasm_l_tlb_huge_update(&l, p);
1301 if (htlb_info.need_reload_pte)
1302 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1303 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1304 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1305 htlb_info.restore_scratch);
1306#endif
1307
1308#ifdef CONFIG_64BIT
1309 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1310#endif
1311
1312 /*
1313 * Overflow check: For the 64bit handler, we need at least one
1314 * free instruction slot for the wrap-around branch. In worst
1315 * case, if the intended insertion point is a delay slot, we
1316 * need three, with the second nop'ed and the third being
1317 * unused.
1318 */
1319 switch (boot_cpu_type()) {
1320 default:
1321 if (sizeof(long) == 4) {
1322 case CPU_LOONGSON2:
1323 /* Loongson2 ebase is different than r4k, we have more space */
1324 if ((p - tlb_handler) > 64)
1325 panic("TLB refill handler space exceeded");
1326 /*
1327 * Now fold the handler in the TLB refill handler space.
1328 */
1329 f = final_handler;
1330 /* Simplest case, just copy the handler. */
1331 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1332 final_len = p - tlb_handler;
1333 break;
1334 } else {
1335 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1336 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1337 && uasm_insn_has_bdelay(relocs,
1338 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1339 panic("TLB refill handler space exceeded");
1340 /*
1341 * Now fold the handler in the TLB refill handler space.
1342 */
1343 f = final_handler + MIPS64_REFILL_INSNS;
1344 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1345 /* Just copy the handler. */
1346 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1347 final_len = p - tlb_handler;
1348 } else {
1349#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1350 const enum label_id ls = label_tlb_huge_update;
1351#else
1352 const enum label_id ls = label_vmalloc;
1353#endif
1354 u32 *split;
1355 int ov = 0;
1356 int i;
1357
1358 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1359 ;
1360 BUG_ON(i == ARRAY_SIZE(labels));
1361 split = labels[i].addr;
1362
1363 /*
1364 * See if we have overflown one way or the other.
1365 */
1366 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1367 split < p - MIPS64_REFILL_INSNS)
1368 ov = 1;
1369
1370 if (ov) {
1371 /*
1372 * Split two instructions before the end. One
1373 * for the branch and one for the instruction
1374 * in the delay slot.
1375 */
1376 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1377
1378 /*
1379 * If the branch would fall in a delay slot,
1380 * we must back up an additional instruction
1381 * so that it is no longer in a delay slot.
1382 */
1383 if (uasm_insn_has_bdelay(relocs, split - 1))
1384 split--;
1385 }
1386 /* Copy first part of the handler. */
1387 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1388 f += split - tlb_handler;
1389
1390 if (ov) {
1391 /* Insert branch. */
1392 uasm_l_split(&l, final_handler);
1393 uasm_il_b(&f, &r, label_split);
1394 if (uasm_insn_has_bdelay(relocs, split))
1395 uasm_i_nop(&f);
1396 else {
1397 uasm_copy_handler(relocs, labels,
1398 split, split + 1, f);
1399 uasm_move_labels(labels, f, f + 1, -1);
1400 f++;
1401 split++;
1402 }
1403 }
1404
1405 /* Copy the rest of the handler. */
1406 uasm_copy_handler(relocs, labels, split, p, final_handler);
1407 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1408 (p - split);
1409 }
1410 }
1411 break;
1412 }
1413
1414 uasm_resolve_relocs(relocs, labels);
1415 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1416 final_len);
1417
1418 memcpy((void *)ebase, final_handler, 0x100);
1419 local_flush_icache_range(ebase, ebase + 0x100);
1420
1421 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1422}
1423
1424extern u32 handle_tlbl[], handle_tlbl_end[];
1425extern u32 handle_tlbs[], handle_tlbs_end[];
1426extern u32 handle_tlbm[], handle_tlbm_end[];
1427extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1428extern u32 tlbmiss_handler_setup_pgd_end[];
1429
1430static void build_setup_pgd(void)
1431{
1432 const int a0 = 4;
1433 const int __maybe_unused a1 = 5;
1434 const int __maybe_unused a2 = 6;
1435 u32 *p = tlbmiss_handler_setup_pgd_start;
1436 const int tlbmiss_handler_setup_pgd_size =
1437 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1438#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1439 long pgdc = (long)pgd_current;
1440#endif
1441
1442 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1443 sizeof(tlbmiss_handler_setup_pgd[0]));
1444 memset(labels, 0, sizeof(labels));
1445 memset(relocs, 0, sizeof(relocs));
1446 pgd_reg = allocate_kscratch();
1447#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1448 if (pgd_reg == -1) {
1449 struct uasm_label *l = labels;
1450 struct uasm_reloc *r = relocs;
1451
1452 /* PGD << 11 in c0_Context */
1453 /*
1454 * If it is a ckseg0 address, convert to a physical
1455 * address. Shifting right by 29 and adding 4 will
1456 * result in zero for these addresses.
1457 *
1458 */
1459 UASM_i_SRA(&p, a1, a0, 29);
1460 UASM_i_ADDIU(&p, a1, a1, 4);
1461 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1462 uasm_i_nop(&p);
1463 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1464 uasm_l_tlbl_goaround1(&l, p);
1465 UASM_i_SLL(&p, a0, a0, 11);
1466 uasm_i_jr(&p, 31);
1467 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1468 } else {
1469 /* PGD in c0_KScratch */
1470 uasm_i_jr(&p, 31);
1471 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1472 }
1473#else
1474#ifdef CONFIG_SMP
1475 /* Save PGD to pgd_current[smp_processor_id()] */
1476 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1477 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1478 UASM_i_LA_mostly(&p, a2, pgdc);
1479 UASM_i_ADDU(&p, a2, a2, a1);
1480 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1481#else
1482 UASM_i_LA_mostly(&p, a2, pgdc);
1483 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1484#endif /* SMP */
1485 uasm_i_jr(&p, 31);
1486
1487 /* if pgd_reg is allocated, save PGD also to scratch register */
1488 if (pgd_reg != -1)
1489 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1490 else
1491 uasm_i_nop(&p);
1492#endif
1493 if (p >= tlbmiss_handler_setup_pgd_end)
1494 panic("tlbmiss_handler_setup_pgd space exceeded");
1495
1496 uasm_resolve_relocs(relocs, labels);
1497 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1498 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1499
1500 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1501 tlbmiss_handler_setup_pgd_size);
1502}
1503
1504static void
1505iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1506{
1507#ifdef CONFIG_SMP
1508# ifdef CONFIG_PHYS_ADDR_T_64BIT
1509 if (cpu_has_64bits)
1510 uasm_i_lld(p, pte, 0, ptr);
1511 else
1512# endif
1513 UASM_i_LL(p, pte, 0, ptr);
1514#else
1515# ifdef CONFIG_PHYS_ADDR_T_64BIT
1516 if (cpu_has_64bits)
1517 uasm_i_ld(p, pte, 0, ptr);
1518 else
1519# endif
1520 UASM_i_LW(p, pte, 0, ptr);
1521#endif
1522}
1523
1524static void
1525iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1526 unsigned int mode)
1527{
1528#ifdef CONFIG_PHYS_ADDR_T_64BIT
1529 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1530
1531 if (!cpu_has_64bits) {
1532 const int scratch = 1; /* Our extra working register */
1533
1534 uasm_i_lui(p, scratch, (mode >> 16));
1535 uasm_i_or(p, pte, pte, scratch);
1536 } else
1537#endif
1538 uasm_i_ori(p, pte, pte, mode);
1539#ifdef CONFIG_SMP
1540# ifdef CONFIG_PHYS_ADDR_T_64BIT
1541 if (cpu_has_64bits)
1542 uasm_i_scd(p, pte, 0, ptr);
1543 else
1544# endif
1545 UASM_i_SC(p, pte, 0, ptr);
1546
1547 if (r10000_llsc_war())
1548 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1549 else
1550 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1551
1552# ifdef CONFIG_PHYS_ADDR_T_64BIT
1553 if (!cpu_has_64bits) {
1554 /* no uasm_i_nop needed */
1555 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1556 uasm_i_ori(p, pte, pte, hwmode);
1557 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1558 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1559 /* no uasm_i_nop needed */
1560 uasm_i_lw(p, pte, 0, ptr);
1561 } else
1562 uasm_i_nop(p);
1563# else
1564 uasm_i_nop(p);
1565# endif
1566#else
1567# ifdef CONFIG_PHYS_ADDR_T_64BIT
1568 if (cpu_has_64bits)
1569 uasm_i_sd(p, pte, 0, ptr);
1570 else
1571# endif
1572 UASM_i_SW(p, pte, 0, ptr);
1573
1574# ifdef CONFIG_PHYS_ADDR_T_64BIT
1575 if (!cpu_has_64bits) {
1576 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1577 uasm_i_ori(p, pte, pte, hwmode);
1578 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1579 uasm_i_lw(p, pte, 0, ptr);
1580 }
1581# endif
1582#endif
1583}
1584
1585/*
1586 * Check if PTE is present, if not then jump to LABEL. PTR points to
1587 * the page table where this PTE is located, PTE will be re-loaded
1588 * with it's original value.
1589 */
1590static void
1591build_pte_present(u32 **p, struct uasm_reloc **r,
1592 int pte, int ptr, int scratch, enum label_id lid)
1593{
1594 int t = scratch >= 0 ? scratch : pte;
1595 int cur = pte;
1596
1597 if (cpu_has_rixi) {
1598 if (use_bbit_insns()) {
1599 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1600 uasm_i_nop(p);
1601 } else {
1602 if (_PAGE_PRESENT_SHIFT) {
1603 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1604 cur = t;
1605 }
1606 uasm_i_andi(p, t, cur, 1);
1607 uasm_il_beqz(p, r, t, lid);
1608 if (pte == t)
1609 /* You lose the SMP race :-(*/
1610 iPTE_LW(p, pte, ptr);
1611 }
1612 } else {
1613 if (_PAGE_PRESENT_SHIFT) {
1614 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1615 cur = t;
1616 }
1617 uasm_i_andi(p, t, cur,
1618 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1619 uasm_i_xori(p, t, t,
1620 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1621 uasm_il_bnez(p, r, t, lid);
1622 if (pte == t)
1623 /* You lose the SMP race :-(*/
1624 iPTE_LW(p, pte, ptr);
1625 }
1626}
1627
1628/* Make PTE valid, store result in PTR. */
1629static void
1630build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1631 unsigned int ptr)
1632{
1633 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1634
1635 iPTE_SW(p, r, pte, ptr, mode);
1636}
1637
1638/*
1639 * Check if PTE can be written to, if not branch to LABEL. Regardless
1640 * restore PTE with value from PTR when done.
1641 */
1642static void
1643build_pte_writable(u32 **p, struct uasm_reloc **r,
1644 unsigned int pte, unsigned int ptr, int scratch,
1645 enum label_id lid)
1646{
1647 int t = scratch >= 0 ? scratch : pte;
1648 int cur = pte;
1649
1650 if (_PAGE_PRESENT_SHIFT) {
1651 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1652 cur = t;
1653 }
1654 uasm_i_andi(p, t, cur,
1655 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1656 uasm_i_xori(p, t, t,
1657 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1658 uasm_il_bnez(p, r, t, lid);
1659 if (pte == t)
1660 /* You lose the SMP race :-(*/
1661 iPTE_LW(p, pte, ptr);
1662 else
1663 uasm_i_nop(p);
1664}
1665
1666/* Make PTE writable, update software status bits as well, then store
1667 * at PTR.
1668 */
1669static void
1670build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1671 unsigned int ptr)
1672{
1673 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1674 | _PAGE_DIRTY);
1675
1676 iPTE_SW(p, r, pte, ptr, mode);
1677}
1678
1679/*
1680 * Check if PTE can be modified, if not branch to LABEL. Regardless
1681 * restore PTE with value from PTR when done.
1682 */
1683static void
1684build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1685 unsigned int pte, unsigned int ptr, int scratch,
1686 enum label_id lid)
1687{
1688 if (use_bbit_insns()) {
1689 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1690 uasm_i_nop(p);
1691 } else {
1692 int t = scratch >= 0 ? scratch : pte;
1693 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1694 uasm_i_andi(p, t, t, 1);
1695 uasm_il_beqz(p, r, t, lid);
1696 if (pte == t)
1697 /* You lose the SMP race :-(*/
1698 iPTE_LW(p, pte, ptr);
1699 }
1700}
1701
1702#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1703
1704
1705/*
1706 * R3000 style TLB load/store/modify handlers.
1707 */
1708
1709/*
1710 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1711 * Then it returns.
1712 */
1713static void
1714build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1715{
1716 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1717 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1718 uasm_i_tlbwi(p);
1719 uasm_i_jr(p, tmp);
1720 uasm_i_rfe(p); /* branch delay */
1721}
1722
1723/*
1724 * This places the pte into ENTRYLO0 and writes it with tlbwi
1725 * or tlbwr as appropriate. This is because the index register
1726 * may have the probe fail bit set as a result of a trap on a
1727 * kseg2 access, i.e. without refill. Then it returns.
1728 */
1729static void
1730build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1731 struct uasm_reloc **r, unsigned int pte,
1732 unsigned int tmp)
1733{
1734 uasm_i_mfc0(p, tmp, C0_INDEX);
1735 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1736 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1737 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1738 uasm_i_tlbwi(p); /* cp0 delay */
1739 uasm_i_jr(p, tmp);
1740 uasm_i_rfe(p); /* branch delay */
1741 uasm_l_r3000_write_probe_fail(l, *p);
1742 uasm_i_tlbwr(p); /* cp0 delay */
1743 uasm_i_jr(p, tmp);
1744 uasm_i_rfe(p); /* branch delay */
1745}
1746
1747static void
1748build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1749 unsigned int ptr)
1750{
1751 long pgdc = (long)pgd_current;
1752
1753 uasm_i_mfc0(p, pte, C0_BADVADDR);
1754 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1755 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1756 uasm_i_srl(p, pte, pte, 22); /* load delay */
1757 uasm_i_sll(p, pte, pte, 2);
1758 uasm_i_addu(p, ptr, ptr, pte);
1759 uasm_i_mfc0(p, pte, C0_CONTEXT);
1760 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1761 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1762 uasm_i_addu(p, ptr, ptr, pte);
1763 uasm_i_lw(p, pte, 0, ptr);
1764 uasm_i_tlbp(p); /* load delay */
1765}
1766
1767static void build_r3000_tlb_load_handler(void)
1768{
1769 u32 *p = handle_tlbl;
1770 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1771 struct uasm_label *l = labels;
1772 struct uasm_reloc *r = relocs;
1773
1774 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1775 memset(labels, 0, sizeof(labels));
1776 memset(relocs, 0, sizeof(relocs));
1777
1778 build_r3000_tlbchange_handler_head(&p, K0, K1);
1779 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1780 uasm_i_nop(&p); /* load delay */
1781 build_make_valid(&p, &r, K0, K1);
1782 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1783
1784 uasm_l_nopage_tlbl(&l, p);
1785 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1786 uasm_i_nop(&p);
1787
1788 if (p >= handle_tlbl_end)
1789 panic("TLB load handler fastpath space exceeded");
1790
1791 uasm_resolve_relocs(relocs, labels);
1792 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1793 (unsigned int)(p - handle_tlbl));
1794
1795 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1796}
1797
1798static void build_r3000_tlb_store_handler(void)
1799{
1800 u32 *p = handle_tlbs;
1801 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1802 struct uasm_label *l = labels;
1803 struct uasm_reloc *r = relocs;
1804
1805 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1806 memset(labels, 0, sizeof(labels));
1807 memset(relocs, 0, sizeof(relocs));
1808
1809 build_r3000_tlbchange_handler_head(&p, K0, K1);
1810 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1811 uasm_i_nop(&p); /* load delay */
1812 build_make_write(&p, &r, K0, K1);
1813 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1814
1815 uasm_l_nopage_tlbs(&l, p);
1816 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1817 uasm_i_nop(&p);
1818
1819 if (p >= handle_tlbs_end)
1820 panic("TLB store handler fastpath space exceeded");
1821
1822 uasm_resolve_relocs(relocs, labels);
1823 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1824 (unsigned int)(p - handle_tlbs));
1825
1826 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1827}
1828
1829static void build_r3000_tlb_modify_handler(void)
1830{
1831 u32 *p = handle_tlbm;
1832 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1833 struct uasm_label *l = labels;
1834 struct uasm_reloc *r = relocs;
1835
1836 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1837 memset(labels, 0, sizeof(labels));
1838 memset(relocs, 0, sizeof(relocs));
1839
1840 build_r3000_tlbchange_handler_head(&p, K0, K1);
1841 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1842 uasm_i_nop(&p); /* load delay */
1843 build_make_write(&p, &r, K0, K1);
1844 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1845
1846 uasm_l_nopage_tlbm(&l, p);
1847 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1848 uasm_i_nop(&p);
1849
1850 if (p >= handle_tlbm_end)
1851 panic("TLB modify handler fastpath space exceeded");
1852
1853 uasm_resolve_relocs(relocs, labels);
1854 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1855 (unsigned int)(p - handle_tlbm));
1856
1857 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1858}
1859#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1860
1861/*
1862 * R4000 style TLB load/store/modify handlers.
1863 */
1864static struct work_registers
1865build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1866 struct uasm_reloc **r)
1867{
1868 struct work_registers wr = build_get_work_registers(p);
1869
1870#ifdef CONFIG_64BIT
1871 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1872#else
1873 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1874#endif
1875
1876#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1877 /*
1878 * For huge tlb entries, pmd doesn't contain an address but
1879 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1880 * see if we need to jump to huge tlb processing.
1881 */
1882 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1883#endif
1884
1885 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1886 UASM_i_LW(p, wr.r2, 0, wr.r2);
1887 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1888 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1889 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1890
1891#ifdef CONFIG_SMP
1892 uasm_l_smp_pgtable_change(l, *p);
1893#endif
1894 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1895 if (!m4kc_tlbp_war()) {
1896 build_tlb_probe_entry(p);
1897 if (cpu_has_htw) {
1898 /* race condition happens, leaving */
1899 uasm_i_ehb(p);
1900 uasm_i_mfc0(p, wr.r3, C0_INDEX);
1901 uasm_il_bltz(p, r, wr.r3, label_leave);
1902 uasm_i_nop(p);
1903 }
1904 }
1905 return wr;
1906}
1907
1908static void
1909build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1910 struct uasm_reloc **r, unsigned int tmp,
1911 unsigned int ptr)
1912{
1913 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1914 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1915 build_update_entries(p, tmp, ptr);
1916 build_tlb_write_entry(p, l, r, tlb_indexed);
1917 uasm_l_leave(l, *p);
1918 build_restore_work_registers(p);
1919 uasm_i_eret(p); /* return from trap */
1920
1921#ifdef CONFIG_64BIT
1922 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1923#endif
1924}
1925
1926static void build_r4000_tlb_load_handler(void)
1927{
1928 u32 *p = handle_tlbl;
1929 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1930 struct uasm_label *l = labels;
1931 struct uasm_reloc *r = relocs;
1932 struct work_registers wr;
1933
1934 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1935 memset(labels, 0, sizeof(labels));
1936 memset(relocs, 0, sizeof(relocs));
1937
1938 if (bcm1250_m3_war()) {
1939 unsigned int segbits = 44;
1940
1941 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1942 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1943 uasm_i_xor(&p, K0, K0, K1);
1944 uasm_i_dsrl_safe(&p, K1, K0, 62);
1945 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1946 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1947 uasm_i_or(&p, K0, K0, K1);
1948 uasm_il_bnez(&p, &r, K0, label_leave);
1949 /* No need for uasm_i_nop */
1950 }
1951
1952 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1953 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1954 if (m4kc_tlbp_war())
1955 build_tlb_probe_entry(&p);
1956
1957 if (cpu_has_rixi && !cpu_has_rixiex) {
1958 /*
1959 * If the page is not _PAGE_VALID, RI or XI could not
1960 * have triggered it. Skip the expensive test..
1961 */
1962 if (use_bbit_insns()) {
1963 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1964 label_tlbl_goaround1);
1965 } else {
1966 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1967 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1968 }
1969 uasm_i_nop(&p);
1970
1971 uasm_i_tlbr(&p);
1972
1973 switch (current_cpu_type()) {
1974 default:
1975 if (cpu_has_mips_r2_exec_hazard) {
1976 uasm_i_ehb(&p);
1977
1978 case CPU_CAVIUM_OCTEON:
1979 case CPU_CAVIUM_OCTEON_PLUS:
1980 case CPU_CAVIUM_OCTEON2:
1981 break;
1982 }
1983 }
1984
1985 /* Examine entrylo 0 or 1 based on ptr. */
1986 if (use_bbit_insns()) {
1987 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1988 } else {
1989 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1990 uasm_i_beqz(&p, wr.r3, 8);
1991 }
1992 /* load it in the delay slot*/
1993 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1994 /* load it if ptr is odd */
1995 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1996 /*
1997 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1998 * XI must have triggered it.
1999 */
2000 if (use_bbit_insns()) {
2001 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2002 uasm_i_nop(&p);
2003 uasm_l_tlbl_goaround1(&l, p);
2004 } else {
2005 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2006 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2007 uasm_i_nop(&p);
2008 }
2009 uasm_l_tlbl_goaround1(&l, p);
2010 }
2011 build_make_valid(&p, &r, wr.r1, wr.r2);
2012 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2013
2014#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2015 /*
2016 * This is the entry point when build_r4000_tlbchange_handler_head
2017 * spots a huge page.
2018 */
2019 uasm_l_tlb_huge_update(&l, p);
2020 iPTE_LW(&p, wr.r1, wr.r2);
2021 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2022 build_tlb_probe_entry(&p);
2023
2024 if (cpu_has_rixi && !cpu_has_rixiex) {
2025 /*
2026 * If the page is not _PAGE_VALID, RI or XI could not
2027 * have triggered it. Skip the expensive test..
2028 */
2029 if (use_bbit_insns()) {
2030 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2031 label_tlbl_goaround2);
2032 } else {
2033 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2034 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2035 }
2036 uasm_i_nop(&p);
2037
2038 uasm_i_tlbr(&p);
2039
2040 switch (current_cpu_type()) {
2041 default:
2042 if (cpu_has_mips_r2_exec_hazard) {
2043 uasm_i_ehb(&p);
2044
2045 case CPU_CAVIUM_OCTEON:
2046 case CPU_CAVIUM_OCTEON_PLUS:
2047 case CPU_CAVIUM_OCTEON2:
2048 break;
2049 }
2050 }
2051
2052 /* Examine entrylo 0 or 1 based on ptr. */
2053 if (use_bbit_insns()) {
2054 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2055 } else {
2056 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2057 uasm_i_beqz(&p, wr.r3, 8);
2058 }
2059 /* load it in the delay slot*/
2060 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2061 /* load it if ptr is odd */
2062 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2063 /*
2064 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2065 * XI must have triggered it.
2066 */
2067 if (use_bbit_insns()) {
2068 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2069 } else {
2070 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2071 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2072 }
2073 if (PM_DEFAULT_MASK == 0)
2074 uasm_i_nop(&p);
2075 /*
2076 * We clobbered C0_PAGEMASK, restore it. On the other branch
2077 * it is restored in build_huge_tlb_write_entry.
2078 */
2079 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2080
2081 uasm_l_tlbl_goaround2(&l, p);
2082 }
2083 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2084 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2085#endif
2086
2087 uasm_l_nopage_tlbl(&l, p);
2088 build_restore_work_registers(&p);
2089#ifdef CONFIG_CPU_MICROMIPS
2090 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2091 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2092 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2093 uasm_i_jr(&p, K0);
2094 } else
2095#endif
2096 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2097 uasm_i_nop(&p);
2098
2099 if (p >= handle_tlbl_end)
2100 panic("TLB load handler fastpath space exceeded");
2101
2102 uasm_resolve_relocs(relocs, labels);
2103 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2104 (unsigned int)(p - handle_tlbl));
2105
2106 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2107}
2108
2109static void build_r4000_tlb_store_handler(void)
2110{
2111 u32 *p = handle_tlbs;
2112 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2113 struct uasm_label *l = labels;
2114 struct uasm_reloc *r = relocs;
2115 struct work_registers wr;
2116
2117 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2118 memset(labels, 0, sizeof(labels));
2119 memset(relocs, 0, sizeof(relocs));
2120
2121 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2122 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2123 if (m4kc_tlbp_war())
2124 build_tlb_probe_entry(&p);
2125 build_make_write(&p, &r, wr.r1, wr.r2);
2126 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2127
2128#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2129 /*
2130 * This is the entry point when
2131 * build_r4000_tlbchange_handler_head spots a huge page.
2132 */
2133 uasm_l_tlb_huge_update(&l, p);
2134 iPTE_LW(&p, wr.r1, wr.r2);
2135 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2136 build_tlb_probe_entry(&p);
2137 uasm_i_ori(&p, wr.r1, wr.r1,
2138 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2139 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2140#endif
2141
2142 uasm_l_nopage_tlbs(&l, p);
2143 build_restore_work_registers(&p);
2144#ifdef CONFIG_CPU_MICROMIPS
2145 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2146 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2147 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2148 uasm_i_jr(&p, K0);
2149 } else
2150#endif
2151 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2152 uasm_i_nop(&p);
2153
2154 if (p >= handle_tlbs_end)
2155 panic("TLB store handler fastpath space exceeded");
2156
2157 uasm_resolve_relocs(relocs, labels);
2158 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2159 (unsigned int)(p - handle_tlbs));
2160
2161 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2162}
2163
2164static void build_r4000_tlb_modify_handler(void)
2165{
2166 u32 *p = handle_tlbm;
2167 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2168 struct uasm_label *l = labels;
2169 struct uasm_reloc *r = relocs;
2170 struct work_registers wr;
2171
2172 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2173 memset(labels, 0, sizeof(labels));
2174 memset(relocs, 0, sizeof(relocs));
2175
2176 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2177 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2178 if (m4kc_tlbp_war())
2179 build_tlb_probe_entry(&p);
2180 /* Present and writable bits set, set accessed and dirty bits. */
2181 build_make_write(&p, &r, wr.r1, wr.r2);
2182 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2183
2184#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2185 /*
2186 * This is the entry point when
2187 * build_r4000_tlbchange_handler_head spots a huge page.
2188 */
2189 uasm_l_tlb_huge_update(&l, p);
2190 iPTE_LW(&p, wr.r1, wr.r2);
2191 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2192 build_tlb_probe_entry(&p);
2193 uasm_i_ori(&p, wr.r1, wr.r1,
2194 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2195 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2196#endif
2197
2198 uasm_l_nopage_tlbm(&l, p);
2199 build_restore_work_registers(&p);
2200#ifdef CONFIG_CPU_MICROMIPS
2201 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2202 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2203 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2204 uasm_i_jr(&p, K0);
2205 } else
2206#endif
2207 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2208 uasm_i_nop(&p);
2209
2210 if (p >= handle_tlbm_end)
2211 panic("TLB modify handler fastpath space exceeded");
2212
2213 uasm_resolve_relocs(relocs, labels);
2214 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2215 (unsigned int)(p - handle_tlbm));
2216
2217 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2218}
2219
2220static void flush_tlb_handlers(void)
2221{
2222 local_flush_icache_range((unsigned long)handle_tlbl,
2223 (unsigned long)handle_tlbl_end);
2224 local_flush_icache_range((unsigned long)handle_tlbs,
2225 (unsigned long)handle_tlbs_end);
2226 local_flush_icache_range((unsigned long)handle_tlbm,
2227 (unsigned long)handle_tlbm_end);
2228 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2229 (unsigned long)tlbmiss_handler_setup_pgd_end);
2230}
2231
2232static void print_htw_config(void)
2233{
2234 unsigned long config;
2235 unsigned int pwctl;
2236 const int field = 2 * sizeof(unsigned long);
2237
2238 config = read_c0_pwfield();
2239 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2240 field, config,
2241 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2242 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2243 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2244 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2245 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2246
2247 config = read_c0_pwsize();
2248 pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2249 field, config,
2250 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2251 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2252 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2253 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2254 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2255
2256 pwctl = read_c0_pwctl();
2257 pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2258 pwctl,
2259 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2260 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2261 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2262 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2263}
2264
2265static void config_htw_params(void)
2266{
2267 unsigned long pwfield, pwsize, ptei;
2268 unsigned int config;
2269
2270 /*
2271 * We are using 2-level page tables, so we only need to
2272 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2273 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2274 * write values less than 0xc in these fields because the entire
2275 * write will be dropped. As a result of which, we must preserve
2276 * the original reset values and overwrite only what we really want.
2277 */
2278
2279 pwfield = read_c0_pwfield();
2280 /* re-initialize the GDI field */
2281 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2282 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2283 /* re-initialize the PTI field including the even/odd bit */
2284 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2285 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2286 if (CONFIG_PGTABLE_LEVELS >= 3) {
2287 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2288 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2289 }
2290 /* Set the PTEI right shift */
2291 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2292 pwfield |= ptei;
2293 write_c0_pwfield(pwfield);
2294 /* Check whether the PTEI value is supported */
2295 back_to_back_c0_hazard();
2296 pwfield = read_c0_pwfield();
2297 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2298 != ptei) {
2299 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2300 ptei);
2301 /*
2302 * Drop option to avoid HTW being enabled via another path
2303 * (eg htw_reset())
2304 */
2305 current_cpu_data.options &= ~MIPS_CPU_HTW;
2306 return;
2307 }
2308
2309 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2310 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2311 if (CONFIG_PGTABLE_LEVELS >= 3)
2312 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2313
2314 /* If XPA has been enabled, PTEs are 64-bit in size. */
2315 if (config_enabled(CONFIG_64BITS) || (read_c0_pagegrain() & PG_ELPA))
2316 pwsize |= 1;
2317
2318 write_c0_pwsize(pwsize);
2319
2320 /* Make sure everything is set before we enable the HTW */
2321 back_to_back_c0_hazard();
2322
2323 /* Enable HTW and disable the rest of the pwctl fields */
2324 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2325 write_c0_pwctl(config);
2326 pr_info("Hardware Page Table Walker enabled\n");
2327
2328 print_htw_config();
2329}
2330
2331static void config_xpa_params(void)
2332{
2333#ifdef CONFIG_XPA
2334 unsigned int pagegrain;
2335
2336 if (mips_xpa_disabled) {
2337 pr_info("Extended Physical Addressing (XPA) disabled\n");
2338 return;
2339 }
2340
2341 pagegrain = read_c0_pagegrain();
2342 write_c0_pagegrain(pagegrain | PG_ELPA);
2343 back_to_back_c0_hazard();
2344 pagegrain = read_c0_pagegrain();
2345
2346 if (pagegrain & PG_ELPA)
2347 pr_info("Extended Physical Addressing (XPA) enabled\n");
2348 else
2349 panic("Extended Physical Addressing (XPA) disabled");
2350#endif
2351}
2352
2353static void check_pabits(void)
2354{
2355 unsigned long entry;
2356 unsigned pabits, fillbits;
2357
2358 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2359 /*
2360 * We'll only be making use of the fact that we can rotate bits
2361 * into the fill if the CPU supports RIXI, so don't bother
2362 * probing this for CPUs which don't.
2363 */
2364 return;
2365 }
2366
2367 write_c0_entrylo0(~0ul);
2368 back_to_back_c0_hazard();
2369 entry = read_c0_entrylo0();
2370
2371 /* clear all non-PFN bits */
2372 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2373 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2374
2375 /* find a lower bound on PABITS, and upper bound on fill bits */
2376 pabits = fls_long(entry) + 6;
2377 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2378
2379 /* minus the RI & XI bits */
2380 fillbits -= min_t(unsigned, fillbits, 2);
2381
2382 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2383 fill_includes_sw_bits = true;
2384
2385 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2386}
2387
2388void build_tlb_refill_handler(void)
2389{
2390 /*
2391 * The refill handler is generated per-CPU, multi-node systems
2392 * may have local storage for it. The other handlers are only
2393 * needed once.
2394 */
2395 static int run_once = 0;
2396
2397 output_pgtable_bits_defines();
2398 check_pabits();
2399
2400#ifdef CONFIG_64BIT
2401 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2402#endif
2403
2404 switch (current_cpu_type()) {
2405 case CPU_R2000:
2406 case CPU_R3000:
2407 case CPU_R3000A:
2408 case CPU_R3081E:
2409 case CPU_TX3912:
2410 case CPU_TX3922:
2411 case CPU_TX3927:
2412#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2413 if (cpu_has_local_ebase)
2414 build_r3000_tlb_refill_handler();
2415 if (!run_once) {
2416 if (!cpu_has_local_ebase)
2417 build_r3000_tlb_refill_handler();
2418 build_setup_pgd();
2419 build_r3000_tlb_load_handler();
2420 build_r3000_tlb_store_handler();
2421 build_r3000_tlb_modify_handler();
2422 flush_tlb_handlers();
2423 run_once++;
2424 }
2425#else
2426 panic("No R3000 TLB refill handler");
2427#endif
2428 break;
2429
2430 case CPU_R6000:
2431 case CPU_R6000A:
2432 panic("No R6000 TLB refill handler yet");
2433 break;
2434
2435 case CPU_R8000:
2436 panic("No R8000 TLB refill handler yet");
2437 break;
2438
2439 default:
2440 if (!run_once) {
2441 scratch_reg = allocate_kscratch();
2442 build_setup_pgd();
2443 build_r4000_tlb_load_handler();
2444 build_r4000_tlb_store_handler();
2445 build_r4000_tlb_modify_handler();
2446 if (!cpu_has_local_ebase)
2447 build_r4000_tlb_refill_handler();
2448 flush_tlb_handlers();
2449 run_once++;
2450 }
2451 if (cpu_has_local_ebase)
2452 build_r4000_tlb_refill_handler();
2453 if (cpu_has_xpa)
2454 config_xpa_params();
2455 if (cpu_has_htw)
2456 config_htw_params();
2457 }
2458}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/export.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/smp.h>
29#include <linux/string.h>
30#include <linux/cache.h>
31#include <linux/pgtable.h>
32
33#include <asm/cacheflush.h>
34#include <asm/cpu-type.h>
35#include <asm/mmu_context.h>
36#include <asm/war.h>
37#include <asm/uasm.h>
38#include <asm/setup.h>
39#include <asm/tlbex.h>
40
41static int mips_xpa_disabled;
42
43static int __init xpa_disable(char *s)
44{
45 mips_xpa_disabled = 1;
46
47 return 1;
48}
49
50__setup("noxpa", xpa_disable);
51
52/*
53 * TLB load/store/modify handlers.
54 *
55 * Only the fastpath gets synthesized at runtime, the slowpath for
56 * do_page_fault remains normal asm.
57 */
58extern void tlb_do_page_fault_0(void);
59extern void tlb_do_page_fault_1(void);
60
61struct work_registers {
62 int r1;
63 int r2;
64 int r3;
65};
66
67struct tlb_reg_save {
68 unsigned long a;
69 unsigned long b;
70} ____cacheline_aligned_in_smp;
71
72static struct tlb_reg_save handler_reg_save[NR_CPUS];
73
74static inline int r45k_bvahwbug(void)
75{
76 /* XXX: We should probe for the presence of this bug, but we don't. */
77 return 0;
78}
79
80static inline int r4k_250MHZhwbug(void)
81{
82 /* XXX: We should probe for the presence of this bug, but we don't. */
83 return 0;
84}
85
86static inline int __maybe_unused bcm1250_m3_war(void)
87{
88 return BCM1250_M3_WAR;
89}
90
91static inline int __maybe_unused r10000_llsc_war(void)
92{
93 return R10000_LLSC_WAR;
94}
95
96static int use_bbit_insns(void)
97{
98 switch (current_cpu_type()) {
99 case CPU_CAVIUM_OCTEON:
100 case CPU_CAVIUM_OCTEON_PLUS:
101 case CPU_CAVIUM_OCTEON2:
102 case CPU_CAVIUM_OCTEON3:
103 return 1;
104 default:
105 return 0;
106 }
107}
108
109static int use_lwx_insns(void)
110{
111 switch (current_cpu_type()) {
112 case CPU_CAVIUM_OCTEON2:
113 case CPU_CAVIUM_OCTEON3:
114 return 1;
115 default:
116 return 0;
117 }
118}
119#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
120 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
121static bool scratchpad_available(void)
122{
123 return true;
124}
125static int scratchpad_offset(int i)
126{
127 /*
128 * CVMSEG starts at address -32768 and extends for
129 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
130 */
131 i += 1; /* Kernel use starts at the top and works down. */
132 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
133}
134#else
135static bool scratchpad_available(void)
136{
137 return false;
138}
139static int scratchpad_offset(int i)
140{
141 BUG();
142 /* Really unreachable, but evidently some GCC want this. */
143 return 0;
144}
145#endif
146/*
147 * Found by experiment: At least some revisions of the 4kc throw under
148 * some circumstances a machine check exception, triggered by invalid
149 * values in the index register. Delaying the tlbp instruction until
150 * after the next branch, plus adding an additional nop in front of
151 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
152 * why; it's not an issue caused by the core RTL.
153 *
154 */
155static int m4kc_tlbp_war(void)
156{
157 return current_cpu_type() == CPU_4KC;
158}
159
160/* Handle labels (which must be positive integers). */
161enum label_id {
162 label_second_part = 1,
163 label_leave,
164 label_vmalloc,
165 label_vmalloc_done,
166 label_tlbw_hazard_0,
167 label_split = label_tlbw_hazard_0 + 8,
168 label_tlbl_goaround1,
169 label_tlbl_goaround2,
170 label_nopage_tlbl,
171 label_nopage_tlbs,
172 label_nopage_tlbm,
173 label_smp_pgtable_change,
174 label_r3000_write_probe_fail,
175 label_large_segbits_fault,
176#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
177 label_tlb_huge_update,
178#endif
179};
180
181UASM_L_LA(_second_part)
182UASM_L_LA(_leave)
183UASM_L_LA(_vmalloc)
184UASM_L_LA(_vmalloc_done)
185/* _tlbw_hazard_x is handled differently. */
186UASM_L_LA(_split)
187UASM_L_LA(_tlbl_goaround1)
188UASM_L_LA(_tlbl_goaround2)
189UASM_L_LA(_nopage_tlbl)
190UASM_L_LA(_nopage_tlbs)
191UASM_L_LA(_nopage_tlbm)
192UASM_L_LA(_smp_pgtable_change)
193UASM_L_LA(_r3000_write_probe_fail)
194UASM_L_LA(_large_segbits_fault)
195#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
196UASM_L_LA(_tlb_huge_update)
197#endif
198
199static int hazard_instance;
200
201static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
202{
203 switch (instance) {
204 case 0 ... 7:
205 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
206 return;
207 default:
208 BUG();
209 }
210}
211
212static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
213{
214 switch (instance) {
215 case 0 ... 7:
216 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
217 break;
218 default:
219 BUG();
220 }
221}
222
223/*
224 * pgtable bits are assigned dynamically depending on processor feature
225 * and statically based on kernel configuration. This spits out the actual
226 * values the kernel is using. Required to make sense from disassembled
227 * TLB exception handlers.
228 */
229static void output_pgtable_bits_defines(void)
230{
231#define pr_define(fmt, ...) \
232 pr_debug("#define " fmt, ##__VA_ARGS__)
233
234 pr_debug("#include <asm/asm.h>\n");
235 pr_debug("#include <asm/regdef.h>\n");
236 pr_debug("\n");
237
238 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
241 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
242 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
243#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
244 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
245#endif
246#ifdef _PAGE_NO_EXEC_SHIFT
247 if (cpu_has_rixi)
248 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249#endif
250 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
251 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
252 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
253 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
254 pr_debug("\n");
255}
256
257static inline void dump_handler(const char *symbol, const void *start, const void *end)
258{
259 unsigned int count = (end - start) / sizeof(u32);
260 const u32 *handler = start;
261 int i;
262
263 pr_debug("LEAF(%s)\n", symbol);
264
265 pr_debug("\t.set push\n");
266 pr_debug("\t.set noreorder\n");
267
268 for (i = 0; i < count; i++)
269 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
270
271 pr_debug("\t.set\tpop\n");
272
273 pr_debug("\tEND(%s)\n", symbol);
274}
275
276/* The only general purpose registers allowed in TLB handlers. */
277#define K0 26
278#define K1 27
279
280/* Some CP0 registers */
281#define C0_INDEX 0, 0
282#define C0_ENTRYLO0 2, 0
283#define C0_TCBIND 2, 2
284#define C0_ENTRYLO1 3, 0
285#define C0_CONTEXT 4, 0
286#define C0_PAGEMASK 5, 0
287#define C0_PWBASE 5, 5
288#define C0_PWFIELD 5, 6
289#define C0_PWSIZE 5, 7
290#define C0_PWCTL 6, 6
291#define C0_BADVADDR 8, 0
292#define C0_PGD 9, 7
293#define C0_ENTRYHI 10, 0
294#define C0_EPC 14, 0
295#define C0_XCONTEXT 20, 0
296
297#ifdef CONFIG_64BIT
298# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
299#else
300# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
301#endif
302
303/* The worst case length of the handler is around 18 instructions for
304 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
305 * Maximum space available is 32 instructions for R3000 and 64
306 * instructions for R4000.
307 *
308 * We deliberately chose a buffer size of 128, so we won't scribble
309 * over anything important on overflow before we panic.
310 */
311static u32 tlb_handler[128];
312
313/* simply assume worst case size for labels and relocs */
314static struct uasm_label labels[128];
315static struct uasm_reloc relocs[128];
316
317static int check_for_high_segbits;
318static bool fill_includes_sw_bits;
319
320static unsigned int kscratch_used_mask;
321
322static inline int __maybe_unused c0_kscratch(void)
323{
324 switch (current_cpu_type()) {
325 case CPU_XLP:
326 case CPU_XLR:
327 return 22;
328 default:
329 return 31;
330 }
331}
332
333static int allocate_kscratch(void)
334{
335 int r;
336 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
337
338 r = ffs(a);
339
340 if (r == 0)
341 return -1;
342
343 r--; /* make it zero based */
344
345 kscratch_used_mask |= (1 << r);
346
347 return r;
348}
349
350static int scratch_reg;
351int pgd_reg;
352EXPORT_SYMBOL_GPL(pgd_reg);
353enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
354
355static struct work_registers build_get_work_registers(u32 **p)
356{
357 struct work_registers r;
358
359 if (scratch_reg >= 0) {
360 /* Save in CPU local C0_KScratch? */
361 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
362 r.r1 = K0;
363 r.r2 = K1;
364 r.r3 = 1;
365 return r;
366 }
367
368 if (num_possible_cpus() > 1) {
369 /* Get smp_processor_id */
370 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
371 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
372
373 /* handler_reg_save index in K0 */
374 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
375
376 UASM_i_LA(p, K1, (long)&handler_reg_save);
377 UASM_i_ADDU(p, K0, K0, K1);
378 } else {
379 UASM_i_LA(p, K0, (long)&handler_reg_save);
380 }
381 /* K0 now points to save area, save $1 and $2 */
382 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
383 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
384
385 r.r1 = K1;
386 r.r2 = 1;
387 r.r3 = 2;
388 return r;
389}
390
391static void build_restore_work_registers(u32 **p)
392{
393 if (scratch_reg >= 0) {
394 uasm_i_ehb(p);
395 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
396 return;
397 }
398 /* K0 already points to save area, restore $1 and $2 */
399 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
400 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
401}
402
403#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
404
405/*
406 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
407 * we cannot do r3000 under these circumstances.
408 *
409 * The R3000 TLB handler is simple.
410 */
411static void build_r3000_tlb_refill_handler(void)
412{
413 long pgdc = (long)pgd_current;
414 u32 *p;
415
416 memset(tlb_handler, 0, sizeof(tlb_handler));
417 p = tlb_handler;
418
419 uasm_i_mfc0(&p, K0, C0_BADVADDR);
420 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
421 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
422 uasm_i_srl(&p, K0, K0, 22); /* load delay */
423 uasm_i_sll(&p, K0, K0, 2);
424 uasm_i_addu(&p, K1, K1, K0);
425 uasm_i_mfc0(&p, K0, C0_CONTEXT);
426 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
427 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_lw(&p, K0, 0, K1);
430 uasm_i_nop(&p); /* load delay */
431 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
432 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
433 uasm_i_tlbwr(&p); /* cp0 delay */
434 uasm_i_jr(&p, K1);
435 uasm_i_rfe(&p); /* branch delay */
436
437 if (p > tlb_handler + 32)
438 panic("TLB refill handler space exceeded");
439
440 pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 (unsigned int)(p - tlb_handler));
442
443 memcpy((void *)ebase, tlb_handler, 0x80);
444 local_flush_icache_range(ebase, ebase + 0x80);
445 dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
446}
447#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
448
449/*
450 * The R4000 TLB handler is much more complicated. We have two
451 * consecutive handler areas with 32 instructions space each.
452 * Since they aren't used at the same time, we can overflow in the
453 * other one.To keep things simple, we first assume linear space,
454 * then we relocate it to the final handler layout as needed.
455 */
456static u32 final_handler[64];
457
458/*
459 * Hazards
460 *
461 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462 * 2. A timing hazard exists for the TLBP instruction.
463 *
464 * stalling_instruction
465 * TLBP
466 *
467 * The JTLB is being read for the TLBP throughout the stall generated by the
468 * previous instruction. This is not really correct as the stalling instruction
469 * can modify the address used to access the JTLB. The failure symptom is that
470 * the TLBP instruction will use an address created for the stalling instruction
471 * and not the address held in C0_ENHI and thus report the wrong results.
472 *
473 * The software work-around is to not allow the instruction preceding the TLBP
474 * to stall - make it an NOP or some other instruction guaranteed not to stall.
475 *
476 * Errata 2 will not be fixed. This errata is also on the R5000.
477 *
478 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479 */
480static void __maybe_unused build_tlb_probe_entry(u32 **p)
481{
482 switch (current_cpu_type()) {
483 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
484 case CPU_R4600:
485 case CPU_R4700:
486 case CPU_R5000:
487 case CPU_NEVADA:
488 uasm_i_nop(p);
489 uasm_i_tlbp(p);
490 break;
491
492 default:
493 uasm_i_tlbp(p);
494 break;
495 }
496}
497
498void build_tlb_write_entry(u32 **p, struct uasm_label **l,
499 struct uasm_reloc **r,
500 enum tlb_write_entry wmode)
501{
502 void(*tlbw)(u32 **) = NULL;
503
504 switch (wmode) {
505 case tlb_random: tlbw = uasm_i_tlbwr; break;
506 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
507 }
508
509 if (cpu_has_mips_r2_r6) {
510 if (cpu_has_mips_r2_exec_hazard)
511 uasm_i_ehb(p);
512 tlbw(p);
513 return;
514 }
515
516 switch (current_cpu_type()) {
517 case CPU_R4000PC:
518 case CPU_R4000SC:
519 case CPU_R4000MC:
520 case CPU_R4400PC:
521 case CPU_R4400SC:
522 case CPU_R4400MC:
523 /*
524 * This branch uses up a mtc0 hazard nop slot and saves
525 * two nops after the tlbw instruction.
526 */
527 uasm_bgezl_hazard(p, r, hazard_instance);
528 tlbw(p);
529 uasm_bgezl_label(l, p, hazard_instance);
530 hazard_instance++;
531 uasm_i_nop(p);
532 break;
533
534 case CPU_R4600:
535 case CPU_R4700:
536 uasm_i_nop(p);
537 tlbw(p);
538 uasm_i_nop(p);
539 break;
540
541 case CPU_R5000:
542 case CPU_NEVADA:
543 uasm_i_nop(p); /* QED specifies 2 nops hazard */
544 uasm_i_nop(p); /* QED specifies 2 nops hazard */
545 tlbw(p);
546 break;
547
548 case CPU_5KC:
549 case CPU_TX49XX:
550 case CPU_PR4450:
551 case CPU_XLR:
552 uasm_i_nop(p);
553 tlbw(p);
554 break;
555
556 case CPU_R10000:
557 case CPU_R12000:
558 case CPU_R14000:
559 case CPU_R16000:
560 case CPU_4KC:
561 case CPU_4KEC:
562 case CPU_M14KC:
563 case CPU_M14KEC:
564 case CPU_SB1:
565 case CPU_SB1A:
566 case CPU_4KSC:
567 case CPU_20KC:
568 case CPU_25KF:
569 case CPU_BMIPS32:
570 case CPU_BMIPS3300:
571 case CPU_BMIPS4350:
572 case CPU_BMIPS4380:
573 case CPU_BMIPS5000:
574 case CPU_LOONGSON2EF:
575 case CPU_LOONGSON64:
576 case CPU_R5500:
577 if (m4kc_tlbp_war())
578 uasm_i_nop(p);
579 fallthrough;
580 case CPU_ALCHEMY:
581 tlbw(p);
582 break;
583
584 case CPU_RM7000:
585 uasm_i_nop(p);
586 uasm_i_nop(p);
587 uasm_i_nop(p);
588 uasm_i_nop(p);
589 tlbw(p);
590 break;
591
592 case CPU_VR4111:
593 case CPU_VR4121:
594 case CPU_VR4122:
595 case CPU_VR4181:
596 case CPU_VR4181A:
597 uasm_i_nop(p);
598 uasm_i_nop(p);
599 tlbw(p);
600 uasm_i_nop(p);
601 uasm_i_nop(p);
602 break;
603
604 case CPU_VR4131:
605 case CPU_VR4133:
606 uasm_i_nop(p);
607 uasm_i_nop(p);
608 tlbw(p);
609 break;
610
611 case CPU_XBURST:
612 tlbw(p);
613 uasm_i_nop(p);
614 break;
615
616 default:
617 panic("No TLB refill handler yet (CPU type: %d)",
618 current_cpu_type());
619 break;
620 }
621}
622EXPORT_SYMBOL_GPL(build_tlb_write_entry);
623
624static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
625 unsigned int reg)
626{
627 if (_PAGE_GLOBAL_SHIFT == 0) {
628 /* pte_t is already in EntryLo format */
629 return;
630 }
631
632 if (cpu_has_rixi && !!_PAGE_NO_EXEC) {
633 if (fill_includes_sw_bits) {
634 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
635 } else {
636 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
637 UASM_i_ROTR(p, reg, reg,
638 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
639 }
640 } else {
641#ifdef CONFIG_PHYS_ADDR_T_64BIT
642 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
643#else
644 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
645#endif
646 }
647}
648
649#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
650
651static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
652 unsigned int tmp, enum label_id lid,
653 int restore_scratch)
654{
655 if (restore_scratch) {
656 /*
657 * Ensure the MFC0 below observes the value written to the
658 * KScratch register by the prior MTC0.
659 */
660 if (scratch_reg >= 0)
661 uasm_i_ehb(p);
662
663 /* Reset default page size */
664 if (PM_DEFAULT_MASK >> 16) {
665 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
666 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
667 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
668 uasm_il_b(p, r, lid);
669 } else if (PM_DEFAULT_MASK) {
670 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
671 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
672 uasm_il_b(p, r, lid);
673 } else {
674 uasm_i_mtc0(p, 0, C0_PAGEMASK);
675 uasm_il_b(p, r, lid);
676 }
677 if (scratch_reg >= 0)
678 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
679 else
680 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
681 } else {
682 /* Reset default page size */
683 if (PM_DEFAULT_MASK >> 16) {
684 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
685 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
686 uasm_il_b(p, r, lid);
687 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
688 } else if (PM_DEFAULT_MASK) {
689 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
690 uasm_il_b(p, r, lid);
691 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
692 } else {
693 uasm_il_b(p, r, lid);
694 uasm_i_mtc0(p, 0, C0_PAGEMASK);
695 }
696 }
697}
698
699static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
700 struct uasm_reloc **r,
701 unsigned int tmp,
702 enum tlb_write_entry wmode,
703 int restore_scratch)
704{
705 /* Set huge page tlb entry size */
706 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
707 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
708 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
709
710 build_tlb_write_entry(p, l, r, wmode);
711
712 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
713}
714
715/*
716 * Check if Huge PTE is present, if so then jump to LABEL.
717 */
718static void
719build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
720 unsigned int pmd, int lid)
721{
722 UASM_i_LW(p, tmp, 0, pmd);
723 if (use_bbit_insns()) {
724 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
725 } else {
726 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
727 uasm_il_bnez(p, r, tmp, lid);
728 }
729}
730
731static void build_huge_update_entries(u32 **p, unsigned int pte,
732 unsigned int tmp)
733{
734 int small_sequence;
735
736 /*
737 * A huge PTE describes an area the size of the
738 * configured huge page size. This is twice the
739 * of the large TLB entry size we intend to use.
740 * A TLB entry half the size of the configured
741 * huge page size is configured into entrylo0
742 * and entrylo1 to cover the contiguous huge PTE
743 * address space.
744 */
745 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
746
747 /* We can clobber tmp. It isn't used after this.*/
748 if (!small_sequence)
749 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
750
751 build_convert_pte_to_entrylo(p, pte);
752 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
753 /* convert to entrylo1 */
754 if (small_sequence)
755 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
756 else
757 UASM_i_ADDU(p, pte, pte, tmp);
758
759 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
760}
761
762static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
763 struct uasm_label **l,
764 unsigned int pte,
765 unsigned int ptr,
766 unsigned int flush)
767{
768#ifdef CONFIG_SMP
769 UASM_i_SC(p, pte, 0, ptr);
770 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
771 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
772#else
773 UASM_i_SW(p, pte, 0, ptr);
774#endif
775 if (cpu_has_ftlb && flush) {
776 BUG_ON(!cpu_has_tlbinv);
777
778 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
779 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
780 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
781 build_tlb_write_entry(p, l, r, tlb_indexed);
782
783 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
784 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
785 build_huge_update_entries(p, pte, ptr);
786 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
787
788 return;
789 }
790
791 build_huge_update_entries(p, pte, ptr);
792 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
793}
794#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
795
796#ifdef CONFIG_64BIT
797/*
798 * TMP and PTR are scratch.
799 * TMP will be clobbered, PTR will hold the pmd entry.
800 */
801void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
802 unsigned int tmp, unsigned int ptr)
803{
804#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
805 long pgdc = (long)pgd_current;
806#endif
807 /*
808 * The vmalloc handling is not in the hotpath.
809 */
810 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
811
812 if (check_for_high_segbits) {
813 /*
814 * The kernel currently implicitely assumes that the
815 * MIPS SEGBITS parameter for the processor is
816 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
817 * allocate virtual addresses outside the maximum
818 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
819 * that doesn't prevent user code from accessing the
820 * higher xuseg addresses. Here, we make sure that
821 * everything but the lower xuseg addresses goes down
822 * the module_alloc/vmalloc path.
823 */
824 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
825 uasm_il_bnez(p, r, ptr, label_vmalloc);
826 } else {
827 uasm_il_bltz(p, r, tmp, label_vmalloc);
828 }
829 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
830
831 if (pgd_reg != -1) {
832 /* pgd is in pgd_reg */
833 if (cpu_has_ldpte)
834 UASM_i_MFC0(p, ptr, C0_PWBASE);
835 else
836 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
837 } else {
838#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
839 /*
840 * &pgd << 11 stored in CONTEXT [23..63].
841 */
842 UASM_i_MFC0(p, ptr, C0_CONTEXT);
843
844 /* Clear lower 23 bits of context. */
845 uasm_i_dins(p, ptr, 0, 0, 23);
846
847 /* 1 0 1 0 1 << 6 xkphys cached */
848 uasm_i_ori(p, ptr, ptr, 0x540);
849 uasm_i_drotr(p, ptr, ptr, 11);
850#elif defined(CONFIG_SMP)
851 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
852 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
853 UASM_i_LA_mostly(p, tmp, pgdc);
854 uasm_i_daddu(p, ptr, ptr, tmp);
855 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
856 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
857#else
858 UASM_i_LA_mostly(p, ptr, pgdc);
859 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
860#endif
861 }
862
863 uasm_l_vmalloc_done(l, *p);
864
865 /* get pgd offset in bytes */
866 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
867
868 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
869 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
870#ifndef __PAGETABLE_PUD_FOLDED
871 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
872 uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
873 uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
874 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
875 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
876#endif
877#ifndef __PAGETABLE_PMD_FOLDED
878 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
879 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
880 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
881 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
882 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
883#endif
884}
885EXPORT_SYMBOL_GPL(build_get_pmde64);
886
887/*
888 * BVADDR is the faulting address, PTR is scratch.
889 * PTR will hold the pgd for vmalloc.
890 */
891static void
892build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
893 unsigned int bvaddr, unsigned int ptr,
894 enum vmalloc64_mode mode)
895{
896 long swpd = (long)swapper_pg_dir;
897 int single_insn_swpd;
898 int did_vmalloc_branch = 0;
899
900 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
901
902 uasm_l_vmalloc(l, *p);
903
904 if (mode != not_refill && check_for_high_segbits) {
905 if (single_insn_swpd) {
906 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
907 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
908 did_vmalloc_branch = 1;
909 /* fall through */
910 } else {
911 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
912 }
913 }
914 if (!did_vmalloc_branch) {
915 if (single_insn_swpd) {
916 uasm_il_b(p, r, label_vmalloc_done);
917 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
918 } else {
919 UASM_i_LA_mostly(p, ptr, swpd);
920 uasm_il_b(p, r, label_vmalloc_done);
921 if (uasm_in_compat_space_p(swpd))
922 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
923 else
924 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
925 }
926 }
927 if (mode != not_refill && check_for_high_segbits) {
928 uasm_l_large_segbits_fault(l, *p);
929
930 if (mode == refill_scratch && scratch_reg >= 0)
931 uasm_i_ehb(p);
932
933 /*
934 * We get here if we are an xsseg address, or if we are
935 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
936 *
937 * Ignoring xsseg (assume disabled so would generate
938 * (address errors?), the only remaining possibility
939 * is the upper xuseg addresses. On processors with
940 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
941 * addresses would have taken an address error. We try
942 * to mimic that here by taking a load/istream page
943 * fault.
944 */
945 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
946 uasm_i_sync(p, 0);
947 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
948 uasm_i_jr(p, ptr);
949
950 if (mode == refill_scratch) {
951 if (scratch_reg >= 0)
952 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
953 else
954 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
955 } else {
956 uasm_i_nop(p);
957 }
958 }
959}
960
961#else /* !CONFIG_64BIT */
962
963/*
964 * TMP and PTR are scratch.
965 * TMP will be clobbered, PTR will hold the pgd entry.
966 */
967void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
968{
969 if (pgd_reg != -1) {
970 /* pgd is in pgd_reg */
971 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
972 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
973 } else {
974 long pgdc = (long)pgd_current;
975
976 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
977#ifdef CONFIG_SMP
978 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
979 UASM_i_LA_mostly(p, tmp, pgdc);
980 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
981 uasm_i_addu(p, ptr, tmp, ptr);
982#else
983 UASM_i_LA_mostly(p, ptr, pgdc);
984#endif
985 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
986 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
987 }
988 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
989 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
990 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
991}
992EXPORT_SYMBOL_GPL(build_get_pgde32);
993
994#endif /* !CONFIG_64BIT */
995
996static void build_adjust_context(u32 **p, unsigned int ctx)
997{
998 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
999 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1000
1001 switch (current_cpu_type()) {
1002 case CPU_VR41XX:
1003 case CPU_VR4111:
1004 case CPU_VR4121:
1005 case CPU_VR4122:
1006 case CPU_VR4131:
1007 case CPU_VR4181:
1008 case CPU_VR4181A:
1009 case CPU_VR4133:
1010 shift += 2;
1011 break;
1012
1013 default:
1014 break;
1015 }
1016
1017 if (shift)
1018 UASM_i_SRL(p, ctx, ctx, shift);
1019 uasm_i_andi(p, ctx, ctx, mask);
1020}
1021
1022void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1023{
1024 /*
1025 * Bug workaround for the Nevada. It seems as if under certain
1026 * circumstances the move from cp0_context might produce a
1027 * bogus result when the mfc0 instruction and its consumer are
1028 * in a different cacheline or a load instruction, probably any
1029 * memory reference, is between them.
1030 */
1031 switch (current_cpu_type()) {
1032 case CPU_NEVADA:
1033 UASM_i_LW(p, ptr, 0, ptr);
1034 GET_CONTEXT(p, tmp); /* get context reg */
1035 break;
1036
1037 default:
1038 GET_CONTEXT(p, tmp); /* get context reg */
1039 UASM_i_LW(p, ptr, 0, ptr);
1040 break;
1041 }
1042
1043 build_adjust_context(p, tmp);
1044 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1045}
1046EXPORT_SYMBOL_GPL(build_get_ptep);
1047
1048void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1049{
1050 int pte_off_even = 0;
1051 int pte_off_odd = sizeof(pte_t);
1052
1053#if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1054 /* The low 32 bits of EntryLo is stored in pte_high */
1055 pte_off_even += offsetof(pte_t, pte_high);
1056 pte_off_odd += offsetof(pte_t, pte_high);
1057#endif
1058
1059 if (IS_ENABLED(CONFIG_XPA)) {
1060 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1061 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1062 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1063
1064 if (cpu_has_xpa && !mips_xpa_disabled) {
1065 uasm_i_lw(p, tmp, 0, ptep);
1066 uasm_i_ext(p, tmp, tmp, 0, 24);
1067 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1068 }
1069
1070 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1071 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1072 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1073
1074 if (cpu_has_xpa && !mips_xpa_disabled) {
1075 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1076 uasm_i_ext(p, tmp, tmp, 0, 24);
1077 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1078 }
1079 return;
1080 }
1081
1082 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1083 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1084 if (r45k_bvahwbug())
1085 build_tlb_probe_entry(p);
1086 build_convert_pte_to_entrylo(p, tmp);
1087 if (r4k_250MHZhwbug())
1088 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1089 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1090 build_convert_pte_to_entrylo(p, ptep);
1091 if (r45k_bvahwbug())
1092 uasm_i_mfc0(p, tmp, C0_INDEX);
1093 if (r4k_250MHZhwbug())
1094 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1095 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1096}
1097EXPORT_SYMBOL_GPL(build_update_entries);
1098
1099struct mips_huge_tlb_info {
1100 int huge_pte;
1101 int restore_scratch;
1102 bool need_reload_pte;
1103};
1104
1105static struct mips_huge_tlb_info
1106build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1107 struct uasm_reloc **r, unsigned int tmp,
1108 unsigned int ptr, int c0_scratch_reg)
1109{
1110 struct mips_huge_tlb_info rv;
1111 unsigned int even, odd;
1112 int vmalloc_branch_delay_filled = 0;
1113 const int scratch = 1; /* Our extra working register */
1114
1115 rv.huge_pte = scratch;
1116 rv.restore_scratch = 0;
1117 rv.need_reload_pte = false;
1118
1119 if (check_for_high_segbits) {
1120 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1121
1122 if (pgd_reg != -1)
1123 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1124 else
1125 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1126
1127 if (c0_scratch_reg >= 0)
1128 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1129 else
1130 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1131
1132 uasm_i_dsrl_safe(p, scratch, tmp,
1133 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1134 uasm_il_bnez(p, r, scratch, label_vmalloc);
1135
1136 if (pgd_reg == -1) {
1137 vmalloc_branch_delay_filled = 1;
1138 /* Clear lower 23 bits of context. */
1139 uasm_i_dins(p, ptr, 0, 0, 23);
1140 }
1141 } else {
1142 if (pgd_reg != -1)
1143 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1144 else
1145 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1146
1147 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1148
1149 if (c0_scratch_reg >= 0)
1150 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1151 else
1152 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1153
1154 if (pgd_reg == -1)
1155 /* Clear lower 23 bits of context. */
1156 uasm_i_dins(p, ptr, 0, 0, 23);
1157
1158 uasm_il_bltz(p, r, tmp, label_vmalloc);
1159 }
1160
1161 if (pgd_reg == -1) {
1162 vmalloc_branch_delay_filled = 1;
1163 /* 1 0 1 0 1 << 6 xkphys cached */
1164 uasm_i_ori(p, ptr, ptr, 0x540);
1165 uasm_i_drotr(p, ptr, ptr, 11);
1166 }
1167
1168#ifdef __PAGETABLE_PMD_FOLDED
1169#define LOC_PTEP scratch
1170#else
1171#define LOC_PTEP ptr
1172#endif
1173
1174 if (!vmalloc_branch_delay_filled)
1175 /* get pgd offset in bytes */
1176 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1177
1178 uasm_l_vmalloc_done(l, *p);
1179
1180 /*
1181 * tmp ptr
1182 * fall-through case = badvaddr *pgd_current
1183 * vmalloc case = badvaddr swapper_pg_dir
1184 */
1185
1186 if (vmalloc_branch_delay_filled)
1187 /* get pgd offset in bytes */
1188 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1189
1190#ifdef __PAGETABLE_PMD_FOLDED
1191 GET_CONTEXT(p, tmp); /* get context reg */
1192#endif
1193 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1194
1195 if (use_lwx_insns()) {
1196 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1197 } else {
1198 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1199 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1200 }
1201
1202#ifndef __PAGETABLE_PUD_FOLDED
1203 /* get pud offset in bytes */
1204 uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1205 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1206
1207 if (use_lwx_insns()) {
1208 UASM_i_LWX(p, ptr, scratch, ptr);
1209 } else {
1210 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1211 UASM_i_LW(p, ptr, 0, ptr);
1212 }
1213 /* ptr contains a pointer to PMD entry */
1214 /* tmp contains the address */
1215#endif
1216
1217#ifndef __PAGETABLE_PMD_FOLDED
1218 /* get pmd offset in bytes */
1219 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1220 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1221 GET_CONTEXT(p, tmp); /* get context reg */
1222
1223 if (use_lwx_insns()) {
1224 UASM_i_LWX(p, scratch, scratch, ptr);
1225 } else {
1226 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1227 UASM_i_LW(p, scratch, 0, ptr);
1228 }
1229#endif
1230 /* Adjust the context during the load latency. */
1231 build_adjust_context(p, tmp);
1232
1233#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1234 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1235 /*
1236 * The in the LWX case we don't want to do the load in the
1237 * delay slot. It cannot issue in the same cycle and may be
1238 * speculative and unneeded.
1239 */
1240 if (use_lwx_insns())
1241 uasm_i_nop(p);
1242#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1243
1244
1245 /* build_update_entries */
1246 if (use_lwx_insns()) {
1247 even = ptr;
1248 odd = tmp;
1249 UASM_i_LWX(p, even, scratch, tmp);
1250 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1251 UASM_i_LWX(p, odd, scratch, tmp);
1252 } else {
1253 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1254 even = tmp;
1255 odd = ptr;
1256 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1257 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1258 }
1259 if (cpu_has_rixi) {
1260 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1261 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1262 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1263 } else {
1264 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1265 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1266 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1267 }
1268 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1269
1270 if (c0_scratch_reg >= 0) {
1271 uasm_i_ehb(p);
1272 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1273 build_tlb_write_entry(p, l, r, tlb_random);
1274 uasm_l_leave(l, *p);
1275 rv.restore_scratch = 1;
1276 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1277 build_tlb_write_entry(p, l, r, tlb_random);
1278 uasm_l_leave(l, *p);
1279 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1280 } else {
1281 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1282 build_tlb_write_entry(p, l, r, tlb_random);
1283 uasm_l_leave(l, *p);
1284 rv.restore_scratch = 1;
1285 }
1286
1287 uasm_i_eret(p); /* return from trap */
1288
1289 return rv;
1290}
1291
1292/*
1293 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1294 * because EXL == 0. If we wrap, we can also use the 32 instruction
1295 * slots before the XTLB refill exception handler which belong to the
1296 * unused TLB refill exception.
1297 */
1298#define MIPS64_REFILL_INSNS 32
1299
1300static void build_r4000_tlb_refill_handler(void)
1301{
1302 u32 *p = tlb_handler;
1303 struct uasm_label *l = labels;
1304 struct uasm_reloc *r = relocs;
1305 u32 *f;
1306 unsigned int final_len;
1307 struct mips_huge_tlb_info htlb_info __maybe_unused;
1308 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1309
1310 memset(tlb_handler, 0, sizeof(tlb_handler));
1311 memset(labels, 0, sizeof(labels));
1312 memset(relocs, 0, sizeof(relocs));
1313 memset(final_handler, 0, sizeof(final_handler));
1314
1315 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1316 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1317 scratch_reg);
1318 vmalloc_mode = refill_scratch;
1319 } else {
1320 htlb_info.huge_pte = K0;
1321 htlb_info.restore_scratch = 0;
1322 htlb_info.need_reload_pte = true;
1323 vmalloc_mode = refill_noscratch;
1324 /*
1325 * create the plain linear handler
1326 */
1327 if (bcm1250_m3_war()) {
1328 unsigned int segbits = 44;
1329
1330 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1331 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1332 uasm_i_xor(&p, K0, K0, K1);
1333 uasm_i_dsrl_safe(&p, K1, K0, 62);
1334 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1335 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1336 uasm_i_or(&p, K0, K0, K1);
1337 uasm_il_bnez(&p, &r, K0, label_leave);
1338 /* No need for uasm_i_nop */
1339 }
1340
1341#ifdef CONFIG_64BIT
1342 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1343#else
1344 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1345#endif
1346
1347#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1348 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1349#endif
1350
1351 build_get_ptep(&p, K0, K1);
1352 build_update_entries(&p, K0, K1);
1353 build_tlb_write_entry(&p, &l, &r, tlb_random);
1354 uasm_l_leave(&l, p);
1355 uasm_i_eret(&p); /* return from trap */
1356 }
1357#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1358 uasm_l_tlb_huge_update(&l, p);
1359 if (htlb_info.need_reload_pte)
1360 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1361 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1362 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1363 htlb_info.restore_scratch);
1364#endif
1365
1366#ifdef CONFIG_64BIT
1367 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1368#endif
1369
1370 /*
1371 * Overflow check: For the 64bit handler, we need at least one
1372 * free instruction slot for the wrap-around branch. In worst
1373 * case, if the intended insertion point is a delay slot, we
1374 * need three, with the second nop'ed and the third being
1375 * unused.
1376 */
1377 switch (boot_cpu_type()) {
1378 default:
1379 if (sizeof(long) == 4) {
1380 case CPU_LOONGSON2EF:
1381 /* Loongson2 ebase is different than r4k, we have more space */
1382 if ((p - tlb_handler) > 64)
1383 panic("TLB refill handler space exceeded");
1384 /*
1385 * Now fold the handler in the TLB refill handler space.
1386 */
1387 f = final_handler;
1388 /* Simplest case, just copy the handler. */
1389 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1390 final_len = p - tlb_handler;
1391 break;
1392 } else {
1393 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1394 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1395 && uasm_insn_has_bdelay(relocs,
1396 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1397 panic("TLB refill handler space exceeded");
1398 /*
1399 * Now fold the handler in the TLB refill handler space.
1400 */
1401 f = final_handler + MIPS64_REFILL_INSNS;
1402 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1403 /* Just copy the handler. */
1404 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1405 final_len = p - tlb_handler;
1406 } else {
1407#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1408 const enum label_id ls = label_tlb_huge_update;
1409#else
1410 const enum label_id ls = label_vmalloc;
1411#endif
1412 u32 *split;
1413 int ov = 0;
1414 int i;
1415
1416 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1417 ;
1418 BUG_ON(i == ARRAY_SIZE(labels));
1419 split = labels[i].addr;
1420
1421 /*
1422 * See if we have overflown one way or the other.
1423 */
1424 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1425 split < p - MIPS64_REFILL_INSNS)
1426 ov = 1;
1427
1428 if (ov) {
1429 /*
1430 * Split two instructions before the end. One
1431 * for the branch and one for the instruction
1432 * in the delay slot.
1433 */
1434 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1435
1436 /*
1437 * If the branch would fall in a delay slot,
1438 * we must back up an additional instruction
1439 * so that it is no longer in a delay slot.
1440 */
1441 if (uasm_insn_has_bdelay(relocs, split - 1))
1442 split--;
1443 }
1444 /* Copy first part of the handler. */
1445 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1446 f += split - tlb_handler;
1447
1448 if (ov) {
1449 /* Insert branch. */
1450 uasm_l_split(&l, final_handler);
1451 uasm_il_b(&f, &r, label_split);
1452 if (uasm_insn_has_bdelay(relocs, split))
1453 uasm_i_nop(&f);
1454 else {
1455 uasm_copy_handler(relocs, labels,
1456 split, split + 1, f);
1457 uasm_move_labels(labels, f, f + 1, -1);
1458 f++;
1459 split++;
1460 }
1461 }
1462
1463 /* Copy the rest of the handler. */
1464 uasm_copy_handler(relocs, labels, split, p, final_handler);
1465 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1466 (p - split);
1467 }
1468 }
1469 break;
1470 }
1471
1472 uasm_resolve_relocs(relocs, labels);
1473 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1474 final_len);
1475
1476 memcpy((void *)ebase, final_handler, 0x100);
1477 local_flush_icache_range(ebase, ebase + 0x100);
1478 dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1479}
1480
1481static void setup_pw(void)
1482{
1483 unsigned int pwctl;
1484 unsigned long pgd_i, pgd_w;
1485#ifndef __PAGETABLE_PMD_FOLDED
1486 unsigned long pmd_i, pmd_w;
1487#endif
1488 unsigned long pt_i, pt_w;
1489 unsigned long pte_i, pte_w;
1490#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1491 unsigned long psn;
1492
1493 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1494#endif
1495 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1496#ifndef __PAGETABLE_PMD_FOLDED
1497 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1498
1499 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1500 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1501#else
1502 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1503#endif
1504
1505 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1506 pt_w = PAGE_SHIFT - 3;
1507
1508 pte_i = ilog2(_PAGE_GLOBAL);
1509 pte_w = 0;
1510 pwctl = 1 << 30; /* Set PWDirExt */
1511
1512#ifndef __PAGETABLE_PMD_FOLDED
1513 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1514 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1515#else
1516 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1517 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1518#endif
1519
1520#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1521 pwctl |= (1 << 6 | psn);
1522#endif
1523 write_c0_pwctl(pwctl);
1524 write_c0_kpgd((long)swapper_pg_dir);
1525 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1526}
1527
1528static void build_loongson3_tlb_refill_handler(void)
1529{
1530 u32 *p = tlb_handler;
1531 struct uasm_label *l = labels;
1532 struct uasm_reloc *r = relocs;
1533
1534 memset(labels, 0, sizeof(labels));
1535 memset(relocs, 0, sizeof(relocs));
1536 memset(tlb_handler, 0, sizeof(tlb_handler));
1537
1538 if (check_for_high_segbits) {
1539 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1540 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1541 uasm_il_beqz(&p, &r, K1, label_vmalloc);
1542 uasm_i_nop(&p);
1543
1544 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1545 uasm_i_nop(&p);
1546 uasm_l_vmalloc(&l, p);
1547 }
1548
1549 uasm_i_dmfc0(&p, K1, C0_PGD);
1550
1551 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
1552#ifndef __PAGETABLE_PMD_FOLDED
1553 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
1554#endif
1555 uasm_i_ldpte(&p, K1, 0); /* even */
1556 uasm_i_ldpte(&p, K1, 1); /* odd */
1557 uasm_i_tlbwr(&p);
1558
1559 /* restore page mask */
1560 if (PM_DEFAULT_MASK >> 16) {
1561 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1562 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1563 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1564 } else if (PM_DEFAULT_MASK) {
1565 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1566 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1567 } else {
1568 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1569 }
1570
1571 uasm_i_eret(&p);
1572
1573 if (check_for_high_segbits) {
1574 uasm_l_large_segbits_fault(&l, p);
1575 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1576 uasm_i_jr(&p, K1);
1577 uasm_i_nop(&p);
1578 }
1579
1580 uasm_resolve_relocs(relocs, labels);
1581 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1582 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1583 dump_handler("loongson3_tlb_refill",
1584 (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1585}
1586
1587static void build_setup_pgd(void)
1588{
1589 const int a0 = 4;
1590 const int __maybe_unused a1 = 5;
1591 const int __maybe_unused a2 = 6;
1592 u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1593#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1594 long pgdc = (long)pgd_current;
1595#endif
1596
1597 memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1598 memset(labels, 0, sizeof(labels));
1599 memset(relocs, 0, sizeof(relocs));
1600 pgd_reg = allocate_kscratch();
1601#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1602 if (pgd_reg == -1) {
1603 struct uasm_label *l = labels;
1604 struct uasm_reloc *r = relocs;
1605
1606 /* PGD << 11 in c0_Context */
1607 /*
1608 * If it is a ckseg0 address, convert to a physical
1609 * address. Shifting right by 29 and adding 4 will
1610 * result in zero for these addresses.
1611 *
1612 */
1613 UASM_i_SRA(&p, a1, a0, 29);
1614 UASM_i_ADDIU(&p, a1, a1, 4);
1615 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1616 uasm_i_nop(&p);
1617 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1618 uasm_l_tlbl_goaround1(&l, p);
1619 UASM_i_SLL(&p, a0, a0, 11);
1620 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1621 uasm_i_jr(&p, 31);
1622 uasm_i_ehb(&p);
1623 } else {
1624 /* PGD in c0_KScratch */
1625 if (cpu_has_ldpte)
1626 UASM_i_MTC0(&p, a0, C0_PWBASE);
1627 else
1628 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1629 uasm_i_jr(&p, 31);
1630 uasm_i_ehb(&p);
1631 }
1632#else
1633#ifdef CONFIG_SMP
1634 /* Save PGD to pgd_current[smp_processor_id()] */
1635 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1636 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1637 UASM_i_LA_mostly(&p, a2, pgdc);
1638 UASM_i_ADDU(&p, a2, a2, a1);
1639 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1640#else
1641 UASM_i_LA_mostly(&p, a2, pgdc);
1642 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1643#endif /* SMP */
1644
1645 /* if pgd_reg is allocated, save PGD also to scratch register */
1646 if (pgd_reg != -1) {
1647 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1648 uasm_i_jr(&p, 31);
1649 uasm_i_ehb(&p);
1650 } else {
1651 uasm_i_jr(&p, 31);
1652 uasm_i_nop(&p);
1653 }
1654#endif
1655 if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1656 panic("tlbmiss_handler_setup_pgd space exceeded");
1657
1658 uasm_resolve_relocs(relocs, labels);
1659 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1660 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1661
1662 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1663 tlbmiss_handler_setup_pgd_end);
1664}
1665
1666static void
1667iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1668{
1669#ifdef CONFIG_SMP
1670 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1671 uasm_i_sync(p, 0);
1672# ifdef CONFIG_PHYS_ADDR_T_64BIT
1673 if (cpu_has_64bits)
1674 uasm_i_lld(p, pte, 0, ptr);
1675 else
1676# endif
1677 UASM_i_LL(p, pte, 0, ptr);
1678#else
1679# ifdef CONFIG_PHYS_ADDR_T_64BIT
1680 if (cpu_has_64bits)
1681 uasm_i_ld(p, pte, 0, ptr);
1682 else
1683# endif
1684 UASM_i_LW(p, pte, 0, ptr);
1685#endif
1686}
1687
1688static void
1689iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1690 unsigned int mode, unsigned int scratch)
1691{
1692 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1693 unsigned int swmode = mode & ~hwmode;
1694
1695 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1696 uasm_i_lui(p, scratch, swmode >> 16);
1697 uasm_i_or(p, pte, pte, scratch);
1698 BUG_ON(swmode & 0xffff);
1699 } else {
1700 uasm_i_ori(p, pte, pte, mode);
1701 }
1702
1703#ifdef CONFIG_SMP
1704# ifdef CONFIG_PHYS_ADDR_T_64BIT
1705 if (cpu_has_64bits)
1706 uasm_i_scd(p, pte, 0, ptr);
1707 else
1708# endif
1709 UASM_i_SC(p, pte, 0, ptr);
1710
1711 if (r10000_llsc_war())
1712 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1713 else
1714 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1715
1716# ifdef CONFIG_PHYS_ADDR_T_64BIT
1717 if (!cpu_has_64bits) {
1718 /* no uasm_i_nop needed */
1719 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1720 uasm_i_ori(p, pte, pte, hwmode);
1721 BUG_ON(hwmode & ~0xffff);
1722 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1723 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1724 /* no uasm_i_nop needed */
1725 uasm_i_lw(p, pte, 0, ptr);
1726 } else
1727 uasm_i_nop(p);
1728# else
1729 uasm_i_nop(p);
1730# endif
1731#else
1732# ifdef CONFIG_PHYS_ADDR_T_64BIT
1733 if (cpu_has_64bits)
1734 uasm_i_sd(p, pte, 0, ptr);
1735 else
1736# endif
1737 UASM_i_SW(p, pte, 0, ptr);
1738
1739# ifdef CONFIG_PHYS_ADDR_T_64BIT
1740 if (!cpu_has_64bits) {
1741 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1742 uasm_i_ori(p, pte, pte, hwmode);
1743 BUG_ON(hwmode & ~0xffff);
1744 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1745 uasm_i_lw(p, pte, 0, ptr);
1746 }
1747# endif
1748#endif
1749}
1750
1751/*
1752 * Check if PTE is present, if not then jump to LABEL. PTR points to
1753 * the page table where this PTE is located, PTE will be re-loaded
1754 * with it's original value.
1755 */
1756static void
1757build_pte_present(u32 **p, struct uasm_reloc **r,
1758 int pte, int ptr, int scratch, enum label_id lid)
1759{
1760 int t = scratch >= 0 ? scratch : pte;
1761 int cur = pte;
1762
1763 if (cpu_has_rixi) {
1764 if (use_bbit_insns()) {
1765 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1766 uasm_i_nop(p);
1767 } else {
1768 if (_PAGE_PRESENT_SHIFT) {
1769 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1770 cur = t;
1771 }
1772 uasm_i_andi(p, t, cur, 1);
1773 uasm_il_beqz(p, r, t, lid);
1774 if (pte == t)
1775 /* You lose the SMP race :-(*/
1776 iPTE_LW(p, pte, ptr);
1777 }
1778 } else {
1779 if (_PAGE_PRESENT_SHIFT) {
1780 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1781 cur = t;
1782 }
1783 uasm_i_andi(p, t, cur,
1784 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1785 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1786 uasm_il_bnez(p, r, t, lid);
1787 if (pte == t)
1788 /* You lose the SMP race :-(*/
1789 iPTE_LW(p, pte, ptr);
1790 }
1791}
1792
1793/* Make PTE valid, store result in PTR. */
1794static void
1795build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1796 unsigned int ptr, unsigned int scratch)
1797{
1798 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1799
1800 iPTE_SW(p, r, pte, ptr, mode, scratch);
1801}
1802
1803/*
1804 * Check if PTE can be written to, if not branch to LABEL. Regardless
1805 * restore PTE with value from PTR when done.
1806 */
1807static void
1808build_pte_writable(u32 **p, struct uasm_reloc **r,
1809 unsigned int pte, unsigned int ptr, int scratch,
1810 enum label_id lid)
1811{
1812 int t = scratch >= 0 ? scratch : pte;
1813 int cur = pte;
1814
1815 if (_PAGE_PRESENT_SHIFT) {
1816 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1817 cur = t;
1818 }
1819 uasm_i_andi(p, t, cur,
1820 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1821 uasm_i_xori(p, t, t,
1822 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1823 uasm_il_bnez(p, r, t, lid);
1824 if (pte == t)
1825 /* You lose the SMP race :-(*/
1826 iPTE_LW(p, pte, ptr);
1827 else
1828 uasm_i_nop(p);
1829}
1830
1831/* Make PTE writable, update software status bits as well, then store
1832 * at PTR.
1833 */
1834static void
1835build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1836 unsigned int ptr, unsigned int scratch)
1837{
1838 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1839 | _PAGE_DIRTY);
1840
1841 iPTE_SW(p, r, pte, ptr, mode, scratch);
1842}
1843
1844/*
1845 * Check if PTE can be modified, if not branch to LABEL. Regardless
1846 * restore PTE with value from PTR when done.
1847 */
1848static void
1849build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1850 unsigned int pte, unsigned int ptr, int scratch,
1851 enum label_id lid)
1852{
1853 if (use_bbit_insns()) {
1854 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1855 uasm_i_nop(p);
1856 } else {
1857 int t = scratch >= 0 ? scratch : pte;
1858 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1859 uasm_i_andi(p, t, t, 1);
1860 uasm_il_beqz(p, r, t, lid);
1861 if (pte == t)
1862 /* You lose the SMP race :-(*/
1863 iPTE_LW(p, pte, ptr);
1864 }
1865}
1866
1867#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1868
1869
1870/*
1871 * R3000 style TLB load/store/modify handlers.
1872 */
1873
1874/*
1875 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1876 * Then it returns.
1877 */
1878static void
1879build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1880{
1881 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1882 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1883 uasm_i_tlbwi(p);
1884 uasm_i_jr(p, tmp);
1885 uasm_i_rfe(p); /* branch delay */
1886}
1887
1888/*
1889 * This places the pte into ENTRYLO0 and writes it with tlbwi
1890 * or tlbwr as appropriate. This is because the index register
1891 * may have the probe fail bit set as a result of a trap on a
1892 * kseg2 access, i.e. without refill. Then it returns.
1893 */
1894static void
1895build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1896 struct uasm_reloc **r, unsigned int pte,
1897 unsigned int tmp)
1898{
1899 uasm_i_mfc0(p, tmp, C0_INDEX);
1900 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1901 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1902 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1903 uasm_i_tlbwi(p); /* cp0 delay */
1904 uasm_i_jr(p, tmp);
1905 uasm_i_rfe(p); /* branch delay */
1906 uasm_l_r3000_write_probe_fail(l, *p);
1907 uasm_i_tlbwr(p); /* cp0 delay */
1908 uasm_i_jr(p, tmp);
1909 uasm_i_rfe(p); /* branch delay */
1910}
1911
1912static void
1913build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1914 unsigned int ptr)
1915{
1916 long pgdc = (long)pgd_current;
1917
1918 uasm_i_mfc0(p, pte, C0_BADVADDR);
1919 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1920 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1921 uasm_i_srl(p, pte, pte, 22); /* load delay */
1922 uasm_i_sll(p, pte, pte, 2);
1923 uasm_i_addu(p, ptr, ptr, pte);
1924 uasm_i_mfc0(p, pte, C0_CONTEXT);
1925 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1926 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1927 uasm_i_addu(p, ptr, ptr, pte);
1928 uasm_i_lw(p, pte, 0, ptr);
1929 uasm_i_tlbp(p); /* load delay */
1930}
1931
1932static void build_r3000_tlb_load_handler(void)
1933{
1934 u32 *p = (u32 *)handle_tlbl;
1935 struct uasm_label *l = labels;
1936 struct uasm_reloc *r = relocs;
1937
1938 memset(p, 0, handle_tlbl_end - (char *)p);
1939 memset(labels, 0, sizeof(labels));
1940 memset(relocs, 0, sizeof(relocs));
1941
1942 build_r3000_tlbchange_handler_head(&p, K0, K1);
1943 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1944 uasm_i_nop(&p); /* load delay */
1945 build_make_valid(&p, &r, K0, K1, -1);
1946 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1947
1948 uasm_l_nopage_tlbl(&l, p);
1949 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1950 uasm_i_nop(&p);
1951
1952 if (p >= (u32 *)handle_tlbl_end)
1953 panic("TLB load handler fastpath space exceeded");
1954
1955 uasm_resolve_relocs(relocs, labels);
1956 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1957 (unsigned int)(p - (u32 *)handle_tlbl));
1958
1959 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1960}
1961
1962static void build_r3000_tlb_store_handler(void)
1963{
1964 u32 *p = (u32 *)handle_tlbs;
1965 struct uasm_label *l = labels;
1966 struct uasm_reloc *r = relocs;
1967
1968 memset(p, 0, handle_tlbs_end - (char *)p);
1969 memset(labels, 0, sizeof(labels));
1970 memset(relocs, 0, sizeof(relocs));
1971
1972 build_r3000_tlbchange_handler_head(&p, K0, K1);
1973 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1974 uasm_i_nop(&p); /* load delay */
1975 build_make_write(&p, &r, K0, K1, -1);
1976 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1977
1978 uasm_l_nopage_tlbs(&l, p);
1979 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1980 uasm_i_nop(&p);
1981
1982 if (p >= (u32 *)handle_tlbs_end)
1983 panic("TLB store handler fastpath space exceeded");
1984
1985 uasm_resolve_relocs(relocs, labels);
1986 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1987 (unsigned int)(p - (u32 *)handle_tlbs));
1988
1989 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1990}
1991
1992static void build_r3000_tlb_modify_handler(void)
1993{
1994 u32 *p = (u32 *)handle_tlbm;
1995 struct uasm_label *l = labels;
1996 struct uasm_reloc *r = relocs;
1997
1998 memset(p, 0, handle_tlbm_end - (char *)p);
1999 memset(labels, 0, sizeof(labels));
2000 memset(relocs, 0, sizeof(relocs));
2001
2002 build_r3000_tlbchange_handler_head(&p, K0, K1);
2003 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
2004 uasm_i_nop(&p); /* load delay */
2005 build_make_write(&p, &r, K0, K1, -1);
2006 build_r3000_pte_reload_tlbwi(&p, K0, K1);
2007
2008 uasm_l_nopage_tlbm(&l, p);
2009 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2010 uasm_i_nop(&p);
2011
2012 if (p >= (u32 *)handle_tlbm_end)
2013 panic("TLB modify handler fastpath space exceeded");
2014
2015 uasm_resolve_relocs(relocs, labels);
2016 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2017 (unsigned int)(p - (u32 *)handle_tlbm));
2018
2019 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
2020}
2021#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
2022
2023static bool cpu_has_tlbex_tlbp_race(void)
2024{
2025 /*
2026 * When a Hardware Table Walker is running it can replace TLB entries
2027 * at any time, leading to a race between it & the CPU.
2028 */
2029 if (cpu_has_htw)
2030 return true;
2031
2032 /*
2033 * If the CPU shares FTLB RAM with its siblings then our entry may be
2034 * replaced at any time by a sibling performing a write to the FTLB.
2035 */
2036 if (cpu_has_shared_ftlb_ram)
2037 return true;
2038
2039 /* In all other cases there ought to be no race condition to handle */
2040 return false;
2041}
2042
2043/*
2044 * R4000 style TLB load/store/modify handlers.
2045 */
2046static struct work_registers
2047build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2048 struct uasm_reloc **r)
2049{
2050 struct work_registers wr = build_get_work_registers(p);
2051
2052#ifdef CONFIG_64BIT
2053 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2054#else
2055 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2056#endif
2057
2058#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2059 /*
2060 * For huge tlb entries, pmd doesn't contain an address but
2061 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2062 * see if we need to jump to huge tlb processing.
2063 */
2064 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2065#endif
2066
2067 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2068 UASM_i_LW(p, wr.r2, 0, wr.r2);
2069 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2070 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2071 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2072
2073#ifdef CONFIG_SMP
2074 uasm_l_smp_pgtable_change(l, *p);
2075#endif
2076 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2077 if (!m4kc_tlbp_war()) {
2078 build_tlb_probe_entry(p);
2079 if (cpu_has_tlbex_tlbp_race()) {
2080 /* race condition happens, leaving */
2081 uasm_i_ehb(p);
2082 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2083 uasm_il_bltz(p, r, wr.r3, label_leave);
2084 uasm_i_nop(p);
2085 }
2086 }
2087 return wr;
2088}
2089
2090static void
2091build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2092 struct uasm_reloc **r, unsigned int tmp,
2093 unsigned int ptr)
2094{
2095 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2096 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2097 build_update_entries(p, tmp, ptr);
2098 build_tlb_write_entry(p, l, r, tlb_indexed);
2099 uasm_l_leave(l, *p);
2100 build_restore_work_registers(p);
2101 uasm_i_eret(p); /* return from trap */
2102
2103#ifdef CONFIG_64BIT
2104 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2105#endif
2106}
2107
2108static void build_r4000_tlb_load_handler(void)
2109{
2110 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2111 struct uasm_label *l = labels;
2112 struct uasm_reloc *r = relocs;
2113 struct work_registers wr;
2114
2115 memset(p, 0, handle_tlbl_end - (char *)p);
2116 memset(labels, 0, sizeof(labels));
2117 memset(relocs, 0, sizeof(relocs));
2118
2119 if (bcm1250_m3_war()) {
2120 unsigned int segbits = 44;
2121
2122 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2123 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2124 uasm_i_xor(&p, K0, K0, K1);
2125 uasm_i_dsrl_safe(&p, K1, K0, 62);
2126 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2127 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2128 uasm_i_or(&p, K0, K0, K1);
2129 uasm_il_bnez(&p, &r, K0, label_leave);
2130 /* No need for uasm_i_nop */
2131 }
2132
2133 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2134 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2135 if (m4kc_tlbp_war())
2136 build_tlb_probe_entry(&p);
2137
2138 if (cpu_has_rixi && !cpu_has_rixiex) {
2139 /*
2140 * If the page is not _PAGE_VALID, RI or XI could not
2141 * have triggered it. Skip the expensive test..
2142 */
2143 if (use_bbit_insns()) {
2144 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2145 label_tlbl_goaround1);
2146 } else {
2147 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2148 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2149 }
2150 uasm_i_nop(&p);
2151
2152 /*
2153 * Warn if something may race with us & replace the TLB entry
2154 * before we read it here. Everything with such races should
2155 * also have dedicated RiXi exception handlers, so this
2156 * shouldn't be hit.
2157 */
2158 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2159
2160 uasm_i_tlbr(&p);
2161
2162 switch (current_cpu_type()) {
2163 default:
2164 if (cpu_has_mips_r2_exec_hazard) {
2165 uasm_i_ehb(&p);
2166
2167 case CPU_CAVIUM_OCTEON:
2168 case CPU_CAVIUM_OCTEON_PLUS:
2169 case CPU_CAVIUM_OCTEON2:
2170 break;
2171 }
2172 }
2173
2174 /* Examine entrylo 0 or 1 based on ptr. */
2175 if (use_bbit_insns()) {
2176 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2177 } else {
2178 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2179 uasm_i_beqz(&p, wr.r3, 8);
2180 }
2181 /* load it in the delay slot*/
2182 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2183 /* load it if ptr is odd */
2184 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2185 /*
2186 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2187 * XI must have triggered it.
2188 */
2189 if (use_bbit_insns()) {
2190 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2191 uasm_i_nop(&p);
2192 uasm_l_tlbl_goaround1(&l, p);
2193 } else {
2194 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2195 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2196 uasm_i_nop(&p);
2197 }
2198 uasm_l_tlbl_goaround1(&l, p);
2199 }
2200 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2201 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2202
2203#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2204 /*
2205 * This is the entry point when build_r4000_tlbchange_handler_head
2206 * spots a huge page.
2207 */
2208 uasm_l_tlb_huge_update(&l, p);
2209 iPTE_LW(&p, wr.r1, wr.r2);
2210 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2211 build_tlb_probe_entry(&p);
2212
2213 if (cpu_has_rixi && !cpu_has_rixiex) {
2214 /*
2215 * If the page is not _PAGE_VALID, RI or XI could not
2216 * have triggered it. Skip the expensive test..
2217 */
2218 if (use_bbit_insns()) {
2219 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2220 label_tlbl_goaround2);
2221 } else {
2222 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2223 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2224 }
2225 uasm_i_nop(&p);
2226
2227 /*
2228 * Warn if something may race with us & replace the TLB entry
2229 * before we read it here. Everything with such races should
2230 * also have dedicated RiXi exception handlers, so this
2231 * shouldn't be hit.
2232 */
2233 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2234
2235 uasm_i_tlbr(&p);
2236
2237 switch (current_cpu_type()) {
2238 default:
2239 if (cpu_has_mips_r2_exec_hazard) {
2240 uasm_i_ehb(&p);
2241
2242 case CPU_CAVIUM_OCTEON:
2243 case CPU_CAVIUM_OCTEON_PLUS:
2244 case CPU_CAVIUM_OCTEON2:
2245 break;
2246 }
2247 }
2248
2249 /* Examine entrylo 0 or 1 based on ptr. */
2250 if (use_bbit_insns()) {
2251 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2252 } else {
2253 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2254 uasm_i_beqz(&p, wr.r3, 8);
2255 }
2256 /* load it in the delay slot*/
2257 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2258 /* load it if ptr is odd */
2259 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2260 /*
2261 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2262 * XI must have triggered it.
2263 */
2264 if (use_bbit_insns()) {
2265 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2266 } else {
2267 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2268 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2269 }
2270 if (PM_DEFAULT_MASK == 0)
2271 uasm_i_nop(&p);
2272 /*
2273 * We clobbered C0_PAGEMASK, restore it. On the other branch
2274 * it is restored in build_huge_tlb_write_entry.
2275 */
2276 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2277
2278 uasm_l_tlbl_goaround2(&l, p);
2279 }
2280 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2281 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2282#endif
2283
2284 uasm_l_nopage_tlbl(&l, p);
2285 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2286 uasm_i_sync(&p, 0);
2287 build_restore_work_registers(&p);
2288#ifdef CONFIG_CPU_MICROMIPS
2289 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2290 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2291 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2292 uasm_i_jr(&p, K0);
2293 } else
2294#endif
2295 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2296 uasm_i_nop(&p);
2297
2298 if (p >= (u32 *)handle_tlbl_end)
2299 panic("TLB load handler fastpath space exceeded");
2300
2301 uasm_resolve_relocs(relocs, labels);
2302 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2303 (unsigned int)(p - (u32 *)handle_tlbl));
2304
2305 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2306}
2307
2308static void build_r4000_tlb_store_handler(void)
2309{
2310 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2311 struct uasm_label *l = labels;
2312 struct uasm_reloc *r = relocs;
2313 struct work_registers wr;
2314
2315 memset(p, 0, handle_tlbs_end - (char *)p);
2316 memset(labels, 0, sizeof(labels));
2317 memset(relocs, 0, sizeof(relocs));
2318
2319 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2320 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2321 if (m4kc_tlbp_war())
2322 build_tlb_probe_entry(&p);
2323 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2324 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2325
2326#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2327 /*
2328 * This is the entry point when
2329 * build_r4000_tlbchange_handler_head spots a huge page.
2330 */
2331 uasm_l_tlb_huge_update(&l, p);
2332 iPTE_LW(&p, wr.r1, wr.r2);
2333 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2334 build_tlb_probe_entry(&p);
2335 uasm_i_ori(&p, wr.r1, wr.r1,
2336 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2337 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2338#endif
2339
2340 uasm_l_nopage_tlbs(&l, p);
2341 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2342 uasm_i_sync(&p, 0);
2343 build_restore_work_registers(&p);
2344#ifdef CONFIG_CPU_MICROMIPS
2345 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2346 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2347 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2348 uasm_i_jr(&p, K0);
2349 } else
2350#endif
2351 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2352 uasm_i_nop(&p);
2353
2354 if (p >= (u32 *)handle_tlbs_end)
2355 panic("TLB store handler fastpath space exceeded");
2356
2357 uasm_resolve_relocs(relocs, labels);
2358 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2359 (unsigned int)(p - (u32 *)handle_tlbs));
2360
2361 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2362}
2363
2364static void build_r4000_tlb_modify_handler(void)
2365{
2366 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2367 struct uasm_label *l = labels;
2368 struct uasm_reloc *r = relocs;
2369 struct work_registers wr;
2370
2371 memset(p, 0, handle_tlbm_end - (char *)p);
2372 memset(labels, 0, sizeof(labels));
2373 memset(relocs, 0, sizeof(relocs));
2374
2375 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2376 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2377 if (m4kc_tlbp_war())
2378 build_tlb_probe_entry(&p);
2379 /* Present and writable bits set, set accessed and dirty bits. */
2380 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2381 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2382
2383#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2384 /*
2385 * This is the entry point when
2386 * build_r4000_tlbchange_handler_head spots a huge page.
2387 */
2388 uasm_l_tlb_huge_update(&l, p);
2389 iPTE_LW(&p, wr.r1, wr.r2);
2390 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2391 build_tlb_probe_entry(&p);
2392 uasm_i_ori(&p, wr.r1, wr.r1,
2393 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2394 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2395#endif
2396
2397 uasm_l_nopage_tlbm(&l, p);
2398 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2399 uasm_i_sync(&p, 0);
2400 build_restore_work_registers(&p);
2401#ifdef CONFIG_CPU_MICROMIPS
2402 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2403 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2404 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2405 uasm_i_jr(&p, K0);
2406 } else
2407#endif
2408 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2409 uasm_i_nop(&p);
2410
2411 if (p >= (u32 *)handle_tlbm_end)
2412 panic("TLB modify handler fastpath space exceeded");
2413
2414 uasm_resolve_relocs(relocs, labels);
2415 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2416 (unsigned int)(p - (u32 *)handle_tlbm));
2417
2418 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2419}
2420
2421static void flush_tlb_handlers(void)
2422{
2423 local_flush_icache_range((unsigned long)handle_tlbl,
2424 (unsigned long)handle_tlbl_end);
2425 local_flush_icache_range((unsigned long)handle_tlbs,
2426 (unsigned long)handle_tlbs_end);
2427 local_flush_icache_range((unsigned long)handle_tlbm,
2428 (unsigned long)handle_tlbm_end);
2429 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2430 (unsigned long)tlbmiss_handler_setup_pgd_end);
2431}
2432
2433static void print_htw_config(void)
2434{
2435 unsigned long config;
2436 unsigned int pwctl;
2437 const int field = 2 * sizeof(unsigned long);
2438
2439 config = read_c0_pwfield();
2440 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2441 field, config,
2442 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2443 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2444 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2445 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2446 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2447
2448 config = read_c0_pwsize();
2449 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2450 field, config,
2451 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2452 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2453 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2454 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2455 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2456 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2457
2458 pwctl = read_c0_pwctl();
2459 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2460 pwctl,
2461 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2462 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2463 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2464 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2465 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2466 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2467 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2468}
2469
2470static void config_htw_params(void)
2471{
2472 unsigned long pwfield, pwsize, ptei;
2473 unsigned int config;
2474
2475 /*
2476 * We are using 2-level page tables, so we only need to
2477 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2478 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2479 * write values less than 0xc in these fields because the entire
2480 * write will be dropped. As a result of which, we must preserve
2481 * the original reset values and overwrite only what we really want.
2482 */
2483
2484 pwfield = read_c0_pwfield();
2485 /* re-initialize the GDI field */
2486 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2487 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2488 /* re-initialize the PTI field including the even/odd bit */
2489 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2490 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2491 if (CONFIG_PGTABLE_LEVELS >= 3) {
2492 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2493 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2494 }
2495 /* Set the PTEI right shift */
2496 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2497 pwfield |= ptei;
2498 write_c0_pwfield(pwfield);
2499 /* Check whether the PTEI value is supported */
2500 back_to_back_c0_hazard();
2501 pwfield = read_c0_pwfield();
2502 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2503 != ptei) {
2504 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2505 ptei);
2506 /*
2507 * Drop option to avoid HTW being enabled via another path
2508 * (eg htw_reset())
2509 */
2510 current_cpu_data.options &= ~MIPS_CPU_HTW;
2511 return;
2512 }
2513
2514 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2515 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2516 if (CONFIG_PGTABLE_LEVELS >= 3)
2517 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2518
2519 /* Set pointer size to size of directory pointers */
2520 if (IS_ENABLED(CONFIG_64BIT))
2521 pwsize |= MIPS_PWSIZE_PS_MASK;
2522 /* PTEs may be multiple pointers long (e.g. with XPA) */
2523 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2524 & MIPS_PWSIZE_PTEW_MASK;
2525
2526 write_c0_pwsize(pwsize);
2527
2528 /* Make sure everything is set before we enable the HTW */
2529 back_to_back_c0_hazard();
2530
2531 /*
2532 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2533 * the pwctl fields.
2534 */
2535 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2536 if (IS_ENABLED(CONFIG_64BIT))
2537 config |= MIPS_PWCTL_XU_MASK;
2538 write_c0_pwctl(config);
2539 pr_info("Hardware Page Table Walker enabled\n");
2540
2541 print_htw_config();
2542}
2543
2544static void config_xpa_params(void)
2545{
2546#ifdef CONFIG_XPA
2547 unsigned int pagegrain;
2548
2549 if (mips_xpa_disabled) {
2550 pr_info("Extended Physical Addressing (XPA) disabled\n");
2551 return;
2552 }
2553
2554 pagegrain = read_c0_pagegrain();
2555 write_c0_pagegrain(pagegrain | PG_ELPA);
2556 back_to_back_c0_hazard();
2557 pagegrain = read_c0_pagegrain();
2558
2559 if (pagegrain & PG_ELPA)
2560 pr_info("Extended Physical Addressing (XPA) enabled\n");
2561 else
2562 panic("Extended Physical Addressing (XPA) disabled");
2563#endif
2564}
2565
2566static void check_pabits(void)
2567{
2568 unsigned long entry;
2569 unsigned pabits, fillbits;
2570
2571 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2572 /*
2573 * We'll only be making use of the fact that we can rotate bits
2574 * into the fill if the CPU supports RIXI, so don't bother
2575 * probing this for CPUs which don't.
2576 */
2577 return;
2578 }
2579
2580 write_c0_entrylo0(~0ul);
2581 back_to_back_c0_hazard();
2582 entry = read_c0_entrylo0();
2583
2584 /* clear all non-PFN bits */
2585 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2586 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2587
2588 /* find a lower bound on PABITS, and upper bound on fill bits */
2589 pabits = fls_long(entry) + 6;
2590 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2591
2592 /* minus the RI & XI bits */
2593 fillbits -= min_t(unsigned, fillbits, 2);
2594
2595 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2596 fill_includes_sw_bits = true;
2597
2598 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2599}
2600
2601void build_tlb_refill_handler(void)
2602{
2603 /*
2604 * The refill handler is generated per-CPU, multi-node systems
2605 * may have local storage for it. The other handlers are only
2606 * needed once.
2607 */
2608 static int run_once = 0;
2609
2610 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2611 panic("Kernels supporting XPA currently require CPUs with RIXI");
2612
2613 output_pgtable_bits_defines();
2614 check_pabits();
2615
2616#ifdef CONFIG_64BIT
2617 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2618#endif
2619
2620 if (cpu_has_3kex) {
2621#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2622 if (!run_once) {
2623 build_setup_pgd();
2624 build_r3000_tlb_refill_handler();
2625 build_r3000_tlb_load_handler();
2626 build_r3000_tlb_store_handler();
2627 build_r3000_tlb_modify_handler();
2628 flush_tlb_handlers();
2629 run_once++;
2630 }
2631#else
2632 panic("No R3000 TLB refill handler");
2633#endif
2634 return;
2635 }
2636
2637 if (cpu_has_ldpte)
2638 setup_pw();
2639
2640 if (!run_once) {
2641 scratch_reg = allocate_kscratch();
2642 build_setup_pgd();
2643 build_r4000_tlb_load_handler();
2644 build_r4000_tlb_store_handler();
2645 build_r4000_tlb_modify_handler();
2646 if (cpu_has_ldpte)
2647 build_loongson3_tlb_refill_handler();
2648 else
2649 build_r4000_tlb_refill_handler();
2650 flush_tlb_handlers();
2651 run_once++;
2652 }
2653 if (cpu_has_xpa)
2654 config_xpa_params();
2655 if (cpu_has_htw)
2656 config_htw_params();
2657}