Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29#include <linux/cache.h>
30
31#include <asm/cacheflush.h>
32#include <asm/cpu-type.h>
33#include <asm/pgtable.h>
34#include <asm/war.h>
35#include <asm/uasm.h>
36#include <asm/setup.h>
37
38static int mips_xpa_disabled;
39
40static int __init xpa_disable(char *s)
41{
42 mips_xpa_disabled = 1;
43
44 return 1;
45}
46
47__setup("noxpa", xpa_disable);
48
49/*
50 * TLB load/store/modify handlers.
51 *
52 * Only the fastpath gets synthesized at runtime, the slowpath for
53 * do_page_fault remains normal asm.
54 */
55extern void tlb_do_page_fault_0(void);
56extern void tlb_do_page_fault_1(void);
57
58struct work_registers {
59 int r1;
60 int r2;
61 int r3;
62};
63
64struct tlb_reg_save {
65 unsigned long a;
66 unsigned long b;
67} ____cacheline_aligned_in_smp;
68
69static struct tlb_reg_save handler_reg_save[NR_CPUS];
70
71static inline int r45k_bvahwbug(void)
72{
73 /* XXX: We should probe for the presence of this bug, but we don't. */
74 return 0;
75}
76
77static inline int r4k_250MHZhwbug(void)
78{
79 /* XXX: We should probe for the presence of this bug, but we don't. */
80 return 0;
81}
82
83static inline int __maybe_unused bcm1250_m3_war(void)
84{
85 return BCM1250_M3_WAR;
86}
87
88static inline int __maybe_unused r10000_llsc_war(void)
89{
90 return R10000_LLSC_WAR;
91}
92
93static int use_bbit_insns(void)
94{
95 switch (current_cpu_type()) {
96 case CPU_CAVIUM_OCTEON:
97 case CPU_CAVIUM_OCTEON_PLUS:
98 case CPU_CAVIUM_OCTEON2:
99 case CPU_CAVIUM_OCTEON3:
100 return 1;
101 default:
102 return 0;
103 }
104}
105
106static int use_lwx_insns(void)
107{
108 switch (current_cpu_type()) {
109 case CPU_CAVIUM_OCTEON2:
110 case CPU_CAVIUM_OCTEON3:
111 return 1;
112 default:
113 return 0;
114 }
115}
116#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118static bool scratchpad_available(void)
119{
120 return true;
121}
122static int scratchpad_offset(int i)
123{
124 /*
125 * CVMSEG starts at address -32768 and extends for
126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
127 */
128 i += 1; /* Kernel use starts at the top and works down. */
129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
130}
131#else
132static bool scratchpad_available(void)
133{
134 return false;
135}
136static int scratchpad_offset(int i)
137{
138 BUG();
139 /* Really unreachable, but evidently some GCC want this. */
140 return 0;
141}
142#endif
143/*
144 * Found by experiment: At least some revisions of the 4kc throw under
145 * some circumstances a machine check exception, triggered by invalid
146 * values in the index register. Delaying the tlbp instruction until
147 * after the next branch, plus adding an additional nop in front of
148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149 * why; it's not an issue caused by the core RTL.
150 *
151 */
152static int m4kc_tlbp_war(void)
153{
154 return (current_cpu_data.processor_id & 0xffff00) ==
155 (PRID_COMP_MIPS | PRID_IMP_4KC);
156}
157
158/* Handle labels (which must be positive integers). */
159enum label_id {
160 label_second_part = 1,
161 label_leave,
162 label_vmalloc,
163 label_vmalloc_done,
164 label_tlbw_hazard_0,
165 label_split = label_tlbw_hazard_0 + 8,
166 label_tlbl_goaround1,
167 label_tlbl_goaround2,
168 label_nopage_tlbl,
169 label_nopage_tlbs,
170 label_nopage_tlbm,
171 label_smp_pgtable_change,
172 label_r3000_write_probe_fail,
173 label_large_segbits_fault,
174#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 label_tlb_huge_update,
176#endif
177};
178
179UASM_L_LA(_second_part)
180UASM_L_LA(_leave)
181UASM_L_LA(_vmalloc)
182UASM_L_LA(_vmalloc_done)
183/* _tlbw_hazard_x is handled differently. */
184UASM_L_LA(_split)
185UASM_L_LA(_tlbl_goaround1)
186UASM_L_LA(_tlbl_goaround2)
187UASM_L_LA(_nopage_tlbl)
188UASM_L_LA(_nopage_tlbs)
189UASM_L_LA(_nopage_tlbm)
190UASM_L_LA(_smp_pgtable_change)
191UASM_L_LA(_r3000_write_probe_fail)
192UASM_L_LA(_large_segbits_fault)
193#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194UASM_L_LA(_tlb_huge_update)
195#endif
196
197static int hazard_instance;
198
199static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
200{
201 switch (instance) {
202 case 0 ... 7:
203 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204 return;
205 default:
206 BUG();
207 }
208}
209
210static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
211{
212 switch (instance) {
213 case 0 ... 7:
214 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215 break;
216 default:
217 BUG();
218 }
219}
220
221/*
222 * pgtable bits are assigned dynamically depending on processor feature
223 * and statically based on kernel configuration. This spits out the actual
224 * values the kernel is using. Required to make sense from disassembled
225 * TLB exception handlers.
226 */
227static void output_pgtable_bits_defines(void)
228{
229#define pr_define(fmt, ...) \
230 pr_debug("#define " fmt, ##__VA_ARGS__)
231
232 pr_debug("#include <asm/asm.h>\n");
233 pr_debug("#include <asm/regdef.h>\n");
234 pr_debug("\n");
235
236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243#endif
244#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
245 if (cpu_has_rixi) {
246#ifdef _PAGE_NO_EXEC_SHIFT
247 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
248 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
249#endif
250 }
251#endif
252 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
253 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
254 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
255 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
256 pr_debug("\n");
257}
258
259static inline void dump_handler(const char *symbol, const u32 *handler, int count)
260{
261 int i;
262
263 pr_debug("LEAF(%s)\n", symbol);
264
265 pr_debug("\t.set push\n");
266 pr_debug("\t.set noreorder\n");
267
268 for (i = 0; i < count; i++)
269 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
270
271 pr_debug("\t.set\tpop\n");
272
273 pr_debug("\tEND(%s)\n", symbol);
274}
275
276/* The only general purpose registers allowed in TLB handlers. */
277#define K0 26
278#define K1 27
279
280/* Some CP0 registers */
281#define C0_INDEX 0, 0
282#define C0_ENTRYLO0 2, 0
283#define C0_TCBIND 2, 2
284#define C0_ENTRYLO1 3, 0
285#define C0_CONTEXT 4, 0
286#define C0_PAGEMASK 5, 0
287#define C0_BADVADDR 8, 0
288#define C0_ENTRYHI 10, 0
289#define C0_EPC 14, 0
290#define C0_XCONTEXT 20, 0
291
292#ifdef CONFIG_64BIT
293# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
294#else
295# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
296#endif
297
298/* The worst case length of the handler is around 18 instructions for
299 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
300 * Maximum space available is 32 instructions for R3000 and 64
301 * instructions for R4000.
302 *
303 * We deliberately chose a buffer size of 128, so we won't scribble
304 * over anything important on overflow before we panic.
305 */
306static u32 tlb_handler[128];
307
308/* simply assume worst case size for labels and relocs */
309static struct uasm_label labels[128];
310static struct uasm_reloc relocs[128];
311
312static int check_for_high_segbits;
313static bool fill_includes_sw_bits;
314
315static unsigned int kscratch_used_mask;
316
317static inline int __maybe_unused c0_kscratch(void)
318{
319 switch (current_cpu_type()) {
320 case CPU_XLP:
321 case CPU_XLR:
322 return 22;
323 default:
324 return 31;
325 }
326}
327
328static int allocate_kscratch(void)
329{
330 int r;
331 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
332
333 r = ffs(a);
334
335 if (r == 0)
336 return -1;
337
338 r--; /* make it zero based */
339
340 kscratch_used_mask |= (1 << r);
341
342 return r;
343}
344
345static int scratch_reg;
346static int pgd_reg;
347enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
348
349static struct work_registers build_get_work_registers(u32 **p)
350{
351 struct work_registers r;
352
353 if (scratch_reg >= 0) {
354 /* Save in CPU local C0_KScratch? */
355 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
356 r.r1 = K0;
357 r.r2 = K1;
358 r.r3 = 1;
359 return r;
360 }
361
362 if (num_possible_cpus() > 1) {
363 /* Get smp_processor_id */
364 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
365 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
366
367 /* handler_reg_save index in K0 */
368 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
369
370 UASM_i_LA(p, K1, (long)&handler_reg_save);
371 UASM_i_ADDU(p, K0, K0, K1);
372 } else {
373 UASM_i_LA(p, K0, (long)&handler_reg_save);
374 }
375 /* K0 now points to save area, save $1 and $2 */
376 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
377 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
378
379 r.r1 = K1;
380 r.r2 = 1;
381 r.r3 = 2;
382 return r;
383}
384
385static void build_restore_work_registers(u32 **p)
386{
387 if (scratch_reg >= 0) {
388 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
389 return;
390 }
391 /* K0 already points to save area, restore $1 and $2 */
392 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
393 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
394}
395
396#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
397
398/*
399 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
400 * we cannot do r3000 under these circumstances.
401 *
402 * Declare pgd_current here instead of including mmu_context.h to avoid type
403 * conflicts for tlbmiss_handler_setup_pgd
404 */
405extern unsigned long pgd_current[];
406
407/*
408 * The R3000 TLB handler is simple.
409 */
410static void build_r3000_tlb_refill_handler(void)
411{
412 long pgdc = (long)pgd_current;
413 u32 *p;
414
415 memset(tlb_handler, 0, sizeof(tlb_handler));
416 p = tlb_handler;
417
418 uasm_i_mfc0(&p, K0, C0_BADVADDR);
419 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
420 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
421 uasm_i_srl(&p, K0, K0, 22); /* load delay */
422 uasm_i_sll(&p, K0, K0, 2);
423 uasm_i_addu(&p, K1, K1, K0);
424 uasm_i_mfc0(&p, K0, C0_CONTEXT);
425 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
426 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
427 uasm_i_addu(&p, K1, K1, K0);
428 uasm_i_lw(&p, K0, 0, K1);
429 uasm_i_nop(&p); /* load delay */
430 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
431 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
432 uasm_i_tlbwr(&p); /* cp0 delay */
433 uasm_i_jr(&p, K1);
434 uasm_i_rfe(&p); /* branch delay */
435
436 if (p > tlb_handler + 32)
437 panic("TLB refill handler space exceeded");
438
439 pr_debug("Wrote TLB refill handler (%u instructions).\n",
440 (unsigned int)(p - tlb_handler));
441
442 memcpy((void *)ebase, tlb_handler, 0x80);
443 local_flush_icache_range(ebase, ebase + 0x80);
444
445 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
446}
447#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
448
449/*
450 * The R4000 TLB handler is much more complicated. We have two
451 * consecutive handler areas with 32 instructions space each.
452 * Since they aren't used at the same time, we can overflow in the
453 * other one.To keep things simple, we first assume linear space,
454 * then we relocate it to the final handler layout as needed.
455 */
456static u32 final_handler[64];
457
458/*
459 * Hazards
460 *
461 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462 * 2. A timing hazard exists for the TLBP instruction.
463 *
464 * stalling_instruction
465 * TLBP
466 *
467 * The JTLB is being read for the TLBP throughout the stall generated by the
468 * previous instruction. This is not really correct as the stalling instruction
469 * can modify the address used to access the JTLB. The failure symptom is that
470 * the TLBP instruction will use an address created for the stalling instruction
471 * and not the address held in C0_ENHI and thus report the wrong results.
472 *
473 * The software work-around is to not allow the instruction preceding the TLBP
474 * to stall - make it an NOP or some other instruction guaranteed not to stall.
475 *
476 * Errata 2 will not be fixed. This errata is also on the R5000.
477 *
478 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479 */
480static void __maybe_unused build_tlb_probe_entry(u32 **p)
481{
482 switch (current_cpu_type()) {
483 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
484 case CPU_R4600:
485 case CPU_R4700:
486 case CPU_R5000:
487 case CPU_NEVADA:
488 uasm_i_nop(p);
489 uasm_i_tlbp(p);
490 break;
491
492 default:
493 uasm_i_tlbp(p);
494 break;
495 }
496}
497
498/*
499 * Write random or indexed TLB entry, and care about the hazards from
500 * the preceding mtc0 and for the following eret.
501 */
502enum tlb_write_entry { tlb_random, tlb_indexed };
503
504static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
505 struct uasm_reloc **r,
506 enum tlb_write_entry wmode)
507{
508 void(*tlbw)(u32 **) = NULL;
509
510 switch (wmode) {
511 case tlb_random: tlbw = uasm_i_tlbwr; break;
512 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
513 }
514
515 if (cpu_has_mips_r2_r6) {
516 if (cpu_has_mips_r2_exec_hazard)
517 uasm_i_ehb(p);
518 tlbw(p);
519 return;
520 }
521
522 switch (current_cpu_type()) {
523 case CPU_R4000PC:
524 case CPU_R4000SC:
525 case CPU_R4000MC:
526 case CPU_R4400PC:
527 case CPU_R4400SC:
528 case CPU_R4400MC:
529 /*
530 * This branch uses up a mtc0 hazard nop slot and saves
531 * two nops after the tlbw instruction.
532 */
533 uasm_bgezl_hazard(p, r, hazard_instance);
534 tlbw(p);
535 uasm_bgezl_label(l, p, hazard_instance);
536 hazard_instance++;
537 uasm_i_nop(p);
538 break;
539
540 case CPU_R4600:
541 case CPU_R4700:
542 uasm_i_nop(p);
543 tlbw(p);
544 uasm_i_nop(p);
545 break;
546
547 case CPU_R5000:
548 case CPU_NEVADA:
549 uasm_i_nop(p); /* QED specifies 2 nops hazard */
550 uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 tlbw(p);
552 break;
553
554 case CPU_R4300:
555 case CPU_5KC:
556 case CPU_TX49XX:
557 case CPU_PR4450:
558 case CPU_XLR:
559 uasm_i_nop(p);
560 tlbw(p);
561 break;
562
563 case CPU_R10000:
564 case CPU_R12000:
565 case CPU_R14000:
566 case CPU_R16000:
567 case CPU_4KC:
568 case CPU_4KEC:
569 case CPU_M14KC:
570 case CPU_M14KEC:
571 case CPU_SB1:
572 case CPU_SB1A:
573 case CPU_4KSC:
574 case CPU_20KC:
575 case CPU_25KF:
576 case CPU_BMIPS32:
577 case CPU_BMIPS3300:
578 case CPU_BMIPS4350:
579 case CPU_BMIPS4380:
580 case CPU_BMIPS5000:
581 case CPU_LOONGSON2:
582 case CPU_LOONGSON3:
583 case CPU_R5500:
584 if (m4kc_tlbp_war())
585 uasm_i_nop(p);
586 case CPU_ALCHEMY:
587 tlbw(p);
588 break;
589
590 case CPU_RM7000:
591 uasm_i_nop(p);
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 uasm_i_nop(p);
595 tlbw(p);
596 break;
597
598 case CPU_VR4111:
599 case CPU_VR4121:
600 case CPU_VR4122:
601 case CPU_VR4181:
602 case CPU_VR4181A:
603 uasm_i_nop(p);
604 uasm_i_nop(p);
605 tlbw(p);
606 uasm_i_nop(p);
607 uasm_i_nop(p);
608 break;
609
610 case CPU_VR4131:
611 case CPU_VR4133:
612 case CPU_R5432:
613 uasm_i_nop(p);
614 uasm_i_nop(p);
615 tlbw(p);
616 break;
617
618 case CPU_JZRISC:
619 tlbw(p);
620 uasm_i_nop(p);
621 break;
622
623 default:
624 panic("No TLB refill handler yet (CPU type: %d)",
625 current_cpu_type());
626 break;
627 }
628}
629
630static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
631 unsigned int reg)
632{
633 if (cpu_has_rixi && _PAGE_NO_EXEC) {
634 if (fill_includes_sw_bits) {
635 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
636 } else {
637 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
638 UASM_i_ROTR(p, reg, reg,
639 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
640 }
641 } else {
642#ifdef CONFIG_PHYS_ADDR_T_64BIT
643 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
644#else
645 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
646#endif
647 }
648}
649
650#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
651
652static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
653 unsigned int tmp, enum label_id lid,
654 int restore_scratch)
655{
656 if (restore_scratch) {
657 /* Reset default page size */
658 if (PM_DEFAULT_MASK >> 16) {
659 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
660 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
661 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
662 uasm_il_b(p, r, lid);
663 } else if (PM_DEFAULT_MASK) {
664 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
665 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
666 uasm_il_b(p, r, lid);
667 } else {
668 uasm_i_mtc0(p, 0, C0_PAGEMASK);
669 uasm_il_b(p, r, lid);
670 }
671 if (scratch_reg >= 0)
672 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
673 else
674 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
675 } else {
676 /* Reset default page size */
677 if (PM_DEFAULT_MASK >> 16) {
678 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
679 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
680 uasm_il_b(p, r, lid);
681 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
682 } else if (PM_DEFAULT_MASK) {
683 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
684 uasm_il_b(p, r, lid);
685 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
686 } else {
687 uasm_il_b(p, r, lid);
688 uasm_i_mtc0(p, 0, C0_PAGEMASK);
689 }
690 }
691}
692
693static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
694 struct uasm_reloc **r,
695 unsigned int tmp,
696 enum tlb_write_entry wmode,
697 int restore_scratch)
698{
699 /* Set huge page tlb entry size */
700 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
701 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
702 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
703
704 build_tlb_write_entry(p, l, r, wmode);
705
706 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
707}
708
709/*
710 * Check if Huge PTE is present, if so then jump to LABEL.
711 */
712static void
713build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
714 unsigned int pmd, int lid)
715{
716 UASM_i_LW(p, tmp, 0, pmd);
717 if (use_bbit_insns()) {
718 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
719 } else {
720 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
721 uasm_il_bnez(p, r, tmp, lid);
722 }
723}
724
725static void build_huge_update_entries(u32 **p, unsigned int pte,
726 unsigned int tmp)
727{
728 int small_sequence;
729
730 /*
731 * A huge PTE describes an area the size of the
732 * configured huge page size. This is twice the
733 * of the large TLB entry size we intend to use.
734 * A TLB entry half the size of the configured
735 * huge page size is configured into entrylo0
736 * and entrylo1 to cover the contiguous huge PTE
737 * address space.
738 */
739 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
740
741 /* We can clobber tmp. It isn't used after this.*/
742 if (!small_sequence)
743 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
744
745 build_convert_pte_to_entrylo(p, pte);
746 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
747 /* convert to entrylo1 */
748 if (small_sequence)
749 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
750 else
751 UASM_i_ADDU(p, pte, pte, tmp);
752
753 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
754}
755
756static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
757 struct uasm_label **l,
758 unsigned int pte,
759 unsigned int ptr)
760{
761#ifdef CONFIG_SMP
762 UASM_i_SC(p, pte, 0, ptr);
763 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
764 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
765#else
766 UASM_i_SW(p, pte, 0, ptr);
767#endif
768 build_huge_update_entries(p, pte, ptr);
769 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
770}
771#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
772
773#ifdef CONFIG_64BIT
774/*
775 * TMP and PTR are scratch.
776 * TMP will be clobbered, PTR will hold the pmd entry.
777 */
778static void
779build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
780 unsigned int tmp, unsigned int ptr)
781{
782#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
783 long pgdc = (long)pgd_current;
784#endif
785 /*
786 * The vmalloc handling is not in the hotpath.
787 */
788 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
789
790 if (check_for_high_segbits) {
791 /*
792 * The kernel currently implicitely assumes that the
793 * MIPS SEGBITS parameter for the processor is
794 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
795 * allocate virtual addresses outside the maximum
796 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
797 * that doesn't prevent user code from accessing the
798 * higher xuseg addresses. Here, we make sure that
799 * everything but the lower xuseg addresses goes down
800 * the module_alloc/vmalloc path.
801 */
802 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
803 uasm_il_bnez(p, r, ptr, label_vmalloc);
804 } else {
805 uasm_il_bltz(p, r, tmp, label_vmalloc);
806 }
807 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
808
809 if (pgd_reg != -1) {
810 /* pgd is in pgd_reg */
811 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
812 } else {
813#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
814 /*
815 * &pgd << 11 stored in CONTEXT [23..63].
816 */
817 UASM_i_MFC0(p, ptr, C0_CONTEXT);
818
819 /* Clear lower 23 bits of context. */
820 uasm_i_dins(p, ptr, 0, 0, 23);
821
822 /* 1 0 1 0 1 << 6 xkphys cached */
823 uasm_i_ori(p, ptr, ptr, 0x540);
824 uasm_i_drotr(p, ptr, ptr, 11);
825#elif defined(CONFIG_SMP)
826 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
827 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
828 UASM_i_LA_mostly(p, tmp, pgdc);
829 uasm_i_daddu(p, ptr, ptr, tmp);
830 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
831 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
832#else
833 UASM_i_LA_mostly(p, ptr, pgdc);
834 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
835#endif
836 }
837
838 uasm_l_vmalloc_done(l, *p);
839
840 /* get pgd offset in bytes */
841 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
842
843 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
844 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
845#ifndef __PAGETABLE_PMD_FOLDED
846 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
847 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
848 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
849 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
850 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
851#endif
852}
853
854/*
855 * BVADDR is the faulting address, PTR is scratch.
856 * PTR will hold the pgd for vmalloc.
857 */
858static void
859build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
860 unsigned int bvaddr, unsigned int ptr,
861 enum vmalloc64_mode mode)
862{
863 long swpd = (long)swapper_pg_dir;
864 int single_insn_swpd;
865 int did_vmalloc_branch = 0;
866
867 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
868
869 uasm_l_vmalloc(l, *p);
870
871 if (mode != not_refill && check_for_high_segbits) {
872 if (single_insn_swpd) {
873 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
874 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
875 did_vmalloc_branch = 1;
876 /* fall through */
877 } else {
878 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
879 }
880 }
881 if (!did_vmalloc_branch) {
882 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
883 uasm_il_b(p, r, label_vmalloc_done);
884 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
885 } else {
886 UASM_i_LA_mostly(p, ptr, swpd);
887 uasm_il_b(p, r, label_vmalloc_done);
888 if (uasm_in_compat_space_p(swpd))
889 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
890 else
891 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
892 }
893 }
894 if (mode != not_refill && check_for_high_segbits) {
895 uasm_l_large_segbits_fault(l, *p);
896 /*
897 * We get here if we are an xsseg address, or if we are
898 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
899 *
900 * Ignoring xsseg (assume disabled so would generate
901 * (address errors?), the only remaining possibility
902 * is the upper xuseg addresses. On processors with
903 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
904 * addresses would have taken an address error. We try
905 * to mimic that here by taking a load/istream page
906 * fault.
907 */
908 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
909 uasm_i_jr(p, ptr);
910
911 if (mode == refill_scratch) {
912 if (scratch_reg >= 0)
913 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
914 else
915 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
916 } else {
917 uasm_i_nop(p);
918 }
919 }
920}
921
922#else /* !CONFIG_64BIT */
923
924/*
925 * TMP and PTR are scratch.
926 * TMP will be clobbered, PTR will hold the pgd entry.
927 */
928static void __maybe_unused
929build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
930{
931 if (pgd_reg != -1) {
932 /* pgd is in pgd_reg */
933 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
934 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
935 } else {
936 long pgdc = (long)pgd_current;
937
938 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
939#ifdef CONFIG_SMP
940 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
941 UASM_i_LA_mostly(p, tmp, pgdc);
942 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
943 uasm_i_addu(p, ptr, tmp, ptr);
944#else
945 UASM_i_LA_mostly(p, ptr, pgdc);
946#endif
947 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
948 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
949 }
950 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
951 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
952 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
953}
954
955#endif /* !CONFIG_64BIT */
956
957static void build_adjust_context(u32 **p, unsigned int ctx)
958{
959 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
960 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
961
962 switch (current_cpu_type()) {
963 case CPU_VR41XX:
964 case CPU_VR4111:
965 case CPU_VR4121:
966 case CPU_VR4122:
967 case CPU_VR4131:
968 case CPU_VR4181:
969 case CPU_VR4181A:
970 case CPU_VR4133:
971 shift += 2;
972 break;
973
974 default:
975 break;
976 }
977
978 if (shift)
979 UASM_i_SRL(p, ctx, ctx, shift);
980 uasm_i_andi(p, ctx, ctx, mask);
981}
982
983static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
984{
985 /*
986 * Bug workaround for the Nevada. It seems as if under certain
987 * circumstances the move from cp0_context might produce a
988 * bogus result when the mfc0 instruction and its consumer are
989 * in a different cacheline or a load instruction, probably any
990 * memory reference, is between them.
991 */
992 switch (current_cpu_type()) {
993 case CPU_NEVADA:
994 UASM_i_LW(p, ptr, 0, ptr);
995 GET_CONTEXT(p, tmp); /* get context reg */
996 break;
997
998 default:
999 GET_CONTEXT(p, tmp); /* get context reg */
1000 UASM_i_LW(p, ptr, 0, ptr);
1001 break;
1002 }
1003
1004 build_adjust_context(p, tmp);
1005 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1006}
1007
1008static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1009{
1010 /*
1011 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1012 * Kernel is a special case. Only a few CPUs use it.
1013 */
1014 if (config_enabled(CONFIG_PHYS_ADDR_T_64BIT) && !cpu_has_64bits) {
1015 int pte_off_even = sizeof(pte_t) / 2;
1016 int pte_off_odd = pte_off_even + sizeof(pte_t);
1017#ifdef CONFIG_XPA
1018 const int scratch = 1; /* Our extra working register */
1019
1020 uasm_i_addu(p, scratch, 0, ptep);
1021#endif
1022 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1023 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
1024 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1025 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1026 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1027 UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
1028#ifdef CONFIG_XPA
1029 uasm_i_lw(p, tmp, 0, scratch);
1030 uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
1031 uasm_i_lui(p, scratch, 0xff);
1032 uasm_i_ori(p, scratch, scratch, 0xffff);
1033 uasm_i_and(p, tmp, scratch, tmp);
1034 uasm_i_and(p, ptep, scratch, ptep);
1035 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1036 uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
1037#endif
1038 return;
1039 }
1040
1041 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1042 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1043 if (r45k_bvahwbug())
1044 build_tlb_probe_entry(p);
1045 build_convert_pte_to_entrylo(p, tmp);
1046 if (r4k_250MHZhwbug())
1047 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1048 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1049 build_convert_pte_to_entrylo(p, ptep);
1050 if (r45k_bvahwbug())
1051 uasm_i_mfc0(p, tmp, C0_INDEX);
1052 if (r4k_250MHZhwbug())
1053 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1054 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1055}
1056
1057struct mips_huge_tlb_info {
1058 int huge_pte;
1059 int restore_scratch;
1060 bool need_reload_pte;
1061};
1062
1063static struct mips_huge_tlb_info
1064build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1065 struct uasm_reloc **r, unsigned int tmp,
1066 unsigned int ptr, int c0_scratch_reg)
1067{
1068 struct mips_huge_tlb_info rv;
1069 unsigned int even, odd;
1070 int vmalloc_branch_delay_filled = 0;
1071 const int scratch = 1; /* Our extra working register */
1072
1073 rv.huge_pte = scratch;
1074 rv.restore_scratch = 0;
1075 rv.need_reload_pte = false;
1076
1077 if (check_for_high_segbits) {
1078 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1079
1080 if (pgd_reg != -1)
1081 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1082 else
1083 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1084
1085 if (c0_scratch_reg >= 0)
1086 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1087 else
1088 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1089
1090 uasm_i_dsrl_safe(p, scratch, tmp,
1091 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1092 uasm_il_bnez(p, r, scratch, label_vmalloc);
1093
1094 if (pgd_reg == -1) {
1095 vmalloc_branch_delay_filled = 1;
1096 /* Clear lower 23 bits of context. */
1097 uasm_i_dins(p, ptr, 0, 0, 23);
1098 }
1099 } else {
1100 if (pgd_reg != -1)
1101 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1102 else
1103 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1104
1105 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1106
1107 if (c0_scratch_reg >= 0)
1108 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1109 else
1110 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1111
1112 if (pgd_reg == -1)
1113 /* Clear lower 23 bits of context. */
1114 uasm_i_dins(p, ptr, 0, 0, 23);
1115
1116 uasm_il_bltz(p, r, tmp, label_vmalloc);
1117 }
1118
1119 if (pgd_reg == -1) {
1120 vmalloc_branch_delay_filled = 1;
1121 /* 1 0 1 0 1 << 6 xkphys cached */
1122 uasm_i_ori(p, ptr, ptr, 0x540);
1123 uasm_i_drotr(p, ptr, ptr, 11);
1124 }
1125
1126#ifdef __PAGETABLE_PMD_FOLDED
1127#define LOC_PTEP scratch
1128#else
1129#define LOC_PTEP ptr
1130#endif
1131
1132 if (!vmalloc_branch_delay_filled)
1133 /* get pgd offset in bytes */
1134 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1135
1136 uasm_l_vmalloc_done(l, *p);
1137
1138 /*
1139 * tmp ptr
1140 * fall-through case = badvaddr *pgd_current
1141 * vmalloc case = badvaddr swapper_pg_dir
1142 */
1143
1144 if (vmalloc_branch_delay_filled)
1145 /* get pgd offset in bytes */
1146 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1147
1148#ifdef __PAGETABLE_PMD_FOLDED
1149 GET_CONTEXT(p, tmp); /* get context reg */
1150#endif
1151 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1152
1153 if (use_lwx_insns()) {
1154 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1155 } else {
1156 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1157 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1158 }
1159
1160#ifndef __PAGETABLE_PMD_FOLDED
1161 /* get pmd offset in bytes */
1162 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1163 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1164 GET_CONTEXT(p, tmp); /* get context reg */
1165
1166 if (use_lwx_insns()) {
1167 UASM_i_LWX(p, scratch, scratch, ptr);
1168 } else {
1169 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1170 UASM_i_LW(p, scratch, 0, ptr);
1171 }
1172#endif
1173 /* Adjust the context during the load latency. */
1174 build_adjust_context(p, tmp);
1175
1176#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1177 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1178 /*
1179 * The in the LWX case we don't want to do the load in the
1180 * delay slot. It cannot issue in the same cycle and may be
1181 * speculative and unneeded.
1182 */
1183 if (use_lwx_insns())
1184 uasm_i_nop(p);
1185#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1186
1187
1188 /* build_update_entries */
1189 if (use_lwx_insns()) {
1190 even = ptr;
1191 odd = tmp;
1192 UASM_i_LWX(p, even, scratch, tmp);
1193 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1194 UASM_i_LWX(p, odd, scratch, tmp);
1195 } else {
1196 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1197 even = tmp;
1198 odd = ptr;
1199 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1200 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1201 }
1202 if (cpu_has_rixi) {
1203 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1204 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1205 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1206 } else {
1207 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1208 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1209 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1210 }
1211 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1212
1213 if (c0_scratch_reg >= 0) {
1214 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1215 build_tlb_write_entry(p, l, r, tlb_random);
1216 uasm_l_leave(l, *p);
1217 rv.restore_scratch = 1;
1218 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1219 build_tlb_write_entry(p, l, r, tlb_random);
1220 uasm_l_leave(l, *p);
1221 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1222 } else {
1223 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224 build_tlb_write_entry(p, l, r, tlb_random);
1225 uasm_l_leave(l, *p);
1226 rv.restore_scratch = 1;
1227 }
1228
1229 uasm_i_eret(p); /* return from trap */
1230
1231 return rv;
1232}
1233
1234/*
1235 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1236 * because EXL == 0. If we wrap, we can also use the 32 instruction
1237 * slots before the XTLB refill exception handler which belong to the
1238 * unused TLB refill exception.
1239 */
1240#define MIPS64_REFILL_INSNS 32
1241
1242static void build_r4000_tlb_refill_handler(void)
1243{
1244 u32 *p = tlb_handler;
1245 struct uasm_label *l = labels;
1246 struct uasm_reloc *r = relocs;
1247 u32 *f;
1248 unsigned int final_len;
1249 struct mips_huge_tlb_info htlb_info __maybe_unused;
1250 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1251
1252 memset(tlb_handler, 0, sizeof(tlb_handler));
1253 memset(labels, 0, sizeof(labels));
1254 memset(relocs, 0, sizeof(relocs));
1255 memset(final_handler, 0, sizeof(final_handler));
1256
1257 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1258 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1259 scratch_reg);
1260 vmalloc_mode = refill_scratch;
1261 } else {
1262 htlb_info.huge_pte = K0;
1263 htlb_info.restore_scratch = 0;
1264 htlb_info.need_reload_pte = true;
1265 vmalloc_mode = refill_noscratch;
1266 /*
1267 * create the plain linear handler
1268 */
1269 if (bcm1250_m3_war()) {
1270 unsigned int segbits = 44;
1271
1272 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1273 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1274 uasm_i_xor(&p, K0, K0, K1);
1275 uasm_i_dsrl_safe(&p, K1, K0, 62);
1276 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1277 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1278 uasm_i_or(&p, K0, K0, K1);
1279 uasm_il_bnez(&p, &r, K0, label_leave);
1280 /* No need for uasm_i_nop */
1281 }
1282
1283#ifdef CONFIG_64BIT
1284 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1285#else
1286 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1287#endif
1288
1289#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1290 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1291#endif
1292
1293 build_get_ptep(&p, K0, K1);
1294 build_update_entries(&p, K0, K1);
1295 build_tlb_write_entry(&p, &l, &r, tlb_random);
1296 uasm_l_leave(&l, p);
1297 uasm_i_eret(&p); /* return from trap */
1298 }
1299#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1300 uasm_l_tlb_huge_update(&l, p);
1301 if (htlb_info.need_reload_pte)
1302 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1303 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1304 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1305 htlb_info.restore_scratch);
1306#endif
1307
1308#ifdef CONFIG_64BIT
1309 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1310#endif
1311
1312 /*
1313 * Overflow check: For the 64bit handler, we need at least one
1314 * free instruction slot for the wrap-around branch. In worst
1315 * case, if the intended insertion point is a delay slot, we
1316 * need three, with the second nop'ed and the third being
1317 * unused.
1318 */
1319 switch (boot_cpu_type()) {
1320 default:
1321 if (sizeof(long) == 4) {
1322 case CPU_LOONGSON2:
1323 /* Loongson2 ebase is different than r4k, we have more space */
1324 if ((p - tlb_handler) > 64)
1325 panic("TLB refill handler space exceeded");
1326 /*
1327 * Now fold the handler in the TLB refill handler space.
1328 */
1329 f = final_handler;
1330 /* Simplest case, just copy the handler. */
1331 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1332 final_len = p - tlb_handler;
1333 break;
1334 } else {
1335 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1336 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1337 && uasm_insn_has_bdelay(relocs,
1338 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1339 panic("TLB refill handler space exceeded");
1340 /*
1341 * Now fold the handler in the TLB refill handler space.
1342 */
1343 f = final_handler + MIPS64_REFILL_INSNS;
1344 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1345 /* Just copy the handler. */
1346 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1347 final_len = p - tlb_handler;
1348 } else {
1349#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1350 const enum label_id ls = label_tlb_huge_update;
1351#else
1352 const enum label_id ls = label_vmalloc;
1353#endif
1354 u32 *split;
1355 int ov = 0;
1356 int i;
1357
1358 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1359 ;
1360 BUG_ON(i == ARRAY_SIZE(labels));
1361 split = labels[i].addr;
1362
1363 /*
1364 * See if we have overflown one way or the other.
1365 */
1366 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1367 split < p - MIPS64_REFILL_INSNS)
1368 ov = 1;
1369
1370 if (ov) {
1371 /*
1372 * Split two instructions before the end. One
1373 * for the branch and one for the instruction
1374 * in the delay slot.
1375 */
1376 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1377
1378 /*
1379 * If the branch would fall in a delay slot,
1380 * we must back up an additional instruction
1381 * so that it is no longer in a delay slot.
1382 */
1383 if (uasm_insn_has_bdelay(relocs, split - 1))
1384 split--;
1385 }
1386 /* Copy first part of the handler. */
1387 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1388 f += split - tlb_handler;
1389
1390 if (ov) {
1391 /* Insert branch. */
1392 uasm_l_split(&l, final_handler);
1393 uasm_il_b(&f, &r, label_split);
1394 if (uasm_insn_has_bdelay(relocs, split))
1395 uasm_i_nop(&f);
1396 else {
1397 uasm_copy_handler(relocs, labels,
1398 split, split + 1, f);
1399 uasm_move_labels(labels, f, f + 1, -1);
1400 f++;
1401 split++;
1402 }
1403 }
1404
1405 /* Copy the rest of the handler. */
1406 uasm_copy_handler(relocs, labels, split, p, final_handler);
1407 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1408 (p - split);
1409 }
1410 }
1411 break;
1412 }
1413
1414 uasm_resolve_relocs(relocs, labels);
1415 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1416 final_len);
1417
1418 memcpy((void *)ebase, final_handler, 0x100);
1419 local_flush_icache_range(ebase, ebase + 0x100);
1420
1421 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1422}
1423
1424extern u32 handle_tlbl[], handle_tlbl_end[];
1425extern u32 handle_tlbs[], handle_tlbs_end[];
1426extern u32 handle_tlbm[], handle_tlbm_end[];
1427extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1428extern u32 tlbmiss_handler_setup_pgd_end[];
1429
1430static void build_setup_pgd(void)
1431{
1432 const int a0 = 4;
1433 const int __maybe_unused a1 = 5;
1434 const int __maybe_unused a2 = 6;
1435 u32 *p = tlbmiss_handler_setup_pgd_start;
1436 const int tlbmiss_handler_setup_pgd_size =
1437 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1438#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1439 long pgdc = (long)pgd_current;
1440#endif
1441
1442 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1443 sizeof(tlbmiss_handler_setup_pgd[0]));
1444 memset(labels, 0, sizeof(labels));
1445 memset(relocs, 0, sizeof(relocs));
1446 pgd_reg = allocate_kscratch();
1447#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1448 if (pgd_reg == -1) {
1449 struct uasm_label *l = labels;
1450 struct uasm_reloc *r = relocs;
1451
1452 /* PGD << 11 in c0_Context */
1453 /*
1454 * If it is a ckseg0 address, convert to a physical
1455 * address. Shifting right by 29 and adding 4 will
1456 * result in zero for these addresses.
1457 *
1458 */
1459 UASM_i_SRA(&p, a1, a0, 29);
1460 UASM_i_ADDIU(&p, a1, a1, 4);
1461 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1462 uasm_i_nop(&p);
1463 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1464 uasm_l_tlbl_goaround1(&l, p);
1465 UASM_i_SLL(&p, a0, a0, 11);
1466 uasm_i_jr(&p, 31);
1467 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1468 } else {
1469 /* PGD in c0_KScratch */
1470 uasm_i_jr(&p, 31);
1471 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1472 }
1473#else
1474#ifdef CONFIG_SMP
1475 /* Save PGD to pgd_current[smp_processor_id()] */
1476 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1477 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1478 UASM_i_LA_mostly(&p, a2, pgdc);
1479 UASM_i_ADDU(&p, a2, a2, a1);
1480 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1481#else
1482 UASM_i_LA_mostly(&p, a2, pgdc);
1483 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1484#endif /* SMP */
1485 uasm_i_jr(&p, 31);
1486
1487 /* if pgd_reg is allocated, save PGD also to scratch register */
1488 if (pgd_reg != -1)
1489 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1490 else
1491 uasm_i_nop(&p);
1492#endif
1493 if (p >= tlbmiss_handler_setup_pgd_end)
1494 panic("tlbmiss_handler_setup_pgd space exceeded");
1495
1496 uasm_resolve_relocs(relocs, labels);
1497 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1498 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1499
1500 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1501 tlbmiss_handler_setup_pgd_size);
1502}
1503
1504static void
1505iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1506{
1507#ifdef CONFIG_SMP
1508# ifdef CONFIG_PHYS_ADDR_T_64BIT
1509 if (cpu_has_64bits)
1510 uasm_i_lld(p, pte, 0, ptr);
1511 else
1512# endif
1513 UASM_i_LL(p, pte, 0, ptr);
1514#else
1515# ifdef CONFIG_PHYS_ADDR_T_64BIT
1516 if (cpu_has_64bits)
1517 uasm_i_ld(p, pte, 0, ptr);
1518 else
1519# endif
1520 UASM_i_LW(p, pte, 0, ptr);
1521#endif
1522}
1523
1524static void
1525iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1526 unsigned int mode)
1527{
1528#ifdef CONFIG_PHYS_ADDR_T_64BIT
1529 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1530
1531 if (!cpu_has_64bits) {
1532 const int scratch = 1; /* Our extra working register */
1533
1534 uasm_i_lui(p, scratch, (mode >> 16));
1535 uasm_i_or(p, pte, pte, scratch);
1536 } else
1537#endif
1538 uasm_i_ori(p, pte, pte, mode);
1539#ifdef CONFIG_SMP
1540# ifdef CONFIG_PHYS_ADDR_T_64BIT
1541 if (cpu_has_64bits)
1542 uasm_i_scd(p, pte, 0, ptr);
1543 else
1544# endif
1545 UASM_i_SC(p, pte, 0, ptr);
1546
1547 if (r10000_llsc_war())
1548 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1549 else
1550 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1551
1552# ifdef CONFIG_PHYS_ADDR_T_64BIT
1553 if (!cpu_has_64bits) {
1554 /* no uasm_i_nop needed */
1555 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1556 uasm_i_ori(p, pte, pte, hwmode);
1557 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1558 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1559 /* no uasm_i_nop needed */
1560 uasm_i_lw(p, pte, 0, ptr);
1561 } else
1562 uasm_i_nop(p);
1563# else
1564 uasm_i_nop(p);
1565# endif
1566#else
1567# ifdef CONFIG_PHYS_ADDR_T_64BIT
1568 if (cpu_has_64bits)
1569 uasm_i_sd(p, pte, 0, ptr);
1570 else
1571# endif
1572 UASM_i_SW(p, pte, 0, ptr);
1573
1574# ifdef CONFIG_PHYS_ADDR_T_64BIT
1575 if (!cpu_has_64bits) {
1576 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1577 uasm_i_ori(p, pte, pte, hwmode);
1578 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1579 uasm_i_lw(p, pte, 0, ptr);
1580 }
1581# endif
1582#endif
1583}
1584
1585/*
1586 * Check if PTE is present, if not then jump to LABEL. PTR points to
1587 * the page table where this PTE is located, PTE will be re-loaded
1588 * with it's original value.
1589 */
1590static void
1591build_pte_present(u32 **p, struct uasm_reloc **r,
1592 int pte, int ptr, int scratch, enum label_id lid)
1593{
1594 int t = scratch >= 0 ? scratch : pte;
1595 int cur = pte;
1596
1597 if (cpu_has_rixi) {
1598 if (use_bbit_insns()) {
1599 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1600 uasm_i_nop(p);
1601 } else {
1602 if (_PAGE_PRESENT_SHIFT) {
1603 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1604 cur = t;
1605 }
1606 uasm_i_andi(p, t, cur, 1);
1607 uasm_il_beqz(p, r, t, lid);
1608 if (pte == t)
1609 /* You lose the SMP race :-(*/
1610 iPTE_LW(p, pte, ptr);
1611 }
1612 } else {
1613 if (_PAGE_PRESENT_SHIFT) {
1614 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1615 cur = t;
1616 }
1617 uasm_i_andi(p, t, cur,
1618 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1619 uasm_i_xori(p, t, t,
1620 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1621 uasm_il_bnez(p, r, t, lid);
1622 if (pte == t)
1623 /* You lose the SMP race :-(*/
1624 iPTE_LW(p, pte, ptr);
1625 }
1626}
1627
1628/* Make PTE valid, store result in PTR. */
1629static void
1630build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1631 unsigned int ptr)
1632{
1633 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1634
1635 iPTE_SW(p, r, pte, ptr, mode);
1636}
1637
1638/*
1639 * Check if PTE can be written to, if not branch to LABEL. Regardless
1640 * restore PTE with value from PTR when done.
1641 */
1642static void
1643build_pte_writable(u32 **p, struct uasm_reloc **r,
1644 unsigned int pte, unsigned int ptr, int scratch,
1645 enum label_id lid)
1646{
1647 int t = scratch >= 0 ? scratch : pte;
1648 int cur = pte;
1649
1650 if (_PAGE_PRESENT_SHIFT) {
1651 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1652 cur = t;
1653 }
1654 uasm_i_andi(p, t, cur,
1655 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1656 uasm_i_xori(p, t, t,
1657 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1658 uasm_il_bnez(p, r, t, lid);
1659 if (pte == t)
1660 /* You lose the SMP race :-(*/
1661 iPTE_LW(p, pte, ptr);
1662 else
1663 uasm_i_nop(p);
1664}
1665
1666/* Make PTE writable, update software status bits as well, then store
1667 * at PTR.
1668 */
1669static void
1670build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1671 unsigned int ptr)
1672{
1673 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1674 | _PAGE_DIRTY);
1675
1676 iPTE_SW(p, r, pte, ptr, mode);
1677}
1678
1679/*
1680 * Check if PTE can be modified, if not branch to LABEL. Regardless
1681 * restore PTE with value from PTR when done.
1682 */
1683static void
1684build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1685 unsigned int pte, unsigned int ptr, int scratch,
1686 enum label_id lid)
1687{
1688 if (use_bbit_insns()) {
1689 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1690 uasm_i_nop(p);
1691 } else {
1692 int t = scratch >= 0 ? scratch : pte;
1693 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1694 uasm_i_andi(p, t, t, 1);
1695 uasm_il_beqz(p, r, t, lid);
1696 if (pte == t)
1697 /* You lose the SMP race :-(*/
1698 iPTE_LW(p, pte, ptr);
1699 }
1700}
1701
1702#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1703
1704
1705/*
1706 * R3000 style TLB load/store/modify handlers.
1707 */
1708
1709/*
1710 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1711 * Then it returns.
1712 */
1713static void
1714build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1715{
1716 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1717 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1718 uasm_i_tlbwi(p);
1719 uasm_i_jr(p, tmp);
1720 uasm_i_rfe(p); /* branch delay */
1721}
1722
1723/*
1724 * This places the pte into ENTRYLO0 and writes it with tlbwi
1725 * or tlbwr as appropriate. This is because the index register
1726 * may have the probe fail bit set as a result of a trap on a
1727 * kseg2 access, i.e. without refill. Then it returns.
1728 */
1729static void
1730build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1731 struct uasm_reloc **r, unsigned int pte,
1732 unsigned int tmp)
1733{
1734 uasm_i_mfc0(p, tmp, C0_INDEX);
1735 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1736 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1737 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1738 uasm_i_tlbwi(p); /* cp0 delay */
1739 uasm_i_jr(p, tmp);
1740 uasm_i_rfe(p); /* branch delay */
1741 uasm_l_r3000_write_probe_fail(l, *p);
1742 uasm_i_tlbwr(p); /* cp0 delay */
1743 uasm_i_jr(p, tmp);
1744 uasm_i_rfe(p); /* branch delay */
1745}
1746
1747static void
1748build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1749 unsigned int ptr)
1750{
1751 long pgdc = (long)pgd_current;
1752
1753 uasm_i_mfc0(p, pte, C0_BADVADDR);
1754 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1755 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1756 uasm_i_srl(p, pte, pte, 22); /* load delay */
1757 uasm_i_sll(p, pte, pte, 2);
1758 uasm_i_addu(p, ptr, ptr, pte);
1759 uasm_i_mfc0(p, pte, C0_CONTEXT);
1760 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1761 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1762 uasm_i_addu(p, ptr, ptr, pte);
1763 uasm_i_lw(p, pte, 0, ptr);
1764 uasm_i_tlbp(p); /* load delay */
1765}
1766
1767static void build_r3000_tlb_load_handler(void)
1768{
1769 u32 *p = handle_tlbl;
1770 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1771 struct uasm_label *l = labels;
1772 struct uasm_reloc *r = relocs;
1773
1774 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1775 memset(labels, 0, sizeof(labels));
1776 memset(relocs, 0, sizeof(relocs));
1777
1778 build_r3000_tlbchange_handler_head(&p, K0, K1);
1779 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1780 uasm_i_nop(&p); /* load delay */
1781 build_make_valid(&p, &r, K0, K1);
1782 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1783
1784 uasm_l_nopage_tlbl(&l, p);
1785 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1786 uasm_i_nop(&p);
1787
1788 if (p >= handle_tlbl_end)
1789 panic("TLB load handler fastpath space exceeded");
1790
1791 uasm_resolve_relocs(relocs, labels);
1792 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1793 (unsigned int)(p - handle_tlbl));
1794
1795 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1796}
1797
1798static void build_r3000_tlb_store_handler(void)
1799{
1800 u32 *p = handle_tlbs;
1801 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1802 struct uasm_label *l = labels;
1803 struct uasm_reloc *r = relocs;
1804
1805 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1806 memset(labels, 0, sizeof(labels));
1807 memset(relocs, 0, sizeof(relocs));
1808
1809 build_r3000_tlbchange_handler_head(&p, K0, K1);
1810 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1811 uasm_i_nop(&p); /* load delay */
1812 build_make_write(&p, &r, K0, K1);
1813 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1814
1815 uasm_l_nopage_tlbs(&l, p);
1816 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1817 uasm_i_nop(&p);
1818
1819 if (p >= handle_tlbs_end)
1820 panic("TLB store handler fastpath space exceeded");
1821
1822 uasm_resolve_relocs(relocs, labels);
1823 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1824 (unsigned int)(p - handle_tlbs));
1825
1826 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1827}
1828
1829static void build_r3000_tlb_modify_handler(void)
1830{
1831 u32 *p = handle_tlbm;
1832 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1833 struct uasm_label *l = labels;
1834 struct uasm_reloc *r = relocs;
1835
1836 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1837 memset(labels, 0, sizeof(labels));
1838 memset(relocs, 0, sizeof(relocs));
1839
1840 build_r3000_tlbchange_handler_head(&p, K0, K1);
1841 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1842 uasm_i_nop(&p); /* load delay */
1843 build_make_write(&p, &r, K0, K1);
1844 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1845
1846 uasm_l_nopage_tlbm(&l, p);
1847 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1848 uasm_i_nop(&p);
1849
1850 if (p >= handle_tlbm_end)
1851 panic("TLB modify handler fastpath space exceeded");
1852
1853 uasm_resolve_relocs(relocs, labels);
1854 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1855 (unsigned int)(p - handle_tlbm));
1856
1857 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1858}
1859#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1860
1861/*
1862 * R4000 style TLB load/store/modify handlers.
1863 */
1864static struct work_registers
1865build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1866 struct uasm_reloc **r)
1867{
1868 struct work_registers wr = build_get_work_registers(p);
1869
1870#ifdef CONFIG_64BIT
1871 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1872#else
1873 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1874#endif
1875
1876#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1877 /*
1878 * For huge tlb entries, pmd doesn't contain an address but
1879 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1880 * see if we need to jump to huge tlb processing.
1881 */
1882 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1883#endif
1884
1885 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1886 UASM_i_LW(p, wr.r2, 0, wr.r2);
1887 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1888 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1889 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1890
1891#ifdef CONFIG_SMP
1892 uasm_l_smp_pgtable_change(l, *p);
1893#endif
1894 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1895 if (!m4kc_tlbp_war()) {
1896 build_tlb_probe_entry(p);
1897 if (cpu_has_htw) {
1898 /* race condition happens, leaving */
1899 uasm_i_ehb(p);
1900 uasm_i_mfc0(p, wr.r3, C0_INDEX);
1901 uasm_il_bltz(p, r, wr.r3, label_leave);
1902 uasm_i_nop(p);
1903 }
1904 }
1905 return wr;
1906}
1907
1908static void
1909build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1910 struct uasm_reloc **r, unsigned int tmp,
1911 unsigned int ptr)
1912{
1913 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1914 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1915 build_update_entries(p, tmp, ptr);
1916 build_tlb_write_entry(p, l, r, tlb_indexed);
1917 uasm_l_leave(l, *p);
1918 build_restore_work_registers(p);
1919 uasm_i_eret(p); /* return from trap */
1920
1921#ifdef CONFIG_64BIT
1922 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1923#endif
1924}
1925
1926static void build_r4000_tlb_load_handler(void)
1927{
1928 u32 *p = handle_tlbl;
1929 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1930 struct uasm_label *l = labels;
1931 struct uasm_reloc *r = relocs;
1932 struct work_registers wr;
1933
1934 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1935 memset(labels, 0, sizeof(labels));
1936 memset(relocs, 0, sizeof(relocs));
1937
1938 if (bcm1250_m3_war()) {
1939 unsigned int segbits = 44;
1940
1941 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1942 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1943 uasm_i_xor(&p, K0, K0, K1);
1944 uasm_i_dsrl_safe(&p, K1, K0, 62);
1945 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1946 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1947 uasm_i_or(&p, K0, K0, K1);
1948 uasm_il_bnez(&p, &r, K0, label_leave);
1949 /* No need for uasm_i_nop */
1950 }
1951
1952 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1953 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1954 if (m4kc_tlbp_war())
1955 build_tlb_probe_entry(&p);
1956
1957 if (cpu_has_rixi && !cpu_has_rixiex) {
1958 /*
1959 * If the page is not _PAGE_VALID, RI or XI could not
1960 * have triggered it. Skip the expensive test..
1961 */
1962 if (use_bbit_insns()) {
1963 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1964 label_tlbl_goaround1);
1965 } else {
1966 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1967 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1968 }
1969 uasm_i_nop(&p);
1970
1971 uasm_i_tlbr(&p);
1972
1973 switch (current_cpu_type()) {
1974 default:
1975 if (cpu_has_mips_r2_exec_hazard) {
1976 uasm_i_ehb(&p);
1977
1978 case CPU_CAVIUM_OCTEON:
1979 case CPU_CAVIUM_OCTEON_PLUS:
1980 case CPU_CAVIUM_OCTEON2:
1981 break;
1982 }
1983 }
1984
1985 /* Examine entrylo 0 or 1 based on ptr. */
1986 if (use_bbit_insns()) {
1987 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1988 } else {
1989 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1990 uasm_i_beqz(&p, wr.r3, 8);
1991 }
1992 /* load it in the delay slot*/
1993 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1994 /* load it if ptr is odd */
1995 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1996 /*
1997 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1998 * XI must have triggered it.
1999 */
2000 if (use_bbit_insns()) {
2001 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2002 uasm_i_nop(&p);
2003 uasm_l_tlbl_goaround1(&l, p);
2004 } else {
2005 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2006 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2007 uasm_i_nop(&p);
2008 }
2009 uasm_l_tlbl_goaround1(&l, p);
2010 }
2011 build_make_valid(&p, &r, wr.r1, wr.r2);
2012 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2013
2014#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2015 /*
2016 * This is the entry point when build_r4000_tlbchange_handler_head
2017 * spots a huge page.
2018 */
2019 uasm_l_tlb_huge_update(&l, p);
2020 iPTE_LW(&p, wr.r1, wr.r2);
2021 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2022 build_tlb_probe_entry(&p);
2023
2024 if (cpu_has_rixi && !cpu_has_rixiex) {
2025 /*
2026 * If the page is not _PAGE_VALID, RI or XI could not
2027 * have triggered it. Skip the expensive test..
2028 */
2029 if (use_bbit_insns()) {
2030 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2031 label_tlbl_goaround2);
2032 } else {
2033 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2034 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2035 }
2036 uasm_i_nop(&p);
2037
2038 uasm_i_tlbr(&p);
2039
2040 switch (current_cpu_type()) {
2041 default:
2042 if (cpu_has_mips_r2_exec_hazard) {
2043 uasm_i_ehb(&p);
2044
2045 case CPU_CAVIUM_OCTEON:
2046 case CPU_CAVIUM_OCTEON_PLUS:
2047 case CPU_CAVIUM_OCTEON2:
2048 break;
2049 }
2050 }
2051
2052 /* Examine entrylo 0 or 1 based on ptr. */
2053 if (use_bbit_insns()) {
2054 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2055 } else {
2056 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2057 uasm_i_beqz(&p, wr.r3, 8);
2058 }
2059 /* load it in the delay slot*/
2060 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2061 /* load it if ptr is odd */
2062 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2063 /*
2064 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2065 * XI must have triggered it.
2066 */
2067 if (use_bbit_insns()) {
2068 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2069 } else {
2070 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2071 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2072 }
2073 if (PM_DEFAULT_MASK == 0)
2074 uasm_i_nop(&p);
2075 /*
2076 * We clobbered C0_PAGEMASK, restore it. On the other branch
2077 * it is restored in build_huge_tlb_write_entry.
2078 */
2079 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2080
2081 uasm_l_tlbl_goaround2(&l, p);
2082 }
2083 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2084 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2085#endif
2086
2087 uasm_l_nopage_tlbl(&l, p);
2088 build_restore_work_registers(&p);
2089#ifdef CONFIG_CPU_MICROMIPS
2090 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2091 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2092 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2093 uasm_i_jr(&p, K0);
2094 } else
2095#endif
2096 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2097 uasm_i_nop(&p);
2098
2099 if (p >= handle_tlbl_end)
2100 panic("TLB load handler fastpath space exceeded");
2101
2102 uasm_resolve_relocs(relocs, labels);
2103 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2104 (unsigned int)(p - handle_tlbl));
2105
2106 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2107}
2108
2109static void build_r4000_tlb_store_handler(void)
2110{
2111 u32 *p = handle_tlbs;
2112 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2113 struct uasm_label *l = labels;
2114 struct uasm_reloc *r = relocs;
2115 struct work_registers wr;
2116
2117 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2118 memset(labels, 0, sizeof(labels));
2119 memset(relocs, 0, sizeof(relocs));
2120
2121 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2122 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2123 if (m4kc_tlbp_war())
2124 build_tlb_probe_entry(&p);
2125 build_make_write(&p, &r, wr.r1, wr.r2);
2126 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2127
2128#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2129 /*
2130 * This is the entry point when
2131 * build_r4000_tlbchange_handler_head spots a huge page.
2132 */
2133 uasm_l_tlb_huge_update(&l, p);
2134 iPTE_LW(&p, wr.r1, wr.r2);
2135 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2136 build_tlb_probe_entry(&p);
2137 uasm_i_ori(&p, wr.r1, wr.r1,
2138 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2139 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2140#endif
2141
2142 uasm_l_nopage_tlbs(&l, p);
2143 build_restore_work_registers(&p);
2144#ifdef CONFIG_CPU_MICROMIPS
2145 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2146 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2147 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2148 uasm_i_jr(&p, K0);
2149 } else
2150#endif
2151 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2152 uasm_i_nop(&p);
2153
2154 if (p >= handle_tlbs_end)
2155 panic("TLB store handler fastpath space exceeded");
2156
2157 uasm_resolve_relocs(relocs, labels);
2158 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2159 (unsigned int)(p - handle_tlbs));
2160
2161 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2162}
2163
2164static void build_r4000_tlb_modify_handler(void)
2165{
2166 u32 *p = handle_tlbm;
2167 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2168 struct uasm_label *l = labels;
2169 struct uasm_reloc *r = relocs;
2170 struct work_registers wr;
2171
2172 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2173 memset(labels, 0, sizeof(labels));
2174 memset(relocs, 0, sizeof(relocs));
2175
2176 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2177 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2178 if (m4kc_tlbp_war())
2179 build_tlb_probe_entry(&p);
2180 /* Present and writable bits set, set accessed and dirty bits. */
2181 build_make_write(&p, &r, wr.r1, wr.r2);
2182 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2183
2184#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2185 /*
2186 * This is the entry point when
2187 * build_r4000_tlbchange_handler_head spots a huge page.
2188 */
2189 uasm_l_tlb_huge_update(&l, p);
2190 iPTE_LW(&p, wr.r1, wr.r2);
2191 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2192 build_tlb_probe_entry(&p);
2193 uasm_i_ori(&p, wr.r1, wr.r1,
2194 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2195 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2196#endif
2197
2198 uasm_l_nopage_tlbm(&l, p);
2199 build_restore_work_registers(&p);
2200#ifdef CONFIG_CPU_MICROMIPS
2201 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2202 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2203 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2204 uasm_i_jr(&p, K0);
2205 } else
2206#endif
2207 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2208 uasm_i_nop(&p);
2209
2210 if (p >= handle_tlbm_end)
2211 panic("TLB modify handler fastpath space exceeded");
2212
2213 uasm_resolve_relocs(relocs, labels);
2214 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2215 (unsigned int)(p - handle_tlbm));
2216
2217 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2218}
2219
2220static void flush_tlb_handlers(void)
2221{
2222 local_flush_icache_range((unsigned long)handle_tlbl,
2223 (unsigned long)handle_tlbl_end);
2224 local_flush_icache_range((unsigned long)handle_tlbs,
2225 (unsigned long)handle_tlbs_end);
2226 local_flush_icache_range((unsigned long)handle_tlbm,
2227 (unsigned long)handle_tlbm_end);
2228 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2229 (unsigned long)tlbmiss_handler_setup_pgd_end);
2230}
2231
2232static void print_htw_config(void)
2233{
2234 unsigned long config;
2235 unsigned int pwctl;
2236 const int field = 2 * sizeof(unsigned long);
2237
2238 config = read_c0_pwfield();
2239 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2240 field, config,
2241 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2242 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2243 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2244 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2245 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2246
2247 config = read_c0_pwsize();
2248 pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2249 field, config,
2250 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2251 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2252 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2253 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2254 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2255
2256 pwctl = read_c0_pwctl();
2257 pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2258 pwctl,
2259 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2260 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2261 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2262 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2263}
2264
2265static void config_htw_params(void)
2266{
2267 unsigned long pwfield, pwsize, ptei;
2268 unsigned int config;
2269
2270 /*
2271 * We are using 2-level page tables, so we only need to
2272 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2273 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2274 * write values less than 0xc in these fields because the entire
2275 * write will be dropped. As a result of which, we must preserve
2276 * the original reset values and overwrite only what we really want.
2277 */
2278
2279 pwfield = read_c0_pwfield();
2280 /* re-initialize the GDI field */
2281 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2282 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2283 /* re-initialize the PTI field including the even/odd bit */
2284 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2285 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2286 if (CONFIG_PGTABLE_LEVELS >= 3) {
2287 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2288 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2289 }
2290 /* Set the PTEI right shift */
2291 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2292 pwfield |= ptei;
2293 write_c0_pwfield(pwfield);
2294 /* Check whether the PTEI value is supported */
2295 back_to_back_c0_hazard();
2296 pwfield = read_c0_pwfield();
2297 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2298 != ptei) {
2299 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2300 ptei);
2301 /*
2302 * Drop option to avoid HTW being enabled via another path
2303 * (eg htw_reset())
2304 */
2305 current_cpu_data.options &= ~MIPS_CPU_HTW;
2306 return;
2307 }
2308
2309 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2310 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2311 if (CONFIG_PGTABLE_LEVELS >= 3)
2312 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2313
2314 /* If XPA has been enabled, PTEs are 64-bit in size. */
2315 if (config_enabled(CONFIG_64BITS) || (read_c0_pagegrain() & PG_ELPA))
2316 pwsize |= 1;
2317
2318 write_c0_pwsize(pwsize);
2319
2320 /* Make sure everything is set before we enable the HTW */
2321 back_to_back_c0_hazard();
2322
2323 /* Enable HTW and disable the rest of the pwctl fields */
2324 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2325 write_c0_pwctl(config);
2326 pr_info("Hardware Page Table Walker enabled\n");
2327
2328 print_htw_config();
2329}
2330
2331static void config_xpa_params(void)
2332{
2333#ifdef CONFIG_XPA
2334 unsigned int pagegrain;
2335
2336 if (mips_xpa_disabled) {
2337 pr_info("Extended Physical Addressing (XPA) disabled\n");
2338 return;
2339 }
2340
2341 pagegrain = read_c0_pagegrain();
2342 write_c0_pagegrain(pagegrain | PG_ELPA);
2343 back_to_back_c0_hazard();
2344 pagegrain = read_c0_pagegrain();
2345
2346 if (pagegrain & PG_ELPA)
2347 pr_info("Extended Physical Addressing (XPA) enabled\n");
2348 else
2349 panic("Extended Physical Addressing (XPA) disabled");
2350#endif
2351}
2352
2353static void check_pabits(void)
2354{
2355 unsigned long entry;
2356 unsigned pabits, fillbits;
2357
2358 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2359 /*
2360 * We'll only be making use of the fact that we can rotate bits
2361 * into the fill if the CPU supports RIXI, so don't bother
2362 * probing this for CPUs which don't.
2363 */
2364 return;
2365 }
2366
2367 write_c0_entrylo0(~0ul);
2368 back_to_back_c0_hazard();
2369 entry = read_c0_entrylo0();
2370
2371 /* clear all non-PFN bits */
2372 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2373 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2374
2375 /* find a lower bound on PABITS, and upper bound on fill bits */
2376 pabits = fls_long(entry) + 6;
2377 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2378
2379 /* minus the RI & XI bits */
2380 fillbits -= min_t(unsigned, fillbits, 2);
2381
2382 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2383 fill_includes_sw_bits = true;
2384
2385 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2386}
2387
2388void build_tlb_refill_handler(void)
2389{
2390 /*
2391 * The refill handler is generated per-CPU, multi-node systems
2392 * may have local storage for it. The other handlers are only
2393 * needed once.
2394 */
2395 static int run_once = 0;
2396
2397 output_pgtable_bits_defines();
2398 check_pabits();
2399
2400#ifdef CONFIG_64BIT
2401 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2402#endif
2403
2404 switch (current_cpu_type()) {
2405 case CPU_R2000:
2406 case CPU_R3000:
2407 case CPU_R3000A:
2408 case CPU_R3081E:
2409 case CPU_TX3912:
2410 case CPU_TX3922:
2411 case CPU_TX3927:
2412#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2413 if (cpu_has_local_ebase)
2414 build_r3000_tlb_refill_handler();
2415 if (!run_once) {
2416 if (!cpu_has_local_ebase)
2417 build_r3000_tlb_refill_handler();
2418 build_setup_pgd();
2419 build_r3000_tlb_load_handler();
2420 build_r3000_tlb_store_handler();
2421 build_r3000_tlb_modify_handler();
2422 flush_tlb_handlers();
2423 run_once++;
2424 }
2425#else
2426 panic("No R3000 TLB refill handler");
2427#endif
2428 break;
2429
2430 case CPU_R6000:
2431 case CPU_R6000A:
2432 panic("No R6000 TLB refill handler yet");
2433 break;
2434
2435 case CPU_R8000:
2436 panic("No R8000 TLB refill handler yet");
2437 break;
2438
2439 default:
2440 if (!run_once) {
2441 scratch_reg = allocate_kscratch();
2442 build_setup_pgd();
2443 build_r4000_tlb_load_handler();
2444 build_r4000_tlb_store_handler();
2445 build_r4000_tlb_modify_handler();
2446 if (!cpu_has_local_ebase)
2447 build_r4000_tlb_refill_handler();
2448 flush_tlb_handlers();
2449 run_once++;
2450 }
2451 if (cpu_has_local_ebase)
2452 build_r4000_tlb_refill_handler();
2453 if (cpu_has_xpa)
2454 config_xpa_params();
2455 if (cpu_has_htw)
2456 config_htw_params();
2457 }
2458}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29#include <linux/init.h>
30#include <linux/cache.h>
31
32#include <asm/cacheflush.h>
33#include <asm/pgtable.h>
34#include <asm/war.h>
35#include <asm/uasm.h>
36#include <asm/setup.h>
37
38/*
39 * TLB load/store/modify handlers.
40 *
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
43 */
44extern void tlb_do_page_fault_0(void);
45extern void tlb_do_page_fault_1(void);
46
47struct work_registers {
48 int r1;
49 int r2;
50 int r3;
51};
52
53struct tlb_reg_save {
54 unsigned long a;
55 unsigned long b;
56} ____cacheline_aligned_in_smp;
57
58static struct tlb_reg_save handler_reg_save[NR_CPUS];
59
60static inline int r45k_bvahwbug(void)
61{
62 /* XXX: We should probe for the presence of this bug, but we don't. */
63 return 0;
64}
65
66static inline int r4k_250MHZhwbug(void)
67{
68 /* XXX: We should probe for the presence of this bug, but we don't. */
69 return 0;
70}
71
72static inline int __maybe_unused bcm1250_m3_war(void)
73{
74 return BCM1250_M3_WAR;
75}
76
77static inline int __maybe_unused r10000_llsc_war(void)
78{
79 return R10000_LLSC_WAR;
80}
81
82static int use_bbit_insns(void)
83{
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 return 1;
89 default:
90 return 0;
91 }
92}
93
94static int use_lwx_insns(void)
95{
96 switch (current_cpu_type()) {
97 case CPU_CAVIUM_OCTEON2:
98 return 1;
99 default:
100 return 0;
101 }
102}
103#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105static bool scratchpad_available(void)
106{
107 return true;
108}
109static int scratchpad_offset(int i)
110{
111 /*
112 * CVMSEG starts at address -32768 and extends for
113 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 */
115 i += 1; /* Kernel use starts at the top and works down. */
116 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117}
118#else
119static bool scratchpad_available(void)
120{
121 return false;
122}
123static int scratchpad_offset(int i)
124{
125 BUG();
126 /* Really unreachable, but evidently some GCC want this. */
127 return 0;
128}
129#endif
130/*
131 * Found by experiment: At least some revisions of the 4kc throw under
132 * some circumstances a machine check exception, triggered by invalid
133 * values in the index register. Delaying the tlbp instruction until
134 * after the next branch, plus adding an additional nop in front of
135 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136 * why; it's not an issue caused by the core RTL.
137 *
138 */
139static int __cpuinit m4kc_tlbp_war(void)
140{
141 return (current_cpu_data.processor_id & 0xffff00) ==
142 (PRID_COMP_MIPS | PRID_IMP_4KC);
143}
144
145/* Handle labels (which must be positive integers). */
146enum label_id {
147 label_second_part = 1,
148 label_leave,
149 label_vmalloc,
150 label_vmalloc_done,
151 label_tlbw_hazard,
152 label_split,
153 label_tlbl_goaround1,
154 label_tlbl_goaround2,
155 label_nopage_tlbl,
156 label_nopage_tlbs,
157 label_nopage_tlbm,
158 label_smp_pgtable_change,
159 label_r3000_write_probe_fail,
160 label_large_segbits_fault,
161#ifdef CONFIG_HUGETLB_PAGE
162 label_tlb_huge_update,
163#endif
164};
165
166UASM_L_LA(_second_part)
167UASM_L_LA(_leave)
168UASM_L_LA(_vmalloc)
169UASM_L_LA(_vmalloc_done)
170UASM_L_LA(_tlbw_hazard)
171UASM_L_LA(_split)
172UASM_L_LA(_tlbl_goaround1)
173UASM_L_LA(_tlbl_goaround2)
174UASM_L_LA(_nopage_tlbl)
175UASM_L_LA(_nopage_tlbs)
176UASM_L_LA(_nopage_tlbm)
177UASM_L_LA(_smp_pgtable_change)
178UASM_L_LA(_r3000_write_probe_fail)
179UASM_L_LA(_large_segbits_fault)
180#ifdef CONFIG_HUGETLB_PAGE
181UASM_L_LA(_tlb_huge_update)
182#endif
183
184/*
185 * For debug purposes.
186 */
187static inline void dump_handler(const u32 *handler, int count)
188{
189 int i;
190
191 pr_debug("\t.set push\n");
192 pr_debug("\t.set noreorder\n");
193
194 for (i = 0; i < count; i++)
195 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
196
197 pr_debug("\t.set pop\n");
198}
199
200/* The only general purpose registers allowed in TLB handlers. */
201#define K0 26
202#define K1 27
203
204/* Some CP0 registers */
205#define C0_INDEX 0, 0
206#define C0_ENTRYLO0 2, 0
207#define C0_TCBIND 2, 2
208#define C0_ENTRYLO1 3, 0
209#define C0_CONTEXT 4, 0
210#define C0_PAGEMASK 5, 0
211#define C0_BADVADDR 8, 0
212#define C0_ENTRYHI 10, 0
213#define C0_EPC 14, 0
214#define C0_XCONTEXT 20, 0
215
216#ifdef CONFIG_64BIT
217# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
218#else
219# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
220#endif
221
222/* The worst case length of the handler is around 18 instructions for
223 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
224 * Maximum space available is 32 instructions for R3000 and 64
225 * instructions for R4000.
226 *
227 * We deliberately chose a buffer size of 128, so we won't scribble
228 * over anything important on overflow before we panic.
229 */
230static u32 tlb_handler[128] __cpuinitdata;
231
232/* simply assume worst case size for labels and relocs */
233static struct uasm_label labels[128] __cpuinitdata;
234static struct uasm_reloc relocs[128] __cpuinitdata;
235
236#ifdef CONFIG_64BIT
237static int check_for_high_segbits __cpuinitdata;
238#endif
239
240static int check_for_high_segbits __cpuinitdata;
241
242static unsigned int kscratch_used_mask __cpuinitdata;
243
244static int __cpuinit allocate_kscratch(void)
245{
246 int r;
247 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
248
249 r = ffs(a);
250
251 if (r == 0)
252 return -1;
253
254 r--; /* make it zero based */
255
256 kscratch_used_mask |= (1 << r);
257
258 return r;
259}
260
261static int scratch_reg __cpuinitdata;
262static int pgd_reg __cpuinitdata;
263enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
264
265static struct work_registers __cpuinit build_get_work_registers(u32 **p)
266{
267 struct work_registers r;
268
269 int smp_processor_id_reg;
270 int smp_processor_id_sel;
271 int smp_processor_id_shift;
272
273 if (scratch_reg > 0) {
274 /* Save in CPU local C0_KScratch? */
275 UASM_i_MTC0(p, 1, 31, scratch_reg);
276 r.r1 = K0;
277 r.r2 = K1;
278 r.r3 = 1;
279 return r;
280 }
281
282 if (num_possible_cpus() > 1) {
283#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
284 smp_processor_id_shift = 51;
285 smp_processor_id_reg = 20; /* XContext */
286 smp_processor_id_sel = 0;
287#else
288# ifdef CONFIG_32BIT
289 smp_processor_id_shift = 25;
290 smp_processor_id_reg = 4; /* Context */
291 smp_processor_id_sel = 0;
292# endif
293# ifdef CONFIG_64BIT
294 smp_processor_id_shift = 26;
295 smp_processor_id_reg = 4; /* Context */
296 smp_processor_id_sel = 0;
297# endif
298#endif
299 /* Get smp_processor_id */
300 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
301 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
302
303 /* handler_reg_save index in K0 */
304 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
305
306 UASM_i_LA(p, K1, (long)&handler_reg_save);
307 UASM_i_ADDU(p, K0, K0, K1);
308 } else {
309 UASM_i_LA(p, K0, (long)&handler_reg_save);
310 }
311 /* K0 now points to save area, save $1 and $2 */
312 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
313 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
314
315 r.r1 = K1;
316 r.r2 = 1;
317 r.r3 = 2;
318 return r;
319}
320
321static void __cpuinit build_restore_work_registers(u32 **p)
322{
323 if (scratch_reg > 0) {
324 UASM_i_MFC0(p, 1, 31, scratch_reg);
325 return;
326 }
327 /* K0 already points to save area, restore $1 and $2 */
328 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
329 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
330}
331
332#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
333
334/*
335 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
336 * we cannot do r3000 under these circumstances.
337 *
338 * Declare pgd_current here instead of including mmu_context.h to avoid type
339 * conflicts for tlbmiss_handler_setup_pgd
340 */
341extern unsigned long pgd_current[];
342
343/*
344 * The R3000 TLB handler is simple.
345 */
346static void __cpuinit build_r3000_tlb_refill_handler(void)
347{
348 long pgdc = (long)pgd_current;
349 u32 *p;
350
351 memset(tlb_handler, 0, sizeof(tlb_handler));
352 p = tlb_handler;
353
354 uasm_i_mfc0(&p, K0, C0_BADVADDR);
355 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
356 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
357 uasm_i_srl(&p, K0, K0, 22); /* load delay */
358 uasm_i_sll(&p, K0, K0, 2);
359 uasm_i_addu(&p, K1, K1, K0);
360 uasm_i_mfc0(&p, K0, C0_CONTEXT);
361 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
362 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
363 uasm_i_addu(&p, K1, K1, K0);
364 uasm_i_lw(&p, K0, 0, K1);
365 uasm_i_nop(&p); /* load delay */
366 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
367 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
368 uasm_i_tlbwr(&p); /* cp0 delay */
369 uasm_i_jr(&p, K1);
370 uasm_i_rfe(&p); /* branch delay */
371
372 if (p > tlb_handler + 32)
373 panic("TLB refill handler space exceeded");
374
375 pr_debug("Wrote TLB refill handler (%u instructions).\n",
376 (unsigned int)(p - tlb_handler));
377
378 memcpy((void *)ebase, tlb_handler, 0x80);
379
380 dump_handler((u32 *)ebase, 32);
381}
382#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
383
384/*
385 * The R4000 TLB handler is much more complicated. We have two
386 * consecutive handler areas with 32 instructions space each.
387 * Since they aren't used at the same time, we can overflow in the
388 * other one.To keep things simple, we first assume linear space,
389 * then we relocate it to the final handler layout as needed.
390 */
391static u32 final_handler[64] __cpuinitdata;
392
393/*
394 * Hazards
395 *
396 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
397 * 2. A timing hazard exists for the TLBP instruction.
398 *
399 * stalling_instruction
400 * TLBP
401 *
402 * The JTLB is being read for the TLBP throughout the stall generated by the
403 * previous instruction. This is not really correct as the stalling instruction
404 * can modify the address used to access the JTLB. The failure symptom is that
405 * the TLBP instruction will use an address created for the stalling instruction
406 * and not the address held in C0_ENHI and thus report the wrong results.
407 *
408 * The software work-around is to not allow the instruction preceding the TLBP
409 * to stall - make it an NOP or some other instruction guaranteed not to stall.
410 *
411 * Errata 2 will not be fixed. This errata is also on the R5000.
412 *
413 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
414 */
415static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
416{
417 switch (current_cpu_type()) {
418 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
419 case CPU_R4600:
420 case CPU_R4700:
421 case CPU_R5000:
422 case CPU_R5000A:
423 case CPU_NEVADA:
424 uasm_i_nop(p);
425 uasm_i_tlbp(p);
426 break;
427
428 default:
429 uasm_i_tlbp(p);
430 break;
431 }
432}
433
434/*
435 * Write random or indexed TLB entry, and care about the hazards from
436 * the preceding mtc0 and for the following eret.
437 */
438enum tlb_write_entry { tlb_random, tlb_indexed };
439
440static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
441 struct uasm_reloc **r,
442 enum tlb_write_entry wmode)
443{
444 void(*tlbw)(u32 **) = NULL;
445
446 switch (wmode) {
447 case tlb_random: tlbw = uasm_i_tlbwr; break;
448 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
449 }
450
451 if (cpu_has_mips_r2) {
452 if (cpu_has_mips_r2_exec_hazard)
453 uasm_i_ehb(p);
454 tlbw(p);
455 return;
456 }
457
458 switch (current_cpu_type()) {
459 case CPU_R4000PC:
460 case CPU_R4000SC:
461 case CPU_R4000MC:
462 case CPU_R4400PC:
463 case CPU_R4400SC:
464 case CPU_R4400MC:
465 /*
466 * This branch uses up a mtc0 hazard nop slot and saves
467 * two nops after the tlbw instruction.
468 */
469 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
470 tlbw(p);
471 uasm_l_tlbw_hazard(l, *p);
472 uasm_i_nop(p);
473 break;
474
475 case CPU_R4600:
476 case CPU_R4700:
477 case CPU_R5000:
478 case CPU_R5000A:
479 uasm_i_nop(p);
480 tlbw(p);
481 uasm_i_nop(p);
482 break;
483
484 case CPU_R4300:
485 case CPU_5KC:
486 case CPU_TX49XX:
487 case CPU_PR4450:
488 case CPU_XLR:
489 uasm_i_nop(p);
490 tlbw(p);
491 break;
492
493 case CPU_R10000:
494 case CPU_R12000:
495 case CPU_R14000:
496 case CPU_4KC:
497 case CPU_4KEC:
498 case CPU_M14KC:
499 case CPU_SB1:
500 case CPU_SB1A:
501 case CPU_4KSC:
502 case CPU_20KC:
503 case CPU_25KF:
504 case CPU_BMIPS32:
505 case CPU_BMIPS3300:
506 case CPU_BMIPS4350:
507 case CPU_BMIPS4380:
508 case CPU_BMIPS5000:
509 case CPU_LOONGSON2:
510 case CPU_R5500:
511 if (m4kc_tlbp_war())
512 uasm_i_nop(p);
513 case CPU_ALCHEMY:
514 tlbw(p);
515 break;
516
517 case CPU_NEVADA:
518 uasm_i_nop(p); /* QED specifies 2 nops hazard */
519 /*
520 * This branch uses up a mtc0 hazard nop slot and saves
521 * a nop after the tlbw instruction.
522 */
523 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
524 tlbw(p);
525 uasm_l_tlbw_hazard(l, *p);
526 break;
527
528 case CPU_RM7000:
529 uasm_i_nop(p);
530 uasm_i_nop(p);
531 uasm_i_nop(p);
532 uasm_i_nop(p);
533 tlbw(p);
534 break;
535
536 case CPU_RM9000:
537 /*
538 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
539 * use of the JTLB for instructions should not occur for 4
540 * cpu cycles and use for data translations should not occur
541 * for 3 cpu cycles.
542 */
543 uasm_i_ssnop(p);
544 uasm_i_ssnop(p);
545 uasm_i_ssnop(p);
546 uasm_i_ssnop(p);
547 tlbw(p);
548 uasm_i_ssnop(p);
549 uasm_i_ssnop(p);
550 uasm_i_ssnop(p);
551 uasm_i_ssnop(p);
552 break;
553
554 case CPU_VR4111:
555 case CPU_VR4121:
556 case CPU_VR4122:
557 case CPU_VR4181:
558 case CPU_VR4181A:
559 uasm_i_nop(p);
560 uasm_i_nop(p);
561 tlbw(p);
562 uasm_i_nop(p);
563 uasm_i_nop(p);
564 break;
565
566 case CPU_VR4131:
567 case CPU_VR4133:
568 case CPU_R5432:
569 uasm_i_nop(p);
570 uasm_i_nop(p);
571 tlbw(p);
572 break;
573
574 case CPU_JZRISC:
575 tlbw(p);
576 uasm_i_nop(p);
577 break;
578
579 default:
580 panic("No TLB refill handler yet (CPU type: %d)",
581 current_cpu_data.cputype);
582 break;
583 }
584}
585
586static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
587 unsigned int reg)
588{
589 if (kernel_uses_smartmips_rixi) {
590 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
591 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
592 } else {
593#ifdef CONFIG_64BIT_PHYS_ADDR
594 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
595#else
596 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
597#endif
598 }
599}
600
601#ifdef CONFIG_HUGETLB_PAGE
602
603static __cpuinit void build_restore_pagemask(u32 **p,
604 struct uasm_reloc **r,
605 unsigned int tmp,
606 enum label_id lid,
607 int restore_scratch)
608{
609 if (restore_scratch) {
610 /* Reset default page size */
611 if (PM_DEFAULT_MASK >> 16) {
612 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
613 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
614 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
615 uasm_il_b(p, r, lid);
616 } else if (PM_DEFAULT_MASK) {
617 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
618 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
619 uasm_il_b(p, r, lid);
620 } else {
621 uasm_i_mtc0(p, 0, C0_PAGEMASK);
622 uasm_il_b(p, r, lid);
623 }
624 if (scratch_reg > 0)
625 UASM_i_MFC0(p, 1, 31, scratch_reg);
626 else
627 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
628 } else {
629 /* Reset default page size */
630 if (PM_DEFAULT_MASK >> 16) {
631 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
632 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
633 uasm_il_b(p, r, lid);
634 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
635 } else if (PM_DEFAULT_MASK) {
636 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
637 uasm_il_b(p, r, lid);
638 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
639 } else {
640 uasm_il_b(p, r, lid);
641 uasm_i_mtc0(p, 0, C0_PAGEMASK);
642 }
643 }
644}
645
646static __cpuinit void build_huge_tlb_write_entry(u32 **p,
647 struct uasm_label **l,
648 struct uasm_reloc **r,
649 unsigned int tmp,
650 enum tlb_write_entry wmode,
651 int restore_scratch)
652{
653 /* Set huge page tlb entry size */
654 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
655 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
656 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
657
658 build_tlb_write_entry(p, l, r, wmode);
659
660 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
661}
662
663/*
664 * Check if Huge PTE is present, if so then jump to LABEL.
665 */
666static void __cpuinit
667build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
668 unsigned int pmd, int lid)
669{
670 UASM_i_LW(p, tmp, 0, pmd);
671 if (use_bbit_insns()) {
672 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
673 } else {
674 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
675 uasm_il_bnez(p, r, tmp, lid);
676 }
677}
678
679static __cpuinit void build_huge_update_entries(u32 **p,
680 unsigned int pte,
681 unsigned int tmp)
682{
683 int small_sequence;
684
685 /*
686 * A huge PTE describes an area the size of the
687 * configured huge page size. This is twice the
688 * of the large TLB entry size we intend to use.
689 * A TLB entry half the size of the configured
690 * huge page size is configured into entrylo0
691 * and entrylo1 to cover the contiguous huge PTE
692 * address space.
693 */
694 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
695
696 /* We can clobber tmp. It isn't used after this.*/
697 if (!small_sequence)
698 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
699
700 build_convert_pte_to_entrylo(p, pte);
701 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
702 /* convert to entrylo1 */
703 if (small_sequence)
704 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
705 else
706 UASM_i_ADDU(p, pte, pte, tmp);
707
708 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
709}
710
711static __cpuinit void build_huge_handler_tail(u32 **p,
712 struct uasm_reloc **r,
713 struct uasm_label **l,
714 unsigned int pte,
715 unsigned int ptr)
716{
717#ifdef CONFIG_SMP
718 UASM_i_SC(p, pte, 0, ptr);
719 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
720 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
721#else
722 UASM_i_SW(p, pte, 0, ptr);
723#endif
724 build_huge_update_entries(p, pte, ptr);
725 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
726}
727#endif /* CONFIG_HUGETLB_PAGE */
728
729#ifdef CONFIG_64BIT
730/*
731 * TMP and PTR are scratch.
732 * TMP will be clobbered, PTR will hold the pmd entry.
733 */
734static void __cpuinit
735build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
736 unsigned int tmp, unsigned int ptr)
737{
738#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
739 long pgdc = (long)pgd_current;
740#endif
741 /*
742 * The vmalloc handling is not in the hotpath.
743 */
744 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
745
746 if (check_for_high_segbits) {
747 /*
748 * The kernel currently implicitely assumes that the
749 * MIPS SEGBITS parameter for the processor is
750 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
751 * allocate virtual addresses outside the maximum
752 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
753 * that doesn't prevent user code from accessing the
754 * higher xuseg addresses. Here, we make sure that
755 * everything but the lower xuseg addresses goes down
756 * the module_alloc/vmalloc path.
757 */
758 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
759 uasm_il_bnez(p, r, ptr, label_vmalloc);
760 } else {
761 uasm_il_bltz(p, r, tmp, label_vmalloc);
762 }
763 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
764
765#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
766 if (pgd_reg != -1) {
767 /* pgd is in pgd_reg */
768 UASM_i_MFC0(p, ptr, 31, pgd_reg);
769 } else {
770 /*
771 * &pgd << 11 stored in CONTEXT [23..63].
772 */
773 UASM_i_MFC0(p, ptr, C0_CONTEXT);
774
775 /* Clear lower 23 bits of context. */
776 uasm_i_dins(p, ptr, 0, 0, 23);
777
778 /* 1 0 1 0 1 << 6 xkphys cached */
779 uasm_i_ori(p, ptr, ptr, 0x540);
780 uasm_i_drotr(p, ptr, ptr, 11);
781 }
782#elif defined(CONFIG_SMP)
783# ifdef CONFIG_MIPS_MT_SMTC
784 /*
785 * SMTC uses TCBind value as "CPU" index
786 */
787 uasm_i_mfc0(p, ptr, C0_TCBIND);
788 uasm_i_dsrl_safe(p, ptr, ptr, 19);
789# else
790 /*
791 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
792 * stored in CONTEXT.
793 */
794 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
795 uasm_i_dsrl_safe(p, ptr, ptr, 23);
796# endif
797 UASM_i_LA_mostly(p, tmp, pgdc);
798 uasm_i_daddu(p, ptr, ptr, tmp);
799 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
800 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
801#else
802 UASM_i_LA_mostly(p, ptr, pgdc);
803 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
804#endif
805
806 uasm_l_vmalloc_done(l, *p);
807
808 /* get pgd offset in bytes */
809 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
810
811 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
812 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
813#ifndef __PAGETABLE_PMD_FOLDED
814 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
815 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
816 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
817 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
818 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
819#endif
820}
821
822/*
823 * BVADDR is the faulting address, PTR is scratch.
824 * PTR will hold the pgd for vmalloc.
825 */
826static void __cpuinit
827build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
828 unsigned int bvaddr, unsigned int ptr,
829 enum vmalloc64_mode mode)
830{
831 long swpd = (long)swapper_pg_dir;
832 int single_insn_swpd;
833 int did_vmalloc_branch = 0;
834
835 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
836
837 uasm_l_vmalloc(l, *p);
838
839 if (mode != not_refill && check_for_high_segbits) {
840 if (single_insn_swpd) {
841 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
842 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
843 did_vmalloc_branch = 1;
844 /* fall through */
845 } else {
846 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
847 }
848 }
849 if (!did_vmalloc_branch) {
850 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
851 uasm_il_b(p, r, label_vmalloc_done);
852 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
853 } else {
854 UASM_i_LA_mostly(p, ptr, swpd);
855 uasm_il_b(p, r, label_vmalloc_done);
856 if (uasm_in_compat_space_p(swpd))
857 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
858 else
859 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
860 }
861 }
862 if (mode != not_refill && check_for_high_segbits) {
863 uasm_l_large_segbits_fault(l, *p);
864 /*
865 * We get here if we are an xsseg address, or if we are
866 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
867 *
868 * Ignoring xsseg (assume disabled so would generate
869 * (address errors?), the only remaining possibility
870 * is the upper xuseg addresses. On processors with
871 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
872 * addresses would have taken an address error. We try
873 * to mimic that here by taking a load/istream page
874 * fault.
875 */
876 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
877 uasm_i_jr(p, ptr);
878
879 if (mode == refill_scratch) {
880 if (scratch_reg > 0)
881 UASM_i_MFC0(p, 1, 31, scratch_reg);
882 else
883 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
884 } else {
885 uasm_i_nop(p);
886 }
887 }
888}
889
890#else /* !CONFIG_64BIT */
891
892/*
893 * TMP and PTR are scratch.
894 * TMP will be clobbered, PTR will hold the pgd entry.
895 */
896static void __cpuinit __maybe_unused
897build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
898{
899 long pgdc = (long)pgd_current;
900
901 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
902#ifdef CONFIG_SMP
903#ifdef CONFIG_MIPS_MT_SMTC
904 /*
905 * SMTC uses TCBind value as "CPU" index
906 */
907 uasm_i_mfc0(p, ptr, C0_TCBIND);
908 UASM_i_LA_mostly(p, tmp, pgdc);
909 uasm_i_srl(p, ptr, ptr, 19);
910#else
911 /*
912 * smp_processor_id() << 3 is stored in CONTEXT.
913 */
914 uasm_i_mfc0(p, ptr, C0_CONTEXT);
915 UASM_i_LA_mostly(p, tmp, pgdc);
916 uasm_i_srl(p, ptr, ptr, 23);
917#endif
918 uasm_i_addu(p, ptr, tmp, ptr);
919#else
920 UASM_i_LA_mostly(p, ptr, pgdc);
921#endif
922 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
923 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
924 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
925 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
926 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
927}
928
929#endif /* !CONFIG_64BIT */
930
931static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
932{
933 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
934 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
935
936 switch (current_cpu_type()) {
937 case CPU_VR41XX:
938 case CPU_VR4111:
939 case CPU_VR4121:
940 case CPU_VR4122:
941 case CPU_VR4131:
942 case CPU_VR4181:
943 case CPU_VR4181A:
944 case CPU_VR4133:
945 shift += 2;
946 break;
947
948 default:
949 break;
950 }
951
952 if (shift)
953 UASM_i_SRL(p, ctx, ctx, shift);
954 uasm_i_andi(p, ctx, ctx, mask);
955}
956
957static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
958{
959 /*
960 * Bug workaround for the Nevada. It seems as if under certain
961 * circumstances the move from cp0_context might produce a
962 * bogus result when the mfc0 instruction and its consumer are
963 * in a different cacheline or a load instruction, probably any
964 * memory reference, is between them.
965 */
966 switch (current_cpu_type()) {
967 case CPU_NEVADA:
968 UASM_i_LW(p, ptr, 0, ptr);
969 GET_CONTEXT(p, tmp); /* get context reg */
970 break;
971
972 default:
973 GET_CONTEXT(p, tmp); /* get context reg */
974 UASM_i_LW(p, ptr, 0, ptr);
975 break;
976 }
977
978 build_adjust_context(p, tmp);
979 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
980}
981
982static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
983 unsigned int ptep)
984{
985 /*
986 * 64bit address support (36bit on a 32bit CPU) in a 32bit
987 * Kernel is a special case. Only a few CPUs use it.
988 */
989#ifdef CONFIG_64BIT_PHYS_ADDR
990 if (cpu_has_64bits) {
991 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
992 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
993 if (kernel_uses_smartmips_rixi) {
994 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
995 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
996 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
997 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
998 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
999 } else {
1000 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1001 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1002 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1003 }
1004 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1005 } else {
1006 int pte_off_even = sizeof(pte_t) / 2;
1007 int pte_off_odd = pte_off_even + sizeof(pte_t);
1008
1009 /* The pte entries are pre-shifted */
1010 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1011 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1012 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1013 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1014 }
1015#else
1016 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1017 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1018 if (r45k_bvahwbug())
1019 build_tlb_probe_entry(p);
1020 if (kernel_uses_smartmips_rixi) {
1021 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
1022 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
1023 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1024 if (r4k_250MHZhwbug())
1025 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1026 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1027 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1028 } else {
1029 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1030 if (r4k_250MHZhwbug())
1031 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1032 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1034 if (r45k_bvahwbug())
1035 uasm_i_mfc0(p, tmp, C0_INDEX);
1036 }
1037 if (r4k_250MHZhwbug())
1038 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1039 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1040#endif
1041}
1042
1043struct mips_huge_tlb_info {
1044 int huge_pte;
1045 int restore_scratch;
1046};
1047
1048static struct mips_huge_tlb_info __cpuinit
1049build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1050 struct uasm_reloc **r, unsigned int tmp,
1051 unsigned int ptr, int c0_scratch)
1052{
1053 struct mips_huge_tlb_info rv;
1054 unsigned int even, odd;
1055 int vmalloc_branch_delay_filled = 0;
1056 const int scratch = 1; /* Our extra working register */
1057
1058 rv.huge_pte = scratch;
1059 rv.restore_scratch = 0;
1060
1061 if (check_for_high_segbits) {
1062 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1063
1064 if (pgd_reg != -1)
1065 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1066 else
1067 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1068
1069 if (c0_scratch >= 0)
1070 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1071 else
1072 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1073
1074 uasm_i_dsrl_safe(p, scratch, tmp,
1075 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1076 uasm_il_bnez(p, r, scratch, label_vmalloc);
1077
1078 if (pgd_reg == -1) {
1079 vmalloc_branch_delay_filled = 1;
1080 /* Clear lower 23 bits of context. */
1081 uasm_i_dins(p, ptr, 0, 0, 23);
1082 }
1083 } else {
1084 if (pgd_reg != -1)
1085 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1086 else
1087 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1088
1089 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1090
1091 if (c0_scratch >= 0)
1092 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1093 else
1094 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1095
1096 if (pgd_reg == -1)
1097 /* Clear lower 23 bits of context. */
1098 uasm_i_dins(p, ptr, 0, 0, 23);
1099
1100 uasm_il_bltz(p, r, tmp, label_vmalloc);
1101 }
1102
1103 if (pgd_reg == -1) {
1104 vmalloc_branch_delay_filled = 1;
1105 /* 1 0 1 0 1 << 6 xkphys cached */
1106 uasm_i_ori(p, ptr, ptr, 0x540);
1107 uasm_i_drotr(p, ptr, ptr, 11);
1108 }
1109
1110#ifdef __PAGETABLE_PMD_FOLDED
1111#define LOC_PTEP scratch
1112#else
1113#define LOC_PTEP ptr
1114#endif
1115
1116 if (!vmalloc_branch_delay_filled)
1117 /* get pgd offset in bytes */
1118 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1119
1120 uasm_l_vmalloc_done(l, *p);
1121
1122 /*
1123 * tmp ptr
1124 * fall-through case = badvaddr *pgd_current
1125 * vmalloc case = badvaddr swapper_pg_dir
1126 */
1127
1128 if (vmalloc_branch_delay_filled)
1129 /* get pgd offset in bytes */
1130 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1131
1132#ifdef __PAGETABLE_PMD_FOLDED
1133 GET_CONTEXT(p, tmp); /* get context reg */
1134#endif
1135 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1136
1137 if (use_lwx_insns()) {
1138 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1139 } else {
1140 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1141 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1142 }
1143
1144#ifndef __PAGETABLE_PMD_FOLDED
1145 /* get pmd offset in bytes */
1146 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1147 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1148 GET_CONTEXT(p, tmp); /* get context reg */
1149
1150 if (use_lwx_insns()) {
1151 UASM_i_LWX(p, scratch, scratch, ptr);
1152 } else {
1153 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1154 UASM_i_LW(p, scratch, 0, ptr);
1155 }
1156#endif
1157 /* Adjust the context during the load latency. */
1158 build_adjust_context(p, tmp);
1159
1160#ifdef CONFIG_HUGETLB_PAGE
1161 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1162 /*
1163 * The in the LWX case we don't want to do the load in the
1164 * delay slot. It cannot issue in the same cycle and may be
1165 * speculative and unneeded.
1166 */
1167 if (use_lwx_insns())
1168 uasm_i_nop(p);
1169#endif /* CONFIG_HUGETLB_PAGE */
1170
1171
1172 /* build_update_entries */
1173 if (use_lwx_insns()) {
1174 even = ptr;
1175 odd = tmp;
1176 UASM_i_LWX(p, even, scratch, tmp);
1177 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1178 UASM_i_LWX(p, odd, scratch, tmp);
1179 } else {
1180 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1181 even = tmp;
1182 odd = ptr;
1183 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1184 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1185 }
1186 if (kernel_uses_smartmips_rixi) {
1187 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
1188 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
1189 uasm_i_drotr(p, even, even,
1190 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1191 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1192 uasm_i_drotr(p, odd, odd,
1193 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1194 } else {
1195 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1196 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1197 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1198 }
1199 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1200
1201 if (c0_scratch >= 0) {
1202 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1203 build_tlb_write_entry(p, l, r, tlb_random);
1204 uasm_l_leave(l, *p);
1205 rv.restore_scratch = 1;
1206 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1207 build_tlb_write_entry(p, l, r, tlb_random);
1208 uasm_l_leave(l, *p);
1209 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1210 } else {
1211 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1212 build_tlb_write_entry(p, l, r, tlb_random);
1213 uasm_l_leave(l, *p);
1214 rv.restore_scratch = 1;
1215 }
1216
1217 uasm_i_eret(p); /* return from trap */
1218
1219 return rv;
1220}
1221
1222/*
1223 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1224 * because EXL == 0. If we wrap, we can also use the 32 instruction
1225 * slots before the XTLB refill exception handler which belong to the
1226 * unused TLB refill exception.
1227 */
1228#define MIPS64_REFILL_INSNS 32
1229
1230static void __cpuinit build_r4000_tlb_refill_handler(void)
1231{
1232 u32 *p = tlb_handler;
1233 struct uasm_label *l = labels;
1234 struct uasm_reloc *r = relocs;
1235 u32 *f;
1236 unsigned int final_len;
1237 struct mips_huge_tlb_info htlb_info __maybe_unused;
1238 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1239
1240 memset(tlb_handler, 0, sizeof(tlb_handler));
1241 memset(labels, 0, sizeof(labels));
1242 memset(relocs, 0, sizeof(relocs));
1243 memset(final_handler, 0, sizeof(final_handler));
1244
1245 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1246 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1247 scratch_reg);
1248 vmalloc_mode = refill_scratch;
1249 } else {
1250 htlb_info.huge_pte = K0;
1251 htlb_info.restore_scratch = 0;
1252 vmalloc_mode = refill_noscratch;
1253 /*
1254 * create the plain linear handler
1255 */
1256 if (bcm1250_m3_war()) {
1257 unsigned int segbits = 44;
1258
1259 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1260 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1261 uasm_i_xor(&p, K0, K0, K1);
1262 uasm_i_dsrl_safe(&p, K1, K0, 62);
1263 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1264 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1265 uasm_i_or(&p, K0, K0, K1);
1266 uasm_il_bnez(&p, &r, K0, label_leave);
1267 /* No need for uasm_i_nop */
1268 }
1269
1270#ifdef CONFIG_64BIT
1271 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1272#else
1273 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1274#endif
1275
1276#ifdef CONFIG_HUGETLB_PAGE
1277 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1278#endif
1279
1280 build_get_ptep(&p, K0, K1);
1281 build_update_entries(&p, K0, K1);
1282 build_tlb_write_entry(&p, &l, &r, tlb_random);
1283 uasm_l_leave(&l, p);
1284 uasm_i_eret(&p); /* return from trap */
1285 }
1286#ifdef CONFIG_HUGETLB_PAGE
1287 uasm_l_tlb_huge_update(&l, p);
1288 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1289 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1290 htlb_info.restore_scratch);
1291#endif
1292
1293#ifdef CONFIG_64BIT
1294 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1295#endif
1296
1297 /*
1298 * Overflow check: For the 64bit handler, we need at least one
1299 * free instruction slot for the wrap-around branch. In worst
1300 * case, if the intended insertion point is a delay slot, we
1301 * need three, with the second nop'ed and the third being
1302 * unused.
1303 */
1304 /* Loongson2 ebase is different than r4k, we have more space */
1305#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1306 if ((p - tlb_handler) > 64)
1307 panic("TLB refill handler space exceeded");
1308#else
1309 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1310 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1311 && uasm_insn_has_bdelay(relocs,
1312 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1313 panic("TLB refill handler space exceeded");
1314#endif
1315
1316 /*
1317 * Now fold the handler in the TLB refill handler space.
1318 */
1319#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1320 f = final_handler;
1321 /* Simplest case, just copy the handler. */
1322 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1323 final_len = p - tlb_handler;
1324#else /* CONFIG_64BIT */
1325 f = final_handler + MIPS64_REFILL_INSNS;
1326 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1327 /* Just copy the handler. */
1328 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1329 final_len = p - tlb_handler;
1330 } else {
1331#if defined(CONFIG_HUGETLB_PAGE)
1332 const enum label_id ls = label_tlb_huge_update;
1333#else
1334 const enum label_id ls = label_vmalloc;
1335#endif
1336 u32 *split;
1337 int ov = 0;
1338 int i;
1339
1340 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1341 ;
1342 BUG_ON(i == ARRAY_SIZE(labels));
1343 split = labels[i].addr;
1344
1345 /*
1346 * See if we have overflown one way or the other.
1347 */
1348 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1349 split < p - MIPS64_REFILL_INSNS)
1350 ov = 1;
1351
1352 if (ov) {
1353 /*
1354 * Split two instructions before the end. One
1355 * for the branch and one for the instruction
1356 * in the delay slot.
1357 */
1358 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1359
1360 /*
1361 * If the branch would fall in a delay slot,
1362 * we must back up an additional instruction
1363 * so that it is no longer in a delay slot.
1364 */
1365 if (uasm_insn_has_bdelay(relocs, split - 1))
1366 split--;
1367 }
1368 /* Copy first part of the handler. */
1369 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1370 f += split - tlb_handler;
1371
1372 if (ov) {
1373 /* Insert branch. */
1374 uasm_l_split(&l, final_handler);
1375 uasm_il_b(&f, &r, label_split);
1376 if (uasm_insn_has_bdelay(relocs, split))
1377 uasm_i_nop(&f);
1378 else {
1379 uasm_copy_handler(relocs, labels,
1380 split, split + 1, f);
1381 uasm_move_labels(labels, f, f + 1, -1);
1382 f++;
1383 split++;
1384 }
1385 }
1386
1387 /* Copy the rest of the handler. */
1388 uasm_copy_handler(relocs, labels, split, p, final_handler);
1389 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1390 (p - split);
1391 }
1392#endif /* CONFIG_64BIT */
1393
1394 uasm_resolve_relocs(relocs, labels);
1395 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1396 final_len);
1397
1398 memcpy((void *)ebase, final_handler, 0x100);
1399
1400 dump_handler((u32 *)ebase, 64);
1401}
1402
1403/*
1404 * 128 instructions for the fastpath handler is generous and should
1405 * never be exceeded.
1406 */
1407#define FASTPATH_SIZE 128
1408
1409u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1410u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1411u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1412#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1413u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1414
1415static void __cpuinit build_r4000_setup_pgd(void)
1416{
1417 const int a0 = 4;
1418 const int a1 = 5;
1419 u32 *p = tlbmiss_handler_setup_pgd;
1420 struct uasm_label *l = labels;
1421 struct uasm_reloc *r = relocs;
1422
1423 memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1424 memset(labels, 0, sizeof(labels));
1425 memset(relocs, 0, sizeof(relocs));
1426
1427 pgd_reg = allocate_kscratch();
1428
1429 if (pgd_reg == -1) {
1430 /* PGD << 11 in c0_Context */
1431 /*
1432 * If it is a ckseg0 address, convert to a physical
1433 * address. Shifting right by 29 and adding 4 will
1434 * result in zero for these addresses.
1435 *
1436 */
1437 UASM_i_SRA(&p, a1, a0, 29);
1438 UASM_i_ADDIU(&p, a1, a1, 4);
1439 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1440 uasm_i_nop(&p);
1441 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1442 uasm_l_tlbl_goaround1(&l, p);
1443 UASM_i_SLL(&p, a0, a0, 11);
1444 uasm_i_jr(&p, 31);
1445 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1446 } else {
1447 /* PGD in c0_KScratch */
1448 uasm_i_jr(&p, 31);
1449 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1450 }
1451 if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1452 panic("tlbmiss_handler_setup_pgd space exceeded");
1453 uasm_resolve_relocs(relocs, labels);
1454 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1455 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1456
1457 dump_handler(tlbmiss_handler_setup_pgd,
1458 ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1459}
1460#endif
1461
1462static void __cpuinit
1463iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1464{
1465#ifdef CONFIG_SMP
1466# ifdef CONFIG_64BIT_PHYS_ADDR
1467 if (cpu_has_64bits)
1468 uasm_i_lld(p, pte, 0, ptr);
1469 else
1470# endif
1471 UASM_i_LL(p, pte, 0, ptr);
1472#else
1473# ifdef CONFIG_64BIT_PHYS_ADDR
1474 if (cpu_has_64bits)
1475 uasm_i_ld(p, pte, 0, ptr);
1476 else
1477# endif
1478 UASM_i_LW(p, pte, 0, ptr);
1479#endif
1480}
1481
1482static void __cpuinit
1483iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1484 unsigned int mode)
1485{
1486#ifdef CONFIG_64BIT_PHYS_ADDR
1487 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1488#endif
1489
1490 uasm_i_ori(p, pte, pte, mode);
1491#ifdef CONFIG_SMP
1492# ifdef CONFIG_64BIT_PHYS_ADDR
1493 if (cpu_has_64bits)
1494 uasm_i_scd(p, pte, 0, ptr);
1495 else
1496# endif
1497 UASM_i_SC(p, pte, 0, ptr);
1498
1499 if (r10000_llsc_war())
1500 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1501 else
1502 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1503
1504# ifdef CONFIG_64BIT_PHYS_ADDR
1505 if (!cpu_has_64bits) {
1506 /* no uasm_i_nop needed */
1507 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1508 uasm_i_ori(p, pte, pte, hwmode);
1509 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1510 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1511 /* no uasm_i_nop needed */
1512 uasm_i_lw(p, pte, 0, ptr);
1513 } else
1514 uasm_i_nop(p);
1515# else
1516 uasm_i_nop(p);
1517# endif
1518#else
1519# ifdef CONFIG_64BIT_PHYS_ADDR
1520 if (cpu_has_64bits)
1521 uasm_i_sd(p, pte, 0, ptr);
1522 else
1523# endif
1524 UASM_i_SW(p, pte, 0, ptr);
1525
1526# ifdef CONFIG_64BIT_PHYS_ADDR
1527 if (!cpu_has_64bits) {
1528 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1529 uasm_i_ori(p, pte, pte, hwmode);
1530 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1531 uasm_i_lw(p, pte, 0, ptr);
1532 }
1533# endif
1534#endif
1535}
1536
1537/*
1538 * Check if PTE is present, if not then jump to LABEL. PTR points to
1539 * the page table where this PTE is located, PTE will be re-loaded
1540 * with it's original value.
1541 */
1542static void __cpuinit
1543build_pte_present(u32 **p, struct uasm_reloc **r,
1544 int pte, int ptr, int scratch, enum label_id lid)
1545{
1546 int t = scratch >= 0 ? scratch : pte;
1547
1548 if (kernel_uses_smartmips_rixi) {
1549 if (use_bbit_insns()) {
1550 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1551 uasm_i_nop(p);
1552 } else {
1553 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1554 uasm_il_beqz(p, r, t, lid);
1555 if (pte == t)
1556 /* You lose the SMP race :-(*/
1557 iPTE_LW(p, pte, ptr);
1558 }
1559 } else {
1560 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1561 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1562 uasm_il_bnez(p, r, t, lid);
1563 if (pte == t)
1564 /* You lose the SMP race :-(*/
1565 iPTE_LW(p, pte, ptr);
1566 }
1567}
1568
1569/* Make PTE valid, store result in PTR. */
1570static void __cpuinit
1571build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1572 unsigned int ptr)
1573{
1574 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1575
1576 iPTE_SW(p, r, pte, ptr, mode);
1577}
1578
1579/*
1580 * Check if PTE can be written to, if not branch to LABEL. Regardless
1581 * restore PTE with value from PTR when done.
1582 */
1583static void __cpuinit
1584build_pte_writable(u32 **p, struct uasm_reloc **r,
1585 unsigned int pte, unsigned int ptr, int scratch,
1586 enum label_id lid)
1587{
1588 int t = scratch >= 0 ? scratch : pte;
1589
1590 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1591 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1592 uasm_il_bnez(p, r, t, lid);
1593 if (pte == t)
1594 /* You lose the SMP race :-(*/
1595 iPTE_LW(p, pte, ptr);
1596 else
1597 uasm_i_nop(p);
1598}
1599
1600/* Make PTE writable, update software status bits as well, then store
1601 * at PTR.
1602 */
1603static void __cpuinit
1604build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1605 unsigned int ptr)
1606{
1607 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1608 | _PAGE_DIRTY);
1609
1610 iPTE_SW(p, r, pte, ptr, mode);
1611}
1612
1613/*
1614 * Check if PTE can be modified, if not branch to LABEL. Regardless
1615 * restore PTE with value from PTR when done.
1616 */
1617static void __cpuinit
1618build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1619 unsigned int pte, unsigned int ptr, int scratch,
1620 enum label_id lid)
1621{
1622 if (use_bbit_insns()) {
1623 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1624 uasm_i_nop(p);
1625 } else {
1626 int t = scratch >= 0 ? scratch : pte;
1627 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1628 uasm_il_beqz(p, r, t, lid);
1629 if (pte == t)
1630 /* You lose the SMP race :-(*/
1631 iPTE_LW(p, pte, ptr);
1632 }
1633}
1634
1635#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1636
1637
1638/*
1639 * R3000 style TLB load/store/modify handlers.
1640 */
1641
1642/*
1643 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1644 * Then it returns.
1645 */
1646static void __cpuinit
1647build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1648{
1649 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1650 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1651 uasm_i_tlbwi(p);
1652 uasm_i_jr(p, tmp);
1653 uasm_i_rfe(p); /* branch delay */
1654}
1655
1656/*
1657 * This places the pte into ENTRYLO0 and writes it with tlbwi
1658 * or tlbwr as appropriate. This is because the index register
1659 * may have the probe fail bit set as a result of a trap on a
1660 * kseg2 access, i.e. without refill. Then it returns.
1661 */
1662static void __cpuinit
1663build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1664 struct uasm_reloc **r, unsigned int pte,
1665 unsigned int tmp)
1666{
1667 uasm_i_mfc0(p, tmp, C0_INDEX);
1668 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1669 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1670 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1671 uasm_i_tlbwi(p); /* cp0 delay */
1672 uasm_i_jr(p, tmp);
1673 uasm_i_rfe(p); /* branch delay */
1674 uasm_l_r3000_write_probe_fail(l, *p);
1675 uasm_i_tlbwr(p); /* cp0 delay */
1676 uasm_i_jr(p, tmp);
1677 uasm_i_rfe(p); /* branch delay */
1678}
1679
1680static void __cpuinit
1681build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1682 unsigned int ptr)
1683{
1684 long pgdc = (long)pgd_current;
1685
1686 uasm_i_mfc0(p, pte, C0_BADVADDR);
1687 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1688 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1689 uasm_i_srl(p, pte, pte, 22); /* load delay */
1690 uasm_i_sll(p, pte, pte, 2);
1691 uasm_i_addu(p, ptr, ptr, pte);
1692 uasm_i_mfc0(p, pte, C0_CONTEXT);
1693 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1694 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1695 uasm_i_addu(p, ptr, ptr, pte);
1696 uasm_i_lw(p, pte, 0, ptr);
1697 uasm_i_tlbp(p); /* load delay */
1698}
1699
1700static void __cpuinit build_r3000_tlb_load_handler(void)
1701{
1702 u32 *p = handle_tlbl;
1703 struct uasm_label *l = labels;
1704 struct uasm_reloc *r = relocs;
1705
1706 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1707 memset(labels, 0, sizeof(labels));
1708 memset(relocs, 0, sizeof(relocs));
1709
1710 build_r3000_tlbchange_handler_head(&p, K0, K1);
1711 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1712 uasm_i_nop(&p); /* load delay */
1713 build_make_valid(&p, &r, K0, K1);
1714 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1715
1716 uasm_l_nopage_tlbl(&l, p);
1717 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1718 uasm_i_nop(&p);
1719
1720 if ((p - handle_tlbl) > FASTPATH_SIZE)
1721 panic("TLB load handler fastpath space exceeded");
1722
1723 uasm_resolve_relocs(relocs, labels);
1724 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1725 (unsigned int)(p - handle_tlbl));
1726
1727 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1728}
1729
1730static void __cpuinit build_r3000_tlb_store_handler(void)
1731{
1732 u32 *p = handle_tlbs;
1733 struct uasm_label *l = labels;
1734 struct uasm_reloc *r = relocs;
1735
1736 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1737 memset(labels, 0, sizeof(labels));
1738 memset(relocs, 0, sizeof(relocs));
1739
1740 build_r3000_tlbchange_handler_head(&p, K0, K1);
1741 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1742 uasm_i_nop(&p); /* load delay */
1743 build_make_write(&p, &r, K0, K1);
1744 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1745
1746 uasm_l_nopage_tlbs(&l, p);
1747 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1748 uasm_i_nop(&p);
1749
1750 if ((p - handle_tlbs) > FASTPATH_SIZE)
1751 panic("TLB store handler fastpath space exceeded");
1752
1753 uasm_resolve_relocs(relocs, labels);
1754 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1755 (unsigned int)(p - handle_tlbs));
1756
1757 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1758}
1759
1760static void __cpuinit build_r3000_tlb_modify_handler(void)
1761{
1762 u32 *p = handle_tlbm;
1763 struct uasm_label *l = labels;
1764 struct uasm_reloc *r = relocs;
1765
1766 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1767 memset(labels, 0, sizeof(labels));
1768 memset(relocs, 0, sizeof(relocs));
1769
1770 build_r3000_tlbchange_handler_head(&p, K0, K1);
1771 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1772 uasm_i_nop(&p); /* load delay */
1773 build_make_write(&p, &r, K0, K1);
1774 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1775
1776 uasm_l_nopage_tlbm(&l, p);
1777 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1778 uasm_i_nop(&p);
1779
1780 if ((p - handle_tlbm) > FASTPATH_SIZE)
1781 panic("TLB modify handler fastpath space exceeded");
1782
1783 uasm_resolve_relocs(relocs, labels);
1784 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1785 (unsigned int)(p - handle_tlbm));
1786
1787 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1788}
1789#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1790
1791/*
1792 * R4000 style TLB load/store/modify handlers.
1793 */
1794static struct work_registers __cpuinit
1795build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1796 struct uasm_reloc **r)
1797{
1798 struct work_registers wr = build_get_work_registers(p);
1799
1800#ifdef CONFIG_64BIT
1801 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1802#else
1803 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1804#endif
1805
1806#ifdef CONFIG_HUGETLB_PAGE
1807 /*
1808 * For huge tlb entries, pmd doesn't contain an address but
1809 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1810 * see if we need to jump to huge tlb processing.
1811 */
1812 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1813#endif
1814
1815 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1816 UASM_i_LW(p, wr.r2, 0, wr.r2);
1817 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1818 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1819 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1820
1821#ifdef CONFIG_SMP
1822 uasm_l_smp_pgtable_change(l, *p);
1823#endif
1824 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1825 if (!m4kc_tlbp_war())
1826 build_tlb_probe_entry(p);
1827 return wr;
1828}
1829
1830static void __cpuinit
1831build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1832 struct uasm_reloc **r, unsigned int tmp,
1833 unsigned int ptr)
1834{
1835 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1836 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1837 build_update_entries(p, tmp, ptr);
1838 build_tlb_write_entry(p, l, r, tlb_indexed);
1839 uasm_l_leave(l, *p);
1840 build_restore_work_registers(p);
1841 uasm_i_eret(p); /* return from trap */
1842
1843#ifdef CONFIG_64BIT
1844 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1845#endif
1846}
1847
1848static void __cpuinit build_r4000_tlb_load_handler(void)
1849{
1850 u32 *p = handle_tlbl;
1851 struct uasm_label *l = labels;
1852 struct uasm_reloc *r = relocs;
1853 struct work_registers wr;
1854
1855 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1856 memset(labels, 0, sizeof(labels));
1857 memset(relocs, 0, sizeof(relocs));
1858
1859 if (bcm1250_m3_war()) {
1860 unsigned int segbits = 44;
1861
1862 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1863 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1864 uasm_i_xor(&p, K0, K0, K1);
1865 uasm_i_dsrl_safe(&p, K1, K0, 62);
1866 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1867 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1868 uasm_i_or(&p, K0, K0, K1);
1869 uasm_il_bnez(&p, &r, K0, label_leave);
1870 /* No need for uasm_i_nop */
1871 }
1872
1873 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1874 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1875 if (m4kc_tlbp_war())
1876 build_tlb_probe_entry(&p);
1877
1878 if (kernel_uses_smartmips_rixi) {
1879 /*
1880 * If the page is not _PAGE_VALID, RI or XI could not
1881 * have triggered it. Skip the expensive test..
1882 */
1883 if (use_bbit_insns()) {
1884 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1885 label_tlbl_goaround1);
1886 } else {
1887 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1888 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1889 }
1890 uasm_i_nop(&p);
1891
1892 uasm_i_tlbr(&p);
1893 /* Examine entrylo 0 or 1 based on ptr. */
1894 if (use_bbit_insns()) {
1895 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1896 } else {
1897 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1898 uasm_i_beqz(&p, wr.r3, 8);
1899 }
1900 /* load it in the delay slot*/
1901 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1902 /* load it if ptr is odd */
1903 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1904 /*
1905 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1906 * XI must have triggered it.
1907 */
1908 if (use_bbit_insns()) {
1909 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1910 uasm_i_nop(&p);
1911 uasm_l_tlbl_goaround1(&l, p);
1912 } else {
1913 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1914 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1915 uasm_i_nop(&p);
1916 }
1917 uasm_l_tlbl_goaround1(&l, p);
1918 }
1919 build_make_valid(&p, &r, wr.r1, wr.r2);
1920 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1921
1922#ifdef CONFIG_HUGETLB_PAGE
1923 /*
1924 * This is the entry point when build_r4000_tlbchange_handler_head
1925 * spots a huge page.
1926 */
1927 uasm_l_tlb_huge_update(&l, p);
1928 iPTE_LW(&p, wr.r1, wr.r2);
1929 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1930 build_tlb_probe_entry(&p);
1931
1932 if (kernel_uses_smartmips_rixi) {
1933 /*
1934 * If the page is not _PAGE_VALID, RI or XI could not
1935 * have triggered it. Skip the expensive test..
1936 */
1937 if (use_bbit_insns()) {
1938 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1939 label_tlbl_goaround2);
1940 } else {
1941 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1942 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1943 }
1944 uasm_i_nop(&p);
1945
1946 uasm_i_tlbr(&p);
1947 /* Examine entrylo 0 or 1 based on ptr. */
1948 if (use_bbit_insns()) {
1949 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1950 } else {
1951 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1952 uasm_i_beqz(&p, wr.r3, 8);
1953 }
1954 /* load it in the delay slot*/
1955 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1956 /* load it if ptr is odd */
1957 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1958 /*
1959 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1960 * XI must have triggered it.
1961 */
1962 if (use_bbit_insns()) {
1963 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1964 } else {
1965 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1966 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1967 }
1968 if (PM_DEFAULT_MASK == 0)
1969 uasm_i_nop(&p);
1970 /*
1971 * We clobbered C0_PAGEMASK, restore it. On the other branch
1972 * it is restored in build_huge_tlb_write_entry.
1973 */
1974 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
1975
1976 uasm_l_tlbl_goaround2(&l, p);
1977 }
1978 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
1979 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
1980#endif
1981
1982 uasm_l_nopage_tlbl(&l, p);
1983 build_restore_work_registers(&p);
1984 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1985 uasm_i_nop(&p);
1986
1987 if ((p - handle_tlbl) > FASTPATH_SIZE)
1988 panic("TLB load handler fastpath space exceeded");
1989
1990 uasm_resolve_relocs(relocs, labels);
1991 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1992 (unsigned int)(p - handle_tlbl));
1993
1994 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1995}
1996
1997static void __cpuinit build_r4000_tlb_store_handler(void)
1998{
1999 u32 *p = handle_tlbs;
2000 struct uasm_label *l = labels;
2001 struct uasm_reloc *r = relocs;
2002 struct work_registers wr;
2003
2004 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2005 memset(labels, 0, sizeof(labels));
2006 memset(relocs, 0, sizeof(relocs));
2007
2008 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2009 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2010 if (m4kc_tlbp_war())
2011 build_tlb_probe_entry(&p);
2012 build_make_write(&p, &r, wr.r1, wr.r2);
2013 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2014
2015#ifdef CONFIG_HUGETLB_PAGE
2016 /*
2017 * This is the entry point when
2018 * build_r4000_tlbchange_handler_head spots a huge page.
2019 */
2020 uasm_l_tlb_huge_update(&l, p);
2021 iPTE_LW(&p, wr.r1, wr.r2);
2022 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2023 build_tlb_probe_entry(&p);
2024 uasm_i_ori(&p, wr.r1, wr.r1,
2025 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2026 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2027#endif
2028
2029 uasm_l_nopage_tlbs(&l, p);
2030 build_restore_work_registers(&p);
2031 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2032 uasm_i_nop(&p);
2033
2034 if ((p - handle_tlbs) > FASTPATH_SIZE)
2035 panic("TLB store handler fastpath space exceeded");
2036
2037 uasm_resolve_relocs(relocs, labels);
2038 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2039 (unsigned int)(p - handle_tlbs));
2040
2041 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
2042}
2043
2044static void __cpuinit build_r4000_tlb_modify_handler(void)
2045{
2046 u32 *p = handle_tlbm;
2047 struct uasm_label *l = labels;
2048 struct uasm_reloc *r = relocs;
2049 struct work_registers wr;
2050
2051 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2052 memset(labels, 0, sizeof(labels));
2053 memset(relocs, 0, sizeof(relocs));
2054
2055 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2056 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2057 if (m4kc_tlbp_war())
2058 build_tlb_probe_entry(&p);
2059 /* Present and writable bits set, set accessed and dirty bits. */
2060 build_make_write(&p, &r, wr.r1, wr.r2);
2061 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2062
2063#ifdef CONFIG_HUGETLB_PAGE
2064 /*
2065 * This is the entry point when
2066 * build_r4000_tlbchange_handler_head spots a huge page.
2067 */
2068 uasm_l_tlb_huge_update(&l, p);
2069 iPTE_LW(&p, wr.r1, wr.r2);
2070 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2071 build_tlb_probe_entry(&p);
2072 uasm_i_ori(&p, wr.r1, wr.r1,
2073 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2074 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2075#endif
2076
2077 uasm_l_nopage_tlbm(&l, p);
2078 build_restore_work_registers(&p);
2079 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2080 uasm_i_nop(&p);
2081
2082 if ((p - handle_tlbm) > FASTPATH_SIZE)
2083 panic("TLB modify handler fastpath space exceeded");
2084
2085 uasm_resolve_relocs(relocs, labels);
2086 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2087 (unsigned int)(p - handle_tlbm));
2088
2089 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
2090}
2091
2092void __cpuinit build_tlb_refill_handler(void)
2093{
2094 /*
2095 * The refill handler is generated per-CPU, multi-node systems
2096 * may have local storage for it. The other handlers are only
2097 * needed once.
2098 */
2099 static int run_once = 0;
2100
2101#ifdef CONFIG_64BIT
2102 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2103#endif
2104
2105 switch (current_cpu_type()) {
2106 case CPU_R2000:
2107 case CPU_R3000:
2108 case CPU_R3000A:
2109 case CPU_R3081E:
2110 case CPU_TX3912:
2111 case CPU_TX3922:
2112 case CPU_TX3927:
2113#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2114 build_r3000_tlb_refill_handler();
2115 if (!run_once) {
2116 build_r3000_tlb_load_handler();
2117 build_r3000_tlb_store_handler();
2118 build_r3000_tlb_modify_handler();
2119 run_once++;
2120 }
2121#else
2122 panic("No R3000 TLB refill handler");
2123#endif
2124 break;
2125
2126 case CPU_R6000:
2127 case CPU_R6000A:
2128 panic("No R6000 TLB refill handler yet");
2129 break;
2130
2131 case CPU_R8000:
2132 panic("No R8000 TLB refill handler yet");
2133 break;
2134
2135 default:
2136 if (!run_once) {
2137 scratch_reg = allocate_kscratch();
2138#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2139 build_r4000_setup_pgd();
2140#endif
2141 build_r4000_tlb_load_handler();
2142 build_r4000_tlb_store_handler();
2143 build_r4000_tlb_modify_handler();
2144 run_once++;
2145 }
2146 build_r4000_tlb_refill_handler();
2147 }
2148}
2149
2150void __cpuinit flush_tlb_handlers(void)
2151{
2152 local_flush_icache_range((unsigned long)handle_tlbl,
2153 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2154 local_flush_icache_range((unsigned long)handle_tlbs,
2155 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2156 local_flush_icache_range((unsigned long)handle_tlbm,
2157 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2158#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2159 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2160 (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2161#endif
2162}