Loading...
1/*
2 * Processor capabilities determination functions.
3 *
4 * Copyright (C) xxxx the Anonymous
5 * Copyright (C) 1994 - 2006 Ralf Baechle
6 * Copyright (C) 2003, 2004 Maciej W. Rozycki
7 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/ptrace.h>
17#include <linux/smp.h>
18#include <linux/stddef.h>
19#include <linux/export.h>
20
21#include <asm/bugs.h>
22#include <asm/cpu.h>
23#include <asm/cpu-features.h>
24#include <asm/cpu-type.h>
25#include <asm/fpu.h>
26#include <asm/mipsregs.h>
27#include <asm/mipsmtregs.h>
28#include <asm/msa.h>
29#include <asm/watch.h>
30#include <asm/elf.h>
31#include <asm/pgtable-bits.h>
32#include <asm/spram.h>
33#include <asm/uaccess.h>
34
35/* Hardware capabilities */
36unsigned int elf_hwcap __read_mostly;
37
38/*
39 * Get the FPU Implementation/Revision.
40 */
41static inline unsigned long cpu_get_fpu_id(void)
42{
43 unsigned long tmp, fpu_id;
44
45 tmp = read_c0_status();
46 __enable_fpu(FPU_AS_IS);
47 fpu_id = read_32bit_cp1_register(CP1_REVISION);
48 write_c0_status(tmp);
49 return fpu_id;
50}
51
52/*
53 * Check if the CPU has an external FPU.
54 */
55static inline int __cpu_has_fpu(void)
56{
57 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
58}
59
60static inline unsigned long cpu_get_msa_id(void)
61{
62 unsigned long status, msa_id;
63
64 status = read_c0_status();
65 __enable_fpu(FPU_64BIT);
66 enable_msa();
67 msa_id = read_msa_ir();
68 disable_msa();
69 write_c0_status(status);
70 return msa_id;
71}
72
73/*
74 * Determine the FCSR mask for FPU hardware.
75 */
76static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
77{
78 unsigned long sr, mask, fcsr, fcsr0, fcsr1;
79
80 fcsr = c->fpu_csr31;
81 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
82
83 sr = read_c0_status();
84 __enable_fpu(FPU_AS_IS);
85
86 fcsr0 = fcsr & mask;
87 write_32bit_cp1_register(CP1_STATUS, fcsr0);
88 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
89
90 fcsr1 = fcsr | ~mask;
91 write_32bit_cp1_register(CP1_STATUS, fcsr1);
92 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
93
94 write_32bit_cp1_register(CP1_STATUS, fcsr);
95
96 write_c0_status(sr);
97
98 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
99}
100
101/*
102 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
103 * supported by FPU hardware.
104 */
105static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
106{
107 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
108 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
109 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
110 unsigned long sr, fir, fcsr, fcsr0, fcsr1;
111
112 sr = read_c0_status();
113 __enable_fpu(FPU_AS_IS);
114
115 fir = read_32bit_cp1_register(CP1_REVISION);
116 if (fir & MIPS_FPIR_HAS2008) {
117 fcsr = read_32bit_cp1_register(CP1_STATUS);
118
119 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
120 write_32bit_cp1_register(CP1_STATUS, fcsr0);
121 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
122
123 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
124 write_32bit_cp1_register(CP1_STATUS, fcsr1);
125 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
126
127 write_32bit_cp1_register(CP1_STATUS, fcsr);
128
129 if (!(fcsr0 & FPU_CSR_NAN2008))
130 c->options |= MIPS_CPU_NAN_LEGACY;
131 if (fcsr1 & FPU_CSR_NAN2008)
132 c->options |= MIPS_CPU_NAN_2008;
133
134 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
135 c->fpu_msk31 &= ~FPU_CSR_ABS2008;
136 else
137 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
138
139 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
140 c->fpu_msk31 &= ~FPU_CSR_NAN2008;
141 else
142 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
143 } else {
144 c->options |= MIPS_CPU_NAN_LEGACY;
145 }
146
147 write_c0_status(sr);
148 } else {
149 c->options |= MIPS_CPU_NAN_LEGACY;
150 }
151}
152
153/*
154 * IEEE 754 conformance mode to use. Affects the NaN encoding and the
155 * ABS.fmt/NEG.fmt execution mode.
156 */
157static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
158
159/*
160 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
161 * to support by the FPU emulator according to the IEEE 754 conformance
162 * mode selected. Note that "relaxed" straps the emulator so that it
163 * allows 2008-NaN binaries even for legacy processors.
164 */
165static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
166{
167 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
168 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
169 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
170
171 switch (ieee754) {
172 case STRICT:
173 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
174 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
175 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
176 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
177 } else {
178 c->options |= MIPS_CPU_NAN_LEGACY;
179 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
180 }
181 break;
182 case LEGACY:
183 c->options |= MIPS_CPU_NAN_LEGACY;
184 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
185 break;
186 case STD2008:
187 c->options |= MIPS_CPU_NAN_2008;
188 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
189 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
190 break;
191 case RELAXED:
192 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
193 break;
194 }
195}
196
197/*
198 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
199 * according to the "ieee754=" parameter.
200 */
201static void cpu_set_nan_2008(struct cpuinfo_mips *c)
202{
203 switch (ieee754) {
204 case STRICT:
205 mips_use_nan_legacy = !!cpu_has_nan_legacy;
206 mips_use_nan_2008 = !!cpu_has_nan_2008;
207 break;
208 case LEGACY:
209 mips_use_nan_legacy = !!cpu_has_nan_legacy;
210 mips_use_nan_2008 = !cpu_has_nan_legacy;
211 break;
212 case STD2008:
213 mips_use_nan_legacy = !cpu_has_nan_2008;
214 mips_use_nan_2008 = !!cpu_has_nan_2008;
215 break;
216 case RELAXED:
217 mips_use_nan_legacy = true;
218 mips_use_nan_2008 = true;
219 break;
220 }
221}
222
223/*
224 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
225 * settings:
226 *
227 * strict: accept binaries that request a NaN encoding supported by the FPU
228 * legacy: only accept legacy-NaN binaries
229 * 2008: only accept 2008-NaN binaries
230 * relaxed: accept any binaries regardless of whether supported by the FPU
231 */
232static int __init ieee754_setup(char *s)
233{
234 if (!s)
235 return -1;
236 else if (!strcmp(s, "strict"))
237 ieee754 = STRICT;
238 else if (!strcmp(s, "legacy"))
239 ieee754 = LEGACY;
240 else if (!strcmp(s, "2008"))
241 ieee754 = STD2008;
242 else if (!strcmp(s, "relaxed"))
243 ieee754 = RELAXED;
244 else
245 return -1;
246
247 if (!(boot_cpu_data.options & MIPS_CPU_FPU))
248 cpu_set_nofpu_2008(&boot_cpu_data);
249 cpu_set_nan_2008(&boot_cpu_data);
250
251 return 0;
252}
253
254early_param("ieee754", ieee754_setup);
255
256/*
257 * Set the FIR feature flags for the FPU emulator.
258 */
259static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
260{
261 u32 value;
262
263 value = 0;
264 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
265 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
266 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
267 value |= MIPS_FPIR_D | MIPS_FPIR_S;
268 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
269 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
270 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
271 if (c->options & MIPS_CPU_NAN_2008)
272 value |= MIPS_FPIR_HAS2008;
273 c->fpu_id = value;
274}
275
276/* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
277static unsigned int mips_nofpu_msk31;
278
279/*
280 * Set options for FPU hardware.
281 */
282static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
283{
284 c->fpu_id = cpu_get_fpu_id();
285 mips_nofpu_msk31 = c->fpu_msk31;
286
287 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
288 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
289 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
290 if (c->fpu_id & MIPS_FPIR_3D)
291 c->ases |= MIPS_ASE_MIPS3D;
292 if (c->fpu_id & MIPS_FPIR_FREP)
293 c->options |= MIPS_CPU_FRE;
294 }
295
296 cpu_set_fpu_fcsr_mask(c);
297 cpu_set_fpu_2008(c);
298 cpu_set_nan_2008(c);
299}
300
301/*
302 * Set options for the FPU emulator.
303 */
304static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
305{
306 c->options &= ~MIPS_CPU_FPU;
307 c->fpu_msk31 = mips_nofpu_msk31;
308
309 cpu_set_nofpu_2008(c);
310 cpu_set_nan_2008(c);
311 cpu_set_nofpu_id(c);
312}
313
314static int mips_fpu_disabled;
315
316static int __init fpu_disable(char *s)
317{
318 cpu_set_nofpu_opts(&boot_cpu_data);
319 mips_fpu_disabled = 1;
320
321 return 1;
322}
323
324__setup("nofpu", fpu_disable);
325
326int mips_dsp_disabled;
327
328static int __init dsp_disable(char *s)
329{
330 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
331 mips_dsp_disabled = 1;
332
333 return 1;
334}
335
336__setup("nodsp", dsp_disable);
337
338static int mips_htw_disabled;
339
340static int __init htw_disable(char *s)
341{
342 mips_htw_disabled = 1;
343 cpu_data[0].options &= ~MIPS_CPU_HTW;
344 write_c0_pwctl(read_c0_pwctl() &
345 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
346
347 return 1;
348}
349
350__setup("nohtw", htw_disable);
351
352static int mips_ftlb_disabled;
353static int mips_has_ftlb_configured;
354
355static int set_ftlb_enable(struct cpuinfo_mips *c, int enable);
356
357static int __init ftlb_disable(char *s)
358{
359 unsigned int config4, mmuextdef;
360
361 /*
362 * If the core hasn't done any FTLB configuration, there is nothing
363 * for us to do here.
364 */
365 if (!mips_has_ftlb_configured)
366 return 1;
367
368 /* Disable it in the boot cpu */
369 if (set_ftlb_enable(&cpu_data[0], 0)) {
370 pr_warn("Can't turn FTLB off\n");
371 return 1;
372 }
373
374 back_to_back_c0_hazard();
375
376 config4 = read_c0_config4();
377
378 /* Check that FTLB has been disabled */
379 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
380 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
381 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
382 /* This should never happen */
383 pr_warn("FTLB could not be disabled!\n");
384 return 1;
385 }
386
387 mips_ftlb_disabled = 1;
388 mips_has_ftlb_configured = 0;
389
390 /*
391 * noftlb is mainly used for debug purposes so print
392 * an informative message instead of using pr_debug()
393 */
394 pr_info("FTLB has been disabled\n");
395
396 /*
397 * Some of these bits are duplicated in the decode_config4.
398 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
399 * once FTLB has been disabled so undo what decode_config4 did.
400 */
401 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
402 cpu_data[0].tlbsizeftlbsets;
403 cpu_data[0].tlbsizeftlbsets = 0;
404 cpu_data[0].tlbsizeftlbways = 0;
405
406 return 1;
407}
408
409__setup("noftlb", ftlb_disable);
410
411
412static inline void check_errata(void)
413{
414 struct cpuinfo_mips *c = ¤t_cpu_data;
415
416 switch (current_cpu_type()) {
417 case CPU_34K:
418 /*
419 * Erratum "RPS May Cause Incorrect Instruction Execution"
420 * This code only handles VPE0, any SMP/RTOS code
421 * making use of VPE1 will be responsable for that VPE.
422 */
423 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
424 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
425 break;
426 default:
427 break;
428 }
429}
430
431void __init check_bugs32(void)
432{
433 check_errata();
434}
435
436/*
437 * Probe whether cpu has config register by trying to play with
438 * alternate cache bit and see whether it matters.
439 * It's used by cpu_probe to distinguish between R3000A and R3081.
440 */
441static inline int cpu_has_confreg(void)
442{
443#ifdef CONFIG_CPU_R3000
444 extern unsigned long r3k_cache_size(unsigned long);
445 unsigned long size1, size2;
446 unsigned long cfg = read_c0_conf();
447
448 size1 = r3k_cache_size(ST0_ISC);
449 write_c0_conf(cfg ^ R30XX_CONF_AC);
450 size2 = r3k_cache_size(ST0_ISC);
451 write_c0_conf(cfg);
452 return size1 != size2;
453#else
454 return 0;
455#endif
456}
457
458static inline void set_elf_platform(int cpu, const char *plat)
459{
460 if (cpu == 0)
461 __elf_platform = plat;
462}
463
464static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
465{
466#ifdef __NEED_VMBITS_PROBE
467 write_c0_entryhi(0x3fffffffffffe000ULL);
468 back_to_back_c0_hazard();
469 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
470#endif
471}
472
473static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
474{
475 switch (isa) {
476 case MIPS_CPU_ISA_M64R2:
477 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
478 case MIPS_CPU_ISA_M64R1:
479 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
480 case MIPS_CPU_ISA_V:
481 c->isa_level |= MIPS_CPU_ISA_V;
482 case MIPS_CPU_ISA_IV:
483 c->isa_level |= MIPS_CPU_ISA_IV;
484 case MIPS_CPU_ISA_III:
485 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
486 break;
487
488 /* R6 incompatible with everything else */
489 case MIPS_CPU_ISA_M64R6:
490 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
491 case MIPS_CPU_ISA_M32R6:
492 c->isa_level |= MIPS_CPU_ISA_M32R6;
493 /* Break here so we don't add incompatible ISAs */
494 break;
495 case MIPS_CPU_ISA_M32R2:
496 c->isa_level |= MIPS_CPU_ISA_M32R2;
497 case MIPS_CPU_ISA_M32R1:
498 c->isa_level |= MIPS_CPU_ISA_M32R1;
499 case MIPS_CPU_ISA_II:
500 c->isa_level |= MIPS_CPU_ISA_II;
501 break;
502 }
503}
504
505static char unknown_isa[] = KERN_ERR \
506 "Unsupported ISA type, c0.config0: %d.";
507
508static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
509{
510
511 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
512
513 /*
514 * 0 = All TLBWR instructions go to FTLB
515 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
516 * FTLB and 1 goes to the VTLB.
517 * 2 = 7:1: As above with 7:1 ratio.
518 * 3 = 3:1: As above with 3:1 ratio.
519 *
520 * Use the linear midpoint as the probability threshold.
521 */
522 if (probability >= 12)
523 return 1;
524 else if (probability >= 6)
525 return 2;
526 else
527 /*
528 * So FTLB is less than 4 times bigger than VTLB.
529 * A 3:1 ratio can still be useful though.
530 */
531 return 3;
532}
533
534static int set_ftlb_enable(struct cpuinfo_mips *c, int enable)
535{
536 unsigned int config;
537
538 /* It's implementation dependent how the FTLB can be enabled */
539 switch (c->cputype) {
540 case CPU_PROAPTIV:
541 case CPU_P5600:
542 /* proAptiv & related cores use Config6 to enable the FTLB */
543 config = read_c0_config6();
544 /* Clear the old probability value */
545 config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
546 if (enable)
547 /* Enable FTLB */
548 write_c0_config6(config |
549 (calculate_ftlb_probability(c)
550 << MIPS_CONF6_FTLBP_SHIFT)
551 | MIPS_CONF6_FTLBEN);
552 else
553 /* Disable FTLB */
554 write_c0_config6(config & ~MIPS_CONF6_FTLBEN);
555 break;
556 case CPU_I6400:
557 /* I6400 & related cores use Config7 to configure FTLB */
558 config = read_c0_config7();
559 /* Clear the old probability value */
560 config &= ~(3 << MIPS_CONF7_FTLBP_SHIFT);
561 write_c0_config7(config | (calculate_ftlb_probability(c)
562 << MIPS_CONF7_FTLBP_SHIFT));
563 break;
564 default:
565 return 1;
566 }
567
568 return 0;
569}
570
571static inline unsigned int decode_config0(struct cpuinfo_mips *c)
572{
573 unsigned int config0;
574 int isa, mt;
575
576 config0 = read_c0_config();
577
578 /*
579 * Look for Standard TLB or Dual VTLB and FTLB
580 */
581 mt = config0 & MIPS_CONF_MT;
582 if (mt == MIPS_CONF_MT_TLB)
583 c->options |= MIPS_CPU_TLB;
584 else if (mt == MIPS_CONF_MT_FTLB)
585 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
586
587 isa = (config0 & MIPS_CONF_AT) >> 13;
588 switch (isa) {
589 case 0:
590 switch ((config0 & MIPS_CONF_AR) >> 10) {
591 case 0:
592 set_isa(c, MIPS_CPU_ISA_M32R1);
593 break;
594 case 1:
595 set_isa(c, MIPS_CPU_ISA_M32R2);
596 break;
597 case 2:
598 set_isa(c, MIPS_CPU_ISA_M32R6);
599 break;
600 default:
601 goto unknown;
602 }
603 break;
604 case 2:
605 switch ((config0 & MIPS_CONF_AR) >> 10) {
606 case 0:
607 set_isa(c, MIPS_CPU_ISA_M64R1);
608 break;
609 case 1:
610 set_isa(c, MIPS_CPU_ISA_M64R2);
611 break;
612 case 2:
613 set_isa(c, MIPS_CPU_ISA_M64R6);
614 break;
615 default:
616 goto unknown;
617 }
618 break;
619 default:
620 goto unknown;
621 }
622
623 return config0 & MIPS_CONF_M;
624
625unknown:
626 panic(unknown_isa, config0);
627}
628
629static inline unsigned int decode_config1(struct cpuinfo_mips *c)
630{
631 unsigned int config1;
632
633 config1 = read_c0_config1();
634
635 if (config1 & MIPS_CONF1_MD)
636 c->ases |= MIPS_ASE_MDMX;
637 if (config1 & MIPS_CONF1_WR)
638 c->options |= MIPS_CPU_WATCH;
639 if (config1 & MIPS_CONF1_CA)
640 c->ases |= MIPS_ASE_MIPS16;
641 if (config1 & MIPS_CONF1_EP)
642 c->options |= MIPS_CPU_EJTAG;
643 if (config1 & MIPS_CONF1_FP) {
644 c->options |= MIPS_CPU_FPU;
645 c->options |= MIPS_CPU_32FPR;
646 }
647 if (cpu_has_tlb) {
648 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
649 c->tlbsizevtlb = c->tlbsize;
650 c->tlbsizeftlbsets = 0;
651 }
652
653 return config1 & MIPS_CONF_M;
654}
655
656static inline unsigned int decode_config2(struct cpuinfo_mips *c)
657{
658 unsigned int config2;
659
660 config2 = read_c0_config2();
661
662 if (config2 & MIPS_CONF2_SL)
663 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
664
665 return config2 & MIPS_CONF_M;
666}
667
668static inline unsigned int decode_config3(struct cpuinfo_mips *c)
669{
670 unsigned int config3;
671
672 config3 = read_c0_config3();
673
674 if (config3 & MIPS_CONF3_SM) {
675 c->ases |= MIPS_ASE_SMARTMIPS;
676 c->options |= MIPS_CPU_RIXI;
677 }
678 if (config3 & MIPS_CONF3_RXI)
679 c->options |= MIPS_CPU_RIXI;
680 if (config3 & MIPS_CONF3_DSP)
681 c->ases |= MIPS_ASE_DSP;
682 if (config3 & MIPS_CONF3_DSP2P)
683 c->ases |= MIPS_ASE_DSP2P;
684 if (config3 & MIPS_CONF3_VINT)
685 c->options |= MIPS_CPU_VINT;
686 if (config3 & MIPS_CONF3_VEIC)
687 c->options |= MIPS_CPU_VEIC;
688 if (config3 & MIPS_CONF3_MT)
689 c->ases |= MIPS_ASE_MIPSMT;
690 if (config3 & MIPS_CONF3_ULRI)
691 c->options |= MIPS_CPU_ULRI;
692 if (config3 & MIPS_CONF3_ISA)
693 c->options |= MIPS_CPU_MICROMIPS;
694 if (config3 & MIPS_CONF3_VZ)
695 c->ases |= MIPS_ASE_VZ;
696 if (config3 & MIPS_CONF3_SC)
697 c->options |= MIPS_CPU_SEGMENTS;
698 if (config3 & MIPS_CONF3_MSA)
699 c->ases |= MIPS_ASE_MSA;
700 if (config3 & MIPS_CONF3_PW) {
701 c->htw_seq = 0;
702 c->options |= MIPS_CPU_HTW;
703 }
704 if (config3 & MIPS_CONF3_CDMM)
705 c->options |= MIPS_CPU_CDMM;
706 if (config3 & MIPS_CONF3_SP)
707 c->options |= MIPS_CPU_SP;
708
709 return config3 & MIPS_CONF_M;
710}
711
712static inline unsigned int decode_config4(struct cpuinfo_mips *c)
713{
714 unsigned int config4;
715 unsigned int newcf4;
716 unsigned int mmuextdef;
717 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
718
719 config4 = read_c0_config4();
720
721 if (cpu_has_tlb) {
722 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
723 c->options |= MIPS_CPU_TLBINV;
724
725 /*
726 * R6 has dropped the MMUExtDef field from config4.
727 * On R6 the fields always describe the FTLB, and only if it is
728 * present according to Config.MT.
729 */
730 if (!cpu_has_mips_r6)
731 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
732 else if (cpu_has_ftlb)
733 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
734 else
735 mmuextdef = 0;
736
737 switch (mmuextdef) {
738 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
739 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
740 c->tlbsizevtlb = c->tlbsize;
741 break;
742 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
743 c->tlbsizevtlb +=
744 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
745 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
746 c->tlbsize = c->tlbsizevtlb;
747 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
748 /* fall through */
749 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
750 if (mips_ftlb_disabled)
751 break;
752 newcf4 = (config4 & ~ftlb_page) |
753 (page_size_ftlb(mmuextdef) <<
754 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
755 write_c0_config4(newcf4);
756 back_to_back_c0_hazard();
757 config4 = read_c0_config4();
758 if (config4 != newcf4) {
759 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
760 PAGE_SIZE, config4);
761 /* Switch FTLB off */
762 set_ftlb_enable(c, 0);
763 break;
764 }
765 c->tlbsizeftlbsets = 1 <<
766 ((config4 & MIPS_CONF4_FTLBSETS) >>
767 MIPS_CONF4_FTLBSETS_SHIFT);
768 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
769 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
770 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
771 mips_has_ftlb_configured = 1;
772 break;
773 }
774 }
775
776 c->kscratch_mask = (config4 >> 16) & 0xff;
777
778 return config4 & MIPS_CONF_M;
779}
780
781static inline unsigned int decode_config5(struct cpuinfo_mips *c)
782{
783 unsigned int config5;
784
785 config5 = read_c0_config5();
786 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
787 write_c0_config5(config5);
788
789 if (config5 & MIPS_CONF5_EVA)
790 c->options |= MIPS_CPU_EVA;
791 if (config5 & MIPS_CONF5_MRP)
792 c->options |= MIPS_CPU_MAAR;
793 if (config5 & MIPS_CONF5_LLB)
794 c->options |= MIPS_CPU_RW_LLB;
795#ifdef CONFIG_XPA
796 if (config5 & MIPS_CONF5_MVH)
797 c->options |= MIPS_CPU_XPA;
798#endif
799
800 return config5 & MIPS_CONF_M;
801}
802
803static void decode_configs(struct cpuinfo_mips *c)
804{
805 int ok;
806
807 /* MIPS32 or MIPS64 compliant CPU. */
808 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
809 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
810
811 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
812
813 /* Enable FTLB if present and not disabled */
814 set_ftlb_enable(c, !mips_ftlb_disabled);
815
816 ok = decode_config0(c); /* Read Config registers. */
817 BUG_ON(!ok); /* Arch spec violation! */
818 if (ok)
819 ok = decode_config1(c);
820 if (ok)
821 ok = decode_config2(c);
822 if (ok)
823 ok = decode_config3(c);
824 if (ok)
825 ok = decode_config4(c);
826 if (ok)
827 ok = decode_config5(c);
828
829 mips_probe_watch_registers(c);
830
831 if (cpu_has_rixi) {
832 /* Enable the RIXI exceptions */
833 set_c0_pagegrain(PG_IEC);
834 back_to_back_c0_hazard();
835 /* Verify the IEC bit is set */
836 if (read_c0_pagegrain() & PG_IEC)
837 c->options |= MIPS_CPU_RIXIEX;
838 }
839
840#ifndef CONFIG_MIPS_CPS
841 if (cpu_has_mips_r2_r6) {
842 c->core = get_ebase_cpunum();
843 if (cpu_has_mipsmt)
844 c->core >>= fls(core_nvpes()) - 1;
845 }
846#endif
847}
848
849#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
850 | MIPS_CPU_COUNTER)
851
852static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
853{
854 switch (c->processor_id & PRID_IMP_MASK) {
855 case PRID_IMP_R2000:
856 c->cputype = CPU_R2000;
857 __cpu_name[cpu] = "R2000";
858 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
859 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
860 MIPS_CPU_NOFPUEX;
861 if (__cpu_has_fpu())
862 c->options |= MIPS_CPU_FPU;
863 c->tlbsize = 64;
864 break;
865 case PRID_IMP_R3000:
866 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
867 if (cpu_has_confreg()) {
868 c->cputype = CPU_R3081E;
869 __cpu_name[cpu] = "R3081";
870 } else {
871 c->cputype = CPU_R3000A;
872 __cpu_name[cpu] = "R3000A";
873 }
874 } else {
875 c->cputype = CPU_R3000;
876 __cpu_name[cpu] = "R3000";
877 }
878 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
879 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
880 MIPS_CPU_NOFPUEX;
881 if (__cpu_has_fpu())
882 c->options |= MIPS_CPU_FPU;
883 c->tlbsize = 64;
884 break;
885 case PRID_IMP_R4000:
886 if (read_c0_config() & CONF_SC) {
887 if ((c->processor_id & PRID_REV_MASK) >=
888 PRID_REV_R4400) {
889 c->cputype = CPU_R4400PC;
890 __cpu_name[cpu] = "R4400PC";
891 } else {
892 c->cputype = CPU_R4000PC;
893 __cpu_name[cpu] = "R4000PC";
894 }
895 } else {
896 int cca = read_c0_config() & CONF_CM_CMASK;
897 int mc;
898
899 /*
900 * SC and MC versions can't be reliably told apart,
901 * but only the latter support coherent caching
902 * modes so assume the firmware has set the KSEG0
903 * coherency attribute reasonably (if uncached, we
904 * assume SC).
905 */
906 switch (cca) {
907 case CONF_CM_CACHABLE_CE:
908 case CONF_CM_CACHABLE_COW:
909 case CONF_CM_CACHABLE_CUW:
910 mc = 1;
911 break;
912 default:
913 mc = 0;
914 break;
915 }
916 if ((c->processor_id & PRID_REV_MASK) >=
917 PRID_REV_R4400) {
918 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
919 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
920 } else {
921 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
922 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
923 }
924 }
925
926 set_isa(c, MIPS_CPU_ISA_III);
927 c->fpu_msk31 |= FPU_CSR_CONDX;
928 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
929 MIPS_CPU_WATCH | MIPS_CPU_VCE |
930 MIPS_CPU_LLSC;
931 c->tlbsize = 48;
932 break;
933 case PRID_IMP_VR41XX:
934 set_isa(c, MIPS_CPU_ISA_III);
935 c->fpu_msk31 |= FPU_CSR_CONDX;
936 c->options = R4K_OPTS;
937 c->tlbsize = 32;
938 switch (c->processor_id & 0xf0) {
939 case PRID_REV_VR4111:
940 c->cputype = CPU_VR4111;
941 __cpu_name[cpu] = "NEC VR4111";
942 break;
943 case PRID_REV_VR4121:
944 c->cputype = CPU_VR4121;
945 __cpu_name[cpu] = "NEC VR4121";
946 break;
947 case PRID_REV_VR4122:
948 if ((c->processor_id & 0xf) < 0x3) {
949 c->cputype = CPU_VR4122;
950 __cpu_name[cpu] = "NEC VR4122";
951 } else {
952 c->cputype = CPU_VR4181A;
953 __cpu_name[cpu] = "NEC VR4181A";
954 }
955 break;
956 case PRID_REV_VR4130:
957 if ((c->processor_id & 0xf) < 0x4) {
958 c->cputype = CPU_VR4131;
959 __cpu_name[cpu] = "NEC VR4131";
960 } else {
961 c->cputype = CPU_VR4133;
962 c->options |= MIPS_CPU_LLSC;
963 __cpu_name[cpu] = "NEC VR4133";
964 }
965 break;
966 default:
967 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
968 c->cputype = CPU_VR41XX;
969 __cpu_name[cpu] = "NEC Vr41xx";
970 break;
971 }
972 break;
973 case PRID_IMP_R4300:
974 c->cputype = CPU_R4300;
975 __cpu_name[cpu] = "R4300";
976 set_isa(c, MIPS_CPU_ISA_III);
977 c->fpu_msk31 |= FPU_CSR_CONDX;
978 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
979 MIPS_CPU_LLSC;
980 c->tlbsize = 32;
981 break;
982 case PRID_IMP_R4600:
983 c->cputype = CPU_R4600;
984 __cpu_name[cpu] = "R4600";
985 set_isa(c, MIPS_CPU_ISA_III);
986 c->fpu_msk31 |= FPU_CSR_CONDX;
987 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
988 MIPS_CPU_LLSC;
989 c->tlbsize = 48;
990 break;
991 #if 0
992 case PRID_IMP_R4650:
993 /*
994 * This processor doesn't have an MMU, so it's not
995 * "real easy" to run Linux on it. It is left purely
996 * for documentation. Commented out because it shares
997 * it's c0_prid id number with the TX3900.
998 */
999 c->cputype = CPU_R4650;
1000 __cpu_name[cpu] = "R4650";
1001 set_isa(c, MIPS_CPU_ISA_III);
1002 c->fpu_msk31 |= FPU_CSR_CONDX;
1003 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1004 c->tlbsize = 48;
1005 break;
1006 #endif
1007 case PRID_IMP_TX39:
1008 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1009 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1010
1011 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1012 c->cputype = CPU_TX3927;
1013 __cpu_name[cpu] = "TX3927";
1014 c->tlbsize = 64;
1015 } else {
1016 switch (c->processor_id & PRID_REV_MASK) {
1017 case PRID_REV_TX3912:
1018 c->cputype = CPU_TX3912;
1019 __cpu_name[cpu] = "TX3912";
1020 c->tlbsize = 32;
1021 break;
1022 case PRID_REV_TX3922:
1023 c->cputype = CPU_TX3922;
1024 __cpu_name[cpu] = "TX3922";
1025 c->tlbsize = 64;
1026 break;
1027 }
1028 }
1029 break;
1030 case PRID_IMP_R4700:
1031 c->cputype = CPU_R4700;
1032 __cpu_name[cpu] = "R4700";
1033 set_isa(c, MIPS_CPU_ISA_III);
1034 c->fpu_msk31 |= FPU_CSR_CONDX;
1035 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1036 MIPS_CPU_LLSC;
1037 c->tlbsize = 48;
1038 break;
1039 case PRID_IMP_TX49:
1040 c->cputype = CPU_TX49XX;
1041 __cpu_name[cpu] = "R49XX";
1042 set_isa(c, MIPS_CPU_ISA_III);
1043 c->fpu_msk31 |= FPU_CSR_CONDX;
1044 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1045 if (!(c->processor_id & 0x08))
1046 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1047 c->tlbsize = 48;
1048 break;
1049 case PRID_IMP_R5000:
1050 c->cputype = CPU_R5000;
1051 __cpu_name[cpu] = "R5000";
1052 set_isa(c, MIPS_CPU_ISA_IV);
1053 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1054 MIPS_CPU_LLSC;
1055 c->tlbsize = 48;
1056 break;
1057 case PRID_IMP_R5432:
1058 c->cputype = CPU_R5432;
1059 __cpu_name[cpu] = "R5432";
1060 set_isa(c, MIPS_CPU_ISA_IV);
1061 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1062 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1063 c->tlbsize = 48;
1064 break;
1065 case PRID_IMP_R5500:
1066 c->cputype = CPU_R5500;
1067 __cpu_name[cpu] = "R5500";
1068 set_isa(c, MIPS_CPU_ISA_IV);
1069 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1070 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1071 c->tlbsize = 48;
1072 break;
1073 case PRID_IMP_NEVADA:
1074 c->cputype = CPU_NEVADA;
1075 __cpu_name[cpu] = "Nevada";
1076 set_isa(c, MIPS_CPU_ISA_IV);
1077 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1078 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1079 c->tlbsize = 48;
1080 break;
1081 case PRID_IMP_R6000:
1082 c->cputype = CPU_R6000;
1083 __cpu_name[cpu] = "R6000";
1084 set_isa(c, MIPS_CPU_ISA_II);
1085 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1086 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1087 MIPS_CPU_LLSC;
1088 c->tlbsize = 32;
1089 break;
1090 case PRID_IMP_R6000A:
1091 c->cputype = CPU_R6000A;
1092 __cpu_name[cpu] = "R6000A";
1093 set_isa(c, MIPS_CPU_ISA_II);
1094 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1095 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1096 MIPS_CPU_LLSC;
1097 c->tlbsize = 32;
1098 break;
1099 case PRID_IMP_RM7000:
1100 c->cputype = CPU_RM7000;
1101 __cpu_name[cpu] = "RM7000";
1102 set_isa(c, MIPS_CPU_ISA_IV);
1103 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1104 MIPS_CPU_LLSC;
1105 /*
1106 * Undocumented RM7000: Bit 29 in the info register of
1107 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1108 * entries.
1109 *
1110 * 29 1 => 64 entry JTLB
1111 * 0 => 48 entry JTLB
1112 */
1113 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1114 break;
1115 case PRID_IMP_R8000:
1116 c->cputype = CPU_R8000;
1117 __cpu_name[cpu] = "RM8000";
1118 set_isa(c, MIPS_CPU_ISA_IV);
1119 c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1120 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1121 MIPS_CPU_LLSC;
1122 c->tlbsize = 384; /* has weird TLB: 3-way x 128 */
1123 break;
1124 case PRID_IMP_R10000:
1125 c->cputype = CPU_R10000;
1126 __cpu_name[cpu] = "R10000";
1127 set_isa(c, MIPS_CPU_ISA_IV);
1128 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1129 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1130 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1131 MIPS_CPU_LLSC;
1132 c->tlbsize = 64;
1133 break;
1134 case PRID_IMP_R12000:
1135 c->cputype = CPU_R12000;
1136 __cpu_name[cpu] = "R12000";
1137 set_isa(c, MIPS_CPU_ISA_IV);
1138 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1139 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1140 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1141 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1142 c->tlbsize = 64;
1143 break;
1144 case PRID_IMP_R14000:
1145 if (((c->processor_id >> 4) & 0x0f) > 2) {
1146 c->cputype = CPU_R16000;
1147 __cpu_name[cpu] = "R16000";
1148 } else {
1149 c->cputype = CPU_R14000;
1150 __cpu_name[cpu] = "R14000";
1151 }
1152 set_isa(c, MIPS_CPU_ISA_IV);
1153 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1154 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1155 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1156 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1157 c->tlbsize = 64;
1158 break;
1159 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1160 switch (c->processor_id & PRID_REV_MASK) {
1161 case PRID_REV_LOONGSON2E:
1162 c->cputype = CPU_LOONGSON2;
1163 __cpu_name[cpu] = "ICT Loongson-2";
1164 set_elf_platform(cpu, "loongson2e");
1165 set_isa(c, MIPS_CPU_ISA_III);
1166 c->fpu_msk31 |= FPU_CSR_CONDX;
1167 break;
1168 case PRID_REV_LOONGSON2F:
1169 c->cputype = CPU_LOONGSON2;
1170 __cpu_name[cpu] = "ICT Loongson-2";
1171 set_elf_platform(cpu, "loongson2f");
1172 set_isa(c, MIPS_CPU_ISA_III);
1173 c->fpu_msk31 |= FPU_CSR_CONDX;
1174 break;
1175 case PRID_REV_LOONGSON3A:
1176 c->cputype = CPU_LOONGSON3;
1177 __cpu_name[cpu] = "ICT Loongson-3";
1178 set_elf_platform(cpu, "loongson3a");
1179 set_isa(c, MIPS_CPU_ISA_M64R1);
1180 break;
1181 case PRID_REV_LOONGSON3B_R1:
1182 case PRID_REV_LOONGSON3B_R2:
1183 c->cputype = CPU_LOONGSON3;
1184 __cpu_name[cpu] = "ICT Loongson-3";
1185 set_elf_platform(cpu, "loongson3b");
1186 set_isa(c, MIPS_CPU_ISA_M64R1);
1187 break;
1188 }
1189
1190 c->options = R4K_OPTS |
1191 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1192 MIPS_CPU_32FPR;
1193 c->tlbsize = 64;
1194 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1195 break;
1196 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1197 decode_configs(c);
1198
1199 c->cputype = CPU_LOONGSON1;
1200
1201 switch (c->processor_id & PRID_REV_MASK) {
1202 case PRID_REV_LOONGSON1B:
1203 __cpu_name[cpu] = "Loongson 1B";
1204 break;
1205 }
1206
1207 break;
1208 }
1209}
1210
1211static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1212{
1213 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1214 switch (c->processor_id & PRID_IMP_MASK) {
1215 case PRID_IMP_QEMU_GENERIC:
1216 c->writecombine = _CACHE_UNCACHED;
1217 c->cputype = CPU_QEMU_GENERIC;
1218 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1219 break;
1220 case PRID_IMP_4KC:
1221 c->cputype = CPU_4KC;
1222 c->writecombine = _CACHE_UNCACHED;
1223 __cpu_name[cpu] = "MIPS 4Kc";
1224 break;
1225 case PRID_IMP_4KEC:
1226 case PRID_IMP_4KECR2:
1227 c->cputype = CPU_4KEC;
1228 c->writecombine = _CACHE_UNCACHED;
1229 __cpu_name[cpu] = "MIPS 4KEc";
1230 break;
1231 case PRID_IMP_4KSC:
1232 case PRID_IMP_4KSD:
1233 c->cputype = CPU_4KSC;
1234 c->writecombine = _CACHE_UNCACHED;
1235 __cpu_name[cpu] = "MIPS 4KSc";
1236 break;
1237 case PRID_IMP_5KC:
1238 c->cputype = CPU_5KC;
1239 c->writecombine = _CACHE_UNCACHED;
1240 __cpu_name[cpu] = "MIPS 5Kc";
1241 break;
1242 case PRID_IMP_5KE:
1243 c->cputype = CPU_5KE;
1244 c->writecombine = _CACHE_UNCACHED;
1245 __cpu_name[cpu] = "MIPS 5KE";
1246 break;
1247 case PRID_IMP_20KC:
1248 c->cputype = CPU_20KC;
1249 c->writecombine = _CACHE_UNCACHED;
1250 __cpu_name[cpu] = "MIPS 20Kc";
1251 break;
1252 case PRID_IMP_24K:
1253 c->cputype = CPU_24K;
1254 c->writecombine = _CACHE_UNCACHED;
1255 __cpu_name[cpu] = "MIPS 24Kc";
1256 break;
1257 case PRID_IMP_24KE:
1258 c->cputype = CPU_24K;
1259 c->writecombine = _CACHE_UNCACHED;
1260 __cpu_name[cpu] = "MIPS 24KEc";
1261 break;
1262 case PRID_IMP_25KF:
1263 c->cputype = CPU_25KF;
1264 c->writecombine = _CACHE_UNCACHED;
1265 __cpu_name[cpu] = "MIPS 25Kc";
1266 break;
1267 case PRID_IMP_34K:
1268 c->cputype = CPU_34K;
1269 c->writecombine = _CACHE_UNCACHED;
1270 __cpu_name[cpu] = "MIPS 34Kc";
1271 break;
1272 case PRID_IMP_74K:
1273 c->cputype = CPU_74K;
1274 c->writecombine = _CACHE_UNCACHED;
1275 __cpu_name[cpu] = "MIPS 74Kc";
1276 break;
1277 case PRID_IMP_M14KC:
1278 c->cputype = CPU_M14KC;
1279 c->writecombine = _CACHE_UNCACHED;
1280 __cpu_name[cpu] = "MIPS M14Kc";
1281 break;
1282 case PRID_IMP_M14KEC:
1283 c->cputype = CPU_M14KEC;
1284 c->writecombine = _CACHE_UNCACHED;
1285 __cpu_name[cpu] = "MIPS M14KEc";
1286 break;
1287 case PRID_IMP_1004K:
1288 c->cputype = CPU_1004K;
1289 c->writecombine = _CACHE_UNCACHED;
1290 __cpu_name[cpu] = "MIPS 1004Kc";
1291 break;
1292 case PRID_IMP_1074K:
1293 c->cputype = CPU_1074K;
1294 c->writecombine = _CACHE_UNCACHED;
1295 __cpu_name[cpu] = "MIPS 1074Kc";
1296 break;
1297 case PRID_IMP_INTERAPTIV_UP:
1298 c->cputype = CPU_INTERAPTIV;
1299 __cpu_name[cpu] = "MIPS interAptiv";
1300 break;
1301 case PRID_IMP_INTERAPTIV_MP:
1302 c->cputype = CPU_INTERAPTIV;
1303 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1304 break;
1305 case PRID_IMP_PROAPTIV_UP:
1306 c->cputype = CPU_PROAPTIV;
1307 __cpu_name[cpu] = "MIPS proAptiv";
1308 break;
1309 case PRID_IMP_PROAPTIV_MP:
1310 c->cputype = CPU_PROAPTIV;
1311 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1312 break;
1313 case PRID_IMP_P5600:
1314 c->cputype = CPU_P5600;
1315 __cpu_name[cpu] = "MIPS P5600";
1316 break;
1317 case PRID_IMP_I6400:
1318 c->cputype = CPU_I6400;
1319 __cpu_name[cpu] = "MIPS I6400";
1320 break;
1321 case PRID_IMP_M5150:
1322 c->cputype = CPU_M5150;
1323 __cpu_name[cpu] = "MIPS M5150";
1324 break;
1325 }
1326
1327 decode_configs(c);
1328
1329 spram_config();
1330}
1331
1332static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1333{
1334 decode_configs(c);
1335 switch (c->processor_id & PRID_IMP_MASK) {
1336 case PRID_IMP_AU1_REV1:
1337 case PRID_IMP_AU1_REV2:
1338 c->cputype = CPU_ALCHEMY;
1339 switch ((c->processor_id >> 24) & 0xff) {
1340 case 0:
1341 __cpu_name[cpu] = "Au1000";
1342 break;
1343 case 1:
1344 __cpu_name[cpu] = "Au1500";
1345 break;
1346 case 2:
1347 __cpu_name[cpu] = "Au1100";
1348 break;
1349 case 3:
1350 __cpu_name[cpu] = "Au1550";
1351 break;
1352 case 4:
1353 __cpu_name[cpu] = "Au1200";
1354 if ((c->processor_id & PRID_REV_MASK) == 2)
1355 __cpu_name[cpu] = "Au1250";
1356 break;
1357 case 5:
1358 __cpu_name[cpu] = "Au1210";
1359 break;
1360 default:
1361 __cpu_name[cpu] = "Au1xxx";
1362 break;
1363 }
1364 break;
1365 }
1366}
1367
1368static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1369{
1370 decode_configs(c);
1371
1372 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1373 switch (c->processor_id & PRID_IMP_MASK) {
1374 case PRID_IMP_SB1:
1375 c->cputype = CPU_SB1;
1376 __cpu_name[cpu] = "SiByte SB1";
1377 /* FPU in pass1 is known to have issues. */
1378 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1379 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1380 break;
1381 case PRID_IMP_SB1A:
1382 c->cputype = CPU_SB1A;
1383 __cpu_name[cpu] = "SiByte SB1A";
1384 break;
1385 }
1386}
1387
1388static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1389{
1390 decode_configs(c);
1391 switch (c->processor_id & PRID_IMP_MASK) {
1392 case PRID_IMP_SR71000:
1393 c->cputype = CPU_SR71000;
1394 __cpu_name[cpu] = "Sandcraft SR71000";
1395 c->scache.ways = 8;
1396 c->tlbsize = 64;
1397 break;
1398 }
1399}
1400
1401static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1402{
1403 decode_configs(c);
1404 switch (c->processor_id & PRID_IMP_MASK) {
1405 case PRID_IMP_PR4450:
1406 c->cputype = CPU_PR4450;
1407 __cpu_name[cpu] = "Philips PR4450";
1408 set_isa(c, MIPS_CPU_ISA_M32R1);
1409 break;
1410 }
1411}
1412
1413static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1414{
1415 decode_configs(c);
1416 switch (c->processor_id & PRID_IMP_MASK) {
1417 case PRID_IMP_BMIPS32_REV4:
1418 case PRID_IMP_BMIPS32_REV8:
1419 c->cputype = CPU_BMIPS32;
1420 __cpu_name[cpu] = "Broadcom BMIPS32";
1421 set_elf_platform(cpu, "bmips32");
1422 break;
1423 case PRID_IMP_BMIPS3300:
1424 case PRID_IMP_BMIPS3300_ALT:
1425 case PRID_IMP_BMIPS3300_BUG:
1426 c->cputype = CPU_BMIPS3300;
1427 __cpu_name[cpu] = "Broadcom BMIPS3300";
1428 set_elf_platform(cpu, "bmips3300");
1429 break;
1430 case PRID_IMP_BMIPS43XX: {
1431 int rev = c->processor_id & PRID_REV_MASK;
1432
1433 if (rev >= PRID_REV_BMIPS4380_LO &&
1434 rev <= PRID_REV_BMIPS4380_HI) {
1435 c->cputype = CPU_BMIPS4380;
1436 __cpu_name[cpu] = "Broadcom BMIPS4380";
1437 set_elf_platform(cpu, "bmips4380");
1438 } else {
1439 c->cputype = CPU_BMIPS4350;
1440 __cpu_name[cpu] = "Broadcom BMIPS4350";
1441 set_elf_platform(cpu, "bmips4350");
1442 }
1443 break;
1444 }
1445 case PRID_IMP_BMIPS5000:
1446 case PRID_IMP_BMIPS5200:
1447 c->cputype = CPU_BMIPS5000;
1448 __cpu_name[cpu] = "Broadcom BMIPS5000";
1449 set_elf_platform(cpu, "bmips5000");
1450 c->options |= MIPS_CPU_ULRI;
1451 break;
1452 }
1453}
1454
1455static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1456{
1457 decode_configs(c);
1458 switch (c->processor_id & PRID_IMP_MASK) {
1459 case PRID_IMP_CAVIUM_CN38XX:
1460 case PRID_IMP_CAVIUM_CN31XX:
1461 case PRID_IMP_CAVIUM_CN30XX:
1462 c->cputype = CPU_CAVIUM_OCTEON;
1463 __cpu_name[cpu] = "Cavium Octeon";
1464 goto platform;
1465 case PRID_IMP_CAVIUM_CN58XX:
1466 case PRID_IMP_CAVIUM_CN56XX:
1467 case PRID_IMP_CAVIUM_CN50XX:
1468 case PRID_IMP_CAVIUM_CN52XX:
1469 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1470 __cpu_name[cpu] = "Cavium Octeon+";
1471platform:
1472 set_elf_platform(cpu, "octeon");
1473 break;
1474 case PRID_IMP_CAVIUM_CN61XX:
1475 case PRID_IMP_CAVIUM_CN63XX:
1476 case PRID_IMP_CAVIUM_CN66XX:
1477 case PRID_IMP_CAVIUM_CN68XX:
1478 case PRID_IMP_CAVIUM_CNF71XX:
1479 c->cputype = CPU_CAVIUM_OCTEON2;
1480 __cpu_name[cpu] = "Cavium Octeon II";
1481 set_elf_platform(cpu, "octeon2");
1482 break;
1483 case PRID_IMP_CAVIUM_CN70XX:
1484 case PRID_IMP_CAVIUM_CN78XX:
1485 c->cputype = CPU_CAVIUM_OCTEON3;
1486 __cpu_name[cpu] = "Cavium Octeon III";
1487 set_elf_platform(cpu, "octeon3");
1488 break;
1489 default:
1490 printk(KERN_INFO "Unknown Octeon chip!\n");
1491 c->cputype = CPU_UNKNOWN;
1492 break;
1493 }
1494}
1495
1496static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1497{
1498 decode_configs(c);
1499 /* JZRISC does not implement the CP0 counter. */
1500 c->options &= ~MIPS_CPU_COUNTER;
1501 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1502 switch (c->processor_id & PRID_IMP_MASK) {
1503 case PRID_IMP_JZRISC:
1504 c->cputype = CPU_JZRISC;
1505 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1506 __cpu_name[cpu] = "Ingenic JZRISC";
1507 break;
1508 default:
1509 panic("Unknown Ingenic Processor ID!");
1510 break;
1511 }
1512}
1513
1514static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1515{
1516 decode_configs(c);
1517
1518 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1519 c->cputype = CPU_ALCHEMY;
1520 __cpu_name[cpu] = "Au1300";
1521 /* following stuff is not for Alchemy */
1522 return;
1523 }
1524
1525 c->options = (MIPS_CPU_TLB |
1526 MIPS_CPU_4KEX |
1527 MIPS_CPU_COUNTER |
1528 MIPS_CPU_DIVEC |
1529 MIPS_CPU_WATCH |
1530 MIPS_CPU_EJTAG |
1531 MIPS_CPU_LLSC);
1532
1533 switch (c->processor_id & PRID_IMP_MASK) {
1534 case PRID_IMP_NETLOGIC_XLP2XX:
1535 case PRID_IMP_NETLOGIC_XLP9XX:
1536 case PRID_IMP_NETLOGIC_XLP5XX:
1537 c->cputype = CPU_XLP;
1538 __cpu_name[cpu] = "Broadcom XLPII";
1539 break;
1540
1541 case PRID_IMP_NETLOGIC_XLP8XX:
1542 case PRID_IMP_NETLOGIC_XLP3XX:
1543 c->cputype = CPU_XLP;
1544 __cpu_name[cpu] = "Netlogic XLP";
1545 break;
1546
1547 case PRID_IMP_NETLOGIC_XLR732:
1548 case PRID_IMP_NETLOGIC_XLR716:
1549 case PRID_IMP_NETLOGIC_XLR532:
1550 case PRID_IMP_NETLOGIC_XLR308:
1551 case PRID_IMP_NETLOGIC_XLR532C:
1552 case PRID_IMP_NETLOGIC_XLR516C:
1553 case PRID_IMP_NETLOGIC_XLR508C:
1554 case PRID_IMP_NETLOGIC_XLR308C:
1555 c->cputype = CPU_XLR;
1556 __cpu_name[cpu] = "Netlogic XLR";
1557 break;
1558
1559 case PRID_IMP_NETLOGIC_XLS608:
1560 case PRID_IMP_NETLOGIC_XLS408:
1561 case PRID_IMP_NETLOGIC_XLS404:
1562 case PRID_IMP_NETLOGIC_XLS208:
1563 case PRID_IMP_NETLOGIC_XLS204:
1564 case PRID_IMP_NETLOGIC_XLS108:
1565 case PRID_IMP_NETLOGIC_XLS104:
1566 case PRID_IMP_NETLOGIC_XLS616B:
1567 case PRID_IMP_NETLOGIC_XLS608B:
1568 case PRID_IMP_NETLOGIC_XLS416B:
1569 case PRID_IMP_NETLOGIC_XLS412B:
1570 case PRID_IMP_NETLOGIC_XLS408B:
1571 case PRID_IMP_NETLOGIC_XLS404B:
1572 c->cputype = CPU_XLR;
1573 __cpu_name[cpu] = "Netlogic XLS";
1574 break;
1575
1576 default:
1577 pr_info("Unknown Netlogic chip id [%02x]!\n",
1578 c->processor_id);
1579 c->cputype = CPU_XLR;
1580 break;
1581 }
1582
1583 if (c->cputype == CPU_XLP) {
1584 set_isa(c, MIPS_CPU_ISA_M64R2);
1585 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1586 /* This will be updated again after all threads are woken up */
1587 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1588 } else {
1589 set_isa(c, MIPS_CPU_ISA_M64R1);
1590 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1591 }
1592 c->kscratch_mask = 0xf;
1593}
1594
1595#ifdef CONFIG_64BIT
1596/* For use by uaccess.h */
1597u64 __ua_limit;
1598EXPORT_SYMBOL(__ua_limit);
1599#endif
1600
1601const char *__cpu_name[NR_CPUS];
1602const char *__elf_platform;
1603
1604void cpu_probe(void)
1605{
1606 struct cpuinfo_mips *c = ¤t_cpu_data;
1607 unsigned int cpu = smp_processor_id();
1608
1609 c->processor_id = PRID_IMP_UNKNOWN;
1610 c->fpu_id = FPIR_IMP_NONE;
1611 c->cputype = CPU_UNKNOWN;
1612 c->writecombine = _CACHE_UNCACHED;
1613
1614 c->fpu_csr31 = FPU_CSR_RN;
1615 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1616
1617 c->processor_id = read_c0_prid();
1618 switch (c->processor_id & PRID_COMP_MASK) {
1619 case PRID_COMP_LEGACY:
1620 cpu_probe_legacy(c, cpu);
1621 break;
1622 case PRID_COMP_MIPS:
1623 cpu_probe_mips(c, cpu);
1624 break;
1625 case PRID_COMP_ALCHEMY:
1626 cpu_probe_alchemy(c, cpu);
1627 break;
1628 case PRID_COMP_SIBYTE:
1629 cpu_probe_sibyte(c, cpu);
1630 break;
1631 case PRID_COMP_BROADCOM:
1632 cpu_probe_broadcom(c, cpu);
1633 break;
1634 case PRID_COMP_SANDCRAFT:
1635 cpu_probe_sandcraft(c, cpu);
1636 break;
1637 case PRID_COMP_NXP:
1638 cpu_probe_nxp(c, cpu);
1639 break;
1640 case PRID_COMP_CAVIUM:
1641 cpu_probe_cavium(c, cpu);
1642 break;
1643 case PRID_COMP_INGENIC_D0:
1644 case PRID_COMP_INGENIC_D1:
1645 case PRID_COMP_INGENIC_E1:
1646 cpu_probe_ingenic(c, cpu);
1647 break;
1648 case PRID_COMP_NETLOGIC:
1649 cpu_probe_netlogic(c, cpu);
1650 break;
1651 }
1652
1653 BUG_ON(!__cpu_name[cpu]);
1654 BUG_ON(c->cputype == CPU_UNKNOWN);
1655
1656 /*
1657 * Platform code can force the cpu type to optimize code
1658 * generation. In that case be sure the cpu type is correctly
1659 * manually setup otherwise it could trigger some nasty bugs.
1660 */
1661 BUG_ON(current_cpu_type() != c->cputype);
1662
1663 if (mips_fpu_disabled)
1664 c->options &= ~MIPS_CPU_FPU;
1665
1666 if (mips_dsp_disabled)
1667 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
1668
1669 if (mips_htw_disabled) {
1670 c->options &= ~MIPS_CPU_HTW;
1671 write_c0_pwctl(read_c0_pwctl() &
1672 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
1673 }
1674
1675 if (c->options & MIPS_CPU_FPU)
1676 cpu_set_fpu_opts(c);
1677 else
1678 cpu_set_nofpu_opts(c);
1679
1680 if (cpu_has_bp_ghist)
1681 write_c0_r10k_diag(read_c0_r10k_diag() |
1682 R10K_DIAG_E_GHIST);
1683
1684 if (cpu_has_mips_r2_r6) {
1685 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1686 /* R2 has Performance Counter Interrupt indicator */
1687 c->options |= MIPS_CPU_PCI;
1688 }
1689 else
1690 c->srsets = 1;
1691
1692 if (cpu_has_mips_r6)
1693 elf_hwcap |= HWCAP_MIPS_R6;
1694
1695 if (cpu_has_msa) {
1696 c->msa_id = cpu_get_msa_id();
1697 WARN(c->msa_id & MSA_IR_WRPF,
1698 "Vector register partitioning unimplemented!");
1699 elf_hwcap |= HWCAP_MIPS_MSA;
1700 }
1701
1702 cpu_probe_vmbits(c);
1703
1704#ifdef CONFIG_64BIT
1705 if (cpu == 0)
1706 __ua_limit = ~((1ull << cpu_vmbits) - 1);
1707#endif
1708}
1709
1710void cpu_report(void)
1711{
1712 struct cpuinfo_mips *c = ¤t_cpu_data;
1713
1714 pr_info("CPU%d revision is: %08x (%s)\n",
1715 smp_processor_id(), c->processor_id, cpu_name_string());
1716 if (c->options & MIPS_CPU_FPU)
1717 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
1718 if (cpu_has_msa)
1719 pr_info("MSA revision is: %08x\n", c->msa_id);
1720}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Processor capabilities determination functions.
4 *
5 * Copyright (C) xxxx the Anonymous
6 * Copyright (C) 1994 - 2006 Ralf Baechle
7 * Copyright (C) 2003, 2004 Maciej W. Rozycki
8 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
9 */
10#include <linux/init.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/smp.h>
14#include <linux/stddef.h>
15#include <linux/export.h>
16
17#include <asm/bugs.h>
18#include <asm/cpu.h>
19#include <asm/cpu-features.h>
20#include <asm/cpu-type.h>
21#include <asm/fpu.h>
22#include <asm/mipsregs.h>
23#include <asm/mipsmtregs.h>
24#include <asm/msa.h>
25#include <asm/watch.h>
26#include <asm/elf.h>
27#include <asm/pgtable-bits.h>
28#include <asm/spram.h>
29#include <linux/uaccess.h>
30
31#include <asm/mach-loongson64/cpucfg-emul.h>
32
33/* Hardware capabilities */
34unsigned int elf_hwcap __read_mostly;
35EXPORT_SYMBOL_GPL(elf_hwcap);
36
37#ifdef CONFIG_MIPS_FP_SUPPORT
38
39/*
40 * Get the FPU Implementation/Revision.
41 */
42static inline unsigned long cpu_get_fpu_id(void)
43{
44 unsigned long tmp, fpu_id;
45
46 tmp = read_c0_status();
47 __enable_fpu(FPU_AS_IS);
48 fpu_id = read_32bit_cp1_register(CP1_REVISION);
49 write_c0_status(tmp);
50 return fpu_id;
51}
52
53/*
54 * Check if the CPU has an external FPU.
55 */
56static inline int __cpu_has_fpu(void)
57{
58 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
59}
60
61/*
62 * Determine the FCSR mask for FPU hardware.
63 */
64static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
65{
66 unsigned long sr, mask, fcsr, fcsr0, fcsr1;
67
68 fcsr = c->fpu_csr31;
69 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
70
71 sr = read_c0_status();
72 __enable_fpu(FPU_AS_IS);
73
74 fcsr0 = fcsr & mask;
75 write_32bit_cp1_register(CP1_STATUS, fcsr0);
76 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
77
78 fcsr1 = fcsr | ~mask;
79 write_32bit_cp1_register(CP1_STATUS, fcsr1);
80 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
81
82 write_32bit_cp1_register(CP1_STATUS, fcsr);
83
84 write_c0_status(sr);
85
86 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
87}
88
89/*
90 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
91 * supported by FPU hardware.
92 */
93static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
94{
95 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
96 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
97 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
98 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
99 unsigned long sr, fir, fcsr, fcsr0, fcsr1;
100
101 sr = read_c0_status();
102 __enable_fpu(FPU_AS_IS);
103
104 fir = read_32bit_cp1_register(CP1_REVISION);
105 if (fir & MIPS_FPIR_HAS2008) {
106 fcsr = read_32bit_cp1_register(CP1_STATUS);
107
108 /*
109 * MAC2008 toolchain never landed in real world, so we're only
110 * testing wether it can be disabled and don't try to enabled
111 * it.
112 */
113 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008 | FPU_CSR_MAC2008);
114 write_32bit_cp1_register(CP1_STATUS, fcsr0);
115 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
116
117 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
118 write_32bit_cp1_register(CP1_STATUS, fcsr1);
119 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
120
121 write_32bit_cp1_register(CP1_STATUS, fcsr);
122
123 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2)) {
124 /*
125 * The bit for MAC2008 might be reused by R6 in future,
126 * so we only test for R2-R5.
127 */
128 if (fcsr0 & FPU_CSR_MAC2008)
129 c->options |= MIPS_CPU_MAC_2008_ONLY;
130 }
131
132 if (!(fcsr0 & FPU_CSR_NAN2008))
133 c->options |= MIPS_CPU_NAN_LEGACY;
134 if (fcsr1 & FPU_CSR_NAN2008)
135 c->options |= MIPS_CPU_NAN_2008;
136
137 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
138 c->fpu_msk31 &= ~FPU_CSR_ABS2008;
139 else
140 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
141
142 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
143 c->fpu_msk31 &= ~FPU_CSR_NAN2008;
144 else
145 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
146 } else {
147 c->options |= MIPS_CPU_NAN_LEGACY;
148 }
149
150 write_c0_status(sr);
151 } else {
152 c->options |= MIPS_CPU_NAN_LEGACY;
153 }
154}
155
156/*
157 * IEEE 754 conformance mode to use. Affects the NaN encoding and the
158 * ABS.fmt/NEG.fmt execution mode.
159 */
160static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
161
162/*
163 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
164 * to support by the FPU emulator according to the IEEE 754 conformance
165 * mode selected. Note that "relaxed" straps the emulator so that it
166 * allows 2008-NaN binaries even for legacy processors.
167 */
168static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
169{
170 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
171 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
172 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
173
174 switch (ieee754) {
175 case STRICT:
176 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
177 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
178 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
179 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
180 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
181 } else {
182 c->options |= MIPS_CPU_NAN_LEGACY;
183 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
184 }
185 break;
186 case LEGACY:
187 c->options |= MIPS_CPU_NAN_LEGACY;
188 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
189 break;
190 case STD2008:
191 c->options |= MIPS_CPU_NAN_2008;
192 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
193 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
194 break;
195 case RELAXED:
196 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
197 break;
198 }
199}
200
201/*
202 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
203 * according to the "ieee754=" parameter.
204 */
205static void cpu_set_nan_2008(struct cpuinfo_mips *c)
206{
207 switch (ieee754) {
208 case STRICT:
209 mips_use_nan_legacy = !!cpu_has_nan_legacy;
210 mips_use_nan_2008 = !!cpu_has_nan_2008;
211 break;
212 case LEGACY:
213 mips_use_nan_legacy = !!cpu_has_nan_legacy;
214 mips_use_nan_2008 = !cpu_has_nan_legacy;
215 break;
216 case STD2008:
217 mips_use_nan_legacy = !cpu_has_nan_2008;
218 mips_use_nan_2008 = !!cpu_has_nan_2008;
219 break;
220 case RELAXED:
221 mips_use_nan_legacy = true;
222 mips_use_nan_2008 = true;
223 break;
224 }
225}
226
227/*
228 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
229 * settings:
230 *
231 * strict: accept binaries that request a NaN encoding supported by the FPU
232 * legacy: only accept legacy-NaN binaries
233 * 2008: only accept 2008-NaN binaries
234 * relaxed: accept any binaries regardless of whether supported by the FPU
235 */
236static int __init ieee754_setup(char *s)
237{
238 if (!s)
239 return -1;
240 else if (!strcmp(s, "strict"))
241 ieee754 = STRICT;
242 else if (!strcmp(s, "legacy"))
243 ieee754 = LEGACY;
244 else if (!strcmp(s, "2008"))
245 ieee754 = STD2008;
246 else if (!strcmp(s, "relaxed"))
247 ieee754 = RELAXED;
248 else
249 return -1;
250
251 if (!(boot_cpu_data.options & MIPS_CPU_FPU))
252 cpu_set_nofpu_2008(&boot_cpu_data);
253 cpu_set_nan_2008(&boot_cpu_data);
254
255 return 0;
256}
257
258early_param("ieee754", ieee754_setup);
259
260/*
261 * Set the FIR feature flags for the FPU emulator.
262 */
263static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
264{
265 u32 value;
266
267 value = 0;
268 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
269 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
270 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
271 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
272 value |= MIPS_FPIR_D | MIPS_FPIR_S;
273 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
274 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
275 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
276 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
277 if (c->options & MIPS_CPU_NAN_2008)
278 value |= MIPS_FPIR_HAS2008;
279 c->fpu_id = value;
280}
281
282/* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
283static unsigned int mips_nofpu_msk31;
284
285/*
286 * Set options for FPU hardware.
287 */
288static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
289{
290 c->fpu_id = cpu_get_fpu_id();
291 mips_nofpu_msk31 = c->fpu_msk31;
292
293 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
294 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
295 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
296 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
297 if (c->fpu_id & MIPS_FPIR_3D)
298 c->ases |= MIPS_ASE_MIPS3D;
299 if (c->fpu_id & MIPS_FPIR_UFRP)
300 c->options |= MIPS_CPU_UFR;
301 if (c->fpu_id & MIPS_FPIR_FREP)
302 c->options |= MIPS_CPU_FRE;
303 }
304
305 cpu_set_fpu_fcsr_mask(c);
306 cpu_set_fpu_2008(c);
307 cpu_set_nan_2008(c);
308}
309
310/*
311 * Set options for the FPU emulator.
312 */
313static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
314{
315 c->options &= ~MIPS_CPU_FPU;
316 c->fpu_msk31 = mips_nofpu_msk31;
317
318 cpu_set_nofpu_2008(c);
319 cpu_set_nan_2008(c);
320 cpu_set_nofpu_id(c);
321}
322
323static int mips_fpu_disabled;
324
325static int __init fpu_disable(char *s)
326{
327 cpu_set_nofpu_opts(&boot_cpu_data);
328 mips_fpu_disabled = 1;
329
330 return 1;
331}
332
333__setup("nofpu", fpu_disable);
334
335#else /* !CONFIG_MIPS_FP_SUPPORT */
336
337#define mips_fpu_disabled 1
338
339static inline unsigned long cpu_get_fpu_id(void)
340{
341 return FPIR_IMP_NONE;
342}
343
344static inline int __cpu_has_fpu(void)
345{
346 return 0;
347}
348
349static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
350{
351 /* no-op */
352}
353
354static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
355{
356 /* no-op */
357}
358
359#endif /* CONFIG_MIPS_FP_SUPPORT */
360
361static inline unsigned long cpu_get_msa_id(void)
362{
363 unsigned long status, msa_id;
364
365 status = read_c0_status();
366 __enable_fpu(FPU_64BIT);
367 enable_msa();
368 msa_id = read_msa_ir();
369 disable_msa();
370 write_c0_status(status);
371 return msa_id;
372}
373
374static int mips_dsp_disabled;
375
376static int __init dsp_disable(char *s)
377{
378 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
379 mips_dsp_disabled = 1;
380
381 return 1;
382}
383
384__setup("nodsp", dsp_disable);
385
386static int mips_htw_disabled;
387
388static int __init htw_disable(char *s)
389{
390 mips_htw_disabled = 1;
391 cpu_data[0].options &= ~MIPS_CPU_HTW;
392 write_c0_pwctl(read_c0_pwctl() &
393 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
394
395 return 1;
396}
397
398__setup("nohtw", htw_disable);
399
400static int mips_ftlb_disabled;
401static int mips_has_ftlb_configured;
402
403enum ftlb_flags {
404 FTLB_EN = 1 << 0,
405 FTLB_SET_PROB = 1 << 1,
406};
407
408static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
409
410static int __init ftlb_disable(char *s)
411{
412 unsigned int config4, mmuextdef;
413
414 /*
415 * If the core hasn't done any FTLB configuration, there is nothing
416 * for us to do here.
417 */
418 if (!mips_has_ftlb_configured)
419 return 1;
420
421 /* Disable it in the boot cpu */
422 if (set_ftlb_enable(&cpu_data[0], 0)) {
423 pr_warn("Can't turn FTLB off\n");
424 return 1;
425 }
426
427 config4 = read_c0_config4();
428
429 /* Check that FTLB has been disabled */
430 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
431 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
432 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
433 /* This should never happen */
434 pr_warn("FTLB could not be disabled!\n");
435 return 1;
436 }
437
438 mips_ftlb_disabled = 1;
439 mips_has_ftlb_configured = 0;
440
441 /*
442 * noftlb is mainly used for debug purposes so print
443 * an informative message instead of using pr_debug()
444 */
445 pr_info("FTLB has been disabled\n");
446
447 /*
448 * Some of these bits are duplicated in the decode_config4.
449 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
450 * once FTLB has been disabled so undo what decode_config4 did.
451 */
452 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
453 cpu_data[0].tlbsizeftlbsets;
454 cpu_data[0].tlbsizeftlbsets = 0;
455 cpu_data[0].tlbsizeftlbways = 0;
456
457 return 1;
458}
459
460__setup("noftlb", ftlb_disable);
461
462/*
463 * Check if the CPU has per tc perf counters
464 */
465static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
466{
467 if (read_c0_config7() & MTI_CONF7_PTC)
468 c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
469}
470
471static inline void check_errata(void)
472{
473 struct cpuinfo_mips *c = ¤t_cpu_data;
474
475 switch (current_cpu_type()) {
476 case CPU_34K:
477 /*
478 * Erratum "RPS May Cause Incorrect Instruction Execution"
479 * This code only handles VPE0, any SMP/RTOS code
480 * making use of VPE1 will be responsable for that VPE.
481 */
482 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
483 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
484 break;
485 default:
486 break;
487 }
488}
489
490void __init check_bugs32(void)
491{
492 check_errata();
493}
494
495/*
496 * Probe whether cpu has config register by trying to play with
497 * alternate cache bit and see whether it matters.
498 * It's used by cpu_probe to distinguish between R3000A and R3081.
499 */
500static inline int cpu_has_confreg(void)
501{
502#ifdef CONFIG_CPU_R3000
503 extern unsigned long r3k_cache_size(unsigned long);
504 unsigned long size1, size2;
505 unsigned long cfg = read_c0_conf();
506
507 size1 = r3k_cache_size(ST0_ISC);
508 write_c0_conf(cfg ^ R30XX_CONF_AC);
509 size2 = r3k_cache_size(ST0_ISC);
510 write_c0_conf(cfg);
511 return size1 != size2;
512#else
513 return 0;
514#endif
515}
516
517static inline void set_elf_platform(int cpu, const char *plat)
518{
519 if (cpu == 0)
520 __elf_platform = plat;
521}
522
523static inline void set_elf_base_platform(const char *plat)
524{
525 if (__elf_base_platform == NULL) {
526 __elf_base_platform = plat;
527 }
528}
529
530static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
531{
532#ifdef __NEED_VMBITS_PROBE
533 write_c0_entryhi(0x3fffffffffffe000ULL);
534 back_to_back_c0_hazard();
535 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
536#endif
537}
538
539static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
540{
541 switch (isa) {
542 case MIPS_CPU_ISA_M64R5:
543 c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
544 set_elf_base_platform("mips64r5");
545 fallthrough;
546 case MIPS_CPU_ISA_M64R2:
547 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
548 set_elf_base_platform("mips64r2");
549 fallthrough;
550 case MIPS_CPU_ISA_M64R1:
551 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
552 set_elf_base_platform("mips64");
553 fallthrough;
554 case MIPS_CPU_ISA_V:
555 c->isa_level |= MIPS_CPU_ISA_V;
556 set_elf_base_platform("mips5");
557 fallthrough;
558 case MIPS_CPU_ISA_IV:
559 c->isa_level |= MIPS_CPU_ISA_IV;
560 set_elf_base_platform("mips4");
561 fallthrough;
562 case MIPS_CPU_ISA_III:
563 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
564 set_elf_base_platform("mips3");
565 break;
566
567 /* R6 incompatible with everything else */
568 case MIPS_CPU_ISA_M64R6:
569 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
570 set_elf_base_platform("mips64r6");
571 fallthrough;
572 case MIPS_CPU_ISA_M32R6:
573 c->isa_level |= MIPS_CPU_ISA_M32R6;
574 set_elf_base_platform("mips32r6");
575 /* Break here so we don't add incompatible ISAs */
576 break;
577 case MIPS_CPU_ISA_M32R5:
578 c->isa_level |= MIPS_CPU_ISA_M32R5;
579 set_elf_base_platform("mips32r5");
580 fallthrough;
581 case MIPS_CPU_ISA_M32R2:
582 c->isa_level |= MIPS_CPU_ISA_M32R2;
583 set_elf_base_platform("mips32r2");
584 fallthrough;
585 case MIPS_CPU_ISA_M32R1:
586 c->isa_level |= MIPS_CPU_ISA_M32R1;
587 set_elf_base_platform("mips32");
588 fallthrough;
589 case MIPS_CPU_ISA_II:
590 c->isa_level |= MIPS_CPU_ISA_II;
591 set_elf_base_platform("mips2");
592 break;
593 }
594}
595
596static char unknown_isa[] = KERN_ERR \
597 "Unsupported ISA type, c0.config0: %d.";
598
599static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
600{
601
602 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
603
604 /*
605 * 0 = All TLBWR instructions go to FTLB
606 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
607 * FTLB and 1 goes to the VTLB.
608 * 2 = 7:1: As above with 7:1 ratio.
609 * 3 = 3:1: As above with 3:1 ratio.
610 *
611 * Use the linear midpoint as the probability threshold.
612 */
613 if (probability >= 12)
614 return 1;
615 else if (probability >= 6)
616 return 2;
617 else
618 /*
619 * So FTLB is less than 4 times bigger than VTLB.
620 * A 3:1 ratio can still be useful though.
621 */
622 return 3;
623}
624
625static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
626{
627 unsigned int config;
628
629 /* It's implementation dependent how the FTLB can be enabled */
630 switch (c->cputype) {
631 case CPU_PROAPTIV:
632 case CPU_P5600:
633 case CPU_P6600:
634 /* proAptiv & related cores use Config6 to enable the FTLB */
635 config = read_c0_config6();
636
637 if (flags & FTLB_EN)
638 config |= MTI_CONF6_FTLBEN;
639 else
640 config &= ~MTI_CONF6_FTLBEN;
641
642 if (flags & FTLB_SET_PROB) {
643 config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
644 config |= calculate_ftlb_probability(c)
645 << MTI_CONF6_FTLBP_SHIFT;
646 }
647
648 write_c0_config6(config);
649 back_to_back_c0_hazard();
650 break;
651 case CPU_I6400:
652 case CPU_I6500:
653 /* There's no way to disable the FTLB */
654 if (!(flags & FTLB_EN))
655 return 1;
656 return 0;
657 case CPU_LOONGSON64:
658 /* Flush ITLB, DTLB, VTLB and FTLB */
659 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
660 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
661 /* Loongson-3 cores use Config6 to enable the FTLB */
662 config = read_c0_config6();
663 if (flags & FTLB_EN)
664 /* Enable FTLB */
665 write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
666 else
667 /* Disable FTLB */
668 write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
669 break;
670 default:
671 return 1;
672 }
673
674 return 0;
675}
676
677static int mm_config(struct cpuinfo_mips *c)
678{
679 unsigned int config0, update, mm;
680
681 config0 = read_c0_config();
682 mm = config0 & MIPS_CONF_MM;
683
684 /*
685 * It's implementation dependent what type of write-merge is supported
686 * and whether it can be enabled/disabled. If it is settable lets make
687 * the merging allowed by default. Some platforms might have
688 * write-through caching unsupported. In this case just ignore the
689 * CP0.Config.MM bit field value.
690 */
691 switch (c->cputype) {
692 case CPU_24K:
693 case CPU_34K:
694 case CPU_74K:
695 case CPU_P5600:
696 case CPU_P6600:
697 c->options |= MIPS_CPU_MM_FULL;
698 update = MIPS_CONF_MM_FULL;
699 break;
700 case CPU_1004K:
701 case CPU_1074K:
702 case CPU_INTERAPTIV:
703 case CPU_PROAPTIV:
704 mm = 0;
705 fallthrough;
706 default:
707 update = 0;
708 break;
709 }
710
711 if (update) {
712 config0 = (config0 & ~MIPS_CONF_MM) | update;
713 write_c0_config(config0);
714 } else if (mm == MIPS_CONF_MM_SYSAD) {
715 c->options |= MIPS_CPU_MM_SYSAD;
716 } else if (mm == MIPS_CONF_MM_FULL) {
717 c->options |= MIPS_CPU_MM_FULL;
718 }
719
720 return 0;
721}
722
723static inline unsigned int decode_config0(struct cpuinfo_mips *c)
724{
725 unsigned int config0;
726 int isa, mt;
727
728 config0 = read_c0_config();
729
730 /*
731 * Look for Standard TLB or Dual VTLB and FTLB
732 */
733 mt = config0 & MIPS_CONF_MT;
734 if (mt == MIPS_CONF_MT_TLB)
735 c->options |= MIPS_CPU_TLB;
736 else if (mt == MIPS_CONF_MT_FTLB)
737 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
738
739 isa = (config0 & MIPS_CONF_AT) >> 13;
740 switch (isa) {
741 case 0:
742 switch ((config0 & MIPS_CONF_AR) >> 10) {
743 case 0:
744 set_isa(c, MIPS_CPU_ISA_M32R1);
745 break;
746 case 1:
747 set_isa(c, MIPS_CPU_ISA_M32R2);
748 break;
749 case 2:
750 set_isa(c, MIPS_CPU_ISA_M32R6);
751 break;
752 default:
753 goto unknown;
754 }
755 break;
756 case 2:
757 switch ((config0 & MIPS_CONF_AR) >> 10) {
758 case 0:
759 set_isa(c, MIPS_CPU_ISA_M64R1);
760 break;
761 case 1:
762 set_isa(c, MIPS_CPU_ISA_M64R2);
763 break;
764 case 2:
765 set_isa(c, MIPS_CPU_ISA_M64R6);
766 break;
767 default:
768 goto unknown;
769 }
770 break;
771 default:
772 goto unknown;
773 }
774
775 return config0 & MIPS_CONF_M;
776
777unknown:
778 panic(unknown_isa, config0);
779}
780
781static inline unsigned int decode_config1(struct cpuinfo_mips *c)
782{
783 unsigned int config1;
784
785 config1 = read_c0_config1();
786
787 if (config1 & MIPS_CONF1_MD)
788 c->ases |= MIPS_ASE_MDMX;
789 if (config1 & MIPS_CONF1_PC)
790 c->options |= MIPS_CPU_PERF;
791 if (config1 & MIPS_CONF1_WR)
792 c->options |= MIPS_CPU_WATCH;
793 if (config1 & MIPS_CONF1_CA)
794 c->ases |= MIPS_ASE_MIPS16;
795 if (config1 & MIPS_CONF1_EP)
796 c->options |= MIPS_CPU_EJTAG;
797 if (config1 & MIPS_CONF1_FP) {
798 c->options |= MIPS_CPU_FPU;
799 c->options |= MIPS_CPU_32FPR;
800 }
801 if (cpu_has_tlb) {
802 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
803 c->tlbsizevtlb = c->tlbsize;
804 c->tlbsizeftlbsets = 0;
805 }
806
807 return config1 & MIPS_CONF_M;
808}
809
810static inline unsigned int decode_config2(struct cpuinfo_mips *c)
811{
812 unsigned int config2;
813
814 config2 = read_c0_config2();
815
816 if (config2 & MIPS_CONF2_SL)
817 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
818
819 return config2 & MIPS_CONF_M;
820}
821
822static inline unsigned int decode_config3(struct cpuinfo_mips *c)
823{
824 unsigned int config3;
825
826 config3 = read_c0_config3();
827
828 if (config3 & MIPS_CONF3_SM) {
829 c->ases |= MIPS_ASE_SMARTMIPS;
830 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
831 }
832 if (config3 & MIPS_CONF3_RXI)
833 c->options |= MIPS_CPU_RIXI;
834 if (config3 & MIPS_CONF3_CTXTC)
835 c->options |= MIPS_CPU_CTXTC;
836 if (config3 & MIPS_CONF3_DSP)
837 c->ases |= MIPS_ASE_DSP;
838 if (config3 & MIPS_CONF3_DSP2P) {
839 c->ases |= MIPS_ASE_DSP2P;
840 if (cpu_has_mips_r6)
841 c->ases |= MIPS_ASE_DSP3;
842 }
843 if (config3 & MIPS_CONF3_VINT)
844 c->options |= MIPS_CPU_VINT;
845 if (config3 & MIPS_CONF3_VEIC)
846 c->options |= MIPS_CPU_VEIC;
847 if (config3 & MIPS_CONF3_LPA)
848 c->options |= MIPS_CPU_LPA;
849 if (config3 & MIPS_CONF3_MT)
850 c->ases |= MIPS_ASE_MIPSMT;
851 if (config3 & MIPS_CONF3_ULRI)
852 c->options |= MIPS_CPU_ULRI;
853 if (config3 & MIPS_CONF3_ISA)
854 c->options |= MIPS_CPU_MICROMIPS;
855 if (config3 & MIPS_CONF3_VZ)
856 c->ases |= MIPS_ASE_VZ;
857 if (config3 & MIPS_CONF3_SC)
858 c->options |= MIPS_CPU_SEGMENTS;
859 if (config3 & MIPS_CONF3_BI)
860 c->options |= MIPS_CPU_BADINSTR;
861 if (config3 & MIPS_CONF3_BP)
862 c->options |= MIPS_CPU_BADINSTRP;
863 if (config3 & MIPS_CONF3_MSA)
864 c->ases |= MIPS_ASE_MSA;
865 if (config3 & MIPS_CONF3_PW) {
866 c->htw_seq = 0;
867 c->options |= MIPS_CPU_HTW;
868 }
869 if (config3 & MIPS_CONF3_CDMM)
870 c->options |= MIPS_CPU_CDMM;
871 if (config3 & MIPS_CONF3_SP)
872 c->options |= MIPS_CPU_SP;
873
874 return config3 & MIPS_CONF_M;
875}
876
877static inline unsigned int decode_config4(struct cpuinfo_mips *c)
878{
879 unsigned int config4;
880 unsigned int newcf4;
881 unsigned int mmuextdef;
882 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
883 unsigned long asid_mask;
884
885 config4 = read_c0_config4();
886
887 if (cpu_has_tlb) {
888 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
889 c->options |= MIPS_CPU_TLBINV;
890
891 /*
892 * R6 has dropped the MMUExtDef field from config4.
893 * On R6 the fields always describe the FTLB, and only if it is
894 * present according to Config.MT.
895 */
896 if (!cpu_has_mips_r6)
897 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
898 else if (cpu_has_ftlb)
899 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
900 else
901 mmuextdef = 0;
902
903 switch (mmuextdef) {
904 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
905 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
906 c->tlbsizevtlb = c->tlbsize;
907 break;
908 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
909 c->tlbsizevtlb +=
910 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
911 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
912 c->tlbsize = c->tlbsizevtlb;
913 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
914 fallthrough;
915 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
916 if (mips_ftlb_disabled)
917 break;
918 newcf4 = (config4 & ~ftlb_page) |
919 (page_size_ftlb(mmuextdef) <<
920 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
921 write_c0_config4(newcf4);
922 back_to_back_c0_hazard();
923 config4 = read_c0_config4();
924 if (config4 != newcf4) {
925 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
926 PAGE_SIZE, config4);
927 /* Switch FTLB off */
928 set_ftlb_enable(c, 0);
929 mips_ftlb_disabled = 1;
930 break;
931 }
932 c->tlbsizeftlbsets = 1 <<
933 ((config4 & MIPS_CONF4_FTLBSETS) >>
934 MIPS_CONF4_FTLBSETS_SHIFT);
935 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
936 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
937 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
938 mips_has_ftlb_configured = 1;
939 break;
940 }
941 }
942
943 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
944 >> MIPS_CONF4_KSCREXIST_SHIFT;
945
946 asid_mask = MIPS_ENTRYHI_ASID;
947 if (config4 & MIPS_CONF4_AE)
948 asid_mask |= MIPS_ENTRYHI_ASIDX;
949 set_cpu_asid_mask(c, asid_mask);
950
951 /*
952 * Warn if the computed ASID mask doesn't match the mask the kernel
953 * is built for. This may indicate either a serious problem or an
954 * easy optimisation opportunity, but either way should be addressed.
955 */
956 WARN_ON(asid_mask != cpu_asid_mask(c));
957
958 return config4 & MIPS_CONF_M;
959}
960
961static inline unsigned int decode_config5(struct cpuinfo_mips *c)
962{
963 unsigned int config5, max_mmid_width;
964 unsigned long asid_mask;
965
966 config5 = read_c0_config5();
967 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
968
969 if (cpu_has_mips_r6) {
970 if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
971 config5 |= MIPS_CONF5_MI;
972 else
973 config5 &= ~MIPS_CONF5_MI;
974 }
975
976 write_c0_config5(config5);
977
978 if (config5 & MIPS_CONF5_EVA)
979 c->options |= MIPS_CPU_EVA;
980 if (config5 & MIPS_CONF5_MRP)
981 c->options |= MIPS_CPU_MAAR;
982 if (config5 & MIPS_CONF5_LLB)
983 c->options |= MIPS_CPU_RW_LLB;
984 if (config5 & MIPS_CONF5_MVH)
985 c->options |= MIPS_CPU_MVH;
986 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
987 c->options |= MIPS_CPU_VP;
988 if (config5 & MIPS_CONF5_CA2)
989 c->ases |= MIPS_ASE_MIPS16E2;
990
991 if (config5 & MIPS_CONF5_CRCP)
992 elf_hwcap |= HWCAP_MIPS_CRC32;
993
994 if (cpu_has_mips_r6) {
995 /* Ensure the write to config5 above takes effect */
996 back_to_back_c0_hazard();
997
998 /* Check whether we successfully enabled MMID support */
999 config5 = read_c0_config5();
1000 if (config5 & MIPS_CONF5_MI)
1001 c->options |= MIPS_CPU_MMID;
1002
1003 /*
1004 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
1005 * for the CPU we're running on, or if CPUs in an SMP system
1006 * have inconsistent MMID support.
1007 */
1008 WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
1009
1010 if (cpu_has_mmid) {
1011 write_c0_memorymapid(~0ul);
1012 back_to_back_c0_hazard();
1013 asid_mask = read_c0_memorymapid();
1014
1015 /*
1016 * We maintain a bitmap to track MMID allocation, and
1017 * need a sensible upper bound on the size of that
1018 * bitmap. The initial CPU with MMID support (I6500)
1019 * supports 16 bit MMIDs, which gives us an 8KiB
1020 * bitmap. The architecture recommends that hardware
1021 * support 32 bit MMIDs, which would give us a 512MiB
1022 * bitmap - that's too big in most cases.
1023 *
1024 * Cap MMID width at 16 bits for now & we can revisit
1025 * this if & when hardware supports anything wider.
1026 */
1027 max_mmid_width = 16;
1028 if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
1029 pr_info("Capping MMID width at %d bits",
1030 max_mmid_width);
1031 asid_mask = GENMASK(max_mmid_width - 1, 0);
1032 }
1033
1034 set_cpu_asid_mask(c, asid_mask);
1035 }
1036 }
1037
1038 return config5 & MIPS_CONF_M;
1039}
1040
1041static void decode_configs(struct cpuinfo_mips *c)
1042{
1043 int ok;
1044
1045 /* MIPS32 or MIPS64 compliant CPU. */
1046 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
1047 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
1048
1049 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
1050
1051 /* Enable FTLB if present and not disabled */
1052 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
1053
1054 ok = decode_config0(c); /* Read Config registers. */
1055 BUG_ON(!ok); /* Arch spec violation! */
1056 if (ok)
1057 ok = decode_config1(c);
1058 if (ok)
1059 ok = decode_config2(c);
1060 if (ok)
1061 ok = decode_config3(c);
1062 if (ok)
1063 ok = decode_config4(c);
1064 if (ok)
1065 ok = decode_config5(c);
1066
1067 /* Probe the EBase.WG bit */
1068 if (cpu_has_mips_r2_r6) {
1069 u64 ebase;
1070 unsigned int status;
1071
1072 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
1073 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
1074 : (s32)read_c0_ebase();
1075 if (ebase & MIPS_EBASE_WG) {
1076 /* WG bit already set, we can avoid the clumsy probe */
1077 c->options |= MIPS_CPU_EBASE_WG;
1078 } else {
1079 /* Its UNDEFINED to change EBase while BEV=0 */
1080 status = read_c0_status();
1081 write_c0_status(status | ST0_BEV);
1082 irq_enable_hazard();
1083 /*
1084 * On pre-r6 cores, this may well clobber the upper bits
1085 * of EBase. This is hard to avoid without potentially
1086 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
1087 */
1088 if (cpu_has_mips64r6)
1089 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
1090 else
1091 write_c0_ebase(ebase | MIPS_EBASE_WG);
1092 back_to_back_c0_hazard();
1093 /* Restore BEV */
1094 write_c0_status(status);
1095 if (read_c0_ebase() & MIPS_EBASE_WG) {
1096 c->options |= MIPS_CPU_EBASE_WG;
1097 write_c0_ebase(ebase);
1098 }
1099 }
1100 }
1101
1102 /* configure the FTLB write probability */
1103 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1104
1105 mips_probe_watch_registers(c);
1106
1107#ifndef CONFIG_MIPS_CPS
1108 if (cpu_has_mips_r2_r6) {
1109 unsigned int core;
1110
1111 core = get_ebase_cpunum();
1112 if (cpu_has_mipsmt)
1113 core >>= fls(core_nvpes()) - 1;
1114 cpu_set_core(c, core);
1115 }
1116#endif
1117}
1118
1119/*
1120 * Probe for certain guest capabilities by writing config bits and reading back.
1121 * Finally write back the original value.
1122 */
1123#define probe_gc0_config(name, maxconf, bits) \
1124do { \
1125 unsigned int tmp; \
1126 tmp = read_gc0_##name(); \
1127 write_gc0_##name(tmp | (bits)); \
1128 back_to_back_c0_hazard(); \
1129 maxconf = read_gc0_##name(); \
1130 write_gc0_##name(tmp); \
1131} while (0)
1132
1133/*
1134 * Probe for dynamic guest capabilities by changing certain config bits and
1135 * reading back to see if they change. Finally write back the original value.
1136 */
1137#define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
1138do { \
1139 maxconf = read_gc0_##name(); \
1140 write_gc0_##name(maxconf ^ (bits)); \
1141 back_to_back_c0_hazard(); \
1142 dynconf = maxconf ^ read_gc0_##name(); \
1143 write_gc0_##name(maxconf); \
1144 maxconf |= dynconf; \
1145} while (0)
1146
1147static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1148{
1149 unsigned int config0;
1150
1151 probe_gc0_config(config, config0, MIPS_CONF_M);
1152
1153 if (config0 & MIPS_CONF_M)
1154 c->guest.conf |= BIT(1);
1155 return config0 & MIPS_CONF_M;
1156}
1157
1158static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1159{
1160 unsigned int config1, config1_dyn;
1161
1162 probe_gc0_config_dyn(config1, config1, config1_dyn,
1163 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1164 MIPS_CONF1_FP);
1165
1166 if (config1 & MIPS_CONF1_FP)
1167 c->guest.options |= MIPS_CPU_FPU;
1168 if (config1_dyn & MIPS_CONF1_FP)
1169 c->guest.options_dyn |= MIPS_CPU_FPU;
1170
1171 if (config1 & MIPS_CONF1_WR)
1172 c->guest.options |= MIPS_CPU_WATCH;
1173 if (config1_dyn & MIPS_CONF1_WR)
1174 c->guest.options_dyn |= MIPS_CPU_WATCH;
1175
1176 if (config1 & MIPS_CONF1_PC)
1177 c->guest.options |= MIPS_CPU_PERF;
1178 if (config1_dyn & MIPS_CONF1_PC)
1179 c->guest.options_dyn |= MIPS_CPU_PERF;
1180
1181 if (config1 & MIPS_CONF_M)
1182 c->guest.conf |= BIT(2);
1183 return config1 & MIPS_CONF_M;
1184}
1185
1186static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1187{
1188 unsigned int config2;
1189
1190 probe_gc0_config(config2, config2, MIPS_CONF_M);
1191
1192 if (config2 & MIPS_CONF_M)
1193 c->guest.conf |= BIT(3);
1194 return config2 & MIPS_CONF_M;
1195}
1196
1197static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1198{
1199 unsigned int config3, config3_dyn;
1200
1201 probe_gc0_config_dyn(config3, config3, config3_dyn,
1202 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1203 MIPS_CONF3_CTXTC);
1204
1205 if (config3 & MIPS_CONF3_CTXTC)
1206 c->guest.options |= MIPS_CPU_CTXTC;
1207 if (config3_dyn & MIPS_CONF3_CTXTC)
1208 c->guest.options_dyn |= MIPS_CPU_CTXTC;
1209
1210 if (config3 & MIPS_CONF3_PW)
1211 c->guest.options |= MIPS_CPU_HTW;
1212
1213 if (config3 & MIPS_CONF3_ULRI)
1214 c->guest.options |= MIPS_CPU_ULRI;
1215
1216 if (config3 & MIPS_CONF3_SC)
1217 c->guest.options |= MIPS_CPU_SEGMENTS;
1218
1219 if (config3 & MIPS_CONF3_BI)
1220 c->guest.options |= MIPS_CPU_BADINSTR;
1221 if (config3 & MIPS_CONF3_BP)
1222 c->guest.options |= MIPS_CPU_BADINSTRP;
1223
1224 if (config3 & MIPS_CONF3_MSA)
1225 c->guest.ases |= MIPS_ASE_MSA;
1226 if (config3_dyn & MIPS_CONF3_MSA)
1227 c->guest.ases_dyn |= MIPS_ASE_MSA;
1228
1229 if (config3 & MIPS_CONF_M)
1230 c->guest.conf |= BIT(4);
1231 return config3 & MIPS_CONF_M;
1232}
1233
1234static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1235{
1236 unsigned int config4;
1237
1238 probe_gc0_config(config4, config4,
1239 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1240
1241 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1242 >> MIPS_CONF4_KSCREXIST_SHIFT;
1243
1244 if (config4 & MIPS_CONF_M)
1245 c->guest.conf |= BIT(5);
1246 return config4 & MIPS_CONF_M;
1247}
1248
1249static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1250{
1251 unsigned int config5, config5_dyn;
1252
1253 probe_gc0_config_dyn(config5, config5, config5_dyn,
1254 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1255
1256 if (config5 & MIPS_CONF5_MRP)
1257 c->guest.options |= MIPS_CPU_MAAR;
1258 if (config5_dyn & MIPS_CONF5_MRP)
1259 c->guest.options_dyn |= MIPS_CPU_MAAR;
1260
1261 if (config5 & MIPS_CONF5_LLB)
1262 c->guest.options |= MIPS_CPU_RW_LLB;
1263
1264 if (config5 & MIPS_CONF5_MVH)
1265 c->guest.options |= MIPS_CPU_MVH;
1266
1267 if (config5 & MIPS_CONF_M)
1268 c->guest.conf |= BIT(6);
1269 return config5 & MIPS_CONF_M;
1270}
1271
1272static inline void decode_guest_configs(struct cpuinfo_mips *c)
1273{
1274 unsigned int ok;
1275
1276 ok = decode_guest_config0(c);
1277 if (ok)
1278 ok = decode_guest_config1(c);
1279 if (ok)
1280 ok = decode_guest_config2(c);
1281 if (ok)
1282 ok = decode_guest_config3(c);
1283 if (ok)
1284 ok = decode_guest_config4(c);
1285 if (ok)
1286 decode_guest_config5(c);
1287}
1288
1289static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1290{
1291 unsigned int guestctl0, temp;
1292
1293 guestctl0 = read_c0_guestctl0();
1294
1295 if (guestctl0 & MIPS_GCTL0_G0E)
1296 c->options |= MIPS_CPU_GUESTCTL0EXT;
1297 if (guestctl0 & MIPS_GCTL0_G1)
1298 c->options |= MIPS_CPU_GUESTCTL1;
1299 if (guestctl0 & MIPS_GCTL0_G2)
1300 c->options |= MIPS_CPU_GUESTCTL2;
1301 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1302 c->options |= MIPS_CPU_GUESTID;
1303
1304 /*
1305 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1306 * first, otherwise all data accesses will be fully virtualised
1307 * as if they were performed by guest mode.
1308 */
1309 write_c0_guestctl1(0);
1310 tlbw_use_hazard();
1311
1312 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1313 back_to_back_c0_hazard();
1314 temp = read_c0_guestctl0();
1315
1316 if (temp & MIPS_GCTL0_DRG) {
1317 write_c0_guestctl0(guestctl0);
1318 c->options |= MIPS_CPU_DRG;
1319 }
1320 }
1321}
1322
1323static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1324{
1325 if (cpu_has_guestid) {
1326 /* determine the number of bits of GuestID available */
1327 write_c0_guestctl1(MIPS_GCTL1_ID);
1328 back_to_back_c0_hazard();
1329 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1330 >> MIPS_GCTL1_ID_SHIFT;
1331 write_c0_guestctl1(0);
1332 }
1333}
1334
1335static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1336{
1337 /* determine the number of bits of GTOffset available */
1338 write_c0_gtoffset(0xffffffff);
1339 back_to_back_c0_hazard();
1340 c->gtoffset_mask = read_c0_gtoffset();
1341 write_c0_gtoffset(0);
1342}
1343
1344static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1345{
1346 cpu_probe_guestctl0(c);
1347 if (cpu_has_guestctl1)
1348 cpu_probe_guestctl1(c);
1349
1350 cpu_probe_gtoffset(c);
1351
1352 decode_guest_configs(c);
1353}
1354
1355#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1356 | MIPS_CPU_COUNTER)
1357
1358static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1359{
1360 switch (c->processor_id & PRID_IMP_MASK) {
1361 case PRID_IMP_R2000:
1362 c->cputype = CPU_R2000;
1363 __cpu_name[cpu] = "R2000";
1364 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1365 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1366 MIPS_CPU_NOFPUEX;
1367 if (__cpu_has_fpu())
1368 c->options |= MIPS_CPU_FPU;
1369 c->tlbsize = 64;
1370 break;
1371 case PRID_IMP_R3000:
1372 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1373 if (cpu_has_confreg()) {
1374 c->cputype = CPU_R3081E;
1375 __cpu_name[cpu] = "R3081";
1376 } else {
1377 c->cputype = CPU_R3000A;
1378 __cpu_name[cpu] = "R3000A";
1379 }
1380 } else {
1381 c->cputype = CPU_R3000;
1382 __cpu_name[cpu] = "R3000";
1383 }
1384 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1385 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1386 MIPS_CPU_NOFPUEX;
1387 if (__cpu_has_fpu())
1388 c->options |= MIPS_CPU_FPU;
1389 c->tlbsize = 64;
1390 break;
1391 case PRID_IMP_R4000:
1392 if (read_c0_config() & CONF_SC) {
1393 if ((c->processor_id & PRID_REV_MASK) >=
1394 PRID_REV_R4400) {
1395 c->cputype = CPU_R4400PC;
1396 __cpu_name[cpu] = "R4400PC";
1397 } else {
1398 c->cputype = CPU_R4000PC;
1399 __cpu_name[cpu] = "R4000PC";
1400 }
1401 } else {
1402 int cca = read_c0_config() & CONF_CM_CMASK;
1403 int mc;
1404
1405 /*
1406 * SC and MC versions can't be reliably told apart,
1407 * but only the latter support coherent caching
1408 * modes so assume the firmware has set the KSEG0
1409 * coherency attribute reasonably (if uncached, we
1410 * assume SC).
1411 */
1412 switch (cca) {
1413 case CONF_CM_CACHABLE_CE:
1414 case CONF_CM_CACHABLE_COW:
1415 case CONF_CM_CACHABLE_CUW:
1416 mc = 1;
1417 break;
1418 default:
1419 mc = 0;
1420 break;
1421 }
1422 if ((c->processor_id & PRID_REV_MASK) >=
1423 PRID_REV_R4400) {
1424 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1425 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1426 } else {
1427 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1428 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1429 }
1430 }
1431
1432 set_isa(c, MIPS_CPU_ISA_III);
1433 c->fpu_msk31 |= FPU_CSR_CONDX;
1434 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1435 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1436 MIPS_CPU_LLSC;
1437 c->tlbsize = 48;
1438 break;
1439 case PRID_IMP_VR41XX:
1440 set_isa(c, MIPS_CPU_ISA_III);
1441 c->fpu_msk31 |= FPU_CSR_CONDX;
1442 c->options = R4K_OPTS;
1443 c->tlbsize = 32;
1444 switch (c->processor_id & 0xf0) {
1445 case PRID_REV_VR4111:
1446 c->cputype = CPU_VR4111;
1447 __cpu_name[cpu] = "NEC VR4111";
1448 break;
1449 case PRID_REV_VR4121:
1450 c->cputype = CPU_VR4121;
1451 __cpu_name[cpu] = "NEC VR4121";
1452 break;
1453 case PRID_REV_VR4122:
1454 if ((c->processor_id & 0xf) < 0x3) {
1455 c->cputype = CPU_VR4122;
1456 __cpu_name[cpu] = "NEC VR4122";
1457 } else {
1458 c->cputype = CPU_VR4181A;
1459 __cpu_name[cpu] = "NEC VR4181A";
1460 }
1461 break;
1462 case PRID_REV_VR4130:
1463 if ((c->processor_id & 0xf) < 0x4) {
1464 c->cputype = CPU_VR4131;
1465 __cpu_name[cpu] = "NEC VR4131";
1466 } else {
1467 c->cputype = CPU_VR4133;
1468 c->options |= MIPS_CPU_LLSC;
1469 __cpu_name[cpu] = "NEC VR4133";
1470 }
1471 break;
1472 default:
1473 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1474 c->cputype = CPU_VR41XX;
1475 __cpu_name[cpu] = "NEC Vr41xx";
1476 break;
1477 }
1478 break;
1479 case PRID_IMP_R4600:
1480 c->cputype = CPU_R4600;
1481 __cpu_name[cpu] = "R4600";
1482 set_isa(c, MIPS_CPU_ISA_III);
1483 c->fpu_msk31 |= FPU_CSR_CONDX;
1484 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1485 MIPS_CPU_LLSC;
1486 c->tlbsize = 48;
1487 break;
1488 #if 0
1489 case PRID_IMP_R4650:
1490 /*
1491 * This processor doesn't have an MMU, so it's not
1492 * "real easy" to run Linux on it. It is left purely
1493 * for documentation. Commented out because it shares
1494 * it's c0_prid id number with the TX3900.
1495 */
1496 c->cputype = CPU_R4650;
1497 __cpu_name[cpu] = "R4650";
1498 set_isa(c, MIPS_CPU_ISA_III);
1499 c->fpu_msk31 |= FPU_CSR_CONDX;
1500 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1501 c->tlbsize = 48;
1502 break;
1503 #endif
1504 case PRID_IMP_TX39:
1505 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1506 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1507
1508 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1509 c->cputype = CPU_TX3927;
1510 __cpu_name[cpu] = "TX3927";
1511 c->tlbsize = 64;
1512 } else {
1513 switch (c->processor_id & PRID_REV_MASK) {
1514 case PRID_REV_TX3912:
1515 c->cputype = CPU_TX3912;
1516 __cpu_name[cpu] = "TX3912";
1517 c->tlbsize = 32;
1518 break;
1519 case PRID_REV_TX3922:
1520 c->cputype = CPU_TX3922;
1521 __cpu_name[cpu] = "TX3922";
1522 c->tlbsize = 64;
1523 break;
1524 }
1525 }
1526 break;
1527 case PRID_IMP_R4700:
1528 c->cputype = CPU_R4700;
1529 __cpu_name[cpu] = "R4700";
1530 set_isa(c, MIPS_CPU_ISA_III);
1531 c->fpu_msk31 |= FPU_CSR_CONDX;
1532 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1533 MIPS_CPU_LLSC;
1534 c->tlbsize = 48;
1535 break;
1536 case PRID_IMP_TX49:
1537 c->cputype = CPU_TX49XX;
1538 __cpu_name[cpu] = "R49XX";
1539 set_isa(c, MIPS_CPU_ISA_III);
1540 c->fpu_msk31 |= FPU_CSR_CONDX;
1541 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1542 if (!(c->processor_id & 0x08))
1543 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1544 c->tlbsize = 48;
1545 break;
1546 case PRID_IMP_R5000:
1547 c->cputype = CPU_R5000;
1548 __cpu_name[cpu] = "R5000";
1549 set_isa(c, MIPS_CPU_ISA_IV);
1550 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1551 MIPS_CPU_LLSC;
1552 c->tlbsize = 48;
1553 break;
1554 case PRID_IMP_R5500:
1555 c->cputype = CPU_R5500;
1556 __cpu_name[cpu] = "R5500";
1557 set_isa(c, MIPS_CPU_ISA_IV);
1558 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1559 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1560 c->tlbsize = 48;
1561 break;
1562 case PRID_IMP_NEVADA:
1563 c->cputype = CPU_NEVADA;
1564 __cpu_name[cpu] = "Nevada";
1565 set_isa(c, MIPS_CPU_ISA_IV);
1566 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1567 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1568 c->tlbsize = 48;
1569 break;
1570 case PRID_IMP_RM7000:
1571 c->cputype = CPU_RM7000;
1572 __cpu_name[cpu] = "RM7000";
1573 set_isa(c, MIPS_CPU_ISA_IV);
1574 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1575 MIPS_CPU_LLSC;
1576 /*
1577 * Undocumented RM7000: Bit 29 in the info register of
1578 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1579 * entries.
1580 *
1581 * 29 1 => 64 entry JTLB
1582 * 0 => 48 entry JTLB
1583 */
1584 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1585 break;
1586 case PRID_IMP_R10000:
1587 c->cputype = CPU_R10000;
1588 __cpu_name[cpu] = "R10000";
1589 set_isa(c, MIPS_CPU_ISA_IV);
1590 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1591 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1592 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1593 MIPS_CPU_LLSC;
1594 c->tlbsize = 64;
1595 break;
1596 case PRID_IMP_R12000:
1597 c->cputype = CPU_R12000;
1598 __cpu_name[cpu] = "R12000";
1599 set_isa(c, MIPS_CPU_ISA_IV);
1600 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1601 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1602 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1603 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1604 c->tlbsize = 64;
1605 break;
1606 case PRID_IMP_R14000:
1607 if (((c->processor_id >> 4) & 0x0f) > 2) {
1608 c->cputype = CPU_R16000;
1609 __cpu_name[cpu] = "R16000";
1610 } else {
1611 c->cputype = CPU_R14000;
1612 __cpu_name[cpu] = "R14000";
1613 }
1614 set_isa(c, MIPS_CPU_ISA_IV);
1615 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1616 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1617 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1618 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1619 c->tlbsize = 64;
1620 break;
1621 case PRID_IMP_LOONGSON_64C: /* Loongson-2/3 */
1622 switch (c->processor_id & PRID_REV_MASK) {
1623 case PRID_REV_LOONGSON2E:
1624 c->cputype = CPU_LOONGSON2EF;
1625 __cpu_name[cpu] = "ICT Loongson-2";
1626 set_elf_platform(cpu, "loongson2e");
1627 set_isa(c, MIPS_CPU_ISA_III);
1628 c->fpu_msk31 |= FPU_CSR_CONDX;
1629 break;
1630 case PRID_REV_LOONGSON2F:
1631 c->cputype = CPU_LOONGSON2EF;
1632 __cpu_name[cpu] = "ICT Loongson-2";
1633 set_elf_platform(cpu, "loongson2f");
1634 set_isa(c, MIPS_CPU_ISA_III);
1635 c->fpu_msk31 |= FPU_CSR_CONDX;
1636 break;
1637 case PRID_REV_LOONGSON3A_R1:
1638 c->cputype = CPU_LOONGSON64;
1639 __cpu_name[cpu] = "ICT Loongson-3";
1640 set_elf_platform(cpu, "loongson3a");
1641 set_isa(c, MIPS_CPU_ISA_M64R1);
1642 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1643 MIPS_ASE_LOONGSON_EXT);
1644 break;
1645 case PRID_REV_LOONGSON3B_R1:
1646 case PRID_REV_LOONGSON3B_R2:
1647 c->cputype = CPU_LOONGSON64;
1648 __cpu_name[cpu] = "ICT Loongson-3";
1649 set_elf_platform(cpu, "loongson3b");
1650 set_isa(c, MIPS_CPU_ISA_M64R1);
1651 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1652 MIPS_ASE_LOONGSON_EXT);
1653 break;
1654 }
1655
1656 c->options = R4K_OPTS |
1657 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1658 MIPS_CPU_32FPR;
1659 c->tlbsize = 64;
1660 set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1661 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1662 break;
1663 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1664 decode_configs(c);
1665
1666 c->cputype = CPU_LOONGSON32;
1667
1668 switch (c->processor_id & PRID_REV_MASK) {
1669 case PRID_REV_LOONGSON1B:
1670 __cpu_name[cpu] = "Loongson 1B";
1671 break;
1672 }
1673
1674 break;
1675 }
1676}
1677
1678static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1679{
1680 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1681 switch (c->processor_id & PRID_IMP_MASK) {
1682 case PRID_IMP_QEMU_GENERIC:
1683 c->writecombine = _CACHE_UNCACHED;
1684 c->cputype = CPU_QEMU_GENERIC;
1685 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1686 break;
1687 case PRID_IMP_4KC:
1688 c->cputype = CPU_4KC;
1689 c->writecombine = _CACHE_UNCACHED;
1690 __cpu_name[cpu] = "MIPS 4Kc";
1691 break;
1692 case PRID_IMP_4KEC:
1693 case PRID_IMP_4KECR2:
1694 c->cputype = CPU_4KEC;
1695 c->writecombine = _CACHE_UNCACHED;
1696 __cpu_name[cpu] = "MIPS 4KEc";
1697 break;
1698 case PRID_IMP_4KSC:
1699 case PRID_IMP_4KSD:
1700 c->cputype = CPU_4KSC;
1701 c->writecombine = _CACHE_UNCACHED;
1702 __cpu_name[cpu] = "MIPS 4KSc";
1703 break;
1704 case PRID_IMP_5KC:
1705 c->cputype = CPU_5KC;
1706 c->writecombine = _CACHE_UNCACHED;
1707 __cpu_name[cpu] = "MIPS 5Kc";
1708 break;
1709 case PRID_IMP_5KE:
1710 c->cputype = CPU_5KE;
1711 c->writecombine = _CACHE_UNCACHED;
1712 __cpu_name[cpu] = "MIPS 5KE";
1713 break;
1714 case PRID_IMP_20KC:
1715 c->cputype = CPU_20KC;
1716 c->writecombine = _CACHE_UNCACHED;
1717 __cpu_name[cpu] = "MIPS 20Kc";
1718 break;
1719 case PRID_IMP_24K:
1720 c->cputype = CPU_24K;
1721 c->writecombine = _CACHE_UNCACHED;
1722 __cpu_name[cpu] = "MIPS 24Kc";
1723 break;
1724 case PRID_IMP_24KE:
1725 c->cputype = CPU_24K;
1726 c->writecombine = _CACHE_UNCACHED;
1727 __cpu_name[cpu] = "MIPS 24KEc";
1728 break;
1729 case PRID_IMP_25KF:
1730 c->cputype = CPU_25KF;
1731 c->writecombine = _CACHE_UNCACHED;
1732 __cpu_name[cpu] = "MIPS 25Kc";
1733 break;
1734 case PRID_IMP_34K:
1735 c->cputype = CPU_34K;
1736 c->writecombine = _CACHE_UNCACHED;
1737 __cpu_name[cpu] = "MIPS 34Kc";
1738 cpu_set_mt_per_tc_perf(c);
1739 break;
1740 case PRID_IMP_74K:
1741 c->cputype = CPU_74K;
1742 c->writecombine = _CACHE_UNCACHED;
1743 __cpu_name[cpu] = "MIPS 74Kc";
1744 break;
1745 case PRID_IMP_M14KC:
1746 c->cputype = CPU_M14KC;
1747 c->writecombine = _CACHE_UNCACHED;
1748 __cpu_name[cpu] = "MIPS M14Kc";
1749 break;
1750 case PRID_IMP_M14KEC:
1751 c->cputype = CPU_M14KEC;
1752 c->writecombine = _CACHE_UNCACHED;
1753 __cpu_name[cpu] = "MIPS M14KEc";
1754 break;
1755 case PRID_IMP_1004K:
1756 c->cputype = CPU_1004K;
1757 c->writecombine = _CACHE_UNCACHED;
1758 __cpu_name[cpu] = "MIPS 1004Kc";
1759 cpu_set_mt_per_tc_perf(c);
1760 break;
1761 case PRID_IMP_1074K:
1762 c->cputype = CPU_1074K;
1763 c->writecombine = _CACHE_UNCACHED;
1764 __cpu_name[cpu] = "MIPS 1074Kc";
1765 break;
1766 case PRID_IMP_INTERAPTIV_UP:
1767 c->cputype = CPU_INTERAPTIV;
1768 __cpu_name[cpu] = "MIPS interAptiv";
1769 cpu_set_mt_per_tc_perf(c);
1770 break;
1771 case PRID_IMP_INTERAPTIV_MP:
1772 c->cputype = CPU_INTERAPTIV;
1773 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1774 cpu_set_mt_per_tc_perf(c);
1775 break;
1776 case PRID_IMP_PROAPTIV_UP:
1777 c->cputype = CPU_PROAPTIV;
1778 __cpu_name[cpu] = "MIPS proAptiv";
1779 break;
1780 case PRID_IMP_PROAPTIV_MP:
1781 c->cputype = CPU_PROAPTIV;
1782 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1783 break;
1784 case PRID_IMP_P5600:
1785 c->cputype = CPU_P5600;
1786 __cpu_name[cpu] = "MIPS P5600";
1787 break;
1788 case PRID_IMP_P6600:
1789 c->cputype = CPU_P6600;
1790 __cpu_name[cpu] = "MIPS P6600";
1791 break;
1792 case PRID_IMP_I6400:
1793 c->cputype = CPU_I6400;
1794 __cpu_name[cpu] = "MIPS I6400";
1795 break;
1796 case PRID_IMP_I6500:
1797 c->cputype = CPU_I6500;
1798 __cpu_name[cpu] = "MIPS I6500";
1799 break;
1800 case PRID_IMP_M5150:
1801 c->cputype = CPU_M5150;
1802 __cpu_name[cpu] = "MIPS M5150";
1803 break;
1804 case PRID_IMP_M6250:
1805 c->cputype = CPU_M6250;
1806 __cpu_name[cpu] = "MIPS M6250";
1807 break;
1808 }
1809
1810 decode_configs(c);
1811
1812 spram_config();
1813
1814 mm_config(c);
1815
1816 switch (__get_cpu_type(c->cputype)) {
1817 case CPU_M5150:
1818 case CPU_P5600:
1819 set_isa(c, MIPS_CPU_ISA_M32R5);
1820 break;
1821 case CPU_I6500:
1822 c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1823 fallthrough;
1824 case CPU_I6400:
1825 c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1826 fallthrough;
1827 default:
1828 break;
1829 }
1830
1831 /* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1832 * cache/FTLB parity exceptions.
1833 */
1834 switch (__get_cpu_type(c->cputype)) {
1835 case CPU_PROAPTIV:
1836 case CPU_P5600:
1837 case CPU_P6600:
1838 case CPU_I6400:
1839 case CPU_I6500:
1840 c->options |= MIPS_CPU_FTLBPAREX;
1841 break;
1842 }
1843}
1844
1845static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1846{
1847 decode_configs(c);
1848 switch (c->processor_id & PRID_IMP_MASK) {
1849 case PRID_IMP_AU1_REV1:
1850 case PRID_IMP_AU1_REV2:
1851 c->cputype = CPU_ALCHEMY;
1852 switch ((c->processor_id >> 24) & 0xff) {
1853 case 0:
1854 __cpu_name[cpu] = "Au1000";
1855 break;
1856 case 1:
1857 __cpu_name[cpu] = "Au1500";
1858 break;
1859 case 2:
1860 __cpu_name[cpu] = "Au1100";
1861 break;
1862 case 3:
1863 __cpu_name[cpu] = "Au1550";
1864 break;
1865 case 4:
1866 __cpu_name[cpu] = "Au1200";
1867 if ((c->processor_id & PRID_REV_MASK) == 2)
1868 __cpu_name[cpu] = "Au1250";
1869 break;
1870 case 5:
1871 __cpu_name[cpu] = "Au1210";
1872 break;
1873 default:
1874 __cpu_name[cpu] = "Au1xxx";
1875 break;
1876 }
1877 break;
1878 }
1879}
1880
1881static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1882{
1883 decode_configs(c);
1884
1885 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1886 switch (c->processor_id & PRID_IMP_MASK) {
1887 case PRID_IMP_SB1:
1888 c->cputype = CPU_SB1;
1889 __cpu_name[cpu] = "SiByte SB1";
1890 /* FPU in pass1 is known to have issues. */
1891 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1892 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1893 break;
1894 case PRID_IMP_SB1A:
1895 c->cputype = CPU_SB1A;
1896 __cpu_name[cpu] = "SiByte SB1A";
1897 break;
1898 }
1899}
1900
1901static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1902{
1903 decode_configs(c);
1904 switch (c->processor_id & PRID_IMP_MASK) {
1905 case PRID_IMP_SR71000:
1906 c->cputype = CPU_SR71000;
1907 __cpu_name[cpu] = "Sandcraft SR71000";
1908 c->scache.ways = 8;
1909 c->tlbsize = 64;
1910 break;
1911 }
1912}
1913
1914static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1915{
1916 decode_configs(c);
1917 switch (c->processor_id & PRID_IMP_MASK) {
1918 case PRID_IMP_PR4450:
1919 c->cputype = CPU_PR4450;
1920 __cpu_name[cpu] = "Philips PR4450";
1921 set_isa(c, MIPS_CPU_ISA_M32R1);
1922 break;
1923 }
1924}
1925
1926static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1927{
1928 decode_configs(c);
1929 switch (c->processor_id & PRID_IMP_MASK) {
1930 case PRID_IMP_BMIPS32_REV4:
1931 case PRID_IMP_BMIPS32_REV8:
1932 c->cputype = CPU_BMIPS32;
1933 __cpu_name[cpu] = "Broadcom BMIPS32";
1934 set_elf_platform(cpu, "bmips32");
1935 break;
1936 case PRID_IMP_BMIPS3300:
1937 case PRID_IMP_BMIPS3300_ALT:
1938 case PRID_IMP_BMIPS3300_BUG:
1939 c->cputype = CPU_BMIPS3300;
1940 __cpu_name[cpu] = "Broadcom BMIPS3300";
1941 set_elf_platform(cpu, "bmips3300");
1942 break;
1943 case PRID_IMP_BMIPS43XX: {
1944 int rev = c->processor_id & PRID_REV_MASK;
1945
1946 if (rev >= PRID_REV_BMIPS4380_LO &&
1947 rev <= PRID_REV_BMIPS4380_HI) {
1948 c->cputype = CPU_BMIPS4380;
1949 __cpu_name[cpu] = "Broadcom BMIPS4380";
1950 set_elf_platform(cpu, "bmips4380");
1951 c->options |= MIPS_CPU_RIXI;
1952 } else {
1953 c->cputype = CPU_BMIPS4350;
1954 __cpu_name[cpu] = "Broadcom BMIPS4350";
1955 set_elf_platform(cpu, "bmips4350");
1956 }
1957 break;
1958 }
1959 case PRID_IMP_BMIPS5000:
1960 case PRID_IMP_BMIPS5200:
1961 c->cputype = CPU_BMIPS5000;
1962 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1963 __cpu_name[cpu] = "Broadcom BMIPS5200";
1964 else
1965 __cpu_name[cpu] = "Broadcom BMIPS5000";
1966 set_elf_platform(cpu, "bmips5000");
1967 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1968 break;
1969 }
1970}
1971
1972static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1973{
1974 decode_configs(c);
1975 switch (c->processor_id & PRID_IMP_MASK) {
1976 case PRID_IMP_CAVIUM_CN38XX:
1977 case PRID_IMP_CAVIUM_CN31XX:
1978 case PRID_IMP_CAVIUM_CN30XX:
1979 c->cputype = CPU_CAVIUM_OCTEON;
1980 __cpu_name[cpu] = "Cavium Octeon";
1981 goto platform;
1982 case PRID_IMP_CAVIUM_CN58XX:
1983 case PRID_IMP_CAVIUM_CN56XX:
1984 case PRID_IMP_CAVIUM_CN50XX:
1985 case PRID_IMP_CAVIUM_CN52XX:
1986 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1987 __cpu_name[cpu] = "Cavium Octeon+";
1988platform:
1989 set_elf_platform(cpu, "octeon");
1990 break;
1991 case PRID_IMP_CAVIUM_CN61XX:
1992 case PRID_IMP_CAVIUM_CN63XX:
1993 case PRID_IMP_CAVIUM_CN66XX:
1994 case PRID_IMP_CAVIUM_CN68XX:
1995 case PRID_IMP_CAVIUM_CNF71XX:
1996 c->cputype = CPU_CAVIUM_OCTEON2;
1997 __cpu_name[cpu] = "Cavium Octeon II";
1998 set_elf_platform(cpu, "octeon2");
1999 break;
2000 case PRID_IMP_CAVIUM_CN70XX:
2001 case PRID_IMP_CAVIUM_CN73XX:
2002 case PRID_IMP_CAVIUM_CNF75XX:
2003 case PRID_IMP_CAVIUM_CN78XX:
2004 c->cputype = CPU_CAVIUM_OCTEON3;
2005 __cpu_name[cpu] = "Cavium Octeon III";
2006 set_elf_platform(cpu, "octeon3");
2007 break;
2008 default:
2009 printk(KERN_INFO "Unknown Octeon chip!\n");
2010 c->cputype = CPU_UNKNOWN;
2011 break;
2012 }
2013}
2014
2015#ifdef CONFIG_CPU_LOONGSON64
2016#include <loongson_regs.h>
2017
2018static inline void decode_cpucfg(struct cpuinfo_mips *c)
2019{
2020 u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
2021 u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
2022 u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
2023
2024 if (cfg1 & LOONGSON_CFG1_MMI)
2025 c->ases |= MIPS_ASE_LOONGSON_MMI;
2026
2027 if (cfg2 & LOONGSON_CFG2_LEXT1)
2028 c->ases |= MIPS_ASE_LOONGSON_EXT;
2029
2030 if (cfg2 & LOONGSON_CFG2_LEXT2)
2031 c->ases |= MIPS_ASE_LOONGSON_EXT2;
2032
2033 if (cfg2 & LOONGSON_CFG2_LSPW) {
2034 c->options |= MIPS_CPU_LDPTE;
2035 c->guest.options |= MIPS_CPU_LDPTE;
2036 }
2037
2038 if (cfg3 & LOONGSON_CFG3_LCAMP)
2039 c->ases |= MIPS_ASE_LOONGSON_CAM;
2040}
2041
2042static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
2043{
2044 decode_configs(c);
2045
2046 /* All Loongson processors covered here define ExcCode 16 as GSExc. */
2047 c->options |= MIPS_CPU_GSEXCEX;
2048
2049 switch (c->processor_id & PRID_IMP_MASK) {
2050 case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
2051 switch (c->processor_id & PRID_REV_MASK) {
2052 case PRID_REV_LOONGSON2K_R1_0:
2053 case PRID_REV_LOONGSON2K_R1_1:
2054 case PRID_REV_LOONGSON2K_R1_2:
2055 case PRID_REV_LOONGSON2K_R1_3:
2056 c->cputype = CPU_LOONGSON64;
2057 __cpu_name[cpu] = "Loongson-2K";
2058 set_elf_platform(cpu, "gs264e");
2059 set_isa(c, MIPS_CPU_ISA_M64R2);
2060 break;
2061 }
2062 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2063 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
2064 MIPS_ASE_LOONGSON_EXT2);
2065 break;
2066 case PRID_IMP_LOONGSON_64C: /* Loongson-3 Classic */
2067 switch (c->processor_id & PRID_REV_MASK) {
2068 case PRID_REV_LOONGSON3A_R2_0:
2069 case PRID_REV_LOONGSON3A_R2_1:
2070 c->cputype = CPU_LOONGSON64;
2071 __cpu_name[cpu] = "ICT Loongson-3";
2072 set_elf_platform(cpu, "loongson3a");
2073 set_isa(c, MIPS_CPU_ISA_M64R2);
2074 break;
2075 case PRID_REV_LOONGSON3A_R3_0:
2076 case PRID_REV_LOONGSON3A_R3_1:
2077 c->cputype = CPU_LOONGSON64;
2078 __cpu_name[cpu] = "ICT Loongson-3";
2079 set_elf_platform(cpu, "loongson3a");
2080 set_isa(c, MIPS_CPU_ISA_M64R2);
2081 break;
2082 }
2083 /*
2084 * Loongson-3 Classic did not implement MIPS standard TLBINV
2085 * but implemented TLBINVF and EHINV. As currently we're only
2086 * using these two features, enable MIPS_CPU_TLBINV as well.
2087 *
2088 * Also some early Loongson-3A2000 had wrong TLB type in Config
2089 * register, we correct it here.
2090 */
2091 c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
2092 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2093 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
2094 MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
2095 c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
2096 break;
2097 case PRID_IMP_LOONGSON_64G:
2098 c->cputype = CPU_LOONGSON64;
2099 __cpu_name[cpu] = "ICT Loongson-3";
2100 set_elf_platform(cpu, "loongson3a");
2101 set_isa(c, MIPS_CPU_ISA_M64R2);
2102 decode_cpucfg(c);
2103 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2104 break;
2105 default:
2106 panic("Unknown Loongson Processor ID!");
2107 break;
2108 }
2109}
2110#else
2111static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
2112#endif
2113
2114static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
2115{
2116 decode_configs(c);
2117
2118 /*
2119 * XBurst misses a config2 register, so config3 decode was skipped in
2120 * decode_configs().
2121 */
2122 decode_config3(c);
2123
2124 /* XBurst does not implement the CP0 counter. */
2125 c->options &= ~MIPS_CPU_COUNTER;
2126 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
2127
2128 switch (c->processor_id & PRID_IMP_MASK) {
2129
2130 /* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
2131 case PRID_IMP_XBURST_REV1:
2132
2133 /*
2134 * The XBurst core by default attempts to avoid branch target
2135 * buffer lookups by detecting & special casing loops. This
2136 * feature will cause BogoMIPS and lpj calculate in error.
2137 * Set cp0 config7 bit 4 to disable this feature.
2138 */
2139 set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
2140
2141 switch (c->processor_id & PRID_COMP_MASK) {
2142
2143 /*
2144 * The config0 register in the XBurst CPUs with a processor ID of
2145 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
2146 * but they don't actually support this ISA.
2147 */
2148 case PRID_COMP_INGENIC_D0:
2149 c->isa_level &= ~MIPS_CPU_ISA_M32R2;
2150 break;
2151
2152 /*
2153 * The config0 register in the XBurst CPUs with a processor ID of
2154 * PRID_COMP_INGENIC_D1 has an abandoned huge page tlb mode, this
2155 * mode is not compatible with the MIPS standard, it will cause
2156 * tlbmiss and into an infinite loop (line 21 in the tlb-funcs.S)
2157 * when starting the init process. After chip reset, the default
2158 * is HPTLB mode, Write 0xa9000000 to cp0 register 5 sel 4 to
2159 * switch back to VTLB mode to prevent getting stuck.
2160 */
2161 case PRID_COMP_INGENIC_D1:
2162 write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
2163 break;
2164
2165 default:
2166 break;
2167 }
2168 fallthrough;
2169
2170 /* XBurst®1 with MXU2.0 SIMD ISA */
2171 case PRID_IMP_XBURST_REV2:
2172 c->cputype = CPU_XBURST;
2173 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2174 __cpu_name[cpu] = "Ingenic XBurst";
2175 break;
2176
2177 /* XBurst®2 with MXU2.1 SIMD ISA */
2178 case PRID_IMP_XBURST2:
2179 c->cputype = CPU_XBURST;
2180 __cpu_name[cpu] = "Ingenic XBurst II";
2181 break;
2182
2183 default:
2184 panic("Unknown Ingenic Processor ID!");
2185 break;
2186 }
2187}
2188
2189static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
2190{
2191 decode_configs(c);
2192
2193 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
2194 c->cputype = CPU_ALCHEMY;
2195 __cpu_name[cpu] = "Au1300";
2196 /* following stuff is not for Alchemy */
2197 return;
2198 }
2199
2200 c->options = (MIPS_CPU_TLB |
2201 MIPS_CPU_4KEX |
2202 MIPS_CPU_COUNTER |
2203 MIPS_CPU_DIVEC |
2204 MIPS_CPU_WATCH |
2205 MIPS_CPU_EJTAG |
2206 MIPS_CPU_LLSC);
2207
2208 switch (c->processor_id & PRID_IMP_MASK) {
2209 case PRID_IMP_NETLOGIC_XLP2XX:
2210 case PRID_IMP_NETLOGIC_XLP9XX:
2211 case PRID_IMP_NETLOGIC_XLP5XX:
2212 c->cputype = CPU_XLP;
2213 __cpu_name[cpu] = "Broadcom XLPII";
2214 break;
2215
2216 case PRID_IMP_NETLOGIC_XLP8XX:
2217 case PRID_IMP_NETLOGIC_XLP3XX:
2218 c->cputype = CPU_XLP;
2219 __cpu_name[cpu] = "Netlogic XLP";
2220 break;
2221
2222 case PRID_IMP_NETLOGIC_XLR732:
2223 case PRID_IMP_NETLOGIC_XLR716:
2224 case PRID_IMP_NETLOGIC_XLR532:
2225 case PRID_IMP_NETLOGIC_XLR308:
2226 case PRID_IMP_NETLOGIC_XLR532C:
2227 case PRID_IMP_NETLOGIC_XLR516C:
2228 case PRID_IMP_NETLOGIC_XLR508C:
2229 case PRID_IMP_NETLOGIC_XLR308C:
2230 c->cputype = CPU_XLR;
2231 __cpu_name[cpu] = "Netlogic XLR";
2232 break;
2233
2234 case PRID_IMP_NETLOGIC_XLS608:
2235 case PRID_IMP_NETLOGIC_XLS408:
2236 case PRID_IMP_NETLOGIC_XLS404:
2237 case PRID_IMP_NETLOGIC_XLS208:
2238 case PRID_IMP_NETLOGIC_XLS204:
2239 case PRID_IMP_NETLOGIC_XLS108:
2240 case PRID_IMP_NETLOGIC_XLS104:
2241 case PRID_IMP_NETLOGIC_XLS616B:
2242 case PRID_IMP_NETLOGIC_XLS608B:
2243 case PRID_IMP_NETLOGIC_XLS416B:
2244 case PRID_IMP_NETLOGIC_XLS412B:
2245 case PRID_IMP_NETLOGIC_XLS408B:
2246 case PRID_IMP_NETLOGIC_XLS404B:
2247 c->cputype = CPU_XLR;
2248 __cpu_name[cpu] = "Netlogic XLS";
2249 break;
2250
2251 default:
2252 pr_info("Unknown Netlogic chip id [%02x]!\n",
2253 c->processor_id);
2254 c->cputype = CPU_XLR;
2255 break;
2256 }
2257
2258 if (c->cputype == CPU_XLP) {
2259 set_isa(c, MIPS_CPU_ISA_M64R2);
2260 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2261 /* This will be updated again after all threads are woken up */
2262 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2263 } else {
2264 set_isa(c, MIPS_CPU_ISA_M64R1);
2265 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2266 }
2267 c->kscratch_mask = 0xf;
2268}
2269
2270#ifdef CONFIG_64BIT
2271/* For use by uaccess.h */
2272u64 __ua_limit;
2273EXPORT_SYMBOL(__ua_limit);
2274#endif
2275
2276const char *__cpu_name[NR_CPUS];
2277const char *__elf_platform;
2278const char *__elf_base_platform;
2279
2280void cpu_probe(void)
2281{
2282 struct cpuinfo_mips *c = ¤t_cpu_data;
2283 unsigned int cpu = smp_processor_id();
2284
2285 /*
2286 * Set a default elf platform, cpu probe may later
2287 * overwrite it with a more precise value
2288 */
2289 set_elf_platform(cpu, "mips");
2290
2291 c->processor_id = PRID_IMP_UNKNOWN;
2292 c->fpu_id = FPIR_IMP_NONE;
2293 c->cputype = CPU_UNKNOWN;
2294 c->writecombine = _CACHE_UNCACHED;
2295
2296 c->fpu_csr31 = FPU_CSR_RN;
2297 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2298
2299 c->processor_id = read_c0_prid();
2300 switch (c->processor_id & PRID_COMP_MASK) {
2301 case PRID_COMP_LEGACY:
2302 cpu_probe_legacy(c, cpu);
2303 break;
2304 case PRID_COMP_MIPS:
2305 cpu_probe_mips(c, cpu);
2306 break;
2307 case PRID_COMP_ALCHEMY:
2308 cpu_probe_alchemy(c, cpu);
2309 break;
2310 case PRID_COMP_SIBYTE:
2311 cpu_probe_sibyte(c, cpu);
2312 break;
2313 case PRID_COMP_BROADCOM:
2314 cpu_probe_broadcom(c, cpu);
2315 break;
2316 case PRID_COMP_SANDCRAFT:
2317 cpu_probe_sandcraft(c, cpu);
2318 break;
2319 case PRID_COMP_NXP:
2320 cpu_probe_nxp(c, cpu);
2321 break;
2322 case PRID_COMP_CAVIUM:
2323 cpu_probe_cavium(c, cpu);
2324 break;
2325 case PRID_COMP_LOONGSON:
2326 cpu_probe_loongson(c, cpu);
2327 break;
2328 case PRID_COMP_INGENIC_13:
2329 case PRID_COMP_INGENIC_D0:
2330 case PRID_COMP_INGENIC_D1:
2331 case PRID_COMP_INGENIC_E1:
2332 cpu_probe_ingenic(c, cpu);
2333 break;
2334 case PRID_COMP_NETLOGIC:
2335 cpu_probe_netlogic(c, cpu);
2336 break;
2337 }
2338
2339 BUG_ON(!__cpu_name[cpu]);
2340 BUG_ON(c->cputype == CPU_UNKNOWN);
2341
2342 /*
2343 * Platform code can force the cpu type to optimize code
2344 * generation. In that case be sure the cpu type is correctly
2345 * manually setup otherwise it could trigger some nasty bugs.
2346 */
2347 BUG_ON(current_cpu_type() != c->cputype);
2348
2349 if (cpu_has_rixi) {
2350 /* Enable the RIXI exceptions */
2351 set_c0_pagegrain(PG_IEC);
2352 back_to_back_c0_hazard();
2353 /* Verify the IEC bit is set */
2354 if (read_c0_pagegrain() & PG_IEC)
2355 c->options |= MIPS_CPU_RIXIEX;
2356 }
2357
2358 if (mips_fpu_disabled)
2359 c->options &= ~MIPS_CPU_FPU;
2360
2361 if (mips_dsp_disabled)
2362 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2363
2364 if (mips_htw_disabled) {
2365 c->options &= ~MIPS_CPU_HTW;
2366 write_c0_pwctl(read_c0_pwctl() &
2367 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2368 }
2369
2370 if (c->options & MIPS_CPU_FPU)
2371 cpu_set_fpu_opts(c);
2372 else
2373 cpu_set_nofpu_opts(c);
2374
2375 if (cpu_has_bp_ghist)
2376 write_c0_r10k_diag(read_c0_r10k_diag() |
2377 R10K_DIAG_E_GHIST);
2378
2379 if (cpu_has_mips_r2_r6) {
2380 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2381 /* R2 has Performance Counter Interrupt indicator */
2382 c->options |= MIPS_CPU_PCI;
2383 }
2384 else
2385 c->srsets = 1;
2386
2387 if (cpu_has_mips_r6)
2388 elf_hwcap |= HWCAP_MIPS_R6;
2389
2390 if (cpu_has_msa) {
2391 c->msa_id = cpu_get_msa_id();
2392 WARN(c->msa_id & MSA_IR_WRPF,
2393 "Vector register partitioning unimplemented!");
2394 elf_hwcap |= HWCAP_MIPS_MSA;
2395 }
2396
2397 if (cpu_has_mips16)
2398 elf_hwcap |= HWCAP_MIPS_MIPS16;
2399
2400 if (cpu_has_mdmx)
2401 elf_hwcap |= HWCAP_MIPS_MDMX;
2402
2403 if (cpu_has_mips3d)
2404 elf_hwcap |= HWCAP_MIPS_MIPS3D;
2405
2406 if (cpu_has_smartmips)
2407 elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2408
2409 if (cpu_has_dsp)
2410 elf_hwcap |= HWCAP_MIPS_DSP;
2411
2412 if (cpu_has_dsp2)
2413 elf_hwcap |= HWCAP_MIPS_DSP2;
2414
2415 if (cpu_has_dsp3)
2416 elf_hwcap |= HWCAP_MIPS_DSP3;
2417
2418 if (cpu_has_mips16e2)
2419 elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2420
2421 if (cpu_has_loongson_mmi)
2422 elf_hwcap |= HWCAP_LOONGSON_MMI;
2423
2424 if (cpu_has_loongson_ext)
2425 elf_hwcap |= HWCAP_LOONGSON_EXT;
2426
2427 if (cpu_has_loongson_ext2)
2428 elf_hwcap |= HWCAP_LOONGSON_EXT2;
2429
2430 if (cpu_has_vz)
2431 cpu_probe_vz(c);
2432
2433 cpu_probe_vmbits(c);
2434
2435 /* Synthesize CPUCFG data if running on Loongson processors;
2436 * no-op otherwise.
2437 *
2438 * This looks at previously probed features, so keep this at bottom.
2439 */
2440 loongson3_cpucfg_synthesize_data(c);
2441
2442#ifdef CONFIG_64BIT
2443 if (cpu == 0)
2444 __ua_limit = ~((1ull << cpu_vmbits) - 1);
2445#endif
2446}
2447
2448void cpu_report(void)
2449{
2450 struct cpuinfo_mips *c = ¤t_cpu_data;
2451
2452 pr_info("CPU%d revision is: %08x (%s)\n",
2453 smp_processor_id(), c->processor_id, cpu_name_string());
2454 if (c->options & MIPS_CPU_FPU)
2455 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2456 if (cpu_has_msa)
2457 pr_info("MSA revision is: %08x\n", c->msa_id);
2458}
2459
2460void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2461{
2462 /* Ensure the core number fits in the field */
2463 WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2464 MIPS_GLOBALNUMBER_CLUSTER_SHF));
2465
2466 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2467 cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2468}
2469
2470void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2471{
2472 /* Ensure the core number fits in the field */
2473 WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2474
2475 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2476 cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2477}
2478
2479void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2480{
2481 /* Ensure the VP(E) ID fits in the field */
2482 WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2483
2484 /* Ensure we're not using VP(E)s without support */
2485 WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2486 !IS_ENABLED(CONFIG_CPU_MIPSR6));
2487
2488 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2489 cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2490}