Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Processor capabilities determination functions.
   3 *
   4 * Copyright (C) xxxx  the Anonymous
   5 * Copyright (C) 1994 - 2006 Ralf Baechle
   6 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   7 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; either version
  12 * 2 of the License, or (at your option) any later version.
  13 */
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/ptrace.h>
  17#include <linux/smp.h>
  18#include <linux/stddef.h>
  19#include <linux/export.h>
  20
  21#include <asm/bugs.h>
  22#include <asm/cpu.h>
  23#include <asm/cpu-features.h>
  24#include <asm/cpu-type.h>
  25#include <asm/fpu.h>
  26#include <asm/mipsregs.h>
  27#include <asm/mipsmtregs.h>
  28#include <asm/msa.h>
  29#include <asm/watch.h>
  30#include <asm/elf.h>
  31#include <asm/pgtable-bits.h>
  32#include <asm/spram.h>
  33#include <asm/uaccess.h>
  34
  35/* Hardware capabilities */
  36unsigned int elf_hwcap __read_mostly;
  37
  38/*
  39 * Get the FPU Implementation/Revision.
  40 */
  41static inline unsigned long cpu_get_fpu_id(void)
  42{
  43	unsigned long tmp, fpu_id;
  44
  45	tmp = read_c0_status();
  46	__enable_fpu(FPU_AS_IS);
  47	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  48	write_c0_status(tmp);
  49	return fpu_id;
  50}
  51
  52/*
  53 * Check if the CPU has an external FPU.
  54 */
  55static inline int __cpu_has_fpu(void)
  56{
  57	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  58}
  59
  60static inline unsigned long cpu_get_msa_id(void)
  61{
  62	unsigned long status, msa_id;
  63
  64	status = read_c0_status();
  65	__enable_fpu(FPU_64BIT);
  66	enable_msa();
  67	msa_id = read_msa_ir();
  68	disable_msa();
  69	write_c0_status(status);
  70	return msa_id;
  71}
  72
  73/*
  74 * Determine the FCSR mask for FPU hardware.
  75 */
  76static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  77{
  78	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  79
  80	fcsr = c->fpu_csr31;
  81	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  82
  83	sr = read_c0_status();
  84	__enable_fpu(FPU_AS_IS);
  85
  86	fcsr0 = fcsr & mask;
  87	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  88	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  89
  90	fcsr1 = fcsr | ~mask;
  91	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  92	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  93
  94	write_32bit_cp1_register(CP1_STATUS, fcsr);
  95
  96	write_c0_status(sr);
  97
  98	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
  99}
 100
 101/*
 102 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
 103 * supported by FPU hardware.
 104 */
 105static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
 106{
 107	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 108			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 109			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 110		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
 111
 112		sr = read_c0_status();
 113		__enable_fpu(FPU_AS_IS);
 114
 115		fir = read_32bit_cp1_register(CP1_REVISION);
 116		if (fir & MIPS_FPIR_HAS2008) {
 117			fcsr = read_32bit_cp1_register(CP1_STATUS);
 118
 119			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 120			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 121			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 122
 123			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 124			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 125			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 126
 127			write_32bit_cp1_register(CP1_STATUS, fcsr);
 128
 129			if (!(fcsr0 & FPU_CSR_NAN2008))
 130				c->options |= MIPS_CPU_NAN_LEGACY;
 131			if (fcsr1 & FPU_CSR_NAN2008)
 132				c->options |= MIPS_CPU_NAN_2008;
 133
 134			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 135				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 136			else
 137				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 138
 139			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 140				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 141			else
 142				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 143		} else {
 144			c->options |= MIPS_CPU_NAN_LEGACY;
 145		}
 146
 147		write_c0_status(sr);
 148	} else {
 149		c->options |= MIPS_CPU_NAN_LEGACY;
 150	}
 151}
 152
 153/*
 154 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 155 * ABS.fmt/NEG.fmt execution mode.
 156 */
 157static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 158
 159/*
 160 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 161 * to support by the FPU emulator according to the IEEE 754 conformance
 162 * mode selected.  Note that "relaxed" straps the emulator so that it
 163 * allows 2008-NaN binaries even for legacy processors.
 164 */
 165static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 166{
 167	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 168	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 169	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 170
 171	switch (ieee754) {
 172	case STRICT:
 173		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 174				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 175				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 176			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 177		} else {
 178			c->options |= MIPS_CPU_NAN_LEGACY;
 179			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 180		}
 181		break;
 182	case LEGACY:
 183		c->options |= MIPS_CPU_NAN_LEGACY;
 184		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 185		break;
 186	case STD2008:
 187		c->options |= MIPS_CPU_NAN_2008;
 188		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 189		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 190		break;
 191	case RELAXED:
 192		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 193		break;
 194	}
 195}
 196
 197/*
 198 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 199 * according to the "ieee754=" parameter.
 200 */
 201static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 202{
 203	switch (ieee754) {
 204	case STRICT:
 205		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 206		mips_use_nan_2008 = !!cpu_has_nan_2008;
 207		break;
 208	case LEGACY:
 209		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 210		mips_use_nan_2008 = !cpu_has_nan_legacy;
 211		break;
 212	case STD2008:
 213		mips_use_nan_legacy = !cpu_has_nan_2008;
 214		mips_use_nan_2008 = !!cpu_has_nan_2008;
 215		break;
 216	case RELAXED:
 217		mips_use_nan_legacy = true;
 218		mips_use_nan_2008 = true;
 219		break;
 220	}
 221}
 222
 223/*
 224 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 225 * settings:
 226 *
 227 * strict:  accept binaries that request a NaN encoding supported by the FPU
 228 * legacy:  only accept legacy-NaN binaries
 229 * 2008:    only accept 2008-NaN binaries
 230 * relaxed: accept any binaries regardless of whether supported by the FPU
 231 */
 232static int __init ieee754_setup(char *s)
 233{
 234	if (!s)
 235		return -1;
 236	else if (!strcmp(s, "strict"))
 237		ieee754 = STRICT;
 238	else if (!strcmp(s, "legacy"))
 239		ieee754 = LEGACY;
 240	else if (!strcmp(s, "2008"))
 241		ieee754 = STD2008;
 242	else if (!strcmp(s, "relaxed"))
 243		ieee754 = RELAXED;
 244	else
 245		return -1;
 246
 247	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 248		cpu_set_nofpu_2008(&boot_cpu_data);
 249	cpu_set_nan_2008(&boot_cpu_data);
 250
 251	return 0;
 252}
 253
 254early_param("ieee754", ieee754_setup);
 255
 256/*
 257 * Set the FIR feature flags for the FPU emulator.
 258 */
 259static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 260{
 261	u32 value;
 262
 263	value = 0;
 264	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 265			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 266			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 267		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 268	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 269			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 270		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 271	if (c->options & MIPS_CPU_NAN_2008)
 272		value |= MIPS_FPIR_HAS2008;
 273	c->fpu_id = value;
 274}
 275
 276/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 277static unsigned int mips_nofpu_msk31;
 278
 279/*
 280 * Set options for FPU hardware.
 281 */
 282static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 283{
 284	c->fpu_id = cpu_get_fpu_id();
 285	mips_nofpu_msk31 = c->fpu_msk31;
 286
 287	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 288			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 289			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 290		if (c->fpu_id & MIPS_FPIR_3D)
 291			c->ases |= MIPS_ASE_MIPS3D;
 292		if (c->fpu_id & MIPS_FPIR_FREP)
 293			c->options |= MIPS_CPU_FRE;
 294	}
 295
 296	cpu_set_fpu_fcsr_mask(c);
 297	cpu_set_fpu_2008(c);
 298	cpu_set_nan_2008(c);
 299}
 300
 301/*
 302 * Set options for the FPU emulator.
 303 */
 304static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 305{
 306	c->options &= ~MIPS_CPU_FPU;
 307	c->fpu_msk31 = mips_nofpu_msk31;
 308
 309	cpu_set_nofpu_2008(c);
 310	cpu_set_nan_2008(c);
 311	cpu_set_nofpu_id(c);
 312}
 313
 314static int mips_fpu_disabled;
 315
 316static int __init fpu_disable(char *s)
 317{
 318	cpu_set_nofpu_opts(&boot_cpu_data);
 319	mips_fpu_disabled = 1;
 320
 321	return 1;
 322}
 323
 324__setup("nofpu", fpu_disable);
 325
 326int mips_dsp_disabled;
 327
 328static int __init dsp_disable(char *s)
 329{
 330	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 331	mips_dsp_disabled = 1;
 332
 333	return 1;
 334}
 335
 336__setup("nodsp", dsp_disable);
 337
 338static int mips_htw_disabled;
 339
 340static int __init htw_disable(char *s)
 341{
 342	mips_htw_disabled = 1;
 343	cpu_data[0].options &= ~MIPS_CPU_HTW;
 344	write_c0_pwctl(read_c0_pwctl() &
 345		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 346
 347	return 1;
 348}
 349
 350__setup("nohtw", htw_disable);
 351
 352static int mips_ftlb_disabled;
 353static int mips_has_ftlb_configured;
 354
 355static int set_ftlb_enable(struct cpuinfo_mips *c, int enable);
 
 
 
 
 
 356
 357static int __init ftlb_disable(char *s)
 358{
 359	unsigned int config4, mmuextdef;
 360
 361	/*
 362	 * If the core hasn't done any FTLB configuration, there is nothing
 363	 * for us to do here.
 364	 */
 365	if (!mips_has_ftlb_configured)
 366		return 1;
 367
 368	/* Disable it in the boot cpu */
 369	if (set_ftlb_enable(&cpu_data[0], 0)) {
 370		pr_warn("Can't turn FTLB off\n");
 371		return 1;
 372	}
 373
 374	back_to_back_c0_hazard();
 375
 376	config4 = read_c0_config4();
 377
 378	/* Check that FTLB has been disabled */
 379	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 380	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 381	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 382		/* This should never happen */
 383		pr_warn("FTLB could not be disabled!\n");
 384		return 1;
 385	}
 386
 387	mips_ftlb_disabled = 1;
 388	mips_has_ftlb_configured = 0;
 389
 390	/*
 391	 * noftlb is mainly used for debug purposes so print
 392	 * an informative message instead of using pr_debug()
 393	 */
 394	pr_info("FTLB has been disabled\n");
 395
 396	/*
 397	 * Some of these bits are duplicated in the decode_config4.
 398	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 399	 * once FTLB has been disabled so undo what decode_config4 did.
 400	 */
 401	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 402			       cpu_data[0].tlbsizeftlbsets;
 403	cpu_data[0].tlbsizeftlbsets = 0;
 404	cpu_data[0].tlbsizeftlbways = 0;
 405
 406	return 1;
 407}
 408
 409__setup("noftlb", ftlb_disable);
 410
 411
 412static inline void check_errata(void)
 413{
 414	struct cpuinfo_mips *c = &current_cpu_data;
 415
 416	switch (current_cpu_type()) {
 417	case CPU_34K:
 418		/*
 419		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 420		 * This code only handles VPE0, any SMP/RTOS code
 421		 * making use of VPE1 will be responsable for that VPE.
 422		 */
 423		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 424			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 425		break;
 426	default:
 427		break;
 428	}
 429}
 430
 431void __init check_bugs32(void)
 432{
 433	check_errata();
 434}
 435
 436/*
 437 * Probe whether cpu has config register by trying to play with
 438 * alternate cache bit and see whether it matters.
 439 * It's used by cpu_probe to distinguish between R3000A and R3081.
 440 */
 441static inline int cpu_has_confreg(void)
 442{
 443#ifdef CONFIG_CPU_R3000
 444	extern unsigned long r3k_cache_size(unsigned long);
 445	unsigned long size1, size2;
 446	unsigned long cfg = read_c0_conf();
 447
 448	size1 = r3k_cache_size(ST0_ISC);
 449	write_c0_conf(cfg ^ R30XX_CONF_AC);
 450	size2 = r3k_cache_size(ST0_ISC);
 451	write_c0_conf(cfg);
 452	return size1 != size2;
 453#else
 454	return 0;
 455#endif
 456}
 457
 458static inline void set_elf_platform(int cpu, const char *plat)
 459{
 460	if (cpu == 0)
 461		__elf_platform = plat;
 462}
 463
 464static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 465{
 466#ifdef __NEED_VMBITS_PROBE
 467	write_c0_entryhi(0x3fffffffffffe000ULL);
 468	back_to_back_c0_hazard();
 469	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 470#endif
 471}
 472
 473static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 474{
 475	switch (isa) {
 476	case MIPS_CPU_ISA_M64R2:
 477		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 478	case MIPS_CPU_ISA_M64R1:
 479		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 480	case MIPS_CPU_ISA_V:
 481		c->isa_level |= MIPS_CPU_ISA_V;
 482	case MIPS_CPU_ISA_IV:
 483		c->isa_level |= MIPS_CPU_ISA_IV;
 484	case MIPS_CPU_ISA_III:
 485		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 486		break;
 487
 488	/* R6 incompatible with everything else */
 489	case MIPS_CPU_ISA_M64R6:
 490		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 491	case MIPS_CPU_ISA_M32R6:
 492		c->isa_level |= MIPS_CPU_ISA_M32R6;
 493		/* Break here so we don't add incompatible ISAs */
 494		break;
 495	case MIPS_CPU_ISA_M32R2:
 496		c->isa_level |= MIPS_CPU_ISA_M32R2;
 497	case MIPS_CPU_ISA_M32R1:
 498		c->isa_level |= MIPS_CPU_ISA_M32R1;
 499	case MIPS_CPU_ISA_II:
 500		c->isa_level |= MIPS_CPU_ISA_II;
 501		break;
 502	}
 503}
 504
 505static char unknown_isa[] = KERN_ERR \
 506	"Unsupported ISA type, c0.config0: %d.";
 507
 508static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 509{
 510
 511	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 512
 513	/*
 514	 * 0 = All TLBWR instructions go to FTLB
 515	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 516	 * FTLB and 1 goes to the VTLB.
 517	 * 2 = 7:1: As above with 7:1 ratio.
 518	 * 3 = 3:1: As above with 3:1 ratio.
 519	 *
 520	 * Use the linear midpoint as the probability threshold.
 521	 */
 522	if (probability >= 12)
 523		return 1;
 524	else if (probability >= 6)
 525		return 2;
 526	else
 527		/*
 528		 * So FTLB is less than 4 times bigger than VTLB.
 529		 * A 3:1 ratio can still be useful though.
 530		 */
 531		return 3;
 532}
 533
 534static int set_ftlb_enable(struct cpuinfo_mips *c, int enable)
 535{
 536	unsigned int config;
 537
 538	/* It's implementation dependent how the FTLB can be enabled */
 539	switch (c->cputype) {
 540	case CPU_PROAPTIV:
 541	case CPU_P5600:
 
 542		/* proAptiv & related cores use Config6 to enable the FTLB */
 543		config = read_c0_config6();
 544		/* Clear the old probability value */
 545		config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
 546		if (enable)
 547			/* Enable FTLB */
 548			write_c0_config6(config |
 549					 (calculate_ftlb_probability(c)
 550					  << MIPS_CONF6_FTLBP_SHIFT)
 551					 | MIPS_CONF6_FTLBEN);
 552		else
 553			/* Disable FTLB */
 554			write_c0_config6(config &  ~MIPS_CONF6_FTLBEN);
 
 
 
 
 
 
 
 
 555		break;
 556	case CPU_I6400:
 557		/* I6400 & related cores use Config7 to configure FTLB */
 558		config = read_c0_config7();
 559		/* Clear the old probability value */
 560		config &= ~(3 << MIPS_CONF7_FTLBP_SHIFT);
 561		write_c0_config7(config | (calculate_ftlb_probability(c)
 562					   << MIPS_CONF7_FTLBP_SHIFT));
 
 
 
 
 
 
 
 
 
 
 563		break;
 564	default:
 565		return 1;
 566	}
 567
 568	return 0;
 569}
 570
 571static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 572{
 573	unsigned int config0;
 574	int isa, mt;
 575
 576	config0 = read_c0_config();
 577
 578	/*
 579	 * Look for Standard TLB or Dual VTLB and FTLB
 580	 */
 581	mt = config0 & MIPS_CONF_MT;
 582	if (mt == MIPS_CONF_MT_TLB)
 583		c->options |= MIPS_CPU_TLB;
 584	else if (mt == MIPS_CONF_MT_FTLB)
 585		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 586
 587	isa = (config0 & MIPS_CONF_AT) >> 13;
 588	switch (isa) {
 589	case 0:
 590		switch ((config0 & MIPS_CONF_AR) >> 10) {
 591		case 0:
 592			set_isa(c, MIPS_CPU_ISA_M32R1);
 593			break;
 594		case 1:
 595			set_isa(c, MIPS_CPU_ISA_M32R2);
 596			break;
 597		case 2:
 598			set_isa(c, MIPS_CPU_ISA_M32R6);
 599			break;
 600		default:
 601			goto unknown;
 602		}
 603		break;
 604	case 2:
 605		switch ((config0 & MIPS_CONF_AR) >> 10) {
 606		case 0:
 607			set_isa(c, MIPS_CPU_ISA_M64R1);
 608			break;
 609		case 1:
 610			set_isa(c, MIPS_CPU_ISA_M64R2);
 611			break;
 612		case 2:
 613			set_isa(c, MIPS_CPU_ISA_M64R6);
 614			break;
 615		default:
 616			goto unknown;
 617		}
 618		break;
 619	default:
 620		goto unknown;
 621	}
 622
 623	return config0 & MIPS_CONF_M;
 624
 625unknown:
 626	panic(unknown_isa, config0);
 627}
 628
 629static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 630{
 631	unsigned int config1;
 632
 633	config1 = read_c0_config1();
 634
 635	if (config1 & MIPS_CONF1_MD)
 636		c->ases |= MIPS_ASE_MDMX;
 
 
 637	if (config1 & MIPS_CONF1_WR)
 638		c->options |= MIPS_CPU_WATCH;
 639	if (config1 & MIPS_CONF1_CA)
 640		c->ases |= MIPS_ASE_MIPS16;
 641	if (config1 & MIPS_CONF1_EP)
 642		c->options |= MIPS_CPU_EJTAG;
 643	if (config1 & MIPS_CONF1_FP) {
 644		c->options |= MIPS_CPU_FPU;
 645		c->options |= MIPS_CPU_32FPR;
 646	}
 647	if (cpu_has_tlb) {
 648		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 649		c->tlbsizevtlb = c->tlbsize;
 650		c->tlbsizeftlbsets = 0;
 651	}
 652
 653	return config1 & MIPS_CONF_M;
 654}
 655
 656static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 657{
 658	unsigned int config2;
 659
 660	config2 = read_c0_config2();
 661
 662	if (config2 & MIPS_CONF2_SL)
 663		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 664
 665	return config2 & MIPS_CONF_M;
 666}
 667
 668static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 669{
 670	unsigned int config3;
 671
 672	config3 = read_c0_config3();
 673
 674	if (config3 & MIPS_CONF3_SM) {
 675		c->ases |= MIPS_ASE_SMARTMIPS;
 676		c->options |= MIPS_CPU_RIXI;
 677	}
 678	if (config3 & MIPS_CONF3_RXI)
 679		c->options |= MIPS_CPU_RIXI;
 
 
 680	if (config3 & MIPS_CONF3_DSP)
 681		c->ases |= MIPS_ASE_DSP;
 682	if (config3 & MIPS_CONF3_DSP2P)
 683		c->ases |= MIPS_ASE_DSP2P;
 
 
 
 684	if (config3 & MIPS_CONF3_VINT)
 685		c->options |= MIPS_CPU_VINT;
 686	if (config3 & MIPS_CONF3_VEIC)
 687		c->options |= MIPS_CPU_VEIC;
 
 
 688	if (config3 & MIPS_CONF3_MT)
 689		c->ases |= MIPS_ASE_MIPSMT;
 690	if (config3 & MIPS_CONF3_ULRI)
 691		c->options |= MIPS_CPU_ULRI;
 692	if (config3 & MIPS_CONF3_ISA)
 693		c->options |= MIPS_CPU_MICROMIPS;
 694	if (config3 & MIPS_CONF3_VZ)
 695		c->ases |= MIPS_ASE_VZ;
 696	if (config3 & MIPS_CONF3_SC)
 697		c->options |= MIPS_CPU_SEGMENTS;
 
 
 
 
 698	if (config3 & MIPS_CONF3_MSA)
 699		c->ases |= MIPS_ASE_MSA;
 700	if (config3 & MIPS_CONF3_PW) {
 701		c->htw_seq = 0;
 702		c->options |= MIPS_CPU_HTW;
 703	}
 704	if (config3 & MIPS_CONF3_CDMM)
 705		c->options |= MIPS_CPU_CDMM;
 706	if (config3 & MIPS_CONF3_SP)
 707		c->options |= MIPS_CPU_SP;
 708
 709	return config3 & MIPS_CONF_M;
 710}
 711
 712static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 713{
 714	unsigned int config4;
 715	unsigned int newcf4;
 716	unsigned int mmuextdef;
 717	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 
 718
 719	config4 = read_c0_config4();
 720
 721	if (cpu_has_tlb) {
 722		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 723			c->options |= MIPS_CPU_TLBINV;
 724
 725		/*
 726		 * R6 has dropped the MMUExtDef field from config4.
 727		 * On R6 the fields always describe the FTLB, and only if it is
 728		 * present according to Config.MT.
 729		 */
 730		if (!cpu_has_mips_r6)
 731			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 732		else if (cpu_has_ftlb)
 733			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 734		else
 735			mmuextdef = 0;
 736
 737		switch (mmuextdef) {
 738		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 739			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 740			c->tlbsizevtlb = c->tlbsize;
 741			break;
 742		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 743			c->tlbsizevtlb +=
 744				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 745				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 746			c->tlbsize = c->tlbsizevtlb;
 747			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 748			/* fall through */
 749		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 750			if (mips_ftlb_disabled)
 751				break;
 752			newcf4 = (config4 & ~ftlb_page) |
 753				(page_size_ftlb(mmuextdef) <<
 754				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 755			write_c0_config4(newcf4);
 756			back_to_back_c0_hazard();
 757			config4 = read_c0_config4();
 758			if (config4 != newcf4) {
 759				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 760				       PAGE_SIZE, config4);
 761				/* Switch FTLB off */
 762				set_ftlb_enable(c, 0);
 
 763				break;
 764			}
 765			c->tlbsizeftlbsets = 1 <<
 766				((config4 & MIPS_CONF4_FTLBSETS) >>
 767				 MIPS_CONF4_FTLBSETS_SHIFT);
 768			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 769					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 770			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 771			mips_has_ftlb_configured = 1;
 772			break;
 773		}
 774	}
 775
 776	c->kscratch_mask = (config4 >> 16) & 0xff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 777
 778	return config4 & MIPS_CONF_M;
 779}
 780
 781static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 782{
 783	unsigned int config5;
 784
 785	config5 = read_c0_config5();
 786	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 787	write_c0_config5(config5);
 788
 789	if (config5 & MIPS_CONF5_EVA)
 790		c->options |= MIPS_CPU_EVA;
 791	if (config5 & MIPS_CONF5_MRP)
 792		c->options |= MIPS_CPU_MAAR;
 793	if (config5 & MIPS_CONF5_LLB)
 794		c->options |= MIPS_CPU_RW_LLB;
 795#ifdef CONFIG_XPA
 796	if (config5 & MIPS_CONF5_MVH)
 797		c->options |= MIPS_CPU_XPA;
 798#endif
 
 799
 800	return config5 & MIPS_CONF_M;
 801}
 802
 803static void decode_configs(struct cpuinfo_mips *c)
 804{
 805	int ok;
 806
 807	/* MIPS32 or MIPS64 compliant CPU.  */
 808	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 809		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 810
 811	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 812
 813	/* Enable FTLB if present and not disabled */
 814	set_ftlb_enable(c, !mips_ftlb_disabled);
 815
 816	ok = decode_config0(c);			/* Read Config registers.  */
 817	BUG_ON(!ok);				/* Arch spec violation!	 */
 818	if (ok)
 819		ok = decode_config1(c);
 820	if (ok)
 821		ok = decode_config2(c);
 822	if (ok)
 823		ok = decode_config3(c);
 824	if (ok)
 825		ok = decode_config4(c);
 826	if (ok)
 827		ok = decode_config5(c);
 828
 829	mips_probe_watch_registers(c);
 
 
 
 830
 831	if (cpu_has_rixi) {
 832		/* Enable the RIXI exceptions */
 833		set_c0_pagegrain(PG_IEC);
 834		back_to_back_c0_hazard();
 835		/* Verify the IEC bit is set */
 836		if (read_c0_pagegrain() & PG_IEC)
 837			c->options |= MIPS_CPU_RIXIEX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838	}
 839
 
 
 
 
 
 840#ifndef CONFIG_MIPS_CPS
 841	if (cpu_has_mips_r2_r6) {
 842		c->core = get_ebase_cpunum();
 843		if (cpu_has_mipsmt)
 844			c->core >>= fls(core_nvpes()) - 1;
 845	}
 846#endif
 847}
 848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
 850		| MIPS_CPU_COUNTER)
 851
 852static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
 853{
 854	switch (c->processor_id & PRID_IMP_MASK) {
 855	case PRID_IMP_R2000:
 856		c->cputype = CPU_R2000;
 857		__cpu_name[cpu] = "R2000";
 858		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
 859		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
 860			     MIPS_CPU_NOFPUEX;
 861		if (__cpu_has_fpu())
 862			c->options |= MIPS_CPU_FPU;
 863		c->tlbsize = 64;
 864		break;
 865	case PRID_IMP_R3000:
 866		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
 867			if (cpu_has_confreg()) {
 868				c->cputype = CPU_R3081E;
 869				__cpu_name[cpu] = "R3081";
 870			} else {
 871				c->cputype = CPU_R3000A;
 872				__cpu_name[cpu] = "R3000A";
 873			}
 874		} else {
 875			c->cputype = CPU_R3000;
 876			__cpu_name[cpu] = "R3000";
 877		}
 878		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
 879		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
 880			     MIPS_CPU_NOFPUEX;
 881		if (__cpu_has_fpu())
 882			c->options |= MIPS_CPU_FPU;
 883		c->tlbsize = 64;
 884		break;
 885	case PRID_IMP_R4000:
 886		if (read_c0_config() & CONF_SC) {
 887			if ((c->processor_id & PRID_REV_MASK) >=
 888			    PRID_REV_R4400) {
 889				c->cputype = CPU_R4400PC;
 890				__cpu_name[cpu] = "R4400PC";
 891			} else {
 892				c->cputype = CPU_R4000PC;
 893				__cpu_name[cpu] = "R4000PC";
 894			}
 895		} else {
 896			int cca = read_c0_config() & CONF_CM_CMASK;
 897			int mc;
 898
 899			/*
 900			 * SC and MC versions can't be reliably told apart,
 901			 * but only the latter support coherent caching
 902			 * modes so assume the firmware has set the KSEG0
 903			 * coherency attribute reasonably (if uncached, we
 904			 * assume SC).
 905			 */
 906			switch (cca) {
 907			case CONF_CM_CACHABLE_CE:
 908			case CONF_CM_CACHABLE_COW:
 909			case CONF_CM_CACHABLE_CUW:
 910				mc = 1;
 911				break;
 912			default:
 913				mc = 0;
 914				break;
 915			}
 916			if ((c->processor_id & PRID_REV_MASK) >=
 917			    PRID_REV_R4400) {
 918				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
 919				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
 920			} else {
 921				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
 922				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
 923			}
 924		}
 925
 926		set_isa(c, MIPS_CPU_ISA_III);
 927		c->fpu_msk31 |= FPU_CSR_CONDX;
 928		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
 929			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
 930			     MIPS_CPU_LLSC;
 931		c->tlbsize = 48;
 932		break;
 933	case PRID_IMP_VR41XX:
 934		set_isa(c, MIPS_CPU_ISA_III);
 935		c->fpu_msk31 |= FPU_CSR_CONDX;
 936		c->options = R4K_OPTS;
 937		c->tlbsize = 32;
 938		switch (c->processor_id & 0xf0) {
 939		case PRID_REV_VR4111:
 940			c->cputype = CPU_VR4111;
 941			__cpu_name[cpu] = "NEC VR4111";
 942			break;
 943		case PRID_REV_VR4121:
 944			c->cputype = CPU_VR4121;
 945			__cpu_name[cpu] = "NEC VR4121";
 946			break;
 947		case PRID_REV_VR4122:
 948			if ((c->processor_id & 0xf) < 0x3) {
 949				c->cputype = CPU_VR4122;
 950				__cpu_name[cpu] = "NEC VR4122";
 951			} else {
 952				c->cputype = CPU_VR4181A;
 953				__cpu_name[cpu] = "NEC VR4181A";
 954			}
 955			break;
 956		case PRID_REV_VR4130:
 957			if ((c->processor_id & 0xf) < 0x4) {
 958				c->cputype = CPU_VR4131;
 959				__cpu_name[cpu] = "NEC VR4131";
 960			} else {
 961				c->cputype = CPU_VR4133;
 962				c->options |= MIPS_CPU_LLSC;
 963				__cpu_name[cpu] = "NEC VR4133";
 964			}
 965			break;
 966		default:
 967			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
 968			c->cputype = CPU_VR41XX;
 969			__cpu_name[cpu] = "NEC Vr41xx";
 970			break;
 971		}
 972		break;
 973	case PRID_IMP_R4300:
 974		c->cputype = CPU_R4300;
 975		__cpu_name[cpu] = "R4300";
 976		set_isa(c, MIPS_CPU_ISA_III);
 977		c->fpu_msk31 |= FPU_CSR_CONDX;
 978		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
 979			     MIPS_CPU_LLSC;
 980		c->tlbsize = 32;
 981		break;
 982	case PRID_IMP_R4600:
 983		c->cputype = CPU_R4600;
 984		__cpu_name[cpu] = "R4600";
 985		set_isa(c, MIPS_CPU_ISA_III);
 986		c->fpu_msk31 |= FPU_CSR_CONDX;
 987		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
 988			     MIPS_CPU_LLSC;
 989		c->tlbsize = 48;
 990		break;
 991	#if 0
 992	case PRID_IMP_R4650:
 993		/*
 994		 * This processor doesn't have an MMU, so it's not
 995		 * "real easy" to run Linux on it. It is left purely
 996		 * for documentation.  Commented out because it shares
 997		 * it's c0_prid id number with the TX3900.
 998		 */
 999		c->cputype = CPU_R4650;
1000		__cpu_name[cpu] = "R4650";
1001		set_isa(c, MIPS_CPU_ISA_III);
1002		c->fpu_msk31 |= FPU_CSR_CONDX;
1003		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1004		c->tlbsize = 48;
1005		break;
1006	#endif
1007	case PRID_IMP_TX39:
1008		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1009		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1010
1011		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1012			c->cputype = CPU_TX3927;
1013			__cpu_name[cpu] = "TX3927";
1014			c->tlbsize = 64;
1015		} else {
1016			switch (c->processor_id & PRID_REV_MASK) {
1017			case PRID_REV_TX3912:
1018				c->cputype = CPU_TX3912;
1019				__cpu_name[cpu] = "TX3912";
1020				c->tlbsize = 32;
1021				break;
1022			case PRID_REV_TX3922:
1023				c->cputype = CPU_TX3922;
1024				__cpu_name[cpu] = "TX3922";
1025				c->tlbsize = 64;
1026				break;
1027			}
1028		}
1029		break;
1030	case PRID_IMP_R4700:
1031		c->cputype = CPU_R4700;
1032		__cpu_name[cpu] = "R4700";
1033		set_isa(c, MIPS_CPU_ISA_III);
1034		c->fpu_msk31 |= FPU_CSR_CONDX;
1035		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1036			     MIPS_CPU_LLSC;
1037		c->tlbsize = 48;
1038		break;
1039	case PRID_IMP_TX49:
1040		c->cputype = CPU_TX49XX;
1041		__cpu_name[cpu] = "R49XX";
1042		set_isa(c, MIPS_CPU_ISA_III);
1043		c->fpu_msk31 |= FPU_CSR_CONDX;
1044		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1045		if (!(c->processor_id & 0x08))
1046			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1047		c->tlbsize = 48;
1048		break;
1049	case PRID_IMP_R5000:
1050		c->cputype = CPU_R5000;
1051		__cpu_name[cpu] = "R5000";
1052		set_isa(c, MIPS_CPU_ISA_IV);
1053		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1054			     MIPS_CPU_LLSC;
1055		c->tlbsize = 48;
1056		break;
1057	case PRID_IMP_R5432:
1058		c->cputype = CPU_R5432;
1059		__cpu_name[cpu] = "R5432";
1060		set_isa(c, MIPS_CPU_ISA_IV);
1061		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1062			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1063		c->tlbsize = 48;
1064		break;
1065	case PRID_IMP_R5500:
1066		c->cputype = CPU_R5500;
1067		__cpu_name[cpu] = "R5500";
1068		set_isa(c, MIPS_CPU_ISA_IV);
1069		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1070			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1071		c->tlbsize = 48;
1072		break;
1073	case PRID_IMP_NEVADA:
1074		c->cputype = CPU_NEVADA;
1075		__cpu_name[cpu] = "Nevada";
1076		set_isa(c, MIPS_CPU_ISA_IV);
1077		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1078			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1079		c->tlbsize = 48;
1080		break;
1081	case PRID_IMP_R6000:
1082		c->cputype = CPU_R6000;
1083		__cpu_name[cpu] = "R6000";
1084		set_isa(c, MIPS_CPU_ISA_II);
1085		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1086		c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1087			     MIPS_CPU_LLSC;
1088		c->tlbsize = 32;
1089		break;
1090	case PRID_IMP_R6000A:
1091		c->cputype = CPU_R6000A;
1092		__cpu_name[cpu] = "R6000A";
1093		set_isa(c, MIPS_CPU_ISA_II);
1094		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1095		c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1096			     MIPS_CPU_LLSC;
1097		c->tlbsize = 32;
1098		break;
1099	case PRID_IMP_RM7000:
1100		c->cputype = CPU_RM7000;
1101		__cpu_name[cpu] = "RM7000";
1102		set_isa(c, MIPS_CPU_ISA_IV);
1103		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1104			     MIPS_CPU_LLSC;
1105		/*
1106		 * Undocumented RM7000:	 Bit 29 in the info register of
1107		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1108		 * entries.
1109		 *
1110		 * 29	   1 =>	   64 entry JTLB
1111		 *	   0 =>	   48 entry JTLB
1112		 */
1113		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1114		break;
1115	case PRID_IMP_R8000:
1116		c->cputype = CPU_R8000;
1117		__cpu_name[cpu] = "RM8000";
1118		set_isa(c, MIPS_CPU_ISA_IV);
1119		c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1120			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1121			     MIPS_CPU_LLSC;
1122		c->tlbsize = 384;      /* has weird TLB: 3-way x 128 */
1123		break;
1124	case PRID_IMP_R10000:
1125		c->cputype = CPU_R10000;
1126		__cpu_name[cpu] = "R10000";
1127		set_isa(c, MIPS_CPU_ISA_IV);
1128		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1129			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1130			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1131			     MIPS_CPU_LLSC;
1132		c->tlbsize = 64;
1133		break;
1134	case PRID_IMP_R12000:
1135		c->cputype = CPU_R12000;
1136		__cpu_name[cpu] = "R12000";
1137		set_isa(c, MIPS_CPU_ISA_IV);
1138		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1139			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1140			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1141			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1142		c->tlbsize = 64;
1143		break;
1144	case PRID_IMP_R14000:
1145		if (((c->processor_id >> 4) & 0x0f) > 2) {
1146			c->cputype = CPU_R16000;
1147			__cpu_name[cpu] = "R16000";
1148		} else {
1149			c->cputype = CPU_R14000;
1150			__cpu_name[cpu] = "R14000";
1151		}
1152		set_isa(c, MIPS_CPU_ISA_IV);
1153		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1154			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1155			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1156			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1157		c->tlbsize = 64;
1158		break;
1159	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1160		switch (c->processor_id & PRID_REV_MASK) {
1161		case PRID_REV_LOONGSON2E:
1162			c->cputype = CPU_LOONGSON2;
1163			__cpu_name[cpu] = "ICT Loongson-2";
1164			set_elf_platform(cpu, "loongson2e");
1165			set_isa(c, MIPS_CPU_ISA_III);
1166			c->fpu_msk31 |= FPU_CSR_CONDX;
1167			break;
1168		case PRID_REV_LOONGSON2F:
1169			c->cputype = CPU_LOONGSON2;
1170			__cpu_name[cpu] = "ICT Loongson-2";
1171			set_elf_platform(cpu, "loongson2f");
1172			set_isa(c, MIPS_CPU_ISA_III);
1173			c->fpu_msk31 |= FPU_CSR_CONDX;
1174			break;
1175		case PRID_REV_LOONGSON3A:
1176			c->cputype = CPU_LOONGSON3;
1177			__cpu_name[cpu] = "ICT Loongson-3";
1178			set_elf_platform(cpu, "loongson3a");
1179			set_isa(c, MIPS_CPU_ISA_M64R1);
1180			break;
1181		case PRID_REV_LOONGSON3B_R1:
1182		case PRID_REV_LOONGSON3B_R2:
1183			c->cputype = CPU_LOONGSON3;
1184			__cpu_name[cpu] = "ICT Loongson-3";
1185			set_elf_platform(cpu, "loongson3b");
1186			set_isa(c, MIPS_CPU_ISA_M64R1);
1187			break;
1188		}
1189
1190		c->options = R4K_OPTS |
1191			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1192			     MIPS_CPU_32FPR;
1193		c->tlbsize = 64;
1194		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1195		break;
1196	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1197		decode_configs(c);
1198
1199		c->cputype = CPU_LOONGSON1;
1200
1201		switch (c->processor_id & PRID_REV_MASK) {
1202		case PRID_REV_LOONGSON1B:
1203			__cpu_name[cpu] = "Loongson 1B";
1204			break;
1205		}
1206
1207		break;
1208	}
1209}
1210
1211static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1212{
1213	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1214	switch (c->processor_id & PRID_IMP_MASK) {
1215	case PRID_IMP_QEMU_GENERIC:
1216		c->writecombine = _CACHE_UNCACHED;
1217		c->cputype = CPU_QEMU_GENERIC;
1218		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1219		break;
1220	case PRID_IMP_4KC:
1221		c->cputype = CPU_4KC;
1222		c->writecombine = _CACHE_UNCACHED;
1223		__cpu_name[cpu] = "MIPS 4Kc";
1224		break;
1225	case PRID_IMP_4KEC:
1226	case PRID_IMP_4KECR2:
1227		c->cputype = CPU_4KEC;
1228		c->writecombine = _CACHE_UNCACHED;
1229		__cpu_name[cpu] = "MIPS 4KEc";
1230		break;
1231	case PRID_IMP_4KSC:
1232	case PRID_IMP_4KSD:
1233		c->cputype = CPU_4KSC;
1234		c->writecombine = _CACHE_UNCACHED;
1235		__cpu_name[cpu] = "MIPS 4KSc";
1236		break;
1237	case PRID_IMP_5KC:
1238		c->cputype = CPU_5KC;
1239		c->writecombine = _CACHE_UNCACHED;
1240		__cpu_name[cpu] = "MIPS 5Kc";
1241		break;
1242	case PRID_IMP_5KE:
1243		c->cputype = CPU_5KE;
1244		c->writecombine = _CACHE_UNCACHED;
1245		__cpu_name[cpu] = "MIPS 5KE";
1246		break;
1247	case PRID_IMP_20KC:
1248		c->cputype = CPU_20KC;
1249		c->writecombine = _CACHE_UNCACHED;
1250		__cpu_name[cpu] = "MIPS 20Kc";
1251		break;
1252	case PRID_IMP_24K:
1253		c->cputype = CPU_24K;
1254		c->writecombine = _CACHE_UNCACHED;
1255		__cpu_name[cpu] = "MIPS 24Kc";
1256		break;
1257	case PRID_IMP_24KE:
1258		c->cputype = CPU_24K;
1259		c->writecombine = _CACHE_UNCACHED;
1260		__cpu_name[cpu] = "MIPS 24KEc";
1261		break;
1262	case PRID_IMP_25KF:
1263		c->cputype = CPU_25KF;
1264		c->writecombine = _CACHE_UNCACHED;
1265		__cpu_name[cpu] = "MIPS 25Kc";
1266		break;
1267	case PRID_IMP_34K:
1268		c->cputype = CPU_34K;
1269		c->writecombine = _CACHE_UNCACHED;
1270		__cpu_name[cpu] = "MIPS 34Kc";
1271		break;
1272	case PRID_IMP_74K:
1273		c->cputype = CPU_74K;
1274		c->writecombine = _CACHE_UNCACHED;
1275		__cpu_name[cpu] = "MIPS 74Kc";
1276		break;
1277	case PRID_IMP_M14KC:
1278		c->cputype = CPU_M14KC;
1279		c->writecombine = _CACHE_UNCACHED;
1280		__cpu_name[cpu] = "MIPS M14Kc";
1281		break;
1282	case PRID_IMP_M14KEC:
1283		c->cputype = CPU_M14KEC;
1284		c->writecombine = _CACHE_UNCACHED;
1285		__cpu_name[cpu] = "MIPS M14KEc";
1286		break;
1287	case PRID_IMP_1004K:
1288		c->cputype = CPU_1004K;
1289		c->writecombine = _CACHE_UNCACHED;
1290		__cpu_name[cpu] = "MIPS 1004Kc";
1291		break;
1292	case PRID_IMP_1074K:
1293		c->cputype = CPU_1074K;
1294		c->writecombine = _CACHE_UNCACHED;
1295		__cpu_name[cpu] = "MIPS 1074Kc";
1296		break;
1297	case PRID_IMP_INTERAPTIV_UP:
1298		c->cputype = CPU_INTERAPTIV;
1299		__cpu_name[cpu] = "MIPS interAptiv";
1300		break;
1301	case PRID_IMP_INTERAPTIV_MP:
1302		c->cputype = CPU_INTERAPTIV;
1303		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1304		break;
1305	case PRID_IMP_PROAPTIV_UP:
1306		c->cputype = CPU_PROAPTIV;
1307		__cpu_name[cpu] = "MIPS proAptiv";
1308		break;
1309	case PRID_IMP_PROAPTIV_MP:
1310		c->cputype = CPU_PROAPTIV;
1311		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1312		break;
1313	case PRID_IMP_P5600:
1314		c->cputype = CPU_P5600;
1315		__cpu_name[cpu] = "MIPS P5600";
1316		break;
 
 
 
 
1317	case PRID_IMP_I6400:
1318		c->cputype = CPU_I6400;
1319		__cpu_name[cpu] = "MIPS I6400";
1320		break;
1321	case PRID_IMP_M5150:
1322		c->cputype = CPU_M5150;
1323		__cpu_name[cpu] = "MIPS M5150";
1324		break;
 
 
 
 
1325	}
1326
1327	decode_configs(c);
1328
1329	spram_config();
1330}
1331
1332static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1333{
1334	decode_configs(c);
1335	switch (c->processor_id & PRID_IMP_MASK) {
1336	case PRID_IMP_AU1_REV1:
1337	case PRID_IMP_AU1_REV2:
1338		c->cputype = CPU_ALCHEMY;
1339		switch ((c->processor_id >> 24) & 0xff) {
1340		case 0:
1341			__cpu_name[cpu] = "Au1000";
1342			break;
1343		case 1:
1344			__cpu_name[cpu] = "Au1500";
1345			break;
1346		case 2:
1347			__cpu_name[cpu] = "Au1100";
1348			break;
1349		case 3:
1350			__cpu_name[cpu] = "Au1550";
1351			break;
1352		case 4:
1353			__cpu_name[cpu] = "Au1200";
1354			if ((c->processor_id & PRID_REV_MASK) == 2)
1355				__cpu_name[cpu] = "Au1250";
1356			break;
1357		case 5:
1358			__cpu_name[cpu] = "Au1210";
1359			break;
1360		default:
1361			__cpu_name[cpu] = "Au1xxx";
1362			break;
1363		}
1364		break;
1365	}
1366}
1367
1368static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1369{
1370	decode_configs(c);
1371
1372	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1373	switch (c->processor_id & PRID_IMP_MASK) {
1374	case PRID_IMP_SB1:
1375		c->cputype = CPU_SB1;
1376		__cpu_name[cpu] = "SiByte SB1";
1377		/* FPU in pass1 is known to have issues. */
1378		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1379			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1380		break;
1381	case PRID_IMP_SB1A:
1382		c->cputype = CPU_SB1A;
1383		__cpu_name[cpu] = "SiByte SB1A";
1384		break;
1385	}
1386}
1387
1388static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1389{
1390	decode_configs(c);
1391	switch (c->processor_id & PRID_IMP_MASK) {
1392	case PRID_IMP_SR71000:
1393		c->cputype = CPU_SR71000;
1394		__cpu_name[cpu] = "Sandcraft SR71000";
1395		c->scache.ways = 8;
1396		c->tlbsize = 64;
1397		break;
1398	}
1399}
1400
1401static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1402{
1403	decode_configs(c);
1404	switch (c->processor_id & PRID_IMP_MASK) {
1405	case PRID_IMP_PR4450:
1406		c->cputype = CPU_PR4450;
1407		__cpu_name[cpu] = "Philips PR4450";
1408		set_isa(c, MIPS_CPU_ISA_M32R1);
1409		break;
1410	}
1411}
1412
1413static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1414{
1415	decode_configs(c);
1416	switch (c->processor_id & PRID_IMP_MASK) {
1417	case PRID_IMP_BMIPS32_REV4:
1418	case PRID_IMP_BMIPS32_REV8:
1419		c->cputype = CPU_BMIPS32;
1420		__cpu_name[cpu] = "Broadcom BMIPS32";
1421		set_elf_platform(cpu, "bmips32");
1422		break;
1423	case PRID_IMP_BMIPS3300:
1424	case PRID_IMP_BMIPS3300_ALT:
1425	case PRID_IMP_BMIPS3300_BUG:
1426		c->cputype = CPU_BMIPS3300;
1427		__cpu_name[cpu] = "Broadcom BMIPS3300";
1428		set_elf_platform(cpu, "bmips3300");
1429		break;
1430	case PRID_IMP_BMIPS43XX: {
1431		int rev = c->processor_id & PRID_REV_MASK;
1432
1433		if (rev >= PRID_REV_BMIPS4380_LO &&
1434				rev <= PRID_REV_BMIPS4380_HI) {
1435			c->cputype = CPU_BMIPS4380;
1436			__cpu_name[cpu] = "Broadcom BMIPS4380";
1437			set_elf_platform(cpu, "bmips4380");
 
1438		} else {
1439			c->cputype = CPU_BMIPS4350;
1440			__cpu_name[cpu] = "Broadcom BMIPS4350";
1441			set_elf_platform(cpu, "bmips4350");
1442		}
1443		break;
1444	}
1445	case PRID_IMP_BMIPS5000:
1446	case PRID_IMP_BMIPS5200:
1447		c->cputype = CPU_BMIPS5000;
1448		__cpu_name[cpu] = "Broadcom BMIPS5000";
 
 
 
1449		set_elf_platform(cpu, "bmips5000");
1450		c->options |= MIPS_CPU_ULRI;
1451		break;
1452	}
1453}
1454
1455static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1456{
1457	decode_configs(c);
1458	switch (c->processor_id & PRID_IMP_MASK) {
1459	case PRID_IMP_CAVIUM_CN38XX:
1460	case PRID_IMP_CAVIUM_CN31XX:
1461	case PRID_IMP_CAVIUM_CN30XX:
1462		c->cputype = CPU_CAVIUM_OCTEON;
1463		__cpu_name[cpu] = "Cavium Octeon";
1464		goto platform;
1465	case PRID_IMP_CAVIUM_CN58XX:
1466	case PRID_IMP_CAVIUM_CN56XX:
1467	case PRID_IMP_CAVIUM_CN50XX:
1468	case PRID_IMP_CAVIUM_CN52XX:
1469		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1470		__cpu_name[cpu] = "Cavium Octeon+";
1471platform:
1472		set_elf_platform(cpu, "octeon");
1473		break;
1474	case PRID_IMP_CAVIUM_CN61XX:
1475	case PRID_IMP_CAVIUM_CN63XX:
1476	case PRID_IMP_CAVIUM_CN66XX:
1477	case PRID_IMP_CAVIUM_CN68XX:
1478	case PRID_IMP_CAVIUM_CNF71XX:
1479		c->cputype = CPU_CAVIUM_OCTEON2;
1480		__cpu_name[cpu] = "Cavium Octeon II";
1481		set_elf_platform(cpu, "octeon2");
1482		break;
1483	case PRID_IMP_CAVIUM_CN70XX:
 
 
1484	case PRID_IMP_CAVIUM_CN78XX:
1485		c->cputype = CPU_CAVIUM_OCTEON3;
1486		__cpu_name[cpu] = "Cavium Octeon III";
1487		set_elf_platform(cpu, "octeon3");
1488		break;
1489	default:
1490		printk(KERN_INFO "Unknown Octeon chip!\n");
1491		c->cputype = CPU_UNKNOWN;
1492		break;
1493	}
1494}
1495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1497{
1498	decode_configs(c);
1499	/* JZRISC does not implement the CP0 counter. */
1500	c->options &= ~MIPS_CPU_COUNTER;
1501	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1502	switch (c->processor_id & PRID_IMP_MASK) {
1503	case PRID_IMP_JZRISC:
1504		c->cputype = CPU_JZRISC;
1505		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1506		__cpu_name[cpu] = "Ingenic JZRISC";
1507		break;
1508	default:
1509		panic("Unknown Ingenic Processor ID!");
1510		break;
1511	}
1512}
1513
1514static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1515{
1516	decode_configs(c);
1517
1518	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1519		c->cputype = CPU_ALCHEMY;
1520		__cpu_name[cpu] = "Au1300";
1521		/* following stuff is not for Alchemy */
1522		return;
1523	}
1524
1525	c->options = (MIPS_CPU_TLB	 |
1526			MIPS_CPU_4KEX	 |
1527			MIPS_CPU_COUNTER |
1528			MIPS_CPU_DIVEC	 |
1529			MIPS_CPU_WATCH	 |
1530			MIPS_CPU_EJTAG	 |
1531			MIPS_CPU_LLSC);
1532
1533	switch (c->processor_id & PRID_IMP_MASK) {
1534	case PRID_IMP_NETLOGIC_XLP2XX:
1535	case PRID_IMP_NETLOGIC_XLP9XX:
1536	case PRID_IMP_NETLOGIC_XLP5XX:
1537		c->cputype = CPU_XLP;
1538		__cpu_name[cpu] = "Broadcom XLPII";
1539		break;
1540
1541	case PRID_IMP_NETLOGIC_XLP8XX:
1542	case PRID_IMP_NETLOGIC_XLP3XX:
1543		c->cputype = CPU_XLP;
1544		__cpu_name[cpu] = "Netlogic XLP";
1545		break;
1546
1547	case PRID_IMP_NETLOGIC_XLR732:
1548	case PRID_IMP_NETLOGIC_XLR716:
1549	case PRID_IMP_NETLOGIC_XLR532:
1550	case PRID_IMP_NETLOGIC_XLR308:
1551	case PRID_IMP_NETLOGIC_XLR532C:
1552	case PRID_IMP_NETLOGIC_XLR516C:
1553	case PRID_IMP_NETLOGIC_XLR508C:
1554	case PRID_IMP_NETLOGIC_XLR308C:
1555		c->cputype = CPU_XLR;
1556		__cpu_name[cpu] = "Netlogic XLR";
1557		break;
1558
1559	case PRID_IMP_NETLOGIC_XLS608:
1560	case PRID_IMP_NETLOGIC_XLS408:
1561	case PRID_IMP_NETLOGIC_XLS404:
1562	case PRID_IMP_NETLOGIC_XLS208:
1563	case PRID_IMP_NETLOGIC_XLS204:
1564	case PRID_IMP_NETLOGIC_XLS108:
1565	case PRID_IMP_NETLOGIC_XLS104:
1566	case PRID_IMP_NETLOGIC_XLS616B:
1567	case PRID_IMP_NETLOGIC_XLS608B:
1568	case PRID_IMP_NETLOGIC_XLS416B:
1569	case PRID_IMP_NETLOGIC_XLS412B:
1570	case PRID_IMP_NETLOGIC_XLS408B:
1571	case PRID_IMP_NETLOGIC_XLS404B:
1572		c->cputype = CPU_XLR;
1573		__cpu_name[cpu] = "Netlogic XLS";
1574		break;
1575
1576	default:
1577		pr_info("Unknown Netlogic chip id [%02x]!\n",
1578		       c->processor_id);
1579		c->cputype = CPU_XLR;
1580		break;
1581	}
1582
1583	if (c->cputype == CPU_XLP) {
1584		set_isa(c, MIPS_CPU_ISA_M64R2);
1585		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1586		/* This will be updated again after all threads are woken up */
1587		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1588	} else {
1589		set_isa(c, MIPS_CPU_ISA_M64R1);
1590		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1591	}
1592	c->kscratch_mask = 0xf;
1593}
1594
1595#ifdef CONFIG_64BIT
1596/* For use by uaccess.h */
1597u64 __ua_limit;
1598EXPORT_SYMBOL(__ua_limit);
1599#endif
1600
1601const char *__cpu_name[NR_CPUS];
1602const char *__elf_platform;
1603
1604void cpu_probe(void)
1605{
1606	struct cpuinfo_mips *c = &current_cpu_data;
1607	unsigned int cpu = smp_processor_id();
1608
1609	c->processor_id = PRID_IMP_UNKNOWN;
1610	c->fpu_id	= FPIR_IMP_NONE;
1611	c->cputype	= CPU_UNKNOWN;
1612	c->writecombine = _CACHE_UNCACHED;
1613
1614	c->fpu_csr31	= FPU_CSR_RN;
1615	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1616
1617	c->processor_id = read_c0_prid();
1618	switch (c->processor_id & PRID_COMP_MASK) {
1619	case PRID_COMP_LEGACY:
1620		cpu_probe_legacy(c, cpu);
1621		break;
1622	case PRID_COMP_MIPS:
1623		cpu_probe_mips(c, cpu);
1624		break;
1625	case PRID_COMP_ALCHEMY:
1626		cpu_probe_alchemy(c, cpu);
1627		break;
1628	case PRID_COMP_SIBYTE:
1629		cpu_probe_sibyte(c, cpu);
1630		break;
1631	case PRID_COMP_BROADCOM:
1632		cpu_probe_broadcom(c, cpu);
1633		break;
1634	case PRID_COMP_SANDCRAFT:
1635		cpu_probe_sandcraft(c, cpu);
1636		break;
1637	case PRID_COMP_NXP:
1638		cpu_probe_nxp(c, cpu);
1639		break;
1640	case PRID_COMP_CAVIUM:
1641		cpu_probe_cavium(c, cpu);
1642		break;
 
 
 
1643	case PRID_COMP_INGENIC_D0:
1644	case PRID_COMP_INGENIC_D1:
1645	case PRID_COMP_INGENIC_E1:
1646		cpu_probe_ingenic(c, cpu);
1647		break;
1648	case PRID_COMP_NETLOGIC:
1649		cpu_probe_netlogic(c, cpu);
1650		break;
1651	}
1652
1653	BUG_ON(!__cpu_name[cpu]);
1654	BUG_ON(c->cputype == CPU_UNKNOWN);
1655
1656	/*
1657	 * Platform code can force the cpu type to optimize code
1658	 * generation. In that case be sure the cpu type is correctly
1659	 * manually setup otherwise it could trigger some nasty bugs.
1660	 */
1661	BUG_ON(current_cpu_type() != c->cputype);
1662
 
 
 
 
 
 
 
 
 
1663	if (mips_fpu_disabled)
1664		c->options &= ~MIPS_CPU_FPU;
1665
1666	if (mips_dsp_disabled)
1667		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
1668
1669	if (mips_htw_disabled) {
1670		c->options &= ~MIPS_CPU_HTW;
1671		write_c0_pwctl(read_c0_pwctl() &
1672			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
1673	}
1674
1675	if (c->options & MIPS_CPU_FPU)
1676		cpu_set_fpu_opts(c);
1677	else
1678		cpu_set_nofpu_opts(c);
1679
1680	if (cpu_has_bp_ghist)
1681		write_c0_r10k_diag(read_c0_r10k_diag() |
1682				   R10K_DIAG_E_GHIST);
1683
1684	if (cpu_has_mips_r2_r6) {
1685		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1686		/* R2 has Performance Counter Interrupt indicator */
1687		c->options |= MIPS_CPU_PCI;
1688	}
1689	else
1690		c->srsets = 1;
1691
1692	if (cpu_has_mips_r6)
1693		elf_hwcap |= HWCAP_MIPS_R6;
1694
1695	if (cpu_has_msa) {
1696		c->msa_id = cpu_get_msa_id();
1697		WARN(c->msa_id & MSA_IR_WRPF,
1698		     "Vector register partitioning unimplemented!");
1699		elf_hwcap |= HWCAP_MIPS_MSA;
1700	}
 
 
 
1701
1702	cpu_probe_vmbits(c);
1703
1704#ifdef CONFIG_64BIT
1705	if (cpu == 0)
1706		__ua_limit = ~((1ull << cpu_vmbits) - 1);
1707#endif
1708}
1709
1710void cpu_report(void)
1711{
1712	struct cpuinfo_mips *c = &current_cpu_data;
1713
1714	pr_info("CPU%d revision is: %08x (%s)\n",
1715		smp_processor_id(), c->processor_id, cpu_name_string());
1716	if (c->options & MIPS_CPU_FPU)
1717		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
1718	if (cpu_has_msa)
1719		pr_info("MSA revision is: %08x\n", c->msa_id);
1720}
v4.10.11
   1/*
   2 * Processor capabilities determination functions.
   3 *
   4 * Copyright (C) xxxx  the Anonymous
   5 * Copyright (C) 1994 - 2006 Ralf Baechle
   6 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   7 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; either version
  12 * 2 of the License, or (at your option) any later version.
  13 */
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/ptrace.h>
  17#include <linux/smp.h>
  18#include <linux/stddef.h>
  19#include <linux/export.h>
  20
  21#include <asm/bugs.h>
  22#include <asm/cpu.h>
  23#include <asm/cpu-features.h>
  24#include <asm/cpu-type.h>
  25#include <asm/fpu.h>
  26#include <asm/mipsregs.h>
  27#include <asm/mipsmtregs.h>
  28#include <asm/msa.h>
  29#include <asm/watch.h>
  30#include <asm/elf.h>
  31#include <asm/pgtable-bits.h>
  32#include <asm/spram.h>
  33#include <linux/uaccess.h>
  34
  35/* Hardware capabilities */
  36unsigned int elf_hwcap __read_mostly;
  37
  38/*
  39 * Get the FPU Implementation/Revision.
  40 */
  41static inline unsigned long cpu_get_fpu_id(void)
  42{
  43	unsigned long tmp, fpu_id;
  44
  45	tmp = read_c0_status();
  46	__enable_fpu(FPU_AS_IS);
  47	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  48	write_c0_status(tmp);
  49	return fpu_id;
  50}
  51
  52/*
  53 * Check if the CPU has an external FPU.
  54 */
  55static inline int __cpu_has_fpu(void)
  56{
  57	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  58}
  59
  60static inline unsigned long cpu_get_msa_id(void)
  61{
  62	unsigned long status, msa_id;
  63
  64	status = read_c0_status();
  65	__enable_fpu(FPU_64BIT);
  66	enable_msa();
  67	msa_id = read_msa_ir();
  68	disable_msa();
  69	write_c0_status(status);
  70	return msa_id;
  71}
  72
  73/*
  74 * Determine the FCSR mask for FPU hardware.
  75 */
  76static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  77{
  78	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  79
  80	fcsr = c->fpu_csr31;
  81	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  82
  83	sr = read_c0_status();
  84	__enable_fpu(FPU_AS_IS);
  85
  86	fcsr0 = fcsr & mask;
  87	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  88	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  89
  90	fcsr1 = fcsr | ~mask;
  91	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  92	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  93
  94	write_32bit_cp1_register(CP1_STATUS, fcsr);
  95
  96	write_c0_status(sr);
  97
  98	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
  99}
 100
 101/*
 102 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
 103 * supported by FPU hardware.
 104 */
 105static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
 106{
 107	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 108			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 109			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 110		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
 111
 112		sr = read_c0_status();
 113		__enable_fpu(FPU_AS_IS);
 114
 115		fir = read_32bit_cp1_register(CP1_REVISION);
 116		if (fir & MIPS_FPIR_HAS2008) {
 117			fcsr = read_32bit_cp1_register(CP1_STATUS);
 118
 119			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 120			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 121			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 122
 123			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 124			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 125			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 126
 127			write_32bit_cp1_register(CP1_STATUS, fcsr);
 128
 129			if (!(fcsr0 & FPU_CSR_NAN2008))
 130				c->options |= MIPS_CPU_NAN_LEGACY;
 131			if (fcsr1 & FPU_CSR_NAN2008)
 132				c->options |= MIPS_CPU_NAN_2008;
 133
 134			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 135				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 136			else
 137				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 138
 139			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 140				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 141			else
 142				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 143		} else {
 144			c->options |= MIPS_CPU_NAN_LEGACY;
 145		}
 146
 147		write_c0_status(sr);
 148	} else {
 149		c->options |= MIPS_CPU_NAN_LEGACY;
 150	}
 151}
 152
 153/*
 154 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 155 * ABS.fmt/NEG.fmt execution mode.
 156 */
 157static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 158
 159/*
 160 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 161 * to support by the FPU emulator according to the IEEE 754 conformance
 162 * mode selected.  Note that "relaxed" straps the emulator so that it
 163 * allows 2008-NaN binaries even for legacy processors.
 164 */
 165static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 166{
 167	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 168	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 169	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 170
 171	switch (ieee754) {
 172	case STRICT:
 173		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 174				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 175				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 176			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 177		} else {
 178			c->options |= MIPS_CPU_NAN_LEGACY;
 179			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 180		}
 181		break;
 182	case LEGACY:
 183		c->options |= MIPS_CPU_NAN_LEGACY;
 184		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 185		break;
 186	case STD2008:
 187		c->options |= MIPS_CPU_NAN_2008;
 188		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 189		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 190		break;
 191	case RELAXED:
 192		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 193		break;
 194	}
 195}
 196
 197/*
 198 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 199 * according to the "ieee754=" parameter.
 200 */
 201static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 202{
 203	switch (ieee754) {
 204	case STRICT:
 205		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 206		mips_use_nan_2008 = !!cpu_has_nan_2008;
 207		break;
 208	case LEGACY:
 209		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 210		mips_use_nan_2008 = !cpu_has_nan_legacy;
 211		break;
 212	case STD2008:
 213		mips_use_nan_legacy = !cpu_has_nan_2008;
 214		mips_use_nan_2008 = !!cpu_has_nan_2008;
 215		break;
 216	case RELAXED:
 217		mips_use_nan_legacy = true;
 218		mips_use_nan_2008 = true;
 219		break;
 220	}
 221}
 222
 223/*
 224 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 225 * settings:
 226 *
 227 * strict:  accept binaries that request a NaN encoding supported by the FPU
 228 * legacy:  only accept legacy-NaN binaries
 229 * 2008:    only accept 2008-NaN binaries
 230 * relaxed: accept any binaries regardless of whether supported by the FPU
 231 */
 232static int __init ieee754_setup(char *s)
 233{
 234	if (!s)
 235		return -1;
 236	else if (!strcmp(s, "strict"))
 237		ieee754 = STRICT;
 238	else if (!strcmp(s, "legacy"))
 239		ieee754 = LEGACY;
 240	else if (!strcmp(s, "2008"))
 241		ieee754 = STD2008;
 242	else if (!strcmp(s, "relaxed"))
 243		ieee754 = RELAXED;
 244	else
 245		return -1;
 246
 247	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 248		cpu_set_nofpu_2008(&boot_cpu_data);
 249	cpu_set_nan_2008(&boot_cpu_data);
 250
 251	return 0;
 252}
 253
 254early_param("ieee754", ieee754_setup);
 255
 256/*
 257 * Set the FIR feature flags for the FPU emulator.
 258 */
 259static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 260{
 261	u32 value;
 262
 263	value = 0;
 264	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 265			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 266			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 267		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 268	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 269			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 270		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 271	if (c->options & MIPS_CPU_NAN_2008)
 272		value |= MIPS_FPIR_HAS2008;
 273	c->fpu_id = value;
 274}
 275
 276/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 277static unsigned int mips_nofpu_msk31;
 278
 279/*
 280 * Set options for FPU hardware.
 281 */
 282static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 283{
 284	c->fpu_id = cpu_get_fpu_id();
 285	mips_nofpu_msk31 = c->fpu_msk31;
 286
 287	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 288			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 289			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 290		if (c->fpu_id & MIPS_FPIR_3D)
 291			c->ases |= MIPS_ASE_MIPS3D;
 292		if (c->fpu_id & MIPS_FPIR_FREP)
 293			c->options |= MIPS_CPU_FRE;
 294	}
 295
 296	cpu_set_fpu_fcsr_mask(c);
 297	cpu_set_fpu_2008(c);
 298	cpu_set_nan_2008(c);
 299}
 300
 301/*
 302 * Set options for the FPU emulator.
 303 */
 304static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 305{
 306	c->options &= ~MIPS_CPU_FPU;
 307	c->fpu_msk31 = mips_nofpu_msk31;
 308
 309	cpu_set_nofpu_2008(c);
 310	cpu_set_nan_2008(c);
 311	cpu_set_nofpu_id(c);
 312}
 313
 314static int mips_fpu_disabled;
 315
 316static int __init fpu_disable(char *s)
 317{
 318	cpu_set_nofpu_opts(&boot_cpu_data);
 319	mips_fpu_disabled = 1;
 320
 321	return 1;
 322}
 323
 324__setup("nofpu", fpu_disable);
 325
 326int mips_dsp_disabled;
 327
 328static int __init dsp_disable(char *s)
 329{
 330	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 331	mips_dsp_disabled = 1;
 332
 333	return 1;
 334}
 335
 336__setup("nodsp", dsp_disable);
 337
 338static int mips_htw_disabled;
 339
 340static int __init htw_disable(char *s)
 341{
 342	mips_htw_disabled = 1;
 343	cpu_data[0].options &= ~MIPS_CPU_HTW;
 344	write_c0_pwctl(read_c0_pwctl() &
 345		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 346
 347	return 1;
 348}
 349
 350__setup("nohtw", htw_disable);
 351
 352static int mips_ftlb_disabled;
 353static int mips_has_ftlb_configured;
 354
 355enum ftlb_flags {
 356	FTLB_EN		= 1 << 0,
 357	FTLB_SET_PROB	= 1 << 1,
 358};
 359
 360static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
 361
 362static int __init ftlb_disable(char *s)
 363{
 364	unsigned int config4, mmuextdef;
 365
 366	/*
 367	 * If the core hasn't done any FTLB configuration, there is nothing
 368	 * for us to do here.
 369	 */
 370	if (!mips_has_ftlb_configured)
 371		return 1;
 372
 373	/* Disable it in the boot cpu */
 374	if (set_ftlb_enable(&cpu_data[0], 0)) {
 375		pr_warn("Can't turn FTLB off\n");
 376		return 1;
 377	}
 378
 
 
 379	config4 = read_c0_config4();
 380
 381	/* Check that FTLB has been disabled */
 382	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 383	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 384	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 385		/* This should never happen */
 386		pr_warn("FTLB could not be disabled!\n");
 387		return 1;
 388	}
 389
 390	mips_ftlb_disabled = 1;
 391	mips_has_ftlb_configured = 0;
 392
 393	/*
 394	 * noftlb is mainly used for debug purposes so print
 395	 * an informative message instead of using pr_debug()
 396	 */
 397	pr_info("FTLB has been disabled\n");
 398
 399	/*
 400	 * Some of these bits are duplicated in the decode_config4.
 401	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 402	 * once FTLB has been disabled so undo what decode_config4 did.
 403	 */
 404	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 405			       cpu_data[0].tlbsizeftlbsets;
 406	cpu_data[0].tlbsizeftlbsets = 0;
 407	cpu_data[0].tlbsizeftlbways = 0;
 408
 409	return 1;
 410}
 411
 412__setup("noftlb", ftlb_disable);
 413
 414
 415static inline void check_errata(void)
 416{
 417	struct cpuinfo_mips *c = &current_cpu_data;
 418
 419	switch (current_cpu_type()) {
 420	case CPU_34K:
 421		/*
 422		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 423		 * This code only handles VPE0, any SMP/RTOS code
 424		 * making use of VPE1 will be responsable for that VPE.
 425		 */
 426		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 427			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 428		break;
 429	default:
 430		break;
 431	}
 432}
 433
 434void __init check_bugs32(void)
 435{
 436	check_errata();
 437}
 438
 439/*
 440 * Probe whether cpu has config register by trying to play with
 441 * alternate cache bit and see whether it matters.
 442 * It's used by cpu_probe to distinguish between R3000A and R3081.
 443 */
 444static inline int cpu_has_confreg(void)
 445{
 446#ifdef CONFIG_CPU_R3000
 447	extern unsigned long r3k_cache_size(unsigned long);
 448	unsigned long size1, size2;
 449	unsigned long cfg = read_c0_conf();
 450
 451	size1 = r3k_cache_size(ST0_ISC);
 452	write_c0_conf(cfg ^ R30XX_CONF_AC);
 453	size2 = r3k_cache_size(ST0_ISC);
 454	write_c0_conf(cfg);
 455	return size1 != size2;
 456#else
 457	return 0;
 458#endif
 459}
 460
 461static inline void set_elf_platform(int cpu, const char *plat)
 462{
 463	if (cpu == 0)
 464		__elf_platform = plat;
 465}
 466
 467static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 468{
 469#ifdef __NEED_VMBITS_PROBE
 470	write_c0_entryhi(0x3fffffffffffe000ULL);
 471	back_to_back_c0_hazard();
 472	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 473#endif
 474}
 475
 476static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 477{
 478	switch (isa) {
 479	case MIPS_CPU_ISA_M64R2:
 480		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 481	case MIPS_CPU_ISA_M64R1:
 482		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 483	case MIPS_CPU_ISA_V:
 484		c->isa_level |= MIPS_CPU_ISA_V;
 485	case MIPS_CPU_ISA_IV:
 486		c->isa_level |= MIPS_CPU_ISA_IV;
 487	case MIPS_CPU_ISA_III:
 488		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 489		break;
 490
 491	/* R6 incompatible with everything else */
 492	case MIPS_CPU_ISA_M64R6:
 493		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 494	case MIPS_CPU_ISA_M32R6:
 495		c->isa_level |= MIPS_CPU_ISA_M32R6;
 496		/* Break here so we don't add incompatible ISAs */
 497		break;
 498	case MIPS_CPU_ISA_M32R2:
 499		c->isa_level |= MIPS_CPU_ISA_M32R2;
 500	case MIPS_CPU_ISA_M32R1:
 501		c->isa_level |= MIPS_CPU_ISA_M32R1;
 502	case MIPS_CPU_ISA_II:
 503		c->isa_level |= MIPS_CPU_ISA_II;
 504		break;
 505	}
 506}
 507
 508static char unknown_isa[] = KERN_ERR \
 509	"Unsupported ISA type, c0.config0: %d.";
 510
 511static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 512{
 513
 514	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 515
 516	/*
 517	 * 0 = All TLBWR instructions go to FTLB
 518	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 519	 * FTLB and 1 goes to the VTLB.
 520	 * 2 = 7:1: As above with 7:1 ratio.
 521	 * 3 = 3:1: As above with 3:1 ratio.
 522	 *
 523	 * Use the linear midpoint as the probability threshold.
 524	 */
 525	if (probability >= 12)
 526		return 1;
 527	else if (probability >= 6)
 528		return 2;
 529	else
 530		/*
 531		 * So FTLB is less than 4 times bigger than VTLB.
 532		 * A 3:1 ratio can still be useful though.
 533		 */
 534		return 3;
 535}
 536
 537static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 538{
 539	unsigned int config;
 540
 541	/* It's implementation dependent how the FTLB can be enabled */
 542	switch (c->cputype) {
 543	case CPU_PROAPTIV:
 544	case CPU_P5600:
 545	case CPU_P6600:
 546		/* proAptiv & related cores use Config6 to enable the FTLB */
 547		config = read_c0_config6();
 548
 549		if (flags & FTLB_EN)
 550			config |= MIPS_CONF6_FTLBEN;
 
 
 
 
 
 551		else
 552			config &= ~MIPS_CONF6_FTLBEN;
 553
 554		if (flags & FTLB_SET_PROB) {
 555			config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
 556			config |= calculate_ftlb_probability(c)
 557				  << MIPS_CONF6_FTLBP_SHIFT;
 558		}
 559
 560		write_c0_config6(config);
 561		back_to_back_c0_hazard();
 562		break;
 563	case CPU_I6400:
 564		/* There's no way to disable the FTLB */
 565		if (!(flags & FTLB_EN))
 566			return 1;
 567		return 0;
 568	case CPU_LOONGSON3:
 569		/* Flush ITLB, DTLB, VTLB and FTLB */
 570		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 571			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 572		/* Loongson-3 cores use Config6 to enable the FTLB */
 573		config = read_c0_config6();
 574		if (flags & FTLB_EN)
 575			/* Enable FTLB */
 576			write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
 577		else
 578			/* Disable FTLB */
 579			write_c0_config6(config | MIPS_CONF6_FTLBDIS);
 580		break;
 581	default:
 582		return 1;
 583	}
 584
 585	return 0;
 586}
 587
 588static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 589{
 590	unsigned int config0;
 591	int isa, mt;
 592
 593	config0 = read_c0_config();
 594
 595	/*
 596	 * Look for Standard TLB or Dual VTLB and FTLB
 597	 */
 598	mt = config0 & MIPS_CONF_MT;
 599	if (mt == MIPS_CONF_MT_TLB)
 600		c->options |= MIPS_CPU_TLB;
 601	else if (mt == MIPS_CONF_MT_FTLB)
 602		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 603
 604	isa = (config0 & MIPS_CONF_AT) >> 13;
 605	switch (isa) {
 606	case 0:
 607		switch ((config0 & MIPS_CONF_AR) >> 10) {
 608		case 0:
 609			set_isa(c, MIPS_CPU_ISA_M32R1);
 610			break;
 611		case 1:
 612			set_isa(c, MIPS_CPU_ISA_M32R2);
 613			break;
 614		case 2:
 615			set_isa(c, MIPS_CPU_ISA_M32R6);
 616			break;
 617		default:
 618			goto unknown;
 619		}
 620		break;
 621	case 2:
 622		switch ((config0 & MIPS_CONF_AR) >> 10) {
 623		case 0:
 624			set_isa(c, MIPS_CPU_ISA_M64R1);
 625			break;
 626		case 1:
 627			set_isa(c, MIPS_CPU_ISA_M64R2);
 628			break;
 629		case 2:
 630			set_isa(c, MIPS_CPU_ISA_M64R6);
 631			break;
 632		default:
 633			goto unknown;
 634		}
 635		break;
 636	default:
 637		goto unknown;
 638	}
 639
 640	return config0 & MIPS_CONF_M;
 641
 642unknown:
 643	panic(unknown_isa, config0);
 644}
 645
 646static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 647{
 648	unsigned int config1;
 649
 650	config1 = read_c0_config1();
 651
 652	if (config1 & MIPS_CONF1_MD)
 653		c->ases |= MIPS_ASE_MDMX;
 654	if (config1 & MIPS_CONF1_PC)
 655		c->options |= MIPS_CPU_PERF;
 656	if (config1 & MIPS_CONF1_WR)
 657		c->options |= MIPS_CPU_WATCH;
 658	if (config1 & MIPS_CONF1_CA)
 659		c->ases |= MIPS_ASE_MIPS16;
 660	if (config1 & MIPS_CONF1_EP)
 661		c->options |= MIPS_CPU_EJTAG;
 662	if (config1 & MIPS_CONF1_FP) {
 663		c->options |= MIPS_CPU_FPU;
 664		c->options |= MIPS_CPU_32FPR;
 665	}
 666	if (cpu_has_tlb) {
 667		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 668		c->tlbsizevtlb = c->tlbsize;
 669		c->tlbsizeftlbsets = 0;
 670	}
 671
 672	return config1 & MIPS_CONF_M;
 673}
 674
 675static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 676{
 677	unsigned int config2;
 678
 679	config2 = read_c0_config2();
 680
 681	if (config2 & MIPS_CONF2_SL)
 682		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 683
 684	return config2 & MIPS_CONF_M;
 685}
 686
 687static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 688{
 689	unsigned int config3;
 690
 691	config3 = read_c0_config3();
 692
 693	if (config3 & MIPS_CONF3_SM) {
 694		c->ases |= MIPS_ASE_SMARTMIPS;
 695		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 696	}
 697	if (config3 & MIPS_CONF3_RXI)
 698		c->options |= MIPS_CPU_RIXI;
 699	if (config3 & MIPS_CONF3_CTXTC)
 700		c->options |= MIPS_CPU_CTXTC;
 701	if (config3 & MIPS_CONF3_DSP)
 702		c->ases |= MIPS_ASE_DSP;
 703	if (config3 & MIPS_CONF3_DSP2P) {
 704		c->ases |= MIPS_ASE_DSP2P;
 705		if (cpu_has_mips_r6)
 706			c->ases |= MIPS_ASE_DSP3;
 707	}
 708	if (config3 & MIPS_CONF3_VINT)
 709		c->options |= MIPS_CPU_VINT;
 710	if (config3 & MIPS_CONF3_VEIC)
 711		c->options |= MIPS_CPU_VEIC;
 712	if (config3 & MIPS_CONF3_LPA)
 713		c->options |= MIPS_CPU_LPA;
 714	if (config3 & MIPS_CONF3_MT)
 715		c->ases |= MIPS_ASE_MIPSMT;
 716	if (config3 & MIPS_CONF3_ULRI)
 717		c->options |= MIPS_CPU_ULRI;
 718	if (config3 & MIPS_CONF3_ISA)
 719		c->options |= MIPS_CPU_MICROMIPS;
 720	if (config3 & MIPS_CONF3_VZ)
 721		c->ases |= MIPS_ASE_VZ;
 722	if (config3 & MIPS_CONF3_SC)
 723		c->options |= MIPS_CPU_SEGMENTS;
 724	if (config3 & MIPS_CONF3_BI)
 725		c->options |= MIPS_CPU_BADINSTR;
 726	if (config3 & MIPS_CONF3_BP)
 727		c->options |= MIPS_CPU_BADINSTRP;
 728	if (config3 & MIPS_CONF3_MSA)
 729		c->ases |= MIPS_ASE_MSA;
 730	if (config3 & MIPS_CONF3_PW) {
 731		c->htw_seq = 0;
 732		c->options |= MIPS_CPU_HTW;
 733	}
 734	if (config3 & MIPS_CONF3_CDMM)
 735		c->options |= MIPS_CPU_CDMM;
 736	if (config3 & MIPS_CONF3_SP)
 737		c->options |= MIPS_CPU_SP;
 738
 739	return config3 & MIPS_CONF_M;
 740}
 741
 742static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 743{
 744	unsigned int config4;
 745	unsigned int newcf4;
 746	unsigned int mmuextdef;
 747	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 748	unsigned long asid_mask;
 749
 750	config4 = read_c0_config4();
 751
 752	if (cpu_has_tlb) {
 753		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 754			c->options |= MIPS_CPU_TLBINV;
 755
 756		/*
 757		 * R6 has dropped the MMUExtDef field from config4.
 758		 * On R6 the fields always describe the FTLB, and only if it is
 759		 * present according to Config.MT.
 760		 */
 761		if (!cpu_has_mips_r6)
 762			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 763		else if (cpu_has_ftlb)
 764			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 765		else
 766			mmuextdef = 0;
 767
 768		switch (mmuextdef) {
 769		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 770			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 771			c->tlbsizevtlb = c->tlbsize;
 772			break;
 773		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 774			c->tlbsizevtlb +=
 775				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 776				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 777			c->tlbsize = c->tlbsizevtlb;
 778			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 779			/* fall through */
 780		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 781			if (mips_ftlb_disabled)
 782				break;
 783			newcf4 = (config4 & ~ftlb_page) |
 784				(page_size_ftlb(mmuextdef) <<
 785				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 786			write_c0_config4(newcf4);
 787			back_to_back_c0_hazard();
 788			config4 = read_c0_config4();
 789			if (config4 != newcf4) {
 790				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 791				       PAGE_SIZE, config4);
 792				/* Switch FTLB off */
 793				set_ftlb_enable(c, 0);
 794				mips_ftlb_disabled = 1;
 795				break;
 796			}
 797			c->tlbsizeftlbsets = 1 <<
 798				((config4 & MIPS_CONF4_FTLBSETS) >>
 799				 MIPS_CONF4_FTLBSETS_SHIFT);
 800			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 801					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 802			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 803			mips_has_ftlb_configured = 1;
 804			break;
 805		}
 806	}
 807
 808	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 809				>> MIPS_CONF4_KSCREXIST_SHIFT;
 810
 811	asid_mask = MIPS_ENTRYHI_ASID;
 812	if (config4 & MIPS_CONF4_AE)
 813		asid_mask |= MIPS_ENTRYHI_ASIDX;
 814	set_cpu_asid_mask(c, asid_mask);
 815
 816	/*
 817	 * Warn if the computed ASID mask doesn't match the mask the kernel
 818	 * is built for. This may indicate either a serious problem or an
 819	 * easy optimisation opportunity, but either way should be addressed.
 820	 */
 821	WARN_ON(asid_mask != cpu_asid_mask(c));
 822
 823	return config4 & MIPS_CONF_M;
 824}
 825
 826static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 827{
 828	unsigned int config5;
 829
 830	config5 = read_c0_config5();
 831	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 832	write_c0_config5(config5);
 833
 834	if (config5 & MIPS_CONF5_EVA)
 835		c->options |= MIPS_CPU_EVA;
 836	if (config5 & MIPS_CONF5_MRP)
 837		c->options |= MIPS_CPU_MAAR;
 838	if (config5 & MIPS_CONF5_LLB)
 839		c->options |= MIPS_CPU_RW_LLB;
 
 840	if (config5 & MIPS_CONF5_MVH)
 841		c->options |= MIPS_CPU_MVH;
 842	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 843		c->options |= MIPS_CPU_VP;
 844
 845	return config5 & MIPS_CONF_M;
 846}
 847
 848static void decode_configs(struct cpuinfo_mips *c)
 849{
 850	int ok;
 851
 852	/* MIPS32 or MIPS64 compliant CPU.  */
 853	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 854		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 855
 856	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 857
 858	/* Enable FTLB if present and not disabled */
 859	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
 860
 861	ok = decode_config0(c);			/* Read Config registers.  */
 862	BUG_ON(!ok);				/* Arch spec violation!	 */
 863	if (ok)
 864		ok = decode_config1(c);
 865	if (ok)
 866		ok = decode_config2(c);
 867	if (ok)
 868		ok = decode_config3(c);
 869	if (ok)
 870		ok = decode_config4(c);
 871	if (ok)
 872		ok = decode_config5(c);
 873
 874	/* Probe the EBase.WG bit */
 875	if (cpu_has_mips_r2_r6) {
 876		u64 ebase;
 877		unsigned int status;
 878
 879		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
 880		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
 881					 : (s32)read_c0_ebase();
 882		if (ebase & MIPS_EBASE_WG) {
 883			/* WG bit already set, we can avoid the clumsy probe */
 884			c->options |= MIPS_CPU_EBASE_WG;
 885		} else {
 886			/* Its UNDEFINED to change EBase while BEV=0 */
 887			status = read_c0_status();
 888			write_c0_status(status | ST0_BEV);
 889			irq_enable_hazard();
 890			/*
 891			 * On pre-r6 cores, this may well clobber the upper bits
 892			 * of EBase. This is hard to avoid without potentially
 893			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
 894			 */
 895			if (cpu_has_mips64r6)
 896				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
 897			else
 898				write_c0_ebase(ebase | MIPS_EBASE_WG);
 899			back_to_back_c0_hazard();
 900			/* Restore BEV */
 901			write_c0_status(status);
 902			if (read_c0_ebase() & MIPS_EBASE_WG) {
 903				c->options |= MIPS_CPU_EBASE_WG;
 904				write_c0_ebase(ebase);
 905			}
 906		}
 907	}
 908
 909	/* configure the FTLB write probability */
 910	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
 911
 912	mips_probe_watch_registers(c);
 913
 914#ifndef CONFIG_MIPS_CPS
 915	if (cpu_has_mips_r2_r6) {
 916		c->core = get_ebase_cpunum();
 917		if (cpu_has_mipsmt)
 918			c->core >>= fls(core_nvpes()) - 1;
 919	}
 920#endif
 921}
 922
 923/*
 924 * Probe for certain guest capabilities by writing config bits and reading back.
 925 * Finally write back the original value.
 926 */
 927#define probe_gc0_config(name, maxconf, bits)				\
 928do {									\
 929	unsigned int tmp;						\
 930	tmp = read_gc0_##name();					\
 931	write_gc0_##name(tmp | (bits));					\
 932	back_to_back_c0_hazard();					\
 933	maxconf = read_gc0_##name();					\
 934	write_gc0_##name(tmp);						\
 935} while (0)
 936
 937/*
 938 * Probe for dynamic guest capabilities by changing certain config bits and
 939 * reading back to see if they change. Finally write back the original value.
 940 */
 941#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
 942do {									\
 943	maxconf = read_gc0_##name();					\
 944	write_gc0_##name(maxconf ^ (bits));				\
 945	back_to_back_c0_hazard();					\
 946	dynconf = maxconf ^ read_gc0_##name();				\
 947	write_gc0_##name(maxconf);					\
 948	maxconf |= dynconf;						\
 949} while (0)
 950
 951static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
 952{
 953	unsigned int config0;
 954
 955	probe_gc0_config(config, config0, MIPS_CONF_M);
 956
 957	if (config0 & MIPS_CONF_M)
 958		c->guest.conf |= BIT(1);
 959	return config0 & MIPS_CONF_M;
 960}
 961
 962static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
 963{
 964	unsigned int config1, config1_dyn;
 965
 966	probe_gc0_config_dyn(config1, config1, config1_dyn,
 967			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
 968			     MIPS_CONF1_FP);
 969
 970	if (config1 & MIPS_CONF1_FP)
 971		c->guest.options |= MIPS_CPU_FPU;
 972	if (config1_dyn & MIPS_CONF1_FP)
 973		c->guest.options_dyn |= MIPS_CPU_FPU;
 974
 975	if (config1 & MIPS_CONF1_WR)
 976		c->guest.options |= MIPS_CPU_WATCH;
 977	if (config1_dyn & MIPS_CONF1_WR)
 978		c->guest.options_dyn |= MIPS_CPU_WATCH;
 979
 980	if (config1 & MIPS_CONF1_PC)
 981		c->guest.options |= MIPS_CPU_PERF;
 982	if (config1_dyn & MIPS_CONF1_PC)
 983		c->guest.options_dyn |= MIPS_CPU_PERF;
 984
 985	if (config1 & MIPS_CONF_M)
 986		c->guest.conf |= BIT(2);
 987	return config1 & MIPS_CONF_M;
 988}
 989
 990static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
 991{
 992	unsigned int config2;
 993
 994	probe_gc0_config(config2, config2, MIPS_CONF_M);
 995
 996	if (config2 & MIPS_CONF_M)
 997		c->guest.conf |= BIT(3);
 998	return config2 & MIPS_CONF_M;
 999}
1000
1001static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1002{
1003	unsigned int config3, config3_dyn;
1004
1005	probe_gc0_config_dyn(config3, config3, config3_dyn,
1006			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_CTXTC);
1007
1008	if (config3 & MIPS_CONF3_CTXTC)
1009		c->guest.options |= MIPS_CPU_CTXTC;
1010	if (config3_dyn & MIPS_CONF3_CTXTC)
1011		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1012
1013	if (config3 & MIPS_CONF3_PW)
1014		c->guest.options |= MIPS_CPU_HTW;
1015
1016	if (config3 & MIPS_CONF3_SC)
1017		c->guest.options |= MIPS_CPU_SEGMENTS;
1018
1019	if (config3 & MIPS_CONF3_BI)
1020		c->guest.options |= MIPS_CPU_BADINSTR;
1021	if (config3 & MIPS_CONF3_BP)
1022		c->guest.options |= MIPS_CPU_BADINSTRP;
1023
1024	if (config3 & MIPS_CONF3_MSA)
1025		c->guest.ases |= MIPS_ASE_MSA;
1026	if (config3_dyn & MIPS_CONF3_MSA)
1027		c->guest.ases_dyn |= MIPS_ASE_MSA;
1028
1029	if (config3 & MIPS_CONF_M)
1030		c->guest.conf |= BIT(4);
1031	return config3 & MIPS_CONF_M;
1032}
1033
1034static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1035{
1036	unsigned int config4;
1037
1038	probe_gc0_config(config4, config4,
1039			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1040
1041	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1042				>> MIPS_CONF4_KSCREXIST_SHIFT;
1043
1044	if (config4 & MIPS_CONF_M)
1045		c->guest.conf |= BIT(5);
1046	return config4 & MIPS_CONF_M;
1047}
1048
1049static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1050{
1051	unsigned int config5, config5_dyn;
1052
1053	probe_gc0_config_dyn(config5, config5, config5_dyn,
1054			 MIPS_CONF_M | MIPS_CONF5_MRP);
1055
1056	if (config5 & MIPS_CONF5_MRP)
1057		c->guest.options |= MIPS_CPU_MAAR;
1058	if (config5_dyn & MIPS_CONF5_MRP)
1059		c->guest.options_dyn |= MIPS_CPU_MAAR;
1060
1061	if (config5 & MIPS_CONF5_LLB)
1062		c->guest.options |= MIPS_CPU_RW_LLB;
1063
1064	if (config5 & MIPS_CONF_M)
1065		c->guest.conf |= BIT(6);
1066	return config5 & MIPS_CONF_M;
1067}
1068
1069static inline void decode_guest_configs(struct cpuinfo_mips *c)
1070{
1071	unsigned int ok;
1072
1073	ok = decode_guest_config0(c);
1074	if (ok)
1075		ok = decode_guest_config1(c);
1076	if (ok)
1077		ok = decode_guest_config2(c);
1078	if (ok)
1079		ok = decode_guest_config3(c);
1080	if (ok)
1081		ok = decode_guest_config4(c);
1082	if (ok)
1083		decode_guest_config5(c);
1084}
1085
1086static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1087{
1088	unsigned int guestctl0, temp;
1089
1090	guestctl0 = read_c0_guestctl0();
1091
1092	if (guestctl0 & MIPS_GCTL0_G0E)
1093		c->options |= MIPS_CPU_GUESTCTL0EXT;
1094	if (guestctl0 & MIPS_GCTL0_G1)
1095		c->options |= MIPS_CPU_GUESTCTL1;
1096	if (guestctl0 & MIPS_GCTL0_G2)
1097		c->options |= MIPS_CPU_GUESTCTL2;
1098	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1099		c->options |= MIPS_CPU_GUESTID;
1100
1101		/*
1102		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1103		 * first, otherwise all data accesses will be fully virtualised
1104		 * as if they were performed by guest mode.
1105		 */
1106		write_c0_guestctl1(0);
1107		tlbw_use_hazard();
1108
1109		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1110		back_to_back_c0_hazard();
1111		temp = read_c0_guestctl0();
1112
1113		if (temp & MIPS_GCTL0_DRG) {
1114			write_c0_guestctl0(guestctl0);
1115			c->options |= MIPS_CPU_DRG;
1116		}
1117	}
1118}
1119
1120static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1121{
1122	if (cpu_has_guestid) {
1123		/* determine the number of bits of GuestID available */
1124		write_c0_guestctl1(MIPS_GCTL1_ID);
1125		back_to_back_c0_hazard();
1126		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1127						>> MIPS_GCTL1_ID_SHIFT;
1128		write_c0_guestctl1(0);
1129	}
1130}
1131
1132static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1133{
1134	/* determine the number of bits of GTOffset available */
1135	write_c0_gtoffset(0xffffffff);
1136	back_to_back_c0_hazard();
1137	c->gtoffset_mask = read_c0_gtoffset();
1138	write_c0_gtoffset(0);
1139}
1140
1141static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1142{
1143	cpu_probe_guestctl0(c);
1144	if (cpu_has_guestctl1)
1145		cpu_probe_guestctl1(c);
1146
1147	cpu_probe_gtoffset(c);
1148
1149	decode_guest_configs(c);
1150}
1151
1152#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1153		| MIPS_CPU_COUNTER)
1154
1155static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1156{
1157	switch (c->processor_id & PRID_IMP_MASK) {
1158	case PRID_IMP_R2000:
1159		c->cputype = CPU_R2000;
1160		__cpu_name[cpu] = "R2000";
1161		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1162		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1163			     MIPS_CPU_NOFPUEX;
1164		if (__cpu_has_fpu())
1165			c->options |= MIPS_CPU_FPU;
1166		c->tlbsize = 64;
1167		break;
1168	case PRID_IMP_R3000:
1169		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1170			if (cpu_has_confreg()) {
1171				c->cputype = CPU_R3081E;
1172				__cpu_name[cpu] = "R3081";
1173			} else {
1174				c->cputype = CPU_R3000A;
1175				__cpu_name[cpu] = "R3000A";
1176			}
1177		} else {
1178			c->cputype = CPU_R3000;
1179			__cpu_name[cpu] = "R3000";
1180		}
1181		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1182		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1183			     MIPS_CPU_NOFPUEX;
1184		if (__cpu_has_fpu())
1185			c->options |= MIPS_CPU_FPU;
1186		c->tlbsize = 64;
1187		break;
1188	case PRID_IMP_R4000:
1189		if (read_c0_config() & CONF_SC) {
1190			if ((c->processor_id & PRID_REV_MASK) >=
1191			    PRID_REV_R4400) {
1192				c->cputype = CPU_R4400PC;
1193				__cpu_name[cpu] = "R4400PC";
1194			} else {
1195				c->cputype = CPU_R4000PC;
1196				__cpu_name[cpu] = "R4000PC";
1197			}
1198		} else {
1199			int cca = read_c0_config() & CONF_CM_CMASK;
1200			int mc;
1201
1202			/*
1203			 * SC and MC versions can't be reliably told apart,
1204			 * but only the latter support coherent caching
1205			 * modes so assume the firmware has set the KSEG0
1206			 * coherency attribute reasonably (if uncached, we
1207			 * assume SC).
1208			 */
1209			switch (cca) {
1210			case CONF_CM_CACHABLE_CE:
1211			case CONF_CM_CACHABLE_COW:
1212			case CONF_CM_CACHABLE_CUW:
1213				mc = 1;
1214				break;
1215			default:
1216				mc = 0;
1217				break;
1218			}
1219			if ((c->processor_id & PRID_REV_MASK) >=
1220			    PRID_REV_R4400) {
1221				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1222				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1223			} else {
1224				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1225				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1226			}
1227		}
1228
1229		set_isa(c, MIPS_CPU_ISA_III);
1230		c->fpu_msk31 |= FPU_CSR_CONDX;
1231		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1232			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1233			     MIPS_CPU_LLSC;
1234		c->tlbsize = 48;
1235		break;
1236	case PRID_IMP_VR41XX:
1237		set_isa(c, MIPS_CPU_ISA_III);
1238		c->fpu_msk31 |= FPU_CSR_CONDX;
1239		c->options = R4K_OPTS;
1240		c->tlbsize = 32;
1241		switch (c->processor_id & 0xf0) {
1242		case PRID_REV_VR4111:
1243			c->cputype = CPU_VR4111;
1244			__cpu_name[cpu] = "NEC VR4111";
1245			break;
1246		case PRID_REV_VR4121:
1247			c->cputype = CPU_VR4121;
1248			__cpu_name[cpu] = "NEC VR4121";
1249			break;
1250		case PRID_REV_VR4122:
1251			if ((c->processor_id & 0xf) < 0x3) {
1252				c->cputype = CPU_VR4122;
1253				__cpu_name[cpu] = "NEC VR4122";
1254			} else {
1255				c->cputype = CPU_VR4181A;
1256				__cpu_name[cpu] = "NEC VR4181A";
1257			}
1258			break;
1259		case PRID_REV_VR4130:
1260			if ((c->processor_id & 0xf) < 0x4) {
1261				c->cputype = CPU_VR4131;
1262				__cpu_name[cpu] = "NEC VR4131";
1263			} else {
1264				c->cputype = CPU_VR4133;
1265				c->options |= MIPS_CPU_LLSC;
1266				__cpu_name[cpu] = "NEC VR4133";
1267			}
1268			break;
1269		default:
1270			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1271			c->cputype = CPU_VR41XX;
1272			__cpu_name[cpu] = "NEC Vr41xx";
1273			break;
1274		}
1275		break;
1276	case PRID_IMP_R4300:
1277		c->cputype = CPU_R4300;
1278		__cpu_name[cpu] = "R4300";
1279		set_isa(c, MIPS_CPU_ISA_III);
1280		c->fpu_msk31 |= FPU_CSR_CONDX;
1281		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1282			     MIPS_CPU_LLSC;
1283		c->tlbsize = 32;
1284		break;
1285	case PRID_IMP_R4600:
1286		c->cputype = CPU_R4600;
1287		__cpu_name[cpu] = "R4600";
1288		set_isa(c, MIPS_CPU_ISA_III);
1289		c->fpu_msk31 |= FPU_CSR_CONDX;
1290		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1291			     MIPS_CPU_LLSC;
1292		c->tlbsize = 48;
1293		break;
1294	#if 0
1295	case PRID_IMP_R4650:
1296		/*
1297		 * This processor doesn't have an MMU, so it's not
1298		 * "real easy" to run Linux on it. It is left purely
1299		 * for documentation.  Commented out because it shares
1300		 * it's c0_prid id number with the TX3900.
1301		 */
1302		c->cputype = CPU_R4650;
1303		__cpu_name[cpu] = "R4650";
1304		set_isa(c, MIPS_CPU_ISA_III);
1305		c->fpu_msk31 |= FPU_CSR_CONDX;
1306		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1307		c->tlbsize = 48;
1308		break;
1309	#endif
1310	case PRID_IMP_TX39:
1311		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1312		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1313
1314		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1315			c->cputype = CPU_TX3927;
1316			__cpu_name[cpu] = "TX3927";
1317			c->tlbsize = 64;
1318		} else {
1319			switch (c->processor_id & PRID_REV_MASK) {
1320			case PRID_REV_TX3912:
1321				c->cputype = CPU_TX3912;
1322				__cpu_name[cpu] = "TX3912";
1323				c->tlbsize = 32;
1324				break;
1325			case PRID_REV_TX3922:
1326				c->cputype = CPU_TX3922;
1327				__cpu_name[cpu] = "TX3922";
1328				c->tlbsize = 64;
1329				break;
1330			}
1331		}
1332		break;
1333	case PRID_IMP_R4700:
1334		c->cputype = CPU_R4700;
1335		__cpu_name[cpu] = "R4700";
1336		set_isa(c, MIPS_CPU_ISA_III);
1337		c->fpu_msk31 |= FPU_CSR_CONDX;
1338		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1339			     MIPS_CPU_LLSC;
1340		c->tlbsize = 48;
1341		break;
1342	case PRID_IMP_TX49:
1343		c->cputype = CPU_TX49XX;
1344		__cpu_name[cpu] = "R49XX";
1345		set_isa(c, MIPS_CPU_ISA_III);
1346		c->fpu_msk31 |= FPU_CSR_CONDX;
1347		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1348		if (!(c->processor_id & 0x08))
1349			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1350		c->tlbsize = 48;
1351		break;
1352	case PRID_IMP_R5000:
1353		c->cputype = CPU_R5000;
1354		__cpu_name[cpu] = "R5000";
1355		set_isa(c, MIPS_CPU_ISA_IV);
1356		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1357			     MIPS_CPU_LLSC;
1358		c->tlbsize = 48;
1359		break;
1360	case PRID_IMP_R5432:
1361		c->cputype = CPU_R5432;
1362		__cpu_name[cpu] = "R5432";
1363		set_isa(c, MIPS_CPU_ISA_IV);
1364		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1365			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1366		c->tlbsize = 48;
1367		break;
1368	case PRID_IMP_R5500:
1369		c->cputype = CPU_R5500;
1370		__cpu_name[cpu] = "R5500";
1371		set_isa(c, MIPS_CPU_ISA_IV);
1372		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1373			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1374		c->tlbsize = 48;
1375		break;
1376	case PRID_IMP_NEVADA:
1377		c->cputype = CPU_NEVADA;
1378		__cpu_name[cpu] = "Nevada";
1379		set_isa(c, MIPS_CPU_ISA_IV);
1380		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1381			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1382		c->tlbsize = 48;
1383		break;
1384	case PRID_IMP_R6000:
1385		c->cputype = CPU_R6000;
1386		__cpu_name[cpu] = "R6000";
1387		set_isa(c, MIPS_CPU_ISA_II);
1388		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1389		c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1390			     MIPS_CPU_LLSC;
1391		c->tlbsize = 32;
1392		break;
1393	case PRID_IMP_R6000A:
1394		c->cputype = CPU_R6000A;
1395		__cpu_name[cpu] = "R6000A";
1396		set_isa(c, MIPS_CPU_ISA_II);
1397		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1398		c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1399			     MIPS_CPU_LLSC;
1400		c->tlbsize = 32;
1401		break;
1402	case PRID_IMP_RM7000:
1403		c->cputype = CPU_RM7000;
1404		__cpu_name[cpu] = "RM7000";
1405		set_isa(c, MIPS_CPU_ISA_IV);
1406		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1407			     MIPS_CPU_LLSC;
1408		/*
1409		 * Undocumented RM7000:	 Bit 29 in the info register of
1410		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1411		 * entries.
1412		 *
1413		 * 29	   1 =>	   64 entry JTLB
1414		 *	   0 =>	   48 entry JTLB
1415		 */
1416		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1417		break;
1418	case PRID_IMP_R8000:
1419		c->cputype = CPU_R8000;
1420		__cpu_name[cpu] = "RM8000";
1421		set_isa(c, MIPS_CPU_ISA_IV);
1422		c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1423			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1424			     MIPS_CPU_LLSC;
1425		c->tlbsize = 384;      /* has weird TLB: 3-way x 128 */
1426		break;
1427	case PRID_IMP_R10000:
1428		c->cputype = CPU_R10000;
1429		__cpu_name[cpu] = "R10000";
1430		set_isa(c, MIPS_CPU_ISA_IV);
1431		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1432			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1433			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1434			     MIPS_CPU_LLSC;
1435		c->tlbsize = 64;
1436		break;
1437	case PRID_IMP_R12000:
1438		c->cputype = CPU_R12000;
1439		__cpu_name[cpu] = "R12000";
1440		set_isa(c, MIPS_CPU_ISA_IV);
1441		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1442			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1443			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1444			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1445		c->tlbsize = 64;
1446		break;
1447	case PRID_IMP_R14000:
1448		if (((c->processor_id >> 4) & 0x0f) > 2) {
1449			c->cputype = CPU_R16000;
1450			__cpu_name[cpu] = "R16000";
1451		} else {
1452			c->cputype = CPU_R14000;
1453			__cpu_name[cpu] = "R14000";
1454		}
1455		set_isa(c, MIPS_CPU_ISA_IV);
1456		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1457			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1458			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1459			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1460		c->tlbsize = 64;
1461		break;
1462	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1463		switch (c->processor_id & PRID_REV_MASK) {
1464		case PRID_REV_LOONGSON2E:
1465			c->cputype = CPU_LOONGSON2;
1466			__cpu_name[cpu] = "ICT Loongson-2";
1467			set_elf_platform(cpu, "loongson2e");
1468			set_isa(c, MIPS_CPU_ISA_III);
1469			c->fpu_msk31 |= FPU_CSR_CONDX;
1470			break;
1471		case PRID_REV_LOONGSON2F:
1472			c->cputype = CPU_LOONGSON2;
1473			__cpu_name[cpu] = "ICT Loongson-2";
1474			set_elf_platform(cpu, "loongson2f");
1475			set_isa(c, MIPS_CPU_ISA_III);
1476			c->fpu_msk31 |= FPU_CSR_CONDX;
1477			break;
1478		case PRID_REV_LOONGSON3A_R1:
1479			c->cputype = CPU_LOONGSON3;
1480			__cpu_name[cpu] = "ICT Loongson-3";
1481			set_elf_platform(cpu, "loongson3a");
1482			set_isa(c, MIPS_CPU_ISA_M64R1);
1483			break;
1484		case PRID_REV_LOONGSON3B_R1:
1485		case PRID_REV_LOONGSON3B_R2:
1486			c->cputype = CPU_LOONGSON3;
1487			__cpu_name[cpu] = "ICT Loongson-3";
1488			set_elf_platform(cpu, "loongson3b");
1489			set_isa(c, MIPS_CPU_ISA_M64R1);
1490			break;
1491		}
1492
1493		c->options = R4K_OPTS |
1494			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1495			     MIPS_CPU_32FPR;
1496		c->tlbsize = 64;
1497		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1498		break;
1499	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1500		decode_configs(c);
1501
1502		c->cputype = CPU_LOONGSON1;
1503
1504		switch (c->processor_id & PRID_REV_MASK) {
1505		case PRID_REV_LOONGSON1B:
1506			__cpu_name[cpu] = "Loongson 1B";
1507			break;
1508		}
1509
1510		break;
1511	}
1512}
1513
1514static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1515{
1516	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1517	switch (c->processor_id & PRID_IMP_MASK) {
1518	case PRID_IMP_QEMU_GENERIC:
1519		c->writecombine = _CACHE_UNCACHED;
1520		c->cputype = CPU_QEMU_GENERIC;
1521		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1522		break;
1523	case PRID_IMP_4KC:
1524		c->cputype = CPU_4KC;
1525		c->writecombine = _CACHE_UNCACHED;
1526		__cpu_name[cpu] = "MIPS 4Kc";
1527		break;
1528	case PRID_IMP_4KEC:
1529	case PRID_IMP_4KECR2:
1530		c->cputype = CPU_4KEC;
1531		c->writecombine = _CACHE_UNCACHED;
1532		__cpu_name[cpu] = "MIPS 4KEc";
1533		break;
1534	case PRID_IMP_4KSC:
1535	case PRID_IMP_4KSD:
1536		c->cputype = CPU_4KSC;
1537		c->writecombine = _CACHE_UNCACHED;
1538		__cpu_name[cpu] = "MIPS 4KSc";
1539		break;
1540	case PRID_IMP_5KC:
1541		c->cputype = CPU_5KC;
1542		c->writecombine = _CACHE_UNCACHED;
1543		__cpu_name[cpu] = "MIPS 5Kc";
1544		break;
1545	case PRID_IMP_5KE:
1546		c->cputype = CPU_5KE;
1547		c->writecombine = _CACHE_UNCACHED;
1548		__cpu_name[cpu] = "MIPS 5KE";
1549		break;
1550	case PRID_IMP_20KC:
1551		c->cputype = CPU_20KC;
1552		c->writecombine = _CACHE_UNCACHED;
1553		__cpu_name[cpu] = "MIPS 20Kc";
1554		break;
1555	case PRID_IMP_24K:
1556		c->cputype = CPU_24K;
1557		c->writecombine = _CACHE_UNCACHED;
1558		__cpu_name[cpu] = "MIPS 24Kc";
1559		break;
1560	case PRID_IMP_24KE:
1561		c->cputype = CPU_24K;
1562		c->writecombine = _CACHE_UNCACHED;
1563		__cpu_name[cpu] = "MIPS 24KEc";
1564		break;
1565	case PRID_IMP_25KF:
1566		c->cputype = CPU_25KF;
1567		c->writecombine = _CACHE_UNCACHED;
1568		__cpu_name[cpu] = "MIPS 25Kc";
1569		break;
1570	case PRID_IMP_34K:
1571		c->cputype = CPU_34K;
1572		c->writecombine = _CACHE_UNCACHED;
1573		__cpu_name[cpu] = "MIPS 34Kc";
1574		break;
1575	case PRID_IMP_74K:
1576		c->cputype = CPU_74K;
1577		c->writecombine = _CACHE_UNCACHED;
1578		__cpu_name[cpu] = "MIPS 74Kc";
1579		break;
1580	case PRID_IMP_M14KC:
1581		c->cputype = CPU_M14KC;
1582		c->writecombine = _CACHE_UNCACHED;
1583		__cpu_name[cpu] = "MIPS M14Kc";
1584		break;
1585	case PRID_IMP_M14KEC:
1586		c->cputype = CPU_M14KEC;
1587		c->writecombine = _CACHE_UNCACHED;
1588		__cpu_name[cpu] = "MIPS M14KEc";
1589		break;
1590	case PRID_IMP_1004K:
1591		c->cputype = CPU_1004K;
1592		c->writecombine = _CACHE_UNCACHED;
1593		__cpu_name[cpu] = "MIPS 1004Kc";
1594		break;
1595	case PRID_IMP_1074K:
1596		c->cputype = CPU_1074K;
1597		c->writecombine = _CACHE_UNCACHED;
1598		__cpu_name[cpu] = "MIPS 1074Kc";
1599		break;
1600	case PRID_IMP_INTERAPTIV_UP:
1601		c->cputype = CPU_INTERAPTIV;
1602		__cpu_name[cpu] = "MIPS interAptiv";
1603		break;
1604	case PRID_IMP_INTERAPTIV_MP:
1605		c->cputype = CPU_INTERAPTIV;
1606		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1607		break;
1608	case PRID_IMP_PROAPTIV_UP:
1609		c->cputype = CPU_PROAPTIV;
1610		__cpu_name[cpu] = "MIPS proAptiv";
1611		break;
1612	case PRID_IMP_PROAPTIV_MP:
1613		c->cputype = CPU_PROAPTIV;
1614		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1615		break;
1616	case PRID_IMP_P5600:
1617		c->cputype = CPU_P5600;
1618		__cpu_name[cpu] = "MIPS P5600";
1619		break;
1620	case PRID_IMP_P6600:
1621		c->cputype = CPU_P6600;
1622		__cpu_name[cpu] = "MIPS P6600";
1623		break;
1624	case PRID_IMP_I6400:
1625		c->cputype = CPU_I6400;
1626		__cpu_name[cpu] = "MIPS I6400";
1627		break;
1628	case PRID_IMP_M5150:
1629		c->cputype = CPU_M5150;
1630		__cpu_name[cpu] = "MIPS M5150";
1631		break;
1632	case PRID_IMP_M6250:
1633		c->cputype = CPU_M6250;
1634		__cpu_name[cpu] = "MIPS M6250";
1635		break;
1636	}
1637
1638	decode_configs(c);
1639
1640	spram_config();
1641}
1642
1643static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1644{
1645	decode_configs(c);
1646	switch (c->processor_id & PRID_IMP_MASK) {
1647	case PRID_IMP_AU1_REV1:
1648	case PRID_IMP_AU1_REV2:
1649		c->cputype = CPU_ALCHEMY;
1650		switch ((c->processor_id >> 24) & 0xff) {
1651		case 0:
1652			__cpu_name[cpu] = "Au1000";
1653			break;
1654		case 1:
1655			__cpu_name[cpu] = "Au1500";
1656			break;
1657		case 2:
1658			__cpu_name[cpu] = "Au1100";
1659			break;
1660		case 3:
1661			__cpu_name[cpu] = "Au1550";
1662			break;
1663		case 4:
1664			__cpu_name[cpu] = "Au1200";
1665			if ((c->processor_id & PRID_REV_MASK) == 2)
1666				__cpu_name[cpu] = "Au1250";
1667			break;
1668		case 5:
1669			__cpu_name[cpu] = "Au1210";
1670			break;
1671		default:
1672			__cpu_name[cpu] = "Au1xxx";
1673			break;
1674		}
1675		break;
1676	}
1677}
1678
1679static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1680{
1681	decode_configs(c);
1682
1683	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1684	switch (c->processor_id & PRID_IMP_MASK) {
1685	case PRID_IMP_SB1:
1686		c->cputype = CPU_SB1;
1687		__cpu_name[cpu] = "SiByte SB1";
1688		/* FPU in pass1 is known to have issues. */
1689		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1690			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1691		break;
1692	case PRID_IMP_SB1A:
1693		c->cputype = CPU_SB1A;
1694		__cpu_name[cpu] = "SiByte SB1A";
1695		break;
1696	}
1697}
1698
1699static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1700{
1701	decode_configs(c);
1702	switch (c->processor_id & PRID_IMP_MASK) {
1703	case PRID_IMP_SR71000:
1704		c->cputype = CPU_SR71000;
1705		__cpu_name[cpu] = "Sandcraft SR71000";
1706		c->scache.ways = 8;
1707		c->tlbsize = 64;
1708		break;
1709	}
1710}
1711
1712static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1713{
1714	decode_configs(c);
1715	switch (c->processor_id & PRID_IMP_MASK) {
1716	case PRID_IMP_PR4450:
1717		c->cputype = CPU_PR4450;
1718		__cpu_name[cpu] = "Philips PR4450";
1719		set_isa(c, MIPS_CPU_ISA_M32R1);
1720		break;
1721	}
1722}
1723
1724static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1725{
1726	decode_configs(c);
1727	switch (c->processor_id & PRID_IMP_MASK) {
1728	case PRID_IMP_BMIPS32_REV4:
1729	case PRID_IMP_BMIPS32_REV8:
1730		c->cputype = CPU_BMIPS32;
1731		__cpu_name[cpu] = "Broadcom BMIPS32";
1732		set_elf_platform(cpu, "bmips32");
1733		break;
1734	case PRID_IMP_BMIPS3300:
1735	case PRID_IMP_BMIPS3300_ALT:
1736	case PRID_IMP_BMIPS3300_BUG:
1737		c->cputype = CPU_BMIPS3300;
1738		__cpu_name[cpu] = "Broadcom BMIPS3300";
1739		set_elf_platform(cpu, "bmips3300");
1740		break;
1741	case PRID_IMP_BMIPS43XX: {
1742		int rev = c->processor_id & PRID_REV_MASK;
1743
1744		if (rev >= PRID_REV_BMIPS4380_LO &&
1745				rev <= PRID_REV_BMIPS4380_HI) {
1746			c->cputype = CPU_BMIPS4380;
1747			__cpu_name[cpu] = "Broadcom BMIPS4380";
1748			set_elf_platform(cpu, "bmips4380");
1749			c->options |= MIPS_CPU_RIXI;
1750		} else {
1751			c->cputype = CPU_BMIPS4350;
1752			__cpu_name[cpu] = "Broadcom BMIPS4350";
1753			set_elf_platform(cpu, "bmips4350");
1754		}
1755		break;
1756	}
1757	case PRID_IMP_BMIPS5000:
1758	case PRID_IMP_BMIPS5200:
1759		c->cputype = CPU_BMIPS5000;
1760		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1761			__cpu_name[cpu] = "Broadcom BMIPS5200";
1762		else
1763			__cpu_name[cpu] = "Broadcom BMIPS5000";
1764		set_elf_platform(cpu, "bmips5000");
1765		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1766		break;
1767	}
1768}
1769
1770static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1771{
1772	decode_configs(c);
1773	switch (c->processor_id & PRID_IMP_MASK) {
1774	case PRID_IMP_CAVIUM_CN38XX:
1775	case PRID_IMP_CAVIUM_CN31XX:
1776	case PRID_IMP_CAVIUM_CN30XX:
1777		c->cputype = CPU_CAVIUM_OCTEON;
1778		__cpu_name[cpu] = "Cavium Octeon";
1779		goto platform;
1780	case PRID_IMP_CAVIUM_CN58XX:
1781	case PRID_IMP_CAVIUM_CN56XX:
1782	case PRID_IMP_CAVIUM_CN50XX:
1783	case PRID_IMP_CAVIUM_CN52XX:
1784		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1785		__cpu_name[cpu] = "Cavium Octeon+";
1786platform:
1787		set_elf_platform(cpu, "octeon");
1788		break;
1789	case PRID_IMP_CAVIUM_CN61XX:
1790	case PRID_IMP_CAVIUM_CN63XX:
1791	case PRID_IMP_CAVIUM_CN66XX:
1792	case PRID_IMP_CAVIUM_CN68XX:
1793	case PRID_IMP_CAVIUM_CNF71XX:
1794		c->cputype = CPU_CAVIUM_OCTEON2;
1795		__cpu_name[cpu] = "Cavium Octeon II";
1796		set_elf_platform(cpu, "octeon2");
1797		break;
1798	case PRID_IMP_CAVIUM_CN70XX:
1799	case PRID_IMP_CAVIUM_CN73XX:
1800	case PRID_IMP_CAVIUM_CNF75XX:
1801	case PRID_IMP_CAVIUM_CN78XX:
1802		c->cputype = CPU_CAVIUM_OCTEON3;
1803		__cpu_name[cpu] = "Cavium Octeon III";
1804		set_elf_platform(cpu, "octeon3");
1805		break;
1806	default:
1807		printk(KERN_INFO "Unknown Octeon chip!\n");
1808		c->cputype = CPU_UNKNOWN;
1809		break;
1810	}
1811}
1812
1813static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1814{
1815	switch (c->processor_id & PRID_IMP_MASK) {
1816	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1817		switch (c->processor_id & PRID_REV_MASK) {
1818		case PRID_REV_LOONGSON3A_R2:
1819			c->cputype = CPU_LOONGSON3;
1820			__cpu_name[cpu] = "ICT Loongson-3";
1821			set_elf_platform(cpu, "loongson3a");
1822			set_isa(c, MIPS_CPU_ISA_M64R2);
1823			break;
1824		}
1825
1826		decode_configs(c);
1827		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1828		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1829		break;
1830	default:
1831		panic("Unknown Loongson Processor ID!");
1832		break;
1833	}
1834}
1835
1836static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1837{
1838	decode_configs(c);
1839	/* JZRISC does not implement the CP0 counter. */
1840	c->options &= ~MIPS_CPU_COUNTER;
1841	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1842	switch (c->processor_id & PRID_IMP_MASK) {
1843	case PRID_IMP_JZRISC:
1844		c->cputype = CPU_JZRISC;
1845		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1846		__cpu_name[cpu] = "Ingenic JZRISC";
1847		break;
1848	default:
1849		panic("Unknown Ingenic Processor ID!");
1850		break;
1851	}
1852}
1853
1854static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1855{
1856	decode_configs(c);
1857
1858	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1859		c->cputype = CPU_ALCHEMY;
1860		__cpu_name[cpu] = "Au1300";
1861		/* following stuff is not for Alchemy */
1862		return;
1863	}
1864
1865	c->options = (MIPS_CPU_TLB	 |
1866			MIPS_CPU_4KEX	 |
1867			MIPS_CPU_COUNTER |
1868			MIPS_CPU_DIVEC	 |
1869			MIPS_CPU_WATCH	 |
1870			MIPS_CPU_EJTAG	 |
1871			MIPS_CPU_LLSC);
1872
1873	switch (c->processor_id & PRID_IMP_MASK) {
1874	case PRID_IMP_NETLOGIC_XLP2XX:
1875	case PRID_IMP_NETLOGIC_XLP9XX:
1876	case PRID_IMP_NETLOGIC_XLP5XX:
1877		c->cputype = CPU_XLP;
1878		__cpu_name[cpu] = "Broadcom XLPII";
1879		break;
1880
1881	case PRID_IMP_NETLOGIC_XLP8XX:
1882	case PRID_IMP_NETLOGIC_XLP3XX:
1883		c->cputype = CPU_XLP;
1884		__cpu_name[cpu] = "Netlogic XLP";
1885		break;
1886
1887	case PRID_IMP_NETLOGIC_XLR732:
1888	case PRID_IMP_NETLOGIC_XLR716:
1889	case PRID_IMP_NETLOGIC_XLR532:
1890	case PRID_IMP_NETLOGIC_XLR308:
1891	case PRID_IMP_NETLOGIC_XLR532C:
1892	case PRID_IMP_NETLOGIC_XLR516C:
1893	case PRID_IMP_NETLOGIC_XLR508C:
1894	case PRID_IMP_NETLOGIC_XLR308C:
1895		c->cputype = CPU_XLR;
1896		__cpu_name[cpu] = "Netlogic XLR";
1897		break;
1898
1899	case PRID_IMP_NETLOGIC_XLS608:
1900	case PRID_IMP_NETLOGIC_XLS408:
1901	case PRID_IMP_NETLOGIC_XLS404:
1902	case PRID_IMP_NETLOGIC_XLS208:
1903	case PRID_IMP_NETLOGIC_XLS204:
1904	case PRID_IMP_NETLOGIC_XLS108:
1905	case PRID_IMP_NETLOGIC_XLS104:
1906	case PRID_IMP_NETLOGIC_XLS616B:
1907	case PRID_IMP_NETLOGIC_XLS608B:
1908	case PRID_IMP_NETLOGIC_XLS416B:
1909	case PRID_IMP_NETLOGIC_XLS412B:
1910	case PRID_IMP_NETLOGIC_XLS408B:
1911	case PRID_IMP_NETLOGIC_XLS404B:
1912		c->cputype = CPU_XLR;
1913		__cpu_name[cpu] = "Netlogic XLS";
1914		break;
1915
1916	default:
1917		pr_info("Unknown Netlogic chip id [%02x]!\n",
1918		       c->processor_id);
1919		c->cputype = CPU_XLR;
1920		break;
1921	}
1922
1923	if (c->cputype == CPU_XLP) {
1924		set_isa(c, MIPS_CPU_ISA_M64R2);
1925		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1926		/* This will be updated again after all threads are woken up */
1927		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1928	} else {
1929		set_isa(c, MIPS_CPU_ISA_M64R1);
1930		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1931	}
1932	c->kscratch_mask = 0xf;
1933}
1934
1935#ifdef CONFIG_64BIT
1936/* For use by uaccess.h */
1937u64 __ua_limit;
1938EXPORT_SYMBOL(__ua_limit);
1939#endif
1940
1941const char *__cpu_name[NR_CPUS];
1942const char *__elf_platform;
1943
1944void cpu_probe(void)
1945{
1946	struct cpuinfo_mips *c = &current_cpu_data;
1947	unsigned int cpu = smp_processor_id();
1948
1949	c->processor_id = PRID_IMP_UNKNOWN;
1950	c->fpu_id	= FPIR_IMP_NONE;
1951	c->cputype	= CPU_UNKNOWN;
1952	c->writecombine = _CACHE_UNCACHED;
1953
1954	c->fpu_csr31	= FPU_CSR_RN;
1955	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1956
1957	c->processor_id = read_c0_prid();
1958	switch (c->processor_id & PRID_COMP_MASK) {
1959	case PRID_COMP_LEGACY:
1960		cpu_probe_legacy(c, cpu);
1961		break;
1962	case PRID_COMP_MIPS:
1963		cpu_probe_mips(c, cpu);
1964		break;
1965	case PRID_COMP_ALCHEMY:
1966		cpu_probe_alchemy(c, cpu);
1967		break;
1968	case PRID_COMP_SIBYTE:
1969		cpu_probe_sibyte(c, cpu);
1970		break;
1971	case PRID_COMP_BROADCOM:
1972		cpu_probe_broadcom(c, cpu);
1973		break;
1974	case PRID_COMP_SANDCRAFT:
1975		cpu_probe_sandcraft(c, cpu);
1976		break;
1977	case PRID_COMP_NXP:
1978		cpu_probe_nxp(c, cpu);
1979		break;
1980	case PRID_COMP_CAVIUM:
1981		cpu_probe_cavium(c, cpu);
1982		break;
1983	case PRID_COMP_LOONGSON:
1984		cpu_probe_loongson(c, cpu);
1985		break;
1986	case PRID_COMP_INGENIC_D0:
1987	case PRID_COMP_INGENIC_D1:
1988	case PRID_COMP_INGENIC_E1:
1989		cpu_probe_ingenic(c, cpu);
1990		break;
1991	case PRID_COMP_NETLOGIC:
1992		cpu_probe_netlogic(c, cpu);
1993		break;
1994	}
1995
1996	BUG_ON(!__cpu_name[cpu]);
1997	BUG_ON(c->cputype == CPU_UNKNOWN);
1998
1999	/*
2000	 * Platform code can force the cpu type to optimize code
2001	 * generation. In that case be sure the cpu type is correctly
2002	 * manually setup otherwise it could trigger some nasty bugs.
2003	 */
2004	BUG_ON(current_cpu_type() != c->cputype);
2005
2006	if (cpu_has_rixi) {
2007		/* Enable the RIXI exceptions */
2008		set_c0_pagegrain(PG_IEC);
2009		back_to_back_c0_hazard();
2010		/* Verify the IEC bit is set */
2011		if (read_c0_pagegrain() & PG_IEC)
2012			c->options |= MIPS_CPU_RIXIEX;
2013	}
2014
2015	if (mips_fpu_disabled)
2016		c->options &= ~MIPS_CPU_FPU;
2017
2018	if (mips_dsp_disabled)
2019		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2020
2021	if (mips_htw_disabled) {
2022		c->options &= ~MIPS_CPU_HTW;
2023		write_c0_pwctl(read_c0_pwctl() &
2024			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2025	}
2026
2027	if (c->options & MIPS_CPU_FPU)
2028		cpu_set_fpu_opts(c);
2029	else
2030		cpu_set_nofpu_opts(c);
2031
2032	if (cpu_has_bp_ghist)
2033		write_c0_r10k_diag(read_c0_r10k_diag() |
2034				   R10K_DIAG_E_GHIST);
2035
2036	if (cpu_has_mips_r2_r6) {
2037		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2038		/* R2 has Performance Counter Interrupt indicator */
2039		c->options |= MIPS_CPU_PCI;
2040	}
2041	else
2042		c->srsets = 1;
2043
2044	if (cpu_has_mips_r6)
2045		elf_hwcap |= HWCAP_MIPS_R6;
2046
2047	if (cpu_has_msa) {
2048		c->msa_id = cpu_get_msa_id();
2049		WARN(c->msa_id & MSA_IR_WRPF,
2050		     "Vector register partitioning unimplemented!");
2051		elf_hwcap |= HWCAP_MIPS_MSA;
2052	}
2053
2054	if (cpu_has_vz)
2055		cpu_probe_vz(c);
2056
2057	cpu_probe_vmbits(c);
2058
2059#ifdef CONFIG_64BIT
2060	if (cpu == 0)
2061		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2062#endif
2063}
2064
2065void cpu_report(void)
2066{
2067	struct cpuinfo_mips *c = &current_cpu_data;
2068
2069	pr_info("CPU%d revision is: %08x (%s)\n",
2070		smp_processor_id(), c->processor_id, cpu_name_string());
2071	if (c->options & MIPS_CPU_FPU)
2072		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2073	if (cpu_has_msa)
2074		pr_info("MSA revision is: %08x\n", c->msa_id);
2075}