Loading...
1/*
2 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
3 *
4 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation;
8 * version 2.1 of the License (not later!)
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this program; if not, see <http://www.gnu.org/licenses>
17 *
18 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19 *
20 * The parts for function graph printing was taken and modified from the
21 * Linux Kernel that were written by
22 * - Copyright (C) 2009 Frederic Weisbecker,
23 * Frederic Weisbecker gave his permission to relicense the code to
24 * the Lesser General Public License.
25 */
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <stdarg.h>
30#include <ctype.h>
31#include <errno.h>
32#include <stdint.h>
33#include <limits.h>
34
35#include <netinet/ip6.h>
36#include "event-parse.h"
37#include "event-utils.h"
38
39static const char *input_buf;
40static unsigned long long input_buf_ptr;
41static unsigned long long input_buf_siz;
42
43static int is_flag_field;
44static int is_symbolic_field;
45
46static int show_warning = 1;
47
48#define do_warning(fmt, ...) \
49 do { \
50 if (show_warning) \
51 warning(fmt, ##__VA_ARGS__); \
52 } while (0)
53
54#define do_warning_event(event, fmt, ...) \
55 do { \
56 if (!show_warning) \
57 continue; \
58 \
59 if (event) \
60 warning("[%s:%s] " fmt, event->system, \
61 event->name, ##__VA_ARGS__); \
62 else \
63 warning(fmt, ##__VA_ARGS__); \
64 } while (0)
65
66static void init_input_buf(const char *buf, unsigned long long size)
67{
68 input_buf = buf;
69 input_buf_siz = size;
70 input_buf_ptr = 0;
71}
72
73const char *pevent_get_input_buf(void)
74{
75 return input_buf;
76}
77
78unsigned long long pevent_get_input_buf_ptr(void)
79{
80 return input_buf_ptr;
81}
82
83struct event_handler {
84 struct event_handler *next;
85 int id;
86 const char *sys_name;
87 const char *event_name;
88 pevent_event_handler_func func;
89 void *context;
90};
91
92struct pevent_func_params {
93 struct pevent_func_params *next;
94 enum pevent_func_arg_type type;
95};
96
97struct pevent_function_handler {
98 struct pevent_function_handler *next;
99 enum pevent_func_arg_type ret_type;
100 char *name;
101 pevent_func_handler func;
102 struct pevent_func_params *params;
103 int nr_args;
104};
105
106static unsigned long long
107process_defined_func(struct trace_seq *s, void *data, int size,
108 struct event_format *event, struct print_arg *arg);
109
110static void free_func_handle(struct pevent_function_handler *func);
111
112/**
113 * pevent_buffer_init - init buffer for parsing
114 * @buf: buffer to parse
115 * @size: the size of the buffer
116 *
117 * For use with pevent_read_token(), this initializes the internal
118 * buffer that pevent_read_token() will parse.
119 */
120void pevent_buffer_init(const char *buf, unsigned long long size)
121{
122 init_input_buf(buf, size);
123}
124
125void breakpoint(void)
126{
127 static int x;
128 x++;
129}
130
131struct print_arg *alloc_arg(void)
132{
133 return calloc(1, sizeof(struct print_arg));
134}
135
136struct cmdline {
137 char *comm;
138 int pid;
139};
140
141static int cmdline_cmp(const void *a, const void *b)
142{
143 const struct cmdline *ca = a;
144 const struct cmdline *cb = b;
145
146 if (ca->pid < cb->pid)
147 return -1;
148 if (ca->pid > cb->pid)
149 return 1;
150
151 return 0;
152}
153
154struct cmdline_list {
155 struct cmdline_list *next;
156 char *comm;
157 int pid;
158};
159
160static int cmdline_init(struct pevent *pevent)
161{
162 struct cmdline_list *cmdlist = pevent->cmdlist;
163 struct cmdline_list *item;
164 struct cmdline *cmdlines;
165 int i;
166
167 cmdlines = malloc(sizeof(*cmdlines) * pevent->cmdline_count);
168 if (!cmdlines)
169 return -1;
170
171 i = 0;
172 while (cmdlist) {
173 cmdlines[i].pid = cmdlist->pid;
174 cmdlines[i].comm = cmdlist->comm;
175 i++;
176 item = cmdlist;
177 cmdlist = cmdlist->next;
178 free(item);
179 }
180
181 qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
182
183 pevent->cmdlines = cmdlines;
184 pevent->cmdlist = NULL;
185
186 return 0;
187}
188
189static const char *find_cmdline(struct pevent *pevent, int pid)
190{
191 const struct cmdline *comm;
192 struct cmdline key;
193
194 if (!pid)
195 return "<idle>";
196
197 if (!pevent->cmdlines && cmdline_init(pevent))
198 return "<not enough memory for cmdlines!>";
199
200 key.pid = pid;
201
202 comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
203 sizeof(*pevent->cmdlines), cmdline_cmp);
204
205 if (comm)
206 return comm->comm;
207 return "<...>";
208}
209
210/**
211 * pevent_pid_is_registered - return if a pid has a cmdline registered
212 * @pevent: handle for the pevent
213 * @pid: The pid to check if it has a cmdline registered with.
214 *
215 * Returns 1 if the pid has a cmdline mapped to it
216 * 0 otherwise.
217 */
218int pevent_pid_is_registered(struct pevent *pevent, int pid)
219{
220 const struct cmdline *comm;
221 struct cmdline key;
222
223 if (!pid)
224 return 1;
225
226 if (!pevent->cmdlines && cmdline_init(pevent))
227 return 0;
228
229 key.pid = pid;
230
231 comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
232 sizeof(*pevent->cmdlines), cmdline_cmp);
233
234 if (comm)
235 return 1;
236 return 0;
237}
238
239/*
240 * If the command lines have been converted to an array, then
241 * we must add this pid. This is much slower than when cmdlines
242 * are added before the array is initialized.
243 */
244static int add_new_comm(struct pevent *pevent, const char *comm, int pid)
245{
246 struct cmdline *cmdlines = pevent->cmdlines;
247 const struct cmdline *cmdline;
248 struct cmdline key;
249
250 if (!pid)
251 return 0;
252
253 /* avoid duplicates */
254 key.pid = pid;
255
256 cmdline = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
257 sizeof(*pevent->cmdlines), cmdline_cmp);
258 if (cmdline) {
259 errno = EEXIST;
260 return -1;
261 }
262
263 cmdlines = realloc(cmdlines, sizeof(*cmdlines) * (pevent->cmdline_count + 1));
264 if (!cmdlines) {
265 errno = ENOMEM;
266 return -1;
267 }
268
269 cmdlines[pevent->cmdline_count].comm = strdup(comm);
270 if (!cmdlines[pevent->cmdline_count].comm) {
271 free(cmdlines);
272 errno = ENOMEM;
273 return -1;
274 }
275
276 cmdlines[pevent->cmdline_count].pid = pid;
277
278 if (cmdlines[pevent->cmdline_count].comm)
279 pevent->cmdline_count++;
280
281 qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
282 pevent->cmdlines = cmdlines;
283
284 return 0;
285}
286
287/**
288 * pevent_register_comm - register a pid / comm mapping
289 * @pevent: handle for the pevent
290 * @comm: the command line to register
291 * @pid: the pid to map the command line to
292 *
293 * This adds a mapping to search for command line names with
294 * a given pid. The comm is duplicated.
295 */
296int pevent_register_comm(struct pevent *pevent, const char *comm, int pid)
297{
298 struct cmdline_list *item;
299
300 if (pevent->cmdlines)
301 return add_new_comm(pevent, comm, pid);
302
303 item = malloc(sizeof(*item));
304 if (!item)
305 return -1;
306
307 if (comm)
308 item->comm = strdup(comm);
309 else
310 item->comm = strdup("<...>");
311 if (!item->comm) {
312 free(item);
313 return -1;
314 }
315 item->pid = pid;
316 item->next = pevent->cmdlist;
317
318 pevent->cmdlist = item;
319 pevent->cmdline_count++;
320
321 return 0;
322}
323
324int pevent_register_trace_clock(struct pevent *pevent, const char *trace_clock)
325{
326 pevent->trace_clock = strdup(trace_clock);
327 if (!pevent->trace_clock) {
328 errno = ENOMEM;
329 return -1;
330 }
331 return 0;
332}
333
334struct func_map {
335 unsigned long long addr;
336 char *func;
337 char *mod;
338};
339
340struct func_list {
341 struct func_list *next;
342 unsigned long long addr;
343 char *func;
344 char *mod;
345};
346
347static int func_cmp(const void *a, const void *b)
348{
349 const struct func_map *fa = a;
350 const struct func_map *fb = b;
351
352 if (fa->addr < fb->addr)
353 return -1;
354 if (fa->addr > fb->addr)
355 return 1;
356
357 return 0;
358}
359
360/*
361 * We are searching for a record in between, not an exact
362 * match.
363 */
364static int func_bcmp(const void *a, const void *b)
365{
366 const struct func_map *fa = a;
367 const struct func_map *fb = b;
368
369 if ((fa->addr == fb->addr) ||
370
371 (fa->addr > fb->addr &&
372 fa->addr < (fb+1)->addr))
373 return 0;
374
375 if (fa->addr < fb->addr)
376 return -1;
377
378 return 1;
379}
380
381static int func_map_init(struct pevent *pevent)
382{
383 struct func_list *funclist;
384 struct func_list *item;
385 struct func_map *func_map;
386 int i;
387
388 func_map = malloc(sizeof(*func_map) * (pevent->func_count + 1));
389 if (!func_map)
390 return -1;
391
392 funclist = pevent->funclist;
393
394 i = 0;
395 while (funclist) {
396 func_map[i].func = funclist->func;
397 func_map[i].addr = funclist->addr;
398 func_map[i].mod = funclist->mod;
399 i++;
400 item = funclist;
401 funclist = funclist->next;
402 free(item);
403 }
404
405 qsort(func_map, pevent->func_count, sizeof(*func_map), func_cmp);
406
407 /*
408 * Add a special record at the end.
409 */
410 func_map[pevent->func_count].func = NULL;
411 func_map[pevent->func_count].addr = 0;
412 func_map[pevent->func_count].mod = NULL;
413
414 pevent->func_map = func_map;
415 pevent->funclist = NULL;
416
417 return 0;
418}
419
420static struct func_map *
421__find_func(struct pevent *pevent, unsigned long long addr)
422{
423 struct func_map *func;
424 struct func_map key;
425
426 if (!pevent->func_map)
427 func_map_init(pevent);
428
429 key.addr = addr;
430
431 func = bsearch(&key, pevent->func_map, pevent->func_count,
432 sizeof(*pevent->func_map), func_bcmp);
433
434 return func;
435}
436
437struct func_resolver {
438 pevent_func_resolver_t *func;
439 void *priv;
440 struct func_map map;
441};
442
443/**
444 * pevent_set_function_resolver - set an alternative function resolver
445 * @pevent: handle for the pevent
446 * @resolver: function to be used
447 * @priv: resolver function private state.
448 *
449 * Some tools may have already a way to resolve kernel functions, allow them to
450 * keep using it instead of duplicating all the entries inside
451 * pevent->funclist.
452 */
453int pevent_set_function_resolver(struct pevent *pevent,
454 pevent_func_resolver_t *func, void *priv)
455{
456 struct func_resolver *resolver = malloc(sizeof(*resolver));
457
458 if (resolver == NULL)
459 return -1;
460
461 resolver->func = func;
462 resolver->priv = priv;
463
464 free(pevent->func_resolver);
465 pevent->func_resolver = resolver;
466
467 return 0;
468}
469
470/**
471 * pevent_reset_function_resolver - reset alternative function resolver
472 * @pevent: handle for the pevent
473 *
474 * Stop using whatever alternative resolver was set, use the default
475 * one instead.
476 */
477void pevent_reset_function_resolver(struct pevent *pevent)
478{
479 free(pevent->func_resolver);
480 pevent->func_resolver = NULL;
481}
482
483static struct func_map *
484find_func(struct pevent *pevent, unsigned long long addr)
485{
486 struct func_map *map;
487
488 if (!pevent->func_resolver)
489 return __find_func(pevent, addr);
490
491 map = &pevent->func_resolver->map;
492 map->mod = NULL;
493 map->addr = addr;
494 map->func = pevent->func_resolver->func(pevent->func_resolver->priv,
495 &map->addr, &map->mod);
496 if (map->func == NULL)
497 return NULL;
498
499 return map;
500}
501
502/**
503 * pevent_find_function - find a function by a given address
504 * @pevent: handle for the pevent
505 * @addr: the address to find the function with
506 *
507 * Returns a pointer to the function stored that has the given
508 * address. Note, the address does not have to be exact, it
509 * will select the function that would contain the address.
510 */
511const char *pevent_find_function(struct pevent *pevent, unsigned long long addr)
512{
513 struct func_map *map;
514
515 map = find_func(pevent, addr);
516 if (!map)
517 return NULL;
518
519 return map->func;
520}
521
522/**
523 * pevent_find_function_address - find a function address by a given address
524 * @pevent: handle for the pevent
525 * @addr: the address to find the function with
526 *
527 * Returns the address the function starts at. This can be used in
528 * conjunction with pevent_find_function to print both the function
529 * name and the function offset.
530 */
531unsigned long long
532pevent_find_function_address(struct pevent *pevent, unsigned long long addr)
533{
534 struct func_map *map;
535
536 map = find_func(pevent, addr);
537 if (!map)
538 return 0;
539
540 return map->addr;
541}
542
543/**
544 * pevent_register_function - register a function with a given address
545 * @pevent: handle for the pevent
546 * @function: the function name to register
547 * @addr: the address the function starts at
548 * @mod: the kernel module the function may be in (NULL for none)
549 *
550 * This registers a function name with an address and module.
551 * The @func passed in is duplicated.
552 */
553int pevent_register_function(struct pevent *pevent, char *func,
554 unsigned long long addr, char *mod)
555{
556 struct func_list *item = malloc(sizeof(*item));
557
558 if (!item)
559 return -1;
560
561 item->next = pevent->funclist;
562 item->func = strdup(func);
563 if (!item->func)
564 goto out_free;
565
566 if (mod) {
567 item->mod = strdup(mod);
568 if (!item->mod)
569 goto out_free_func;
570 } else
571 item->mod = NULL;
572 item->addr = addr;
573
574 pevent->funclist = item;
575 pevent->func_count++;
576
577 return 0;
578
579out_free_func:
580 free(item->func);
581 item->func = NULL;
582out_free:
583 free(item);
584 errno = ENOMEM;
585 return -1;
586}
587
588/**
589 * pevent_print_funcs - print out the stored functions
590 * @pevent: handle for the pevent
591 *
592 * This prints out the stored functions.
593 */
594void pevent_print_funcs(struct pevent *pevent)
595{
596 int i;
597
598 if (!pevent->func_map)
599 func_map_init(pevent);
600
601 for (i = 0; i < (int)pevent->func_count; i++) {
602 printf("%016llx %s",
603 pevent->func_map[i].addr,
604 pevent->func_map[i].func);
605 if (pevent->func_map[i].mod)
606 printf(" [%s]\n", pevent->func_map[i].mod);
607 else
608 printf("\n");
609 }
610}
611
612struct printk_map {
613 unsigned long long addr;
614 char *printk;
615};
616
617struct printk_list {
618 struct printk_list *next;
619 unsigned long long addr;
620 char *printk;
621};
622
623static int printk_cmp(const void *a, const void *b)
624{
625 const struct printk_map *pa = a;
626 const struct printk_map *pb = b;
627
628 if (pa->addr < pb->addr)
629 return -1;
630 if (pa->addr > pb->addr)
631 return 1;
632
633 return 0;
634}
635
636static int printk_map_init(struct pevent *pevent)
637{
638 struct printk_list *printklist;
639 struct printk_list *item;
640 struct printk_map *printk_map;
641 int i;
642
643 printk_map = malloc(sizeof(*printk_map) * (pevent->printk_count + 1));
644 if (!printk_map)
645 return -1;
646
647 printklist = pevent->printklist;
648
649 i = 0;
650 while (printklist) {
651 printk_map[i].printk = printklist->printk;
652 printk_map[i].addr = printklist->addr;
653 i++;
654 item = printklist;
655 printklist = printklist->next;
656 free(item);
657 }
658
659 qsort(printk_map, pevent->printk_count, sizeof(*printk_map), printk_cmp);
660
661 pevent->printk_map = printk_map;
662 pevent->printklist = NULL;
663
664 return 0;
665}
666
667static struct printk_map *
668find_printk(struct pevent *pevent, unsigned long long addr)
669{
670 struct printk_map *printk;
671 struct printk_map key;
672
673 if (!pevent->printk_map && printk_map_init(pevent))
674 return NULL;
675
676 key.addr = addr;
677
678 printk = bsearch(&key, pevent->printk_map, pevent->printk_count,
679 sizeof(*pevent->printk_map), printk_cmp);
680
681 return printk;
682}
683
684/**
685 * pevent_register_print_string - register a string by its address
686 * @pevent: handle for the pevent
687 * @fmt: the string format to register
688 * @addr: the address the string was located at
689 *
690 * This registers a string by the address it was stored in the kernel.
691 * The @fmt passed in is duplicated.
692 */
693int pevent_register_print_string(struct pevent *pevent, const char *fmt,
694 unsigned long long addr)
695{
696 struct printk_list *item = malloc(sizeof(*item));
697 char *p;
698
699 if (!item)
700 return -1;
701
702 item->next = pevent->printklist;
703 item->addr = addr;
704
705 /* Strip off quotes and '\n' from the end */
706 if (fmt[0] == '"')
707 fmt++;
708 item->printk = strdup(fmt);
709 if (!item->printk)
710 goto out_free;
711
712 p = item->printk + strlen(item->printk) - 1;
713 if (*p == '"')
714 *p = 0;
715
716 p -= 2;
717 if (strcmp(p, "\\n") == 0)
718 *p = 0;
719
720 pevent->printklist = item;
721 pevent->printk_count++;
722
723 return 0;
724
725out_free:
726 free(item);
727 errno = ENOMEM;
728 return -1;
729}
730
731/**
732 * pevent_print_printk - print out the stored strings
733 * @pevent: handle for the pevent
734 *
735 * This prints the string formats that were stored.
736 */
737void pevent_print_printk(struct pevent *pevent)
738{
739 int i;
740
741 if (!pevent->printk_map)
742 printk_map_init(pevent);
743
744 for (i = 0; i < (int)pevent->printk_count; i++) {
745 printf("%016llx %s\n",
746 pevent->printk_map[i].addr,
747 pevent->printk_map[i].printk);
748 }
749}
750
751static struct event_format *alloc_event(void)
752{
753 return calloc(1, sizeof(struct event_format));
754}
755
756static int add_event(struct pevent *pevent, struct event_format *event)
757{
758 int i;
759 struct event_format **events = realloc(pevent->events, sizeof(event) *
760 (pevent->nr_events + 1));
761 if (!events)
762 return -1;
763
764 pevent->events = events;
765
766 for (i = 0; i < pevent->nr_events; i++) {
767 if (pevent->events[i]->id > event->id)
768 break;
769 }
770 if (i < pevent->nr_events)
771 memmove(&pevent->events[i + 1],
772 &pevent->events[i],
773 sizeof(event) * (pevent->nr_events - i));
774
775 pevent->events[i] = event;
776 pevent->nr_events++;
777
778 event->pevent = pevent;
779
780 return 0;
781}
782
783static int event_item_type(enum event_type type)
784{
785 switch (type) {
786 case EVENT_ITEM ... EVENT_SQUOTE:
787 return 1;
788 case EVENT_ERROR ... EVENT_DELIM:
789 default:
790 return 0;
791 }
792}
793
794static void free_flag_sym(struct print_flag_sym *fsym)
795{
796 struct print_flag_sym *next;
797
798 while (fsym) {
799 next = fsym->next;
800 free(fsym->value);
801 free(fsym->str);
802 free(fsym);
803 fsym = next;
804 }
805}
806
807static void free_arg(struct print_arg *arg)
808{
809 struct print_arg *farg;
810
811 if (!arg)
812 return;
813
814 switch (arg->type) {
815 case PRINT_ATOM:
816 free(arg->atom.atom);
817 break;
818 case PRINT_FIELD:
819 free(arg->field.name);
820 break;
821 case PRINT_FLAGS:
822 free_arg(arg->flags.field);
823 free(arg->flags.delim);
824 free_flag_sym(arg->flags.flags);
825 break;
826 case PRINT_SYMBOL:
827 free_arg(arg->symbol.field);
828 free_flag_sym(arg->symbol.symbols);
829 break;
830 case PRINT_HEX:
831 free_arg(arg->hex.field);
832 free_arg(arg->hex.size);
833 break;
834 case PRINT_INT_ARRAY:
835 free_arg(arg->int_array.field);
836 free_arg(arg->int_array.count);
837 free_arg(arg->int_array.el_size);
838 break;
839 case PRINT_TYPE:
840 free(arg->typecast.type);
841 free_arg(arg->typecast.item);
842 break;
843 case PRINT_STRING:
844 case PRINT_BSTRING:
845 free(arg->string.string);
846 break;
847 case PRINT_BITMASK:
848 free(arg->bitmask.bitmask);
849 break;
850 case PRINT_DYNAMIC_ARRAY:
851 case PRINT_DYNAMIC_ARRAY_LEN:
852 free(arg->dynarray.index);
853 break;
854 case PRINT_OP:
855 free(arg->op.op);
856 free_arg(arg->op.left);
857 free_arg(arg->op.right);
858 break;
859 case PRINT_FUNC:
860 while (arg->func.args) {
861 farg = arg->func.args;
862 arg->func.args = farg->next;
863 free_arg(farg);
864 }
865 break;
866
867 case PRINT_NULL:
868 default:
869 break;
870 }
871
872 free(arg);
873}
874
875static enum event_type get_type(int ch)
876{
877 if (ch == '\n')
878 return EVENT_NEWLINE;
879 if (isspace(ch))
880 return EVENT_SPACE;
881 if (isalnum(ch) || ch == '_')
882 return EVENT_ITEM;
883 if (ch == '\'')
884 return EVENT_SQUOTE;
885 if (ch == '"')
886 return EVENT_DQUOTE;
887 if (!isprint(ch))
888 return EVENT_NONE;
889 if (ch == '(' || ch == ')' || ch == ',')
890 return EVENT_DELIM;
891
892 return EVENT_OP;
893}
894
895static int __read_char(void)
896{
897 if (input_buf_ptr >= input_buf_siz)
898 return -1;
899
900 return input_buf[input_buf_ptr++];
901}
902
903static int __peek_char(void)
904{
905 if (input_buf_ptr >= input_buf_siz)
906 return -1;
907
908 return input_buf[input_buf_ptr];
909}
910
911/**
912 * pevent_peek_char - peek at the next character that will be read
913 *
914 * Returns the next character read, or -1 if end of buffer.
915 */
916int pevent_peek_char(void)
917{
918 return __peek_char();
919}
920
921static int extend_token(char **tok, char *buf, int size)
922{
923 char *newtok = realloc(*tok, size);
924
925 if (!newtok) {
926 free(*tok);
927 *tok = NULL;
928 return -1;
929 }
930
931 if (!*tok)
932 strcpy(newtok, buf);
933 else
934 strcat(newtok, buf);
935 *tok = newtok;
936
937 return 0;
938}
939
940static enum event_type force_token(const char *str, char **tok);
941
942static enum event_type __read_token(char **tok)
943{
944 char buf[BUFSIZ];
945 int ch, last_ch, quote_ch, next_ch;
946 int i = 0;
947 int tok_size = 0;
948 enum event_type type;
949
950 *tok = NULL;
951
952
953 ch = __read_char();
954 if (ch < 0)
955 return EVENT_NONE;
956
957 type = get_type(ch);
958 if (type == EVENT_NONE)
959 return type;
960
961 buf[i++] = ch;
962
963 switch (type) {
964 case EVENT_NEWLINE:
965 case EVENT_DELIM:
966 if (asprintf(tok, "%c", ch) < 0)
967 return EVENT_ERROR;
968
969 return type;
970
971 case EVENT_OP:
972 switch (ch) {
973 case '-':
974 next_ch = __peek_char();
975 if (next_ch == '>') {
976 buf[i++] = __read_char();
977 break;
978 }
979 /* fall through */
980 case '+':
981 case '|':
982 case '&':
983 case '>':
984 case '<':
985 last_ch = ch;
986 ch = __peek_char();
987 if (ch != last_ch)
988 goto test_equal;
989 buf[i++] = __read_char();
990 switch (last_ch) {
991 case '>':
992 case '<':
993 goto test_equal;
994 default:
995 break;
996 }
997 break;
998 case '!':
999 case '=':
1000 goto test_equal;
1001 default: /* what should we do instead? */
1002 break;
1003 }
1004 buf[i] = 0;
1005 *tok = strdup(buf);
1006 return type;
1007
1008 test_equal:
1009 ch = __peek_char();
1010 if (ch == '=')
1011 buf[i++] = __read_char();
1012 goto out;
1013
1014 case EVENT_DQUOTE:
1015 case EVENT_SQUOTE:
1016 /* don't keep quotes */
1017 i--;
1018 quote_ch = ch;
1019 last_ch = 0;
1020 concat:
1021 do {
1022 if (i == (BUFSIZ - 1)) {
1023 buf[i] = 0;
1024 tok_size += BUFSIZ;
1025
1026 if (extend_token(tok, buf, tok_size) < 0)
1027 return EVENT_NONE;
1028 i = 0;
1029 }
1030 last_ch = ch;
1031 ch = __read_char();
1032 buf[i++] = ch;
1033 /* the '\' '\' will cancel itself */
1034 if (ch == '\\' && last_ch == '\\')
1035 last_ch = 0;
1036 } while (ch != quote_ch || last_ch == '\\');
1037 /* remove the last quote */
1038 i--;
1039
1040 /*
1041 * For strings (double quotes) check the next token.
1042 * If it is another string, concatinate the two.
1043 */
1044 if (type == EVENT_DQUOTE) {
1045 unsigned long long save_input_buf_ptr = input_buf_ptr;
1046
1047 do {
1048 ch = __read_char();
1049 } while (isspace(ch));
1050 if (ch == '"')
1051 goto concat;
1052 input_buf_ptr = save_input_buf_ptr;
1053 }
1054
1055 goto out;
1056
1057 case EVENT_ERROR ... EVENT_SPACE:
1058 case EVENT_ITEM:
1059 default:
1060 break;
1061 }
1062
1063 while (get_type(__peek_char()) == type) {
1064 if (i == (BUFSIZ - 1)) {
1065 buf[i] = 0;
1066 tok_size += BUFSIZ;
1067
1068 if (extend_token(tok, buf, tok_size) < 0)
1069 return EVENT_NONE;
1070 i = 0;
1071 }
1072 ch = __read_char();
1073 buf[i++] = ch;
1074 }
1075
1076 out:
1077 buf[i] = 0;
1078 if (extend_token(tok, buf, tok_size + i + 1) < 0)
1079 return EVENT_NONE;
1080
1081 if (type == EVENT_ITEM) {
1082 /*
1083 * Older versions of the kernel has a bug that
1084 * creates invalid symbols and will break the mac80211
1085 * parsing. This is a work around to that bug.
1086 *
1087 * See Linux kernel commit:
1088 * 811cb50baf63461ce0bdb234927046131fc7fa8b
1089 */
1090 if (strcmp(*tok, "LOCAL_PR_FMT") == 0) {
1091 free(*tok);
1092 *tok = NULL;
1093 return force_token("\"\%s\" ", tok);
1094 } else if (strcmp(*tok, "STA_PR_FMT") == 0) {
1095 free(*tok);
1096 *tok = NULL;
1097 return force_token("\" sta:%pM\" ", tok);
1098 } else if (strcmp(*tok, "VIF_PR_FMT") == 0) {
1099 free(*tok);
1100 *tok = NULL;
1101 return force_token("\" vif:%p(%d)\" ", tok);
1102 }
1103 }
1104
1105 return type;
1106}
1107
1108static enum event_type force_token(const char *str, char **tok)
1109{
1110 const char *save_input_buf;
1111 unsigned long long save_input_buf_ptr;
1112 unsigned long long save_input_buf_siz;
1113 enum event_type type;
1114
1115 /* save off the current input pointers */
1116 save_input_buf = input_buf;
1117 save_input_buf_ptr = input_buf_ptr;
1118 save_input_buf_siz = input_buf_siz;
1119
1120 init_input_buf(str, strlen(str));
1121
1122 type = __read_token(tok);
1123
1124 /* reset back to original token */
1125 input_buf = save_input_buf;
1126 input_buf_ptr = save_input_buf_ptr;
1127 input_buf_siz = save_input_buf_siz;
1128
1129 return type;
1130}
1131
1132static void free_token(char *tok)
1133{
1134 if (tok)
1135 free(tok);
1136}
1137
1138static enum event_type read_token(char **tok)
1139{
1140 enum event_type type;
1141
1142 for (;;) {
1143 type = __read_token(tok);
1144 if (type != EVENT_SPACE)
1145 return type;
1146
1147 free_token(*tok);
1148 }
1149
1150 /* not reached */
1151 *tok = NULL;
1152 return EVENT_NONE;
1153}
1154
1155/**
1156 * pevent_read_token - access to utilites to use the pevent parser
1157 * @tok: The token to return
1158 *
1159 * This will parse tokens from the string given by
1160 * pevent_init_data().
1161 *
1162 * Returns the token type.
1163 */
1164enum event_type pevent_read_token(char **tok)
1165{
1166 return read_token(tok);
1167}
1168
1169/**
1170 * pevent_free_token - free a token returned by pevent_read_token
1171 * @token: the token to free
1172 */
1173void pevent_free_token(char *token)
1174{
1175 free_token(token);
1176}
1177
1178/* no newline */
1179static enum event_type read_token_item(char **tok)
1180{
1181 enum event_type type;
1182
1183 for (;;) {
1184 type = __read_token(tok);
1185 if (type != EVENT_SPACE && type != EVENT_NEWLINE)
1186 return type;
1187 free_token(*tok);
1188 *tok = NULL;
1189 }
1190
1191 /* not reached */
1192 *tok = NULL;
1193 return EVENT_NONE;
1194}
1195
1196static int test_type(enum event_type type, enum event_type expect)
1197{
1198 if (type != expect) {
1199 do_warning("Error: expected type %d but read %d",
1200 expect, type);
1201 return -1;
1202 }
1203 return 0;
1204}
1205
1206static int test_type_token(enum event_type type, const char *token,
1207 enum event_type expect, const char *expect_tok)
1208{
1209 if (type != expect) {
1210 do_warning("Error: expected type %d but read %d",
1211 expect, type);
1212 return -1;
1213 }
1214
1215 if (strcmp(token, expect_tok) != 0) {
1216 do_warning("Error: expected '%s' but read '%s'",
1217 expect_tok, token);
1218 return -1;
1219 }
1220 return 0;
1221}
1222
1223static int __read_expect_type(enum event_type expect, char **tok, int newline_ok)
1224{
1225 enum event_type type;
1226
1227 if (newline_ok)
1228 type = read_token(tok);
1229 else
1230 type = read_token_item(tok);
1231 return test_type(type, expect);
1232}
1233
1234static int read_expect_type(enum event_type expect, char **tok)
1235{
1236 return __read_expect_type(expect, tok, 1);
1237}
1238
1239static int __read_expected(enum event_type expect, const char *str,
1240 int newline_ok)
1241{
1242 enum event_type type;
1243 char *token;
1244 int ret;
1245
1246 if (newline_ok)
1247 type = read_token(&token);
1248 else
1249 type = read_token_item(&token);
1250
1251 ret = test_type_token(type, token, expect, str);
1252
1253 free_token(token);
1254
1255 return ret;
1256}
1257
1258static int read_expected(enum event_type expect, const char *str)
1259{
1260 return __read_expected(expect, str, 1);
1261}
1262
1263static int read_expected_item(enum event_type expect, const char *str)
1264{
1265 return __read_expected(expect, str, 0);
1266}
1267
1268static char *event_read_name(void)
1269{
1270 char *token;
1271
1272 if (read_expected(EVENT_ITEM, "name") < 0)
1273 return NULL;
1274
1275 if (read_expected(EVENT_OP, ":") < 0)
1276 return NULL;
1277
1278 if (read_expect_type(EVENT_ITEM, &token) < 0)
1279 goto fail;
1280
1281 return token;
1282
1283 fail:
1284 free_token(token);
1285 return NULL;
1286}
1287
1288static int event_read_id(void)
1289{
1290 char *token;
1291 int id;
1292
1293 if (read_expected_item(EVENT_ITEM, "ID") < 0)
1294 return -1;
1295
1296 if (read_expected(EVENT_OP, ":") < 0)
1297 return -1;
1298
1299 if (read_expect_type(EVENT_ITEM, &token) < 0)
1300 goto fail;
1301
1302 id = strtoul(token, NULL, 0);
1303 free_token(token);
1304 return id;
1305
1306 fail:
1307 free_token(token);
1308 return -1;
1309}
1310
1311static int field_is_string(struct format_field *field)
1312{
1313 if ((field->flags & FIELD_IS_ARRAY) &&
1314 (strstr(field->type, "char") || strstr(field->type, "u8") ||
1315 strstr(field->type, "s8")))
1316 return 1;
1317
1318 return 0;
1319}
1320
1321static int field_is_dynamic(struct format_field *field)
1322{
1323 if (strncmp(field->type, "__data_loc", 10) == 0)
1324 return 1;
1325
1326 return 0;
1327}
1328
1329static int field_is_long(struct format_field *field)
1330{
1331 /* includes long long */
1332 if (strstr(field->type, "long"))
1333 return 1;
1334
1335 return 0;
1336}
1337
1338static unsigned int type_size(const char *name)
1339{
1340 /* This covers all FIELD_IS_STRING types. */
1341 static struct {
1342 const char *type;
1343 unsigned int size;
1344 } table[] = {
1345 { "u8", 1 },
1346 { "u16", 2 },
1347 { "u32", 4 },
1348 { "u64", 8 },
1349 { "s8", 1 },
1350 { "s16", 2 },
1351 { "s32", 4 },
1352 { "s64", 8 },
1353 { "char", 1 },
1354 { },
1355 };
1356 int i;
1357
1358 for (i = 0; table[i].type; i++) {
1359 if (!strcmp(table[i].type, name))
1360 return table[i].size;
1361 }
1362
1363 return 0;
1364}
1365
1366static int event_read_fields(struct event_format *event, struct format_field **fields)
1367{
1368 struct format_field *field = NULL;
1369 enum event_type type;
1370 char *token;
1371 char *last_token;
1372 int count = 0;
1373
1374 do {
1375 unsigned int size_dynamic = 0;
1376
1377 type = read_token(&token);
1378 if (type == EVENT_NEWLINE) {
1379 free_token(token);
1380 return count;
1381 }
1382
1383 count++;
1384
1385 if (test_type_token(type, token, EVENT_ITEM, "field"))
1386 goto fail;
1387 free_token(token);
1388
1389 type = read_token(&token);
1390 /*
1391 * The ftrace fields may still use the "special" name.
1392 * Just ignore it.
1393 */
1394 if (event->flags & EVENT_FL_ISFTRACE &&
1395 type == EVENT_ITEM && strcmp(token, "special") == 0) {
1396 free_token(token);
1397 type = read_token(&token);
1398 }
1399
1400 if (test_type_token(type, token, EVENT_OP, ":") < 0)
1401 goto fail;
1402
1403 free_token(token);
1404 if (read_expect_type(EVENT_ITEM, &token) < 0)
1405 goto fail;
1406
1407 last_token = token;
1408
1409 field = calloc(1, sizeof(*field));
1410 if (!field)
1411 goto fail;
1412
1413 field->event = event;
1414
1415 /* read the rest of the type */
1416 for (;;) {
1417 type = read_token(&token);
1418 if (type == EVENT_ITEM ||
1419 (type == EVENT_OP && strcmp(token, "*") == 0) ||
1420 /*
1421 * Some of the ftrace fields are broken and have
1422 * an illegal "." in them.
1423 */
1424 (event->flags & EVENT_FL_ISFTRACE &&
1425 type == EVENT_OP && strcmp(token, ".") == 0)) {
1426
1427 if (strcmp(token, "*") == 0)
1428 field->flags |= FIELD_IS_POINTER;
1429
1430 if (field->type) {
1431 char *new_type;
1432 new_type = realloc(field->type,
1433 strlen(field->type) +
1434 strlen(last_token) + 2);
1435 if (!new_type) {
1436 free(last_token);
1437 goto fail;
1438 }
1439 field->type = new_type;
1440 strcat(field->type, " ");
1441 strcat(field->type, last_token);
1442 free(last_token);
1443 } else
1444 field->type = last_token;
1445 last_token = token;
1446 continue;
1447 }
1448
1449 break;
1450 }
1451
1452 if (!field->type) {
1453 do_warning_event(event, "%s: no type found", __func__);
1454 goto fail;
1455 }
1456 field->name = field->alias = last_token;
1457
1458 if (test_type(type, EVENT_OP))
1459 goto fail;
1460
1461 if (strcmp(token, "[") == 0) {
1462 enum event_type last_type = type;
1463 char *brackets = token;
1464 char *new_brackets;
1465 int len;
1466
1467 field->flags |= FIELD_IS_ARRAY;
1468
1469 type = read_token(&token);
1470
1471 if (type == EVENT_ITEM)
1472 field->arraylen = strtoul(token, NULL, 0);
1473 else
1474 field->arraylen = 0;
1475
1476 while (strcmp(token, "]") != 0) {
1477 if (last_type == EVENT_ITEM &&
1478 type == EVENT_ITEM)
1479 len = 2;
1480 else
1481 len = 1;
1482 last_type = type;
1483
1484 new_brackets = realloc(brackets,
1485 strlen(brackets) +
1486 strlen(token) + len);
1487 if (!new_brackets) {
1488 free(brackets);
1489 goto fail;
1490 }
1491 brackets = new_brackets;
1492 if (len == 2)
1493 strcat(brackets, " ");
1494 strcat(brackets, token);
1495 /* We only care about the last token */
1496 field->arraylen = strtoul(token, NULL, 0);
1497 free_token(token);
1498 type = read_token(&token);
1499 if (type == EVENT_NONE) {
1500 do_warning_event(event, "failed to find token");
1501 goto fail;
1502 }
1503 }
1504
1505 free_token(token);
1506
1507 new_brackets = realloc(brackets, strlen(brackets) + 2);
1508 if (!new_brackets) {
1509 free(brackets);
1510 goto fail;
1511 }
1512 brackets = new_brackets;
1513 strcat(brackets, "]");
1514
1515 /* add brackets to type */
1516
1517 type = read_token(&token);
1518 /*
1519 * If the next token is not an OP, then it is of
1520 * the format: type [] item;
1521 */
1522 if (type == EVENT_ITEM) {
1523 char *new_type;
1524 new_type = realloc(field->type,
1525 strlen(field->type) +
1526 strlen(field->name) +
1527 strlen(brackets) + 2);
1528 if (!new_type) {
1529 free(brackets);
1530 goto fail;
1531 }
1532 field->type = new_type;
1533 strcat(field->type, " ");
1534 strcat(field->type, field->name);
1535 size_dynamic = type_size(field->name);
1536 free_token(field->name);
1537 strcat(field->type, brackets);
1538 field->name = field->alias = token;
1539 type = read_token(&token);
1540 } else {
1541 char *new_type;
1542 new_type = realloc(field->type,
1543 strlen(field->type) +
1544 strlen(brackets) + 1);
1545 if (!new_type) {
1546 free(brackets);
1547 goto fail;
1548 }
1549 field->type = new_type;
1550 strcat(field->type, brackets);
1551 }
1552 free(brackets);
1553 }
1554
1555 if (field_is_string(field))
1556 field->flags |= FIELD_IS_STRING;
1557 if (field_is_dynamic(field))
1558 field->flags |= FIELD_IS_DYNAMIC;
1559 if (field_is_long(field))
1560 field->flags |= FIELD_IS_LONG;
1561
1562 if (test_type_token(type, token, EVENT_OP, ";"))
1563 goto fail;
1564 free_token(token);
1565
1566 if (read_expected(EVENT_ITEM, "offset") < 0)
1567 goto fail_expect;
1568
1569 if (read_expected(EVENT_OP, ":") < 0)
1570 goto fail_expect;
1571
1572 if (read_expect_type(EVENT_ITEM, &token))
1573 goto fail;
1574 field->offset = strtoul(token, NULL, 0);
1575 free_token(token);
1576
1577 if (read_expected(EVENT_OP, ";") < 0)
1578 goto fail_expect;
1579
1580 if (read_expected(EVENT_ITEM, "size") < 0)
1581 goto fail_expect;
1582
1583 if (read_expected(EVENT_OP, ":") < 0)
1584 goto fail_expect;
1585
1586 if (read_expect_type(EVENT_ITEM, &token))
1587 goto fail;
1588 field->size = strtoul(token, NULL, 0);
1589 free_token(token);
1590
1591 if (read_expected(EVENT_OP, ";") < 0)
1592 goto fail_expect;
1593
1594 type = read_token(&token);
1595 if (type != EVENT_NEWLINE) {
1596 /* newer versions of the kernel have a "signed" type */
1597 if (test_type_token(type, token, EVENT_ITEM, "signed"))
1598 goto fail;
1599
1600 free_token(token);
1601
1602 if (read_expected(EVENT_OP, ":") < 0)
1603 goto fail_expect;
1604
1605 if (read_expect_type(EVENT_ITEM, &token))
1606 goto fail;
1607
1608 if (strtoul(token, NULL, 0))
1609 field->flags |= FIELD_IS_SIGNED;
1610
1611 free_token(token);
1612 if (read_expected(EVENT_OP, ";") < 0)
1613 goto fail_expect;
1614
1615 if (read_expect_type(EVENT_NEWLINE, &token))
1616 goto fail;
1617 }
1618
1619 free_token(token);
1620
1621 if (field->flags & FIELD_IS_ARRAY) {
1622 if (field->arraylen)
1623 field->elementsize = field->size / field->arraylen;
1624 else if (field->flags & FIELD_IS_DYNAMIC)
1625 field->elementsize = size_dynamic;
1626 else if (field->flags & FIELD_IS_STRING)
1627 field->elementsize = 1;
1628 else if (field->flags & FIELD_IS_LONG)
1629 field->elementsize = event->pevent ?
1630 event->pevent->long_size :
1631 sizeof(long);
1632 } else
1633 field->elementsize = field->size;
1634
1635 *fields = field;
1636 fields = &field->next;
1637
1638 } while (1);
1639
1640 return 0;
1641
1642fail:
1643 free_token(token);
1644fail_expect:
1645 if (field) {
1646 free(field->type);
1647 free(field->name);
1648 free(field);
1649 }
1650 return -1;
1651}
1652
1653static int event_read_format(struct event_format *event)
1654{
1655 char *token;
1656 int ret;
1657
1658 if (read_expected_item(EVENT_ITEM, "format") < 0)
1659 return -1;
1660
1661 if (read_expected(EVENT_OP, ":") < 0)
1662 return -1;
1663
1664 if (read_expect_type(EVENT_NEWLINE, &token))
1665 goto fail;
1666 free_token(token);
1667
1668 ret = event_read_fields(event, &event->format.common_fields);
1669 if (ret < 0)
1670 return ret;
1671 event->format.nr_common = ret;
1672
1673 ret = event_read_fields(event, &event->format.fields);
1674 if (ret < 0)
1675 return ret;
1676 event->format.nr_fields = ret;
1677
1678 return 0;
1679
1680 fail:
1681 free_token(token);
1682 return -1;
1683}
1684
1685static enum event_type
1686process_arg_token(struct event_format *event, struct print_arg *arg,
1687 char **tok, enum event_type type);
1688
1689static enum event_type
1690process_arg(struct event_format *event, struct print_arg *arg, char **tok)
1691{
1692 enum event_type type;
1693 char *token;
1694
1695 type = read_token(&token);
1696 *tok = token;
1697
1698 return process_arg_token(event, arg, tok, type);
1699}
1700
1701static enum event_type
1702process_op(struct event_format *event, struct print_arg *arg, char **tok);
1703
1704/*
1705 * For __print_symbolic() and __print_flags, we need to completely
1706 * evaluate the first argument, which defines what to print next.
1707 */
1708static enum event_type
1709process_field_arg(struct event_format *event, struct print_arg *arg, char **tok)
1710{
1711 enum event_type type;
1712
1713 type = process_arg(event, arg, tok);
1714
1715 while (type == EVENT_OP) {
1716 type = process_op(event, arg, tok);
1717 }
1718
1719 return type;
1720}
1721
1722static enum event_type
1723process_cond(struct event_format *event, struct print_arg *top, char **tok)
1724{
1725 struct print_arg *arg, *left, *right;
1726 enum event_type type;
1727 char *token = NULL;
1728
1729 arg = alloc_arg();
1730 left = alloc_arg();
1731 right = alloc_arg();
1732
1733 if (!arg || !left || !right) {
1734 do_warning_event(event, "%s: not enough memory!", __func__);
1735 /* arg will be freed at out_free */
1736 free_arg(left);
1737 free_arg(right);
1738 goto out_free;
1739 }
1740
1741 arg->type = PRINT_OP;
1742 arg->op.left = left;
1743 arg->op.right = right;
1744
1745 *tok = NULL;
1746 type = process_arg(event, left, &token);
1747
1748 again:
1749 if (type == EVENT_ERROR)
1750 goto out_free;
1751
1752 /* Handle other operations in the arguments */
1753 if (type == EVENT_OP && strcmp(token, ":") != 0) {
1754 type = process_op(event, left, &token);
1755 goto again;
1756 }
1757
1758 if (test_type_token(type, token, EVENT_OP, ":"))
1759 goto out_free;
1760
1761 arg->op.op = token;
1762
1763 type = process_arg(event, right, &token);
1764
1765 top->op.right = arg;
1766
1767 *tok = token;
1768 return type;
1769
1770out_free:
1771 /* Top may point to itself */
1772 top->op.right = NULL;
1773 free_token(token);
1774 free_arg(arg);
1775 return EVENT_ERROR;
1776}
1777
1778static enum event_type
1779process_array(struct event_format *event, struct print_arg *top, char **tok)
1780{
1781 struct print_arg *arg;
1782 enum event_type type;
1783 char *token = NULL;
1784
1785 arg = alloc_arg();
1786 if (!arg) {
1787 do_warning_event(event, "%s: not enough memory!", __func__);
1788 /* '*tok' is set to top->op.op. No need to free. */
1789 *tok = NULL;
1790 return EVENT_ERROR;
1791 }
1792
1793 *tok = NULL;
1794 type = process_arg(event, arg, &token);
1795 if (test_type_token(type, token, EVENT_OP, "]"))
1796 goto out_free;
1797
1798 top->op.right = arg;
1799
1800 free_token(token);
1801 type = read_token_item(&token);
1802 *tok = token;
1803
1804 return type;
1805
1806out_free:
1807 free_token(token);
1808 free_arg(arg);
1809 return EVENT_ERROR;
1810}
1811
1812static int get_op_prio(char *op)
1813{
1814 if (!op[1]) {
1815 switch (op[0]) {
1816 case '~':
1817 case '!':
1818 return 4;
1819 case '*':
1820 case '/':
1821 case '%':
1822 return 6;
1823 case '+':
1824 case '-':
1825 return 7;
1826 /* '>>' and '<<' are 8 */
1827 case '<':
1828 case '>':
1829 return 9;
1830 /* '==' and '!=' are 10 */
1831 case '&':
1832 return 11;
1833 case '^':
1834 return 12;
1835 case '|':
1836 return 13;
1837 case '?':
1838 return 16;
1839 default:
1840 do_warning("unknown op '%c'", op[0]);
1841 return -1;
1842 }
1843 } else {
1844 if (strcmp(op, "++") == 0 ||
1845 strcmp(op, "--") == 0) {
1846 return 3;
1847 } else if (strcmp(op, ">>") == 0 ||
1848 strcmp(op, "<<") == 0) {
1849 return 8;
1850 } else if (strcmp(op, ">=") == 0 ||
1851 strcmp(op, "<=") == 0) {
1852 return 9;
1853 } else if (strcmp(op, "==") == 0 ||
1854 strcmp(op, "!=") == 0) {
1855 return 10;
1856 } else if (strcmp(op, "&&") == 0) {
1857 return 14;
1858 } else if (strcmp(op, "||") == 0) {
1859 return 15;
1860 } else {
1861 do_warning("unknown op '%s'", op);
1862 return -1;
1863 }
1864 }
1865}
1866
1867static int set_op_prio(struct print_arg *arg)
1868{
1869
1870 /* single ops are the greatest */
1871 if (!arg->op.left || arg->op.left->type == PRINT_NULL)
1872 arg->op.prio = 0;
1873 else
1874 arg->op.prio = get_op_prio(arg->op.op);
1875
1876 return arg->op.prio;
1877}
1878
1879/* Note, *tok does not get freed, but will most likely be saved */
1880static enum event_type
1881process_op(struct event_format *event, struct print_arg *arg, char **tok)
1882{
1883 struct print_arg *left, *right = NULL;
1884 enum event_type type;
1885 char *token;
1886
1887 /* the op is passed in via tok */
1888 token = *tok;
1889
1890 if (arg->type == PRINT_OP && !arg->op.left) {
1891 /* handle single op */
1892 if (token[1]) {
1893 do_warning_event(event, "bad op token %s", token);
1894 goto out_free;
1895 }
1896 switch (token[0]) {
1897 case '~':
1898 case '!':
1899 case '+':
1900 case '-':
1901 break;
1902 default:
1903 do_warning_event(event, "bad op token %s", token);
1904 goto out_free;
1905
1906 }
1907
1908 /* make an empty left */
1909 left = alloc_arg();
1910 if (!left)
1911 goto out_warn_free;
1912
1913 left->type = PRINT_NULL;
1914 arg->op.left = left;
1915
1916 right = alloc_arg();
1917 if (!right)
1918 goto out_warn_free;
1919
1920 arg->op.right = right;
1921
1922 /* do not free the token, it belongs to an op */
1923 *tok = NULL;
1924 type = process_arg(event, right, tok);
1925
1926 } else if (strcmp(token, "?") == 0) {
1927
1928 left = alloc_arg();
1929 if (!left)
1930 goto out_warn_free;
1931
1932 /* copy the top arg to the left */
1933 *left = *arg;
1934
1935 arg->type = PRINT_OP;
1936 arg->op.op = token;
1937 arg->op.left = left;
1938 arg->op.prio = 0;
1939
1940 /* it will set arg->op.right */
1941 type = process_cond(event, arg, tok);
1942
1943 } else if (strcmp(token, ">>") == 0 ||
1944 strcmp(token, "<<") == 0 ||
1945 strcmp(token, "&") == 0 ||
1946 strcmp(token, "|") == 0 ||
1947 strcmp(token, "&&") == 0 ||
1948 strcmp(token, "||") == 0 ||
1949 strcmp(token, "-") == 0 ||
1950 strcmp(token, "+") == 0 ||
1951 strcmp(token, "*") == 0 ||
1952 strcmp(token, "^") == 0 ||
1953 strcmp(token, "/") == 0 ||
1954 strcmp(token, "%") == 0 ||
1955 strcmp(token, "<") == 0 ||
1956 strcmp(token, ">") == 0 ||
1957 strcmp(token, "<=") == 0 ||
1958 strcmp(token, ">=") == 0 ||
1959 strcmp(token, "==") == 0 ||
1960 strcmp(token, "!=") == 0) {
1961
1962 left = alloc_arg();
1963 if (!left)
1964 goto out_warn_free;
1965
1966 /* copy the top arg to the left */
1967 *left = *arg;
1968
1969 arg->type = PRINT_OP;
1970 arg->op.op = token;
1971 arg->op.left = left;
1972 arg->op.right = NULL;
1973
1974 if (set_op_prio(arg) == -1) {
1975 event->flags |= EVENT_FL_FAILED;
1976 /* arg->op.op (= token) will be freed at out_free */
1977 arg->op.op = NULL;
1978 goto out_free;
1979 }
1980
1981 type = read_token_item(&token);
1982 *tok = token;
1983
1984 /* could just be a type pointer */
1985 if ((strcmp(arg->op.op, "*") == 0) &&
1986 type == EVENT_DELIM && (strcmp(token, ")") == 0)) {
1987 char *new_atom;
1988
1989 if (left->type != PRINT_ATOM) {
1990 do_warning_event(event, "bad pointer type");
1991 goto out_free;
1992 }
1993 new_atom = realloc(left->atom.atom,
1994 strlen(left->atom.atom) + 3);
1995 if (!new_atom)
1996 goto out_warn_free;
1997
1998 left->atom.atom = new_atom;
1999 strcat(left->atom.atom, " *");
2000 free(arg->op.op);
2001 *arg = *left;
2002 free(left);
2003
2004 return type;
2005 }
2006
2007 right = alloc_arg();
2008 if (!right)
2009 goto out_warn_free;
2010
2011 type = process_arg_token(event, right, tok, type);
2012 if (type == EVENT_ERROR) {
2013 free_arg(right);
2014 /* token was freed in process_arg_token() via *tok */
2015 token = NULL;
2016 goto out_free;
2017 }
2018
2019 if (right->type == PRINT_OP &&
2020 get_op_prio(arg->op.op) < get_op_prio(right->op.op)) {
2021 struct print_arg tmp;
2022
2023 /* rotate ops according to the priority */
2024 arg->op.right = right->op.left;
2025
2026 tmp = *arg;
2027 *arg = *right;
2028 *right = tmp;
2029
2030 arg->op.left = right;
2031 } else {
2032 arg->op.right = right;
2033 }
2034
2035 } else if (strcmp(token, "[") == 0) {
2036
2037 left = alloc_arg();
2038 if (!left)
2039 goto out_warn_free;
2040
2041 *left = *arg;
2042
2043 arg->type = PRINT_OP;
2044 arg->op.op = token;
2045 arg->op.left = left;
2046
2047 arg->op.prio = 0;
2048
2049 /* it will set arg->op.right */
2050 type = process_array(event, arg, tok);
2051
2052 } else {
2053 do_warning_event(event, "unknown op '%s'", token);
2054 event->flags |= EVENT_FL_FAILED;
2055 /* the arg is now the left side */
2056 goto out_free;
2057 }
2058
2059 if (type == EVENT_OP && strcmp(*tok, ":") != 0) {
2060 int prio;
2061
2062 /* higher prios need to be closer to the root */
2063 prio = get_op_prio(*tok);
2064
2065 if (prio > arg->op.prio)
2066 return process_op(event, arg, tok);
2067
2068 return process_op(event, right, tok);
2069 }
2070
2071 return type;
2072
2073out_warn_free:
2074 do_warning_event(event, "%s: not enough memory!", __func__);
2075out_free:
2076 free_token(token);
2077 *tok = NULL;
2078 return EVENT_ERROR;
2079}
2080
2081static enum event_type
2082process_entry(struct event_format *event __maybe_unused, struct print_arg *arg,
2083 char **tok)
2084{
2085 enum event_type type;
2086 char *field;
2087 char *token;
2088
2089 if (read_expected(EVENT_OP, "->") < 0)
2090 goto out_err;
2091
2092 if (read_expect_type(EVENT_ITEM, &token) < 0)
2093 goto out_free;
2094 field = token;
2095
2096 arg->type = PRINT_FIELD;
2097 arg->field.name = field;
2098
2099 if (is_flag_field) {
2100 arg->field.field = pevent_find_any_field(event, arg->field.name);
2101 arg->field.field->flags |= FIELD_IS_FLAG;
2102 is_flag_field = 0;
2103 } else if (is_symbolic_field) {
2104 arg->field.field = pevent_find_any_field(event, arg->field.name);
2105 arg->field.field->flags |= FIELD_IS_SYMBOLIC;
2106 is_symbolic_field = 0;
2107 }
2108
2109 type = read_token(&token);
2110 *tok = token;
2111
2112 return type;
2113
2114 out_free:
2115 free_token(token);
2116 out_err:
2117 *tok = NULL;
2118 return EVENT_ERROR;
2119}
2120
2121static int alloc_and_process_delim(struct event_format *event, char *next_token,
2122 struct print_arg **print_arg)
2123{
2124 struct print_arg *field;
2125 enum event_type type;
2126 char *token;
2127 int ret = 0;
2128
2129 field = alloc_arg();
2130 if (!field) {
2131 do_warning_event(event, "%s: not enough memory!", __func__);
2132 errno = ENOMEM;
2133 return -1;
2134 }
2135
2136 type = process_arg(event, field, &token);
2137
2138 if (test_type_token(type, token, EVENT_DELIM, next_token)) {
2139 errno = EINVAL;
2140 ret = -1;
2141 free_arg(field);
2142 goto out_free_token;
2143 }
2144
2145 *print_arg = field;
2146
2147out_free_token:
2148 free_token(token);
2149
2150 return ret;
2151}
2152
2153static char *arg_eval (struct print_arg *arg);
2154
2155static unsigned long long
2156eval_type_str(unsigned long long val, const char *type, int pointer)
2157{
2158 int sign = 0;
2159 char *ref;
2160 int len;
2161
2162 len = strlen(type);
2163
2164 if (pointer) {
2165
2166 if (type[len-1] != '*') {
2167 do_warning("pointer expected with non pointer type");
2168 return val;
2169 }
2170
2171 ref = malloc(len);
2172 if (!ref) {
2173 do_warning("%s: not enough memory!", __func__);
2174 return val;
2175 }
2176 memcpy(ref, type, len);
2177
2178 /* chop off the " *" */
2179 ref[len - 2] = 0;
2180
2181 val = eval_type_str(val, ref, 0);
2182 free(ref);
2183 return val;
2184 }
2185
2186 /* check if this is a pointer */
2187 if (type[len - 1] == '*')
2188 return val;
2189
2190 /* Try to figure out the arg size*/
2191 if (strncmp(type, "struct", 6) == 0)
2192 /* all bets off */
2193 return val;
2194
2195 if (strcmp(type, "u8") == 0)
2196 return val & 0xff;
2197
2198 if (strcmp(type, "u16") == 0)
2199 return val & 0xffff;
2200
2201 if (strcmp(type, "u32") == 0)
2202 return val & 0xffffffff;
2203
2204 if (strcmp(type, "u64") == 0 ||
2205 strcmp(type, "s64"))
2206 return val;
2207
2208 if (strcmp(type, "s8") == 0)
2209 return (unsigned long long)(char)val & 0xff;
2210
2211 if (strcmp(type, "s16") == 0)
2212 return (unsigned long long)(short)val & 0xffff;
2213
2214 if (strcmp(type, "s32") == 0)
2215 return (unsigned long long)(int)val & 0xffffffff;
2216
2217 if (strncmp(type, "unsigned ", 9) == 0) {
2218 sign = 0;
2219 type += 9;
2220 }
2221
2222 if (strcmp(type, "char") == 0) {
2223 if (sign)
2224 return (unsigned long long)(char)val & 0xff;
2225 else
2226 return val & 0xff;
2227 }
2228
2229 if (strcmp(type, "short") == 0) {
2230 if (sign)
2231 return (unsigned long long)(short)val & 0xffff;
2232 else
2233 return val & 0xffff;
2234 }
2235
2236 if (strcmp(type, "int") == 0) {
2237 if (sign)
2238 return (unsigned long long)(int)val & 0xffffffff;
2239 else
2240 return val & 0xffffffff;
2241 }
2242
2243 return val;
2244}
2245
2246/*
2247 * Try to figure out the type.
2248 */
2249static unsigned long long
2250eval_type(unsigned long long val, struct print_arg *arg, int pointer)
2251{
2252 if (arg->type != PRINT_TYPE) {
2253 do_warning("expected type argument");
2254 return 0;
2255 }
2256
2257 return eval_type_str(val, arg->typecast.type, pointer);
2258}
2259
2260static int arg_num_eval(struct print_arg *arg, long long *val)
2261{
2262 long long left, right;
2263 int ret = 1;
2264
2265 switch (arg->type) {
2266 case PRINT_ATOM:
2267 *val = strtoll(arg->atom.atom, NULL, 0);
2268 break;
2269 case PRINT_TYPE:
2270 ret = arg_num_eval(arg->typecast.item, val);
2271 if (!ret)
2272 break;
2273 *val = eval_type(*val, arg, 0);
2274 break;
2275 case PRINT_OP:
2276 switch (arg->op.op[0]) {
2277 case '|':
2278 ret = arg_num_eval(arg->op.left, &left);
2279 if (!ret)
2280 break;
2281 ret = arg_num_eval(arg->op.right, &right);
2282 if (!ret)
2283 break;
2284 if (arg->op.op[1])
2285 *val = left || right;
2286 else
2287 *val = left | right;
2288 break;
2289 case '&':
2290 ret = arg_num_eval(arg->op.left, &left);
2291 if (!ret)
2292 break;
2293 ret = arg_num_eval(arg->op.right, &right);
2294 if (!ret)
2295 break;
2296 if (arg->op.op[1])
2297 *val = left && right;
2298 else
2299 *val = left & right;
2300 break;
2301 case '<':
2302 ret = arg_num_eval(arg->op.left, &left);
2303 if (!ret)
2304 break;
2305 ret = arg_num_eval(arg->op.right, &right);
2306 if (!ret)
2307 break;
2308 switch (arg->op.op[1]) {
2309 case 0:
2310 *val = left < right;
2311 break;
2312 case '<':
2313 *val = left << right;
2314 break;
2315 case '=':
2316 *val = left <= right;
2317 break;
2318 default:
2319 do_warning("unknown op '%s'", arg->op.op);
2320 ret = 0;
2321 }
2322 break;
2323 case '>':
2324 ret = arg_num_eval(arg->op.left, &left);
2325 if (!ret)
2326 break;
2327 ret = arg_num_eval(arg->op.right, &right);
2328 if (!ret)
2329 break;
2330 switch (arg->op.op[1]) {
2331 case 0:
2332 *val = left > right;
2333 break;
2334 case '>':
2335 *val = left >> right;
2336 break;
2337 case '=':
2338 *val = left >= right;
2339 break;
2340 default:
2341 do_warning("unknown op '%s'", arg->op.op);
2342 ret = 0;
2343 }
2344 break;
2345 case '=':
2346 ret = arg_num_eval(arg->op.left, &left);
2347 if (!ret)
2348 break;
2349 ret = arg_num_eval(arg->op.right, &right);
2350 if (!ret)
2351 break;
2352
2353 if (arg->op.op[1] != '=') {
2354 do_warning("unknown op '%s'", arg->op.op);
2355 ret = 0;
2356 } else
2357 *val = left == right;
2358 break;
2359 case '!':
2360 ret = arg_num_eval(arg->op.left, &left);
2361 if (!ret)
2362 break;
2363 ret = arg_num_eval(arg->op.right, &right);
2364 if (!ret)
2365 break;
2366
2367 switch (arg->op.op[1]) {
2368 case '=':
2369 *val = left != right;
2370 break;
2371 default:
2372 do_warning("unknown op '%s'", arg->op.op);
2373 ret = 0;
2374 }
2375 break;
2376 case '-':
2377 /* check for negative */
2378 if (arg->op.left->type == PRINT_NULL)
2379 left = 0;
2380 else
2381 ret = arg_num_eval(arg->op.left, &left);
2382 if (!ret)
2383 break;
2384 ret = arg_num_eval(arg->op.right, &right);
2385 if (!ret)
2386 break;
2387 *val = left - right;
2388 break;
2389 case '+':
2390 if (arg->op.left->type == PRINT_NULL)
2391 left = 0;
2392 else
2393 ret = arg_num_eval(arg->op.left, &left);
2394 if (!ret)
2395 break;
2396 ret = arg_num_eval(arg->op.right, &right);
2397 if (!ret)
2398 break;
2399 *val = left + right;
2400 break;
2401 case '~':
2402 ret = arg_num_eval(arg->op.right, &right);
2403 if (!ret)
2404 break;
2405 *val = ~right;
2406 break;
2407 default:
2408 do_warning("unknown op '%s'", arg->op.op);
2409 ret = 0;
2410 }
2411 break;
2412
2413 case PRINT_NULL:
2414 case PRINT_FIELD ... PRINT_SYMBOL:
2415 case PRINT_STRING:
2416 case PRINT_BSTRING:
2417 case PRINT_BITMASK:
2418 default:
2419 do_warning("invalid eval type %d", arg->type);
2420 ret = 0;
2421
2422 }
2423 return ret;
2424}
2425
2426static char *arg_eval (struct print_arg *arg)
2427{
2428 long long val;
2429 static char buf[20];
2430
2431 switch (arg->type) {
2432 case PRINT_ATOM:
2433 return arg->atom.atom;
2434 case PRINT_TYPE:
2435 return arg_eval(arg->typecast.item);
2436 case PRINT_OP:
2437 if (!arg_num_eval(arg, &val))
2438 break;
2439 sprintf(buf, "%lld", val);
2440 return buf;
2441
2442 case PRINT_NULL:
2443 case PRINT_FIELD ... PRINT_SYMBOL:
2444 case PRINT_STRING:
2445 case PRINT_BSTRING:
2446 case PRINT_BITMASK:
2447 default:
2448 do_warning("invalid eval type %d", arg->type);
2449 break;
2450 }
2451
2452 return NULL;
2453}
2454
2455static enum event_type
2456process_fields(struct event_format *event, struct print_flag_sym **list, char **tok)
2457{
2458 enum event_type type;
2459 struct print_arg *arg = NULL;
2460 struct print_flag_sym *field;
2461 char *token = *tok;
2462 char *value;
2463
2464 do {
2465 free_token(token);
2466 type = read_token_item(&token);
2467 if (test_type_token(type, token, EVENT_OP, "{"))
2468 break;
2469
2470 arg = alloc_arg();
2471 if (!arg)
2472 goto out_free;
2473
2474 free_token(token);
2475 type = process_arg(event, arg, &token);
2476
2477 if (type == EVENT_OP)
2478 type = process_op(event, arg, &token);
2479
2480 if (type == EVENT_ERROR)
2481 goto out_free;
2482
2483 if (test_type_token(type, token, EVENT_DELIM, ","))
2484 goto out_free;
2485
2486 field = calloc(1, sizeof(*field));
2487 if (!field)
2488 goto out_free;
2489
2490 value = arg_eval(arg);
2491 if (value == NULL)
2492 goto out_free_field;
2493 field->value = strdup(value);
2494 if (field->value == NULL)
2495 goto out_free_field;
2496
2497 free_arg(arg);
2498 arg = alloc_arg();
2499 if (!arg)
2500 goto out_free;
2501
2502 free_token(token);
2503 type = process_arg(event, arg, &token);
2504 if (test_type_token(type, token, EVENT_OP, "}"))
2505 goto out_free_field;
2506
2507 value = arg_eval(arg);
2508 if (value == NULL)
2509 goto out_free_field;
2510 field->str = strdup(value);
2511 if (field->str == NULL)
2512 goto out_free_field;
2513 free_arg(arg);
2514 arg = NULL;
2515
2516 *list = field;
2517 list = &field->next;
2518
2519 free_token(token);
2520 type = read_token_item(&token);
2521 } while (type == EVENT_DELIM && strcmp(token, ",") == 0);
2522
2523 *tok = token;
2524 return type;
2525
2526out_free_field:
2527 free_flag_sym(field);
2528out_free:
2529 free_arg(arg);
2530 free_token(token);
2531 *tok = NULL;
2532
2533 return EVENT_ERROR;
2534}
2535
2536static enum event_type
2537process_flags(struct event_format *event, struct print_arg *arg, char **tok)
2538{
2539 struct print_arg *field;
2540 enum event_type type;
2541 char *token = NULL;
2542
2543 memset(arg, 0, sizeof(*arg));
2544 arg->type = PRINT_FLAGS;
2545
2546 field = alloc_arg();
2547 if (!field) {
2548 do_warning_event(event, "%s: not enough memory!", __func__);
2549 goto out_free;
2550 }
2551
2552 type = process_field_arg(event, field, &token);
2553
2554 /* Handle operations in the first argument */
2555 while (type == EVENT_OP)
2556 type = process_op(event, field, &token);
2557
2558 if (test_type_token(type, token, EVENT_DELIM, ","))
2559 goto out_free_field;
2560 free_token(token);
2561
2562 arg->flags.field = field;
2563
2564 type = read_token_item(&token);
2565 if (event_item_type(type)) {
2566 arg->flags.delim = token;
2567 type = read_token_item(&token);
2568 }
2569
2570 if (test_type_token(type, token, EVENT_DELIM, ","))
2571 goto out_free;
2572
2573 type = process_fields(event, &arg->flags.flags, &token);
2574 if (test_type_token(type, token, EVENT_DELIM, ")"))
2575 goto out_free;
2576
2577 free_token(token);
2578 type = read_token_item(tok);
2579 return type;
2580
2581out_free_field:
2582 free_arg(field);
2583out_free:
2584 free_token(token);
2585 *tok = NULL;
2586 return EVENT_ERROR;
2587}
2588
2589static enum event_type
2590process_symbols(struct event_format *event, struct print_arg *arg, char **tok)
2591{
2592 struct print_arg *field;
2593 enum event_type type;
2594 char *token = NULL;
2595
2596 memset(arg, 0, sizeof(*arg));
2597 arg->type = PRINT_SYMBOL;
2598
2599 field = alloc_arg();
2600 if (!field) {
2601 do_warning_event(event, "%s: not enough memory!", __func__);
2602 goto out_free;
2603 }
2604
2605 type = process_field_arg(event, field, &token);
2606
2607 if (test_type_token(type, token, EVENT_DELIM, ","))
2608 goto out_free_field;
2609
2610 arg->symbol.field = field;
2611
2612 type = process_fields(event, &arg->symbol.symbols, &token);
2613 if (test_type_token(type, token, EVENT_DELIM, ")"))
2614 goto out_free;
2615
2616 free_token(token);
2617 type = read_token_item(tok);
2618 return type;
2619
2620out_free_field:
2621 free_arg(field);
2622out_free:
2623 free_token(token);
2624 *tok = NULL;
2625 return EVENT_ERROR;
2626}
2627
2628static enum event_type
2629process_hex(struct event_format *event, struct print_arg *arg, char **tok)
2630{
2631 memset(arg, 0, sizeof(*arg));
2632 arg->type = PRINT_HEX;
2633
2634 if (alloc_and_process_delim(event, ",", &arg->hex.field))
2635 goto out;
2636
2637 if (alloc_and_process_delim(event, ")", &arg->hex.size))
2638 goto free_field;
2639
2640 return read_token_item(tok);
2641
2642free_field:
2643 free_arg(arg->hex.field);
2644 arg->hex.field = NULL;
2645out:
2646 *tok = NULL;
2647 return EVENT_ERROR;
2648}
2649
2650static enum event_type
2651process_int_array(struct event_format *event, struct print_arg *arg, char **tok)
2652{
2653 memset(arg, 0, sizeof(*arg));
2654 arg->type = PRINT_INT_ARRAY;
2655
2656 if (alloc_and_process_delim(event, ",", &arg->int_array.field))
2657 goto out;
2658
2659 if (alloc_and_process_delim(event, ",", &arg->int_array.count))
2660 goto free_field;
2661
2662 if (alloc_and_process_delim(event, ")", &arg->int_array.el_size))
2663 goto free_size;
2664
2665 return read_token_item(tok);
2666
2667free_size:
2668 free_arg(arg->int_array.count);
2669 arg->int_array.count = NULL;
2670free_field:
2671 free_arg(arg->int_array.field);
2672 arg->int_array.field = NULL;
2673out:
2674 *tok = NULL;
2675 return EVENT_ERROR;
2676}
2677
2678static enum event_type
2679process_dynamic_array(struct event_format *event, struct print_arg *arg, char **tok)
2680{
2681 struct format_field *field;
2682 enum event_type type;
2683 char *token;
2684
2685 memset(arg, 0, sizeof(*arg));
2686 arg->type = PRINT_DYNAMIC_ARRAY;
2687
2688 /*
2689 * The item within the parenthesis is another field that holds
2690 * the index into where the array starts.
2691 */
2692 type = read_token(&token);
2693 *tok = token;
2694 if (type != EVENT_ITEM)
2695 goto out_free;
2696
2697 /* Find the field */
2698
2699 field = pevent_find_field(event, token);
2700 if (!field)
2701 goto out_free;
2702
2703 arg->dynarray.field = field;
2704 arg->dynarray.index = 0;
2705
2706 if (read_expected(EVENT_DELIM, ")") < 0)
2707 goto out_free;
2708
2709 free_token(token);
2710 type = read_token_item(&token);
2711 *tok = token;
2712 if (type != EVENT_OP || strcmp(token, "[") != 0)
2713 return type;
2714
2715 free_token(token);
2716 arg = alloc_arg();
2717 if (!arg) {
2718 do_warning_event(event, "%s: not enough memory!", __func__);
2719 *tok = NULL;
2720 return EVENT_ERROR;
2721 }
2722
2723 type = process_arg(event, arg, &token);
2724 if (type == EVENT_ERROR)
2725 goto out_free_arg;
2726
2727 if (!test_type_token(type, token, EVENT_OP, "]"))
2728 goto out_free_arg;
2729
2730 free_token(token);
2731 type = read_token_item(tok);
2732 return type;
2733
2734 out_free_arg:
2735 free_arg(arg);
2736 out_free:
2737 free_token(token);
2738 *tok = NULL;
2739 return EVENT_ERROR;
2740}
2741
2742static enum event_type
2743process_dynamic_array_len(struct event_format *event, struct print_arg *arg,
2744 char **tok)
2745{
2746 struct format_field *field;
2747 enum event_type type;
2748 char *token;
2749
2750 if (read_expect_type(EVENT_ITEM, &token) < 0)
2751 goto out_free;
2752
2753 arg->type = PRINT_DYNAMIC_ARRAY_LEN;
2754
2755 /* Find the field */
2756 field = pevent_find_field(event, token);
2757 if (!field)
2758 goto out_free;
2759
2760 arg->dynarray.field = field;
2761 arg->dynarray.index = 0;
2762
2763 if (read_expected(EVENT_DELIM, ")") < 0)
2764 goto out_err;
2765
2766 type = read_token(&token);
2767 *tok = token;
2768
2769 return type;
2770
2771 out_free:
2772 free_token(token);
2773 out_err:
2774 *tok = NULL;
2775 return EVENT_ERROR;
2776}
2777
2778static enum event_type
2779process_paren(struct event_format *event, struct print_arg *arg, char **tok)
2780{
2781 struct print_arg *item_arg;
2782 enum event_type type;
2783 char *token;
2784
2785 type = process_arg(event, arg, &token);
2786
2787 if (type == EVENT_ERROR)
2788 goto out_free;
2789
2790 if (type == EVENT_OP)
2791 type = process_op(event, arg, &token);
2792
2793 if (type == EVENT_ERROR)
2794 goto out_free;
2795
2796 if (test_type_token(type, token, EVENT_DELIM, ")"))
2797 goto out_free;
2798
2799 free_token(token);
2800 type = read_token_item(&token);
2801
2802 /*
2803 * If the next token is an item or another open paren, then
2804 * this was a typecast.
2805 */
2806 if (event_item_type(type) ||
2807 (type == EVENT_DELIM && strcmp(token, "(") == 0)) {
2808
2809 /* make this a typecast and contine */
2810
2811 /* prevous must be an atom */
2812 if (arg->type != PRINT_ATOM) {
2813 do_warning_event(event, "previous needed to be PRINT_ATOM");
2814 goto out_free;
2815 }
2816
2817 item_arg = alloc_arg();
2818 if (!item_arg) {
2819 do_warning_event(event, "%s: not enough memory!",
2820 __func__);
2821 goto out_free;
2822 }
2823
2824 arg->type = PRINT_TYPE;
2825 arg->typecast.type = arg->atom.atom;
2826 arg->typecast.item = item_arg;
2827 type = process_arg_token(event, item_arg, &token, type);
2828
2829 }
2830
2831 *tok = token;
2832 return type;
2833
2834 out_free:
2835 free_token(token);
2836 *tok = NULL;
2837 return EVENT_ERROR;
2838}
2839
2840
2841static enum event_type
2842process_str(struct event_format *event __maybe_unused, struct print_arg *arg,
2843 char **tok)
2844{
2845 enum event_type type;
2846 char *token;
2847
2848 if (read_expect_type(EVENT_ITEM, &token) < 0)
2849 goto out_free;
2850
2851 arg->type = PRINT_STRING;
2852 arg->string.string = token;
2853 arg->string.offset = -1;
2854
2855 if (read_expected(EVENT_DELIM, ")") < 0)
2856 goto out_err;
2857
2858 type = read_token(&token);
2859 *tok = token;
2860
2861 return type;
2862
2863 out_free:
2864 free_token(token);
2865 out_err:
2866 *tok = NULL;
2867 return EVENT_ERROR;
2868}
2869
2870static enum event_type
2871process_bitmask(struct event_format *event __maybe_unused, struct print_arg *arg,
2872 char **tok)
2873{
2874 enum event_type type;
2875 char *token;
2876
2877 if (read_expect_type(EVENT_ITEM, &token) < 0)
2878 goto out_free;
2879
2880 arg->type = PRINT_BITMASK;
2881 arg->bitmask.bitmask = token;
2882 arg->bitmask.offset = -1;
2883
2884 if (read_expected(EVENT_DELIM, ")") < 0)
2885 goto out_err;
2886
2887 type = read_token(&token);
2888 *tok = token;
2889
2890 return type;
2891
2892 out_free:
2893 free_token(token);
2894 out_err:
2895 *tok = NULL;
2896 return EVENT_ERROR;
2897}
2898
2899static struct pevent_function_handler *
2900find_func_handler(struct pevent *pevent, char *func_name)
2901{
2902 struct pevent_function_handler *func;
2903
2904 if (!pevent)
2905 return NULL;
2906
2907 for (func = pevent->func_handlers; func; func = func->next) {
2908 if (strcmp(func->name, func_name) == 0)
2909 break;
2910 }
2911
2912 return func;
2913}
2914
2915static void remove_func_handler(struct pevent *pevent, char *func_name)
2916{
2917 struct pevent_function_handler *func;
2918 struct pevent_function_handler **next;
2919
2920 next = &pevent->func_handlers;
2921 while ((func = *next)) {
2922 if (strcmp(func->name, func_name) == 0) {
2923 *next = func->next;
2924 free_func_handle(func);
2925 break;
2926 }
2927 next = &func->next;
2928 }
2929}
2930
2931static enum event_type
2932process_func_handler(struct event_format *event, struct pevent_function_handler *func,
2933 struct print_arg *arg, char **tok)
2934{
2935 struct print_arg **next_arg;
2936 struct print_arg *farg;
2937 enum event_type type;
2938 char *token;
2939 int i;
2940
2941 arg->type = PRINT_FUNC;
2942 arg->func.func = func;
2943
2944 *tok = NULL;
2945
2946 next_arg = &(arg->func.args);
2947 for (i = 0; i < func->nr_args; i++) {
2948 farg = alloc_arg();
2949 if (!farg) {
2950 do_warning_event(event, "%s: not enough memory!",
2951 __func__);
2952 return EVENT_ERROR;
2953 }
2954
2955 type = process_arg(event, farg, &token);
2956 if (i < (func->nr_args - 1)) {
2957 if (type != EVENT_DELIM || strcmp(token, ",") != 0) {
2958 do_warning_event(event,
2959 "Error: function '%s()' expects %d arguments but event %s only uses %d",
2960 func->name, func->nr_args,
2961 event->name, i + 1);
2962 goto err;
2963 }
2964 } else {
2965 if (type != EVENT_DELIM || strcmp(token, ")") != 0) {
2966 do_warning_event(event,
2967 "Error: function '%s()' only expects %d arguments but event %s has more",
2968 func->name, func->nr_args, event->name);
2969 goto err;
2970 }
2971 }
2972
2973 *next_arg = farg;
2974 next_arg = &(farg->next);
2975 free_token(token);
2976 }
2977
2978 type = read_token(&token);
2979 *tok = token;
2980
2981 return type;
2982
2983err:
2984 free_arg(farg);
2985 free_token(token);
2986 return EVENT_ERROR;
2987}
2988
2989static enum event_type
2990process_function(struct event_format *event, struct print_arg *arg,
2991 char *token, char **tok)
2992{
2993 struct pevent_function_handler *func;
2994
2995 if (strcmp(token, "__print_flags") == 0) {
2996 free_token(token);
2997 is_flag_field = 1;
2998 return process_flags(event, arg, tok);
2999 }
3000 if (strcmp(token, "__print_symbolic") == 0) {
3001 free_token(token);
3002 is_symbolic_field = 1;
3003 return process_symbols(event, arg, tok);
3004 }
3005 if (strcmp(token, "__print_hex") == 0) {
3006 free_token(token);
3007 return process_hex(event, arg, tok);
3008 }
3009 if (strcmp(token, "__print_array") == 0) {
3010 free_token(token);
3011 return process_int_array(event, arg, tok);
3012 }
3013 if (strcmp(token, "__get_str") == 0) {
3014 free_token(token);
3015 return process_str(event, arg, tok);
3016 }
3017 if (strcmp(token, "__get_bitmask") == 0) {
3018 free_token(token);
3019 return process_bitmask(event, arg, tok);
3020 }
3021 if (strcmp(token, "__get_dynamic_array") == 0) {
3022 free_token(token);
3023 return process_dynamic_array(event, arg, tok);
3024 }
3025 if (strcmp(token, "__get_dynamic_array_len") == 0) {
3026 free_token(token);
3027 return process_dynamic_array_len(event, arg, tok);
3028 }
3029
3030 func = find_func_handler(event->pevent, token);
3031 if (func) {
3032 free_token(token);
3033 return process_func_handler(event, func, arg, tok);
3034 }
3035
3036 do_warning_event(event, "function %s not defined", token);
3037 free_token(token);
3038 return EVENT_ERROR;
3039}
3040
3041static enum event_type
3042process_arg_token(struct event_format *event, struct print_arg *arg,
3043 char **tok, enum event_type type)
3044{
3045 char *token;
3046 char *atom;
3047
3048 token = *tok;
3049
3050 switch (type) {
3051 case EVENT_ITEM:
3052 if (strcmp(token, "REC") == 0) {
3053 free_token(token);
3054 type = process_entry(event, arg, &token);
3055 break;
3056 }
3057 atom = token;
3058 /* test the next token */
3059 type = read_token_item(&token);
3060
3061 /*
3062 * If the next token is a parenthesis, then this
3063 * is a function.
3064 */
3065 if (type == EVENT_DELIM && strcmp(token, "(") == 0) {
3066 free_token(token);
3067 token = NULL;
3068 /* this will free atom. */
3069 type = process_function(event, arg, atom, &token);
3070 break;
3071 }
3072 /* atoms can be more than one token long */
3073 while (type == EVENT_ITEM) {
3074 char *new_atom;
3075 new_atom = realloc(atom,
3076 strlen(atom) + strlen(token) + 2);
3077 if (!new_atom) {
3078 free(atom);
3079 *tok = NULL;
3080 free_token(token);
3081 return EVENT_ERROR;
3082 }
3083 atom = new_atom;
3084 strcat(atom, " ");
3085 strcat(atom, token);
3086 free_token(token);
3087 type = read_token_item(&token);
3088 }
3089
3090 arg->type = PRINT_ATOM;
3091 arg->atom.atom = atom;
3092 break;
3093
3094 case EVENT_DQUOTE:
3095 case EVENT_SQUOTE:
3096 arg->type = PRINT_ATOM;
3097 arg->atom.atom = token;
3098 type = read_token_item(&token);
3099 break;
3100 case EVENT_DELIM:
3101 if (strcmp(token, "(") == 0) {
3102 free_token(token);
3103 type = process_paren(event, arg, &token);
3104 break;
3105 }
3106 case EVENT_OP:
3107 /* handle single ops */
3108 arg->type = PRINT_OP;
3109 arg->op.op = token;
3110 arg->op.left = NULL;
3111 type = process_op(event, arg, &token);
3112
3113 /* On error, the op is freed */
3114 if (type == EVENT_ERROR)
3115 arg->op.op = NULL;
3116
3117 /* return error type if errored */
3118 break;
3119
3120 case EVENT_ERROR ... EVENT_NEWLINE:
3121 default:
3122 do_warning_event(event, "unexpected type %d", type);
3123 return EVENT_ERROR;
3124 }
3125 *tok = token;
3126
3127 return type;
3128}
3129
3130static int event_read_print_args(struct event_format *event, struct print_arg **list)
3131{
3132 enum event_type type = EVENT_ERROR;
3133 struct print_arg *arg;
3134 char *token;
3135 int args = 0;
3136
3137 do {
3138 if (type == EVENT_NEWLINE) {
3139 type = read_token_item(&token);
3140 continue;
3141 }
3142
3143 arg = alloc_arg();
3144 if (!arg) {
3145 do_warning_event(event, "%s: not enough memory!",
3146 __func__);
3147 return -1;
3148 }
3149
3150 type = process_arg(event, arg, &token);
3151
3152 if (type == EVENT_ERROR) {
3153 free_token(token);
3154 free_arg(arg);
3155 return -1;
3156 }
3157
3158 *list = arg;
3159 args++;
3160
3161 if (type == EVENT_OP) {
3162 type = process_op(event, arg, &token);
3163 free_token(token);
3164 if (type == EVENT_ERROR) {
3165 *list = NULL;
3166 free_arg(arg);
3167 return -1;
3168 }
3169 list = &arg->next;
3170 continue;
3171 }
3172
3173 if (type == EVENT_DELIM && strcmp(token, ",") == 0) {
3174 free_token(token);
3175 *list = arg;
3176 list = &arg->next;
3177 continue;
3178 }
3179 break;
3180 } while (type != EVENT_NONE);
3181
3182 if (type != EVENT_NONE && type != EVENT_ERROR)
3183 free_token(token);
3184
3185 return args;
3186}
3187
3188static int event_read_print(struct event_format *event)
3189{
3190 enum event_type type;
3191 char *token;
3192 int ret;
3193
3194 if (read_expected_item(EVENT_ITEM, "print") < 0)
3195 return -1;
3196
3197 if (read_expected(EVENT_ITEM, "fmt") < 0)
3198 return -1;
3199
3200 if (read_expected(EVENT_OP, ":") < 0)
3201 return -1;
3202
3203 if (read_expect_type(EVENT_DQUOTE, &token) < 0)
3204 goto fail;
3205
3206 concat:
3207 event->print_fmt.format = token;
3208 event->print_fmt.args = NULL;
3209
3210 /* ok to have no arg */
3211 type = read_token_item(&token);
3212
3213 if (type == EVENT_NONE)
3214 return 0;
3215
3216 /* Handle concatenation of print lines */
3217 if (type == EVENT_DQUOTE) {
3218 char *cat;
3219
3220 if (asprintf(&cat, "%s%s", event->print_fmt.format, token) < 0)
3221 goto fail;
3222 free_token(token);
3223 free_token(event->print_fmt.format);
3224 event->print_fmt.format = NULL;
3225 token = cat;
3226 goto concat;
3227 }
3228
3229 if (test_type_token(type, token, EVENT_DELIM, ","))
3230 goto fail;
3231
3232 free_token(token);
3233
3234 ret = event_read_print_args(event, &event->print_fmt.args);
3235 if (ret < 0)
3236 return -1;
3237
3238 return ret;
3239
3240 fail:
3241 free_token(token);
3242 return -1;
3243}
3244
3245/**
3246 * pevent_find_common_field - return a common field by event
3247 * @event: handle for the event
3248 * @name: the name of the common field to return
3249 *
3250 * Returns a common field from the event by the given @name.
3251 * This only searchs the common fields and not all field.
3252 */
3253struct format_field *
3254pevent_find_common_field(struct event_format *event, const char *name)
3255{
3256 struct format_field *format;
3257
3258 for (format = event->format.common_fields;
3259 format; format = format->next) {
3260 if (strcmp(format->name, name) == 0)
3261 break;
3262 }
3263
3264 return format;
3265}
3266
3267/**
3268 * pevent_find_field - find a non-common field
3269 * @event: handle for the event
3270 * @name: the name of the non-common field
3271 *
3272 * Returns a non-common field by the given @name.
3273 * This does not search common fields.
3274 */
3275struct format_field *
3276pevent_find_field(struct event_format *event, const char *name)
3277{
3278 struct format_field *format;
3279
3280 for (format = event->format.fields;
3281 format; format = format->next) {
3282 if (strcmp(format->name, name) == 0)
3283 break;
3284 }
3285
3286 return format;
3287}
3288
3289/**
3290 * pevent_find_any_field - find any field by name
3291 * @event: handle for the event
3292 * @name: the name of the field
3293 *
3294 * Returns a field by the given @name.
3295 * This searchs the common field names first, then
3296 * the non-common ones if a common one was not found.
3297 */
3298struct format_field *
3299pevent_find_any_field(struct event_format *event, const char *name)
3300{
3301 struct format_field *format;
3302
3303 format = pevent_find_common_field(event, name);
3304 if (format)
3305 return format;
3306 return pevent_find_field(event, name);
3307}
3308
3309/**
3310 * pevent_read_number - read a number from data
3311 * @pevent: handle for the pevent
3312 * @ptr: the raw data
3313 * @size: the size of the data that holds the number
3314 *
3315 * Returns the number (converted to host) from the
3316 * raw data.
3317 */
3318unsigned long long pevent_read_number(struct pevent *pevent,
3319 const void *ptr, int size)
3320{
3321 switch (size) {
3322 case 1:
3323 return *(unsigned char *)ptr;
3324 case 2:
3325 return data2host2(pevent, ptr);
3326 case 4:
3327 return data2host4(pevent, ptr);
3328 case 8:
3329 return data2host8(pevent, ptr);
3330 default:
3331 /* BUG! */
3332 return 0;
3333 }
3334}
3335
3336/**
3337 * pevent_read_number_field - read a number from data
3338 * @field: a handle to the field
3339 * @data: the raw data to read
3340 * @value: the value to place the number in
3341 *
3342 * Reads raw data according to a field offset and size,
3343 * and translates it into @value.
3344 *
3345 * Returns 0 on success, -1 otherwise.
3346 */
3347int pevent_read_number_field(struct format_field *field, const void *data,
3348 unsigned long long *value)
3349{
3350 if (!field)
3351 return -1;
3352 switch (field->size) {
3353 case 1:
3354 case 2:
3355 case 4:
3356 case 8:
3357 *value = pevent_read_number(field->event->pevent,
3358 data + field->offset, field->size);
3359 return 0;
3360 default:
3361 return -1;
3362 }
3363}
3364
3365static int get_common_info(struct pevent *pevent,
3366 const char *type, int *offset, int *size)
3367{
3368 struct event_format *event;
3369 struct format_field *field;
3370
3371 /*
3372 * All events should have the same common elements.
3373 * Pick any event to find where the type is;
3374 */
3375 if (!pevent->events) {
3376 do_warning("no event_list!");
3377 return -1;
3378 }
3379
3380 event = pevent->events[0];
3381 field = pevent_find_common_field(event, type);
3382 if (!field)
3383 return -1;
3384
3385 *offset = field->offset;
3386 *size = field->size;
3387
3388 return 0;
3389}
3390
3391static int __parse_common(struct pevent *pevent, void *data,
3392 int *size, int *offset, const char *name)
3393{
3394 int ret;
3395
3396 if (!*size) {
3397 ret = get_common_info(pevent, name, offset, size);
3398 if (ret < 0)
3399 return ret;
3400 }
3401 return pevent_read_number(pevent, data + *offset, *size);
3402}
3403
3404static int trace_parse_common_type(struct pevent *pevent, void *data)
3405{
3406 return __parse_common(pevent, data,
3407 &pevent->type_size, &pevent->type_offset,
3408 "common_type");
3409}
3410
3411static int parse_common_pid(struct pevent *pevent, void *data)
3412{
3413 return __parse_common(pevent, data,
3414 &pevent->pid_size, &pevent->pid_offset,
3415 "common_pid");
3416}
3417
3418static int parse_common_pc(struct pevent *pevent, void *data)
3419{
3420 return __parse_common(pevent, data,
3421 &pevent->pc_size, &pevent->pc_offset,
3422 "common_preempt_count");
3423}
3424
3425static int parse_common_flags(struct pevent *pevent, void *data)
3426{
3427 return __parse_common(pevent, data,
3428 &pevent->flags_size, &pevent->flags_offset,
3429 "common_flags");
3430}
3431
3432static int parse_common_lock_depth(struct pevent *pevent, void *data)
3433{
3434 return __parse_common(pevent, data,
3435 &pevent->ld_size, &pevent->ld_offset,
3436 "common_lock_depth");
3437}
3438
3439static int parse_common_migrate_disable(struct pevent *pevent, void *data)
3440{
3441 return __parse_common(pevent, data,
3442 &pevent->ld_size, &pevent->ld_offset,
3443 "common_migrate_disable");
3444}
3445
3446static int events_id_cmp(const void *a, const void *b);
3447
3448/**
3449 * pevent_find_event - find an event by given id
3450 * @pevent: a handle to the pevent
3451 * @id: the id of the event
3452 *
3453 * Returns an event that has a given @id.
3454 */
3455struct event_format *pevent_find_event(struct pevent *pevent, int id)
3456{
3457 struct event_format **eventptr;
3458 struct event_format key;
3459 struct event_format *pkey = &key;
3460
3461 /* Check cache first */
3462 if (pevent->last_event && pevent->last_event->id == id)
3463 return pevent->last_event;
3464
3465 key.id = id;
3466
3467 eventptr = bsearch(&pkey, pevent->events, pevent->nr_events,
3468 sizeof(*pevent->events), events_id_cmp);
3469
3470 if (eventptr) {
3471 pevent->last_event = *eventptr;
3472 return *eventptr;
3473 }
3474
3475 return NULL;
3476}
3477
3478/**
3479 * pevent_find_event_by_name - find an event by given name
3480 * @pevent: a handle to the pevent
3481 * @sys: the system name to search for
3482 * @name: the name of the event to search for
3483 *
3484 * This returns an event with a given @name and under the system
3485 * @sys. If @sys is NULL the first event with @name is returned.
3486 */
3487struct event_format *
3488pevent_find_event_by_name(struct pevent *pevent,
3489 const char *sys, const char *name)
3490{
3491 struct event_format *event;
3492 int i;
3493
3494 if (pevent->last_event &&
3495 strcmp(pevent->last_event->name, name) == 0 &&
3496 (!sys || strcmp(pevent->last_event->system, sys) == 0))
3497 return pevent->last_event;
3498
3499 for (i = 0; i < pevent->nr_events; i++) {
3500 event = pevent->events[i];
3501 if (strcmp(event->name, name) == 0) {
3502 if (!sys)
3503 break;
3504 if (strcmp(event->system, sys) == 0)
3505 break;
3506 }
3507 }
3508 if (i == pevent->nr_events)
3509 event = NULL;
3510
3511 pevent->last_event = event;
3512 return event;
3513}
3514
3515static unsigned long long
3516eval_num_arg(void *data, int size, struct event_format *event, struct print_arg *arg)
3517{
3518 struct pevent *pevent = event->pevent;
3519 unsigned long long val = 0;
3520 unsigned long long left, right;
3521 struct print_arg *typearg = NULL;
3522 struct print_arg *larg;
3523 unsigned long offset;
3524 unsigned int field_size;
3525
3526 switch (arg->type) {
3527 case PRINT_NULL:
3528 /* ?? */
3529 return 0;
3530 case PRINT_ATOM:
3531 return strtoull(arg->atom.atom, NULL, 0);
3532 case PRINT_FIELD:
3533 if (!arg->field.field) {
3534 arg->field.field = pevent_find_any_field(event, arg->field.name);
3535 if (!arg->field.field)
3536 goto out_warning_field;
3537
3538 }
3539 /* must be a number */
3540 val = pevent_read_number(pevent, data + arg->field.field->offset,
3541 arg->field.field->size);
3542 break;
3543 case PRINT_FLAGS:
3544 case PRINT_SYMBOL:
3545 case PRINT_INT_ARRAY:
3546 case PRINT_HEX:
3547 break;
3548 case PRINT_TYPE:
3549 val = eval_num_arg(data, size, event, arg->typecast.item);
3550 return eval_type(val, arg, 0);
3551 case PRINT_STRING:
3552 case PRINT_BSTRING:
3553 case PRINT_BITMASK:
3554 return 0;
3555 case PRINT_FUNC: {
3556 struct trace_seq s;
3557 trace_seq_init(&s);
3558 val = process_defined_func(&s, data, size, event, arg);
3559 trace_seq_destroy(&s);
3560 return val;
3561 }
3562 case PRINT_OP:
3563 if (strcmp(arg->op.op, "[") == 0) {
3564 /*
3565 * Arrays are special, since we don't want
3566 * to read the arg as is.
3567 */
3568 right = eval_num_arg(data, size, event, arg->op.right);
3569
3570 /* handle typecasts */
3571 larg = arg->op.left;
3572 while (larg->type == PRINT_TYPE) {
3573 if (!typearg)
3574 typearg = larg;
3575 larg = larg->typecast.item;
3576 }
3577
3578 /* Default to long size */
3579 field_size = pevent->long_size;
3580
3581 switch (larg->type) {
3582 case PRINT_DYNAMIC_ARRAY:
3583 offset = pevent_read_number(pevent,
3584 data + larg->dynarray.field->offset,
3585 larg->dynarray.field->size);
3586 if (larg->dynarray.field->elementsize)
3587 field_size = larg->dynarray.field->elementsize;
3588 /*
3589 * The actual length of the dynamic array is stored
3590 * in the top half of the field, and the offset
3591 * is in the bottom half of the 32 bit field.
3592 */
3593 offset &= 0xffff;
3594 offset += right;
3595 break;
3596 case PRINT_FIELD:
3597 if (!larg->field.field) {
3598 larg->field.field =
3599 pevent_find_any_field(event, larg->field.name);
3600 if (!larg->field.field) {
3601 arg = larg;
3602 goto out_warning_field;
3603 }
3604 }
3605 field_size = larg->field.field->elementsize;
3606 offset = larg->field.field->offset +
3607 right * larg->field.field->elementsize;
3608 break;
3609 default:
3610 goto default_op; /* oops, all bets off */
3611 }
3612 val = pevent_read_number(pevent,
3613 data + offset, field_size);
3614 if (typearg)
3615 val = eval_type(val, typearg, 1);
3616 break;
3617 } else if (strcmp(arg->op.op, "?") == 0) {
3618 left = eval_num_arg(data, size, event, arg->op.left);
3619 arg = arg->op.right;
3620 if (left)
3621 val = eval_num_arg(data, size, event, arg->op.left);
3622 else
3623 val = eval_num_arg(data, size, event, arg->op.right);
3624 break;
3625 }
3626 default_op:
3627 left = eval_num_arg(data, size, event, arg->op.left);
3628 right = eval_num_arg(data, size, event, arg->op.right);
3629 switch (arg->op.op[0]) {
3630 case '!':
3631 switch (arg->op.op[1]) {
3632 case 0:
3633 val = !right;
3634 break;
3635 case '=':
3636 val = left != right;
3637 break;
3638 default:
3639 goto out_warning_op;
3640 }
3641 break;
3642 case '~':
3643 val = ~right;
3644 break;
3645 case '|':
3646 if (arg->op.op[1])
3647 val = left || right;
3648 else
3649 val = left | right;
3650 break;
3651 case '&':
3652 if (arg->op.op[1])
3653 val = left && right;
3654 else
3655 val = left & right;
3656 break;
3657 case '<':
3658 switch (arg->op.op[1]) {
3659 case 0:
3660 val = left < right;
3661 break;
3662 case '<':
3663 val = left << right;
3664 break;
3665 case '=':
3666 val = left <= right;
3667 break;
3668 default:
3669 goto out_warning_op;
3670 }
3671 break;
3672 case '>':
3673 switch (arg->op.op[1]) {
3674 case 0:
3675 val = left > right;
3676 break;
3677 case '>':
3678 val = left >> right;
3679 break;
3680 case '=':
3681 val = left >= right;
3682 break;
3683 default:
3684 goto out_warning_op;
3685 }
3686 break;
3687 case '=':
3688 if (arg->op.op[1] != '=')
3689 goto out_warning_op;
3690
3691 val = left == right;
3692 break;
3693 case '-':
3694 val = left - right;
3695 break;
3696 case '+':
3697 val = left + right;
3698 break;
3699 case '/':
3700 val = left / right;
3701 break;
3702 case '%':
3703 val = left % right;
3704 break;
3705 case '*':
3706 val = left * right;
3707 break;
3708 default:
3709 goto out_warning_op;
3710 }
3711 break;
3712 case PRINT_DYNAMIC_ARRAY_LEN:
3713 offset = pevent_read_number(pevent,
3714 data + arg->dynarray.field->offset,
3715 arg->dynarray.field->size);
3716 /*
3717 * The total allocated length of the dynamic array is
3718 * stored in the top half of the field, and the offset
3719 * is in the bottom half of the 32 bit field.
3720 */
3721 val = (unsigned long long)(offset >> 16);
3722 break;
3723 case PRINT_DYNAMIC_ARRAY:
3724 /* Without [], we pass the address to the dynamic data */
3725 offset = pevent_read_number(pevent,
3726 data + arg->dynarray.field->offset,
3727 arg->dynarray.field->size);
3728 /*
3729 * The total allocated length of the dynamic array is
3730 * stored in the top half of the field, and the offset
3731 * is in the bottom half of the 32 bit field.
3732 */
3733 offset &= 0xffff;
3734 val = (unsigned long long)((unsigned long)data + offset);
3735 break;
3736 default: /* not sure what to do there */
3737 return 0;
3738 }
3739 return val;
3740
3741out_warning_op:
3742 do_warning_event(event, "%s: unknown op '%s'", __func__, arg->op.op);
3743 return 0;
3744
3745out_warning_field:
3746 do_warning_event(event, "%s: field %s not found",
3747 __func__, arg->field.name);
3748 return 0;
3749}
3750
3751struct flag {
3752 const char *name;
3753 unsigned long long value;
3754};
3755
3756static const struct flag flags[] = {
3757 { "HI_SOFTIRQ", 0 },
3758 { "TIMER_SOFTIRQ", 1 },
3759 { "NET_TX_SOFTIRQ", 2 },
3760 { "NET_RX_SOFTIRQ", 3 },
3761 { "BLOCK_SOFTIRQ", 4 },
3762 { "IRQ_POLL_SOFTIRQ", 5 },
3763 { "TASKLET_SOFTIRQ", 6 },
3764 { "SCHED_SOFTIRQ", 7 },
3765 { "HRTIMER_SOFTIRQ", 8 },
3766 { "RCU_SOFTIRQ", 9 },
3767
3768 { "HRTIMER_NORESTART", 0 },
3769 { "HRTIMER_RESTART", 1 },
3770};
3771
3772static long long eval_flag(const char *flag)
3773{
3774 int i;
3775
3776 /*
3777 * Some flags in the format files do not get converted.
3778 * If the flag is not numeric, see if it is something that
3779 * we already know about.
3780 */
3781 if (isdigit(flag[0]))
3782 return strtoull(flag, NULL, 0);
3783
3784 for (i = 0; i < (int)(sizeof(flags)/sizeof(flags[0])); i++)
3785 if (strcmp(flags[i].name, flag) == 0)
3786 return flags[i].value;
3787
3788 return -1LL;
3789}
3790
3791static void print_str_to_seq(struct trace_seq *s, const char *format,
3792 int len_arg, const char *str)
3793{
3794 if (len_arg >= 0)
3795 trace_seq_printf(s, format, len_arg, str);
3796 else
3797 trace_seq_printf(s, format, str);
3798}
3799
3800static void print_bitmask_to_seq(struct pevent *pevent,
3801 struct trace_seq *s, const char *format,
3802 int len_arg, const void *data, int size)
3803{
3804 int nr_bits = size * 8;
3805 int str_size = (nr_bits + 3) / 4;
3806 int len = 0;
3807 char buf[3];
3808 char *str;
3809 int index;
3810 int i;
3811
3812 /*
3813 * The kernel likes to put in commas every 32 bits, we
3814 * can do the same.
3815 */
3816 str_size += (nr_bits - 1) / 32;
3817
3818 str = malloc(str_size + 1);
3819 if (!str) {
3820 do_warning("%s: not enough memory!", __func__);
3821 return;
3822 }
3823 str[str_size] = 0;
3824
3825 /* Start out with -2 for the two chars per byte */
3826 for (i = str_size - 2; i >= 0; i -= 2) {
3827 /*
3828 * data points to a bit mask of size bytes.
3829 * In the kernel, this is an array of long words, thus
3830 * endianess is very important.
3831 */
3832 if (pevent->file_bigendian)
3833 index = size - (len + 1);
3834 else
3835 index = len;
3836
3837 snprintf(buf, 3, "%02x", *((unsigned char *)data + index));
3838 memcpy(str + i, buf, 2);
3839 len++;
3840 if (!(len & 3) && i > 0) {
3841 i--;
3842 str[i] = ',';
3843 }
3844 }
3845
3846 if (len_arg >= 0)
3847 trace_seq_printf(s, format, len_arg, str);
3848 else
3849 trace_seq_printf(s, format, str);
3850
3851 free(str);
3852}
3853
3854static void print_str_arg(struct trace_seq *s, void *data, int size,
3855 struct event_format *event, const char *format,
3856 int len_arg, struct print_arg *arg)
3857{
3858 struct pevent *pevent = event->pevent;
3859 struct print_flag_sym *flag;
3860 struct format_field *field;
3861 struct printk_map *printk;
3862 long long val, fval;
3863 unsigned long long addr;
3864 char *str;
3865 unsigned char *hex;
3866 int print;
3867 int i, len;
3868
3869 switch (arg->type) {
3870 case PRINT_NULL:
3871 /* ?? */
3872 return;
3873 case PRINT_ATOM:
3874 print_str_to_seq(s, format, len_arg, arg->atom.atom);
3875 return;
3876 case PRINT_FIELD:
3877 field = arg->field.field;
3878 if (!field) {
3879 field = pevent_find_any_field(event, arg->field.name);
3880 if (!field) {
3881 str = arg->field.name;
3882 goto out_warning_field;
3883 }
3884 arg->field.field = field;
3885 }
3886 /* Zero sized fields, mean the rest of the data */
3887 len = field->size ? : size - field->offset;
3888
3889 /*
3890 * Some events pass in pointers. If this is not an array
3891 * and the size is the same as long_size, assume that it
3892 * is a pointer.
3893 */
3894 if (!(field->flags & FIELD_IS_ARRAY) &&
3895 field->size == pevent->long_size) {
3896
3897 /* Handle heterogeneous recording and processing
3898 * architectures
3899 *
3900 * CASE I:
3901 * Traces recorded on 32-bit devices (32-bit
3902 * addressing) and processed on 64-bit devices:
3903 * In this case, only 32 bits should be read.
3904 *
3905 * CASE II:
3906 * Traces recorded on 64 bit devices and processed
3907 * on 32-bit devices:
3908 * In this case, 64 bits must be read.
3909 */
3910 addr = (pevent->long_size == 8) ?
3911 *(unsigned long long *)(data + field->offset) :
3912 (unsigned long long)*(unsigned int *)(data + field->offset);
3913
3914 /* Check if it matches a print format */
3915 printk = find_printk(pevent, addr);
3916 if (printk)
3917 trace_seq_puts(s, printk->printk);
3918 else
3919 trace_seq_printf(s, "%llx", addr);
3920 break;
3921 }
3922 str = malloc(len + 1);
3923 if (!str) {
3924 do_warning_event(event, "%s: not enough memory!",
3925 __func__);
3926 return;
3927 }
3928 memcpy(str, data + field->offset, len);
3929 str[len] = 0;
3930 print_str_to_seq(s, format, len_arg, str);
3931 free(str);
3932 break;
3933 case PRINT_FLAGS:
3934 val = eval_num_arg(data, size, event, arg->flags.field);
3935 print = 0;
3936 for (flag = arg->flags.flags; flag; flag = flag->next) {
3937 fval = eval_flag(flag->value);
3938 if (!val && fval < 0) {
3939 print_str_to_seq(s, format, len_arg, flag->str);
3940 break;
3941 }
3942 if (fval > 0 && (val & fval) == fval) {
3943 if (print && arg->flags.delim)
3944 trace_seq_puts(s, arg->flags.delim);
3945 print_str_to_seq(s, format, len_arg, flag->str);
3946 print = 1;
3947 val &= ~fval;
3948 }
3949 }
3950 break;
3951 case PRINT_SYMBOL:
3952 val = eval_num_arg(data, size, event, arg->symbol.field);
3953 for (flag = arg->symbol.symbols; flag; flag = flag->next) {
3954 fval = eval_flag(flag->value);
3955 if (val == fval) {
3956 print_str_to_seq(s, format, len_arg, flag->str);
3957 break;
3958 }
3959 }
3960 break;
3961 case PRINT_HEX:
3962 if (arg->hex.field->type == PRINT_DYNAMIC_ARRAY) {
3963 unsigned long offset;
3964 offset = pevent_read_number(pevent,
3965 data + arg->hex.field->dynarray.field->offset,
3966 arg->hex.field->dynarray.field->size);
3967 hex = data + (offset & 0xffff);
3968 } else {
3969 field = arg->hex.field->field.field;
3970 if (!field) {
3971 str = arg->hex.field->field.name;
3972 field = pevent_find_any_field(event, str);
3973 if (!field)
3974 goto out_warning_field;
3975 arg->hex.field->field.field = field;
3976 }
3977 hex = data + field->offset;
3978 }
3979 len = eval_num_arg(data, size, event, arg->hex.size);
3980 for (i = 0; i < len; i++) {
3981 if (i)
3982 trace_seq_putc(s, ' ');
3983 trace_seq_printf(s, "%02x", hex[i]);
3984 }
3985 break;
3986
3987 case PRINT_INT_ARRAY: {
3988 void *num;
3989 int el_size;
3990
3991 if (arg->int_array.field->type == PRINT_DYNAMIC_ARRAY) {
3992 unsigned long offset;
3993 struct format_field *field =
3994 arg->int_array.field->dynarray.field;
3995 offset = pevent_read_number(pevent,
3996 data + field->offset,
3997 field->size);
3998 num = data + (offset & 0xffff);
3999 } else {
4000 field = arg->int_array.field->field.field;
4001 if (!field) {
4002 str = arg->int_array.field->field.name;
4003 field = pevent_find_any_field(event, str);
4004 if (!field)
4005 goto out_warning_field;
4006 arg->int_array.field->field.field = field;
4007 }
4008 num = data + field->offset;
4009 }
4010 len = eval_num_arg(data, size, event, arg->int_array.count);
4011 el_size = eval_num_arg(data, size, event,
4012 arg->int_array.el_size);
4013 for (i = 0; i < len; i++) {
4014 if (i)
4015 trace_seq_putc(s, ' ');
4016
4017 if (el_size == 1) {
4018 trace_seq_printf(s, "%u", *(uint8_t *)num);
4019 } else if (el_size == 2) {
4020 trace_seq_printf(s, "%u", *(uint16_t *)num);
4021 } else if (el_size == 4) {
4022 trace_seq_printf(s, "%u", *(uint32_t *)num);
4023 } else if (el_size == 8) {
4024 trace_seq_printf(s, "%"PRIu64, *(uint64_t *)num);
4025 } else {
4026 trace_seq_printf(s, "BAD SIZE:%d 0x%x",
4027 el_size, *(uint8_t *)num);
4028 el_size = 1;
4029 }
4030
4031 num += el_size;
4032 }
4033 break;
4034 }
4035 case PRINT_TYPE:
4036 break;
4037 case PRINT_STRING: {
4038 int str_offset;
4039
4040 if (arg->string.offset == -1) {
4041 struct format_field *f;
4042
4043 f = pevent_find_any_field(event, arg->string.string);
4044 arg->string.offset = f->offset;
4045 }
4046 str_offset = data2host4(pevent, data + arg->string.offset);
4047 str_offset &= 0xffff;
4048 print_str_to_seq(s, format, len_arg, ((char *)data) + str_offset);
4049 break;
4050 }
4051 case PRINT_BSTRING:
4052 print_str_to_seq(s, format, len_arg, arg->string.string);
4053 break;
4054 case PRINT_BITMASK: {
4055 int bitmask_offset;
4056 int bitmask_size;
4057
4058 if (arg->bitmask.offset == -1) {
4059 struct format_field *f;
4060
4061 f = pevent_find_any_field(event, arg->bitmask.bitmask);
4062 arg->bitmask.offset = f->offset;
4063 }
4064 bitmask_offset = data2host4(pevent, data + arg->bitmask.offset);
4065 bitmask_size = bitmask_offset >> 16;
4066 bitmask_offset &= 0xffff;
4067 print_bitmask_to_seq(pevent, s, format, len_arg,
4068 data + bitmask_offset, bitmask_size);
4069 break;
4070 }
4071 case PRINT_OP:
4072 /*
4073 * The only op for string should be ? :
4074 */
4075 if (arg->op.op[0] != '?')
4076 return;
4077 val = eval_num_arg(data, size, event, arg->op.left);
4078 if (val)
4079 print_str_arg(s, data, size, event,
4080 format, len_arg, arg->op.right->op.left);
4081 else
4082 print_str_arg(s, data, size, event,
4083 format, len_arg, arg->op.right->op.right);
4084 break;
4085 case PRINT_FUNC:
4086 process_defined_func(s, data, size, event, arg);
4087 break;
4088 default:
4089 /* well... */
4090 break;
4091 }
4092
4093 return;
4094
4095out_warning_field:
4096 do_warning_event(event, "%s: field %s not found",
4097 __func__, arg->field.name);
4098}
4099
4100static unsigned long long
4101process_defined_func(struct trace_seq *s, void *data, int size,
4102 struct event_format *event, struct print_arg *arg)
4103{
4104 struct pevent_function_handler *func_handle = arg->func.func;
4105 struct pevent_func_params *param;
4106 unsigned long long *args;
4107 unsigned long long ret;
4108 struct print_arg *farg;
4109 struct trace_seq str;
4110 struct save_str {
4111 struct save_str *next;
4112 char *str;
4113 } *strings = NULL, *string;
4114 int i;
4115
4116 if (!func_handle->nr_args) {
4117 ret = (*func_handle->func)(s, NULL);
4118 goto out;
4119 }
4120
4121 farg = arg->func.args;
4122 param = func_handle->params;
4123
4124 ret = ULLONG_MAX;
4125 args = malloc(sizeof(*args) * func_handle->nr_args);
4126 if (!args)
4127 goto out;
4128
4129 for (i = 0; i < func_handle->nr_args; i++) {
4130 switch (param->type) {
4131 case PEVENT_FUNC_ARG_INT:
4132 case PEVENT_FUNC_ARG_LONG:
4133 case PEVENT_FUNC_ARG_PTR:
4134 args[i] = eval_num_arg(data, size, event, farg);
4135 break;
4136 case PEVENT_FUNC_ARG_STRING:
4137 trace_seq_init(&str);
4138 print_str_arg(&str, data, size, event, "%s", -1, farg);
4139 trace_seq_terminate(&str);
4140 string = malloc(sizeof(*string));
4141 if (!string) {
4142 do_warning_event(event, "%s(%d): malloc str",
4143 __func__, __LINE__);
4144 goto out_free;
4145 }
4146 string->next = strings;
4147 string->str = strdup(str.buffer);
4148 if (!string->str) {
4149 free(string);
4150 do_warning_event(event, "%s(%d): malloc str",
4151 __func__, __LINE__);
4152 goto out_free;
4153 }
4154 args[i] = (uintptr_t)string->str;
4155 strings = string;
4156 trace_seq_destroy(&str);
4157 break;
4158 default:
4159 /*
4160 * Something went totally wrong, this is not
4161 * an input error, something in this code broke.
4162 */
4163 do_warning_event(event, "Unexpected end of arguments\n");
4164 goto out_free;
4165 }
4166 farg = farg->next;
4167 param = param->next;
4168 }
4169
4170 ret = (*func_handle->func)(s, args);
4171out_free:
4172 free(args);
4173 while (strings) {
4174 string = strings;
4175 strings = string->next;
4176 free(string->str);
4177 free(string);
4178 }
4179
4180 out:
4181 /* TBD : handle return type here */
4182 return ret;
4183}
4184
4185static void free_args(struct print_arg *args)
4186{
4187 struct print_arg *next;
4188
4189 while (args) {
4190 next = args->next;
4191
4192 free_arg(args);
4193 args = next;
4194 }
4195}
4196
4197static struct print_arg *make_bprint_args(char *fmt, void *data, int size, struct event_format *event)
4198{
4199 struct pevent *pevent = event->pevent;
4200 struct format_field *field, *ip_field;
4201 struct print_arg *args, *arg, **next;
4202 unsigned long long ip, val;
4203 char *ptr;
4204 void *bptr;
4205 int vsize;
4206
4207 field = pevent->bprint_buf_field;
4208 ip_field = pevent->bprint_ip_field;
4209
4210 if (!field) {
4211 field = pevent_find_field(event, "buf");
4212 if (!field) {
4213 do_warning_event(event, "can't find buffer field for binary printk");
4214 return NULL;
4215 }
4216 ip_field = pevent_find_field(event, "ip");
4217 if (!ip_field) {
4218 do_warning_event(event, "can't find ip field for binary printk");
4219 return NULL;
4220 }
4221 pevent->bprint_buf_field = field;
4222 pevent->bprint_ip_field = ip_field;
4223 }
4224
4225 ip = pevent_read_number(pevent, data + ip_field->offset, ip_field->size);
4226
4227 /*
4228 * The first arg is the IP pointer.
4229 */
4230 args = alloc_arg();
4231 if (!args) {
4232 do_warning_event(event, "%s(%d): not enough memory!",
4233 __func__, __LINE__);
4234 return NULL;
4235 }
4236 arg = args;
4237 arg->next = NULL;
4238 next = &arg->next;
4239
4240 arg->type = PRINT_ATOM;
4241
4242 if (asprintf(&arg->atom.atom, "%lld", ip) < 0)
4243 goto out_free;
4244
4245 /* skip the first "%ps: " */
4246 for (ptr = fmt + 5, bptr = data + field->offset;
4247 bptr < data + size && *ptr; ptr++) {
4248 int ls = 0;
4249
4250 if (*ptr == '%') {
4251 process_again:
4252 ptr++;
4253 switch (*ptr) {
4254 case '%':
4255 break;
4256 case 'l':
4257 ls++;
4258 goto process_again;
4259 case 'L':
4260 ls = 2;
4261 goto process_again;
4262 case '0' ... '9':
4263 goto process_again;
4264 case '.':
4265 goto process_again;
4266 case 'z':
4267 case 'Z':
4268 ls = 1;
4269 goto process_again;
4270 case 'p':
4271 ls = 1;
4272 /* fall through */
4273 case 'd':
4274 case 'u':
4275 case 'x':
4276 case 'i':
4277 switch (ls) {
4278 case 0:
4279 vsize = 4;
4280 break;
4281 case 1:
4282 vsize = pevent->long_size;
4283 break;
4284 case 2:
4285 vsize = 8;
4286 break;
4287 default:
4288 vsize = ls; /* ? */
4289 break;
4290 }
4291 /* fall through */
4292 case '*':
4293 if (*ptr == '*')
4294 vsize = 4;
4295
4296 /* the pointers are always 4 bytes aligned */
4297 bptr = (void *)(((unsigned long)bptr + 3) &
4298 ~3);
4299 val = pevent_read_number(pevent, bptr, vsize);
4300 bptr += vsize;
4301 arg = alloc_arg();
4302 if (!arg) {
4303 do_warning_event(event, "%s(%d): not enough memory!",
4304 __func__, __LINE__);
4305 goto out_free;
4306 }
4307 arg->next = NULL;
4308 arg->type = PRINT_ATOM;
4309 if (asprintf(&arg->atom.atom, "%lld", val) < 0) {
4310 free(arg);
4311 goto out_free;
4312 }
4313 *next = arg;
4314 next = &arg->next;
4315 /*
4316 * The '*' case means that an arg is used as the length.
4317 * We need to continue to figure out for what.
4318 */
4319 if (*ptr == '*')
4320 goto process_again;
4321
4322 break;
4323 case 's':
4324 arg = alloc_arg();
4325 if (!arg) {
4326 do_warning_event(event, "%s(%d): not enough memory!",
4327 __func__, __LINE__);
4328 goto out_free;
4329 }
4330 arg->next = NULL;
4331 arg->type = PRINT_BSTRING;
4332 arg->string.string = strdup(bptr);
4333 if (!arg->string.string)
4334 goto out_free;
4335 bptr += strlen(bptr) + 1;
4336 *next = arg;
4337 next = &arg->next;
4338 default:
4339 break;
4340 }
4341 }
4342 }
4343
4344 return args;
4345
4346out_free:
4347 free_args(args);
4348 return NULL;
4349}
4350
4351static char *
4352get_bprint_format(void *data, int size __maybe_unused,
4353 struct event_format *event)
4354{
4355 struct pevent *pevent = event->pevent;
4356 unsigned long long addr;
4357 struct format_field *field;
4358 struct printk_map *printk;
4359 char *format;
4360
4361 field = pevent->bprint_fmt_field;
4362
4363 if (!field) {
4364 field = pevent_find_field(event, "fmt");
4365 if (!field) {
4366 do_warning_event(event, "can't find format field for binary printk");
4367 return NULL;
4368 }
4369 pevent->bprint_fmt_field = field;
4370 }
4371
4372 addr = pevent_read_number(pevent, data + field->offset, field->size);
4373
4374 printk = find_printk(pevent, addr);
4375 if (!printk) {
4376 if (asprintf(&format, "%%pf: (NO FORMAT FOUND at %llx)\n", addr) < 0)
4377 return NULL;
4378 return format;
4379 }
4380
4381 if (asprintf(&format, "%s: %s", "%pf", printk->printk) < 0)
4382 return NULL;
4383
4384 return format;
4385}
4386
4387static void print_mac_arg(struct trace_seq *s, int mac, void *data, int size,
4388 struct event_format *event, struct print_arg *arg)
4389{
4390 unsigned char *buf;
4391 const char *fmt = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x";
4392
4393 if (arg->type == PRINT_FUNC) {
4394 process_defined_func(s, data, size, event, arg);
4395 return;
4396 }
4397
4398 if (arg->type != PRINT_FIELD) {
4399 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d",
4400 arg->type);
4401 return;
4402 }
4403
4404 if (mac == 'm')
4405 fmt = "%.2x%.2x%.2x%.2x%.2x%.2x";
4406 if (!arg->field.field) {
4407 arg->field.field =
4408 pevent_find_any_field(event, arg->field.name);
4409 if (!arg->field.field) {
4410 do_warning_event(event, "%s: field %s not found",
4411 __func__, arg->field.name);
4412 return;
4413 }
4414 }
4415 if (arg->field.field->size != 6) {
4416 trace_seq_printf(s, "INVALIDMAC");
4417 return;
4418 }
4419 buf = data + arg->field.field->offset;
4420 trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
4421}
4422
4423static void print_ip4_addr(struct trace_seq *s, char i, unsigned char *buf)
4424{
4425 const char *fmt;
4426
4427 if (i == 'i')
4428 fmt = "%03d.%03d.%03d.%03d";
4429 else
4430 fmt = "%d.%d.%d.%d";
4431
4432 trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3]);
4433}
4434
4435static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
4436{
4437 return ((unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
4438 (unsigned long)(a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL;
4439}
4440
4441static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr)
4442{
4443 return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE);
4444}
4445
4446static void print_ip6c_addr(struct trace_seq *s, unsigned char *addr)
4447{
4448 int i, j, range;
4449 unsigned char zerolength[8];
4450 int longest = 1;
4451 int colonpos = -1;
4452 uint16_t word;
4453 uint8_t hi, lo;
4454 bool needcolon = false;
4455 bool useIPv4;
4456 struct in6_addr in6;
4457
4458 memcpy(&in6, addr, sizeof(struct in6_addr));
4459
4460 useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6);
4461
4462 memset(zerolength, 0, sizeof(zerolength));
4463
4464 if (useIPv4)
4465 range = 6;
4466 else
4467 range = 8;
4468
4469 /* find position of longest 0 run */
4470 for (i = 0; i < range; i++) {
4471 for (j = i; j < range; j++) {
4472 if (in6.s6_addr16[j] != 0)
4473 break;
4474 zerolength[i]++;
4475 }
4476 }
4477 for (i = 0; i < range; i++) {
4478 if (zerolength[i] > longest) {
4479 longest = zerolength[i];
4480 colonpos = i;
4481 }
4482 }
4483 if (longest == 1) /* don't compress a single 0 */
4484 colonpos = -1;
4485
4486 /* emit address */
4487 for (i = 0; i < range; i++) {
4488 if (i == colonpos) {
4489 if (needcolon || i == 0)
4490 trace_seq_printf(s, ":");
4491 trace_seq_printf(s, ":");
4492 needcolon = false;
4493 i += longest - 1;
4494 continue;
4495 }
4496 if (needcolon) {
4497 trace_seq_printf(s, ":");
4498 needcolon = false;
4499 }
4500 /* hex u16 without leading 0s */
4501 word = ntohs(in6.s6_addr16[i]);
4502 hi = word >> 8;
4503 lo = word & 0xff;
4504 if (hi)
4505 trace_seq_printf(s, "%x%02x", hi, lo);
4506 else
4507 trace_seq_printf(s, "%x", lo);
4508
4509 needcolon = true;
4510 }
4511
4512 if (useIPv4) {
4513 if (needcolon)
4514 trace_seq_printf(s, ":");
4515 print_ip4_addr(s, 'I', &in6.s6_addr[12]);
4516 }
4517
4518 return;
4519}
4520
4521static void print_ip6_addr(struct trace_seq *s, char i, unsigned char *buf)
4522{
4523 int j;
4524
4525 for (j = 0; j < 16; j += 2) {
4526 trace_seq_printf(s, "%02x%02x", buf[j], buf[j+1]);
4527 if (i == 'I' && j < 14)
4528 trace_seq_printf(s, ":");
4529 }
4530}
4531
4532/*
4533 * %pi4 print an IPv4 address with leading zeros
4534 * %pI4 print an IPv4 address without leading zeros
4535 * %pi6 print an IPv6 address without colons
4536 * %pI6 print an IPv6 address with colons
4537 * %pI6c print an IPv6 address in compressed form with colons
4538 * %pISpc print an IP address based on sockaddr; p adds port.
4539 */
4540static int print_ipv4_arg(struct trace_seq *s, const char *ptr, char i,
4541 void *data, int size, struct event_format *event,
4542 struct print_arg *arg)
4543{
4544 unsigned char *buf;
4545
4546 if (arg->type == PRINT_FUNC) {
4547 process_defined_func(s, data, size, event, arg);
4548 return 0;
4549 }
4550
4551 if (arg->type != PRINT_FIELD) {
4552 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4553 return 0;
4554 }
4555
4556 if (!arg->field.field) {
4557 arg->field.field =
4558 pevent_find_any_field(event, arg->field.name);
4559 if (!arg->field.field) {
4560 do_warning("%s: field %s not found",
4561 __func__, arg->field.name);
4562 return 0;
4563 }
4564 }
4565
4566 buf = data + arg->field.field->offset;
4567
4568 if (arg->field.field->size != 4) {
4569 trace_seq_printf(s, "INVALIDIPv4");
4570 return 0;
4571 }
4572 print_ip4_addr(s, i, buf);
4573
4574 return 0;
4575}
4576
4577static int print_ipv6_arg(struct trace_seq *s, const char *ptr, char i,
4578 void *data, int size, struct event_format *event,
4579 struct print_arg *arg)
4580{
4581 char have_c = 0;
4582 unsigned char *buf;
4583 int rc = 0;
4584
4585 /* pI6c */
4586 if (i == 'I' && *ptr == 'c') {
4587 have_c = 1;
4588 ptr++;
4589 rc++;
4590 }
4591
4592 if (arg->type == PRINT_FUNC) {
4593 process_defined_func(s, data, size, event, arg);
4594 return rc;
4595 }
4596
4597 if (arg->type != PRINT_FIELD) {
4598 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4599 return rc;
4600 }
4601
4602 if (!arg->field.field) {
4603 arg->field.field =
4604 pevent_find_any_field(event, arg->field.name);
4605 if (!arg->field.field) {
4606 do_warning("%s: field %s not found",
4607 __func__, arg->field.name);
4608 return rc;
4609 }
4610 }
4611
4612 buf = data + arg->field.field->offset;
4613
4614 if (arg->field.field->size != 16) {
4615 trace_seq_printf(s, "INVALIDIPv6");
4616 return rc;
4617 }
4618
4619 if (have_c)
4620 print_ip6c_addr(s, buf);
4621 else
4622 print_ip6_addr(s, i, buf);
4623
4624 return rc;
4625}
4626
4627static int print_ipsa_arg(struct trace_seq *s, const char *ptr, char i,
4628 void *data, int size, struct event_format *event,
4629 struct print_arg *arg)
4630{
4631 char have_c = 0, have_p = 0;
4632 unsigned char *buf;
4633 struct sockaddr_storage *sa;
4634 int rc = 0;
4635
4636 /* pISpc */
4637 if (i == 'I') {
4638 if (*ptr == 'p') {
4639 have_p = 1;
4640 ptr++;
4641 rc++;
4642 }
4643 if (*ptr == 'c') {
4644 have_c = 1;
4645 ptr++;
4646 rc++;
4647 }
4648 }
4649
4650 if (arg->type == PRINT_FUNC) {
4651 process_defined_func(s, data, size, event, arg);
4652 return rc;
4653 }
4654
4655 if (arg->type != PRINT_FIELD) {
4656 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4657 return rc;
4658 }
4659
4660 if (!arg->field.field) {
4661 arg->field.field =
4662 pevent_find_any_field(event, arg->field.name);
4663 if (!arg->field.field) {
4664 do_warning("%s: field %s not found",
4665 __func__, arg->field.name);
4666 return rc;
4667 }
4668 }
4669
4670 sa = (struct sockaddr_storage *) (data + arg->field.field->offset);
4671
4672 if (sa->ss_family == AF_INET) {
4673 struct sockaddr_in *sa4 = (struct sockaddr_in *) sa;
4674
4675 if (arg->field.field->size < sizeof(struct sockaddr_in)) {
4676 trace_seq_printf(s, "INVALIDIPv4");
4677 return rc;
4678 }
4679
4680 print_ip4_addr(s, i, (unsigned char *) &sa4->sin_addr);
4681 if (have_p)
4682 trace_seq_printf(s, ":%d", ntohs(sa4->sin_port));
4683
4684
4685 } else if (sa->ss_family == AF_INET6) {
4686 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *) sa;
4687
4688 if (arg->field.field->size < sizeof(struct sockaddr_in6)) {
4689 trace_seq_printf(s, "INVALIDIPv6");
4690 return rc;
4691 }
4692
4693 if (have_p)
4694 trace_seq_printf(s, "[");
4695
4696 buf = (unsigned char *) &sa6->sin6_addr;
4697 if (have_c)
4698 print_ip6c_addr(s, buf);
4699 else
4700 print_ip6_addr(s, i, buf);
4701
4702 if (have_p)
4703 trace_seq_printf(s, "]:%d", ntohs(sa6->sin6_port));
4704 }
4705
4706 return rc;
4707}
4708
4709static int print_ip_arg(struct trace_seq *s, const char *ptr,
4710 void *data, int size, struct event_format *event,
4711 struct print_arg *arg)
4712{
4713 char i = *ptr; /* 'i' or 'I' */
4714 char ver;
4715 int rc = 0;
4716
4717 ptr++;
4718 rc++;
4719
4720 ver = *ptr;
4721 ptr++;
4722 rc++;
4723
4724 switch (ver) {
4725 case '4':
4726 rc += print_ipv4_arg(s, ptr, i, data, size, event, arg);
4727 break;
4728 case '6':
4729 rc += print_ipv6_arg(s, ptr, i, data, size, event, arg);
4730 break;
4731 case 'S':
4732 rc += print_ipsa_arg(s, ptr, i, data, size, event, arg);
4733 break;
4734 default:
4735 return 0;
4736 }
4737
4738 return rc;
4739}
4740
4741static int is_printable_array(char *p, unsigned int len)
4742{
4743 unsigned int i;
4744
4745 for (i = 0; i < len && p[i]; i++)
4746 if (!isprint(p[i]) && !isspace(p[i]))
4747 return 0;
4748 return 1;
4749}
4750
4751void pevent_print_field(struct trace_seq *s, void *data,
4752 struct format_field *field)
4753{
4754 unsigned long long val;
4755 unsigned int offset, len, i;
4756 struct pevent *pevent = field->event->pevent;
4757
4758 if (field->flags & FIELD_IS_ARRAY) {
4759 offset = field->offset;
4760 len = field->size;
4761 if (field->flags & FIELD_IS_DYNAMIC) {
4762 val = pevent_read_number(pevent, data + offset, len);
4763 offset = val;
4764 len = offset >> 16;
4765 offset &= 0xffff;
4766 }
4767 if (field->flags & FIELD_IS_STRING &&
4768 is_printable_array(data + offset, len)) {
4769 trace_seq_printf(s, "%s", (char *)data + offset);
4770 } else {
4771 trace_seq_puts(s, "ARRAY[");
4772 for (i = 0; i < len; i++) {
4773 if (i)
4774 trace_seq_puts(s, ", ");
4775 trace_seq_printf(s, "%02x",
4776 *((unsigned char *)data + offset + i));
4777 }
4778 trace_seq_putc(s, ']');
4779 field->flags &= ~FIELD_IS_STRING;
4780 }
4781 } else {
4782 val = pevent_read_number(pevent, data + field->offset,
4783 field->size);
4784 if (field->flags & FIELD_IS_POINTER) {
4785 trace_seq_printf(s, "0x%llx", val);
4786 } else if (field->flags & FIELD_IS_SIGNED) {
4787 switch (field->size) {
4788 case 4:
4789 /*
4790 * If field is long then print it in hex.
4791 * A long usually stores pointers.
4792 */
4793 if (field->flags & FIELD_IS_LONG)
4794 trace_seq_printf(s, "0x%x", (int)val);
4795 else
4796 trace_seq_printf(s, "%d", (int)val);
4797 break;
4798 case 2:
4799 trace_seq_printf(s, "%2d", (short)val);
4800 break;
4801 case 1:
4802 trace_seq_printf(s, "%1d", (char)val);
4803 break;
4804 default:
4805 trace_seq_printf(s, "%lld", val);
4806 }
4807 } else {
4808 if (field->flags & FIELD_IS_LONG)
4809 trace_seq_printf(s, "0x%llx", val);
4810 else
4811 trace_seq_printf(s, "%llu", val);
4812 }
4813 }
4814}
4815
4816void pevent_print_fields(struct trace_seq *s, void *data,
4817 int size __maybe_unused, struct event_format *event)
4818{
4819 struct format_field *field;
4820
4821 field = event->format.fields;
4822 while (field) {
4823 trace_seq_printf(s, " %s=", field->name);
4824 pevent_print_field(s, data, field);
4825 field = field->next;
4826 }
4827}
4828
4829static void pretty_print(struct trace_seq *s, void *data, int size, struct event_format *event)
4830{
4831 struct pevent *pevent = event->pevent;
4832 struct print_fmt *print_fmt = &event->print_fmt;
4833 struct print_arg *arg = print_fmt->args;
4834 struct print_arg *args = NULL;
4835 const char *ptr = print_fmt->format;
4836 unsigned long long val;
4837 struct func_map *func;
4838 const char *saveptr;
4839 struct trace_seq p;
4840 char *bprint_fmt = NULL;
4841 char format[32];
4842 int show_func;
4843 int len_as_arg;
4844 int len_arg;
4845 int len;
4846 int ls;
4847
4848 if (event->flags & EVENT_FL_FAILED) {
4849 trace_seq_printf(s, "[FAILED TO PARSE]");
4850 pevent_print_fields(s, data, size, event);
4851 return;
4852 }
4853
4854 if (event->flags & EVENT_FL_ISBPRINT) {
4855 bprint_fmt = get_bprint_format(data, size, event);
4856 args = make_bprint_args(bprint_fmt, data, size, event);
4857 arg = args;
4858 ptr = bprint_fmt;
4859 }
4860
4861 for (; *ptr; ptr++) {
4862 ls = 0;
4863 if (*ptr == '\\') {
4864 ptr++;
4865 switch (*ptr) {
4866 case 'n':
4867 trace_seq_putc(s, '\n');
4868 break;
4869 case 't':
4870 trace_seq_putc(s, '\t');
4871 break;
4872 case 'r':
4873 trace_seq_putc(s, '\r');
4874 break;
4875 case '\\':
4876 trace_seq_putc(s, '\\');
4877 break;
4878 default:
4879 trace_seq_putc(s, *ptr);
4880 break;
4881 }
4882
4883 } else if (*ptr == '%') {
4884 saveptr = ptr;
4885 show_func = 0;
4886 len_as_arg = 0;
4887 cont_process:
4888 ptr++;
4889 switch (*ptr) {
4890 case '%':
4891 trace_seq_putc(s, '%');
4892 break;
4893 case '#':
4894 /* FIXME: need to handle properly */
4895 goto cont_process;
4896 case 'h':
4897 ls--;
4898 goto cont_process;
4899 case 'l':
4900 ls++;
4901 goto cont_process;
4902 case 'L':
4903 ls = 2;
4904 goto cont_process;
4905 case '*':
4906 /* The argument is the length. */
4907 if (!arg) {
4908 do_warning_event(event, "no argument match");
4909 event->flags |= EVENT_FL_FAILED;
4910 goto out_failed;
4911 }
4912 len_arg = eval_num_arg(data, size, event, arg);
4913 len_as_arg = 1;
4914 arg = arg->next;
4915 goto cont_process;
4916 case '.':
4917 case 'z':
4918 case 'Z':
4919 case '0' ... '9':
4920 case '-':
4921 goto cont_process;
4922 case 'p':
4923 if (pevent->long_size == 4)
4924 ls = 1;
4925 else
4926 ls = 2;
4927
4928 if (*(ptr+1) == 'F' || *(ptr+1) == 'f' ||
4929 *(ptr+1) == 'S' || *(ptr+1) == 's') {
4930 ptr++;
4931 show_func = *ptr;
4932 } else if (*(ptr+1) == 'M' || *(ptr+1) == 'm') {
4933 print_mac_arg(s, *(ptr+1), data, size, event, arg);
4934 ptr++;
4935 arg = arg->next;
4936 break;
4937 } else if (*(ptr+1) == 'I' || *(ptr+1) == 'i') {
4938 int n;
4939
4940 n = print_ip_arg(s, ptr+1, data, size, event, arg);
4941 if (n > 0) {
4942 ptr += n;
4943 arg = arg->next;
4944 break;
4945 }
4946 }
4947
4948 /* fall through */
4949 case 'd':
4950 case 'i':
4951 case 'x':
4952 case 'X':
4953 case 'u':
4954 if (!arg) {
4955 do_warning_event(event, "no argument match");
4956 event->flags |= EVENT_FL_FAILED;
4957 goto out_failed;
4958 }
4959
4960 len = ((unsigned long)ptr + 1) -
4961 (unsigned long)saveptr;
4962
4963 /* should never happen */
4964 if (len > 31) {
4965 do_warning_event(event, "bad format!");
4966 event->flags |= EVENT_FL_FAILED;
4967 len = 31;
4968 }
4969
4970 memcpy(format, saveptr, len);
4971 format[len] = 0;
4972
4973 val = eval_num_arg(data, size, event, arg);
4974 arg = arg->next;
4975
4976 if (show_func) {
4977 func = find_func(pevent, val);
4978 if (func) {
4979 trace_seq_puts(s, func->func);
4980 if (show_func == 'F')
4981 trace_seq_printf(s,
4982 "+0x%llx",
4983 val - func->addr);
4984 break;
4985 }
4986 }
4987 if (pevent->long_size == 8 && ls == 1 &&
4988 sizeof(long) != 8) {
4989 char *p;
4990
4991 /* make %l into %ll */
4992 if (ls == 1 && (p = strchr(format, 'l')))
4993 memmove(p+1, p, strlen(p)+1);
4994 else if (strcmp(format, "%p") == 0)
4995 strcpy(format, "0x%llx");
4996 ls = 2;
4997 }
4998 switch (ls) {
4999 case -2:
5000 if (len_as_arg)
5001 trace_seq_printf(s, format, len_arg, (char)val);
5002 else
5003 trace_seq_printf(s, format, (char)val);
5004 break;
5005 case -1:
5006 if (len_as_arg)
5007 trace_seq_printf(s, format, len_arg, (short)val);
5008 else
5009 trace_seq_printf(s, format, (short)val);
5010 break;
5011 case 0:
5012 if (len_as_arg)
5013 trace_seq_printf(s, format, len_arg, (int)val);
5014 else
5015 trace_seq_printf(s, format, (int)val);
5016 break;
5017 case 1:
5018 if (len_as_arg)
5019 trace_seq_printf(s, format, len_arg, (long)val);
5020 else
5021 trace_seq_printf(s, format, (long)val);
5022 break;
5023 case 2:
5024 if (len_as_arg)
5025 trace_seq_printf(s, format, len_arg,
5026 (long long)val);
5027 else
5028 trace_seq_printf(s, format, (long long)val);
5029 break;
5030 default:
5031 do_warning_event(event, "bad count (%d)", ls);
5032 event->flags |= EVENT_FL_FAILED;
5033 }
5034 break;
5035 case 's':
5036 if (!arg) {
5037 do_warning_event(event, "no matching argument");
5038 event->flags |= EVENT_FL_FAILED;
5039 goto out_failed;
5040 }
5041
5042 len = ((unsigned long)ptr + 1) -
5043 (unsigned long)saveptr;
5044
5045 /* should never happen */
5046 if (len > 31) {
5047 do_warning_event(event, "bad format!");
5048 event->flags |= EVENT_FL_FAILED;
5049 len = 31;
5050 }
5051
5052 memcpy(format, saveptr, len);
5053 format[len] = 0;
5054 if (!len_as_arg)
5055 len_arg = -1;
5056 /* Use helper trace_seq */
5057 trace_seq_init(&p);
5058 print_str_arg(&p, data, size, event,
5059 format, len_arg, arg);
5060 trace_seq_terminate(&p);
5061 trace_seq_puts(s, p.buffer);
5062 trace_seq_destroy(&p);
5063 arg = arg->next;
5064 break;
5065 default:
5066 trace_seq_printf(s, ">%c<", *ptr);
5067
5068 }
5069 } else
5070 trace_seq_putc(s, *ptr);
5071 }
5072
5073 if (event->flags & EVENT_FL_FAILED) {
5074out_failed:
5075 trace_seq_printf(s, "[FAILED TO PARSE]");
5076 }
5077
5078 if (args) {
5079 free_args(args);
5080 free(bprint_fmt);
5081 }
5082}
5083
5084/**
5085 * pevent_data_lat_fmt - parse the data for the latency format
5086 * @pevent: a handle to the pevent
5087 * @s: the trace_seq to write to
5088 * @record: the record to read from
5089 *
5090 * This parses out the Latency format (interrupts disabled,
5091 * need rescheduling, in hard/soft interrupt, preempt count
5092 * and lock depth) and places it into the trace_seq.
5093 */
5094void pevent_data_lat_fmt(struct pevent *pevent,
5095 struct trace_seq *s, struct pevent_record *record)
5096{
5097 static int check_lock_depth = 1;
5098 static int check_migrate_disable = 1;
5099 static int lock_depth_exists;
5100 static int migrate_disable_exists;
5101 unsigned int lat_flags;
5102 unsigned int pc;
5103 int lock_depth;
5104 int migrate_disable;
5105 int hardirq;
5106 int softirq;
5107 void *data = record->data;
5108
5109 lat_flags = parse_common_flags(pevent, data);
5110 pc = parse_common_pc(pevent, data);
5111 /* lock_depth may not always exist */
5112 if (lock_depth_exists)
5113 lock_depth = parse_common_lock_depth(pevent, data);
5114 else if (check_lock_depth) {
5115 lock_depth = parse_common_lock_depth(pevent, data);
5116 if (lock_depth < 0)
5117 check_lock_depth = 0;
5118 else
5119 lock_depth_exists = 1;
5120 }
5121
5122 /* migrate_disable may not always exist */
5123 if (migrate_disable_exists)
5124 migrate_disable = parse_common_migrate_disable(pevent, data);
5125 else if (check_migrate_disable) {
5126 migrate_disable = parse_common_migrate_disable(pevent, data);
5127 if (migrate_disable < 0)
5128 check_migrate_disable = 0;
5129 else
5130 migrate_disable_exists = 1;
5131 }
5132
5133 hardirq = lat_flags & TRACE_FLAG_HARDIRQ;
5134 softirq = lat_flags & TRACE_FLAG_SOFTIRQ;
5135
5136 trace_seq_printf(s, "%c%c%c",
5137 (lat_flags & TRACE_FLAG_IRQS_OFF) ? 'd' :
5138 (lat_flags & TRACE_FLAG_IRQS_NOSUPPORT) ?
5139 'X' : '.',
5140 (lat_flags & TRACE_FLAG_NEED_RESCHED) ?
5141 'N' : '.',
5142 (hardirq && softirq) ? 'H' :
5143 hardirq ? 'h' : softirq ? 's' : '.');
5144
5145 if (pc)
5146 trace_seq_printf(s, "%x", pc);
5147 else
5148 trace_seq_putc(s, '.');
5149
5150 if (migrate_disable_exists) {
5151 if (migrate_disable < 0)
5152 trace_seq_putc(s, '.');
5153 else
5154 trace_seq_printf(s, "%d", migrate_disable);
5155 }
5156
5157 if (lock_depth_exists) {
5158 if (lock_depth < 0)
5159 trace_seq_putc(s, '.');
5160 else
5161 trace_seq_printf(s, "%d", lock_depth);
5162 }
5163
5164 trace_seq_terminate(s);
5165}
5166
5167/**
5168 * pevent_data_type - parse out the given event type
5169 * @pevent: a handle to the pevent
5170 * @rec: the record to read from
5171 *
5172 * This returns the event id from the @rec.
5173 */
5174int pevent_data_type(struct pevent *pevent, struct pevent_record *rec)
5175{
5176 return trace_parse_common_type(pevent, rec->data);
5177}
5178
5179/**
5180 * pevent_data_event_from_type - find the event by a given type
5181 * @pevent: a handle to the pevent
5182 * @type: the type of the event.
5183 *
5184 * This returns the event form a given @type;
5185 */
5186struct event_format *pevent_data_event_from_type(struct pevent *pevent, int type)
5187{
5188 return pevent_find_event(pevent, type);
5189}
5190
5191/**
5192 * pevent_data_pid - parse the PID from raw data
5193 * @pevent: a handle to the pevent
5194 * @rec: the record to parse
5195 *
5196 * This returns the PID from a raw data.
5197 */
5198int pevent_data_pid(struct pevent *pevent, struct pevent_record *rec)
5199{
5200 return parse_common_pid(pevent, rec->data);
5201}
5202
5203/**
5204 * pevent_data_comm_from_pid - return the command line from PID
5205 * @pevent: a handle to the pevent
5206 * @pid: the PID of the task to search for
5207 *
5208 * This returns a pointer to the command line that has the given
5209 * @pid.
5210 */
5211const char *pevent_data_comm_from_pid(struct pevent *pevent, int pid)
5212{
5213 const char *comm;
5214
5215 comm = find_cmdline(pevent, pid);
5216 return comm;
5217}
5218
5219static struct cmdline *
5220pid_from_cmdlist(struct pevent *pevent, const char *comm, struct cmdline *next)
5221{
5222 struct cmdline_list *cmdlist = (struct cmdline_list *)next;
5223
5224 if (cmdlist)
5225 cmdlist = cmdlist->next;
5226 else
5227 cmdlist = pevent->cmdlist;
5228
5229 while (cmdlist && strcmp(cmdlist->comm, comm) != 0)
5230 cmdlist = cmdlist->next;
5231
5232 return (struct cmdline *)cmdlist;
5233}
5234
5235/**
5236 * pevent_data_pid_from_comm - return the pid from a given comm
5237 * @pevent: a handle to the pevent
5238 * @comm: the cmdline to find the pid from
5239 * @next: the cmdline structure to find the next comm
5240 *
5241 * This returns the cmdline structure that holds a pid for a given
5242 * comm, or NULL if none found. As there may be more than one pid for
5243 * a given comm, the result of this call can be passed back into
5244 * a recurring call in the @next paramater, and then it will find the
5245 * next pid.
5246 * Also, it does a linear seach, so it may be slow.
5247 */
5248struct cmdline *pevent_data_pid_from_comm(struct pevent *pevent, const char *comm,
5249 struct cmdline *next)
5250{
5251 struct cmdline *cmdline;
5252
5253 /*
5254 * If the cmdlines have not been converted yet, then use
5255 * the list.
5256 */
5257 if (!pevent->cmdlines)
5258 return pid_from_cmdlist(pevent, comm, next);
5259
5260 if (next) {
5261 /*
5262 * The next pointer could have been still from
5263 * a previous call before cmdlines were created
5264 */
5265 if (next < pevent->cmdlines ||
5266 next >= pevent->cmdlines + pevent->cmdline_count)
5267 next = NULL;
5268 else
5269 cmdline = next++;
5270 }
5271
5272 if (!next)
5273 cmdline = pevent->cmdlines;
5274
5275 while (cmdline < pevent->cmdlines + pevent->cmdline_count) {
5276 if (strcmp(cmdline->comm, comm) == 0)
5277 return cmdline;
5278 cmdline++;
5279 }
5280 return NULL;
5281}
5282
5283/**
5284 * pevent_cmdline_pid - return the pid associated to a given cmdline
5285 * @cmdline: The cmdline structure to get the pid from
5286 *
5287 * Returns the pid for a give cmdline. If @cmdline is NULL, then
5288 * -1 is returned.
5289 */
5290int pevent_cmdline_pid(struct pevent *pevent, struct cmdline *cmdline)
5291{
5292 struct cmdline_list *cmdlist = (struct cmdline_list *)cmdline;
5293
5294 if (!cmdline)
5295 return -1;
5296
5297 /*
5298 * If cmdlines have not been created yet, or cmdline is
5299 * not part of the array, then treat it as a cmdlist instead.
5300 */
5301 if (!pevent->cmdlines ||
5302 cmdline < pevent->cmdlines ||
5303 cmdline >= pevent->cmdlines + pevent->cmdline_count)
5304 return cmdlist->pid;
5305
5306 return cmdline->pid;
5307}
5308
5309/**
5310 * pevent_data_comm_from_pid - parse the data into the print format
5311 * @s: the trace_seq to write to
5312 * @event: the handle to the event
5313 * @record: the record to read from
5314 *
5315 * This parses the raw @data using the given @event information and
5316 * writes the print format into the trace_seq.
5317 */
5318void pevent_event_info(struct trace_seq *s, struct event_format *event,
5319 struct pevent_record *record)
5320{
5321 int print_pretty = 1;
5322
5323 if (event->pevent->print_raw || (event->flags & EVENT_FL_PRINTRAW))
5324 pevent_print_fields(s, record->data, record->size, event);
5325 else {
5326
5327 if (event->handler && !(event->flags & EVENT_FL_NOHANDLE))
5328 print_pretty = event->handler(s, record, event,
5329 event->context);
5330
5331 if (print_pretty)
5332 pretty_print(s, record->data, record->size, event);
5333 }
5334
5335 trace_seq_terminate(s);
5336}
5337
5338static bool is_timestamp_in_us(char *trace_clock, bool use_trace_clock)
5339{
5340 if (!use_trace_clock)
5341 return true;
5342
5343 if (!strcmp(trace_clock, "local") || !strcmp(trace_clock, "global")
5344 || !strcmp(trace_clock, "uptime") || !strcmp(trace_clock, "perf"))
5345 return true;
5346
5347 /* trace_clock is setting in tsc or counter mode */
5348 return false;
5349}
5350
5351/**
5352 * pevent_find_event_by_record - return the event from a given record
5353 * @pevent: a handle to the pevent
5354 * @record: The record to get the event from
5355 *
5356 * Returns the associated event for a given record, or NULL if non is
5357 * is found.
5358 */
5359struct event_format *
5360pevent_find_event_by_record(struct pevent *pevent, struct pevent_record *record)
5361{
5362 int type;
5363
5364 if (record->size < 0) {
5365 do_warning("ug! negative record size %d", record->size);
5366 return NULL;
5367 }
5368
5369 type = trace_parse_common_type(pevent, record->data);
5370
5371 return pevent_find_event(pevent, type);
5372}
5373
5374/**
5375 * pevent_print_event_task - Write the event task comm, pid and CPU
5376 * @pevent: a handle to the pevent
5377 * @s: the trace_seq to write to
5378 * @event: the handle to the record's event
5379 * @record: The record to get the event from
5380 *
5381 * Writes the tasks comm, pid and CPU to @s.
5382 */
5383void pevent_print_event_task(struct pevent *pevent, struct trace_seq *s,
5384 struct event_format *event,
5385 struct pevent_record *record)
5386{
5387 void *data = record->data;
5388 const char *comm;
5389 int pid;
5390
5391 pid = parse_common_pid(pevent, data);
5392 comm = find_cmdline(pevent, pid);
5393
5394 if (pevent->latency_format) {
5395 trace_seq_printf(s, "%8.8s-%-5d %3d",
5396 comm, pid, record->cpu);
5397 } else
5398 trace_seq_printf(s, "%16s-%-5d [%03d]", comm, pid, record->cpu);
5399}
5400
5401/**
5402 * pevent_print_event_time - Write the event timestamp
5403 * @pevent: a handle to the pevent
5404 * @s: the trace_seq to write to
5405 * @event: the handle to the record's event
5406 * @record: The record to get the event from
5407 * @use_trace_clock: Set to parse according to the @pevent->trace_clock
5408 *
5409 * Writes the timestamp of the record into @s.
5410 */
5411void pevent_print_event_time(struct pevent *pevent, struct trace_seq *s,
5412 struct event_format *event,
5413 struct pevent_record *record,
5414 bool use_trace_clock)
5415{
5416 unsigned long secs;
5417 unsigned long usecs;
5418 unsigned long nsecs;
5419 int p;
5420 bool use_usec_format;
5421
5422 use_usec_format = is_timestamp_in_us(pevent->trace_clock,
5423 use_trace_clock);
5424 if (use_usec_format) {
5425 secs = record->ts / NSECS_PER_SEC;
5426 nsecs = record->ts - secs * NSECS_PER_SEC;
5427 }
5428
5429 if (pevent->latency_format) {
5430 pevent_data_lat_fmt(pevent, s, record);
5431 }
5432
5433 if (use_usec_format) {
5434 if (pevent->flags & PEVENT_NSEC_OUTPUT) {
5435 usecs = nsecs;
5436 p = 9;
5437 } else {
5438 usecs = (nsecs + 500) / NSECS_PER_USEC;
5439 /* To avoid usecs larger than 1 sec */
5440 if (usecs >= 1000000) {
5441 usecs -= 1000000;
5442 secs++;
5443 }
5444 p = 6;
5445 }
5446
5447 trace_seq_printf(s, " %5lu.%0*lu:", secs, p, usecs);
5448 } else
5449 trace_seq_printf(s, " %12llu:", record->ts);
5450}
5451
5452/**
5453 * pevent_print_event_data - Write the event data section
5454 * @pevent: a handle to the pevent
5455 * @s: the trace_seq to write to
5456 * @event: the handle to the record's event
5457 * @record: The record to get the event from
5458 *
5459 * Writes the parsing of the record's data to @s.
5460 */
5461void pevent_print_event_data(struct pevent *pevent, struct trace_seq *s,
5462 struct event_format *event,
5463 struct pevent_record *record)
5464{
5465 static const char *spaces = " "; /* 20 spaces */
5466 int len;
5467
5468 trace_seq_printf(s, " %s: ", event->name);
5469
5470 /* Space out the event names evenly. */
5471 len = strlen(event->name);
5472 if (len < 20)
5473 trace_seq_printf(s, "%.*s", 20 - len, spaces);
5474
5475 pevent_event_info(s, event, record);
5476}
5477
5478void pevent_print_event(struct pevent *pevent, struct trace_seq *s,
5479 struct pevent_record *record, bool use_trace_clock)
5480{
5481 struct event_format *event;
5482
5483 event = pevent_find_event_by_record(pevent, record);
5484 if (!event) {
5485 do_warning("ug! no event found for type %d",
5486 trace_parse_common_type(pevent, record->data));
5487 return;
5488 }
5489
5490 pevent_print_event_task(pevent, s, event, record);
5491 pevent_print_event_time(pevent, s, event, record, use_trace_clock);
5492 pevent_print_event_data(pevent, s, event, record);
5493}
5494
5495static int events_id_cmp(const void *a, const void *b)
5496{
5497 struct event_format * const * ea = a;
5498 struct event_format * const * eb = b;
5499
5500 if ((*ea)->id < (*eb)->id)
5501 return -1;
5502
5503 if ((*ea)->id > (*eb)->id)
5504 return 1;
5505
5506 return 0;
5507}
5508
5509static int events_name_cmp(const void *a, const void *b)
5510{
5511 struct event_format * const * ea = a;
5512 struct event_format * const * eb = b;
5513 int res;
5514
5515 res = strcmp((*ea)->name, (*eb)->name);
5516 if (res)
5517 return res;
5518
5519 res = strcmp((*ea)->system, (*eb)->system);
5520 if (res)
5521 return res;
5522
5523 return events_id_cmp(a, b);
5524}
5525
5526static int events_system_cmp(const void *a, const void *b)
5527{
5528 struct event_format * const * ea = a;
5529 struct event_format * const * eb = b;
5530 int res;
5531
5532 res = strcmp((*ea)->system, (*eb)->system);
5533 if (res)
5534 return res;
5535
5536 res = strcmp((*ea)->name, (*eb)->name);
5537 if (res)
5538 return res;
5539
5540 return events_id_cmp(a, b);
5541}
5542
5543struct event_format **pevent_list_events(struct pevent *pevent, enum event_sort_type sort_type)
5544{
5545 struct event_format **events;
5546 int (*sort)(const void *a, const void *b);
5547
5548 events = pevent->sort_events;
5549
5550 if (events && pevent->last_type == sort_type)
5551 return events;
5552
5553 if (!events) {
5554 events = malloc(sizeof(*events) * (pevent->nr_events + 1));
5555 if (!events)
5556 return NULL;
5557
5558 memcpy(events, pevent->events, sizeof(*events) * pevent->nr_events);
5559 events[pevent->nr_events] = NULL;
5560
5561 pevent->sort_events = events;
5562
5563 /* the internal events are sorted by id */
5564 if (sort_type == EVENT_SORT_ID) {
5565 pevent->last_type = sort_type;
5566 return events;
5567 }
5568 }
5569
5570 switch (sort_type) {
5571 case EVENT_SORT_ID:
5572 sort = events_id_cmp;
5573 break;
5574 case EVENT_SORT_NAME:
5575 sort = events_name_cmp;
5576 break;
5577 case EVENT_SORT_SYSTEM:
5578 sort = events_system_cmp;
5579 break;
5580 default:
5581 return events;
5582 }
5583
5584 qsort(events, pevent->nr_events, sizeof(*events), sort);
5585 pevent->last_type = sort_type;
5586
5587 return events;
5588}
5589
5590static struct format_field **
5591get_event_fields(const char *type, const char *name,
5592 int count, struct format_field *list)
5593{
5594 struct format_field **fields;
5595 struct format_field *field;
5596 int i = 0;
5597
5598 fields = malloc(sizeof(*fields) * (count + 1));
5599 if (!fields)
5600 return NULL;
5601
5602 for (field = list; field; field = field->next) {
5603 fields[i++] = field;
5604 if (i == count + 1) {
5605 do_warning("event %s has more %s fields than specified",
5606 name, type);
5607 i--;
5608 break;
5609 }
5610 }
5611
5612 if (i != count)
5613 do_warning("event %s has less %s fields than specified",
5614 name, type);
5615
5616 fields[i] = NULL;
5617
5618 return fields;
5619}
5620
5621/**
5622 * pevent_event_common_fields - return a list of common fields for an event
5623 * @event: the event to return the common fields of.
5624 *
5625 * Returns an allocated array of fields. The last item in the array is NULL.
5626 * The array must be freed with free().
5627 */
5628struct format_field **pevent_event_common_fields(struct event_format *event)
5629{
5630 return get_event_fields("common", event->name,
5631 event->format.nr_common,
5632 event->format.common_fields);
5633}
5634
5635/**
5636 * pevent_event_fields - return a list of event specific fields for an event
5637 * @event: the event to return the fields of.
5638 *
5639 * Returns an allocated array of fields. The last item in the array is NULL.
5640 * The array must be freed with free().
5641 */
5642struct format_field **pevent_event_fields(struct event_format *event)
5643{
5644 return get_event_fields("event", event->name,
5645 event->format.nr_fields,
5646 event->format.fields);
5647}
5648
5649static void print_fields(struct trace_seq *s, struct print_flag_sym *field)
5650{
5651 trace_seq_printf(s, "{ %s, %s }", field->value, field->str);
5652 if (field->next) {
5653 trace_seq_puts(s, ", ");
5654 print_fields(s, field->next);
5655 }
5656}
5657
5658/* for debugging */
5659static void print_args(struct print_arg *args)
5660{
5661 int print_paren = 1;
5662 struct trace_seq s;
5663
5664 switch (args->type) {
5665 case PRINT_NULL:
5666 printf("null");
5667 break;
5668 case PRINT_ATOM:
5669 printf("%s", args->atom.atom);
5670 break;
5671 case PRINT_FIELD:
5672 printf("REC->%s", args->field.name);
5673 break;
5674 case PRINT_FLAGS:
5675 printf("__print_flags(");
5676 print_args(args->flags.field);
5677 printf(", %s, ", args->flags.delim);
5678 trace_seq_init(&s);
5679 print_fields(&s, args->flags.flags);
5680 trace_seq_do_printf(&s);
5681 trace_seq_destroy(&s);
5682 printf(")");
5683 break;
5684 case PRINT_SYMBOL:
5685 printf("__print_symbolic(");
5686 print_args(args->symbol.field);
5687 printf(", ");
5688 trace_seq_init(&s);
5689 print_fields(&s, args->symbol.symbols);
5690 trace_seq_do_printf(&s);
5691 trace_seq_destroy(&s);
5692 printf(")");
5693 break;
5694 case PRINT_HEX:
5695 printf("__print_hex(");
5696 print_args(args->hex.field);
5697 printf(", ");
5698 print_args(args->hex.size);
5699 printf(")");
5700 break;
5701 case PRINT_INT_ARRAY:
5702 printf("__print_array(");
5703 print_args(args->int_array.field);
5704 printf(", ");
5705 print_args(args->int_array.count);
5706 printf(", ");
5707 print_args(args->int_array.el_size);
5708 printf(")");
5709 break;
5710 case PRINT_STRING:
5711 case PRINT_BSTRING:
5712 printf("__get_str(%s)", args->string.string);
5713 break;
5714 case PRINT_BITMASK:
5715 printf("__get_bitmask(%s)", args->bitmask.bitmask);
5716 break;
5717 case PRINT_TYPE:
5718 printf("(%s)", args->typecast.type);
5719 print_args(args->typecast.item);
5720 break;
5721 case PRINT_OP:
5722 if (strcmp(args->op.op, ":") == 0)
5723 print_paren = 0;
5724 if (print_paren)
5725 printf("(");
5726 print_args(args->op.left);
5727 printf(" %s ", args->op.op);
5728 print_args(args->op.right);
5729 if (print_paren)
5730 printf(")");
5731 break;
5732 default:
5733 /* we should warn... */
5734 return;
5735 }
5736 if (args->next) {
5737 printf("\n");
5738 print_args(args->next);
5739 }
5740}
5741
5742static void parse_header_field(const char *field,
5743 int *offset, int *size, int mandatory)
5744{
5745 unsigned long long save_input_buf_ptr;
5746 unsigned long long save_input_buf_siz;
5747 char *token;
5748 int type;
5749
5750 save_input_buf_ptr = input_buf_ptr;
5751 save_input_buf_siz = input_buf_siz;
5752
5753 if (read_expected(EVENT_ITEM, "field") < 0)
5754 return;
5755 if (read_expected(EVENT_OP, ":") < 0)
5756 return;
5757
5758 /* type */
5759 if (read_expect_type(EVENT_ITEM, &token) < 0)
5760 goto fail;
5761 free_token(token);
5762
5763 /*
5764 * If this is not a mandatory field, then test it first.
5765 */
5766 if (mandatory) {
5767 if (read_expected(EVENT_ITEM, field) < 0)
5768 return;
5769 } else {
5770 if (read_expect_type(EVENT_ITEM, &token) < 0)
5771 goto fail;
5772 if (strcmp(token, field) != 0)
5773 goto discard;
5774 free_token(token);
5775 }
5776
5777 if (read_expected(EVENT_OP, ";") < 0)
5778 return;
5779 if (read_expected(EVENT_ITEM, "offset") < 0)
5780 return;
5781 if (read_expected(EVENT_OP, ":") < 0)
5782 return;
5783 if (read_expect_type(EVENT_ITEM, &token) < 0)
5784 goto fail;
5785 *offset = atoi(token);
5786 free_token(token);
5787 if (read_expected(EVENT_OP, ";") < 0)
5788 return;
5789 if (read_expected(EVENT_ITEM, "size") < 0)
5790 return;
5791 if (read_expected(EVENT_OP, ":") < 0)
5792 return;
5793 if (read_expect_type(EVENT_ITEM, &token) < 0)
5794 goto fail;
5795 *size = atoi(token);
5796 free_token(token);
5797 if (read_expected(EVENT_OP, ";") < 0)
5798 return;
5799 type = read_token(&token);
5800 if (type != EVENT_NEWLINE) {
5801 /* newer versions of the kernel have a "signed" type */
5802 if (type != EVENT_ITEM)
5803 goto fail;
5804
5805 if (strcmp(token, "signed") != 0)
5806 goto fail;
5807
5808 free_token(token);
5809
5810 if (read_expected(EVENT_OP, ":") < 0)
5811 return;
5812
5813 if (read_expect_type(EVENT_ITEM, &token))
5814 goto fail;
5815
5816 free_token(token);
5817 if (read_expected(EVENT_OP, ";") < 0)
5818 return;
5819
5820 if (read_expect_type(EVENT_NEWLINE, &token))
5821 goto fail;
5822 }
5823 fail:
5824 free_token(token);
5825 return;
5826
5827 discard:
5828 input_buf_ptr = save_input_buf_ptr;
5829 input_buf_siz = save_input_buf_siz;
5830 *offset = 0;
5831 *size = 0;
5832 free_token(token);
5833}
5834
5835/**
5836 * pevent_parse_header_page - parse the data stored in the header page
5837 * @pevent: the handle to the pevent
5838 * @buf: the buffer storing the header page format string
5839 * @size: the size of @buf
5840 * @long_size: the long size to use if there is no header
5841 *
5842 * This parses the header page format for information on the
5843 * ring buffer used. The @buf should be copied from
5844 *
5845 * /sys/kernel/debug/tracing/events/header_page
5846 */
5847int pevent_parse_header_page(struct pevent *pevent, char *buf, unsigned long size,
5848 int long_size)
5849{
5850 int ignore;
5851
5852 if (!size) {
5853 /*
5854 * Old kernels did not have header page info.
5855 * Sorry but we just use what we find here in user space.
5856 */
5857 pevent->header_page_ts_size = sizeof(long long);
5858 pevent->header_page_size_size = long_size;
5859 pevent->header_page_data_offset = sizeof(long long) + long_size;
5860 pevent->old_format = 1;
5861 return -1;
5862 }
5863 init_input_buf(buf, size);
5864
5865 parse_header_field("timestamp", &pevent->header_page_ts_offset,
5866 &pevent->header_page_ts_size, 1);
5867 parse_header_field("commit", &pevent->header_page_size_offset,
5868 &pevent->header_page_size_size, 1);
5869 parse_header_field("overwrite", &pevent->header_page_overwrite,
5870 &ignore, 0);
5871 parse_header_field("data", &pevent->header_page_data_offset,
5872 &pevent->header_page_data_size, 1);
5873
5874 return 0;
5875}
5876
5877static int event_matches(struct event_format *event,
5878 int id, const char *sys_name,
5879 const char *event_name)
5880{
5881 if (id >= 0 && id != event->id)
5882 return 0;
5883
5884 if (event_name && (strcmp(event_name, event->name) != 0))
5885 return 0;
5886
5887 if (sys_name && (strcmp(sys_name, event->system) != 0))
5888 return 0;
5889
5890 return 1;
5891}
5892
5893static void free_handler(struct event_handler *handle)
5894{
5895 free((void *)handle->sys_name);
5896 free((void *)handle->event_name);
5897 free(handle);
5898}
5899
5900static int find_event_handle(struct pevent *pevent, struct event_format *event)
5901{
5902 struct event_handler *handle, **next;
5903
5904 for (next = &pevent->handlers; *next;
5905 next = &(*next)->next) {
5906 handle = *next;
5907 if (event_matches(event, handle->id,
5908 handle->sys_name,
5909 handle->event_name))
5910 break;
5911 }
5912
5913 if (!(*next))
5914 return 0;
5915
5916 pr_stat("overriding event (%d) %s:%s with new print handler",
5917 event->id, event->system, event->name);
5918
5919 event->handler = handle->func;
5920 event->context = handle->context;
5921
5922 *next = handle->next;
5923 free_handler(handle);
5924
5925 return 1;
5926}
5927
5928/**
5929 * __pevent_parse_format - parse the event format
5930 * @buf: the buffer storing the event format string
5931 * @size: the size of @buf
5932 * @sys: the system the event belongs to
5933 *
5934 * This parses the event format and creates an event structure
5935 * to quickly parse raw data for a given event.
5936 *
5937 * These files currently come from:
5938 *
5939 * /sys/kernel/debug/tracing/events/.../.../format
5940 */
5941enum pevent_errno __pevent_parse_format(struct event_format **eventp,
5942 struct pevent *pevent, const char *buf,
5943 unsigned long size, const char *sys)
5944{
5945 struct event_format *event;
5946 int ret;
5947
5948 init_input_buf(buf, size);
5949
5950 *eventp = event = alloc_event();
5951 if (!event)
5952 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
5953
5954 event->name = event_read_name();
5955 if (!event->name) {
5956 /* Bad event? */
5957 ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
5958 goto event_alloc_failed;
5959 }
5960
5961 if (strcmp(sys, "ftrace") == 0) {
5962 event->flags |= EVENT_FL_ISFTRACE;
5963
5964 if (strcmp(event->name, "bprint") == 0)
5965 event->flags |= EVENT_FL_ISBPRINT;
5966 }
5967
5968 event->id = event_read_id();
5969 if (event->id < 0) {
5970 ret = PEVENT_ERRNO__READ_ID_FAILED;
5971 /*
5972 * This isn't an allocation error actually.
5973 * But as the ID is critical, just bail out.
5974 */
5975 goto event_alloc_failed;
5976 }
5977
5978 event->system = strdup(sys);
5979 if (!event->system) {
5980 ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
5981 goto event_alloc_failed;
5982 }
5983
5984 /* Add pevent to event so that it can be referenced */
5985 event->pevent = pevent;
5986
5987 ret = event_read_format(event);
5988 if (ret < 0) {
5989 ret = PEVENT_ERRNO__READ_FORMAT_FAILED;
5990 goto event_parse_failed;
5991 }
5992
5993 /*
5994 * If the event has an override, don't print warnings if the event
5995 * print format fails to parse.
5996 */
5997 if (pevent && find_event_handle(pevent, event))
5998 show_warning = 0;
5999
6000 ret = event_read_print(event);
6001 show_warning = 1;
6002
6003 if (ret < 0) {
6004 ret = PEVENT_ERRNO__READ_PRINT_FAILED;
6005 goto event_parse_failed;
6006 }
6007
6008 if (!ret && (event->flags & EVENT_FL_ISFTRACE)) {
6009 struct format_field *field;
6010 struct print_arg *arg, **list;
6011
6012 /* old ftrace had no args */
6013 list = &event->print_fmt.args;
6014 for (field = event->format.fields; field; field = field->next) {
6015 arg = alloc_arg();
6016 if (!arg) {
6017 event->flags |= EVENT_FL_FAILED;
6018 return PEVENT_ERRNO__OLD_FTRACE_ARG_FAILED;
6019 }
6020 arg->type = PRINT_FIELD;
6021 arg->field.name = strdup(field->name);
6022 if (!arg->field.name) {
6023 event->flags |= EVENT_FL_FAILED;
6024 free_arg(arg);
6025 return PEVENT_ERRNO__OLD_FTRACE_ARG_FAILED;
6026 }
6027 arg->field.field = field;
6028 *list = arg;
6029 list = &arg->next;
6030 }
6031 return 0;
6032 }
6033
6034 return 0;
6035
6036 event_parse_failed:
6037 event->flags |= EVENT_FL_FAILED;
6038 return ret;
6039
6040 event_alloc_failed:
6041 free(event->system);
6042 free(event->name);
6043 free(event);
6044 *eventp = NULL;
6045 return ret;
6046}
6047
6048static enum pevent_errno
6049__pevent_parse_event(struct pevent *pevent,
6050 struct event_format **eventp,
6051 const char *buf, unsigned long size,
6052 const char *sys)
6053{
6054 int ret = __pevent_parse_format(eventp, pevent, buf, size, sys);
6055 struct event_format *event = *eventp;
6056
6057 if (event == NULL)
6058 return ret;
6059
6060 if (pevent && add_event(pevent, event)) {
6061 ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
6062 goto event_add_failed;
6063 }
6064
6065#define PRINT_ARGS 0
6066 if (PRINT_ARGS && event->print_fmt.args)
6067 print_args(event->print_fmt.args);
6068
6069 return 0;
6070
6071event_add_failed:
6072 pevent_free_format(event);
6073 return ret;
6074}
6075
6076/**
6077 * pevent_parse_format - parse the event format
6078 * @pevent: the handle to the pevent
6079 * @eventp: returned format
6080 * @buf: the buffer storing the event format string
6081 * @size: the size of @buf
6082 * @sys: the system the event belongs to
6083 *
6084 * This parses the event format and creates an event structure
6085 * to quickly parse raw data for a given event.
6086 *
6087 * These files currently come from:
6088 *
6089 * /sys/kernel/debug/tracing/events/.../.../format
6090 */
6091enum pevent_errno pevent_parse_format(struct pevent *pevent,
6092 struct event_format **eventp,
6093 const char *buf,
6094 unsigned long size, const char *sys)
6095{
6096 return __pevent_parse_event(pevent, eventp, buf, size, sys);
6097}
6098
6099/**
6100 * pevent_parse_event - parse the event format
6101 * @pevent: the handle to the pevent
6102 * @buf: the buffer storing the event format string
6103 * @size: the size of @buf
6104 * @sys: the system the event belongs to
6105 *
6106 * This parses the event format and creates an event structure
6107 * to quickly parse raw data for a given event.
6108 *
6109 * These files currently come from:
6110 *
6111 * /sys/kernel/debug/tracing/events/.../.../format
6112 */
6113enum pevent_errno pevent_parse_event(struct pevent *pevent, const char *buf,
6114 unsigned long size, const char *sys)
6115{
6116 struct event_format *event = NULL;
6117 return __pevent_parse_event(pevent, &event, buf, size, sys);
6118}
6119
6120#undef _PE
6121#define _PE(code, str) str
6122static const char * const pevent_error_str[] = {
6123 PEVENT_ERRORS
6124};
6125#undef _PE
6126
6127int pevent_strerror(struct pevent *pevent __maybe_unused,
6128 enum pevent_errno errnum, char *buf, size_t buflen)
6129{
6130 int idx;
6131 const char *msg;
6132
6133 if (errnum >= 0) {
6134 msg = strerror_r(errnum, buf, buflen);
6135 if (msg != buf) {
6136 size_t len = strlen(msg);
6137 memcpy(buf, msg, min(buflen - 1, len));
6138 *(buf + min(buflen - 1, len)) = '\0';
6139 }
6140 return 0;
6141 }
6142
6143 if (errnum <= __PEVENT_ERRNO__START ||
6144 errnum >= __PEVENT_ERRNO__END)
6145 return -1;
6146
6147 idx = errnum - __PEVENT_ERRNO__START - 1;
6148 msg = pevent_error_str[idx];
6149 snprintf(buf, buflen, "%s", msg);
6150
6151 return 0;
6152}
6153
6154int get_field_val(struct trace_seq *s, struct format_field *field,
6155 const char *name, struct pevent_record *record,
6156 unsigned long long *val, int err)
6157{
6158 if (!field) {
6159 if (err)
6160 trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6161 return -1;
6162 }
6163
6164 if (pevent_read_number_field(field, record->data, val)) {
6165 if (err)
6166 trace_seq_printf(s, " %s=INVALID", name);
6167 return -1;
6168 }
6169
6170 return 0;
6171}
6172
6173/**
6174 * pevent_get_field_raw - return the raw pointer into the data field
6175 * @s: The seq to print to on error
6176 * @event: the event that the field is for
6177 * @name: The name of the field
6178 * @record: The record with the field name.
6179 * @len: place to store the field length.
6180 * @err: print default error if failed.
6181 *
6182 * Returns a pointer into record->data of the field and places
6183 * the length of the field in @len.
6184 *
6185 * On failure, it returns NULL.
6186 */
6187void *pevent_get_field_raw(struct trace_seq *s, struct event_format *event,
6188 const char *name, struct pevent_record *record,
6189 int *len, int err)
6190{
6191 struct format_field *field;
6192 void *data = record->data;
6193 unsigned offset;
6194 int dummy;
6195
6196 if (!event)
6197 return NULL;
6198
6199 field = pevent_find_field(event, name);
6200
6201 if (!field) {
6202 if (err)
6203 trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6204 return NULL;
6205 }
6206
6207 /* Allow @len to be NULL */
6208 if (!len)
6209 len = &dummy;
6210
6211 offset = field->offset;
6212 if (field->flags & FIELD_IS_DYNAMIC) {
6213 offset = pevent_read_number(event->pevent,
6214 data + offset, field->size);
6215 *len = offset >> 16;
6216 offset &= 0xffff;
6217 } else
6218 *len = field->size;
6219
6220 return data + offset;
6221}
6222
6223/**
6224 * pevent_get_field_val - find a field and return its value
6225 * @s: The seq to print to on error
6226 * @event: the event that the field is for
6227 * @name: The name of the field
6228 * @record: The record with the field name.
6229 * @val: place to store the value of the field.
6230 * @err: print default error if failed.
6231 *
6232 * Returns 0 on success -1 on field not found.
6233 */
6234int pevent_get_field_val(struct trace_seq *s, struct event_format *event,
6235 const char *name, struct pevent_record *record,
6236 unsigned long long *val, int err)
6237{
6238 struct format_field *field;
6239
6240 if (!event)
6241 return -1;
6242
6243 field = pevent_find_field(event, name);
6244
6245 return get_field_val(s, field, name, record, val, err);
6246}
6247
6248/**
6249 * pevent_get_common_field_val - find a common field and return its value
6250 * @s: The seq to print to on error
6251 * @event: the event that the field is for
6252 * @name: The name of the field
6253 * @record: The record with the field name.
6254 * @val: place to store the value of the field.
6255 * @err: print default error if failed.
6256 *
6257 * Returns 0 on success -1 on field not found.
6258 */
6259int pevent_get_common_field_val(struct trace_seq *s, struct event_format *event,
6260 const char *name, struct pevent_record *record,
6261 unsigned long long *val, int err)
6262{
6263 struct format_field *field;
6264
6265 if (!event)
6266 return -1;
6267
6268 field = pevent_find_common_field(event, name);
6269
6270 return get_field_val(s, field, name, record, val, err);
6271}
6272
6273/**
6274 * pevent_get_any_field_val - find a any field and return its value
6275 * @s: The seq to print to on error
6276 * @event: the event that the field is for
6277 * @name: The name of the field
6278 * @record: The record with the field name.
6279 * @val: place to store the value of the field.
6280 * @err: print default error if failed.
6281 *
6282 * Returns 0 on success -1 on field not found.
6283 */
6284int pevent_get_any_field_val(struct trace_seq *s, struct event_format *event,
6285 const char *name, struct pevent_record *record,
6286 unsigned long long *val, int err)
6287{
6288 struct format_field *field;
6289
6290 if (!event)
6291 return -1;
6292
6293 field = pevent_find_any_field(event, name);
6294
6295 return get_field_val(s, field, name, record, val, err);
6296}
6297
6298/**
6299 * pevent_print_num_field - print a field and a format
6300 * @s: The seq to print to
6301 * @fmt: The printf format to print the field with.
6302 * @event: the event that the field is for
6303 * @name: The name of the field
6304 * @record: The record with the field name.
6305 * @err: print default error if failed.
6306 *
6307 * Returns: 0 on success, -1 field not found, or 1 if buffer is full.
6308 */
6309int pevent_print_num_field(struct trace_seq *s, const char *fmt,
6310 struct event_format *event, const char *name,
6311 struct pevent_record *record, int err)
6312{
6313 struct format_field *field = pevent_find_field(event, name);
6314 unsigned long long val;
6315
6316 if (!field)
6317 goto failed;
6318
6319 if (pevent_read_number_field(field, record->data, &val))
6320 goto failed;
6321
6322 return trace_seq_printf(s, fmt, val);
6323
6324 failed:
6325 if (err)
6326 trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
6327 return -1;
6328}
6329
6330/**
6331 * pevent_print_func_field - print a field and a format for function pointers
6332 * @s: The seq to print to
6333 * @fmt: The printf format to print the field with.
6334 * @event: the event that the field is for
6335 * @name: The name of the field
6336 * @record: The record with the field name.
6337 * @err: print default error if failed.
6338 *
6339 * Returns: 0 on success, -1 field not found, or 1 if buffer is full.
6340 */
6341int pevent_print_func_field(struct trace_seq *s, const char *fmt,
6342 struct event_format *event, const char *name,
6343 struct pevent_record *record, int err)
6344{
6345 struct format_field *field = pevent_find_field(event, name);
6346 struct pevent *pevent = event->pevent;
6347 unsigned long long val;
6348 struct func_map *func;
6349 char tmp[128];
6350
6351 if (!field)
6352 goto failed;
6353
6354 if (pevent_read_number_field(field, record->data, &val))
6355 goto failed;
6356
6357 func = find_func(pevent, val);
6358
6359 if (func)
6360 snprintf(tmp, 128, "%s/0x%llx", func->func, func->addr - val);
6361 else
6362 sprintf(tmp, "0x%08llx", val);
6363
6364 return trace_seq_printf(s, fmt, tmp);
6365
6366 failed:
6367 if (err)
6368 trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
6369 return -1;
6370}
6371
6372static void free_func_handle(struct pevent_function_handler *func)
6373{
6374 struct pevent_func_params *params;
6375
6376 free(func->name);
6377
6378 while (func->params) {
6379 params = func->params;
6380 func->params = params->next;
6381 free(params);
6382 }
6383
6384 free(func);
6385}
6386
6387/**
6388 * pevent_register_print_function - register a helper function
6389 * @pevent: the handle to the pevent
6390 * @func: the function to process the helper function
6391 * @ret_type: the return type of the helper function
6392 * @name: the name of the helper function
6393 * @parameters: A list of enum pevent_func_arg_type
6394 *
6395 * Some events may have helper functions in the print format arguments.
6396 * This allows a plugin to dynamically create a way to process one
6397 * of these functions.
6398 *
6399 * The @parameters is a variable list of pevent_func_arg_type enums that
6400 * must end with PEVENT_FUNC_ARG_VOID.
6401 */
6402int pevent_register_print_function(struct pevent *pevent,
6403 pevent_func_handler func,
6404 enum pevent_func_arg_type ret_type,
6405 char *name, ...)
6406{
6407 struct pevent_function_handler *func_handle;
6408 struct pevent_func_params **next_param;
6409 struct pevent_func_params *param;
6410 enum pevent_func_arg_type type;
6411 va_list ap;
6412 int ret;
6413
6414 func_handle = find_func_handler(pevent, name);
6415 if (func_handle) {
6416 /*
6417 * This is most like caused by the users own
6418 * plugins updating the function. This overrides the
6419 * system defaults.
6420 */
6421 pr_stat("override of function helper '%s'", name);
6422 remove_func_handler(pevent, name);
6423 }
6424
6425 func_handle = calloc(1, sizeof(*func_handle));
6426 if (!func_handle) {
6427 do_warning("Failed to allocate function handler");
6428 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
6429 }
6430
6431 func_handle->ret_type = ret_type;
6432 func_handle->name = strdup(name);
6433 func_handle->func = func;
6434 if (!func_handle->name) {
6435 do_warning("Failed to allocate function name");
6436 free(func_handle);
6437 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
6438 }
6439
6440 next_param = &(func_handle->params);
6441 va_start(ap, name);
6442 for (;;) {
6443 type = va_arg(ap, enum pevent_func_arg_type);
6444 if (type == PEVENT_FUNC_ARG_VOID)
6445 break;
6446
6447 if (type >= PEVENT_FUNC_ARG_MAX_TYPES) {
6448 do_warning("Invalid argument type %d", type);
6449 ret = PEVENT_ERRNO__INVALID_ARG_TYPE;
6450 goto out_free;
6451 }
6452
6453 param = malloc(sizeof(*param));
6454 if (!param) {
6455 do_warning("Failed to allocate function param");
6456 ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
6457 goto out_free;
6458 }
6459 param->type = type;
6460 param->next = NULL;
6461
6462 *next_param = param;
6463 next_param = &(param->next);
6464
6465 func_handle->nr_args++;
6466 }
6467 va_end(ap);
6468
6469 func_handle->next = pevent->func_handlers;
6470 pevent->func_handlers = func_handle;
6471
6472 return 0;
6473 out_free:
6474 va_end(ap);
6475 free_func_handle(func_handle);
6476 return ret;
6477}
6478
6479/**
6480 * pevent_unregister_print_function - unregister a helper function
6481 * @pevent: the handle to the pevent
6482 * @func: the function to process the helper function
6483 * @name: the name of the helper function
6484 *
6485 * This function removes existing print handler for function @name.
6486 *
6487 * Returns 0 if the handler was removed successully, -1 otherwise.
6488 */
6489int pevent_unregister_print_function(struct pevent *pevent,
6490 pevent_func_handler func, char *name)
6491{
6492 struct pevent_function_handler *func_handle;
6493
6494 func_handle = find_func_handler(pevent, name);
6495 if (func_handle && func_handle->func == func) {
6496 remove_func_handler(pevent, name);
6497 return 0;
6498 }
6499 return -1;
6500}
6501
6502static struct event_format *pevent_search_event(struct pevent *pevent, int id,
6503 const char *sys_name,
6504 const char *event_name)
6505{
6506 struct event_format *event;
6507
6508 if (id >= 0) {
6509 /* search by id */
6510 event = pevent_find_event(pevent, id);
6511 if (!event)
6512 return NULL;
6513 if (event_name && (strcmp(event_name, event->name) != 0))
6514 return NULL;
6515 if (sys_name && (strcmp(sys_name, event->system) != 0))
6516 return NULL;
6517 } else {
6518 event = pevent_find_event_by_name(pevent, sys_name, event_name);
6519 if (!event)
6520 return NULL;
6521 }
6522 return event;
6523}
6524
6525/**
6526 * pevent_register_event_handler - register a way to parse an event
6527 * @pevent: the handle to the pevent
6528 * @id: the id of the event to register
6529 * @sys_name: the system name the event belongs to
6530 * @event_name: the name of the event
6531 * @func: the function to call to parse the event information
6532 * @context: the data to be passed to @func
6533 *
6534 * This function allows a developer to override the parsing of
6535 * a given event. If for some reason the default print format
6536 * is not sufficient, this function will register a function
6537 * for an event to be used to parse the data instead.
6538 *
6539 * If @id is >= 0, then it is used to find the event.
6540 * else @sys_name and @event_name are used.
6541 */
6542int pevent_register_event_handler(struct pevent *pevent, int id,
6543 const char *sys_name, const char *event_name,
6544 pevent_event_handler_func func, void *context)
6545{
6546 struct event_format *event;
6547 struct event_handler *handle;
6548
6549 event = pevent_search_event(pevent, id, sys_name, event_name);
6550 if (event == NULL)
6551 goto not_found;
6552
6553 pr_stat("overriding event (%d) %s:%s with new print handler",
6554 event->id, event->system, event->name);
6555
6556 event->handler = func;
6557 event->context = context;
6558 return 0;
6559
6560 not_found:
6561 /* Save for later use. */
6562 handle = calloc(1, sizeof(*handle));
6563 if (!handle) {
6564 do_warning("Failed to allocate event handler");
6565 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
6566 }
6567
6568 handle->id = id;
6569 if (event_name)
6570 handle->event_name = strdup(event_name);
6571 if (sys_name)
6572 handle->sys_name = strdup(sys_name);
6573
6574 if ((event_name && !handle->event_name) ||
6575 (sys_name && !handle->sys_name)) {
6576 do_warning("Failed to allocate event/sys name");
6577 free((void *)handle->event_name);
6578 free((void *)handle->sys_name);
6579 free(handle);
6580 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
6581 }
6582
6583 handle->func = func;
6584 handle->next = pevent->handlers;
6585 pevent->handlers = handle;
6586 handle->context = context;
6587
6588 return -1;
6589}
6590
6591static int handle_matches(struct event_handler *handler, int id,
6592 const char *sys_name, const char *event_name,
6593 pevent_event_handler_func func, void *context)
6594{
6595 if (id >= 0 && id != handler->id)
6596 return 0;
6597
6598 if (event_name && (strcmp(event_name, handler->event_name) != 0))
6599 return 0;
6600
6601 if (sys_name && (strcmp(sys_name, handler->sys_name) != 0))
6602 return 0;
6603
6604 if (func != handler->func || context != handler->context)
6605 return 0;
6606
6607 return 1;
6608}
6609
6610/**
6611 * pevent_unregister_event_handler - unregister an existing event handler
6612 * @pevent: the handle to the pevent
6613 * @id: the id of the event to unregister
6614 * @sys_name: the system name the handler belongs to
6615 * @event_name: the name of the event handler
6616 * @func: the function to call to parse the event information
6617 * @context: the data to be passed to @func
6618 *
6619 * This function removes existing event handler (parser).
6620 *
6621 * If @id is >= 0, then it is used to find the event.
6622 * else @sys_name and @event_name are used.
6623 *
6624 * Returns 0 if handler was removed successfully, -1 if event was not found.
6625 */
6626int pevent_unregister_event_handler(struct pevent *pevent, int id,
6627 const char *sys_name, const char *event_name,
6628 pevent_event_handler_func func, void *context)
6629{
6630 struct event_format *event;
6631 struct event_handler *handle;
6632 struct event_handler **next;
6633
6634 event = pevent_search_event(pevent, id, sys_name, event_name);
6635 if (event == NULL)
6636 goto not_found;
6637
6638 if (event->handler == func && event->context == context) {
6639 pr_stat("removing override handler for event (%d) %s:%s. Going back to default handler.",
6640 event->id, event->system, event->name);
6641
6642 event->handler = NULL;
6643 event->context = NULL;
6644 return 0;
6645 }
6646
6647not_found:
6648 for (next = &pevent->handlers; *next; next = &(*next)->next) {
6649 handle = *next;
6650 if (handle_matches(handle, id, sys_name, event_name,
6651 func, context))
6652 break;
6653 }
6654
6655 if (!(*next))
6656 return -1;
6657
6658 *next = handle->next;
6659 free_handler(handle);
6660
6661 return 0;
6662}
6663
6664/**
6665 * pevent_alloc - create a pevent handle
6666 */
6667struct pevent *pevent_alloc(void)
6668{
6669 struct pevent *pevent = calloc(1, sizeof(*pevent));
6670
6671 if (pevent)
6672 pevent->ref_count = 1;
6673
6674 return pevent;
6675}
6676
6677void pevent_ref(struct pevent *pevent)
6678{
6679 pevent->ref_count++;
6680}
6681
6682void pevent_free_format_field(struct format_field *field)
6683{
6684 free(field->type);
6685 if (field->alias != field->name)
6686 free(field->alias);
6687 free(field->name);
6688 free(field);
6689}
6690
6691static void free_format_fields(struct format_field *field)
6692{
6693 struct format_field *next;
6694
6695 while (field) {
6696 next = field->next;
6697 pevent_free_format_field(field);
6698 field = next;
6699 }
6700}
6701
6702static void free_formats(struct format *format)
6703{
6704 free_format_fields(format->common_fields);
6705 free_format_fields(format->fields);
6706}
6707
6708void pevent_free_format(struct event_format *event)
6709{
6710 free(event->name);
6711 free(event->system);
6712
6713 free_formats(&event->format);
6714
6715 free(event->print_fmt.format);
6716 free_args(event->print_fmt.args);
6717
6718 free(event);
6719}
6720
6721/**
6722 * pevent_free - free a pevent handle
6723 * @pevent: the pevent handle to free
6724 */
6725void pevent_free(struct pevent *pevent)
6726{
6727 struct cmdline_list *cmdlist, *cmdnext;
6728 struct func_list *funclist, *funcnext;
6729 struct printk_list *printklist, *printknext;
6730 struct pevent_function_handler *func_handler;
6731 struct event_handler *handle;
6732 int i;
6733
6734 if (!pevent)
6735 return;
6736
6737 cmdlist = pevent->cmdlist;
6738 funclist = pevent->funclist;
6739 printklist = pevent->printklist;
6740
6741 pevent->ref_count--;
6742 if (pevent->ref_count)
6743 return;
6744
6745 if (pevent->cmdlines) {
6746 for (i = 0; i < pevent->cmdline_count; i++)
6747 free(pevent->cmdlines[i].comm);
6748 free(pevent->cmdlines);
6749 }
6750
6751 while (cmdlist) {
6752 cmdnext = cmdlist->next;
6753 free(cmdlist->comm);
6754 free(cmdlist);
6755 cmdlist = cmdnext;
6756 }
6757
6758 if (pevent->func_map) {
6759 for (i = 0; i < (int)pevent->func_count; i++) {
6760 free(pevent->func_map[i].func);
6761 free(pevent->func_map[i].mod);
6762 }
6763 free(pevent->func_map);
6764 }
6765
6766 while (funclist) {
6767 funcnext = funclist->next;
6768 free(funclist->func);
6769 free(funclist->mod);
6770 free(funclist);
6771 funclist = funcnext;
6772 }
6773
6774 while (pevent->func_handlers) {
6775 func_handler = pevent->func_handlers;
6776 pevent->func_handlers = func_handler->next;
6777 free_func_handle(func_handler);
6778 }
6779
6780 if (pevent->printk_map) {
6781 for (i = 0; i < (int)pevent->printk_count; i++)
6782 free(pevent->printk_map[i].printk);
6783 free(pevent->printk_map);
6784 }
6785
6786 while (printklist) {
6787 printknext = printklist->next;
6788 free(printklist->printk);
6789 free(printklist);
6790 printklist = printknext;
6791 }
6792
6793 for (i = 0; i < pevent->nr_events; i++)
6794 pevent_free_format(pevent->events[i]);
6795
6796 while (pevent->handlers) {
6797 handle = pevent->handlers;
6798 pevent->handlers = handle->next;
6799 free_handler(handle);
6800 }
6801
6802 free(pevent->trace_clock);
6803 free(pevent->events);
6804 free(pevent->sort_events);
6805 free(pevent->func_resolver);
6806
6807 free(pevent);
6808}
6809
6810void pevent_unref(struct pevent *pevent)
6811{
6812 pevent_free(pevent);
6813}
1// SPDX-License-Identifier: LGPL-2.1
2/*
3 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
4 *
5 *
6 * The parts for function graph printing was taken and modified from the
7 * Linux Kernel that were written by
8 * - Copyright (C) 2009 Frederic Weisbecker,
9 * Frederic Weisbecker gave his permission to relicense the code to
10 * the Lesser General Public License.
11 */
12#include <inttypes.h>
13#include <stdio.h>
14#include <stdlib.h>
15#include <string.h>
16#include <stdarg.h>
17#include <ctype.h>
18#include <errno.h>
19#include <stdint.h>
20#include <limits.h>
21#include <linux/time64.h>
22
23#include <netinet/in.h>
24#include "event-parse.h"
25
26#include "event-parse-local.h"
27#include "event-utils.h"
28#include "trace-seq.h"
29
30static const char *input_buf;
31static unsigned long long input_buf_ptr;
32static unsigned long long input_buf_siz;
33
34static int is_flag_field;
35static int is_symbolic_field;
36
37static int show_warning = 1;
38
39#define do_warning(fmt, ...) \
40 do { \
41 if (show_warning) \
42 warning(fmt, ##__VA_ARGS__); \
43 } while (0)
44
45#define do_warning_event(event, fmt, ...) \
46 do { \
47 if (!show_warning) \
48 continue; \
49 \
50 if (event) \
51 warning("[%s:%s] " fmt, event->system, \
52 event->name, ##__VA_ARGS__); \
53 else \
54 warning(fmt, ##__VA_ARGS__); \
55 } while (0)
56
57static void init_input_buf(const char *buf, unsigned long long size)
58{
59 input_buf = buf;
60 input_buf_siz = size;
61 input_buf_ptr = 0;
62}
63
64const char *tep_get_input_buf(void)
65{
66 return input_buf;
67}
68
69unsigned long long tep_get_input_buf_ptr(void)
70{
71 return input_buf_ptr;
72}
73
74struct event_handler {
75 struct event_handler *next;
76 int id;
77 const char *sys_name;
78 const char *event_name;
79 tep_event_handler_func func;
80 void *context;
81};
82
83struct func_params {
84 struct func_params *next;
85 enum tep_func_arg_type type;
86};
87
88struct tep_function_handler {
89 struct tep_function_handler *next;
90 enum tep_func_arg_type ret_type;
91 char *name;
92 tep_func_handler func;
93 struct func_params *params;
94 int nr_args;
95};
96
97static unsigned long long
98process_defined_func(struct trace_seq *s, void *data, int size,
99 struct tep_event *event, struct tep_print_arg *arg);
100
101static void free_func_handle(struct tep_function_handler *func);
102
103/**
104 * tep_buffer_init - init buffer for parsing
105 * @buf: buffer to parse
106 * @size: the size of the buffer
107 *
108 * For use with tep_read_token(), this initializes the internal
109 * buffer that tep_read_token() will parse.
110 */
111void tep_buffer_init(const char *buf, unsigned long long size)
112{
113 init_input_buf(buf, size);
114}
115
116void breakpoint(void)
117{
118 static int x;
119 x++;
120}
121
122struct tep_print_arg *alloc_arg(void)
123{
124 return calloc(1, sizeof(struct tep_print_arg));
125}
126
127struct tep_cmdline {
128 char *comm;
129 int pid;
130};
131
132static int cmdline_cmp(const void *a, const void *b)
133{
134 const struct tep_cmdline *ca = a;
135 const struct tep_cmdline *cb = b;
136
137 if (ca->pid < cb->pid)
138 return -1;
139 if (ca->pid > cb->pid)
140 return 1;
141
142 return 0;
143}
144
145/* Looking for where to place the key */
146static int cmdline_slot_cmp(const void *a, const void *b)
147{
148 const struct tep_cmdline *ca = a;
149 const struct tep_cmdline *cb = b;
150 const struct tep_cmdline *cb1 = cb + 1;
151
152 if (ca->pid < cb->pid)
153 return -1;
154
155 if (ca->pid > cb->pid) {
156 if (ca->pid <= cb1->pid)
157 return 0;
158 return 1;
159 }
160
161 return 0;
162}
163
164struct cmdline_list {
165 struct cmdline_list *next;
166 char *comm;
167 int pid;
168};
169
170static int cmdline_init(struct tep_handle *tep)
171{
172 struct cmdline_list *cmdlist = tep->cmdlist;
173 struct cmdline_list *item;
174 struct tep_cmdline *cmdlines;
175 int i;
176
177 cmdlines = malloc(sizeof(*cmdlines) * tep->cmdline_count);
178 if (!cmdlines)
179 return -1;
180
181 i = 0;
182 while (cmdlist) {
183 cmdlines[i].pid = cmdlist->pid;
184 cmdlines[i].comm = cmdlist->comm;
185 i++;
186 item = cmdlist;
187 cmdlist = cmdlist->next;
188 free(item);
189 }
190
191 qsort(cmdlines, tep->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
192
193 tep->cmdlines = cmdlines;
194 tep->cmdlist = NULL;
195
196 return 0;
197}
198
199static const char *find_cmdline(struct tep_handle *tep, int pid)
200{
201 const struct tep_cmdline *comm;
202 struct tep_cmdline key;
203
204 if (!pid)
205 return "<idle>";
206
207 if (!tep->cmdlines && cmdline_init(tep))
208 return "<not enough memory for cmdlines!>";
209
210 key.pid = pid;
211
212 comm = bsearch(&key, tep->cmdlines, tep->cmdline_count,
213 sizeof(*tep->cmdlines), cmdline_cmp);
214
215 if (comm)
216 return comm->comm;
217 return "<...>";
218}
219
220/**
221 * tep_is_pid_registered - return if a pid has a cmdline registered
222 * @tep: a handle to the trace event parser context
223 * @pid: The pid to check if it has a cmdline registered with.
224 *
225 * Returns true if the pid has a cmdline mapped to it
226 * false otherwise.
227 */
228bool tep_is_pid_registered(struct tep_handle *tep, int pid)
229{
230 const struct tep_cmdline *comm;
231 struct tep_cmdline key;
232
233 if (!pid)
234 return true;
235
236 if (!tep->cmdlines && cmdline_init(tep))
237 return false;
238
239 key.pid = pid;
240
241 comm = bsearch(&key, tep->cmdlines, tep->cmdline_count,
242 sizeof(*tep->cmdlines), cmdline_cmp);
243
244 if (comm)
245 return true;
246 return false;
247}
248
249/*
250 * If the command lines have been converted to an array, then
251 * we must add this pid. This is much slower than when cmdlines
252 * are added before the array is initialized.
253 */
254static int add_new_comm(struct tep_handle *tep,
255 const char *comm, int pid, bool override)
256{
257 struct tep_cmdline *cmdlines = tep->cmdlines;
258 struct tep_cmdline *cmdline;
259 struct tep_cmdline key;
260 char *new_comm;
261 int cnt;
262
263 if (!pid)
264 return 0;
265
266 /* avoid duplicates */
267 key.pid = pid;
268
269 cmdline = bsearch(&key, tep->cmdlines, tep->cmdline_count,
270 sizeof(*tep->cmdlines), cmdline_cmp);
271 if (cmdline) {
272 if (!override) {
273 errno = EEXIST;
274 return -1;
275 }
276 new_comm = strdup(comm);
277 if (!new_comm) {
278 errno = ENOMEM;
279 return -1;
280 }
281 free(cmdline->comm);
282 cmdline->comm = new_comm;
283
284 return 0;
285 }
286
287 cmdlines = realloc(cmdlines, sizeof(*cmdlines) * (tep->cmdline_count + 1));
288 if (!cmdlines) {
289 errno = ENOMEM;
290 return -1;
291 }
292 tep->cmdlines = cmdlines;
293
294 key.comm = strdup(comm);
295 if (!key.comm) {
296 errno = ENOMEM;
297 return -1;
298 }
299
300 if (!tep->cmdline_count) {
301 /* no entries yet */
302 tep->cmdlines[0] = key;
303 tep->cmdline_count++;
304 return 0;
305 }
306
307 /* Now find where we want to store the new cmdline */
308 cmdline = bsearch(&key, tep->cmdlines, tep->cmdline_count - 1,
309 sizeof(*tep->cmdlines), cmdline_slot_cmp);
310
311 cnt = tep->cmdline_count;
312 if (cmdline) {
313 /* cmdline points to the one before the spot we want */
314 cmdline++;
315 cnt -= cmdline - tep->cmdlines;
316
317 } else {
318 /* The new entry is either before or after the list */
319 if (key.pid > tep->cmdlines[tep->cmdline_count - 1].pid) {
320 tep->cmdlines[tep->cmdline_count++] = key;
321 return 0;
322 }
323 cmdline = &tep->cmdlines[0];
324 }
325 memmove(cmdline + 1, cmdline, (cnt * sizeof(*cmdline)));
326 *cmdline = key;
327
328 tep->cmdline_count++;
329
330 return 0;
331}
332
333static int _tep_register_comm(struct tep_handle *tep,
334 const char *comm, int pid, bool override)
335{
336 struct cmdline_list *item;
337
338 if (tep->cmdlines)
339 return add_new_comm(tep, comm, pid, override);
340
341 item = malloc(sizeof(*item));
342 if (!item)
343 return -1;
344
345 if (comm)
346 item->comm = strdup(comm);
347 else
348 item->comm = strdup("<...>");
349 if (!item->comm) {
350 free(item);
351 return -1;
352 }
353 item->pid = pid;
354 item->next = tep->cmdlist;
355
356 tep->cmdlist = item;
357 tep->cmdline_count++;
358
359 return 0;
360}
361
362/**
363 * tep_register_comm - register a pid / comm mapping
364 * @tep: a handle to the trace event parser context
365 * @comm: the command line to register
366 * @pid: the pid to map the command line to
367 *
368 * This adds a mapping to search for command line names with
369 * a given pid. The comm is duplicated. If a command with the same pid
370 * already exist, -1 is returned and errno is set to EEXIST
371 */
372int tep_register_comm(struct tep_handle *tep, const char *comm, int pid)
373{
374 return _tep_register_comm(tep, comm, pid, false);
375}
376
377/**
378 * tep_override_comm - register a pid / comm mapping
379 * @tep: a handle to the trace event parser context
380 * @comm: the command line to register
381 * @pid: the pid to map the command line to
382 *
383 * This adds a mapping to search for command line names with
384 * a given pid. The comm is duplicated. If a command with the same pid
385 * already exist, the command string is udapted with the new one
386 */
387int tep_override_comm(struct tep_handle *tep, const char *comm, int pid)
388{
389 if (!tep->cmdlines && cmdline_init(tep)) {
390 errno = ENOMEM;
391 return -1;
392 }
393 return _tep_register_comm(tep, comm, pid, true);
394}
395
396struct func_map {
397 unsigned long long addr;
398 char *func;
399 char *mod;
400};
401
402struct func_list {
403 struct func_list *next;
404 unsigned long long addr;
405 char *func;
406 char *mod;
407};
408
409static int func_cmp(const void *a, const void *b)
410{
411 const struct func_map *fa = a;
412 const struct func_map *fb = b;
413
414 if (fa->addr < fb->addr)
415 return -1;
416 if (fa->addr > fb->addr)
417 return 1;
418
419 return 0;
420}
421
422/*
423 * We are searching for a record in between, not an exact
424 * match.
425 */
426static int func_bcmp(const void *a, const void *b)
427{
428 const struct func_map *fa = a;
429 const struct func_map *fb = b;
430
431 if ((fa->addr == fb->addr) ||
432
433 (fa->addr > fb->addr &&
434 fa->addr < (fb+1)->addr))
435 return 0;
436
437 if (fa->addr < fb->addr)
438 return -1;
439
440 return 1;
441}
442
443static int func_map_init(struct tep_handle *tep)
444{
445 struct func_list *funclist;
446 struct func_list *item;
447 struct func_map *func_map;
448 int i;
449
450 func_map = malloc(sizeof(*func_map) * (tep->func_count + 1));
451 if (!func_map)
452 return -1;
453
454 funclist = tep->funclist;
455
456 i = 0;
457 while (funclist) {
458 func_map[i].func = funclist->func;
459 func_map[i].addr = funclist->addr;
460 func_map[i].mod = funclist->mod;
461 i++;
462 item = funclist;
463 funclist = funclist->next;
464 free(item);
465 }
466
467 qsort(func_map, tep->func_count, sizeof(*func_map), func_cmp);
468
469 /*
470 * Add a special record at the end.
471 */
472 func_map[tep->func_count].func = NULL;
473 func_map[tep->func_count].addr = 0;
474 func_map[tep->func_count].mod = NULL;
475
476 tep->func_map = func_map;
477 tep->funclist = NULL;
478
479 return 0;
480}
481
482static struct func_map *
483__find_func(struct tep_handle *tep, unsigned long long addr)
484{
485 struct func_map *func;
486 struct func_map key;
487
488 if (!tep->func_map)
489 func_map_init(tep);
490
491 key.addr = addr;
492
493 func = bsearch(&key, tep->func_map, tep->func_count,
494 sizeof(*tep->func_map), func_bcmp);
495
496 return func;
497}
498
499struct func_resolver {
500 tep_func_resolver_t *func;
501 void *priv;
502 struct func_map map;
503};
504
505/**
506 * tep_set_function_resolver - set an alternative function resolver
507 * @tep: a handle to the trace event parser context
508 * @resolver: function to be used
509 * @priv: resolver function private state.
510 *
511 * Some tools may have already a way to resolve kernel functions, allow them to
512 * keep using it instead of duplicating all the entries inside tep->funclist.
513 */
514int tep_set_function_resolver(struct tep_handle *tep,
515 tep_func_resolver_t *func, void *priv)
516{
517 struct func_resolver *resolver = malloc(sizeof(*resolver));
518
519 if (resolver == NULL)
520 return -1;
521
522 resolver->func = func;
523 resolver->priv = priv;
524
525 free(tep->func_resolver);
526 tep->func_resolver = resolver;
527
528 return 0;
529}
530
531/**
532 * tep_reset_function_resolver - reset alternative function resolver
533 * @tep: a handle to the trace event parser context
534 *
535 * Stop using whatever alternative resolver was set, use the default
536 * one instead.
537 */
538void tep_reset_function_resolver(struct tep_handle *tep)
539{
540 free(tep->func_resolver);
541 tep->func_resolver = NULL;
542}
543
544static struct func_map *
545find_func(struct tep_handle *tep, unsigned long long addr)
546{
547 struct func_map *map;
548
549 if (!tep->func_resolver)
550 return __find_func(tep, addr);
551
552 map = &tep->func_resolver->map;
553 map->mod = NULL;
554 map->addr = addr;
555 map->func = tep->func_resolver->func(tep->func_resolver->priv,
556 &map->addr, &map->mod);
557 if (map->func == NULL)
558 return NULL;
559
560 return map;
561}
562
563/**
564 * tep_find_function - find a function by a given address
565 * @tep: a handle to the trace event parser context
566 * @addr: the address to find the function with
567 *
568 * Returns a pointer to the function stored that has the given
569 * address. Note, the address does not have to be exact, it
570 * will select the function that would contain the address.
571 */
572const char *tep_find_function(struct tep_handle *tep, unsigned long long addr)
573{
574 struct func_map *map;
575
576 map = find_func(tep, addr);
577 if (!map)
578 return NULL;
579
580 return map->func;
581}
582
583/**
584 * tep_find_function_address - find a function address by a given address
585 * @tep: a handle to the trace event parser context
586 * @addr: the address to find the function with
587 *
588 * Returns the address the function starts at. This can be used in
589 * conjunction with tep_find_function to print both the function
590 * name and the function offset.
591 */
592unsigned long long
593tep_find_function_address(struct tep_handle *tep, unsigned long long addr)
594{
595 struct func_map *map;
596
597 map = find_func(tep, addr);
598 if (!map)
599 return 0;
600
601 return map->addr;
602}
603
604/**
605 * tep_register_function - register a function with a given address
606 * @tep: a handle to the trace event parser context
607 * @function: the function name to register
608 * @addr: the address the function starts at
609 * @mod: the kernel module the function may be in (NULL for none)
610 *
611 * This registers a function name with an address and module.
612 * The @func passed in is duplicated.
613 */
614int tep_register_function(struct tep_handle *tep, char *func,
615 unsigned long long addr, char *mod)
616{
617 struct func_list *item = malloc(sizeof(*item));
618
619 if (!item)
620 return -1;
621
622 item->next = tep->funclist;
623 item->func = strdup(func);
624 if (!item->func)
625 goto out_free;
626
627 if (mod) {
628 item->mod = strdup(mod);
629 if (!item->mod)
630 goto out_free_func;
631 } else
632 item->mod = NULL;
633 item->addr = addr;
634
635 tep->funclist = item;
636 tep->func_count++;
637
638 return 0;
639
640out_free_func:
641 free(item->func);
642 item->func = NULL;
643out_free:
644 free(item);
645 errno = ENOMEM;
646 return -1;
647}
648
649/**
650 * tep_print_funcs - print out the stored functions
651 * @tep: a handle to the trace event parser context
652 *
653 * This prints out the stored functions.
654 */
655void tep_print_funcs(struct tep_handle *tep)
656{
657 int i;
658
659 if (!tep->func_map)
660 func_map_init(tep);
661
662 for (i = 0; i < (int)tep->func_count; i++) {
663 printf("%016llx %s",
664 tep->func_map[i].addr,
665 tep->func_map[i].func);
666 if (tep->func_map[i].mod)
667 printf(" [%s]\n", tep->func_map[i].mod);
668 else
669 printf("\n");
670 }
671}
672
673struct printk_map {
674 unsigned long long addr;
675 char *printk;
676};
677
678struct printk_list {
679 struct printk_list *next;
680 unsigned long long addr;
681 char *printk;
682};
683
684static int printk_cmp(const void *a, const void *b)
685{
686 const struct printk_map *pa = a;
687 const struct printk_map *pb = b;
688
689 if (pa->addr < pb->addr)
690 return -1;
691 if (pa->addr > pb->addr)
692 return 1;
693
694 return 0;
695}
696
697static int printk_map_init(struct tep_handle *tep)
698{
699 struct printk_list *printklist;
700 struct printk_list *item;
701 struct printk_map *printk_map;
702 int i;
703
704 printk_map = malloc(sizeof(*printk_map) * (tep->printk_count + 1));
705 if (!printk_map)
706 return -1;
707
708 printklist = tep->printklist;
709
710 i = 0;
711 while (printklist) {
712 printk_map[i].printk = printklist->printk;
713 printk_map[i].addr = printklist->addr;
714 i++;
715 item = printklist;
716 printklist = printklist->next;
717 free(item);
718 }
719
720 qsort(printk_map, tep->printk_count, sizeof(*printk_map), printk_cmp);
721
722 tep->printk_map = printk_map;
723 tep->printklist = NULL;
724
725 return 0;
726}
727
728static struct printk_map *
729find_printk(struct tep_handle *tep, unsigned long long addr)
730{
731 struct printk_map *printk;
732 struct printk_map key;
733
734 if (!tep->printk_map && printk_map_init(tep))
735 return NULL;
736
737 key.addr = addr;
738
739 printk = bsearch(&key, tep->printk_map, tep->printk_count,
740 sizeof(*tep->printk_map), printk_cmp);
741
742 return printk;
743}
744
745/**
746 * tep_register_print_string - register a string by its address
747 * @tep: a handle to the trace event parser context
748 * @fmt: the string format to register
749 * @addr: the address the string was located at
750 *
751 * This registers a string by the address it was stored in the kernel.
752 * The @fmt passed in is duplicated.
753 */
754int tep_register_print_string(struct tep_handle *tep, const char *fmt,
755 unsigned long long addr)
756{
757 struct printk_list *item = malloc(sizeof(*item));
758 char *p;
759
760 if (!item)
761 return -1;
762
763 item->next = tep->printklist;
764 item->addr = addr;
765
766 /* Strip off quotes and '\n' from the end */
767 if (fmt[0] == '"')
768 fmt++;
769 item->printk = strdup(fmt);
770 if (!item->printk)
771 goto out_free;
772
773 p = item->printk + strlen(item->printk) - 1;
774 if (*p == '"')
775 *p = 0;
776
777 p -= 2;
778 if (strcmp(p, "\\n") == 0)
779 *p = 0;
780
781 tep->printklist = item;
782 tep->printk_count++;
783
784 return 0;
785
786out_free:
787 free(item);
788 errno = ENOMEM;
789 return -1;
790}
791
792/**
793 * tep_print_printk - print out the stored strings
794 * @tep: a handle to the trace event parser context
795 *
796 * This prints the string formats that were stored.
797 */
798void tep_print_printk(struct tep_handle *tep)
799{
800 int i;
801
802 if (!tep->printk_map)
803 printk_map_init(tep);
804
805 for (i = 0; i < (int)tep->printk_count; i++) {
806 printf("%016llx %s\n",
807 tep->printk_map[i].addr,
808 tep->printk_map[i].printk);
809 }
810}
811
812static struct tep_event *alloc_event(void)
813{
814 return calloc(1, sizeof(struct tep_event));
815}
816
817static int add_event(struct tep_handle *tep, struct tep_event *event)
818{
819 int i;
820 struct tep_event **events = realloc(tep->events, sizeof(event) *
821 (tep->nr_events + 1));
822 if (!events)
823 return -1;
824
825 tep->events = events;
826
827 for (i = 0; i < tep->nr_events; i++) {
828 if (tep->events[i]->id > event->id)
829 break;
830 }
831 if (i < tep->nr_events)
832 memmove(&tep->events[i + 1],
833 &tep->events[i],
834 sizeof(event) * (tep->nr_events - i));
835
836 tep->events[i] = event;
837 tep->nr_events++;
838
839 event->tep = tep;
840
841 return 0;
842}
843
844static int event_item_type(enum tep_event_type type)
845{
846 switch (type) {
847 case TEP_EVENT_ITEM ... TEP_EVENT_SQUOTE:
848 return 1;
849 case TEP_EVENT_ERROR ... TEP_EVENT_DELIM:
850 default:
851 return 0;
852 }
853}
854
855static void free_flag_sym(struct tep_print_flag_sym *fsym)
856{
857 struct tep_print_flag_sym *next;
858
859 while (fsym) {
860 next = fsym->next;
861 free(fsym->value);
862 free(fsym->str);
863 free(fsym);
864 fsym = next;
865 }
866}
867
868static void free_arg(struct tep_print_arg *arg)
869{
870 struct tep_print_arg *farg;
871
872 if (!arg)
873 return;
874
875 switch (arg->type) {
876 case TEP_PRINT_ATOM:
877 free(arg->atom.atom);
878 break;
879 case TEP_PRINT_FIELD:
880 free(arg->field.name);
881 break;
882 case TEP_PRINT_FLAGS:
883 free_arg(arg->flags.field);
884 free(arg->flags.delim);
885 free_flag_sym(arg->flags.flags);
886 break;
887 case TEP_PRINT_SYMBOL:
888 free_arg(arg->symbol.field);
889 free_flag_sym(arg->symbol.symbols);
890 break;
891 case TEP_PRINT_HEX:
892 case TEP_PRINT_HEX_STR:
893 free_arg(arg->hex.field);
894 free_arg(arg->hex.size);
895 break;
896 case TEP_PRINT_INT_ARRAY:
897 free_arg(arg->int_array.field);
898 free_arg(arg->int_array.count);
899 free_arg(arg->int_array.el_size);
900 break;
901 case TEP_PRINT_TYPE:
902 free(arg->typecast.type);
903 free_arg(arg->typecast.item);
904 break;
905 case TEP_PRINT_STRING:
906 case TEP_PRINT_BSTRING:
907 free(arg->string.string);
908 break;
909 case TEP_PRINT_BITMASK:
910 free(arg->bitmask.bitmask);
911 break;
912 case TEP_PRINT_DYNAMIC_ARRAY:
913 case TEP_PRINT_DYNAMIC_ARRAY_LEN:
914 free(arg->dynarray.index);
915 break;
916 case TEP_PRINT_OP:
917 free(arg->op.op);
918 free_arg(arg->op.left);
919 free_arg(arg->op.right);
920 break;
921 case TEP_PRINT_FUNC:
922 while (arg->func.args) {
923 farg = arg->func.args;
924 arg->func.args = farg->next;
925 free_arg(farg);
926 }
927 break;
928
929 case TEP_PRINT_NULL:
930 default:
931 break;
932 }
933
934 free(arg);
935}
936
937static enum tep_event_type get_type(int ch)
938{
939 if (ch == '\n')
940 return TEP_EVENT_NEWLINE;
941 if (isspace(ch))
942 return TEP_EVENT_SPACE;
943 if (isalnum(ch) || ch == '_')
944 return TEP_EVENT_ITEM;
945 if (ch == '\'')
946 return TEP_EVENT_SQUOTE;
947 if (ch == '"')
948 return TEP_EVENT_DQUOTE;
949 if (!isprint(ch))
950 return TEP_EVENT_NONE;
951 if (ch == '(' || ch == ')' || ch == ',')
952 return TEP_EVENT_DELIM;
953
954 return TEP_EVENT_OP;
955}
956
957static int __read_char(void)
958{
959 if (input_buf_ptr >= input_buf_siz)
960 return -1;
961
962 return input_buf[input_buf_ptr++];
963}
964
965static int __peek_char(void)
966{
967 if (input_buf_ptr >= input_buf_siz)
968 return -1;
969
970 return input_buf[input_buf_ptr];
971}
972
973/**
974 * tep_peek_char - peek at the next character that will be read
975 *
976 * Returns the next character read, or -1 if end of buffer.
977 */
978int tep_peek_char(void)
979{
980 return __peek_char();
981}
982
983static int extend_token(char **tok, char *buf, int size)
984{
985 char *newtok = realloc(*tok, size);
986
987 if (!newtok) {
988 free(*tok);
989 *tok = NULL;
990 return -1;
991 }
992
993 if (!*tok)
994 strcpy(newtok, buf);
995 else
996 strcat(newtok, buf);
997 *tok = newtok;
998
999 return 0;
1000}
1001
1002static enum tep_event_type force_token(const char *str, char **tok);
1003
1004static enum tep_event_type __read_token(char **tok)
1005{
1006 char buf[BUFSIZ];
1007 int ch, last_ch, quote_ch, next_ch;
1008 int i = 0;
1009 int tok_size = 0;
1010 enum tep_event_type type;
1011
1012 *tok = NULL;
1013
1014
1015 ch = __read_char();
1016 if (ch < 0)
1017 return TEP_EVENT_NONE;
1018
1019 type = get_type(ch);
1020 if (type == TEP_EVENT_NONE)
1021 return type;
1022
1023 buf[i++] = ch;
1024
1025 switch (type) {
1026 case TEP_EVENT_NEWLINE:
1027 case TEP_EVENT_DELIM:
1028 if (asprintf(tok, "%c", ch) < 0)
1029 return TEP_EVENT_ERROR;
1030
1031 return type;
1032
1033 case TEP_EVENT_OP:
1034 switch (ch) {
1035 case '-':
1036 next_ch = __peek_char();
1037 if (next_ch == '>') {
1038 buf[i++] = __read_char();
1039 break;
1040 }
1041 /* fall through */
1042 case '+':
1043 case '|':
1044 case '&':
1045 case '>':
1046 case '<':
1047 last_ch = ch;
1048 ch = __peek_char();
1049 if (ch != last_ch)
1050 goto test_equal;
1051 buf[i++] = __read_char();
1052 switch (last_ch) {
1053 case '>':
1054 case '<':
1055 goto test_equal;
1056 default:
1057 break;
1058 }
1059 break;
1060 case '!':
1061 case '=':
1062 goto test_equal;
1063 default: /* what should we do instead? */
1064 break;
1065 }
1066 buf[i] = 0;
1067 *tok = strdup(buf);
1068 return type;
1069
1070 test_equal:
1071 ch = __peek_char();
1072 if (ch == '=')
1073 buf[i++] = __read_char();
1074 goto out;
1075
1076 case TEP_EVENT_DQUOTE:
1077 case TEP_EVENT_SQUOTE:
1078 /* don't keep quotes */
1079 i--;
1080 quote_ch = ch;
1081 last_ch = 0;
1082 concat:
1083 do {
1084 if (i == (BUFSIZ - 1)) {
1085 buf[i] = 0;
1086 tok_size += BUFSIZ;
1087
1088 if (extend_token(tok, buf, tok_size) < 0)
1089 return TEP_EVENT_NONE;
1090 i = 0;
1091 }
1092 last_ch = ch;
1093 ch = __read_char();
1094 buf[i++] = ch;
1095 /* the '\' '\' will cancel itself */
1096 if (ch == '\\' && last_ch == '\\')
1097 last_ch = 0;
1098 } while (ch != quote_ch || last_ch == '\\');
1099 /* remove the last quote */
1100 i--;
1101
1102 /*
1103 * For strings (double quotes) check the next token.
1104 * If it is another string, concatinate the two.
1105 */
1106 if (type == TEP_EVENT_DQUOTE) {
1107 unsigned long long save_input_buf_ptr = input_buf_ptr;
1108
1109 do {
1110 ch = __read_char();
1111 } while (isspace(ch));
1112 if (ch == '"')
1113 goto concat;
1114 input_buf_ptr = save_input_buf_ptr;
1115 }
1116
1117 goto out;
1118
1119 case TEP_EVENT_ERROR ... TEP_EVENT_SPACE:
1120 case TEP_EVENT_ITEM:
1121 default:
1122 break;
1123 }
1124
1125 while (get_type(__peek_char()) == type) {
1126 if (i == (BUFSIZ - 1)) {
1127 buf[i] = 0;
1128 tok_size += BUFSIZ;
1129
1130 if (extend_token(tok, buf, tok_size) < 0)
1131 return TEP_EVENT_NONE;
1132 i = 0;
1133 }
1134 ch = __read_char();
1135 buf[i++] = ch;
1136 }
1137
1138 out:
1139 buf[i] = 0;
1140 if (extend_token(tok, buf, tok_size + i + 1) < 0)
1141 return TEP_EVENT_NONE;
1142
1143 if (type == TEP_EVENT_ITEM) {
1144 /*
1145 * Older versions of the kernel has a bug that
1146 * creates invalid symbols and will break the mac80211
1147 * parsing. This is a work around to that bug.
1148 *
1149 * See Linux kernel commit:
1150 * 811cb50baf63461ce0bdb234927046131fc7fa8b
1151 */
1152 if (strcmp(*tok, "LOCAL_PR_FMT") == 0) {
1153 free(*tok);
1154 *tok = NULL;
1155 return force_token("\"%s\" ", tok);
1156 } else if (strcmp(*tok, "STA_PR_FMT") == 0) {
1157 free(*tok);
1158 *tok = NULL;
1159 return force_token("\" sta:%pM\" ", tok);
1160 } else if (strcmp(*tok, "VIF_PR_FMT") == 0) {
1161 free(*tok);
1162 *tok = NULL;
1163 return force_token("\" vif:%p(%d)\" ", tok);
1164 }
1165 }
1166
1167 return type;
1168}
1169
1170static enum tep_event_type force_token(const char *str, char **tok)
1171{
1172 const char *save_input_buf;
1173 unsigned long long save_input_buf_ptr;
1174 unsigned long long save_input_buf_siz;
1175 enum tep_event_type type;
1176
1177 /* save off the current input pointers */
1178 save_input_buf = input_buf;
1179 save_input_buf_ptr = input_buf_ptr;
1180 save_input_buf_siz = input_buf_siz;
1181
1182 init_input_buf(str, strlen(str));
1183
1184 type = __read_token(tok);
1185
1186 /* reset back to original token */
1187 input_buf = save_input_buf;
1188 input_buf_ptr = save_input_buf_ptr;
1189 input_buf_siz = save_input_buf_siz;
1190
1191 return type;
1192}
1193
1194static void free_token(char *tok)
1195{
1196 if (tok)
1197 free(tok);
1198}
1199
1200static enum tep_event_type read_token(char **tok)
1201{
1202 enum tep_event_type type;
1203
1204 for (;;) {
1205 type = __read_token(tok);
1206 if (type != TEP_EVENT_SPACE)
1207 return type;
1208
1209 free_token(*tok);
1210 }
1211
1212 /* not reached */
1213 *tok = NULL;
1214 return TEP_EVENT_NONE;
1215}
1216
1217/**
1218 * tep_read_token - access to utilities to use the tep parser
1219 * @tok: The token to return
1220 *
1221 * This will parse tokens from the string given by
1222 * tep_init_data().
1223 *
1224 * Returns the token type.
1225 */
1226enum tep_event_type tep_read_token(char **tok)
1227{
1228 return read_token(tok);
1229}
1230
1231/**
1232 * tep_free_token - free a token returned by tep_read_token
1233 * @token: the token to free
1234 */
1235void tep_free_token(char *token)
1236{
1237 free_token(token);
1238}
1239
1240/* no newline */
1241static enum tep_event_type read_token_item(char **tok)
1242{
1243 enum tep_event_type type;
1244
1245 for (;;) {
1246 type = __read_token(tok);
1247 if (type != TEP_EVENT_SPACE && type != TEP_EVENT_NEWLINE)
1248 return type;
1249 free_token(*tok);
1250 *tok = NULL;
1251 }
1252
1253 /* not reached */
1254 *tok = NULL;
1255 return TEP_EVENT_NONE;
1256}
1257
1258static int test_type(enum tep_event_type type, enum tep_event_type expect)
1259{
1260 if (type != expect) {
1261 do_warning("Error: expected type %d but read %d",
1262 expect, type);
1263 return -1;
1264 }
1265 return 0;
1266}
1267
1268static int test_type_token(enum tep_event_type type, const char *token,
1269 enum tep_event_type expect, const char *expect_tok)
1270{
1271 if (type != expect) {
1272 do_warning("Error: expected type %d but read %d",
1273 expect, type);
1274 return -1;
1275 }
1276
1277 if (strcmp(token, expect_tok) != 0) {
1278 do_warning("Error: expected '%s' but read '%s'",
1279 expect_tok, token);
1280 return -1;
1281 }
1282 return 0;
1283}
1284
1285static int __read_expect_type(enum tep_event_type expect, char **tok, int newline_ok)
1286{
1287 enum tep_event_type type;
1288
1289 if (newline_ok)
1290 type = read_token(tok);
1291 else
1292 type = read_token_item(tok);
1293 return test_type(type, expect);
1294}
1295
1296static int read_expect_type(enum tep_event_type expect, char **tok)
1297{
1298 return __read_expect_type(expect, tok, 1);
1299}
1300
1301static int __read_expected(enum tep_event_type expect, const char *str,
1302 int newline_ok)
1303{
1304 enum tep_event_type type;
1305 char *token;
1306 int ret;
1307
1308 if (newline_ok)
1309 type = read_token(&token);
1310 else
1311 type = read_token_item(&token);
1312
1313 ret = test_type_token(type, token, expect, str);
1314
1315 free_token(token);
1316
1317 return ret;
1318}
1319
1320static int read_expected(enum tep_event_type expect, const char *str)
1321{
1322 return __read_expected(expect, str, 1);
1323}
1324
1325static int read_expected_item(enum tep_event_type expect, const char *str)
1326{
1327 return __read_expected(expect, str, 0);
1328}
1329
1330static char *event_read_name(void)
1331{
1332 char *token;
1333
1334 if (read_expected(TEP_EVENT_ITEM, "name") < 0)
1335 return NULL;
1336
1337 if (read_expected(TEP_EVENT_OP, ":") < 0)
1338 return NULL;
1339
1340 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
1341 goto fail;
1342
1343 return token;
1344
1345 fail:
1346 free_token(token);
1347 return NULL;
1348}
1349
1350static int event_read_id(void)
1351{
1352 char *token;
1353 int id;
1354
1355 if (read_expected_item(TEP_EVENT_ITEM, "ID") < 0)
1356 return -1;
1357
1358 if (read_expected(TEP_EVENT_OP, ":") < 0)
1359 return -1;
1360
1361 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
1362 goto fail;
1363
1364 id = strtoul(token, NULL, 0);
1365 free_token(token);
1366 return id;
1367
1368 fail:
1369 free_token(token);
1370 return -1;
1371}
1372
1373static int field_is_string(struct tep_format_field *field)
1374{
1375 if ((field->flags & TEP_FIELD_IS_ARRAY) &&
1376 (strstr(field->type, "char") || strstr(field->type, "u8") ||
1377 strstr(field->type, "s8")))
1378 return 1;
1379
1380 return 0;
1381}
1382
1383static int field_is_dynamic(struct tep_format_field *field)
1384{
1385 if (strncmp(field->type, "__data_loc", 10) == 0)
1386 return 1;
1387
1388 return 0;
1389}
1390
1391static int field_is_long(struct tep_format_field *field)
1392{
1393 /* includes long long */
1394 if (strstr(field->type, "long"))
1395 return 1;
1396
1397 return 0;
1398}
1399
1400static unsigned int type_size(const char *name)
1401{
1402 /* This covers all TEP_FIELD_IS_STRING types. */
1403 static struct {
1404 const char *type;
1405 unsigned int size;
1406 } table[] = {
1407 { "u8", 1 },
1408 { "u16", 2 },
1409 { "u32", 4 },
1410 { "u64", 8 },
1411 { "s8", 1 },
1412 { "s16", 2 },
1413 { "s32", 4 },
1414 { "s64", 8 },
1415 { "char", 1 },
1416 { },
1417 };
1418 int i;
1419
1420 for (i = 0; table[i].type; i++) {
1421 if (!strcmp(table[i].type, name))
1422 return table[i].size;
1423 }
1424
1425 return 0;
1426}
1427
1428static int append(char **buf, const char *delim, const char *str)
1429{
1430 char *new_buf;
1431
1432 new_buf = realloc(*buf, strlen(*buf) + strlen(delim) + strlen(str) + 1);
1433 if (!new_buf)
1434 return -1;
1435 strcat(new_buf, delim);
1436 strcat(new_buf, str);
1437 *buf = new_buf;
1438 return 0;
1439}
1440
1441static int event_read_fields(struct tep_event *event, struct tep_format_field **fields)
1442{
1443 struct tep_format_field *field = NULL;
1444 enum tep_event_type type;
1445 char *token;
1446 char *last_token;
1447 char *delim = " ";
1448 int count = 0;
1449 int ret;
1450
1451 do {
1452 unsigned int size_dynamic = 0;
1453
1454 type = read_token(&token);
1455 if (type == TEP_EVENT_NEWLINE) {
1456 free_token(token);
1457 return count;
1458 }
1459
1460 count++;
1461
1462 if (test_type_token(type, token, TEP_EVENT_ITEM, "field"))
1463 goto fail;
1464 free_token(token);
1465
1466 type = read_token(&token);
1467 /*
1468 * The ftrace fields may still use the "special" name.
1469 * Just ignore it.
1470 */
1471 if (event->flags & TEP_EVENT_FL_ISFTRACE &&
1472 type == TEP_EVENT_ITEM && strcmp(token, "special") == 0) {
1473 free_token(token);
1474 type = read_token(&token);
1475 }
1476
1477 if (test_type_token(type, token, TEP_EVENT_OP, ":") < 0)
1478 goto fail;
1479
1480 free_token(token);
1481 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
1482 goto fail;
1483
1484 last_token = token;
1485
1486 field = calloc(1, sizeof(*field));
1487 if (!field)
1488 goto fail;
1489
1490 field->event = event;
1491
1492 /* read the rest of the type */
1493 for (;;) {
1494 type = read_token(&token);
1495 if (type == TEP_EVENT_ITEM ||
1496 (type == TEP_EVENT_OP && strcmp(token, "*") == 0) ||
1497 /*
1498 * Some of the ftrace fields are broken and have
1499 * an illegal "." in them.
1500 */
1501 (event->flags & TEP_EVENT_FL_ISFTRACE &&
1502 type == TEP_EVENT_OP && strcmp(token, ".") == 0)) {
1503
1504 if (strcmp(token, "*") == 0)
1505 field->flags |= TEP_FIELD_IS_POINTER;
1506
1507 if (field->type) {
1508 ret = append(&field->type, delim, last_token);
1509 free(last_token);
1510 if (ret < 0)
1511 goto fail;
1512 } else
1513 field->type = last_token;
1514 last_token = token;
1515 delim = " ";
1516 continue;
1517 }
1518
1519 /* Handle __attribute__((user)) */
1520 if ((type == TEP_EVENT_DELIM) &&
1521 strcmp("__attribute__", last_token) == 0 &&
1522 token[0] == '(') {
1523 int depth = 1;
1524 int ret;
1525
1526 ret = append(&field->type, " ", last_token);
1527 ret |= append(&field->type, "", "(");
1528 if (ret < 0)
1529 goto fail;
1530
1531 delim = " ";
1532 while ((type = read_token(&token)) != TEP_EVENT_NONE) {
1533 if (type == TEP_EVENT_DELIM) {
1534 if (token[0] == '(')
1535 depth++;
1536 else if (token[0] == ')')
1537 depth--;
1538 if (!depth)
1539 break;
1540 ret = append(&field->type, "", token);
1541 delim = "";
1542 } else {
1543 ret = append(&field->type, delim, token);
1544 delim = " ";
1545 }
1546 if (ret < 0)
1547 goto fail;
1548 free(last_token);
1549 last_token = token;
1550 }
1551 continue;
1552 }
1553 break;
1554 }
1555
1556 if (!field->type) {
1557 do_warning_event(event, "%s: no type found", __func__);
1558 goto fail;
1559 }
1560 field->name = field->alias = last_token;
1561
1562 if (test_type(type, TEP_EVENT_OP))
1563 goto fail;
1564
1565 if (strcmp(token, "[") == 0) {
1566 enum tep_event_type last_type = type;
1567 char *brackets = token;
1568
1569 field->flags |= TEP_FIELD_IS_ARRAY;
1570
1571 type = read_token(&token);
1572
1573 if (type == TEP_EVENT_ITEM)
1574 field->arraylen = strtoul(token, NULL, 0);
1575 else
1576 field->arraylen = 0;
1577
1578 while (strcmp(token, "]") != 0) {
1579 const char *delim;
1580
1581 if (last_type == TEP_EVENT_ITEM &&
1582 type == TEP_EVENT_ITEM)
1583 delim = " ";
1584 else
1585 delim = "";
1586
1587 last_type = type;
1588
1589 ret = append(&brackets, delim, token);
1590 if (ret < 0) {
1591 free(brackets);
1592 goto fail;
1593 }
1594 /* We only care about the last token */
1595 field->arraylen = strtoul(token, NULL, 0);
1596 free_token(token);
1597 type = read_token(&token);
1598 if (type == TEP_EVENT_NONE) {
1599 free(brackets);
1600 do_warning_event(event, "failed to find token");
1601 goto fail;
1602 }
1603 }
1604
1605 free_token(token);
1606
1607 ret = append(&brackets, "", "]");
1608 if (ret < 0) {
1609 free(brackets);
1610 goto fail;
1611 }
1612
1613 /* add brackets to type */
1614
1615 type = read_token(&token);
1616 /*
1617 * If the next token is not an OP, then it is of
1618 * the format: type [] item;
1619 */
1620 if (type == TEP_EVENT_ITEM) {
1621 ret = append(&field->type, " ", field->name);
1622 if (ret < 0) {
1623 free(brackets);
1624 goto fail;
1625 }
1626 ret = append(&field->type, "", brackets);
1627
1628 size_dynamic = type_size(field->name);
1629 free_token(field->name);
1630 field->name = field->alias = token;
1631 type = read_token(&token);
1632 } else {
1633 ret = append(&field->type, "", brackets);
1634 if (ret < 0) {
1635 free(brackets);
1636 goto fail;
1637 }
1638 }
1639 free(brackets);
1640 }
1641
1642 if (field_is_string(field))
1643 field->flags |= TEP_FIELD_IS_STRING;
1644 if (field_is_dynamic(field))
1645 field->flags |= TEP_FIELD_IS_DYNAMIC;
1646 if (field_is_long(field))
1647 field->flags |= TEP_FIELD_IS_LONG;
1648
1649 if (test_type_token(type, token, TEP_EVENT_OP, ";"))
1650 goto fail;
1651 free_token(token);
1652
1653 if (read_expected(TEP_EVENT_ITEM, "offset") < 0)
1654 goto fail_expect;
1655
1656 if (read_expected(TEP_EVENT_OP, ":") < 0)
1657 goto fail_expect;
1658
1659 if (read_expect_type(TEP_EVENT_ITEM, &token))
1660 goto fail;
1661 field->offset = strtoul(token, NULL, 0);
1662 free_token(token);
1663
1664 if (read_expected(TEP_EVENT_OP, ";") < 0)
1665 goto fail_expect;
1666
1667 if (read_expected(TEP_EVENT_ITEM, "size") < 0)
1668 goto fail_expect;
1669
1670 if (read_expected(TEP_EVENT_OP, ":") < 0)
1671 goto fail_expect;
1672
1673 if (read_expect_type(TEP_EVENT_ITEM, &token))
1674 goto fail;
1675 field->size = strtoul(token, NULL, 0);
1676 free_token(token);
1677
1678 if (read_expected(TEP_EVENT_OP, ";") < 0)
1679 goto fail_expect;
1680
1681 type = read_token(&token);
1682 if (type != TEP_EVENT_NEWLINE) {
1683 /* newer versions of the kernel have a "signed" type */
1684 if (test_type_token(type, token, TEP_EVENT_ITEM, "signed"))
1685 goto fail;
1686
1687 free_token(token);
1688
1689 if (read_expected(TEP_EVENT_OP, ":") < 0)
1690 goto fail_expect;
1691
1692 if (read_expect_type(TEP_EVENT_ITEM, &token))
1693 goto fail;
1694
1695 if (strtoul(token, NULL, 0))
1696 field->flags |= TEP_FIELD_IS_SIGNED;
1697
1698 free_token(token);
1699 if (read_expected(TEP_EVENT_OP, ";") < 0)
1700 goto fail_expect;
1701
1702 if (read_expect_type(TEP_EVENT_NEWLINE, &token))
1703 goto fail;
1704 }
1705
1706 free_token(token);
1707
1708 if (field->flags & TEP_FIELD_IS_ARRAY) {
1709 if (field->arraylen)
1710 field->elementsize = field->size / field->arraylen;
1711 else if (field->flags & TEP_FIELD_IS_DYNAMIC)
1712 field->elementsize = size_dynamic;
1713 else if (field->flags & TEP_FIELD_IS_STRING)
1714 field->elementsize = 1;
1715 else if (field->flags & TEP_FIELD_IS_LONG)
1716 field->elementsize = event->tep ?
1717 event->tep->long_size :
1718 sizeof(long);
1719 } else
1720 field->elementsize = field->size;
1721
1722 *fields = field;
1723 fields = &field->next;
1724
1725 } while (1);
1726
1727 return 0;
1728
1729fail:
1730 free_token(token);
1731fail_expect:
1732 if (field) {
1733 free(field->type);
1734 free(field->name);
1735 free(field);
1736 }
1737 return -1;
1738}
1739
1740static int event_read_format(struct tep_event *event)
1741{
1742 char *token;
1743 int ret;
1744
1745 if (read_expected_item(TEP_EVENT_ITEM, "format") < 0)
1746 return -1;
1747
1748 if (read_expected(TEP_EVENT_OP, ":") < 0)
1749 return -1;
1750
1751 if (read_expect_type(TEP_EVENT_NEWLINE, &token))
1752 goto fail;
1753 free_token(token);
1754
1755 ret = event_read_fields(event, &event->format.common_fields);
1756 if (ret < 0)
1757 return ret;
1758 event->format.nr_common = ret;
1759
1760 ret = event_read_fields(event, &event->format.fields);
1761 if (ret < 0)
1762 return ret;
1763 event->format.nr_fields = ret;
1764
1765 return 0;
1766
1767 fail:
1768 free_token(token);
1769 return -1;
1770}
1771
1772static enum tep_event_type
1773process_arg_token(struct tep_event *event, struct tep_print_arg *arg,
1774 char **tok, enum tep_event_type type);
1775
1776static enum tep_event_type
1777process_arg(struct tep_event *event, struct tep_print_arg *arg, char **tok)
1778{
1779 enum tep_event_type type;
1780 char *token;
1781
1782 type = read_token(&token);
1783 *tok = token;
1784
1785 return process_arg_token(event, arg, tok, type);
1786}
1787
1788static enum tep_event_type
1789process_op(struct tep_event *event, struct tep_print_arg *arg, char **tok);
1790
1791/*
1792 * For __print_symbolic() and __print_flags, we need to completely
1793 * evaluate the first argument, which defines what to print next.
1794 */
1795static enum tep_event_type
1796process_field_arg(struct tep_event *event, struct tep_print_arg *arg, char **tok)
1797{
1798 enum tep_event_type type;
1799
1800 type = process_arg(event, arg, tok);
1801
1802 while (type == TEP_EVENT_OP) {
1803 type = process_op(event, arg, tok);
1804 }
1805
1806 return type;
1807}
1808
1809static enum tep_event_type
1810process_cond(struct tep_event *event, struct tep_print_arg *top, char **tok)
1811{
1812 struct tep_print_arg *arg, *left, *right;
1813 enum tep_event_type type;
1814 char *token = NULL;
1815
1816 arg = alloc_arg();
1817 left = alloc_arg();
1818 right = alloc_arg();
1819
1820 if (!arg || !left || !right) {
1821 do_warning_event(event, "%s: not enough memory!", __func__);
1822 /* arg will be freed at out_free */
1823 free_arg(left);
1824 free_arg(right);
1825 goto out_free;
1826 }
1827
1828 arg->type = TEP_PRINT_OP;
1829 arg->op.left = left;
1830 arg->op.right = right;
1831
1832 *tok = NULL;
1833 type = process_arg(event, left, &token);
1834
1835 again:
1836 if (type == TEP_EVENT_ERROR)
1837 goto out_free;
1838
1839 /* Handle other operations in the arguments */
1840 if (type == TEP_EVENT_OP && strcmp(token, ":") != 0) {
1841 type = process_op(event, left, &token);
1842 goto again;
1843 }
1844
1845 if (test_type_token(type, token, TEP_EVENT_OP, ":"))
1846 goto out_free;
1847
1848 arg->op.op = token;
1849
1850 type = process_arg(event, right, &token);
1851
1852 top->op.right = arg;
1853
1854 *tok = token;
1855 return type;
1856
1857out_free:
1858 /* Top may point to itself */
1859 top->op.right = NULL;
1860 free_token(token);
1861 free_arg(arg);
1862 return TEP_EVENT_ERROR;
1863}
1864
1865static enum tep_event_type
1866process_array(struct tep_event *event, struct tep_print_arg *top, char **tok)
1867{
1868 struct tep_print_arg *arg;
1869 enum tep_event_type type;
1870 char *token = NULL;
1871
1872 arg = alloc_arg();
1873 if (!arg) {
1874 do_warning_event(event, "%s: not enough memory!", __func__);
1875 /* '*tok' is set to top->op.op. No need to free. */
1876 *tok = NULL;
1877 return TEP_EVENT_ERROR;
1878 }
1879
1880 *tok = NULL;
1881 type = process_arg(event, arg, &token);
1882 if (test_type_token(type, token, TEP_EVENT_OP, "]"))
1883 goto out_free;
1884
1885 top->op.right = arg;
1886
1887 free_token(token);
1888 type = read_token_item(&token);
1889 *tok = token;
1890
1891 return type;
1892
1893out_free:
1894 free_token(token);
1895 free_arg(arg);
1896 return TEP_EVENT_ERROR;
1897}
1898
1899static int get_op_prio(char *op)
1900{
1901 if (!op[1]) {
1902 switch (op[0]) {
1903 case '~':
1904 case '!':
1905 return 4;
1906 case '*':
1907 case '/':
1908 case '%':
1909 return 6;
1910 case '+':
1911 case '-':
1912 return 7;
1913 /* '>>' and '<<' are 8 */
1914 case '<':
1915 case '>':
1916 return 9;
1917 /* '==' and '!=' are 10 */
1918 case '&':
1919 return 11;
1920 case '^':
1921 return 12;
1922 case '|':
1923 return 13;
1924 case '?':
1925 return 16;
1926 default:
1927 do_warning("unknown op '%c'", op[0]);
1928 return -1;
1929 }
1930 } else {
1931 if (strcmp(op, "++") == 0 ||
1932 strcmp(op, "--") == 0) {
1933 return 3;
1934 } else if (strcmp(op, ">>") == 0 ||
1935 strcmp(op, "<<") == 0) {
1936 return 8;
1937 } else if (strcmp(op, ">=") == 0 ||
1938 strcmp(op, "<=") == 0) {
1939 return 9;
1940 } else if (strcmp(op, "==") == 0 ||
1941 strcmp(op, "!=") == 0) {
1942 return 10;
1943 } else if (strcmp(op, "&&") == 0) {
1944 return 14;
1945 } else if (strcmp(op, "||") == 0) {
1946 return 15;
1947 } else {
1948 do_warning("unknown op '%s'", op);
1949 return -1;
1950 }
1951 }
1952}
1953
1954static int set_op_prio(struct tep_print_arg *arg)
1955{
1956
1957 /* single ops are the greatest */
1958 if (!arg->op.left || arg->op.left->type == TEP_PRINT_NULL)
1959 arg->op.prio = 0;
1960 else
1961 arg->op.prio = get_op_prio(arg->op.op);
1962
1963 return arg->op.prio;
1964}
1965
1966/* Note, *tok does not get freed, but will most likely be saved */
1967static enum tep_event_type
1968process_op(struct tep_event *event, struct tep_print_arg *arg, char **tok)
1969{
1970 struct tep_print_arg *left, *right = NULL;
1971 enum tep_event_type type;
1972 char *token;
1973
1974 /* the op is passed in via tok */
1975 token = *tok;
1976
1977 if (arg->type == TEP_PRINT_OP && !arg->op.left) {
1978 /* handle single op */
1979 if (token[1]) {
1980 do_warning_event(event, "bad op token %s", token);
1981 goto out_free;
1982 }
1983 switch (token[0]) {
1984 case '~':
1985 case '!':
1986 case '+':
1987 case '-':
1988 break;
1989 default:
1990 do_warning_event(event, "bad op token %s", token);
1991 goto out_free;
1992
1993 }
1994
1995 /* make an empty left */
1996 left = alloc_arg();
1997 if (!left)
1998 goto out_warn_free;
1999
2000 left->type = TEP_PRINT_NULL;
2001 arg->op.left = left;
2002
2003 right = alloc_arg();
2004 if (!right)
2005 goto out_warn_free;
2006
2007 arg->op.right = right;
2008
2009 /* do not free the token, it belongs to an op */
2010 *tok = NULL;
2011 type = process_arg(event, right, tok);
2012
2013 } else if (strcmp(token, "?") == 0) {
2014
2015 left = alloc_arg();
2016 if (!left)
2017 goto out_warn_free;
2018
2019 /* copy the top arg to the left */
2020 *left = *arg;
2021
2022 arg->type = TEP_PRINT_OP;
2023 arg->op.op = token;
2024 arg->op.left = left;
2025 arg->op.prio = 0;
2026
2027 /* it will set arg->op.right */
2028 type = process_cond(event, arg, tok);
2029
2030 } else if (strcmp(token, ">>") == 0 ||
2031 strcmp(token, "<<") == 0 ||
2032 strcmp(token, "&") == 0 ||
2033 strcmp(token, "|") == 0 ||
2034 strcmp(token, "&&") == 0 ||
2035 strcmp(token, "||") == 0 ||
2036 strcmp(token, "-") == 0 ||
2037 strcmp(token, "+") == 0 ||
2038 strcmp(token, "*") == 0 ||
2039 strcmp(token, "^") == 0 ||
2040 strcmp(token, "/") == 0 ||
2041 strcmp(token, "%") == 0 ||
2042 strcmp(token, "<") == 0 ||
2043 strcmp(token, ">") == 0 ||
2044 strcmp(token, "<=") == 0 ||
2045 strcmp(token, ">=") == 0 ||
2046 strcmp(token, "==") == 0 ||
2047 strcmp(token, "!=") == 0) {
2048
2049 left = alloc_arg();
2050 if (!left)
2051 goto out_warn_free;
2052
2053 /* copy the top arg to the left */
2054 *left = *arg;
2055
2056 arg->type = TEP_PRINT_OP;
2057 arg->op.op = token;
2058 arg->op.left = left;
2059 arg->op.right = NULL;
2060
2061 if (set_op_prio(arg) == -1) {
2062 event->flags |= TEP_EVENT_FL_FAILED;
2063 /* arg->op.op (= token) will be freed at out_free */
2064 arg->op.op = NULL;
2065 goto out_free;
2066 }
2067
2068 type = read_token_item(&token);
2069 *tok = token;
2070
2071 /* could just be a type pointer */
2072 if ((strcmp(arg->op.op, "*") == 0) &&
2073 type == TEP_EVENT_DELIM && (strcmp(token, ")") == 0)) {
2074 int ret;
2075
2076 if (left->type != TEP_PRINT_ATOM) {
2077 do_warning_event(event, "bad pointer type");
2078 goto out_free;
2079 }
2080 ret = append(&left->atom.atom, " ", "*");
2081 if (ret < 0)
2082 goto out_warn_free;
2083
2084 free(arg->op.op);
2085 *arg = *left;
2086 free(left);
2087
2088 return type;
2089 }
2090
2091 right = alloc_arg();
2092 if (!right)
2093 goto out_warn_free;
2094
2095 type = process_arg_token(event, right, tok, type);
2096 if (type == TEP_EVENT_ERROR) {
2097 free_arg(right);
2098 /* token was freed in process_arg_token() via *tok */
2099 token = NULL;
2100 goto out_free;
2101 }
2102
2103 if (right->type == TEP_PRINT_OP &&
2104 get_op_prio(arg->op.op) < get_op_prio(right->op.op)) {
2105 struct tep_print_arg tmp;
2106
2107 /* rotate ops according to the priority */
2108 arg->op.right = right->op.left;
2109
2110 tmp = *arg;
2111 *arg = *right;
2112 *right = tmp;
2113
2114 arg->op.left = right;
2115 } else {
2116 arg->op.right = right;
2117 }
2118
2119 } else if (strcmp(token, "[") == 0) {
2120
2121 left = alloc_arg();
2122 if (!left)
2123 goto out_warn_free;
2124
2125 *left = *arg;
2126
2127 arg->type = TEP_PRINT_OP;
2128 arg->op.op = token;
2129 arg->op.left = left;
2130
2131 arg->op.prio = 0;
2132
2133 /* it will set arg->op.right */
2134 type = process_array(event, arg, tok);
2135
2136 } else {
2137 do_warning_event(event, "unknown op '%s'", token);
2138 event->flags |= TEP_EVENT_FL_FAILED;
2139 /* the arg is now the left side */
2140 goto out_free;
2141 }
2142
2143 if (type == TEP_EVENT_OP && strcmp(*tok, ":") != 0) {
2144 int prio;
2145
2146 /* higher prios need to be closer to the root */
2147 prio = get_op_prio(*tok);
2148
2149 if (prio > arg->op.prio)
2150 return process_op(event, arg, tok);
2151
2152 return process_op(event, right, tok);
2153 }
2154
2155 return type;
2156
2157out_warn_free:
2158 do_warning_event(event, "%s: not enough memory!", __func__);
2159out_free:
2160 free_token(token);
2161 *tok = NULL;
2162 return TEP_EVENT_ERROR;
2163}
2164
2165static enum tep_event_type
2166process_entry(struct tep_event *event __maybe_unused, struct tep_print_arg *arg,
2167 char **tok)
2168{
2169 enum tep_event_type type;
2170 char *field;
2171 char *token;
2172
2173 if (read_expected(TEP_EVENT_OP, "->") < 0)
2174 goto out_err;
2175
2176 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
2177 goto out_free;
2178 field = token;
2179
2180 arg->type = TEP_PRINT_FIELD;
2181 arg->field.name = field;
2182
2183 if (is_flag_field) {
2184 arg->field.field = tep_find_any_field(event, arg->field.name);
2185 arg->field.field->flags |= TEP_FIELD_IS_FLAG;
2186 is_flag_field = 0;
2187 } else if (is_symbolic_field) {
2188 arg->field.field = tep_find_any_field(event, arg->field.name);
2189 arg->field.field->flags |= TEP_FIELD_IS_SYMBOLIC;
2190 is_symbolic_field = 0;
2191 }
2192
2193 type = read_token(&token);
2194 *tok = token;
2195
2196 return type;
2197
2198 out_free:
2199 free_token(token);
2200 out_err:
2201 *tok = NULL;
2202 return TEP_EVENT_ERROR;
2203}
2204
2205static int alloc_and_process_delim(struct tep_event *event, char *next_token,
2206 struct tep_print_arg **print_arg)
2207{
2208 struct tep_print_arg *field;
2209 enum tep_event_type type;
2210 char *token;
2211 int ret = 0;
2212
2213 field = alloc_arg();
2214 if (!field) {
2215 do_warning_event(event, "%s: not enough memory!", __func__);
2216 errno = ENOMEM;
2217 return -1;
2218 }
2219
2220 type = process_arg(event, field, &token);
2221
2222 if (test_type_token(type, token, TEP_EVENT_DELIM, next_token)) {
2223 errno = EINVAL;
2224 ret = -1;
2225 free_arg(field);
2226 goto out_free_token;
2227 }
2228
2229 *print_arg = field;
2230
2231out_free_token:
2232 free_token(token);
2233
2234 return ret;
2235}
2236
2237static char *arg_eval (struct tep_print_arg *arg);
2238
2239static unsigned long long
2240eval_type_str(unsigned long long val, const char *type, int pointer)
2241{
2242 int sign = 0;
2243 char *ref;
2244 int len;
2245
2246 len = strlen(type);
2247
2248 if (pointer) {
2249
2250 if (type[len-1] != '*') {
2251 do_warning("pointer expected with non pointer type");
2252 return val;
2253 }
2254
2255 ref = malloc(len);
2256 if (!ref) {
2257 do_warning("%s: not enough memory!", __func__);
2258 return val;
2259 }
2260 memcpy(ref, type, len);
2261
2262 /* chop off the " *" */
2263 ref[len - 2] = 0;
2264
2265 val = eval_type_str(val, ref, 0);
2266 free(ref);
2267 return val;
2268 }
2269
2270 /* check if this is a pointer */
2271 if (type[len - 1] == '*')
2272 return val;
2273
2274 /* Try to figure out the arg size*/
2275 if (strncmp(type, "struct", 6) == 0)
2276 /* all bets off */
2277 return val;
2278
2279 if (strcmp(type, "u8") == 0)
2280 return val & 0xff;
2281
2282 if (strcmp(type, "u16") == 0)
2283 return val & 0xffff;
2284
2285 if (strcmp(type, "u32") == 0)
2286 return val & 0xffffffff;
2287
2288 if (strcmp(type, "u64") == 0 ||
2289 strcmp(type, "s64") == 0)
2290 return val;
2291
2292 if (strcmp(type, "s8") == 0)
2293 return (unsigned long long)(char)val & 0xff;
2294
2295 if (strcmp(type, "s16") == 0)
2296 return (unsigned long long)(short)val & 0xffff;
2297
2298 if (strcmp(type, "s32") == 0)
2299 return (unsigned long long)(int)val & 0xffffffff;
2300
2301 if (strncmp(type, "unsigned ", 9) == 0) {
2302 sign = 0;
2303 type += 9;
2304 }
2305
2306 if (strcmp(type, "char") == 0) {
2307 if (sign)
2308 return (unsigned long long)(char)val & 0xff;
2309 else
2310 return val & 0xff;
2311 }
2312
2313 if (strcmp(type, "short") == 0) {
2314 if (sign)
2315 return (unsigned long long)(short)val & 0xffff;
2316 else
2317 return val & 0xffff;
2318 }
2319
2320 if (strcmp(type, "int") == 0) {
2321 if (sign)
2322 return (unsigned long long)(int)val & 0xffffffff;
2323 else
2324 return val & 0xffffffff;
2325 }
2326
2327 return val;
2328}
2329
2330/*
2331 * Try to figure out the type.
2332 */
2333static unsigned long long
2334eval_type(unsigned long long val, struct tep_print_arg *arg, int pointer)
2335{
2336 if (arg->type != TEP_PRINT_TYPE) {
2337 do_warning("expected type argument");
2338 return 0;
2339 }
2340
2341 return eval_type_str(val, arg->typecast.type, pointer);
2342}
2343
2344static int arg_num_eval(struct tep_print_arg *arg, long long *val)
2345{
2346 long long left, right;
2347 int ret = 1;
2348
2349 switch (arg->type) {
2350 case TEP_PRINT_ATOM:
2351 *val = strtoll(arg->atom.atom, NULL, 0);
2352 break;
2353 case TEP_PRINT_TYPE:
2354 ret = arg_num_eval(arg->typecast.item, val);
2355 if (!ret)
2356 break;
2357 *val = eval_type(*val, arg, 0);
2358 break;
2359 case TEP_PRINT_OP:
2360 switch (arg->op.op[0]) {
2361 case '|':
2362 ret = arg_num_eval(arg->op.left, &left);
2363 if (!ret)
2364 break;
2365 ret = arg_num_eval(arg->op.right, &right);
2366 if (!ret)
2367 break;
2368 if (arg->op.op[1])
2369 *val = left || right;
2370 else
2371 *val = left | right;
2372 break;
2373 case '&':
2374 ret = arg_num_eval(arg->op.left, &left);
2375 if (!ret)
2376 break;
2377 ret = arg_num_eval(arg->op.right, &right);
2378 if (!ret)
2379 break;
2380 if (arg->op.op[1])
2381 *val = left && right;
2382 else
2383 *val = left & right;
2384 break;
2385 case '<':
2386 ret = arg_num_eval(arg->op.left, &left);
2387 if (!ret)
2388 break;
2389 ret = arg_num_eval(arg->op.right, &right);
2390 if (!ret)
2391 break;
2392 switch (arg->op.op[1]) {
2393 case 0:
2394 *val = left < right;
2395 break;
2396 case '<':
2397 *val = left << right;
2398 break;
2399 case '=':
2400 *val = left <= right;
2401 break;
2402 default:
2403 do_warning("unknown op '%s'", arg->op.op);
2404 ret = 0;
2405 }
2406 break;
2407 case '>':
2408 ret = arg_num_eval(arg->op.left, &left);
2409 if (!ret)
2410 break;
2411 ret = arg_num_eval(arg->op.right, &right);
2412 if (!ret)
2413 break;
2414 switch (arg->op.op[1]) {
2415 case 0:
2416 *val = left > right;
2417 break;
2418 case '>':
2419 *val = left >> right;
2420 break;
2421 case '=':
2422 *val = left >= right;
2423 break;
2424 default:
2425 do_warning("unknown op '%s'", arg->op.op);
2426 ret = 0;
2427 }
2428 break;
2429 case '=':
2430 ret = arg_num_eval(arg->op.left, &left);
2431 if (!ret)
2432 break;
2433 ret = arg_num_eval(arg->op.right, &right);
2434 if (!ret)
2435 break;
2436
2437 if (arg->op.op[1] != '=') {
2438 do_warning("unknown op '%s'", arg->op.op);
2439 ret = 0;
2440 } else
2441 *val = left == right;
2442 break;
2443 case '!':
2444 ret = arg_num_eval(arg->op.left, &left);
2445 if (!ret)
2446 break;
2447 ret = arg_num_eval(arg->op.right, &right);
2448 if (!ret)
2449 break;
2450
2451 switch (arg->op.op[1]) {
2452 case '=':
2453 *val = left != right;
2454 break;
2455 default:
2456 do_warning("unknown op '%s'", arg->op.op);
2457 ret = 0;
2458 }
2459 break;
2460 case '-':
2461 /* check for negative */
2462 if (arg->op.left->type == TEP_PRINT_NULL)
2463 left = 0;
2464 else
2465 ret = arg_num_eval(arg->op.left, &left);
2466 if (!ret)
2467 break;
2468 ret = arg_num_eval(arg->op.right, &right);
2469 if (!ret)
2470 break;
2471 *val = left - right;
2472 break;
2473 case '+':
2474 if (arg->op.left->type == TEP_PRINT_NULL)
2475 left = 0;
2476 else
2477 ret = arg_num_eval(arg->op.left, &left);
2478 if (!ret)
2479 break;
2480 ret = arg_num_eval(arg->op.right, &right);
2481 if (!ret)
2482 break;
2483 *val = left + right;
2484 break;
2485 case '~':
2486 ret = arg_num_eval(arg->op.right, &right);
2487 if (!ret)
2488 break;
2489 *val = ~right;
2490 break;
2491 default:
2492 do_warning("unknown op '%s'", arg->op.op);
2493 ret = 0;
2494 }
2495 break;
2496
2497 case TEP_PRINT_NULL:
2498 case TEP_PRINT_FIELD ... TEP_PRINT_SYMBOL:
2499 case TEP_PRINT_STRING:
2500 case TEP_PRINT_BSTRING:
2501 case TEP_PRINT_BITMASK:
2502 default:
2503 do_warning("invalid eval type %d", arg->type);
2504 ret = 0;
2505
2506 }
2507 return ret;
2508}
2509
2510static char *arg_eval (struct tep_print_arg *arg)
2511{
2512 long long val;
2513 static char buf[24];
2514
2515 switch (arg->type) {
2516 case TEP_PRINT_ATOM:
2517 return arg->atom.atom;
2518 case TEP_PRINT_TYPE:
2519 return arg_eval(arg->typecast.item);
2520 case TEP_PRINT_OP:
2521 if (!arg_num_eval(arg, &val))
2522 break;
2523 sprintf(buf, "%lld", val);
2524 return buf;
2525
2526 case TEP_PRINT_NULL:
2527 case TEP_PRINT_FIELD ... TEP_PRINT_SYMBOL:
2528 case TEP_PRINT_STRING:
2529 case TEP_PRINT_BSTRING:
2530 case TEP_PRINT_BITMASK:
2531 default:
2532 do_warning("invalid eval type %d", arg->type);
2533 break;
2534 }
2535
2536 return NULL;
2537}
2538
2539static enum tep_event_type
2540process_fields(struct tep_event *event, struct tep_print_flag_sym **list, char **tok)
2541{
2542 enum tep_event_type type;
2543 struct tep_print_arg *arg = NULL;
2544 struct tep_print_flag_sym *field;
2545 char *token = *tok;
2546 char *value;
2547
2548 do {
2549 free_token(token);
2550 type = read_token_item(&token);
2551 if (test_type_token(type, token, TEP_EVENT_OP, "{"))
2552 break;
2553
2554 arg = alloc_arg();
2555 if (!arg)
2556 goto out_free;
2557
2558 free_token(token);
2559 type = process_arg(event, arg, &token);
2560
2561 if (type == TEP_EVENT_OP)
2562 type = process_op(event, arg, &token);
2563
2564 if (type == TEP_EVENT_ERROR)
2565 goto out_free;
2566
2567 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
2568 goto out_free;
2569
2570 field = calloc(1, sizeof(*field));
2571 if (!field)
2572 goto out_free;
2573
2574 value = arg_eval(arg);
2575 if (value == NULL)
2576 goto out_free_field;
2577 field->value = strdup(value);
2578 if (field->value == NULL)
2579 goto out_free_field;
2580
2581 free_arg(arg);
2582 arg = alloc_arg();
2583 if (!arg)
2584 goto out_free;
2585
2586 free_token(token);
2587 type = process_arg(event, arg, &token);
2588 if (test_type_token(type, token, TEP_EVENT_OP, "}"))
2589 goto out_free_field;
2590
2591 value = arg_eval(arg);
2592 if (value == NULL)
2593 goto out_free_field;
2594 field->str = strdup(value);
2595 if (field->str == NULL)
2596 goto out_free_field;
2597 free_arg(arg);
2598 arg = NULL;
2599
2600 *list = field;
2601 list = &field->next;
2602
2603 free_token(token);
2604 type = read_token_item(&token);
2605 } while (type == TEP_EVENT_DELIM && strcmp(token, ",") == 0);
2606
2607 *tok = token;
2608 return type;
2609
2610out_free_field:
2611 free_flag_sym(field);
2612out_free:
2613 free_arg(arg);
2614 free_token(token);
2615 *tok = NULL;
2616
2617 return TEP_EVENT_ERROR;
2618}
2619
2620static enum tep_event_type
2621process_flags(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2622{
2623 struct tep_print_arg *field;
2624 enum tep_event_type type;
2625 char *token = NULL;
2626
2627 memset(arg, 0, sizeof(*arg));
2628 arg->type = TEP_PRINT_FLAGS;
2629
2630 field = alloc_arg();
2631 if (!field) {
2632 do_warning_event(event, "%s: not enough memory!", __func__);
2633 goto out_free;
2634 }
2635
2636 type = process_field_arg(event, field, &token);
2637
2638 /* Handle operations in the first argument */
2639 while (type == TEP_EVENT_OP)
2640 type = process_op(event, field, &token);
2641
2642 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
2643 goto out_free_field;
2644 free_token(token);
2645
2646 arg->flags.field = field;
2647
2648 type = read_token_item(&token);
2649 if (event_item_type(type)) {
2650 arg->flags.delim = token;
2651 type = read_token_item(&token);
2652 }
2653
2654 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
2655 goto out_free;
2656
2657 type = process_fields(event, &arg->flags.flags, &token);
2658 if (test_type_token(type, token, TEP_EVENT_DELIM, ")"))
2659 goto out_free;
2660
2661 free_token(token);
2662 type = read_token_item(tok);
2663 return type;
2664
2665out_free_field:
2666 free_arg(field);
2667out_free:
2668 free_token(token);
2669 *tok = NULL;
2670 return TEP_EVENT_ERROR;
2671}
2672
2673static enum tep_event_type
2674process_symbols(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2675{
2676 struct tep_print_arg *field;
2677 enum tep_event_type type;
2678 char *token = NULL;
2679
2680 memset(arg, 0, sizeof(*arg));
2681 arg->type = TEP_PRINT_SYMBOL;
2682
2683 field = alloc_arg();
2684 if (!field) {
2685 do_warning_event(event, "%s: not enough memory!", __func__);
2686 goto out_free;
2687 }
2688
2689 type = process_field_arg(event, field, &token);
2690
2691 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
2692 goto out_free_field;
2693
2694 arg->symbol.field = field;
2695
2696 type = process_fields(event, &arg->symbol.symbols, &token);
2697 if (test_type_token(type, token, TEP_EVENT_DELIM, ")"))
2698 goto out_free;
2699
2700 free_token(token);
2701 type = read_token_item(tok);
2702 return type;
2703
2704out_free_field:
2705 free_arg(field);
2706out_free:
2707 free_token(token);
2708 *tok = NULL;
2709 return TEP_EVENT_ERROR;
2710}
2711
2712static enum tep_event_type
2713process_hex_common(struct tep_event *event, struct tep_print_arg *arg,
2714 char **tok, enum tep_print_arg_type type)
2715{
2716 memset(arg, 0, sizeof(*arg));
2717 arg->type = type;
2718
2719 if (alloc_and_process_delim(event, ",", &arg->hex.field))
2720 goto out;
2721
2722 if (alloc_and_process_delim(event, ")", &arg->hex.size))
2723 goto free_field;
2724
2725 return read_token_item(tok);
2726
2727free_field:
2728 free_arg(arg->hex.field);
2729 arg->hex.field = NULL;
2730out:
2731 *tok = NULL;
2732 return TEP_EVENT_ERROR;
2733}
2734
2735static enum tep_event_type
2736process_hex(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2737{
2738 return process_hex_common(event, arg, tok, TEP_PRINT_HEX);
2739}
2740
2741static enum tep_event_type
2742process_hex_str(struct tep_event *event, struct tep_print_arg *arg,
2743 char **tok)
2744{
2745 return process_hex_common(event, arg, tok, TEP_PRINT_HEX_STR);
2746}
2747
2748static enum tep_event_type
2749process_int_array(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2750{
2751 memset(arg, 0, sizeof(*arg));
2752 arg->type = TEP_PRINT_INT_ARRAY;
2753
2754 if (alloc_and_process_delim(event, ",", &arg->int_array.field))
2755 goto out;
2756
2757 if (alloc_and_process_delim(event, ",", &arg->int_array.count))
2758 goto free_field;
2759
2760 if (alloc_and_process_delim(event, ")", &arg->int_array.el_size))
2761 goto free_size;
2762
2763 return read_token_item(tok);
2764
2765free_size:
2766 free_arg(arg->int_array.count);
2767 arg->int_array.count = NULL;
2768free_field:
2769 free_arg(arg->int_array.field);
2770 arg->int_array.field = NULL;
2771out:
2772 *tok = NULL;
2773 return TEP_EVENT_ERROR;
2774}
2775
2776static enum tep_event_type
2777process_dynamic_array(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2778{
2779 struct tep_format_field *field;
2780 enum tep_event_type type;
2781 char *token;
2782
2783 memset(arg, 0, sizeof(*arg));
2784 arg->type = TEP_PRINT_DYNAMIC_ARRAY;
2785
2786 /*
2787 * The item within the parenthesis is another field that holds
2788 * the index into where the array starts.
2789 */
2790 type = read_token(&token);
2791 *tok = token;
2792 if (type != TEP_EVENT_ITEM)
2793 goto out_free;
2794
2795 /* Find the field */
2796
2797 field = tep_find_field(event, token);
2798 if (!field)
2799 goto out_free;
2800
2801 arg->dynarray.field = field;
2802 arg->dynarray.index = 0;
2803
2804 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
2805 goto out_free;
2806
2807 free_token(token);
2808 type = read_token_item(&token);
2809 *tok = token;
2810 if (type != TEP_EVENT_OP || strcmp(token, "[") != 0)
2811 return type;
2812
2813 free_token(token);
2814 arg = alloc_arg();
2815 if (!arg) {
2816 do_warning_event(event, "%s: not enough memory!", __func__);
2817 *tok = NULL;
2818 return TEP_EVENT_ERROR;
2819 }
2820
2821 type = process_arg(event, arg, &token);
2822 if (type == TEP_EVENT_ERROR)
2823 goto out_free_arg;
2824
2825 if (!test_type_token(type, token, TEP_EVENT_OP, "]"))
2826 goto out_free_arg;
2827
2828 free_token(token);
2829 type = read_token_item(tok);
2830 return type;
2831
2832 out_free_arg:
2833 free_arg(arg);
2834 out_free:
2835 free_token(token);
2836 *tok = NULL;
2837 return TEP_EVENT_ERROR;
2838}
2839
2840static enum tep_event_type
2841process_dynamic_array_len(struct tep_event *event, struct tep_print_arg *arg,
2842 char **tok)
2843{
2844 struct tep_format_field *field;
2845 enum tep_event_type type;
2846 char *token;
2847
2848 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
2849 goto out_free;
2850
2851 arg->type = TEP_PRINT_DYNAMIC_ARRAY_LEN;
2852
2853 /* Find the field */
2854 field = tep_find_field(event, token);
2855 if (!field)
2856 goto out_free;
2857
2858 arg->dynarray.field = field;
2859 arg->dynarray.index = 0;
2860
2861 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
2862 goto out_err;
2863
2864 free_token(token);
2865 type = read_token(&token);
2866 *tok = token;
2867
2868 return type;
2869
2870 out_free:
2871 free_token(token);
2872 out_err:
2873 *tok = NULL;
2874 return TEP_EVENT_ERROR;
2875}
2876
2877static enum tep_event_type
2878process_paren(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2879{
2880 struct tep_print_arg *item_arg;
2881 enum tep_event_type type;
2882 char *token;
2883
2884 type = process_arg(event, arg, &token);
2885
2886 if (type == TEP_EVENT_ERROR)
2887 goto out_free;
2888
2889 if (type == TEP_EVENT_OP)
2890 type = process_op(event, arg, &token);
2891
2892 if (type == TEP_EVENT_ERROR)
2893 goto out_free;
2894
2895 if (test_type_token(type, token, TEP_EVENT_DELIM, ")"))
2896 goto out_free;
2897
2898 free_token(token);
2899 type = read_token_item(&token);
2900
2901 /*
2902 * If the next token is an item or another open paren, then
2903 * this was a typecast.
2904 */
2905 if (event_item_type(type) ||
2906 (type == TEP_EVENT_DELIM && strcmp(token, "(") == 0)) {
2907
2908 /* make this a typecast and contine */
2909
2910 /* prevous must be an atom */
2911 if (arg->type != TEP_PRINT_ATOM) {
2912 do_warning_event(event, "previous needed to be TEP_PRINT_ATOM");
2913 goto out_free;
2914 }
2915
2916 item_arg = alloc_arg();
2917 if (!item_arg) {
2918 do_warning_event(event, "%s: not enough memory!",
2919 __func__);
2920 goto out_free;
2921 }
2922
2923 arg->type = TEP_PRINT_TYPE;
2924 arg->typecast.type = arg->atom.atom;
2925 arg->typecast.item = item_arg;
2926 type = process_arg_token(event, item_arg, &token, type);
2927
2928 }
2929
2930 *tok = token;
2931 return type;
2932
2933 out_free:
2934 free_token(token);
2935 *tok = NULL;
2936 return TEP_EVENT_ERROR;
2937}
2938
2939
2940static enum tep_event_type
2941process_str(struct tep_event *event __maybe_unused, struct tep_print_arg *arg,
2942 char **tok)
2943{
2944 enum tep_event_type type;
2945 char *token;
2946
2947 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
2948 goto out_free;
2949
2950 arg->type = TEP_PRINT_STRING;
2951 arg->string.string = token;
2952 arg->string.offset = -1;
2953
2954 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
2955 goto out_err;
2956
2957 type = read_token(&token);
2958 *tok = token;
2959
2960 return type;
2961
2962 out_free:
2963 free_token(token);
2964 out_err:
2965 *tok = NULL;
2966 return TEP_EVENT_ERROR;
2967}
2968
2969static enum tep_event_type
2970process_bitmask(struct tep_event *event __maybe_unused, struct tep_print_arg *arg,
2971 char **tok)
2972{
2973 enum tep_event_type type;
2974 char *token;
2975
2976 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
2977 goto out_free;
2978
2979 arg->type = TEP_PRINT_BITMASK;
2980 arg->bitmask.bitmask = token;
2981 arg->bitmask.offset = -1;
2982
2983 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
2984 goto out_err;
2985
2986 type = read_token(&token);
2987 *tok = token;
2988
2989 return type;
2990
2991 out_free:
2992 free_token(token);
2993 out_err:
2994 *tok = NULL;
2995 return TEP_EVENT_ERROR;
2996}
2997
2998static struct tep_function_handler *
2999find_func_handler(struct tep_handle *tep, char *func_name)
3000{
3001 struct tep_function_handler *func;
3002
3003 if (!tep)
3004 return NULL;
3005
3006 for (func = tep->func_handlers; func; func = func->next) {
3007 if (strcmp(func->name, func_name) == 0)
3008 break;
3009 }
3010
3011 return func;
3012}
3013
3014static void remove_func_handler(struct tep_handle *tep, char *func_name)
3015{
3016 struct tep_function_handler *func;
3017 struct tep_function_handler **next;
3018
3019 next = &tep->func_handlers;
3020 while ((func = *next)) {
3021 if (strcmp(func->name, func_name) == 0) {
3022 *next = func->next;
3023 free_func_handle(func);
3024 break;
3025 }
3026 next = &func->next;
3027 }
3028}
3029
3030static enum tep_event_type
3031process_func_handler(struct tep_event *event, struct tep_function_handler *func,
3032 struct tep_print_arg *arg, char **tok)
3033{
3034 struct tep_print_arg **next_arg;
3035 struct tep_print_arg *farg;
3036 enum tep_event_type type;
3037 char *token;
3038 int i;
3039
3040 arg->type = TEP_PRINT_FUNC;
3041 arg->func.func = func;
3042
3043 *tok = NULL;
3044
3045 next_arg = &(arg->func.args);
3046 for (i = 0; i < func->nr_args; i++) {
3047 farg = alloc_arg();
3048 if (!farg) {
3049 do_warning_event(event, "%s: not enough memory!",
3050 __func__);
3051 return TEP_EVENT_ERROR;
3052 }
3053
3054 type = process_arg(event, farg, &token);
3055 if (i < (func->nr_args - 1)) {
3056 if (type != TEP_EVENT_DELIM || strcmp(token, ",") != 0) {
3057 do_warning_event(event,
3058 "Error: function '%s()' expects %d arguments but event %s only uses %d",
3059 func->name, func->nr_args,
3060 event->name, i + 1);
3061 goto err;
3062 }
3063 } else {
3064 if (type != TEP_EVENT_DELIM || strcmp(token, ")") != 0) {
3065 do_warning_event(event,
3066 "Error: function '%s()' only expects %d arguments but event %s has more",
3067 func->name, func->nr_args, event->name);
3068 goto err;
3069 }
3070 }
3071
3072 *next_arg = farg;
3073 next_arg = &(farg->next);
3074 free_token(token);
3075 }
3076
3077 type = read_token(&token);
3078 *tok = token;
3079
3080 return type;
3081
3082err:
3083 free_arg(farg);
3084 free_token(token);
3085 return TEP_EVENT_ERROR;
3086}
3087
3088static enum tep_event_type
3089process_builtin_expect(struct tep_event *event, struct tep_print_arg *arg, char **tok)
3090{
3091 enum tep_event_type type;
3092 char *token = NULL;
3093
3094 /* Handle __builtin_expect( cond, #) */
3095 type = process_arg(event, arg, &token);
3096
3097 if (type != TEP_EVENT_DELIM || token[0] != ',')
3098 goto out_free;
3099
3100 free_token(token);
3101
3102 /* We don't care what the second parameter is of the __builtin_expect() */
3103 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
3104 goto out_free;
3105
3106 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
3107 goto out_free;
3108
3109 free_token(token);
3110 type = read_token_item(tok);
3111 return type;
3112
3113out_free:
3114 free_token(token);
3115 *tok = NULL;
3116 return TEP_EVENT_ERROR;
3117}
3118
3119static enum tep_event_type
3120process_function(struct tep_event *event, struct tep_print_arg *arg,
3121 char *token, char **tok)
3122{
3123 struct tep_function_handler *func;
3124
3125 if (strcmp(token, "__print_flags") == 0) {
3126 free_token(token);
3127 is_flag_field = 1;
3128 return process_flags(event, arg, tok);
3129 }
3130 if (strcmp(token, "__print_symbolic") == 0) {
3131 free_token(token);
3132 is_symbolic_field = 1;
3133 return process_symbols(event, arg, tok);
3134 }
3135 if (strcmp(token, "__print_hex") == 0) {
3136 free_token(token);
3137 return process_hex(event, arg, tok);
3138 }
3139 if (strcmp(token, "__print_hex_str") == 0) {
3140 free_token(token);
3141 return process_hex_str(event, arg, tok);
3142 }
3143 if (strcmp(token, "__print_array") == 0) {
3144 free_token(token);
3145 return process_int_array(event, arg, tok);
3146 }
3147 if (strcmp(token, "__get_str") == 0) {
3148 free_token(token);
3149 return process_str(event, arg, tok);
3150 }
3151 if (strcmp(token, "__get_bitmask") == 0) {
3152 free_token(token);
3153 return process_bitmask(event, arg, tok);
3154 }
3155 if (strcmp(token, "__get_dynamic_array") == 0) {
3156 free_token(token);
3157 return process_dynamic_array(event, arg, tok);
3158 }
3159 if (strcmp(token, "__get_dynamic_array_len") == 0) {
3160 free_token(token);
3161 return process_dynamic_array_len(event, arg, tok);
3162 }
3163 if (strcmp(token, "__builtin_expect") == 0) {
3164 free_token(token);
3165 return process_builtin_expect(event, arg, tok);
3166 }
3167
3168 func = find_func_handler(event->tep, token);
3169 if (func) {
3170 free_token(token);
3171 return process_func_handler(event, func, arg, tok);
3172 }
3173
3174 do_warning_event(event, "function %s not defined", token);
3175 free_token(token);
3176 return TEP_EVENT_ERROR;
3177}
3178
3179static enum tep_event_type
3180process_arg_token(struct tep_event *event, struct tep_print_arg *arg,
3181 char **tok, enum tep_event_type type)
3182{
3183 char *token;
3184 char *atom;
3185
3186 token = *tok;
3187
3188 switch (type) {
3189 case TEP_EVENT_ITEM:
3190 if (strcmp(token, "REC") == 0) {
3191 free_token(token);
3192 type = process_entry(event, arg, &token);
3193 break;
3194 }
3195 atom = token;
3196 /* test the next token */
3197 type = read_token_item(&token);
3198
3199 /*
3200 * If the next token is a parenthesis, then this
3201 * is a function.
3202 */
3203 if (type == TEP_EVENT_DELIM && strcmp(token, "(") == 0) {
3204 free_token(token);
3205 token = NULL;
3206 /* this will free atom. */
3207 type = process_function(event, arg, atom, &token);
3208 break;
3209 }
3210 /* atoms can be more than one token long */
3211 while (type == TEP_EVENT_ITEM) {
3212 int ret;
3213
3214 ret = append(&atom, " ", token);
3215 if (ret < 0) {
3216 free(atom);
3217 *tok = NULL;
3218 free_token(token);
3219 return TEP_EVENT_ERROR;
3220 }
3221 free_token(token);
3222 type = read_token_item(&token);
3223 }
3224
3225 arg->type = TEP_PRINT_ATOM;
3226 arg->atom.atom = atom;
3227 break;
3228
3229 case TEP_EVENT_DQUOTE:
3230 case TEP_EVENT_SQUOTE:
3231 arg->type = TEP_PRINT_ATOM;
3232 arg->atom.atom = token;
3233 type = read_token_item(&token);
3234 break;
3235 case TEP_EVENT_DELIM:
3236 if (strcmp(token, "(") == 0) {
3237 free_token(token);
3238 type = process_paren(event, arg, &token);
3239 break;
3240 }
3241 case TEP_EVENT_OP:
3242 /* handle single ops */
3243 arg->type = TEP_PRINT_OP;
3244 arg->op.op = token;
3245 arg->op.left = NULL;
3246 type = process_op(event, arg, &token);
3247
3248 /* On error, the op is freed */
3249 if (type == TEP_EVENT_ERROR)
3250 arg->op.op = NULL;
3251
3252 /* return error type if errored */
3253 break;
3254
3255 case TEP_EVENT_ERROR ... TEP_EVENT_NEWLINE:
3256 default:
3257 do_warning_event(event, "unexpected type %d", type);
3258 return TEP_EVENT_ERROR;
3259 }
3260 *tok = token;
3261
3262 return type;
3263}
3264
3265static int event_read_print_args(struct tep_event *event, struct tep_print_arg **list)
3266{
3267 enum tep_event_type type = TEP_EVENT_ERROR;
3268 struct tep_print_arg *arg;
3269 char *token;
3270 int args = 0;
3271
3272 do {
3273 if (type == TEP_EVENT_NEWLINE) {
3274 type = read_token_item(&token);
3275 continue;
3276 }
3277
3278 arg = alloc_arg();
3279 if (!arg) {
3280 do_warning_event(event, "%s: not enough memory!",
3281 __func__);
3282 return -1;
3283 }
3284
3285 type = process_arg(event, arg, &token);
3286
3287 if (type == TEP_EVENT_ERROR) {
3288 free_token(token);
3289 free_arg(arg);
3290 return -1;
3291 }
3292
3293 *list = arg;
3294 args++;
3295
3296 if (type == TEP_EVENT_OP) {
3297 type = process_op(event, arg, &token);
3298 free_token(token);
3299 if (type == TEP_EVENT_ERROR) {
3300 *list = NULL;
3301 free_arg(arg);
3302 return -1;
3303 }
3304 list = &arg->next;
3305 continue;
3306 }
3307
3308 if (type == TEP_EVENT_DELIM && strcmp(token, ",") == 0) {
3309 free_token(token);
3310 *list = arg;
3311 list = &arg->next;
3312 continue;
3313 }
3314 break;
3315 } while (type != TEP_EVENT_NONE);
3316
3317 if (type != TEP_EVENT_NONE && type != TEP_EVENT_ERROR)
3318 free_token(token);
3319
3320 return args;
3321}
3322
3323static int event_read_print(struct tep_event *event)
3324{
3325 enum tep_event_type type;
3326 char *token;
3327 int ret;
3328
3329 if (read_expected_item(TEP_EVENT_ITEM, "print") < 0)
3330 return -1;
3331
3332 if (read_expected(TEP_EVENT_ITEM, "fmt") < 0)
3333 return -1;
3334
3335 if (read_expected(TEP_EVENT_OP, ":") < 0)
3336 return -1;
3337
3338 if (read_expect_type(TEP_EVENT_DQUOTE, &token) < 0)
3339 goto fail;
3340
3341 concat:
3342 event->print_fmt.format = token;
3343 event->print_fmt.args = NULL;
3344
3345 /* ok to have no arg */
3346 type = read_token_item(&token);
3347
3348 if (type == TEP_EVENT_NONE)
3349 return 0;
3350
3351 /* Handle concatenation of print lines */
3352 if (type == TEP_EVENT_DQUOTE) {
3353 char *cat;
3354
3355 if (asprintf(&cat, "%s%s", event->print_fmt.format, token) < 0)
3356 goto fail;
3357 free_token(token);
3358 free_token(event->print_fmt.format);
3359 event->print_fmt.format = NULL;
3360 token = cat;
3361 goto concat;
3362 }
3363
3364 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
3365 goto fail;
3366
3367 free_token(token);
3368
3369 ret = event_read_print_args(event, &event->print_fmt.args);
3370 if (ret < 0)
3371 return -1;
3372
3373 return ret;
3374
3375 fail:
3376 free_token(token);
3377 return -1;
3378}
3379
3380/**
3381 * tep_find_common_field - return a common field by event
3382 * @event: handle for the event
3383 * @name: the name of the common field to return
3384 *
3385 * Returns a common field from the event by the given @name.
3386 * This only searches the common fields and not all field.
3387 */
3388struct tep_format_field *
3389tep_find_common_field(struct tep_event *event, const char *name)
3390{
3391 struct tep_format_field *format;
3392
3393 for (format = event->format.common_fields;
3394 format; format = format->next) {
3395 if (strcmp(format->name, name) == 0)
3396 break;
3397 }
3398
3399 return format;
3400}
3401
3402/**
3403 * tep_find_field - find a non-common field
3404 * @event: handle for the event
3405 * @name: the name of the non-common field
3406 *
3407 * Returns a non-common field by the given @name.
3408 * This does not search common fields.
3409 */
3410struct tep_format_field *
3411tep_find_field(struct tep_event *event, const char *name)
3412{
3413 struct tep_format_field *format;
3414
3415 for (format = event->format.fields;
3416 format; format = format->next) {
3417 if (strcmp(format->name, name) == 0)
3418 break;
3419 }
3420
3421 return format;
3422}
3423
3424/**
3425 * tep_find_any_field - find any field by name
3426 * @event: handle for the event
3427 * @name: the name of the field
3428 *
3429 * Returns a field by the given @name.
3430 * This searches the common field names first, then
3431 * the non-common ones if a common one was not found.
3432 */
3433struct tep_format_field *
3434tep_find_any_field(struct tep_event *event, const char *name)
3435{
3436 struct tep_format_field *format;
3437
3438 format = tep_find_common_field(event, name);
3439 if (format)
3440 return format;
3441 return tep_find_field(event, name);
3442}
3443
3444/**
3445 * tep_read_number - read a number from data
3446 * @tep: a handle to the trace event parser context
3447 * @ptr: the raw data
3448 * @size: the size of the data that holds the number
3449 *
3450 * Returns the number (converted to host) from the
3451 * raw data.
3452 */
3453unsigned long long tep_read_number(struct tep_handle *tep,
3454 const void *ptr, int size)
3455{
3456 unsigned long long val;
3457
3458 switch (size) {
3459 case 1:
3460 return *(unsigned char *)ptr;
3461 case 2:
3462 return tep_data2host2(tep, *(unsigned short *)ptr);
3463 case 4:
3464 return tep_data2host4(tep, *(unsigned int *)ptr);
3465 case 8:
3466 memcpy(&val, (ptr), sizeof(unsigned long long));
3467 return tep_data2host8(tep, val);
3468 default:
3469 /* BUG! */
3470 return 0;
3471 }
3472}
3473
3474/**
3475 * tep_read_number_field - read a number from data
3476 * @field: a handle to the field
3477 * @data: the raw data to read
3478 * @value: the value to place the number in
3479 *
3480 * Reads raw data according to a field offset and size,
3481 * and translates it into @value.
3482 *
3483 * Returns 0 on success, -1 otherwise.
3484 */
3485int tep_read_number_field(struct tep_format_field *field, const void *data,
3486 unsigned long long *value)
3487{
3488 if (!field)
3489 return -1;
3490 switch (field->size) {
3491 case 1:
3492 case 2:
3493 case 4:
3494 case 8:
3495 *value = tep_read_number(field->event->tep,
3496 data + field->offset, field->size);
3497 return 0;
3498 default:
3499 return -1;
3500 }
3501}
3502
3503static int get_common_info(struct tep_handle *tep,
3504 const char *type, int *offset, int *size)
3505{
3506 struct tep_event *event;
3507 struct tep_format_field *field;
3508
3509 /*
3510 * All events should have the same common elements.
3511 * Pick any event to find where the type is;
3512 */
3513 if (!tep->events) {
3514 do_warning("no event_list!");
3515 return -1;
3516 }
3517
3518 event = tep->events[0];
3519 field = tep_find_common_field(event, type);
3520 if (!field)
3521 return -1;
3522
3523 *offset = field->offset;
3524 *size = field->size;
3525
3526 return 0;
3527}
3528
3529static int __parse_common(struct tep_handle *tep, void *data,
3530 int *size, int *offset, const char *name)
3531{
3532 int ret;
3533
3534 if (!*size) {
3535 ret = get_common_info(tep, name, offset, size);
3536 if (ret < 0)
3537 return ret;
3538 }
3539 return tep_read_number(tep, data + *offset, *size);
3540}
3541
3542static int trace_parse_common_type(struct tep_handle *tep, void *data)
3543{
3544 return __parse_common(tep, data,
3545 &tep->type_size, &tep->type_offset,
3546 "common_type");
3547}
3548
3549static int parse_common_pid(struct tep_handle *tep, void *data)
3550{
3551 return __parse_common(tep, data,
3552 &tep->pid_size, &tep->pid_offset,
3553 "common_pid");
3554}
3555
3556static int parse_common_pc(struct tep_handle *tep, void *data)
3557{
3558 return __parse_common(tep, data,
3559 &tep->pc_size, &tep->pc_offset,
3560 "common_preempt_count");
3561}
3562
3563static int parse_common_flags(struct tep_handle *tep, void *data)
3564{
3565 return __parse_common(tep, data,
3566 &tep->flags_size, &tep->flags_offset,
3567 "common_flags");
3568}
3569
3570static int parse_common_lock_depth(struct tep_handle *tep, void *data)
3571{
3572 return __parse_common(tep, data,
3573 &tep->ld_size, &tep->ld_offset,
3574 "common_lock_depth");
3575}
3576
3577static int parse_common_migrate_disable(struct tep_handle *tep, void *data)
3578{
3579 return __parse_common(tep, data,
3580 &tep->ld_size, &tep->ld_offset,
3581 "common_migrate_disable");
3582}
3583
3584static int events_id_cmp(const void *a, const void *b);
3585
3586/**
3587 * tep_find_event - find an event by given id
3588 * @tep: a handle to the trace event parser context
3589 * @id: the id of the event
3590 *
3591 * Returns an event that has a given @id.
3592 */
3593struct tep_event *tep_find_event(struct tep_handle *tep, int id)
3594{
3595 struct tep_event **eventptr;
3596 struct tep_event key;
3597 struct tep_event *pkey = &key;
3598
3599 /* Check cache first */
3600 if (tep->last_event && tep->last_event->id == id)
3601 return tep->last_event;
3602
3603 key.id = id;
3604
3605 eventptr = bsearch(&pkey, tep->events, tep->nr_events,
3606 sizeof(*tep->events), events_id_cmp);
3607
3608 if (eventptr) {
3609 tep->last_event = *eventptr;
3610 return *eventptr;
3611 }
3612
3613 return NULL;
3614}
3615
3616/**
3617 * tep_find_event_by_name - find an event by given name
3618 * @tep: a handle to the trace event parser context
3619 * @sys: the system name to search for
3620 * @name: the name of the event to search for
3621 *
3622 * This returns an event with a given @name and under the system
3623 * @sys. If @sys is NULL the first event with @name is returned.
3624 */
3625struct tep_event *
3626tep_find_event_by_name(struct tep_handle *tep,
3627 const char *sys, const char *name)
3628{
3629 struct tep_event *event = NULL;
3630 int i;
3631
3632 if (tep->last_event &&
3633 strcmp(tep->last_event->name, name) == 0 &&
3634 (!sys || strcmp(tep->last_event->system, sys) == 0))
3635 return tep->last_event;
3636
3637 for (i = 0; i < tep->nr_events; i++) {
3638 event = tep->events[i];
3639 if (strcmp(event->name, name) == 0) {
3640 if (!sys)
3641 break;
3642 if (strcmp(event->system, sys) == 0)
3643 break;
3644 }
3645 }
3646 if (i == tep->nr_events)
3647 event = NULL;
3648
3649 tep->last_event = event;
3650 return event;
3651}
3652
3653static unsigned long long
3654eval_num_arg(void *data, int size, struct tep_event *event, struct tep_print_arg *arg)
3655{
3656 struct tep_handle *tep = event->tep;
3657 unsigned long long val = 0;
3658 unsigned long long left, right;
3659 struct tep_print_arg *typearg = NULL;
3660 struct tep_print_arg *larg;
3661 unsigned long offset;
3662 unsigned int field_size;
3663
3664 switch (arg->type) {
3665 case TEP_PRINT_NULL:
3666 /* ?? */
3667 return 0;
3668 case TEP_PRINT_ATOM:
3669 return strtoull(arg->atom.atom, NULL, 0);
3670 case TEP_PRINT_FIELD:
3671 if (!arg->field.field) {
3672 arg->field.field = tep_find_any_field(event, arg->field.name);
3673 if (!arg->field.field)
3674 goto out_warning_field;
3675
3676 }
3677 /* must be a number */
3678 val = tep_read_number(tep, data + arg->field.field->offset,
3679 arg->field.field->size);
3680 break;
3681 case TEP_PRINT_FLAGS:
3682 case TEP_PRINT_SYMBOL:
3683 case TEP_PRINT_INT_ARRAY:
3684 case TEP_PRINT_HEX:
3685 case TEP_PRINT_HEX_STR:
3686 break;
3687 case TEP_PRINT_TYPE:
3688 val = eval_num_arg(data, size, event, arg->typecast.item);
3689 return eval_type(val, arg, 0);
3690 case TEP_PRINT_STRING:
3691 case TEP_PRINT_BSTRING:
3692 case TEP_PRINT_BITMASK:
3693 return 0;
3694 case TEP_PRINT_FUNC: {
3695 struct trace_seq s;
3696 trace_seq_init(&s);
3697 val = process_defined_func(&s, data, size, event, arg);
3698 trace_seq_destroy(&s);
3699 return val;
3700 }
3701 case TEP_PRINT_OP:
3702 if (strcmp(arg->op.op, "[") == 0) {
3703 /*
3704 * Arrays are special, since we don't want
3705 * to read the arg as is.
3706 */
3707 right = eval_num_arg(data, size, event, arg->op.right);
3708
3709 /* handle typecasts */
3710 larg = arg->op.left;
3711 while (larg->type == TEP_PRINT_TYPE) {
3712 if (!typearg)
3713 typearg = larg;
3714 larg = larg->typecast.item;
3715 }
3716
3717 /* Default to long size */
3718 field_size = tep->long_size;
3719
3720 switch (larg->type) {
3721 case TEP_PRINT_DYNAMIC_ARRAY:
3722 offset = tep_read_number(tep,
3723 data + larg->dynarray.field->offset,
3724 larg->dynarray.field->size);
3725 if (larg->dynarray.field->elementsize)
3726 field_size = larg->dynarray.field->elementsize;
3727 /*
3728 * The actual length of the dynamic array is stored
3729 * in the top half of the field, and the offset
3730 * is in the bottom half of the 32 bit field.
3731 */
3732 offset &= 0xffff;
3733 offset += right;
3734 break;
3735 case TEP_PRINT_FIELD:
3736 if (!larg->field.field) {
3737 larg->field.field =
3738 tep_find_any_field(event, larg->field.name);
3739 if (!larg->field.field) {
3740 arg = larg;
3741 goto out_warning_field;
3742 }
3743 }
3744 field_size = larg->field.field->elementsize;
3745 offset = larg->field.field->offset +
3746 right * larg->field.field->elementsize;
3747 break;
3748 default:
3749 goto default_op; /* oops, all bets off */
3750 }
3751 val = tep_read_number(tep,
3752 data + offset, field_size);
3753 if (typearg)
3754 val = eval_type(val, typearg, 1);
3755 break;
3756 } else if (strcmp(arg->op.op, "?") == 0) {
3757 left = eval_num_arg(data, size, event, arg->op.left);
3758 arg = arg->op.right;
3759 if (left)
3760 val = eval_num_arg(data, size, event, arg->op.left);
3761 else
3762 val = eval_num_arg(data, size, event, arg->op.right);
3763 break;
3764 }
3765 default_op:
3766 left = eval_num_arg(data, size, event, arg->op.left);
3767 right = eval_num_arg(data, size, event, arg->op.right);
3768 switch (arg->op.op[0]) {
3769 case '!':
3770 switch (arg->op.op[1]) {
3771 case 0:
3772 val = !right;
3773 break;
3774 case '=':
3775 val = left != right;
3776 break;
3777 default:
3778 goto out_warning_op;
3779 }
3780 break;
3781 case '~':
3782 val = ~right;
3783 break;
3784 case '|':
3785 if (arg->op.op[1])
3786 val = left || right;
3787 else
3788 val = left | right;
3789 break;
3790 case '&':
3791 if (arg->op.op[1])
3792 val = left && right;
3793 else
3794 val = left & right;
3795 break;
3796 case '<':
3797 switch (arg->op.op[1]) {
3798 case 0:
3799 val = left < right;
3800 break;
3801 case '<':
3802 val = left << right;
3803 break;
3804 case '=':
3805 val = left <= right;
3806 break;
3807 default:
3808 goto out_warning_op;
3809 }
3810 break;
3811 case '>':
3812 switch (arg->op.op[1]) {
3813 case 0:
3814 val = left > right;
3815 break;
3816 case '>':
3817 val = left >> right;
3818 break;
3819 case '=':
3820 val = left >= right;
3821 break;
3822 default:
3823 goto out_warning_op;
3824 }
3825 break;
3826 case '=':
3827 if (arg->op.op[1] != '=')
3828 goto out_warning_op;
3829
3830 val = left == right;
3831 break;
3832 case '-':
3833 val = left - right;
3834 break;
3835 case '+':
3836 val = left + right;
3837 break;
3838 case '/':
3839 val = left / right;
3840 break;
3841 case '%':
3842 val = left % right;
3843 break;
3844 case '*':
3845 val = left * right;
3846 break;
3847 default:
3848 goto out_warning_op;
3849 }
3850 break;
3851 case TEP_PRINT_DYNAMIC_ARRAY_LEN:
3852 offset = tep_read_number(tep,
3853 data + arg->dynarray.field->offset,
3854 arg->dynarray.field->size);
3855 /*
3856 * The total allocated length of the dynamic array is
3857 * stored in the top half of the field, and the offset
3858 * is in the bottom half of the 32 bit field.
3859 */
3860 val = (unsigned long long)(offset >> 16);
3861 break;
3862 case TEP_PRINT_DYNAMIC_ARRAY:
3863 /* Without [], we pass the address to the dynamic data */
3864 offset = tep_read_number(tep,
3865 data + arg->dynarray.field->offset,
3866 arg->dynarray.field->size);
3867 /*
3868 * The total allocated length of the dynamic array is
3869 * stored in the top half of the field, and the offset
3870 * is in the bottom half of the 32 bit field.
3871 */
3872 offset &= 0xffff;
3873 val = (unsigned long long)((unsigned long)data + offset);
3874 break;
3875 default: /* not sure what to do there */
3876 return 0;
3877 }
3878 return val;
3879
3880out_warning_op:
3881 do_warning_event(event, "%s: unknown op '%s'", __func__, arg->op.op);
3882 return 0;
3883
3884out_warning_field:
3885 do_warning_event(event, "%s: field %s not found",
3886 __func__, arg->field.name);
3887 return 0;
3888}
3889
3890struct flag {
3891 const char *name;
3892 unsigned long long value;
3893};
3894
3895static const struct flag flags[] = {
3896 { "HI_SOFTIRQ", 0 },
3897 { "TIMER_SOFTIRQ", 1 },
3898 { "NET_TX_SOFTIRQ", 2 },
3899 { "NET_RX_SOFTIRQ", 3 },
3900 { "BLOCK_SOFTIRQ", 4 },
3901 { "IRQ_POLL_SOFTIRQ", 5 },
3902 { "TASKLET_SOFTIRQ", 6 },
3903 { "SCHED_SOFTIRQ", 7 },
3904 { "HRTIMER_SOFTIRQ", 8 },
3905 { "RCU_SOFTIRQ", 9 },
3906
3907 { "HRTIMER_NORESTART", 0 },
3908 { "HRTIMER_RESTART", 1 },
3909};
3910
3911static long long eval_flag(const char *flag)
3912{
3913 int i;
3914
3915 /*
3916 * Some flags in the format files do not get converted.
3917 * If the flag is not numeric, see if it is something that
3918 * we already know about.
3919 */
3920 if (isdigit(flag[0]))
3921 return strtoull(flag, NULL, 0);
3922
3923 for (i = 0; i < (int)(sizeof(flags)/sizeof(flags[0])); i++)
3924 if (strcmp(flags[i].name, flag) == 0)
3925 return flags[i].value;
3926
3927 return -1LL;
3928}
3929
3930static void print_str_to_seq(struct trace_seq *s, const char *format,
3931 int len_arg, const char *str)
3932{
3933 if (len_arg >= 0)
3934 trace_seq_printf(s, format, len_arg, str);
3935 else
3936 trace_seq_printf(s, format, str);
3937}
3938
3939static void print_bitmask_to_seq(struct tep_handle *tep,
3940 struct trace_seq *s, const char *format,
3941 int len_arg, const void *data, int size)
3942{
3943 int nr_bits = size * 8;
3944 int str_size = (nr_bits + 3) / 4;
3945 int len = 0;
3946 char buf[3];
3947 char *str;
3948 int index;
3949 int i;
3950
3951 /*
3952 * The kernel likes to put in commas every 32 bits, we
3953 * can do the same.
3954 */
3955 str_size += (nr_bits - 1) / 32;
3956
3957 str = malloc(str_size + 1);
3958 if (!str) {
3959 do_warning("%s: not enough memory!", __func__);
3960 return;
3961 }
3962 str[str_size] = 0;
3963
3964 /* Start out with -2 for the two chars per byte */
3965 for (i = str_size - 2; i >= 0; i -= 2) {
3966 /*
3967 * data points to a bit mask of size bytes.
3968 * In the kernel, this is an array of long words, thus
3969 * endianness is very important.
3970 */
3971 if (tep->file_bigendian)
3972 index = size - (len + 1);
3973 else
3974 index = len;
3975
3976 snprintf(buf, 3, "%02x", *((unsigned char *)data + index));
3977 memcpy(str + i, buf, 2);
3978 len++;
3979 if (!(len & 3) && i > 0) {
3980 i--;
3981 str[i] = ',';
3982 }
3983 }
3984
3985 if (len_arg >= 0)
3986 trace_seq_printf(s, format, len_arg, str);
3987 else
3988 trace_seq_printf(s, format, str);
3989
3990 free(str);
3991}
3992
3993static void print_str_arg(struct trace_seq *s, void *data, int size,
3994 struct tep_event *event, const char *format,
3995 int len_arg, struct tep_print_arg *arg)
3996{
3997 struct tep_handle *tep = event->tep;
3998 struct tep_print_flag_sym *flag;
3999 struct tep_format_field *field;
4000 struct printk_map *printk;
4001 long long val, fval;
4002 unsigned long long addr;
4003 char *str;
4004 unsigned char *hex;
4005 int print;
4006 int i, len;
4007
4008 switch (arg->type) {
4009 case TEP_PRINT_NULL:
4010 /* ?? */
4011 return;
4012 case TEP_PRINT_ATOM:
4013 print_str_to_seq(s, format, len_arg, arg->atom.atom);
4014 return;
4015 case TEP_PRINT_FIELD:
4016 field = arg->field.field;
4017 if (!field) {
4018 field = tep_find_any_field(event, arg->field.name);
4019 if (!field) {
4020 str = arg->field.name;
4021 goto out_warning_field;
4022 }
4023 arg->field.field = field;
4024 }
4025 /* Zero sized fields, mean the rest of the data */
4026 len = field->size ? : size - field->offset;
4027
4028 /*
4029 * Some events pass in pointers. If this is not an array
4030 * and the size is the same as long_size, assume that it
4031 * is a pointer.
4032 */
4033 if (!(field->flags & TEP_FIELD_IS_ARRAY) &&
4034 field->size == tep->long_size) {
4035
4036 /* Handle heterogeneous recording and processing
4037 * architectures
4038 *
4039 * CASE I:
4040 * Traces recorded on 32-bit devices (32-bit
4041 * addressing) and processed on 64-bit devices:
4042 * In this case, only 32 bits should be read.
4043 *
4044 * CASE II:
4045 * Traces recorded on 64 bit devices and processed
4046 * on 32-bit devices:
4047 * In this case, 64 bits must be read.
4048 */
4049 addr = (tep->long_size == 8) ?
4050 *(unsigned long long *)(data + field->offset) :
4051 (unsigned long long)*(unsigned int *)(data + field->offset);
4052
4053 /* Check if it matches a print format */
4054 printk = find_printk(tep, addr);
4055 if (printk)
4056 trace_seq_puts(s, printk->printk);
4057 else
4058 trace_seq_printf(s, "%llx", addr);
4059 break;
4060 }
4061 str = malloc(len + 1);
4062 if (!str) {
4063 do_warning_event(event, "%s: not enough memory!",
4064 __func__);
4065 return;
4066 }
4067 memcpy(str, data + field->offset, len);
4068 str[len] = 0;
4069 print_str_to_seq(s, format, len_arg, str);
4070 free(str);
4071 break;
4072 case TEP_PRINT_FLAGS:
4073 val = eval_num_arg(data, size, event, arg->flags.field);
4074 print = 0;
4075 for (flag = arg->flags.flags; flag; flag = flag->next) {
4076 fval = eval_flag(flag->value);
4077 if (!val && fval < 0) {
4078 print_str_to_seq(s, format, len_arg, flag->str);
4079 break;
4080 }
4081 if (fval > 0 && (val & fval) == fval) {
4082 if (print && arg->flags.delim)
4083 trace_seq_puts(s, arg->flags.delim);
4084 print_str_to_seq(s, format, len_arg, flag->str);
4085 print = 1;
4086 val &= ~fval;
4087 }
4088 }
4089 if (val) {
4090 if (print && arg->flags.delim)
4091 trace_seq_puts(s, arg->flags.delim);
4092 trace_seq_printf(s, "0x%llx", val);
4093 }
4094 break;
4095 case TEP_PRINT_SYMBOL:
4096 val = eval_num_arg(data, size, event, arg->symbol.field);
4097 for (flag = arg->symbol.symbols; flag; flag = flag->next) {
4098 fval = eval_flag(flag->value);
4099 if (val == fval) {
4100 print_str_to_seq(s, format, len_arg, flag->str);
4101 break;
4102 }
4103 }
4104 if (!flag)
4105 trace_seq_printf(s, "0x%llx", val);
4106 break;
4107 case TEP_PRINT_HEX:
4108 case TEP_PRINT_HEX_STR:
4109 if (arg->hex.field->type == TEP_PRINT_DYNAMIC_ARRAY) {
4110 unsigned long offset;
4111 offset = tep_read_number(tep,
4112 data + arg->hex.field->dynarray.field->offset,
4113 arg->hex.field->dynarray.field->size);
4114 hex = data + (offset & 0xffff);
4115 } else {
4116 field = arg->hex.field->field.field;
4117 if (!field) {
4118 str = arg->hex.field->field.name;
4119 field = tep_find_any_field(event, str);
4120 if (!field)
4121 goto out_warning_field;
4122 arg->hex.field->field.field = field;
4123 }
4124 hex = data + field->offset;
4125 }
4126 len = eval_num_arg(data, size, event, arg->hex.size);
4127 for (i = 0; i < len; i++) {
4128 if (i && arg->type == TEP_PRINT_HEX)
4129 trace_seq_putc(s, ' ');
4130 trace_seq_printf(s, "%02x", hex[i]);
4131 }
4132 break;
4133
4134 case TEP_PRINT_INT_ARRAY: {
4135 void *num;
4136 int el_size;
4137
4138 if (arg->int_array.field->type == TEP_PRINT_DYNAMIC_ARRAY) {
4139 unsigned long offset;
4140 struct tep_format_field *field =
4141 arg->int_array.field->dynarray.field;
4142 offset = tep_read_number(tep,
4143 data + field->offset,
4144 field->size);
4145 num = data + (offset & 0xffff);
4146 } else {
4147 field = arg->int_array.field->field.field;
4148 if (!field) {
4149 str = arg->int_array.field->field.name;
4150 field = tep_find_any_field(event, str);
4151 if (!field)
4152 goto out_warning_field;
4153 arg->int_array.field->field.field = field;
4154 }
4155 num = data + field->offset;
4156 }
4157 len = eval_num_arg(data, size, event, arg->int_array.count);
4158 el_size = eval_num_arg(data, size, event,
4159 arg->int_array.el_size);
4160 for (i = 0; i < len; i++) {
4161 if (i)
4162 trace_seq_putc(s, ' ');
4163
4164 if (el_size == 1) {
4165 trace_seq_printf(s, "%u", *(uint8_t *)num);
4166 } else if (el_size == 2) {
4167 trace_seq_printf(s, "%u", *(uint16_t *)num);
4168 } else if (el_size == 4) {
4169 trace_seq_printf(s, "%u", *(uint32_t *)num);
4170 } else if (el_size == 8) {
4171 trace_seq_printf(s, "%"PRIu64, *(uint64_t *)num);
4172 } else {
4173 trace_seq_printf(s, "BAD SIZE:%d 0x%x",
4174 el_size, *(uint8_t *)num);
4175 el_size = 1;
4176 }
4177
4178 num += el_size;
4179 }
4180 break;
4181 }
4182 case TEP_PRINT_TYPE:
4183 break;
4184 case TEP_PRINT_STRING: {
4185 int str_offset;
4186
4187 if (arg->string.offset == -1) {
4188 struct tep_format_field *f;
4189
4190 f = tep_find_any_field(event, arg->string.string);
4191 arg->string.offset = f->offset;
4192 }
4193 str_offset = tep_data2host4(tep, *(unsigned int *)(data + arg->string.offset));
4194 str_offset &= 0xffff;
4195 print_str_to_seq(s, format, len_arg, ((char *)data) + str_offset);
4196 break;
4197 }
4198 case TEP_PRINT_BSTRING:
4199 print_str_to_seq(s, format, len_arg, arg->string.string);
4200 break;
4201 case TEP_PRINT_BITMASK: {
4202 int bitmask_offset;
4203 int bitmask_size;
4204
4205 if (arg->bitmask.offset == -1) {
4206 struct tep_format_field *f;
4207
4208 f = tep_find_any_field(event, arg->bitmask.bitmask);
4209 arg->bitmask.offset = f->offset;
4210 }
4211 bitmask_offset = tep_data2host4(tep, *(unsigned int *)(data + arg->bitmask.offset));
4212 bitmask_size = bitmask_offset >> 16;
4213 bitmask_offset &= 0xffff;
4214 print_bitmask_to_seq(tep, s, format, len_arg,
4215 data + bitmask_offset, bitmask_size);
4216 break;
4217 }
4218 case TEP_PRINT_OP:
4219 /*
4220 * The only op for string should be ? :
4221 */
4222 if (arg->op.op[0] != '?')
4223 return;
4224 val = eval_num_arg(data, size, event, arg->op.left);
4225 if (val)
4226 print_str_arg(s, data, size, event,
4227 format, len_arg, arg->op.right->op.left);
4228 else
4229 print_str_arg(s, data, size, event,
4230 format, len_arg, arg->op.right->op.right);
4231 break;
4232 case TEP_PRINT_FUNC:
4233 process_defined_func(s, data, size, event, arg);
4234 break;
4235 default:
4236 /* well... */
4237 break;
4238 }
4239
4240 return;
4241
4242out_warning_field:
4243 do_warning_event(event, "%s: field %s not found",
4244 __func__, arg->field.name);
4245}
4246
4247static unsigned long long
4248process_defined_func(struct trace_seq *s, void *data, int size,
4249 struct tep_event *event, struct tep_print_arg *arg)
4250{
4251 struct tep_function_handler *func_handle = arg->func.func;
4252 struct func_params *param;
4253 unsigned long long *args;
4254 unsigned long long ret;
4255 struct tep_print_arg *farg;
4256 struct trace_seq str;
4257 struct save_str {
4258 struct save_str *next;
4259 char *str;
4260 } *strings = NULL, *string;
4261 int i;
4262
4263 if (!func_handle->nr_args) {
4264 ret = (*func_handle->func)(s, NULL);
4265 goto out;
4266 }
4267
4268 farg = arg->func.args;
4269 param = func_handle->params;
4270
4271 ret = ULLONG_MAX;
4272 args = malloc(sizeof(*args) * func_handle->nr_args);
4273 if (!args)
4274 goto out;
4275
4276 for (i = 0; i < func_handle->nr_args; i++) {
4277 switch (param->type) {
4278 case TEP_FUNC_ARG_INT:
4279 case TEP_FUNC_ARG_LONG:
4280 case TEP_FUNC_ARG_PTR:
4281 args[i] = eval_num_arg(data, size, event, farg);
4282 break;
4283 case TEP_FUNC_ARG_STRING:
4284 trace_seq_init(&str);
4285 print_str_arg(&str, data, size, event, "%s", -1, farg);
4286 trace_seq_terminate(&str);
4287 string = malloc(sizeof(*string));
4288 if (!string) {
4289 do_warning_event(event, "%s(%d): malloc str",
4290 __func__, __LINE__);
4291 goto out_free;
4292 }
4293 string->next = strings;
4294 string->str = strdup(str.buffer);
4295 if (!string->str) {
4296 free(string);
4297 do_warning_event(event, "%s(%d): malloc str",
4298 __func__, __LINE__);
4299 goto out_free;
4300 }
4301 args[i] = (uintptr_t)string->str;
4302 strings = string;
4303 trace_seq_destroy(&str);
4304 break;
4305 default:
4306 /*
4307 * Something went totally wrong, this is not
4308 * an input error, something in this code broke.
4309 */
4310 do_warning_event(event, "Unexpected end of arguments\n");
4311 goto out_free;
4312 }
4313 farg = farg->next;
4314 param = param->next;
4315 }
4316
4317 ret = (*func_handle->func)(s, args);
4318out_free:
4319 free(args);
4320 while (strings) {
4321 string = strings;
4322 strings = string->next;
4323 free(string->str);
4324 free(string);
4325 }
4326
4327 out:
4328 /* TBD : handle return type here */
4329 return ret;
4330}
4331
4332static void free_args(struct tep_print_arg *args)
4333{
4334 struct tep_print_arg *next;
4335
4336 while (args) {
4337 next = args->next;
4338
4339 free_arg(args);
4340 args = next;
4341 }
4342}
4343
4344static struct tep_print_arg *make_bprint_args(char *fmt, void *data, int size, struct tep_event *event)
4345{
4346 struct tep_handle *tep = event->tep;
4347 struct tep_format_field *field, *ip_field;
4348 struct tep_print_arg *args, *arg, **next;
4349 unsigned long long ip, val;
4350 char *ptr;
4351 void *bptr;
4352 int vsize = 0;
4353
4354 field = tep->bprint_buf_field;
4355 ip_field = tep->bprint_ip_field;
4356
4357 if (!field) {
4358 field = tep_find_field(event, "buf");
4359 if (!field) {
4360 do_warning_event(event, "can't find buffer field for binary printk");
4361 return NULL;
4362 }
4363 ip_field = tep_find_field(event, "ip");
4364 if (!ip_field) {
4365 do_warning_event(event, "can't find ip field for binary printk");
4366 return NULL;
4367 }
4368 tep->bprint_buf_field = field;
4369 tep->bprint_ip_field = ip_field;
4370 }
4371
4372 ip = tep_read_number(tep, data + ip_field->offset, ip_field->size);
4373
4374 /*
4375 * The first arg is the IP pointer.
4376 */
4377 args = alloc_arg();
4378 if (!args) {
4379 do_warning_event(event, "%s(%d): not enough memory!",
4380 __func__, __LINE__);
4381 return NULL;
4382 }
4383 arg = args;
4384 arg->next = NULL;
4385 next = &arg->next;
4386
4387 arg->type = TEP_PRINT_ATOM;
4388
4389 if (asprintf(&arg->atom.atom, "%lld", ip) < 0)
4390 goto out_free;
4391
4392 /* skip the first "%ps: " */
4393 for (ptr = fmt + 5, bptr = data + field->offset;
4394 bptr < data + size && *ptr; ptr++) {
4395 int ls = 0;
4396
4397 if (*ptr == '%') {
4398 process_again:
4399 ptr++;
4400 switch (*ptr) {
4401 case '%':
4402 break;
4403 case 'l':
4404 ls++;
4405 goto process_again;
4406 case 'L':
4407 ls = 2;
4408 goto process_again;
4409 case '0' ... '9':
4410 goto process_again;
4411 case '.':
4412 goto process_again;
4413 case 'z':
4414 case 'Z':
4415 ls = 1;
4416 goto process_again;
4417 case 'p':
4418 ls = 1;
4419 if (isalnum(ptr[1])) {
4420 ptr++;
4421 /* Check for special pointers */
4422 switch (*ptr) {
4423 case 's':
4424 case 'S':
4425 case 'x':
4426 break;
4427 case 'f':
4428 case 'F':
4429 /*
4430 * Pre-5.5 kernels use %pf and
4431 * %pF for printing symbols
4432 * while kernels since 5.5 use
4433 * %pfw for fwnodes. So check
4434 * %p[fF] isn't followed by 'w'.
4435 */
4436 if (ptr[1] != 'w')
4437 break;
4438 /* fall through */
4439 default:
4440 /*
4441 * Older kernels do not process
4442 * dereferenced pointers.
4443 * Only process if the pointer
4444 * value is a printable.
4445 */
4446 if (isprint(*(char *)bptr))
4447 goto process_string;
4448 }
4449 }
4450 /* fall through */
4451 case 'd':
4452 case 'u':
4453 case 'i':
4454 case 'x':
4455 case 'X':
4456 case 'o':
4457 switch (ls) {
4458 case 0:
4459 vsize = 4;
4460 break;
4461 case 1:
4462 vsize = tep->long_size;
4463 break;
4464 case 2:
4465 vsize = 8;
4466 break;
4467 default:
4468 vsize = ls; /* ? */
4469 break;
4470 }
4471 /* fall through */
4472 case '*':
4473 if (*ptr == '*')
4474 vsize = 4;
4475
4476 /* the pointers are always 4 bytes aligned */
4477 bptr = (void *)(((unsigned long)bptr + 3) &
4478 ~3);
4479 val = tep_read_number(tep, bptr, vsize);
4480 bptr += vsize;
4481 arg = alloc_arg();
4482 if (!arg) {
4483 do_warning_event(event, "%s(%d): not enough memory!",
4484 __func__, __LINE__);
4485 goto out_free;
4486 }
4487 arg->next = NULL;
4488 arg->type = TEP_PRINT_ATOM;
4489 if (asprintf(&arg->atom.atom, "%lld", val) < 0) {
4490 free(arg);
4491 goto out_free;
4492 }
4493 *next = arg;
4494 next = &arg->next;
4495 /*
4496 * The '*' case means that an arg is used as the length.
4497 * We need to continue to figure out for what.
4498 */
4499 if (*ptr == '*')
4500 goto process_again;
4501
4502 break;
4503 case 's':
4504 process_string:
4505 arg = alloc_arg();
4506 if (!arg) {
4507 do_warning_event(event, "%s(%d): not enough memory!",
4508 __func__, __LINE__);
4509 goto out_free;
4510 }
4511 arg->next = NULL;
4512 arg->type = TEP_PRINT_BSTRING;
4513 arg->string.string = strdup(bptr);
4514 if (!arg->string.string)
4515 goto out_free;
4516 bptr += strlen(bptr) + 1;
4517 *next = arg;
4518 next = &arg->next;
4519 default:
4520 break;
4521 }
4522 }
4523 }
4524
4525 return args;
4526
4527out_free:
4528 free_args(args);
4529 return NULL;
4530}
4531
4532static char *
4533get_bprint_format(void *data, int size __maybe_unused,
4534 struct tep_event *event)
4535{
4536 struct tep_handle *tep = event->tep;
4537 unsigned long long addr;
4538 struct tep_format_field *field;
4539 struct printk_map *printk;
4540 char *format;
4541
4542 field = tep->bprint_fmt_field;
4543
4544 if (!field) {
4545 field = tep_find_field(event, "fmt");
4546 if (!field) {
4547 do_warning_event(event, "can't find format field for binary printk");
4548 return NULL;
4549 }
4550 tep->bprint_fmt_field = field;
4551 }
4552
4553 addr = tep_read_number(tep, data + field->offset, field->size);
4554
4555 printk = find_printk(tep, addr);
4556 if (!printk) {
4557 if (asprintf(&format, "%%ps: (NO FORMAT FOUND at %llx)\n", addr) < 0)
4558 return NULL;
4559 return format;
4560 }
4561
4562 if (asprintf(&format, "%s: %s", "%ps", printk->printk) < 0)
4563 return NULL;
4564
4565 return format;
4566}
4567
4568static int print_mac_arg(struct trace_seq *s, const char *format,
4569 void *data, int size, struct tep_event *event,
4570 struct tep_print_arg *arg)
4571{
4572 const char *fmt = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x";
4573 bool reverse = false;
4574 unsigned char *buf;
4575 int ret = 0;
4576
4577 if (arg->type == TEP_PRINT_FUNC) {
4578 process_defined_func(s, data, size, event, arg);
4579 return 0;
4580 }
4581
4582 if (arg->type != TEP_PRINT_FIELD) {
4583 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d",
4584 arg->type);
4585 return 0;
4586 }
4587
4588 if (format[0] == 'm') {
4589 fmt = "%.2x%.2x%.2x%.2x%.2x%.2x";
4590 } else if (format[0] == 'M' && format[1] == 'F') {
4591 fmt = "%.2x-%.2x-%.2x-%.2x-%.2x-%.2x";
4592 ret++;
4593 }
4594 if (format[1] == 'R') {
4595 reverse = true;
4596 ret++;
4597 }
4598
4599 if (!arg->field.field) {
4600 arg->field.field =
4601 tep_find_any_field(event, arg->field.name);
4602 if (!arg->field.field) {
4603 do_warning_event(event, "%s: field %s not found",
4604 __func__, arg->field.name);
4605 return ret;
4606 }
4607 }
4608 if (arg->field.field->size != 6) {
4609 trace_seq_printf(s, "INVALIDMAC");
4610 return ret;
4611 }
4612
4613 buf = data + arg->field.field->offset;
4614 if (reverse)
4615 trace_seq_printf(s, fmt, buf[5], buf[4], buf[3], buf[2], buf[1], buf[0]);
4616 else
4617 trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
4618
4619 return ret;
4620}
4621
4622static int parse_ip4_print_args(struct tep_handle *tep,
4623 const char *ptr, bool *reverse)
4624{
4625 int ret = 0;
4626
4627 *reverse = false;
4628
4629 /* hnbl */
4630 switch (*ptr) {
4631 case 'h':
4632 if (tep->file_bigendian)
4633 *reverse = false;
4634 else
4635 *reverse = true;
4636 ret++;
4637 break;
4638 case 'l':
4639 *reverse = true;
4640 ret++;
4641 break;
4642 case 'n':
4643 case 'b':
4644 ret++;
4645 /* fall through */
4646 default:
4647 *reverse = false;
4648 break;
4649 }
4650
4651 return ret;
4652}
4653
4654static void print_ip4_addr(struct trace_seq *s, char i, bool reverse, unsigned char *buf)
4655{
4656 const char *fmt;
4657
4658 if (i == 'i')
4659 fmt = "%03d.%03d.%03d.%03d";
4660 else
4661 fmt = "%d.%d.%d.%d";
4662
4663 if (reverse)
4664 trace_seq_printf(s, fmt, buf[3], buf[2], buf[1], buf[0]);
4665 else
4666 trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3]);
4667
4668}
4669
4670static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
4671{
4672 return ((unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
4673 (unsigned long)(a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL;
4674}
4675
4676static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr)
4677{
4678 return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE);
4679}
4680
4681static void print_ip6c_addr(struct trace_seq *s, unsigned char *addr)
4682{
4683 int i, j, range;
4684 unsigned char zerolength[8];
4685 int longest = 1;
4686 int colonpos = -1;
4687 uint16_t word;
4688 uint8_t hi, lo;
4689 bool needcolon = false;
4690 bool useIPv4;
4691 struct in6_addr in6;
4692
4693 memcpy(&in6, addr, sizeof(struct in6_addr));
4694
4695 useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6);
4696
4697 memset(zerolength, 0, sizeof(zerolength));
4698
4699 if (useIPv4)
4700 range = 6;
4701 else
4702 range = 8;
4703
4704 /* find position of longest 0 run */
4705 for (i = 0; i < range; i++) {
4706 for (j = i; j < range; j++) {
4707 if (in6.s6_addr16[j] != 0)
4708 break;
4709 zerolength[i]++;
4710 }
4711 }
4712 for (i = 0; i < range; i++) {
4713 if (zerolength[i] > longest) {
4714 longest = zerolength[i];
4715 colonpos = i;
4716 }
4717 }
4718 if (longest == 1) /* don't compress a single 0 */
4719 colonpos = -1;
4720
4721 /* emit address */
4722 for (i = 0; i < range; i++) {
4723 if (i == colonpos) {
4724 if (needcolon || i == 0)
4725 trace_seq_printf(s, ":");
4726 trace_seq_printf(s, ":");
4727 needcolon = false;
4728 i += longest - 1;
4729 continue;
4730 }
4731 if (needcolon) {
4732 trace_seq_printf(s, ":");
4733 needcolon = false;
4734 }
4735 /* hex u16 without leading 0s */
4736 word = ntohs(in6.s6_addr16[i]);
4737 hi = word >> 8;
4738 lo = word & 0xff;
4739 if (hi)
4740 trace_seq_printf(s, "%x%02x", hi, lo);
4741 else
4742 trace_seq_printf(s, "%x", lo);
4743
4744 needcolon = true;
4745 }
4746
4747 if (useIPv4) {
4748 if (needcolon)
4749 trace_seq_printf(s, ":");
4750 print_ip4_addr(s, 'I', false, &in6.s6_addr[12]);
4751 }
4752
4753 return;
4754}
4755
4756static void print_ip6_addr(struct trace_seq *s, char i, unsigned char *buf)
4757{
4758 int j;
4759
4760 for (j = 0; j < 16; j += 2) {
4761 trace_seq_printf(s, "%02x%02x", buf[j], buf[j+1]);
4762 if (i == 'I' && j < 14)
4763 trace_seq_printf(s, ":");
4764 }
4765}
4766
4767/*
4768 * %pi4 print an IPv4 address with leading zeros
4769 * %pI4 print an IPv4 address without leading zeros
4770 * %pi6 print an IPv6 address without colons
4771 * %pI6 print an IPv6 address with colons
4772 * %pI6c print an IPv6 address in compressed form with colons
4773 * %pISpc print an IP address based on sockaddr; p adds port.
4774 */
4775static int print_ipv4_arg(struct trace_seq *s, const char *ptr, char i,
4776 void *data, int size, struct tep_event *event,
4777 struct tep_print_arg *arg)
4778{
4779 bool reverse = false;
4780 unsigned char *buf;
4781 int ret;
4782
4783 ret = parse_ip4_print_args(event->tep, ptr, &reverse);
4784
4785 if (arg->type == TEP_PRINT_FUNC) {
4786 process_defined_func(s, data, size, event, arg);
4787 return ret;
4788 }
4789
4790 if (arg->type != TEP_PRINT_FIELD) {
4791 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4792 return ret;
4793 }
4794
4795 if (!arg->field.field) {
4796 arg->field.field =
4797 tep_find_any_field(event, arg->field.name);
4798 if (!arg->field.field) {
4799 do_warning("%s: field %s not found",
4800 __func__, arg->field.name);
4801 return ret;
4802 }
4803 }
4804
4805 buf = data + arg->field.field->offset;
4806
4807 if (arg->field.field->size != 4) {
4808 trace_seq_printf(s, "INVALIDIPv4");
4809 return ret;
4810 }
4811
4812 print_ip4_addr(s, i, reverse, buf);
4813 return ret;
4814
4815}
4816
4817static int print_ipv6_arg(struct trace_seq *s, const char *ptr, char i,
4818 void *data, int size, struct tep_event *event,
4819 struct tep_print_arg *arg)
4820{
4821 char have_c = 0;
4822 unsigned char *buf;
4823 int rc = 0;
4824
4825 /* pI6c */
4826 if (i == 'I' && *ptr == 'c') {
4827 have_c = 1;
4828 ptr++;
4829 rc++;
4830 }
4831
4832 if (arg->type == TEP_PRINT_FUNC) {
4833 process_defined_func(s, data, size, event, arg);
4834 return rc;
4835 }
4836
4837 if (arg->type != TEP_PRINT_FIELD) {
4838 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4839 return rc;
4840 }
4841
4842 if (!arg->field.field) {
4843 arg->field.field =
4844 tep_find_any_field(event, arg->field.name);
4845 if (!arg->field.field) {
4846 do_warning("%s: field %s not found",
4847 __func__, arg->field.name);
4848 return rc;
4849 }
4850 }
4851
4852 buf = data + arg->field.field->offset;
4853
4854 if (arg->field.field->size != 16) {
4855 trace_seq_printf(s, "INVALIDIPv6");
4856 return rc;
4857 }
4858
4859 if (have_c)
4860 print_ip6c_addr(s, buf);
4861 else
4862 print_ip6_addr(s, i, buf);
4863
4864 return rc;
4865}
4866
4867static int print_ipsa_arg(struct trace_seq *s, const char *ptr, char i,
4868 void *data, int size, struct tep_event *event,
4869 struct tep_print_arg *arg)
4870{
4871 char have_c = 0, have_p = 0;
4872 unsigned char *buf;
4873 struct sockaddr_storage *sa;
4874 bool reverse = false;
4875 int rc = 0;
4876 int ret;
4877
4878 /* pISpc */
4879 if (i == 'I') {
4880 if (*ptr == 'p') {
4881 have_p = 1;
4882 ptr++;
4883 rc++;
4884 }
4885 if (*ptr == 'c') {
4886 have_c = 1;
4887 ptr++;
4888 rc++;
4889 }
4890 }
4891 ret = parse_ip4_print_args(event->tep, ptr, &reverse);
4892 ptr += ret;
4893 rc += ret;
4894
4895 if (arg->type == TEP_PRINT_FUNC) {
4896 process_defined_func(s, data, size, event, arg);
4897 return rc;
4898 }
4899
4900 if (arg->type != TEP_PRINT_FIELD) {
4901 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4902 return rc;
4903 }
4904
4905 if (!arg->field.field) {
4906 arg->field.field =
4907 tep_find_any_field(event, arg->field.name);
4908 if (!arg->field.field) {
4909 do_warning("%s: field %s not found",
4910 __func__, arg->field.name);
4911 return rc;
4912 }
4913 }
4914
4915 sa = (struct sockaddr_storage *) (data + arg->field.field->offset);
4916
4917 if (sa->ss_family == AF_INET) {
4918 struct sockaddr_in *sa4 = (struct sockaddr_in *) sa;
4919
4920 if (arg->field.field->size < sizeof(struct sockaddr_in)) {
4921 trace_seq_printf(s, "INVALIDIPv4");
4922 return rc;
4923 }
4924
4925 print_ip4_addr(s, i, reverse, (unsigned char *) &sa4->sin_addr);
4926 if (have_p)
4927 trace_seq_printf(s, ":%d", ntohs(sa4->sin_port));
4928
4929
4930 } else if (sa->ss_family == AF_INET6) {
4931 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *) sa;
4932
4933 if (arg->field.field->size < sizeof(struct sockaddr_in6)) {
4934 trace_seq_printf(s, "INVALIDIPv6");
4935 return rc;
4936 }
4937
4938 if (have_p)
4939 trace_seq_printf(s, "[");
4940
4941 buf = (unsigned char *) &sa6->sin6_addr;
4942 if (have_c)
4943 print_ip6c_addr(s, buf);
4944 else
4945 print_ip6_addr(s, i, buf);
4946
4947 if (have_p)
4948 trace_seq_printf(s, "]:%d", ntohs(sa6->sin6_port));
4949 }
4950
4951 return rc;
4952}
4953
4954static int print_ip_arg(struct trace_seq *s, const char *ptr,
4955 void *data, int size, struct tep_event *event,
4956 struct tep_print_arg *arg)
4957{
4958 char i = *ptr; /* 'i' or 'I' */
4959 int rc = 1;
4960
4961 /* IP version */
4962 ptr++;
4963
4964 switch (*ptr) {
4965 case '4':
4966 rc += print_ipv4_arg(s, ptr + 1, i, data, size, event, arg);
4967 break;
4968 case '6':
4969 rc += print_ipv6_arg(s, ptr + 1, i, data, size, event, arg);
4970 break;
4971 case 'S':
4972 rc += print_ipsa_arg(s, ptr + 1, i, data, size, event, arg);
4973 break;
4974 default:
4975 return 0;
4976 }
4977
4978 return rc;
4979}
4980
4981static const int guid_index[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
4982static const int uuid_index[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4983
4984static int print_uuid_arg(struct trace_seq *s, const char *ptr,
4985 void *data, int size, struct tep_event *event,
4986 struct tep_print_arg *arg)
4987{
4988 const int *index = uuid_index;
4989 char *format = "%02x";
4990 int ret = 0;
4991 char *buf;
4992 int i;
4993
4994 switch (*(ptr + 1)) {
4995 case 'L':
4996 format = "%02X";
4997 /* fall through */
4998 case 'l':
4999 index = guid_index;
5000 ret++;
5001 break;
5002 case 'B':
5003 format = "%02X";
5004 /* fall through */
5005 case 'b':
5006 ret++;
5007 break;
5008 }
5009
5010 if (arg->type == TEP_PRINT_FUNC) {
5011 process_defined_func(s, data, size, event, arg);
5012 return ret;
5013 }
5014
5015 if (arg->type != TEP_PRINT_FIELD) {
5016 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
5017 return ret;
5018 }
5019
5020 if (!arg->field.field) {
5021 arg->field.field =
5022 tep_find_any_field(event, arg->field.name);
5023 if (!arg->field.field) {
5024 do_warning("%s: field %s not found",
5025 __func__, arg->field.name);
5026 return ret;
5027 }
5028 }
5029
5030 if (arg->field.field->size != 16) {
5031 trace_seq_printf(s, "INVALIDUUID");
5032 return ret;
5033 }
5034
5035 buf = data + arg->field.field->offset;
5036
5037 for (i = 0; i < 16; i++) {
5038 trace_seq_printf(s, format, buf[index[i]] & 0xff);
5039 switch (i) {
5040 case 3:
5041 case 5:
5042 case 7:
5043 case 9:
5044 trace_seq_printf(s, "-");
5045 break;
5046 }
5047 }
5048
5049 return ret;
5050}
5051
5052static int print_raw_buff_arg(struct trace_seq *s, const char *ptr,
5053 void *data, int size, struct tep_event *event,
5054 struct tep_print_arg *arg, int print_len)
5055{
5056 int plen = print_len;
5057 char *delim = " ";
5058 int ret = 0;
5059 char *buf;
5060 int i;
5061 unsigned long offset;
5062 int arr_len;
5063
5064 switch (*(ptr + 1)) {
5065 case 'C':
5066 delim = ":";
5067 ret++;
5068 break;
5069 case 'D':
5070 delim = "-";
5071 ret++;
5072 break;
5073 case 'N':
5074 delim = "";
5075 ret++;
5076 break;
5077 }
5078
5079 if (arg->type == TEP_PRINT_FUNC) {
5080 process_defined_func(s, data, size, event, arg);
5081 return ret;
5082 }
5083
5084 if (arg->type != TEP_PRINT_DYNAMIC_ARRAY) {
5085 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
5086 return ret;
5087 }
5088
5089 offset = tep_read_number(event->tep,
5090 data + arg->dynarray.field->offset,
5091 arg->dynarray.field->size);
5092 arr_len = (unsigned long long)(offset >> 16);
5093 buf = data + (offset & 0xffff);
5094
5095 if (arr_len < plen)
5096 plen = arr_len;
5097
5098 if (plen < 1)
5099 return ret;
5100
5101 trace_seq_printf(s, "%02x", buf[0] & 0xff);
5102 for (i = 1; i < plen; i++)
5103 trace_seq_printf(s, "%s%02x", delim, buf[i] & 0xff);
5104
5105 return ret;
5106}
5107
5108static int is_printable_array(char *p, unsigned int len)
5109{
5110 unsigned int i;
5111
5112 for (i = 0; i < len && p[i]; i++)
5113 if (!isprint(p[i]) && !isspace(p[i]))
5114 return 0;
5115 return 1;
5116}
5117
5118void tep_print_field(struct trace_seq *s, void *data,
5119 struct tep_format_field *field)
5120{
5121 unsigned long long val;
5122 unsigned int offset, len, i;
5123 struct tep_handle *tep = field->event->tep;
5124
5125 if (field->flags & TEP_FIELD_IS_ARRAY) {
5126 offset = field->offset;
5127 len = field->size;
5128 if (field->flags & TEP_FIELD_IS_DYNAMIC) {
5129 val = tep_read_number(tep, data + offset, len);
5130 offset = val;
5131 len = offset >> 16;
5132 offset &= 0xffff;
5133 }
5134 if (field->flags & TEP_FIELD_IS_STRING &&
5135 is_printable_array(data + offset, len)) {
5136 trace_seq_printf(s, "%s", (char *)data + offset);
5137 } else {
5138 trace_seq_puts(s, "ARRAY[");
5139 for (i = 0; i < len; i++) {
5140 if (i)
5141 trace_seq_puts(s, ", ");
5142 trace_seq_printf(s, "%02x",
5143 *((unsigned char *)data + offset + i));
5144 }
5145 trace_seq_putc(s, ']');
5146 field->flags &= ~TEP_FIELD_IS_STRING;
5147 }
5148 } else {
5149 val = tep_read_number(tep, data + field->offset,
5150 field->size);
5151 if (field->flags & TEP_FIELD_IS_POINTER) {
5152 trace_seq_printf(s, "0x%llx", val);
5153 } else if (field->flags & TEP_FIELD_IS_SIGNED) {
5154 switch (field->size) {
5155 case 4:
5156 /*
5157 * If field is long then print it in hex.
5158 * A long usually stores pointers.
5159 */
5160 if (field->flags & TEP_FIELD_IS_LONG)
5161 trace_seq_printf(s, "0x%x", (int)val);
5162 else
5163 trace_seq_printf(s, "%d", (int)val);
5164 break;
5165 case 2:
5166 trace_seq_printf(s, "%2d", (short)val);
5167 break;
5168 case 1:
5169 trace_seq_printf(s, "%1d", (char)val);
5170 break;
5171 default:
5172 trace_seq_printf(s, "%lld", val);
5173 }
5174 } else {
5175 if (field->flags & TEP_FIELD_IS_LONG)
5176 trace_seq_printf(s, "0x%llx", val);
5177 else
5178 trace_seq_printf(s, "%llu", val);
5179 }
5180 }
5181}
5182
5183void tep_print_fields(struct trace_seq *s, void *data,
5184 int size __maybe_unused, struct tep_event *event)
5185{
5186 struct tep_format_field *field;
5187
5188 field = event->format.fields;
5189 while (field) {
5190 trace_seq_printf(s, " %s=", field->name);
5191 tep_print_field(s, data, field);
5192 field = field->next;
5193 }
5194}
5195
5196static int print_function(struct trace_seq *s, const char *format,
5197 void *data, int size, struct tep_event *event,
5198 struct tep_print_arg *arg)
5199{
5200 struct func_map *func;
5201 unsigned long long val;
5202
5203 val = eval_num_arg(data, size, event, arg);
5204 func = find_func(event->tep, val);
5205 if (func) {
5206 trace_seq_puts(s, func->func);
5207 if (*format == 'F' || *format == 'S')
5208 trace_seq_printf(s, "+0x%llx", val - func->addr);
5209 } else {
5210 if (event->tep->long_size == 4)
5211 trace_seq_printf(s, "0x%lx", (long)val);
5212 else
5213 trace_seq_printf(s, "0x%llx", (long long)val);
5214 }
5215
5216 return 0;
5217}
5218
5219static int print_arg_pointer(struct trace_seq *s, const char *format, int plen,
5220 void *data, int size,
5221 struct tep_event *event, struct tep_print_arg *arg)
5222{
5223 unsigned long long val;
5224 int ret = 1;
5225
5226 if (arg->type == TEP_PRINT_BSTRING) {
5227 trace_seq_puts(s, arg->string.string);
5228 return 0;
5229 }
5230 while (*format) {
5231 if (*format == 'p') {
5232 format++;
5233 break;
5234 }
5235 format++;
5236 }
5237
5238 switch (*format) {
5239 case 'F':
5240 case 'f':
5241 case 'S':
5242 case 's':
5243 ret += print_function(s, format, data, size, event, arg);
5244 break;
5245 case 'M':
5246 case 'm':
5247 ret += print_mac_arg(s, format, data, size, event, arg);
5248 break;
5249 case 'I':
5250 case 'i':
5251 ret += print_ip_arg(s, format, data, size, event, arg);
5252 break;
5253 case 'U':
5254 ret += print_uuid_arg(s, format, data, size, event, arg);
5255 break;
5256 case 'h':
5257 ret += print_raw_buff_arg(s, format, data, size, event, arg, plen);
5258 break;
5259 default:
5260 ret = 0;
5261 val = eval_num_arg(data, size, event, arg);
5262 trace_seq_printf(s, "%p", (void *)(intptr_t)val);
5263 break;
5264 }
5265
5266 return ret;
5267
5268}
5269
5270static int print_arg_number(struct trace_seq *s, const char *format, int plen,
5271 void *data, int size, int ls,
5272 struct tep_event *event, struct tep_print_arg *arg)
5273{
5274 unsigned long long val;
5275
5276 val = eval_num_arg(data, size, event, arg);
5277
5278 switch (ls) {
5279 case -2:
5280 if (plen >= 0)
5281 trace_seq_printf(s, format, plen, (char)val);
5282 else
5283 trace_seq_printf(s, format, (char)val);
5284 break;
5285 case -1:
5286 if (plen >= 0)
5287 trace_seq_printf(s, format, plen, (short)val);
5288 else
5289 trace_seq_printf(s, format, (short)val);
5290 break;
5291 case 0:
5292 if (plen >= 0)
5293 trace_seq_printf(s, format, plen, (int)val);
5294 else
5295 trace_seq_printf(s, format, (int)val);
5296 break;
5297 case 1:
5298 if (plen >= 0)
5299 trace_seq_printf(s, format, plen, (long)val);
5300 else
5301 trace_seq_printf(s, format, (long)val);
5302 break;
5303 case 2:
5304 if (plen >= 0)
5305 trace_seq_printf(s, format, plen, (long long)val);
5306 else
5307 trace_seq_printf(s, format, (long long)val);
5308 break;
5309 default:
5310 do_warning_event(event, "bad count (%d)", ls);
5311 event->flags |= TEP_EVENT_FL_FAILED;
5312 }
5313 return 0;
5314}
5315
5316
5317static void print_arg_string(struct trace_seq *s, const char *format, int plen,
5318 void *data, int size,
5319 struct tep_event *event, struct tep_print_arg *arg)
5320{
5321 struct trace_seq p;
5322
5323 /* Use helper trace_seq */
5324 trace_seq_init(&p);
5325 print_str_arg(&p, data, size, event,
5326 format, plen, arg);
5327 trace_seq_terminate(&p);
5328 trace_seq_puts(s, p.buffer);
5329 trace_seq_destroy(&p);
5330}
5331
5332static int parse_arg_format_pointer(const char *format)
5333{
5334 int ret = 0;
5335 int index;
5336 int loop;
5337
5338 switch (*format) {
5339 case 'F':
5340 case 'S':
5341 case 'f':
5342 case 's':
5343 ret++;
5344 break;
5345 case 'M':
5346 case 'm':
5347 /* [mM]R , [mM]F */
5348 switch (format[1]) {
5349 case 'R':
5350 case 'F':
5351 ret++;
5352 break;
5353 }
5354 ret++;
5355 break;
5356 case 'I':
5357 case 'i':
5358 index = 2;
5359 loop = 1;
5360 switch (format[1]) {
5361 case 'S':
5362 /*[S][pfs]*/
5363 while (loop) {
5364 switch (format[index]) {
5365 case 'p':
5366 case 'f':
5367 case 's':
5368 ret++;
5369 index++;
5370 break;
5371 default:
5372 loop = 0;
5373 break;
5374 }
5375 }
5376 /* fall through */
5377 case '4':
5378 /* [4S][hnbl] */
5379 switch (format[index]) {
5380 case 'h':
5381 case 'n':
5382 case 'l':
5383 case 'b':
5384 ret++;
5385 index++;
5386 break;
5387 }
5388 if (format[1] == '4') {
5389 ret++;
5390 break;
5391 }
5392 /* fall through */
5393 case '6':
5394 /* [6S]c */
5395 if (format[index] == 'c')
5396 ret++;
5397 ret++;
5398 break;
5399 }
5400 ret++;
5401 break;
5402 case 'U':
5403 switch (format[1]) {
5404 case 'L':
5405 case 'l':
5406 case 'B':
5407 case 'b':
5408 ret++;
5409 break;
5410 }
5411 ret++;
5412 break;
5413 case 'h':
5414 switch (format[1]) {
5415 case 'C':
5416 case 'D':
5417 case 'N':
5418 ret++;
5419 break;
5420 }
5421 ret++;
5422 break;
5423 default:
5424 break;
5425 }
5426
5427 return ret;
5428}
5429
5430static void free_parse_args(struct tep_print_parse *arg)
5431{
5432 struct tep_print_parse *del;
5433
5434 while (arg) {
5435 del = arg;
5436 arg = del->next;
5437 free(del->format);
5438 free(del);
5439 }
5440}
5441
5442static int parse_arg_add(struct tep_print_parse **parse, char *format,
5443 enum tep_print_parse_type type,
5444 struct tep_print_arg *arg,
5445 struct tep_print_arg *len_as_arg,
5446 int ls)
5447{
5448 struct tep_print_parse *parg = NULL;
5449
5450 parg = calloc(1, sizeof(*parg));
5451 if (!parg)
5452 goto error;
5453 parg->format = strdup(format);
5454 if (!parg->format)
5455 goto error;
5456 parg->type = type;
5457 parg->arg = arg;
5458 parg->len_as_arg = len_as_arg;
5459 parg->ls = ls;
5460 *parse = parg;
5461 return 0;
5462error:
5463 if (parg) {
5464 free(parg->format);
5465 free(parg);
5466 }
5467 return -1;
5468}
5469
5470static int parse_arg_format(struct tep_print_parse **parse,
5471 struct tep_event *event,
5472 const char *format, struct tep_print_arg **arg)
5473{
5474 struct tep_print_arg *len_arg = NULL;
5475 char print_format[32];
5476 const char *start = format;
5477 int ret = 0;
5478 int ls = 0;
5479 int res;
5480 int len;
5481
5482 format++;
5483 ret++;
5484 for (; *format; format++) {
5485 switch (*format) {
5486 case '#':
5487 /* FIXME: need to handle properly */
5488 break;
5489 case 'h':
5490 ls--;
5491 break;
5492 case 'l':
5493 ls++;
5494 break;
5495 case 'L':
5496 ls = 2;
5497 break;
5498 case '.':
5499 case 'z':
5500 case 'Z':
5501 case '0' ... '9':
5502 case '-':
5503 break;
5504 case '*':
5505 /* The argument is the length. */
5506 if (!*arg) {
5507 do_warning_event(event, "no argument match");
5508 event->flags |= TEP_EVENT_FL_FAILED;
5509 goto out_failed;
5510 }
5511 if (len_arg) {
5512 do_warning_event(event, "argument already matched");
5513 event->flags |= TEP_EVENT_FL_FAILED;
5514 goto out_failed;
5515 }
5516 len_arg = *arg;
5517 *arg = (*arg)->next;
5518 break;
5519 case 'p':
5520 if (!*arg) {
5521 do_warning_event(event, "no argument match");
5522 event->flags |= TEP_EVENT_FL_FAILED;
5523 goto out_failed;
5524 }
5525 res = parse_arg_format_pointer(format + 1);
5526 if (res > 0) {
5527 format += res;
5528 ret += res;
5529 }
5530 len = ((unsigned long)format + 1) -
5531 (unsigned long)start;
5532 /* should never happen */
5533 if (len > 31) {
5534 do_warning_event(event, "bad format!");
5535 event->flags |= TEP_EVENT_FL_FAILED;
5536 len = 31;
5537 }
5538 memcpy(print_format, start, len);
5539 print_format[len] = 0;
5540
5541 parse_arg_add(parse, print_format,
5542 PRINT_FMT_ARG_POINTER, *arg, len_arg, ls);
5543 *arg = (*arg)->next;
5544 ret++;
5545 return ret;
5546 case 'd':
5547 case 'u':
5548 case 'i':
5549 case 'x':
5550 case 'X':
5551 case 'o':
5552 if (!*arg) {
5553 do_warning_event(event, "no argument match");
5554 event->flags |= TEP_EVENT_FL_FAILED;
5555 goto out_failed;
5556 }
5557
5558 len = ((unsigned long)format + 1) -
5559 (unsigned long)start;
5560
5561 /* should never happen */
5562 if (len > 30) {
5563 do_warning_event(event, "bad format!");
5564 event->flags |= TEP_EVENT_FL_FAILED;
5565 len = 31;
5566 }
5567 memcpy(print_format, start, len);
5568 print_format[len] = 0;
5569
5570 if (event->tep->long_size == 8 && ls == 1 &&
5571 sizeof(long) != 8) {
5572 char *p;
5573
5574 /* make %l into %ll */
5575 if (ls == 1 && (p = strchr(print_format, 'l')))
5576 memmove(p+1, p, strlen(p)+1);
5577 ls = 2;
5578 }
5579 if (ls < -2 || ls > 2) {
5580 do_warning_event(event, "bad count (%d)", ls);
5581 event->flags |= TEP_EVENT_FL_FAILED;
5582 }
5583 parse_arg_add(parse, print_format,
5584 PRINT_FMT_ARG_DIGIT, *arg, len_arg, ls);
5585 *arg = (*arg)->next;
5586 ret++;
5587 return ret;
5588 case 's':
5589 if (!*arg) {
5590 do_warning_event(event, "no matching argument");
5591 event->flags |= TEP_EVENT_FL_FAILED;
5592 goto out_failed;
5593 }
5594
5595 len = ((unsigned long)format + 1) -
5596 (unsigned long)start;
5597
5598 /* should never happen */
5599 if (len > 31) {
5600 do_warning_event(event, "bad format!");
5601 event->flags |= TEP_EVENT_FL_FAILED;
5602 len = 31;
5603 }
5604
5605 memcpy(print_format, start, len);
5606 print_format[len] = 0;
5607
5608 parse_arg_add(parse, print_format,
5609 PRINT_FMT_ARG_STRING, *arg, len_arg, 0);
5610 *arg = (*arg)->next;
5611 ret++;
5612 return ret;
5613 default:
5614 snprintf(print_format, 32, ">%c<", *format);
5615 parse_arg_add(parse, print_format,
5616 PRINT_FMT_STRING, NULL, NULL, 0);
5617 ret++;
5618 return ret;
5619 }
5620 ret++;
5621 }
5622
5623out_failed:
5624 return ret;
5625
5626}
5627
5628static int parse_arg_string(struct tep_print_parse **parse, const char *format)
5629{
5630 struct trace_seq s;
5631 int ret = 0;
5632
5633 trace_seq_init(&s);
5634 for (; *format; format++) {
5635 if (*format == '\\') {
5636 format++;
5637 ret++;
5638 switch (*format) {
5639 case 'n':
5640 trace_seq_putc(&s, '\n');
5641 break;
5642 case 't':
5643 trace_seq_putc(&s, '\t');
5644 break;
5645 case 'r':
5646 trace_seq_putc(&s, '\r');
5647 break;
5648 case '\\':
5649 trace_seq_putc(&s, '\\');
5650 break;
5651 default:
5652 trace_seq_putc(&s, *format);
5653 break;
5654 }
5655 } else if (*format == '%') {
5656 if (*(format + 1) == '%') {
5657 trace_seq_putc(&s, '%');
5658 format++;
5659 ret++;
5660 } else
5661 break;
5662 } else
5663 trace_seq_putc(&s, *format);
5664
5665 ret++;
5666 }
5667 trace_seq_terminate(&s);
5668 parse_arg_add(parse, s.buffer, PRINT_FMT_STRING, NULL, NULL, 0);
5669 trace_seq_destroy(&s);
5670
5671 return ret;
5672}
5673
5674static struct tep_print_parse *
5675parse_args(struct tep_event *event, const char *format, struct tep_print_arg *arg)
5676{
5677 struct tep_print_parse *parse_ret = NULL;
5678 struct tep_print_parse **parse = NULL;
5679 int ret;
5680 int len;
5681
5682 len = strlen(format);
5683 while (*format) {
5684 if (!parse_ret)
5685 parse = &parse_ret;
5686 if (*format == '%' && *(format + 1) != '%')
5687 ret = parse_arg_format(parse, event, format, &arg);
5688 else
5689 ret = parse_arg_string(parse, format);
5690 if (*parse)
5691 parse = &((*parse)->next);
5692
5693 len -= ret;
5694 if (len > 0)
5695 format += ret;
5696 else
5697 break;
5698 }
5699 return parse_ret;
5700}
5701
5702static void print_event_cache(struct tep_print_parse *parse, struct trace_seq *s,
5703 void *data, int size, struct tep_event *event)
5704{
5705 int len_arg;
5706
5707 while (parse) {
5708 if (parse->len_as_arg)
5709 len_arg = eval_num_arg(data, size, event, parse->len_as_arg);
5710 switch (parse->type) {
5711 case PRINT_FMT_ARG_DIGIT:
5712 print_arg_number(s, parse->format,
5713 parse->len_as_arg ? len_arg : -1, data,
5714 size, parse->ls, event, parse->arg);
5715 break;
5716 case PRINT_FMT_ARG_POINTER:
5717 print_arg_pointer(s, parse->format,
5718 parse->len_as_arg ? len_arg : 1,
5719 data, size, event, parse->arg);
5720 break;
5721 case PRINT_FMT_ARG_STRING:
5722 print_arg_string(s, parse->format,
5723 parse->len_as_arg ? len_arg : -1,
5724 data, size, event, parse->arg);
5725 break;
5726 case PRINT_FMT_STRING:
5727 default:
5728 trace_seq_printf(s, "%s", parse->format);
5729 break;
5730 }
5731 parse = parse->next;
5732 }
5733}
5734
5735static void pretty_print(struct trace_seq *s, void *data, int size, struct tep_event *event)
5736{
5737 struct tep_print_parse *parse = event->print_fmt.print_cache;
5738 struct tep_print_arg *args = NULL;
5739 char *bprint_fmt = NULL;
5740
5741 if (event->flags & TEP_EVENT_FL_FAILED) {
5742 trace_seq_printf(s, "[FAILED TO PARSE]");
5743 tep_print_fields(s, data, size, event);
5744 return;
5745 }
5746
5747 if (event->flags & TEP_EVENT_FL_ISBPRINT) {
5748 bprint_fmt = get_bprint_format(data, size, event);
5749 args = make_bprint_args(bprint_fmt, data, size, event);
5750 parse = parse_args(event, bprint_fmt, args);
5751 }
5752
5753 print_event_cache(parse, s, data, size, event);
5754
5755 if (event->flags & TEP_EVENT_FL_ISBPRINT) {
5756 free_parse_args(parse);
5757 free_args(args);
5758 free(bprint_fmt);
5759 }
5760}
5761
5762/*
5763 * This parses out the Latency format (interrupts disabled,
5764 * need rescheduling, in hard/soft interrupt, preempt count
5765 * and lock depth) and places it into the trace_seq.
5766 */
5767static void data_latency_format(struct tep_handle *tep, struct trace_seq *s,
5768 char *format, struct tep_record *record)
5769{
5770 static int check_lock_depth = 1;
5771 static int check_migrate_disable = 1;
5772 static int lock_depth_exists;
5773 static int migrate_disable_exists;
5774 unsigned int lat_flags;
5775 struct trace_seq sq;
5776 unsigned int pc;
5777 int lock_depth = 0;
5778 int migrate_disable = 0;
5779 int hardirq;
5780 int softirq;
5781 void *data = record->data;
5782
5783 trace_seq_init(&sq);
5784 lat_flags = parse_common_flags(tep, data);
5785 pc = parse_common_pc(tep, data);
5786 /* lock_depth may not always exist */
5787 if (lock_depth_exists)
5788 lock_depth = parse_common_lock_depth(tep, data);
5789 else if (check_lock_depth) {
5790 lock_depth = parse_common_lock_depth(tep, data);
5791 if (lock_depth < 0)
5792 check_lock_depth = 0;
5793 else
5794 lock_depth_exists = 1;
5795 }
5796
5797 /* migrate_disable may not always exist */
5798 if (migrate_disable_exists)
5799 migrate_disable = parse_common_migrate_disable(tep, data);
5800 else if (check_migrate_disable) {
5801 migrate_disable = parse_common_migrate_disable(tep, data);
5802 if (migrate_disable < 0)
5803 check_migrate_disable = 0;
5804 else
5805 migrate_disable_exists = 1;
5806 }
5807
5808 hardirq = lat_flags & TRACE_FLAG_HARDIRQ;
5809 softirq = lat_flags & TRACE_FLAG_SOFTIRQ;
5810
5811 trace_seq_printf(&sq, "%c%c%c",
5812 (lat_flags & TRACE_FLAG_IRQS_OFF) ? 'd' :
5813 (lat_flags & TRACE_FLAG_IRQS_NOSUPPORT) ?
5814 'X' : '.',
5815 (lat_flags & TRACE_FLAG_NEED_RESCHED) ?
5816 'N' : '.',
5817 (hardirq && softirq) ? 'H' :
5818 hardirq ? 'h' : softirq ? 's' : '.');
5819
5820 if (pc)
5821 trace_seq_printf(&sq, "%x", pc);
5822 else
5823 trace_seq_printf(&sq, ".");
5824
5825 if (migrate_disable_exists) {
5826 if (migrate_disable < 0)
5827 trace_seq_printf(&sq, ".");
5828 else
5829 trace_seq_printf(&sq, "%d", migrate_disable);
5830 }
5831
5832 if (lock_depth_exists) {
5833 if (lock_depth < 0)
5834 trace_seq_printf(&sq, ".");
5835 else
5836 trace_seq_printf(&sq, "%d", lock_depth);
5837 }
5838
5839 if (sq.state == TRACE_SEQ__MEM_ALLOC_FAILED) {
5840 s->state = TRACE_SEQ__MEM_ALLOC_FAILED;
5841 return;
5842 }
5843
5844 trace_seq_terminate(&sq);
5845 trace_seq_puts(s, sq.buffer);
5846 trace_seq_destroy(&sq);
5847 trace_seq_terminate(s);
5848}
5849
5850/**
5851 * tep_data_type - parse out the given event type
5852 * @tep: a handle to the trace event parser context
5853 * @rec: the record to read from
5854 *
5855 * This returns the event id from the @rec.
5856 */
5857int tep_data_type(struct tep_handle *tep, struct tep_record *rec)
5858{
5859 return trace_parse_common_type(tep, rec->data);
5860}
5861
5862/**
5863 * tep_data_pid - parse the PID from record
5864 * @tep: a handle to the trace event parser context
5865 * @rec: the record to parse
5866 *
5867 * This returns the PID from a record.
5868 */
5869int tep_data_pid(struct tep_handle *tep, struct tep_record *rec)
5870{
5871 return parse_common_pid(tep, rec->data);
5872}
5873
5874/**
5875 * tep_data_preempt_count - parse the preempt count from the record
5876 * @tep: a handle to the trace event parser context
5877 * @rec: the record to parse
5878 *
5879 * This returns the preempt count from a record.
5880 */
5881int tep_data_preempt_count(struct tep_handle *tep, struct tep_record *rec)
5882{
5883 return parse_common_pc(tep, rec->data);
5884}
5885
5886/**
5887 * tep_data_flags - parse the latency flags from the record
5888 * @tep: a handle to the trace event parser context
5889 * @rec: the record to parse
5890 *
5891 * This returns the latency flags from a record.
5892 *
5893 * Use trace_flag_type enum for the flags (see event-parse.h).
5894 */
5895int tep_data_flags(struct tep_handle *tep, struct tep_record *rec)
5896{
5897 return parse_common_flags(tep, rec->data);
5898}
5899
5900/**
5901 * tep_data_comm_from_pid - return the command line from PID
5902 * @tep: a handle to the trace event parser context
5903 * @pid: the PID of the task to search for
5904 *
5905 * This returns a pointer to the command line that has the given
5906 * @pid.
5907 */
5908const char *tep_data_comm_from_pid(struct tep_handle *tep, int pid)
5909{
5910 const char *comm;
5911
5912 comm = find_cmdline(tep, pid);
5913 return comm;
5914}
5915
5916static struct tep_cmdline *
5917pid_from_cmdlist(struct tep_handle *tep, const char *comm, struct tep_cmdline *next)
5918{
5919 struct cmdline_list *cmdlist = (struct cmdline_list *)next;
5920
5921 if (cmdlist)
5922 cmdlist = cmdlist->next;
5923 else
5924 cmdlist = tep->cmdlist;
5925
5926 while (cmdlist && strcmp(cmdlist->comm, comm) != 0)
5927 cmdlist = cmdlist->next;
5928
5929 return (struct tep_cmdline *)cmdlist;
5930}
5931
5932/**
5933 * tep_data_pid_from_comm - return the pid from a given comm
5934 * @tep: a handle to the trace event parser context
5935 * @comm: the cmdline to find the pid from
5936 * @next: the cmdline structure to find the next comm
5937 *
5938 * This returns the cmdline structure that holds a pid for a given
5939 * comm, or NULL if none found. As there may be more than one pid for
5940 * a given comm, the result of this call can be passed back into
5941 * a recurring call in the @next parameter, and then it will find the
5942 * next pid.
5943 * Also, it does a linear search, so it may be slow.
5944 */
5945struct tep_cmdline *tep_data_pid_from_comm(struct tep_handle *tep, const char *comm,
5946 struct tep_cmdline *next)
5947{
5948 struct tep_cmdline *cmdline;
5949
5950 /*
5951 * If the cmdlines have not been converted yet, then use
5952 * the list.
5953 */
5954 if (!tep->cmdlines)
5955 return pid_from_cmdlist(tep, comm, next);
5956
5957 if (next) {
5958 /*
5959 * The next pointer could have been still from
5960 * a previous call before cmdlines were created
5961 */
5962 if (next < tep->cmdlines ||
5963 next >= tep->cmdlines + tep->cmdline_count)
5964 next = NULL;
5965 else
5966 cmdline = next++;
5967 }
5968
5969 if (!next)
5970 cmdline = tep->cmdlines;
5971
5972 while (cmdline < tep->cmdlines + tep->cmdline_count) {
5973 if (strcmp(cmdline->comm, comm) == 0)
5974 return cmdline;
5975 cmdline++;
5976 }
5977 return NULL;
5978}
5979
5980/**
5981 * tep_cmdline_pid - return the pid associated to a given cmdline
5982 * @tep: a handle to the trace event parser context
5983 * @cmdline: The cmdline structure to get the pid from
5984 *
5985 * Returns the pid for a give cmdline. If @cmdline is NULL, then
5986 * -1 is returned.
5987 */
5988int tep_cmdline_pid(struct tep_handle *tep, struct tep_cmdline *cmdline)
5989{
5990 struct cmdline_list *cmdlist = (struct cmdline_list *)cmdline;
5991
5992 if (!cmdline)
5993 return -1;
5994
5995 /*
5996 * If cmdlines have not been created yet, or cmdline is
5997 * not part of the array, then treat it as a cmdlist instead.
5998 */
5999 if (!tep->cmdlines ||
6000 cmdline < tep->cmdlines ||
6001 cmdline >= tep->cmdlines + tep->cmdline_count)
6002 return cmdlist->pid;
6003
6004 return cmdline->pid;
6005}
6006
6007/*
6008 * This parses the raw @data using the given @event information and
6009 * writes the print format into the trace_seq.
6010 */
6011static void print_event_info(struct trace_seq *s, char *format, bool raw,
6012 struct tep_event *event, struct tep_record *record)
6013{
6014 int print_pretty = 1;
6015
6016 if (raw || (event->flags & TEP_EVENT_FL_PRINTRAW))
6017 tep_print_fields(s, record->data, record->size, event);
6018 else {
6019
6020 if (event->handler && !(event->flags & TEP_EVENT_FL_NOHANDLE))
6021 print_pretty = event->handler(s, record, event,
6022 event->context);
6023
6024 if (print_pretty)
6025 pretty_print(s, record->data, record->size, event);
6026 }
6027
6028 trace_seq_terminate(s);
6029}
6030
6031/**
6032 * tep_find_event_by_record - return the event from a given record
6033 * @tep: a handle to the trace event parser context
6034 * @record: The record to get the event from
6035 *
6036 * Returns the associated event for a given record, or NULL if non is
6037 * is found.
6038 */
6039struct tep_event *
6040tep_find_event_by_record(struct tep_handle *tep, struct tep_record *record)
6041{
6042 int type;
6043
6044 if (record->size < 0) {
6045 do_warning("ug! negative record size %d", record->size);
6046 return NULL;
6047 }
6048
6049 type = trace_parse_common_type(tep, record->data);
6050
6051 return tep_find_event(tep, type);
6052}
6053
6054/*
6055 * Writes the timestamp of the record into @s. Time divisor and precision can be
6056 * specified as part of printf @format string. Example:
6057 * "%3.1000d" - divide the time by 1000 and print the first 3 digits
6058 * before the dot. Thus, the timestamp "123456000" will be printed as
6059 * "123.456"
6060 */
6061static void print_event_time(struct tep_handle *tep, struct trace_seq *s,
6062 char *format, struct tep_event *event,
6063 struct tep_record *record)
6064{
6065 unsigned long long time;
6066 char *divstr;
6067 int prec = 0, pr;
6068 int div = 0;
6069 int p10 = 1;
6070
6071 if (isdigit(*(format + 1)))
6072 prec = atoi(format + 1);
6073 divstr = strchr(format, '.');
6074 if (divstr && isdigit(*(divstr + 1)))
6075 div = atoi(divstr + 1);
6076 time = record->ts;
6077 if (div) {
6078 time += div / 2;
6079 time /= div;
6080 }
6081 pr = prec;
6082 while (pr--)
6083 p10 *= 10;
6084
6085 if (p10 > 1 && p10 < time)
6086 trace_seq_printf(s, "%5llu.%0*llu", time / p10, prec, time % p10);
6087 else
6088 trace_seq_printf(s, "%12llu", time);
6089}
6090
6091struct print_event_type {
6092 enum {
6093 EVENT_TYPE_INT = 1,
6094 EVENT_TYPE_STRING,
6095 EVENT_TYPE_UNKNOWN,
6096 } type;
6097 char format[32];
6098};
6099
6100static void print_string(struct tep_handle *tep, struct trace_seq *s,
6101 struct tep_record *record, struct tep_event *event,
6102 const char *arg, struct print_event_type *type)
6103{
6104 const char *comm;
6105 int pid;
6106
6107 if (strncmp(arg, TEP_PRINT_LATENCY, strlen(TEP_PRINT_LATENCY)) == 0) {
6108 data_latency_format(tep, s, type->format, record);
6109 } else if (strncmp(arg, TEP_PRINT_COMM, strlen(TEP_PRINT_COMM)) == 0) {
6110 pid = parse_common_pid(tep, record->data);
6111 comm = find_cmdline(tep, pid);
6112 trace_seq_printf(s, type->format, comm);
6113 } else if (strncmp(arg, TEP_PRINT_INFO_RAW, strlen(TEP_PRINT_INFO_RAW)) == 0) {
6114 print_event_info(s, type->format, true, event, record);
6115 } else if (strncmp(arg, TEP_PRINT_INFO, strlen(TEP_PRINT_INFO)) == 0) {
6116 print_event_info(s, type->format, false, event, record);
6117 } else if (strncmp(arg, TEP_PRINT_NAME, strlen(TEP_PRINT_NAME)) == 0) {
6118 trace_seq_printf(s, type->format, event->name);
6119 } else {
6120 trace_seq_printf(s, "[UNKNOWN TEP TYPE %s]", arg);
6121 }
6122
6123}
6124
6125static void print_int(struct tep_handle *tep, struct trace_seq *s,
6126 struct tep_record *record, struct tep_event *event,
6127 int arg, struct print_event_type *type)
6128{
6129 int param;
6130
6131 switch (arg) {
6132 case TEP_PRINT_CPU:
6133 param = record->cpu;
6134 break;
6135 case TEP_PRINT_PID:
6136 param = parse_common_pid(tep, record->data);
6137 break;
6138 case TEP_PRINT_TIME:
6139 return print_event_time(tep, s, type->format, event, record);
6140 default:
6141 return;
6142 }
6143 trace_seq_printf(s, type->format, param);
6144}
6145
6146static int tep_print_event_param_type(char *format,
6147 struct print_event_type *type)
6148{
6149 char *str = format + 1;
6150 int i = 1;
6151
6152 type->type = EVENT_TYPE_UNKNOWN;
6153 while (*str) {
6154 switch (*str) {
6155 case 'd':
6156 case 'u':
6157 case 'i':
6158 case 'x':
6159 case 'X':
6160 case 'o':
6161 type->type = EVENT_TYPE_INT;
6162 break;
6163 case 's':
6164 type->type = EVENT_TYPE_STRING;
6165 break;
6166 }
6167 str++;
6168 i++;
6169 if (type->type != EVENT_TYPE_UNKNOWN)
6170 break;
6171 }
6172 memset(type->format, 0, 32);
6173 memcpy(type->format, format, i < 32 ? i : 31);
6174 return i;
6175}
6176
6177/**
6178 * tep_print_event - Write various event information
6179 * @tep: a handle to the trace event parser context
6180 * @s: the trace_seq to write to
6181 * @record: The record to get the event from
6182 * @format: a printf format string. Supported event fileds:
6183 * TEP_PRINT_PID, "%d" - event PID
6184 * TEP_PRINT_CPU, "%d" - event CPU
6185 * TEP_PRINT_COMM, "%s" - event command string
6186 * TEP_PRINT_NAME, "%s" - event name
6187 * TEP_PRINT_LATENCY, "%s" - event latency
6188 * TEP_PRINT_TIME, %d - event time stamp. A divisor and precision
6189 * can be specified as part of this format string:
6190 * "%precision.divisord". Example:
6191 * "%3.1000d" - divide the time by 1000 and print the first
6192 * 3 digits before the dot. Thus, the time stamp
6193 * "123456000" will be printed as "123.456"
6194 * TEP_PRINT_INFO, "%s" - event information. If any width is specified in
6195 * the format string, the event information will be printed
6196 * in raw format.
6197 * Writes the specified event information into @s.
6198 */
6199void tep_print_event(struct tep_handle *tep, struct trace_seq *s,
6200 struct tep_record *record, const char *fmt, ...)
6201{
6202 struct print_event_type type;
6203 char *format = strdup(fmt);
6204 char *current = format;
6205 char *str = format;
6206 int offset;
6207 va_list args;
6208 struct tep_event *event;
6209
6210 if (!format)
6211 return;
6212
6213 event = tep_find_event_by_record(tep, record);
6214 va_start(args, fmt);
6215 while (*current) {
6216 current = strchr(str, '%');
6217 if (!current) {
6218 trace_seq_puts(s, str);
6219 break;
6220 }
6221 memset(&type, 0, sizeof(type));
6222 offset = tep_print_event_param_type(current, &type);
6223 *current = '\0';
6224 trace_seq_puts(s, str);
6225 current += offset;
6226 switch (type.type) {
6227 case EVENT_TYPE_STRING:
6228 print_string(tep, s, record, event,
6229 va_arg(args, char*), &type);
6230 break;
6231 case EVENT_TYPE_INT:
6232 print_int(tep, s, record, event,
6233 va_arg(args, int), &type);
6234 break;
6235 case EVENT_TYPE_UNKNOWN:
6236 default:
6237 trace_seq_printf(s, "[UNKNOWN TYPE]");
6238 break;
6239 }
6240 str = current;
6241
6242 }
6243 va_end(args);
6244 free(format);
6245}
6246
6247static int events_id_cmp(const void *a, const void *b)
6248{
6249 struct tep_event * const * ea = a;
6250 struct tep_event * const * eb = b;
6251
6252 if ((*ea)->id < (*eb)->id)
6253 return -1;
6254
6255 if ((*ea)->id > (*eb)->id)
6256 return 1;
6257
6258 return 0;
6259}
6260
6261static int events_name_cmp(const void *a, const void *b)
6262{
6263 struct tep_event * const * ea = a;
6264 struct tep_event * const * eb = b;
6265 int res;
6266
6267 res = strcmp((*ea)->name, (*eb)->name);
6268 if (res)
6269 return res;
6270
6271 res = strcmp((*ea)->system, (*eb)->system);
6272 if (res)
6273 return res;
6274
6275 return events_id_cmp(a, b);
6276}
6277
6278static int events_system_cmp(const void *a, const void *b)
6279{
6280 struct tep_event * const * ea = a;
6281 struct tep_event * const * eb = b;
6282 int res;
6283
6284 res = strcmp((*ea)->system, (*eb)->system);
6285 if (res)
6286 return res;
6287
6288 res = strcmp((*ea)->name, (*eb)->name);
6289 if (res)
6290 return res;
6291
6292 return events_id_cmp(a, b);
6293}
6294
6295static struct tep_event **list_events_copy(struct tep_handle *tep)
6296{
6297 struct tep_event **events;
6298
6299 if (!tep)
6300 return NULL;
6301
6302 events = malloc(sizeof(*events) * (tep->nr_events + 1));
6303 if (!events)
6304 return NULL;
6305
6306 memcpy(events, tep->events, sizeof(*events) * tep->nr_events);
6307 events[tep->nr_events] = NULL;
6308 return events;
6309}
6310
6311static void list_events_sort(struct tep_event **events, int nr_events,
6312 enum tep_event_sort_type sort_type)
6313{
6314 int (*sort)(const void *a, const void *b);
6315
6316 switch (sort_type) {
6317 case TEP_EVENT_SORT_ID:
6318 sort = events_id_cmp;
6319 break;
6320 case TEP_EVENT_SORT_NAME:
6321 sort = events_name_cmp;
6322 break;
6323 case TEP_EVENT_SORT_SYSTEM:
6324 sort = events_system_cmp;
6325 break;
6326 default:
6327 sort = NULL;
6328 }
6329
6330 if (sort)
6331 qsort(events, nr_events, sizeof(*events), sort);
6332}
6333
6334/**
6335 * tep_list_events - Get events, sorted by given criteria.
6336 * @tep: a handle to the tep context
6337 * @sort_type: desired sort order of the events in the array
6338 *
6339 * Returns an array of pointers to all events, sorted by the given
6340 * @sort_type criteria. The last element of the array is NULL. The returned
6341 * memory must not be freed, it is managed by the library.
6342 * The function is not thread safe.
6343 */
6344struct tep_event **tep_list_events(struct tep_handle *tep,
6345 enum tep_event_sort_type sort_type)
6346{
6347 struct tep_event **events;
6348
6349 if (!tep)
6350 return NULL;
6351
6352 events = tep->sort_events;
6353 if (events && tep->last_type == sort_type)
6354 return events;
6355
6356 if (!events) {
6357 events = list_events_copy(tep);
6358 if (!events)
6359 return NULL;
6360
6361 tep->sort_events = events;
6362
6363 /* the internal events are sorted by id */
6364 if (sort_type == TEP_EVENT_SORT_ID) {
6365 tep->last_type = sort_type;
6366 return events;
6367 }
6368 }
6369
6370 list_events_sort(events, tep->nr_events, sort_type);
6371 tep->last_type = sort_type;
6372
6373 return events;
6374}
6375
6376
6377/**
6378 * tep_list_events_copy - Thread safe version of tep_list_events()
6379 * @tep: a handle to the tep context
6380 * @sort_type: desired sort order of the events in the array
6381 *
6382 * Returns an array of pointers to all events, sorted by the given
6383 * @sort_type criteria. The last element of the array is NULL. The returned
6384 * array is newly allocated inside the function and must be freed by the caller
6385 */
6386struct tep_event **tep_list_events_copy(struct tep_handle *tep,
6387 enum tep_event_sort_type sort_type)
6388{
6389 struct tep_event **events;
6390
6391 if (!tep)
6392 return NULL;
6393
6394 events = list_events_copy(tep);
6395 if (!events)
6396 return NULL;
6397
6398 /* the internal events are sorted by id */
6399 if (sort_type == TEP_EVENT_SORT_ID)
6400 return events;
6401
6402 list_events_sort(events, tep->nr_events, sort_type);
6403
6404 return events;
6405}
6406
6407static struct tep_format_field **
6408get_event_fields(const char *type, const char *name,
6409 int count, struct tep_format_field *list)
6410{
6411 struct tep_format_field **fields;
6412 struct tep_format_field *field;
6413 int i = 0;
6414
6415 fields = malloc(sizeof(*fields) * (count + 1));
6416 if (!fields)
6417 return NULL;
6418
6419 for (field = list; field; field = field->next) {
6420 fields[i++] = field;
6421 if (i == count + 1) {
6422 do_warning("event %s has more %s fields than specified",
6423 name, type);
6424 i--;
6425 break;
6426 }
6427 }
6428
6429 if (i != count)
6430 do_warning("event %s has less %s fields than specified",
6431 name, type);
6432
6433 fields[i] = NULL;
6434
6435 return fields;
6436}
6437
6438/**
6439 * tep_event_common_fields - return a list of common fields for an event
6440 * @event: the event to return the common fields of.
6441 *
6442 * Returns an allocated array of fields. The last item in the array is NULL.
6443 * The array must be freed with free().
6444 */
6445struct tep_format_field **tep_event_common_fields(struct tep_event *event)
6446{
6447 return get_event_fields("common", event->name,
6448 event->format.nr_common,
6449 event->format.common_fields);
6450}
6451
6452/**
6453 * tep_event_fields - return a list of event specific fields for an event
6454 * @event: the event to return the fields of.
6455 *
6456 * Returns an allocated array of fields. The last item in the array is NULL.
6457 * The array must be freed with free().
6458 */
6459struct tep_format_field **tep_event_fields(struct tep_event *event)
6460{
6461 return get_event_fields("event", event->name,
6462 event->format.nr_fields,
6463 event->format.fields);
6464}
6465
6466static void print_fields(struct trace_seq *s, struct tep_print_flag_sym *field)
6467{
6468 trace_seq_printf(s, "{ %s, %s }", field->value, field->str);
6469 if (field->next) {
6470 trace_seq_puts(s, ", ");
6471 print_fields(s, field->next);
6472 }
6473}
6474
6475/* for debugging */
6476static void print_args(struct tep_print_arg *args)
6477{
6478 int print_paren = 1;
6479 struct trace_seq s;
6480
6481 switch (args->type) {
6482 case TEP_PRINT_NULL:
6483 printf("null");
6484 break;
6485 case TEP_PRINT_ATOM:
6486 printf("%s", args->atom.atom);
6487 break;
6488 case TEP_PRINT_FIELD:
6489 printf("REC->%s", args->field.name);
6490 break;
6491 case TEP_PRINT_FLAGS:
6492 printf("__print_flags(");
6493 print_args(args->flags.field);
6494 printf(", %s, ", args->flags.delim);
6495 trace_seq_init(&s);
6496 print_fields(&s, args->flags.flags);
6497 trace_seq_do_printf(&s);
6498 trace_seq_destroy(&s);
6499 printf(")");
6500 break;
6501 case TEP_PRINT_SYMBOL:
6502 printf("__print_symbolic(");
6503 print_args(args->symbol.field);
6504 printf(", ");
6505 trace_seq_init(&s);
6506 print_fields(&s, args->symbol.symbols);
6507 trace_seq_do_printf(&s);
6508 trace_seq_destroy(&s);
6509 printf(")");
6510 break;
6511 case TEP_PRINT_HEX:
6512 printf("__print_hex(");
6513 print_args(args->hex.field);
6514 printf(", ");
6515 print_args(args->hex.size);
6516 printf(")");
6517 break;
6518 case TEP_PRINT_HEX_STR:
6519 printf("__print_hex_str(");
6520 print_args(args->hex.field);
6521 printf(", ");
6522 print_args(args->hex.size);
6523 printf(")");
6524 break;
6525 case TEP_PRINT_INT_ARRAY:
6526 printf("__print_array(");
6527 print_args(args->int_array.field);
6528 printf(", ");
6529 print_args(args->int_array.count);
6530 printf(", ");
6531 print_args(args->int_array.el_size);
6532 printf(")");
6533 break;
6534 case TEP_PRINT_STRING:
6535 case TEP_PRINT_BSTRING:
6536 printf("__get_str(%s)", args->string.string);
6537 break;
6538 case TEP_PRINT_BITMASK:
6539 printf("__get_bitmask(%s)", args->bitmask.bitmask);
6540 break;
6541 case TEP_PRINT_TYPE:
6542 printf("(%s)", args->typecast.type);
6543 print_args(args->typecast.item);
6544 break;
6545 case TEP_PRINT_OP:
6546 if (strcmp(args->op.op, ":") == 0)
6547 print_paren = 0;
6548 if (print_paren)
6549 printf("(");
6550 print_args(args->op.left);
6551 printf(" %s ", args->op.op);
6552 print_args(args->op.right);
6553 if (print_paren)
6554 printf(")");
6555 break;
6556 default:
6557 /* we should warn... */
6558 return;
6559 }
6560 if (args->next) {
6561 printf("\n");
6562 print_args(args->next);
6563 }
6564}
6565
6566static void parse_header_field(const char *field,
6567 int *offset, int *size, int mandatory)
6568{
6569 unsigned long long save_input_buf_ptr;
6570 unsigned long long save_input_buf_siz;
6571 char *token;
6572 int type;
6573
6574 save_input_buf_ptr = input_buf_ptr;
6575 save_input_buf_siz = input_buf_siz;
6576
6577 if (read_expected(TEP_EVENT_ITEM, "field") < 0)
6578 return;
6579 if (read_expected(TEP_EVENT_OP, ":") < 0)
6580 return;
6581
6582 /* type */
6583 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
6584 goto fail;
6585 free_token(token);
6586
6587 /*
6588 * If this is not a mandatory field, then test it first.
6589 */
6590 if (mandatory) {
6591 if (read_expected(TEP_EVENT_ITEM, field) < 0)
6592 return;
6593 } else {
6594 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
6595 goto fail;
6596 if (strcmp(token, field) != 0)
6597 goto discard;
6598 free_token(token);
6599 }
6600
6601 if (read_expected(TEP_EVENT_OP, ";") < 0)
6602 return;
6603 if (read_expected(TEP_EVENT_ITEM, "offset") < 0)
6604 return;
6605 if (read_expected(TEP_EVENT_OP, ":") < 0)
6606 return;
6607 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
6608 goto fail;
6609 *offset = atoi(token);
6610 free_token(token);
6611 if (read_expected(TEP_EVENT_OP, ";") < 0)
6612 return;
6613 if (read_expected(TEP_EVENT_ITEM, "size") < 0)
6614 return;
6615 if (read_expected(TEP_EVENT_OP, ":") < 0)
6616 return;
6617 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
6618 goto fail;
6619 *size = atoi(token);
6620 free_token(token);
6621 if (read_expected(TEP_EVENT_OP, ";") < 0)
6622 return;
6623 type = read_token(&token);
6624 if (type != TEP_EVENT_NEWLINE) {
6625 /* newer versions of the kernel have a "signed" type */
6626 if (type != TEP_EVENT_ITEM)
6627 goto fail;
6628
6629 if (strcmp(token, "signed") != 0)
6630 goto fail;
6631
6632 free_token(token);
6633
6634 if (read_expected(TEP_EVENT_OP, ":") < 0)
6635 return;
6636
6637 if (read_expect_type(TEP_EVENT_ITEM, &token))
6638 goto fail;
6639
6640 free_token(token);
6641 if (read_expected(TEP_EVENT_OP, ";") < 0)
6642 return;
6643
6644 if (read_expect_type(TEP_EVENT_NEWLINE, &token))
6645 goto fail;
6646 }
6647 fail:
6648 free_token(token);
6649 return;
6650
6651 discard:
6652 input_buf_ptr = save_input_buf_ptr;
6653 input_buf_siz = save_input_buf_siz;
6654 *offset = 0;
6655 *size = 0;
6656 free_token(token);
6657}
6658
6659/**
6660 * tep_parse_header_page - parse the data stored in the header page
6661 * @tep: a handle to the trace event parser context
6662 * @buf: the buffer storing the header page format string
6663 * @size: the size of @buf
6664 * @long_size: the long size to use if there is no header
6665 *
6666 * This parses the header page format for information on the
6667 * ring buffer used. The @buf should be copied from
6668 *
6669 * /sys/kernel/debug/tracing/events/header_page
6670 */
6671int tep_parse_header_page(struct tep_handle *tep, char *buf, unsigned long size,
6672 int long_size)
6673{
6674 int ignore;
6675
6676 if (!size) {
6677 /*
6678 * Old kernels did not have header page info.
6679 * Sorry but we just use what we find here in user space.
6680 */
6681 tep->header_page_ts_size = sizeof(long long);
6682 tep->header_page_size_size = long_size;
6683 tep->header_page_data_offset = sizeof(long long) + long_size;
6684 tep->old_format = 1;
6685 return -1;
6686 }
6687 init_input_buf(buf, size);
6688
6689 parse_header_field("timestamp", &tep->header_page_ts_offset,
6690 &tep->header_page_ts_size, 1);
6691 parse_header_field("commit", &tep->header_page_size_offset,
6692 &tep->header_page_size_size, 1);
6693 parse_header_field("overwrite", &tep->header_page_overwrite,
6694 &ignore, 0);
6695 parse_header_field("data", &tep->header_page_data_offset,
6696 &tep->header_page_data_size, 1);
6697
6698 return 0;
6699}
6700
6701static int event_matches(struct tep_event *event,
6702 int id, const char *sys_name,
6703 const char *event_name)
6704{
6705 if (id >= 0 && id != event->id)
6706 return 0;
6707
6708 if (event_name && (strcmp(event_name, event->name) != 0))
6709 return 0;
6710
6711 if (sys_name && (strcmp(sys_name, event->system) != 0))
6712 return 0;
6713
6714 return 1;
6715}
6716
6717static void free_handler(struct event_handler *handle)
6718{
6719 free((void *)handle->sys_name);
6720 free((void *)handle->event_name);
6721 free(handle);
6722}
6723
6724static int find_event_handle(struct tep_handle *tep, struct tep_event *event)
6725{
6726 struct event_handler *handle, **next;
6727
6728 for (next = &tep->handlers; *next;
6729 next = &(*next)->next) {
6730 handle = *next;
6731 if (event_matches(event, handle->id,
6732 handle->sys_name,
6733 handle->event_name))
6734 break;
6735 }
6736
6737 if (!(*next))
6738 return 0;
6739
6740 pr_stat("overriding event (%d) %s:%s with new print handler",
6741 event->id, event->system, event->name);
6742
6743 event->handler = handle->func;
6744 event->context = handle->context;
6745
6746 *next = handle->next;
6747 free_handler(handle);
6748
6749 return 1;
6750}
6751
6752/**
6753 * __tep_parse_format - parse the event format
6754 * @buf: the buffer storing the event format string
6755 * @size: the size of @buf
6756 * @sys: the system the event belongs to
6757 *
6758 * This parses the event format and creates an event structure
6759 * to quickly parse raw data for a given event.
6760 *
6761 * These files currently come from:
6762 *
6763 * /sys/kernel/debug/tracing/events/.../.../format
6764 */
6765enum tep_errno __tep_parse_format(struct tep_event **eventp,
6766 struct tep_handle *tep, const char *buf,
6767 unsigned long size, const char *sys)
6768{
6769 struct tep_event *event;
6770 int ret;
6771
6772 init_input_buf(buf, size);
6773
6774 *eventp = event = alloc_event();
6775 if (!event)
6776 return TEP_ERRNO__MEM_ALLOC_FAILED;
6777
6778 event->name = event_read_name();
6779 if (!event->name) {
6780 /* Bad event? */
6781 ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6782 goto event_alloc_failed;
6783 }
6784
6785 if (strcmp(sys, "ftrace") == 0) {
6786 event->flags |= TEP_EVENT_FL_ISFTRACE;
6787
6788 if (strcmp(event->name, "bprint") == 0)
6789 event->flags |= TEP_EVENT_FL_ISBPRINT;
6790 }
6791
6792 event->id = event_read_id();
6793 if (event->id < 0) {
6794 ret = TEP_ERRNO__READ_ID_FAILED;
6795 /*
6796 * This isn't an allocation error actually.
6797 * But as the ID is critical, just bail out.
6798 */
6799 goto event_alloc_failed;
6800 }
6801
6802 event->system = strdup(sys);
6803 if (!event->system) {
6804 ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6805 goto event_alloc_failed;
6806 }
6807
6808 /* Add tep to event so that it can be referenced */
6809 event->tep = tep;
6810
6811 ret = event_read_format(event);
6812 if (ret < 0) {
6813 ret = TEP_ERRNO__READ_FORMAT_FAILED;
6814 goto event_parse_failed;
6815 }
6816
6817 /*
6818 * If the event has an override, don't print warnings if the event
6819 * print format fails to parse.
6820 */
6821 if (tep && find_event_handle(tep, event))
6822 show_warning = 0;
6823
6824 ret = event_read_print(event);
6825 show_warning = 1;
6826
6827 if (ret < 0) {
6828 ret = TEP_ERRNO__READ_PRINT_FAILED;
6829 goto event_parse_failed;
6830 }
6831
6832 if (!ret && (event->flags & TEP_EVENT_FL_ISFTRACE)) {
6833 struct tep_format_field *field;
6834 struct tep_print_arg *arg, **list;
6835
6836 /* old ftrace had no args */
6837 list = &event->print_fmt.args;
6838 for (field = event->format.fields; field; field = field->next) {
6839 arg = alloc_arg();
6840 if (!arg) {
6841 event->flags |= TEP_EVENT_FL_FAILED;
6842 return TEP_ERRNO__OLD_FTRACE_ARG_FAILED;
6843 }
6844 arg->type = TEP_PRINT_FIELD;
6845 arg->field.name = strdup(field->name);
6846 if (!arg->field.name) {
6847 event->flags |= TEP_EVENT_FL_FAILED;
6848 free_arg(arg);
6849 return TEP_ERRNO__OLD_FTRACE_ARG_FAILED;
6850 }
6851 arg->field.field = field;
6852 *list = arg;
6853 list = &arg->next;
6854 }
6855 }
6856
6857 if (!(event->flags & TEP_EVENT_FL_ISBPRINT))
6858 event->print_fmt.print_cache = parse_args(event,
6859 event->print_fmt.format,
6860 event->print_fmt.args);
6861
6862 return 0;
6863
6864 event_parse_failed:
6865 event->flags |= TEP_EVENT_FL_FAILED;
6866 return ret;
6867
6868 event_alloc_failed:
6869 free(event->system);
6870 free(event->name);
6871 free(event);
6872 *eventp = NULL;
6873 return ret;
6874}
6875
6876static enum tep_errno
6877__parse_event(struct tep_handle *tep,
6878 struct tep_event **eventp,
6879 const char *buf, unsigned long size,
6880 const char *sys)
6881{
6882 int ret = __tep_parse_format(eventp, tep, buf, size, sys);
6883 struct tep_event *event = *eventp;
6884
6885 if (event == NULL)
6886 return ret;
6887
6888 if (tep && add_event(tep, event)) {
6889 ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6890 goto event_add_failed;
6891 }
6892
6893#define PRINT_ARGS 0
6894 if (PRINT_ARGS && event->print_fmt.args)
6895 print_args(event->print_fmt.args);
6896
6897 return 0;
6898
6899event_add_failed:
6900 tep_free_event(event);
6901 return ret;
6902}
6903
6904/**
6905 * tep_parse_format - parse the event format
6906 * @tep: a handle to the trace event parser context
6907 * @eventp: returned format
6908 * @buf: the buffer storing the event format string
6909 * @size: the size of @buf
6910 * @sys: the system the event belongs to
6911 *
6912 * This parses the event format and creates an event structure
6913 * to quickly parse raw data for a given event.
6914 *
6915 * These files currently come from:
6916 *
6917 * /sys/kernel/debug/tracing/events/.../.../format
6918 */
6919enum tep_errno tep_parse_format(struct tep_handle *tep,
6920 struct tep_event **eventp,
6921 const char *buf,
6922 unsigned long size, const char *sys)
6923{
6924 return __parse_event(tep, eventp, buf, size, sys);
6925}
6926
6927/**
6928 * tep_parse_event - parse the event format
6929 * @tep: a handle to the trace event parser context
6930 * @buf: the buffer storing the event format string
6931 * @size: the size of @buf
6932 * @sys: the system the event belongs to
6933 *
6934 * This parses the event format and creates an event structure
6935 * to quickly parse raw data for a given event.
6936 *
6937 * These files currently come from:
6938 *
6939 * /sys/kernel/debug/tracing/events/.../.../format
6940 */
6941enum tep_errno tep_parse_event(struct tep_handle *tep, const char *buf,
6942 unsigned long size, const char *sys)
6943{
6944 struct tep_event *event = NULL;
6945 return __parse_event(tep, &event, buf, size, sys);
6946}
6947
6948int get_field_val(struct trace_seq *s, struct tep_format_field *field,
6949 const char *name, struct tep_record *record,
6950 unsigned long long *val, int err)
6951{
6952 if (!field) {
6953 if (err)
6954 trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6955 return -1;
6956 }
6957
6958 if (tep_read_number_field(field, record->data, val)) {
6959 if (err)
6960 trace_seq_printf(s, " %s=INVALID", name);
6961 return -1;
6962 }
6963
6964 return 0;
6965}
6966
6967/**
6968 * tep_get_field_raw - return the raw pointer into the data field
6969 * @s: The seq to print to on error
6970 * @event: the event that the field is for
6971 * @name: The name of the field
6972 * @record: The record with the field name.
6973 * @len: place to store the field length.
6974 * @err: print default error if failed.
6975 *
6976 * Returns a pointer into record->data of the field and places
6977 * the length of the field in @len.
6978 *
6979 * On failure, it returns NULL.
6980 */
6981void *tep_get_field_raw(struct trace_seq *s, struct tep_event *event,
6982 const char *name, struct tep_record *record,
6983 int *len, int err)
6984{
6985 struct tep_format_field *field;
6986 void *data = record->data;
6987 unsigned offset;
6988 int dummy;
6989
6990 if (!event)
6991 return NULL;
6992
6993 field = tep_find_field(event, name);
6994
6995 if (!field) {
6996 if (err)
6997 trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6998 return NULL;
6999 }
7000
7001 /* Allow @len to be NULL */
7002 if (!len)
7003 len = &dummy;
7004
7005 offset = field->offset;
7006 if (field->flags & TEP_FIELD_IS_DYNAMIC) {
7007 offset = tep_read_number(event->tep,
7008 data + offset, field->size);
7009 *len = offset >> 16;
7010 offset &= 0xffff;
7011 } else
7012 *len = field->size;
7013
7014 return data + offset;
7015}
7016
7017/**
7018 * tep_get_field_val - find a field and return its value
7019 * @s: The seq to print to on error
7020 * @event: the event that the field is for
7021 * @name: The name of the field
7022 * @record: The record with the field name.
7023 * @val: place to store the value of the field.
7024 * @err: print default error if failed.
7025 *
7026 * Returns 0 on success -1 on field not found.
7027 */
7028int tep_get_field_val(struct trace_seq *s, struct tep_event *event,
7029 const char *name, struct tep_record *record,
7030 unsigned long long *val, int err)
7031{
7032 struct tep_format_field *field;
7033
7034 if (!event)
7035 return -1;
7036
7037 field = tep_find_field(event, name);
7038
7039 return get_field_val(s, field, name, record, val, err);
7040}
7041
7042/**
7043 * tep_get_common_field_val - find a common field and return its value
7044 * @s: The seq to print to on error
7045 * @event: the event that the field is for
7046 * @name: The name of the field
7047 * @record: The record with the field name.
7048 * @val: place to store the value of the field.
7049 * @err: print default error if failed.
7050 *
7051 * Returns 0 on success -1 on field not found.
7052 */
7053int tep_get_common_field_val(struct trace_seq *s, struct tep_event *event,
7054 const char *name, struct tep_record *record,
7055 unsigned long long *val, int err)
7056{
7057 struct tep_format_field *field;
7058
7059 if (!event)
7060 return -1;
7061
7062 field = tep_find_common_field(event, name);
7063
7064 return get_field_val(s, field, name, record, val, err);
7065}
7066
7067/**
7068 * tep_get_any_field_val - find a any field and return its value
7069 * @s: The seq to print to on error
7070 * @event: the event that the field is for
7071 * @name: The name of the field
7072 * @record: The record with the field name.
7073 * @val: place to store the value of the field.
7074 * @err: print default error if failed.
7075 *
7076 * Returns 0 on success -1 on field not found.
7077 */
7078int tep_get_any_field_val(struct trace_seq *s, struct tep_event *event,
7079 const char *name, struct tep_record *record,
7080 unsigned long long *val, int err)
7081{
7082 struct tep_format_field *field;
7083
7084 if (!event)
7085 return -1;
7086
7087 field = tep_find_any_field(event, name);
7088
7089 return get_field_val(s, field, name, record, val, err);
7090}
7091
7092/**
7093 * tep_print_num_field - print a field and a format
7094 * @s: The seq to print to
7095 * @fmt: The printf format to print the field with.
7096 * @event: the event that the field is for
7097 * @name: The name of the field
7098 * @record: The record with the field name.
7099 * @err: print default error if failed.
7100 *
7101 * Returns positive value on success, negative in case of an error,
7102 * or 0 if buffer is full.
7103 */
7104int tep_print_num_field(struct trace_seq *s, const char *fmt,
7105 struct tep_event *event, const char *name,
7106 struct tep_record *record, int err)
7107{
7108 struct tep_format_field *field = tep_find_field(event, name);
7109 unsigned long long val;
7110
7111 if (!field)
7112 goto failed;
7113
7114 if (tep_read_number_field(field, record->data, &val))
7115 goto failed;
7116
7117 return trace_seq_printf(s, fmt, val);
7118
7119 failed:
7120 if (err)
7121 trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
7122 return -1;
7123}
7124
7125/**
7126 * tep_print_func_field - print a field and a format for function pointers
7127 * @s: The seq to print to
7128 * @fmt: The printf format to print the field with.
7129 * @event: the event that the field is for
7130 * @name: The name of the field
7131 * @record: The record with the field name.
7132 * @err: print default error if failed.
7133 *
7134 * Returns positive value on success, negative in case of an error,
7135 * or 0 if buffer is full.
7136 */
7137int tep_print_func_field(struct trace_seq *s, const char *fmt,
7138 struct tep_event *event, const char *name,
7139 struct tep_record *record, int err)
7140{
7141 struct tep_format_field *field = tep_find_field(event, name);
7142 struct tep_handle *tep = event->tep;
7143 unsigned long long val;
7144 struct func_map *func;
7145 char tmp[128];
7146
7147 if (!field)
7148 goto failed;
7149
7150 if (tep_read_number_field(field, record->data, &val))
7151 goto failed;
7152
7153 func = find_func(tep, val);
7154
7155 if (func)
7156 snprintf(tmp, 128, "%s/0x%llx", func->func, func->addr - val);
7157 else
7158 sprintf(tmp, "0x%08llx", val);
7159
7160 return trace_seq_printf(s, fmt, tmp);
7161
7162 failed:
7163 if (err)
7164 trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
7165 return -1;
7166}
7167
7168static void free_func_handle(struct tep_function_handler *func)
7169{
7170 struct func_params *params;
7171
7172 free(func->name);
7173
7174 while (func->params) {
7175 params = func->params;
7176 func->params = params->next;
7177 free(params);
7178 }
7179
7180 free(func);
7181}
7182
7183/**
7184 * tep_register_print_function - register a helper function
7185 * @tep: a handle to the trace event parser context
7186 * @func: the function to process the helper function
7187 * @ret_type: the return type of the helper function
7188 * @name: the name of the helper function
7189 * @parameters: A list of enum tep_func_arg_type
7190 *
7191 * Some events may have helper functions in the print format arguments.
7192 * This allows a plugin to dynamically create a way to process one
7193 * of these functions.
7194 *
7195 * The @parameters is a variable list of tep_func_arg_type enums that
7196 * must end with TEP_FUNC_ARG_VOID.
7197 */
7198int tep_register_print_function(struct tep_handle *tep,
7199 tep_func_handler func,
7200 enum tep_func_arg_type ret_type,
7201 char *name, ...)
7202{
7203 struct tep_function_handler *func_handle;
7204 struct func_params **next_param;
7205 struct func_params *param;
7206 enum tep_func_arg_type type;
7207 va_list ap;
7208 int ret;
7209
7210 func_handle = find_func_handler(tep, name);
7211 if (func_handle) {
7212 /*
7213 * This is most like caused by the users own
7214 * plugins updating the function. This overrides the
7215 * system defaults.
7216 */
7217 pr_stat("override of function helper '%s'", name);
7218 remove_func_handler(tep, name);
7219 }
7220
7221 func_handle = calloc(1, sizeof(*func_handle));
7222 if (!func_handle) {
7223 do_warning("Failed to allocate function handler");
7224 return TEP_ERRNO__MEM_ALLOC_FAILED;
7225 }
7226
7227 func_handle->ret_type = ret_type;
7228 func_handle->name = strdup(name);
7229 func_handle->func = func;
7230 if (!func_handle->name) {
7231 do_warning("Failed to allocate function name");
7232 free(func_handle);
7233 return TEP_ERRNO__MEM_ALLOC_FAILED;
7234 }
7235
7236 next_param = &(func_handle->params);
7237 va_start(ap, name);
7238 for (;;) {
7239 type = va_arg(ap, enum tep_func_arg_type);
7240 if (type == TEP_FUNC_ARG_VOID)
7241 break;
7242
7243 if (type >= TEP_FUNC_ARG_MAX_TYPES) {
7244 do_warning("Invalid argument type %d", type);
7245 ret = TEP_ERRNO__INVALID_ARG_TYPE;
7246 goto out_free;
7247 }
7248
7249 param = malloc(sizeof(*param));
7250 if (!param) {
7251 do_warning("Failed to allocate function param");
7252 ret = TEP_ERRNO__MEM_ALLOC_FAILED;
7253 goto out_free;
7254 }
7255 param->type = type;
7256 param->next = NULL;
7257
7258 *next_param = param;
7259 next_param = &(param->next);
7260
7261 func_handle->nr_args++;
7262 }
7263 va_end(ap);
7264
7265 func_handle->next = tep->func_handlers;
7266 tep->func_handlers = func_handle;
7267
7268 return 0;
7269 out_free:
7270 va_end(ap);
7271 free_func_handle(func_handle);
7272 return ret;
7273}
7274
7275/**
7276 * tep_unregister_print_function - unregister a helper function
7277 * @tep: a handle to the trace event parser context
7278 * @func: the function to process the helper function
7279 * @name: the name of the helper function
7280 *
7281 * This function removes existing print handler for function @name.
7282 *
7283 * Returns 0 if the handler was removed successully, -1 otherwise.
7284 */
7285int tep_unregister_print_function(struct tep_handle *tep,
7286 tep_func_handler func, char *name)
7287{
7288 struct tep_function_handler *func_handle;
7289
7290 func_handle = find_func_handler(tep, name);
7291 if (func_handle && func_handle->func == func) {
7292 remove_func_handler(tep, name);
7293 return 0;
7294 }
7295 return -1;
7296}
7297
7298static struct tep_event *search_event(struct tep_handle *tep, int id,
7299 const char *sys_name,
7300 const char *event_name)
7301{
7302 struct tep_event *event;
7303
7304 if (id >= 0) {
7305 /* search by id */
7306 event = tep_find_event(tep, id);
7307 if (!event)
7308 return NULL;
7309 if (event_name && (strcmp(event_name, event->name) != 0))
7310 return NULL;
7311 if (sys_name && (strcmp(sys_name, event->system) != 0))
7312 return NULL;
7313 } else {
7314 event = tep_find_event_by_name(tep, sys_name, event_name);
7315 if (!event)
7316 return NULL;
7317 }
7318 return event;
7319}
7320
7321/**
7322 * tep_register_event_handler - register a way to parse an event
7323 * @tep: a handle to the trace event parser context
7324 * @id: the id of the event to register
7325 * @sys_name: the system name the event belongs to
7326 * @event_name: the name of the event
7327 * @func: the function to call to parse the event information
7328 * @context: the data to be passed to @func
7329 *
7330 * This function allows a developer to override the parsing of
7331 * a given event. If for some reason the default print format
7332 * is not sufficient, this function will register a function
7333 * for an event to be used to parse the data instead.
7334 *
7335 * If @id is >= 0, then it is used to find the event.
7336 * else @sys_name and @event_name are used.
7337 *
7338 * Returns:
7339 * TEP_REGISTER_SUCCESS_OVERWRITE if an existing handler is overwritten
7340 * TEP_REGISTER_SUCCESS if a new handler is registered successfully
7341 * negative TEP_ERRNO_... in case of an error
7342 *
7343 */
7344int tep_register_event_handler(struct tep_handle *tep, int id,
7345 const char *sys_name, const char *event_name,
7346 tep_event_handler_func func, void *context)
7347{
7348 struct tep_event *event;
7349 struct event_handler *handle;
7350
7351 event = search_event(tep, id, sys_name, event_name);
7352 if (event == NULL)
7353 goto not_found;
7354
7355 pr_stat("overriding event (%d) %s:%s with new print handler",
7356 event->id, event->system, event->name);
7357
7358 event->handler = func;
7359 event->context = context;
7360 return TEP_REGISTER_SUCCESS_OVERWRITE;
7361
7362 not_found:
7363 /* Save for later use. */
7364 handle = calloc(1, sizeof(*handle));
7365 if (!handle) {
7366 do_warning("Failed to allocate event handler");
7367 return TEP_ERRNO__MEM_ALLOC_FAILED;
7368 }
7369
7370 handle->id = id;
7371 if (event_name)
7372 handle->event_name = strdup(event_name);
7373 if (sys_name)
7374 handle->sys_name = strdup(sys_name);
7375
7376 if ((event_name && !handle->event_name) ||
7377 (sys_name && !handle->sys_name)) {
7378 do_warning("Failed to allocate event/sys name");
7379 free((void *)handle->event_name);
7380 free((void *)handle->sys_name);
7381 free(handle);
7382 return TEP_ERRNO__MEM_ALLOC_FAILED;
7383 }
7384
7385 handle->func = func;
7386 handle->next = tep->handlers;
7387 tep->handlers = handle;
7388 handle->context = context;
7389
7390 return TEP_REGISTER_SUCCESS;
7391}
7392
7393static int handle_matches(struct event_handler *handler, int id,
7394 const char *sys_name, const char *event_name,
7395 tep_event_handler_func func, void *context)
7396{
7397 if (id >= 0 && id != handler->id)
7398 return 0;
7399
7400 if (event_name && (strcmp(event_name, handler->event_name) != 0))
7401 return 0;
7402
7403 if (sys_name && (strcmp(sys_name, handler->sys_name) != 0))
7404 return 0;
7405
7406 if (func != handler->func || context != handler->context)
7407 return 0;
7408
7409 return 1;
7410}
7411
7412/**
7413 * tep_unregister_event_handler - unregister an existing event handler
7414 * @tep: a handle to the trace event parser context
7415 * @id: the id of the event to unregister
7416 * @sys_name: the system name the handler belongs to
7417 * @event_name: the name of the event handler
7418 * @func: the function to call to parse the event information
7419 * @context: the data to be passed to @func
7420 *
7421 * This function removes existing event handler (parser).
7422 *
7423 * If @id is >= 0, then it is used to find the event.
7424 * else @sys_name and @event_name are used.
7425 *
7426 * Returns 0 if handler was removed successfully, -1 if event was not found.
7427 */
7428int tep_unregister_event_handler(struct tep_handle *tep, int id,
7429 const char *sys_name, const char *event_name,
7430 tep_event_handler_func func, void *context)
7431{
7432 struct tep_event *event;
7433 struct event_handler *handle;
7434 struct event_handler **next;
7435
7436 event = search_event(tep, id, sys_name, event_name);
7437 if (event == NULL)
7438 goto not_found;
7439
7440 if (event->handler == func && event->context == context) {
7441 pr_stat("removing override handler for event (%d) %s:%s. Going back to default handler.",
7442 event->id, event->system, event->name);
7443
7444 event->handler = NULL;
7445 event->context = NULL;
7446 return 0;
7447 }
7448
7449not_found:
7450 for (next = &tep->handlers; *next; next = &(*next)->next) {
7451 handle = *next;
7452 if (handle_matches(handle, id, sys_name, event_name,
7453 func, context))
7454 break;
7455 }
7456
7457 if (!(*next))
7458 return -1;
7459
7460 *next = handle->next;
7461 free_handler(handle);
7462
7463 return 0;
7464}
7465
7466/**
7467 * tep_alloc - create a tep handle
7468 */
7469struct tep_handle *tep_alloc(void)
7470{
7471 struct tep_handle *tep = calloc(1, sizeof(*tep));
7472
7473 if (tep) {
7474 tep->ref_count = 1;
7475 tep->host_bigendian = tep_is_bigendian();
7476 }
7477
7478 return tep;
7479}
7480
7481void tep_ref(struct tep_handle *tep)
7482{
7483 tep->ref_count++;
7484}
7485
7486int tep_get_ref(struct tep_handle *tep)
7487{
7488 if (tep)
7489 return tep->ref_count;
7490 return 0;
7491}
7492
7493void tep_free_format_field(struct tep_format_field *field)
7494{
7495 free(field->type);
7496 if (field->alias != field->name)
7497 free(field->alias);
7498 free(field->name);
7499 free(field);
7500}
7501
7502static void free_format_fields(struct tep_format_field *field)
7503{
7504 struct tep_format_field *next;
7505
7506 while (field) {
7507 next = field->next;
7508 tep_free_format_field(field);
7509 field = next;
7510 }
7511}
7512
7513static void free_formats(struct tep_format *format)
7514{
7515 free_format_fields(format->common_fields);
7516 free_format_fields(format->fields);
7517}
7518
7519void tep_free_event(struct tep_event *event)
7520{
7521 free(event->name);
7522 free(event->system);
7523
7524 free_formats(&event->format);
7525
7526 free(event->print_fmt.format);
7527 free_args(event->print_fmt.args);
7528 free_parse_args(event->print_fmt.print_cache);
7529 free(event);
7530}
7531
7532/**
7533 * tep_free - free a tep handle
7534 * @tep: the tep handle to free
7535 */
7536void tep_free(struct tep_handle *tep)
7537{
7538 struct cmdline_list *cmdlist, *cmdnext;
7539 struct func_list *funclist, *funcnext;
7540 struct printk_list *printklist, *printknext;
7541 struct tep_function_handler *func_handler;
7542 struct event_handler *handle;
7543 int i;
7544
7545 if (!tep)
7546 return;
7547
7548 cmdlist = tep->cmdlist;
7549 funclist = tep->funclist;
7550 printklist = tep->printklist;
7551
7552 tep->ref_count--;
7553 if (tep->ref_count)
7554 return;
7555
7556 if (tep->cmdlines) {
7557 for (i = 0; i < tep->cmdline_count; i++)
7558 free(tep->cmdlines[i].comm);
7559 free(tep->cmdlines);
7560 }
7561
7562 while (cmdlist) {
7563 cmdnext = cmdlist->next;
7564 free(cmdlist->comm);
7565 free(cmdlist);
7566 cmdlist = cmdnext;
7567 }
7568
7569 if (tep->func_map) {
7570 for (i = 0; i < (int)tep->func_count; i++) {
7571 free(tep->func_map[i].func);
7572 free(tep->func_map[i].mod);
7573 }
7574 free(tep->func_map);
7575 }
7576
7577 while (funclist) {
7578 funcnext = funclist->next;
7579 free(funclist->func);
7580 free(funclist->mod);
7581 free(funclist);
7582 funclist = funcnext;
7583 }
7584
7585 while (tep->func_handlers) {
7586 func_handler = tep->func_handlers;
7587 tep->func_handlers = func_handler->next;
7588 free_func_handle(func_handler);
7589 }
7590
7591 if (tep->printk_map) {
7592 for (i = 0; i < (int)tep->printk_count; i++)
7593 free(tep->printk_map[i].printk);
7594 free(tep->printk_map);
7595 }
7596
7597 while (printklist) {
7598 printknext = printklist->next;
7599 free(printklist->printk);
7600 free(printklist);
7601 printklist = printknext;
7602 }
7603
7604 for (i = 0; i < tep->nr_events; i++)
7605 tep_free_event(tep->events[i]);
7606
7607 while (tep->handlers) {
7608 handle = tep->handlers;
7609 tep->handlers = handle->next;
7610 free_handler(handle);
7611 }
7612
7613 free(tep->events);
7614 free(tep->sort_events);
7615 free(tep->func_resolver);
7616 tep_free_plugin_paths(tep);
7617
7618 free(tep);
7619}
7620
7621void tep_unref(struct tep_handle *tep)
7622{
7623 tep_free(tep);
7624}