Loading...
1/*
2 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
3 *
4 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation;
8 * version 2.1 of the License (not later!)
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU Lesser General Public License for more details.
14 *
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this program; if not, see <http://www.gnu.org/licenses>
17 *
18 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19 *
20 * The parts for function graph printing was taken and modified from the
21 * Linux Kernel that were written by
22 * - Copyright (C) 2009 Frederic Weisbecker,
23 * Frederic Weisbecker gave his permission to relicense the code to
24 * the Lesser General Public License.
25 */
26#include <stdio.h>
27#include <stdlib.h>
28#include <string.h>
29#include <stdarg.h>
30#include <ctype.h>
31#include <errno.h>
32#include <stdint.h>
33#include <limits.h>
34
35#include <netinet/ip6.h>
36#include "event-parse.h"
37#include "event-utils.h"
38
39static const char *input_buf;
40static unsigned long long input_buf_ptr;
41static unsigned long long input_buf_siz;
42
43static int is_flag_field;
44static int is_symbolic_field;
45
46static int show_warning = 1;
47
48#define do_warning(fmt, ...) \
49 do { \
50 if (show_warning) \
51 warning(fmt, ##__VA_ARGS__); \
52 } while (0)
53
54#define do_warning_event(event, fmt, ...) \
55 do { \
56 if (!show_warning) \
57 continue; \
58 \
59 if (event) \
60 warning("[%s:%s] " fmt, event->system, \
61 event->name, ##__VA_ARGS__); \
62 else \
63 warning(fmt, ##__VA_ARGS__); \
64 } while (0)
65
66static void init_input_buf(const char *buf, unsigned long long size)
67{
68 input_buf = buf;
69 input_buf_siz = size;
70 input_buf_ptr = 0;
71}
72
73const char *pevent_get_input_buf(void)
74{
75 return input_buf;
76}
77
78unsigned long long pevent_get_input_buf_ptr(void)
79{
80 return input_buf_ptr;
81}
82
83struct event_handler {
84 struct event_handler *next;
85 int id;
86 const char *sys_name;
87 const char *event_name;
88 pevent_event_handler_func func;
89 void *context;
90};
91
92struct pevent_func_params {
93 struct pevent_func_params *next;
94 enum pevent_func_arg_type type;
95};
96
97struct pevent_function_handler {
98 struct pevent_function_handler *next;
99 enum pevent_func_arg_type ret_type;
100 char *name;
101 pevent_func_handler func;
102 struct pevent_func_params *params;
103 int nr_args;
104};
105
106static unsigned long long
107process_defined_func(struct trace_seq *s, void *data, int size,
108 struct event_format *event, struct print_arg *arg);
109
110static void free_func_handle(struct pevent_function_handler *func);
111
112/**
113 * pevent_buffer_init - init buffer for parsing
114 * @buf: buffer to parse
115 * @size: the size of the buffer
116 *
117 * For use with pevent_read_token(), this initializes the internal
118 * buffer that pevent_read_token() will parse.
119 */
120void pevent_buffer_init(const char *buf, unsigned long long size)
121{
122 init_input_buf(buf, size);
123}
124
125void breakpoint(void)
126{
127 static int x;
128 x++;
129}
130
131struct print_arg *alloc_arg(void)
132{
133 return calloc(1, sizeof(struct print_arg));
134}
135
136struct cmdline {
137 char *comm;
138 int pid;
139};
140
141static int cmdline_cmp(const void *a, const void *b)
142{
143 const struct cmdline *ca = a;
144 const struct cmdline *cb = b;
145
146 if (ca->pid < cb->pid)
147 return -1;
148 if (ca->pid > cb->pid)
149 return 1;
150
151 return 0;
152}
153
154struct cmdline_list {
155 struct cmdline_list *next;
156 char *comm;
157 int pid;
158};
159
160static int cmdline_init(struct pevent *pevent)
161{
162 struct cmdline_list *cmdlist = pevent->cmdlist;
163 struct cmdline_list *item;
164 struct cmdline *cmdlines;
165 int i;
166
167 cmdlines = malloc(sizeof(*cmdlines) * pevent->cmdline_count);
168 if (!cmdlines)
169 return -1;
170
171 i = 0;
172 while (cmdlist) {
173 cmdlines[i].pid = cmdlist->pid;
174 cmdlines[i].comm = cmdlist->comm;
175 i++;
176 item = cmdlist;
177 cmdlist = cmdlist->next;
178 free(item);
179 }
180
181 qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
182
183 pevent->cmdlines = cmdlines;
184 pevent->cmdlist = NULL;
185
186 return 0;
187}
188
189static const char *find_cmdline(struct pevent *pevent, int pid)
190{
191 const struct cmdline *comm;
192 struct cmdline key;
193
194 if (!pid)
195 return "<idle>";
196
197 if (!pevent->cmdlines && cmdline_init(pevent))
198 return "<not enough memory for cmdlines!>";
199
200 key.pid = pid;
201
202 comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
203 sizeof(*pevent->cmdlines), cmdline_cmp);
204
205 if (comm)
206 return comm->comm;
207 return "<...>";
208}
209
210/**
211 * pevent_pid_is_registered - return if a pid has a cmdline registered
212 * @pevent: handle for the pevent
213 * @pid: The pid to check if it has a cmdline registered with.
214 *
215 * Returns 1 if the pid has a cmdline mapped to it
216 * 0 otherwise.
217 */
218int pevent_pid_is_registered(struct pevent *pevent, int pid)
219{
220 const struct cmdline *comm;
221 struct cmdline key;
222
223 if (!pid)
224 return 1;
225
226 if (!pevent->cmdlines && cmdline_init(pevent))
227 return 0;
228
229 key.pid = pid;
230
231 comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
232 sizeof(*pevent->cmdlines), cmdline_cmp);
233
234 if (comm)
235 return 1;
236 return 0;
237}
238
239/*
240 * If the command lines have been converted to an array, then
241 * we must add this pid. This is much slower than when cmdlines
242 * are added before the array is initialized.
243 */
244static int add_new_comm(struct pevent *pevent, const char *comm, int pid)
245{
246 struct cmdline *cmdlines = pevent->cmdlines;
247 const struct cmdline *cmdline;
248 struct cmdline key;
249
250 if (!pid)
251 return 0;
252
253 /* avoid duplicates */
254 key.pid = pid;
255
256 cmdline = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
257 sizeof(*pevent->cmdlines), cmdline_cmp);
258 if (cmdline) {
259 errno = EEXIST;
260 return -1;
261 }
262
263 cmdlines = realloc(cmdlines, sizeof(*cmdlines) * (pevent->cmdline_count + 1));
264 if (!cmdlines) {
265 errno = ENOMEM;
266 return -1;
267 }
268
269 cmdlines[pevent->cmdline_count].comm = strdup(comm);
270 if (!cmdlines[pevent->cmdline_count].comm) {
271 free(cmdlines);
272 errno = ENOMEM;
273 return -1;
274 }
275
276 cmdlines[pevent->cmdline_count].pid = pid;
277
278 if (cmdlines[pevent->cmdline_count].comm)
279 pevent->cmdline_count++;
280
281 qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
282 pevent->cmdlines = cmdlines;
283
284 return 0;
285}
286
287/**
288 * pevent_register_comm - register a pid / comm mapping
289 * @pevent: handle for the pevent
290 * @comm: the command line to register
291 * @pid: the pid to map the command line to
292 *
293 * This adds a mapping to search for command line names with
294 * a given pid. The comm is duplicated.
295 */
296int pevent_register_comm(struct pevent *pevent, const char *comm, int pid)
297{
298 struct cmdline_list *item;
299
300 if (pevent->cmdlines)
301 return add_new_comm(pevent, comm, pid);
302
303 item = malloc(sizeof(*item));
304 if (!item)
305 return -1;
306
307 if (comm)
308 item->comm = strdup(comm);
309 else
310 item->comm = strdup("<...>");
311 if (!item->comm) {
312 free(item);
313 return -1;
314 }
315 item->pid = pid;
316 item->next = pevent->cmdlist;
317
318 pevent->cmdlist = item;
319 pevent->cmdline_count++;
320
321 return 0;
322}
323
324int pevent_register_trace_clock(struct pevent *pevent, const char *trace_clock)
325{
326 pevent->trace_clock = strdup(trace_clock);
327 if (!pevent->trace_clock) {
328 errno = ENOMEM;
329 return -1;
330 }
331 return 0;
332}
333
334struct func_map {
335 unsigned long long addr;
336 char *func;
337 char *mod;
338};
339
340struct func_list {
341 struct func_list *next;
342 unsigned long long addr;
343 char *func;
344 char *mod;
345};
346
347static int func_cmp(const void *a, const void *b)
348{
349 const struct func_map *fa = a;
350 const struct func_map *fb = b;
351
352 if (fa->addr < fb->addr)
353 return -1;
354 if (fa->addr > fb->addr)
355 return 1;
356
357 return 0;
358}
359
360/*
361 * We are searching for a record in between, not an exact
362 * match.
363 */
364static int func_bcmp(const void *a, const void *b)
365{
366 const struct func_map *fa = a;
367 const struct func_map *fb = b;
368
369 if ((fa->addr == fb->addr) ||
370
371 (fa->addr > fb->addr &&
372 fa->addr < (fb+1)->addr))
373 return 0;
374
375 if (fa->addr < fb->addr)
376 return -1;
377
378 return 1;
379}
380
381static int func_map_init(struct pevent *pevent)
382{
383 struct func_list *funclist;
384 struct func_list *item;
385 struct func_map *func_map;
386 int i;
387
388 func_map = malloc(sizeof(*func_map) * (pevent->func_count + 1));
389 if (!func_map)
390 return -1;
391
392 funclist = pevent->funclist;
393
394 i = 0;
395 while (funclist) {
396 func_map[i].func = funclist->func;
397 func_map[i].addr = funclist->addr;
398 func_map[i].mod = funclist->mod;
399 i++;
400 item = funclist;
401 funclist = funclist->next;
402 free(item);
403 }
404
405 qsort(func_map, pevent->func_count, sizeof(*func_map), func_cmp);
406
407 /*
408 * Add a special record at the end.
409 */
410 func_map[pevent->func_count].func = NULL;
411 func_map[pevent->func_count].addr = 0;
412 func_map[pevent->func_count].mod = NULL;
413
414 pevent->func_map = func_map;
415 pevent->funclist = NULL;
416
417 return 0;
418}
419
420static struct func_map *
421__find_func(struct pevent *pevent, unsigned long long addr)
422{
423 struct func_map *func;
424 struct func_map key;
425
426 if (!pevent->func_map)
427 func_map_init(pevent);
428
429 key.addr = addr;
430
431 func = bsearch(&key, pevent->func_map, pevent->func_count,
432 sizeof(*pevent->func_map), func_bcmp);
433
434 return func;
435}
436
437struct func_resolver {
438 pevent_func_resolver_t *func;
439 void *priv;
440 struct func_map map;
441};
442
443/**
444 * pevent_set_function_resolver - set an alternative function resolver
445 * @pevent: handle for the pevent
446 * @resolver: function to be used
447 * @priv: resolver function private state.
448 *
449 * Some tools may have already a way to resolve kernel functions, allow them to
450 * keep using it instead of duplicating all the entries inside
451 * pevent->funclist.
452 */
453int pevent_set_function_resolver(struct pevent *pevent,
454 pevent_func_resolver_t *func, void *priv)
455{
456 struct func_resolver *resolver = malloc(sizeof(*resolver));
457
458 if (resolver == NULL)
459 return -1;
460
461 resolver->func = func;
462 resolver->priv = priv;
463
464 free(pevent->func_resolver);
465 pevent->func_resolver = resolver;
466
467 return 0;
468}
469
470/**
471 * pevent_reset_function_resolver - reset alternative function resolver
472 * @pevent: handle for the pevent
473 *
474 * Stop using whatever alternative resolver was set, use the default
475 * one instead.
476 */
477void pevent_reset_function_resolver(struct pevent *pevent)
478{
479 free(pevent->func_resolver);
480 pevent->func_resolver = NULL;
481}
482
483static struct func_map *
484find_func(struct pevent *pevent, unsigned long long addr)
485{
486 struct func_map *map;
487
488 if (!pevent->func_resolver)
489 return __find_func(pevent, addr);
490
491 map = &pevent->func_resolver->map;
492 map->mod = NULL;
493 map->addr = addr;
494 map->func = pevent->func_resolver->func(pevent->func_resolver->priv,
495 &map->addr, &map->mod);
496 if (map->func == NULL)
497 return NULL;
498
499 return map;
500}
501
502/**
503 * pevent_find_function - find a function by a given address
504 * @pevent: handle for the pevent
505 * @addr: the address to find the function with
506 *
507 * Returns a pointer to the function stored that has the given
508 * address. Note, the address does not have to be exact, it
509 * will select the function that would contain the address.
510 */
511const char *pevent_find_function(struct pevent *pevent, unsigned long long addr)
512{
513 struct func_map *map;
514
515 map = find_func(pevent, addr);
516 if (!map)
517 return NULL;
518
519 return map->func;
520}
521
522/**
523 * pevent_find_function_address - find a function address by a given address
524 * @pevent: handle for the pevent
525 * @addr: the address to find the function with
526 *
527 * Returns the address the function starts at. This can be used in
528 * conjunction with pevent_find_function to print both the function
529 * name and the function offset.
530 */
531unsigned long long
532pevent_find_function_address(struct pevent *pevent, unsigned long long addr)
533{
534 struct func_map *map;
535
536 map = find_func(pevent, addr);
537 if (!map)
538 return 0;
539
540 return map->addr;
541}
542
543/**
544 * pevent_register_function - register a function with a given address
545 * @pevent: handle for the pevent
546 * @function: the function name to register
547 * @addr: the address the function starts at
548 * @mod: the kernel module the function may be in (NULL for none)
549 *
550 * This registers a function name with an address and module.
551 * The @func passed in is duplicated.
552 */
553int pevent_register_function(struct pevent *pevent, char *func,
554 unsigned long long addr, char *mod)
555{
556 struct func_list *item = malloc(sizeof(*item));
557
558 if (!item)
559 return -1;
560
561 item->next = pevent->funclist;
562 item->func = strdup(func);
563 if (!item->func)
564 goto out_free;
565
566 if (mod) {
567 item->mod = strdup(mod);
568 if (!item->mod)
569 goto out_free_func;
570 } else
571 item->mod = NULL;
572 item->addr = addr;
573
574 pevent->funclist = item;
575 pevent->func_count++;
576
577 return 0;
578
579out_free_func:
580 free(item->func);
581 item->func = NULL;
582out_free:
583 free(item);
584 errno = ENOMEM;
585 return -1;
586}
587
588/**
589 * pevent_print_funcs - print out the stored functions
590 * @pevent: handle for the pevent
591 *
592 * This prints out the stored functions.
593 */
594void pevent_print_funcs(struct pevent *pevent)
595{
596 int i;
597
598 if (!pevent->func_map)
599 func_map_init(pevent);
600
601 for (i = 0; i < (int)pevent->func_count; i++) {
602 printf("%016llx %s",
603 pevent->func_map[i].addr,
604 pevent->func_map[i].func);
605 if (pevent->func_map[i].mod)
606 printf(" [%s]\n", pevent->func_map[i].mod);
607 else
608 printf("\n");
609 }
610}
611
612struct printk_map {
613 unsigned long long addr;
614 char *printk;
615};
616
617struct printk_list {
618 struct printk_list *next;
619 unsigned long long addr;
620 char *printk;
621};
622
623static int printk_cmp(const void *a, const void *b)
624{
625 const struct printk_map *pa = a;
626 const struct printk_map *pb = b;
627
628 if (pa->addr < pb->addr)
629 return -1;
630 if (pa->addr > pb->addr)
631 return 1;
632
633 return 0;
634}
635
636static int printk_map_init(struct pevent *pevent)
637{
638 struct printk_list *printklist;
639 struct printk_list *item;
640 struct printk_map *printk_map;
641 int i;
642
643 printk_map = malloc(sizeof(*printk_map) * (pevent->printk_count + 1));
644 if (!printk_map)
645 return -1;
646
647 printklist = pevent->printklist;
648
649 i = 0;
650 while (printklist) {
651 printk_map[i].printk = printklist->printk;
652 printk_map[i].addr = printklist->addr;
653 i++;
654 item = printklist;
655 printklist = printklist->next;
656 free(item);
657 }
658
659 qsort(printk_map, pevent->printk_count, sizeof(*printk_map), printk_cmp);
660
661 pevent->printk_map = printk_map;
662 pevent->printklist = NULL;
663
664 return 0;
665}
666
667static struct printk_map *
668find_printk(struct pevent *pevent, unsigned long long addr)
669{
670 struct printk_map *printk;
671 struct printk_map key;
672
673 if (!pevent->printk_map && printk_map_init(pevent))
674 return NULL;
675
676 key.addr = addr;
677
678 printk = bsearch(&key, pevent->printk_map, pevent->printk_count,
679 sizeof(*pevent->printk_map), printk_cmp);
680
681 return printk;
682}
683
684/**
685 * pevent_register_print_string - register a string by its address
686 * @pevent: handle for the pevent
687 * @fmt: the string format to register
688 * @addr: the address the string was located at
689 *
690 * This registers a string by the address it was stored in the kernel.
691 * The @fmt passed in is duplicated.
692 */
693int pevent_register_print_string(struct pevent *pevent, const char *fmt,
694 unsigned long long addr)
695{
696 struct printk_list *item = malloc(sizeof(*item));
697 char *p;
698
699 if (!item)
700 return -1;
701
702 item->next = pevent->printklist;
703 item->addr = addr;
704
705 /* Strip off quotes and '\n' from the end */
706 if (fmt[0] == '"')
707 fmt++;
708 item->printk = strdup(fmt);
709 if (!item->printk)
710 goto out_free;
711
712 p = item->printk + strlen(item->printk) - 1;
713 if (*p == '"')
714 *p = 0;
715
716 p -= 2;
717 if (strcmp(p, "\\n") == 0)
718 *p = 0;
719
720 pevent->printklist = item;
721 pevent->printk_count++;
722
723 return 0;
724
725out_free:
726 free(item);
727 errno = ENOMEM;
728 return -1;
729}
730
731/**
732 * pevent_print_printk - print out the stored strings
733 * @pevent: handle for the pevent
734 *
735 * This prints the string formats that were stored.
736 */
737void pevent_print_printk(struct pevent *pevent)
738{
739 int i;
740
741 if (!pevent->printk_map)
742 printk_map_init(pevent);
743
744 for (i = 0; i < (int)pevent->printk_count; i++) {
745 printf("%016llx %s\n",
746 pevent->printk_map[i].addr,
747 pevent->printk_map[i].printk);
748 }
749}
750
751static struct event_format *alloc_event(void)
752{
753 return calloc(1, sizeof(struct event_format));
754}
755
756static int add_event(struct pevent *pevent, struct event_format *event)
757{
758 int i;
759 struct event_format **events = realloc(pevent->events, sizeof(event) *
760 (pevent->nr_events + 1));
761 if (!events)
762 return -1;
763
764 pevent->events = events;
765
766 for (i = 0; i < pevent->nr_events; i++) {
767 if (pevent->events[i]->id > event->id)
768 break;
769 }
770 if (i < pevent->nr_events)
771 memmove(&pevent->events[i + 1],
772 &pevent->events[i],
773 sizeof(event) * (pevent->nr_events - i));
774
775 pevent->events[i] = event;
776 pevent->nr_events++;
777
778 event->pevent = pevent;
779
780 return 0;
781}
782
783static int event_item_type(enum event_type type)
784{
785 switch (type) {
786 case EVENT_ITEM ... EVENT_SQUOTE:
787 return 1;
788 case EVENT_ERROR ... EVENT_DELIM:
789 default:
790 return 0;
791 }
792}
793
794static void free_flag_sym(struct print_flag_sym *fsym)
795{
796 struct print_flag_sym *next;
797
798 while (fsym) {
799 next = fsym->next;
800 free(fsym->value);
801 free(fsym->str);
802 free(fsym);
803 fsym = next;
804 }
805}
806
807static void free_arg(struct print_arg *arg)
808{
809 struct print_arg *farg;
810
811 if (!arg)
812 return;
813
814 switch (arg->type) {
815 case PRINT_ATOM:
816 free(arg->atom.atom);
817 break;
818 case PRINT_FIELD:
819 free(arg->field.name);
820 break;
821 case PRINT_FLAGS:
822 free_arg(arg->flags.field);
823 free(arg->flags.delim);
824 free_flag_sym(arg->flags.flags);
825 break;
826 case PRINT_SYMBOL:
827 free_arg(arg->symbol.field);
828 free_flag_sym(arg->symbol.symbols);
829 break;
830 case PRINT_HEX:
831 free_arg(arg->hex.field);
832 free_arg(arg->hex.size);
833 break;
834 case PRINT_INT_ARRAY:
835 free_arg(arg->int_array.field);
836 free_arg(arg->int_array.count);
837 free_arg(arg->int_array.el_size);
838 break;
839 case PRINT_TYPE:
840 free(arg->typecast.type);
841 free_arg(arg->typecast.item);
842 break;
843 case PRINT_STRING:
844 case PRINT_BSTRING:
845 free(arg->string.string);
846 break;
847 case PRINT_BITMASK:
848 free(arg->bitmask.bitmask);
849 break;
850 case PRINT_DYNAMIC_ARRAY:
851 case PRINT_DYNAMIC_ARRAY_LEN:
852 free(arg->dynarray.index);
853 break;
854 case PRINT_OP:
855 free(arg->op.op);
856 free_arg(arg->op.left);
857 free_arg(arg->op.right);
858 break;
859 case PRINT_FUNC:
860 while (arg->func.args) {
861 farg = arg->func.args;
862 arg->func.args = farg->next;
863 free_arg(farg);
864 }
865 break;
866
867 case PRINT_NULL:
868 default:
869 break;
870 }
871
872 free(arg);
873}
874
875static enum event_type get_type(int ch)
876{
877 if (ch == '\n')
878 return EVENT_NEWLINE;
879 if (isspace(ch))
880 return EVENT_SPACE;
881 if (isalnum(ch) || ch == '_')
882 return EVENT_ITEM;
883 if (ch == '\'')
884 return EVENT_SQUOTE;
885 if (ch == '"')
886 return EVENT_DQUOTE;
887 if (!isprint(ch))
888 return EVENT_NONE;
889 if (ch == '(' || ch == ')' || ch == ',')
890 return EVENT_DELIM;
891
892 return EVENT_OP;
893}
894
895static int __read_char(void)
896{
897 if (input_buf_ptr >= input_buf_siz)
898 return -1;
899
900 return input_buf[input_buf_ptr++];
901}
902
903static int __peek_char(void)
904{
905 if (input_buf_ptr >= input_buf_siz)
906 return -1;
907
908 return input_buf[input_buf_ptr];
909}
910
911/**
912 * pevent_peek_char - peek at the next character that will be read
913 *
914 * Returns the next character read, or -1 if end of buffer.
915 */
916int pevent_peek_char(void)
917{
918 return __peek_char();
919}
920
921static int extend_token(char **tok, char *buf, int size)
922{
923 char *newtok = realloc(*tok, size);
924
925 if (!newtok) {
926 free(*tok);
927 *tok = NULL;
928 return -1;
929 }
930
931 if (!*tok)
932 strcpy(newtok, buf);
933 else
934 strcat(newtok, buf);
935 *tok = newtok;
936
937 return 0;
938}
939
940static enum event_type force_token(const char *str, char **tok);
941
942static enum event_type __read_token(char **tok)
943{
944 char buf[BUFSIZ];
945 int ch, last_ch, quote_ch, next_ch;
946 int i = 0;
947 int tok_size = 0;
948 enum event_type type;
949
950 *tok = NULL;
951
952
953 ch = __read_char();
954 if (ch < 0)
955 return EVENT_NONE;
956
957 type = get_type(ch);
958 if (type == EVENT_NONE)
959 return type;
960
961 buf[i++] = ch;
962
963 switch (type) {
964 case EVENT_NEWLINE:
965 case EVENT_DELIM:
966 if (asprintf(tok, "%c", ch) < 0)
967 return EVENT_ERROR;
968
969 return type;
970
971 case EVENT_OP:
972 switch (ch) {
973 case '-':
974 next_ch = __peek_char();
975 if (next_ch == '>') {
976 buf[i++] = __read_char();
977 break;
978 }
979 /* fall through */
980 case '+':
981 case '|':
982 case '&':
983 case '>':
984 case '<':
985 last_ch = ch;
986 ch = __peek_char();
987 if (ch != last_ch)
988 goto test_equal;
989 buf[i++] = __read_char();
990 switch (last_ch) {
991 case '>':
992 case '<':
993 goto test_equal;
994 default:
995 break;
996 }
997 break;
998 case '!':
999 case '=':
1000 goto test_equal;
1001 default: /* what should we do instead? */
1002 break;
1003 }
1004 buf[i] = 0;
1005 *tok = strdup(buf);
1006 return type;
1007
1008 test_equal:
1009 ch = __peek_char();
1010 if (ch == '=')
1011 buf[i++] = __read_char();
1012 goto out;
1013
1014 case EVENT_DQUOTE:
1015 case EVENT_SQUOTE:
1016 /* don't keep quotes */
1017 i--;
1018 quote_ch = ch;
1019 last_ch = 0;
1020 concat:
1021 do {
1022 if (i == (BUFSIZ - 1)) {
1023 buf[i] = 0;
1024 tok_size += BUFSIZ;
1025
1026 if (extend_token(tok, buf, tok_size) < 0)
1027 return EVENT_NONE;
1028 i = 0;
1029 }
1030 last_ch = ch;
1031 ch = __read_char();
1032 buf[i++] = ch;
1033 /* the '\' '\' will cancel itself */
1034 if (ch == '\\' && last_ch == '\\')
1035 last_ch = 0;
1036 } while (ch != quote_ch || last_ch == '\\');
1037 /* remove the last quote */
1038 i--;
1039
1040 /*
1041 * For strings (double quotes) check the next token.
1042 * If it is another string, concatinate the two.
1043 */
1044 if (type == EVENT_DQUOTE) {
1045 unsigned long long save_input_buf_ptr = input_buf_ptr;
1046
1047 do {
1048 ch = __read_char();
1049 } while (isspace(ch));
1050 if (ch == '"')
1051 goto concat;
1052 input_buf_ptr = save_input_buf_ptr;
1053 }
1054
1055 goto out;
1056
1057 case EVENT_ERROR ... EVENT_SPACE:
1058 case EVENT_ITEM:
1059 default:
1060 break;
1061 }
1062
1063 while (get_type(__peek_char()) == type) {
1064 if (i == (BUFSIZ - 1)) {
1065 buf[i] = 0;
1066 tok_size += BUFSIZ;
1067
1068 if (extend_token(tok, buf, tok_size) < 0)
1069 return EVENT_NONE;
1070 i = 0;
1071 }
1072 ch = __read_char();
1073 buf[i++] = ch;
1074 }
1075
1076 out:
1077 buf[i] = 0;
1078 if (extend_token(tok, buf, tok_size + i + 1) < 0)
1079 return EVENT_NONE;
1080
1081 if (type == EVENT_ITEM) {
1082 /*
1083 * Older versions of the kernel has a bug that
1084 * creates invalid symbols and will break the mac80211
1085 * parsing. This is a work around to that bug.
1086 *
1087 * See Linux kernel commit:
1088 * 811cb50baf63461ce0bdb234927046131fc7fa8b
1089 */
1090 if (strcmp(*tok, "LOCAL_PR_FMT") == 0) {
1091 free(*tok);
1092 *tok = NULL;
1093 return force_token("\"\%s\" ", tok);
1094 } else if (strcmp(*tok, "STA_PR_FMT") == 0) {
1095 free(*tok);
1096 *tok = NULL;
1097 return force_token("\" sta:%pM\" ", tok);
1098 } else if (strcmp(*tok, "VIF_PR_FMT") == 0) {
1099 free(*tok);
1100 *tok = NULL;
1101 return force_token("\" vif:%p(%d)\" ", tok);
1102 }
1103 }
1104
1105 return type;
1106}
1107
1108static enum event_type force_token(const char *str, char **tok)
1109{
1110 const char *save_input_buf;
1111 unsigned long long save_input_buf_ptr;
1112 unsigned long long save_input_buf_siz;
1113 enum event_type type;
1114
1115 /* save off the current input pointers */
1116 save_input_buf = input_buf;
1117 save_input_buf_ptr = input_buf_ptr;
1118 save_input_buf_siz = input_buf_siz;
1119
1120 init_input_buf(str, strlen(str));
1121
1122 type = __read_token(tok);
1123
1124 /* reset back to original token */
1125 input_buf = save_input_buf;
1126 input_buf_ptr = save_input_buf_ptr;
1127 input_buf_siz = save_input_buf_siz;
1128
1129 return type;
1130}
1131
1132static void free_token(char *tok)
1133{
1134 if (tok)
1135 free(tok);
1136}
1137
1138static enum event_type read_token(char **tok)
1139{
1140 enum event_type type;
1141
1142 for (;;) {
1143 type = __read_token(tok);
1144 if (type != EVENT_SPACE)
1145 return type;
1146
1147 free_token(*tok);
1148 }
1149
1150 /* not reached */
1151 *tok = NULL;
1152 return EVENT_NONE;
1153}
1154
1155/**
1156 * pevent_read_token - access to utilites to use the pevent parser
1157 * @tok: The token to return
1158 *
1159 * This will parse tokens from the string given by
1160 * pevent_init_data().
1161 *
1162 * Returns the token type.
1163 */
1164enum event_type pevent_read_token(char **tok)
1165{
1166 return read_token(tok);
1167}
1168
1169/**
1170 * pevent_free_token - free a token returned by pevent_read_token
1171 * @token: the token to free
1172 */
1173void pevent_free_token(char *token)
1174{
1175 free_token(token);
1176}
1177
1178/* no newline */
1179static enum event_type read_token_item(char **tok)
1180{
1181 enum event_type type;
1182
1183 for (;;) {
1184 type = __read_token(tok);
1185 if (type != EVENT_SPACE && type != EVENT_NEWLINE)
1186 return type;
1187 free_token(*tok);
1188 *tok = NULL;
1189 }
1190
1191 /* not reached */
1192 *tok = NULL;
1193 return EVENT_NONE;
1194}
1195
1196static int test_type(enum event_type type, enum event_type expect)
1197{
1198 if (type != expect) {
1199 do_warning("Error: expected type %d but read %d",
1200 expect, type);
1201 return -1;
1202 }
1203 return 0;
1204}
1205
1206static int test_type_token(enum event_type type, const char *token,
1207 enum event_type expect, const char *expect_tok)
1208{
1209 if (type != expect) {
1210 do_warning("Error: expected type %d but read %d",
1211 expect, type);
1212 return -1;
1213 }
1214
1215 if (strcmp(token, expect_tok) != 0) {
1216 do_warning("Error: expected '%s' but read '%s'",
1217 expect_tok, token);
1218 return -1;
1219 }
1220 return 0;
1221}
1222
1223static int __read_expect_type(enum event_type expect, char **tok, int newline_ok)
1224{
1225 enum event_type type;
1226
1227 if (newline_ok)
1228 type = read_token(tok);
1229 else
1230 type = read_token_item(tok);
1231 return test_type(type, expect);
1232}
1233
1234static int read_expect_type(enum event_type expect, char **tok)
1235{
1236 return __read_expect_type(expect, tok, 1);
1237}
1238
1239static int __read_expected(enum event_type expect, const char *str,
1240 int newline_ok)
1241{
1242 enum event_type type;
1243 char *token;
1244 int ret;
1245
1246 if (newline_ok)
1247 type = read_token(&token);
1248 else
1249 type = read_token_item(&token);
1250
1251 ret = test_type_token(type, token, expect, str);
1252
1253 free_token(token);
1254
1255 return ret;
1256}
1257
1258static int read_expected(enum event_type expect, const char *str)
1259{
1260 return __read_expected(expect, str, 1);
1261}
1262
1263static int read_expected_item(enum event_type expect, const char *str)
1264{
1265 return __read_expected(expect, str, 0);
1266}
1267
1268static char *event_read_name(void)
1269{
1270 char *token;
1271
1272 if (read_expected(EVENT_ITEM, "name") < 0)
1273 return NULL;
1274
1275 if (read_expected(EVENT_OP, ":") < 0)
1276 return NULL;
1277
1278 if (read_expect_type(EVENT_ITEM, &token) < 0)
1279 goto fail;
1280
1281 return token;
1282
1283 fail:
1284 free_token(token);
1285 return NULL;
1286}
1287
1288static int event_read_id(void)
1289{
1290 char *token;
1291 int id;
1292
1293 if (read_expected_item(EVENT_ITEM, "ID") < 0)
1294 return -1;
1295
1296 if (read_expected(EVENT_OP, ":") < 0)
1297 return -1;
1298
1299 if (read_expect_type(EVENT_ITEM, &token) < 0)
1300 goto fail;
1301
1302 id = strtoul(token, NULL, 0);
1303 free_token(token);
1304 return id;
1305
1306 fail:
1307 free_token(token);
1308 return -1;
1309}
1310
1311static int field_is_string(struct format_field *field)
1312{
1313 if ((field->flags & FIELD_IS_ARRAY) &&
1314 (strstr(field->type, "char") || strstr(field->type, "u8") ||
1315 strstr(field->type, "s8")))
1316 return 1;
1317
1318 return 0;
1319}
1320
1321static int field_is_dynamic(struct format_field *field)
1322{
1323 if (strncmp(field->type, "__data_loc", 10) == 0)
1324 return 1;
1325
1326 return 0;
1327}
1328
1329static int field_is_long(struct format_field *field)
1330{
1331 /* includes long long */
1332 if (strstr(field->type, "long"))
1333 return 1;
1334
1335 return 0;
1336}
1337
1338static unsigned int type_size(const char *name)
1339{
1340 /* This covers all FIELD_IS_STRING types. */
1341 static struct {
1342 const char *type;
1343 unsigned int size;
1344 } table[] = {
1345 { "u8", 1 },
1346 { "u16", 2 },
1347 { "u32", 4 },
1348 { "u64", 8 },
1349 { "s8", 1 },
1350 { "s16", 2 },
1351 { "s32", 4 },
1352 { "s64", 8 },
1353 { "char", 1 },
1354 { },
1355 };
1356 int i;
1357
1358 for (i = 0; table[i].type; i++) {
1359 if (!strcmp(table[i].type, name))
1360 return table[i].size;
1361 }
1362
1363 return 0;
1364}
1365
1366static int event_read_fields(struct event_format *event, struct format_field **fields)
1367{
1368 struct format_field *field = NULL;
1369 enum event_type type;
1370 char *token;
1371 char *last_token;
1372 int count = 0;
1373
1374 do {
1375 unsigned int size_dynamic = 0;
1376
1377 type = read_token(&token);
1378 if (type == EVENT_NEWLINE) {
1379 free_token(token);
1380 return count;
1381 }
1382
1383 count++;
1384
1385 if (test_type_token(type, token, EVENT_ITEM, "field"))
1386 goto fail;
1387 free_token(token);
1388
1389 type = read_token(&token);
1390 /*
1391 * The ftrace fields may still use the "special" name.
1392 * Just ignore it.
1393 */
1394 if (event->flags & EVENT_FL_ISFTRACE &&
1395 type == EVENT_ITEM && strcmp(token, "special") == 0) {
1396 free_token(token);
1397 type = read_token(&token);
1398 }
1399
1400 if (test_type_token(type, token, EVENT_OP, ":") < 0)
1401 goto fail;
1402
1403 free_token(token);
1404 if (read_expect_type(EVENT_ITEM, &token) < 0)
1405 goto fail;
1406
1407 last_token = token;
1408
1409 field = calloc(1, sizeof(*field));
1410 if (!field)
1411 goto fail;
1412
1413 field->event = event;
1414
1415 /* read the rest of the type */
1416 for (;;) {
1417 type = read_token(&token);
1418 if (type == EVENT_ITEM ||
1419 (type == EVENT_OP && strcmp(token, "*") == 0) ||
1420 /*
1421 * Some of the ftrace fields are broken and have
1422 * an illegal "." in them.
1423 */
1424 (event->flags & EVENT_FL_ISFTRACE &&
1425 type == EVENT_OP && strcmp(token, ".") == 0)) {
1426
1427 if (strcmp(token, "*") == 0)
1428 field->flags |= FIELD_IS_POINTER;
1429
1430 if (field->type) {
1431 char *new_type;
1432 new_type = realloc(field->type,
1433 strlen(field->type) +
1434 strlen(last_token) + 2);
1435 if (!new_type) {
1436 free(last_token);
1437 goto fail;
1438 }
1439 field->type = new_type;
1440 strcat(field->type, " ");
1441 strcat(field->type, last_token);
1442 free(last_token);
1443 } else
1444 field->type = last_token;
1445 last_token = token;
1446 continue;
1447 }
1448
1449 break;
1450 }
1451
1452 if (!field->type) {
1453 do_warning_event(event, "%s: no type found", __func__);
1454 goto fail;
1455 }
1456 field->name = field->alias = last_token;
1457
1458 if (test_type(type, EVENT_OP))
1459 goto fail;
1460
1461 if (strcmp(token, "[") == 0) {
1462 enum event_type last_type = type;
1463 char *brackets = token;
1464 char *new_brackets;
1465 int len;
1466
1467 field->flags |= FIELD_IS_ARRAY;
1468
1469 type = read_token(&token);
1470
1471 if (type == EVENT_ITEM)
1472 field->arraylen = strtoul(token, NULL, 0);
1473 else
1474 field->arraylen = 0;
1475
1476 while (strcmp(token, "]") != 0) {
1477 if (last_type == EVENT_ITEM &&
1478 type == EVENT_ITEM)
1479 len = 2;
1480 else
1481 len = 1;
1482 last_type = type;
1483
1484 new_brackets = realloc(brackets,
1485 strlen(brackets) +
1486 strlen(token) + len);
1487 if (!new_brackets) {
1488 free(brackets);
1489 goto fail;
1490 }
1491 brackets = new_brackets;
1492 if (len == 2)
1493 strcat(brackets, " ");
1494 strcat(brackets, token);
1495 /* We only care about the last token */
1496 field->arraylen = strtoul(token, NULL, 0);
1497 free_token(token);
1498 type = read_token(&token);
1499 if (type == EVENT_NONE) {
1500 do_warning_event(event, "failed to find token");
1501 goto fail;
1502 }
1503 }
1504
1505 free_token(token);
1506
1507 new_brackets = realloc(brackets, strlen(brackets) + 2);
1508 if (!new_brackets) {
1509 free(brackets);
1510 goto fail;
1511 }
1512 brackets = new_brackets;
1513 strcat(brackets, "]");
1514
1515 /* add brackets to type */
1516
1517 type = read_token(&token);
1518 /*
1519 * If the next token is not an OP, then it is of
1520 * the format: type [] item;
1521 */
1522 if (type == EVENT_ITEM) {
1523 char *new_type;
1524 new_type = realloc(field->type,
1525 strlen(field->type) +
1526 strlen(field->name) +
1527 strlen(brackets) + 2);
1528 if (!new_type) {
1529 free(brackets);
1530 goto fail;
1531 }
1532 field->type = new_type;
1533 strcat(field->type, " ");
1534 strcat(field->type, field->name);
1535 size_dynamic = type_size(field->name);
1536 free_token(field->name);
1537 strcat(field->type, brackets);
1538 field->name = field->alias = token;
1539 type = read_token(&token);
1540 } else {
1541 char *new_type;
1542 new_type = realloc(field->type,
1543 strlen(field->type) +
1544 strlen(brackets) + 1);
1545 if (!new_type) {
1546 free(brackets);
1547 goto fail;
1548 }
1549 field->type = new_type;
1550 strcat(field->type, brackets);
1551 }
1552 free(brackets);
1553 }
1554
1555 if (field_is_string(field))
1556 field->flags |= FIELD_IS_STRING;
1557 if (field_is_dynamic(field))
1558 field->flags |= FIELD_IS_DYNAMIC;
1559 if (field_is_long(field))
1560 field->flags |= FIELD_IS_LONG;
1561
1562 if (test_type_token(type, token, EVENT_OP, ";"))
1563 goto fail;
1564 free_token(token);
1565
1566 if (read_expected(EVENT_ITEM, "offset") < 0)
1567 goto fail_expect;
1568
1569 if (read_expected(EVENT_OP, ":") < 0)
1570 goto fail_expect;
1571
1572 if (read_expect_type(EVENT_ITEM, &token))
1573 goto fail;
1574 field->offset = strtoul(token, NULL, 0);
1575 free_token(token);
1576
1577 if (read_expected(EVENT_OP, ";") < 0)
1578 goto fail_expect;
1579
1580 if (read_expected(EVENT_ITEM, "size") < 0)
1581 goto fail_expect;
1582
1583 if (read_expected(EVENT_OP, ":") < 0)
1584 goto fail_expect;
1585
1586 if (read_expect_type(EVENT_ITEM, &token))
1587 goto fail;
1588 field->size = strtoul(token, NULL, 0);
1589 free_token(token);
1590
1591 if (read_expected(EVENT_OP, ";") < 0)
1592 goto fail_expect;
1593
1594 type = read_token(&token);
1595 if (type != EVENT_NEWLINE) {
1596 /* newer versions of the kernel have a "signed" type */
1597 if (test_type_token(type, token, EVENT_ITEM, "signed"))
1598 goto fail;
1599
1600 free_token(token);
1601
1602 if (read_expected(EVENT_OP, ":") < 0)
1603 goto fail_expect;
1604
1605 if (read_expect_type(EVENT_ITEM, &token))
1606 goto fail;
1607
1608 if (strtoul(token, NULL, 0))
1609 field->flags |= FIELD_IS_SIGNED;
1610
1611 free_token(token);
1612 if (read_expected(EVENT_OP, ";") < 0)
1613 goto fail_expect;
1614
1615 if (read_expect_type(EVENT_NEWLINE, &token))
1616 goto fail;
1617 }
1618
1619 free_token(token);
1620
1621 if (field->flags & FIELD_IS_ARRAY) {
1622 if (field->arraylen)
1623 field->elementsize = field->size / field->arraylen;
1624 else if (field->flags & FIELD_IS_DYNAMIC)
1625 field->elementsize = size_dynamic;
1626 else if (field->flags & FIELD_IS_STRING)
1627 field->elementsize = 1;
1628 else if (field->flags & FIELD_IS_LONG)
1629 field->elementsize = event->pevent ?
1630 event->pevent->long_size :
1631 sizeof(long);
1632 } else
1633 field->elementsize = field->size;
1634
1635 *fields = field;
1636 fields = &field->next;
1637
1638 } while (1);
1639
1640 return 0;
1641
1642fail:
1643 free_token(token);
1644fail_expect:
1645 if (field) {
1646 free(field->type);
1647 free(field->name);
1648 free(field);
1649 }
1650 return -1;
1651}
1652
1653static int event_read_format(struct event_format *event)
1654{
1655 char *token;
1656 int ret;
1657
1658 if (read_expected_item(EVENT_ITEM, "format") < 0)
1659 return -1;
1660
1661 if (read_expected(EVENT_OP, ":") < 0)
1662 return -1;
1663
1664 if (read_expect_type(EVENT_NEWLINE, &token))
1665 goto fail;
1666 free_token(token);
1667
1668 ret = event_read_fields(event, &event->format.common_fields);
1669 if (ret < 0)
1670 return ret;
1671 event->format.nr_common = ret;
1672
1673 ret = event_read_fields(event, &event->format.fields);
1674 if (ret < 0)
1675 return ret;
1676 event->format.nr_fields = ret;
1677
1678 return 0;
1679
1680 fail:
1681 free_token(token);
1682 return -1;
1683}
1684
1685static enum event_type
1686process_arg_token(struct event_format *event, struct print_arg *arg,
1687 char **tok, enum event_type type);
1688
1689static enum event_type
1690process_arg(struct event_format *event, struct print_arg *arg, char **tok)
1691{
1692 enum event_type type;
1693 char *token;
1694
1695 type = read_token(&token);
1696 *tok = token;
1697
1698 return process_arg_token(event, arg, tok, type);
1699}
1700
1701static enum event_type
1702process_op(struct event_format *event, struct print_arg *arg, char **tok);
1703
1704/*
1705 * For __print_symbolic() and __print_flags, we need to completely
1706 * evaluate the first argument, which defines what to print next.
1707 */
1708static enum event_type
1709process_field_arg(struct event_format *event, struct print_arg *arg, char **tok)
1710{
1711 enum event_type type;
1712
1713 type = process_arg(event, arg, tok);
1714
1715 while (type == EVENT_OP) {
1716 type = process_op(event, arg, tok);
1717 }
1718
1719 return type;
1720}
1721
1722static enum event_type
1723process_cond(struct event_format *event, struct print_arg *top, char **tok)
1724{
1725 struct print_arg *arg, *left, *right;
1726 enum event_type type;
1727 char *token = NULL;
1728
1729 arg = alloc_arg();
1730 left = alloc_arg();
1731 right = alloc_arg();
1732
1733 if (!arg || !left || !right) {
1734 do_warning_event(event, "%s: not enough memory!", __func__);
1735 /* arg will be freed at out_free */
1736 free_arg(left);
1737 free_arg(right);
1738 goto out_free;
1739 }
1740
1741 arg->type = PRINT_OP;
1742 arg->op.left = left;
1743 arg->op.right = right;
1744
1745 *tok = NULL;
1746 type = process_arg(event, left, &token);
1747
1748 again:
1749 if (type == EVENT_ERROR)
1750 goto out_free;
1751
1752 /* Handle other operations in the arguments */
1753 if (type == EVENT_OP && strcmp(token, ":") != 0) {
1754 type = process_op(event, left, &token);
1755 goto again;
1756 }
1757
1758 if (test_type_token(type, token, EVENT_OP, ":"))
1759 goto out_free;
1760
1761 arg->op.op = token;
1762
1763 type = process_arg(event, right, &token);
1764
1765 top->op.right = arg;
1766
1767 *tok = token;
1768 return type;
1769
1770out_free:
1771 /* Top may point to itself */
1772 top->op.right = NULL;
1773 free_token(token);
1774 free_arg(arg);
1775 return EVENT_ERROR;
1776}
1777
1778static enum event_type
1779process_array(struct event_format *event, struct print_arg *top, char **tok)
1780{
1781 struct print_arg *arg;
1782 enum event_type type;
1783 char *token = NULL;
1784
1785 arg = alloc_arg();
1786 if (!arg) {
1787 do_warning_event(event, "%s: not enough memory!", __func__);
1788 /* '*tok' is set to top->op.op. No need to free. */
1789 *tok = NULL;
1790 return EVENT_ERROR;
1791 }
1792
1793 *tok = NULL;
1794 type = process_arg(event, arg, &token);
1795 if (test_type_token(type, token, EVENT_OP, "]"))
1796 goto out_free;
1797
1798 top->op.right = arg;
1799
1800 free_token(token);
1801 type = read_token_item(&token);
1802 *tok = token;
1803
1804 return type;
1805
1806out_free:
1807 free_token(token);
1808 free_arg(arg);
1809 return EVENT_ERROR;
1810}
1811
1812static int get_op_prio(char *op)
1813{
1814 if (!op[1]) {
1815 switch (op[0]) {
1816 case '~':
1817 case '!':
1818 return 4;
1819 case '*':
1820 case '/':
1821 case '%':
1822 return 6;
1823 case '+':
1824 case '-':
1825 return 7;
1826 /* '>>' and '<<' are 8 */
1827 case '<':
1828 case '>':
1829 return 9;
1830 /* '==' and '!=' are 10 */
1831 case '&':
1832 return 11;
1833 case '^':
1834 return 12;
1835 case '|':
1836 return 13;
1837 case '?':
1838 return 16;
1839 default:
1840 do_warning("unknown op '%c'", op[0]);
1841 return -1;
1842 }
1843 } else {
1844 if (strcmp(op, "++") == 0 ||
1845 strcmp(op, "--") == 0) {
1846 return 3;
1847 } else if (strcmp(op, ">>") == 0 ||
1848 strcmp(op, "<<") == 0) {
1849 return 8;
1850 } else if (strcmp(op, ">=") == 0 ||
1851 strcmp(op, "<=") == 0) {
1852 return 9;
1853 } else if (strcmp(op, "==") == 0 ||
1854 strcmp(op, "!=") == 0) {
1855 return 10;
1856 } else if (strcmp(op, "&&") == 0) {
1857 return 14;
1858 } else if (strcmp(op, "||") == 0) {
1859 return 15;
1860 } else {
1861 do_warning("unknown op '%s'", op);
1862 return -1;
1863 }
1864 }
1865}
1866
1867static int set_op_prio(struct print_arg *arg)
1868{
1869
1870 /* single ops are the greatest */
1871 if (!arg->op.left || arg->op.left->type == PRINT_NULL)
1872 arg->op.prio = 0;
1873 else
1874 arg->op.prio = get_op_prio(arg->op.op);
1875
1876 return arg->op.prio;
1877}
1878
1879/* Note, *tok does not get freed, but will most likely be saved */
1880static enum event_type
1881process_op(struct event_format *event, struct print_arg *arg, char **tok)
1882{
1883 struct print_arg *left, *right = NULL;
1884 enum event_type type;
1885 char *token;
1886
1887 /* the op is passed in via tok */
1888 token = *tok;
1889
1890 if (arg->type == PRINT_OP && !arg->op.left) {
1891 /* handle single op */
1892 if (token[1]) {
1893 do_warning_event(event, "bad op token %s", token);
1894 goto out_free;
1895 }
1896 switch (token[0]) {
1897 case '~':
1898 case '!':
1899 case '+':
1900 case '-':
1901 break;
1902 default:
1903 do_warning_event(event, "bad op token %s", token);
1904 goto out_free;
1905
1906 }
1907
1908 /* make an empty left */
1909 left = alloc_arg();
1910 if (!left)
1911 goto out_warn_free;
1912
1913 left->type = PRINT_NULL;
1914 arg->op.left = left;
1915
1916 right = alloc_arg();
1917 if (!right)
1918 goto out_warn_free;
1919
1920 arg->op.right = right;
1921
1922 /* do not free the token, it belongs to an op */
1923 *tok = NULL;
1924 type = process_arg(event, right, tok);
1925
1926 } else if (strcmp(token, "?") == 0) {
1927
1928 left = alloc_arg();
1929 if (!left)
1930 goto out_warn_free;
1931
1932 /* copy the top arg to the left */
1933 *left = *arg;
1934
1935 arg->type = PRINT_OP;
1936 arg->op.op = token;
1937 arg->op.left = left;
1938 arg->op.prio = 0;
1939
1940 /* it will set arg->op.right */
1941 type = process_cond(event, arg, tok);
1942
1943 } else if (strcmp(token, ">>") == 0 ||
1944 strcmp(token, "<<") == 0 ||
1945 strcmp(token, "&") == 0 ||
1946 strcmp(token, "|") == 0 ||
1947 strcmp(token, "&&") == 0 ||
1948 strcmp(token, "||") == 0 ||
1949 strcmp(token, "-") == 0 ||
1950 strcmp(token, "+") == 0 ||
1951 strcmp(token, "*") == 0 ||
1952 strcmp(token, "^") == 0 ||
1953 strcmp(token, "/") == 0 ||
1954 strcmp(token, "%") == 0 ||
1955 strcmp(token, "<") == 0 ||
1956 strcmp(token, ">") == 0 ||
1957 strcmp(token, "<=") == 0 ||
1958 strcmp(token, ">=") == 0 ||
1959 strcmp(token, "==") == 0 ||
1960 strcmp(token, "!=") == 0) {
1961
1962 left = alloc_arg();
1963 if (!left)
1964 goto out_warn_free;
1965
1966 /* copy the top arg to the left */
1967 *left = *arg;
1968
1969 arg->type = PRINT_OP;
1970 arg->op.op = token;
1971 arg->op.left = left;
1972 arg->op.right = NULL;
1973
1974 if (set_op_prio(arg) == -1) {
1975 event->flags |= EVENT_FL_FAILED;
1976 /* arg->op.op (= token) will be freed at out_free */
1977 arg->op.op = NULL;
1978 goto out_free;
1979 }
1980
1981 type = read_token_item(&token);
1982 *tok = token;
1983
1984 /* could just be a type pointer */
1985 if ((strcmp(arg->op.op, "*") == 0) &&
1986 type == EVENT_DELIM && (strcmp(token, ")") == 0)) {
1987 char *new_atom;
1988
1989 if (left->type != PRINT_ATOM) {
1990 do_warning_event(event, "bad pointer type");
1991 goto out_free;
1992 }
1993 new_atom = realloc(left->atom.atom,
1994 strlen(left->atom.atom) + 3);
1995 if (!new_atom)
1996 goto out_warn_free;
1997
1998 left->atom.atom = new_atom;
1999 strcat(left->atom.atom, " *");
2000 free(arg->op.op);
2001 *arg = *left;
2002 free(left);
2003
2004 return type;
2005 }
2006
2007 right = alloc_arg();
2008 if (!right)
2009 goto out_warn_free;
2010
2011 type = process_arg_token(event, right, tok, type);
2012 if (type == EVENT_ERROR) {
2013 free_arg(right);
2014 /* token was freed in process_arg_token() via *tok */
2015 token = NULL;
2016 goto out_free;
2017 }
2018
2019 if (right->type == PRINT_OP &&
2020 get_op_prio(arg->op.op) < get_op_prio(right->op.op)) {
2021 struct print_arg tmp;
2022
2023 /* rotate ops according to the priority */
2024 arg->op.right = right->op.left;
2025
2026 tmp = *arg;
2027 *arg = *right;
2028 *right = tmp;
2029
2030 arg->op.left = right;
2031 } else {
2032 arg->op.right = right;
2033 }
2034
2035 } else if (strcmp(token, "[") == 0) {
2036
2037 left = alloc_arg();
2038 if (!left)
2039 goto out_warn_free;
2040
2041 *left = *arg;
2042
2043 arg->type = PRINT_OP;
2044 arg->op.op = token;
2045 arg->op.left = left;
2046
2047 arg->op.prio = 0;
2048
2049 /* it will set arg->op.right */
2050 type = process_array(event, arg, tok);
2051
2052 } else {
2053 do_warning_event(event, "unknown op '%s'", token);
2054 event->flags |= EVENT_FL_FAILED;
2055 /* the arg is now the left side */
2056 goto out_free;
2057 }
2058
2059 if (type == EVENT_OP && strcmp(*tok, ":") != 0) {
2060 int prio;
2061
2062 /* higher prios need to be closer to the root */
2063 prio = get_op_prio(*tok);
2064
2065 if (prio > arg->op.prio)
2066 return process_op(event, arg, tok);
2067
2068 return process_op(event, right, tok);
2069 }
2070
2071 return type;
2072
2073out_warn_free:
2074 do_warning_event(event, "%s: not enough memory!", __func__);
2075out_free:
2076 free_token(token);
2077 *tok = NULL;
2078 return EVENT_ERROR;
2079}
2080
2081static enum event_type
2082process_entry(struct event_format *event __maybe_unused, struct print_arg *arg,
2083 char **tok)
2084{
2085 enum event_type type;
2086 char *field;
2087 char *token;
2088
2089 if (read_expected(EVENT_OP, "->") < 0)
2090 goto out_err;
2091
2092 if (read_expect_type(EVENT_ITEM, &token) < 0)
2093 goto out_free;
2094 field = token;
2095
2096 arg->type = PRINT_FIELD;
2097 arg->field.name = field;
2098
2099 if (is_flag_field) {
2100 arg->field.field = pevent_find_any_field(event, arg->field.name);
2101 arg->field.field->flags |= FIELD_IS_FLAG;
2102 is_flag_field = 0;
2103 } else if (is_symbolic_field) {
2104 arg->field.field = pevent_find_any_field(event, arg->field.name);
2105 arg->field.field->flags |= FIELD_IS_SYMBOLIC;
2106 is_symbolic_field = 0;
2107 }
2108
2109 type = read_token(&token);
2110 *tok = token;
2111
2112 return type;
2113
2114 out_free:
2115 free_token(token);
2116 out_err:
2117 *tok = NULL;
2118 return EVENT_ERROR;
2119}
2120
2121static int alloc_and_process_delim(struct event_format *event, char *next_token,
2122 struct print_arg **print_arg)
2123{
2124 struct print_arg *field;
2125 enum event_type type;
2126 char *token;
2127 int ret = 0;
2128
2129 field = alloc_arg();
2130 if (!field) {
2131 do_warning_event(event, "%s: not enough memory!", __func__);
2132 errno = ENOMEM;
2133 return -1;
2134 }
2135
2136 type = process_arg(event, field, &token);
2137
2138 if (test_type_token(type, token, EVENT_DELIM, next_token)) {
2139 errno = EINVAL;
2140 ret = -1;
2141 free_arg(field);
2142 goto out_free_token;
2143 }
2144
2145 *print_arg = field;
2146
2147out_free_token:
2148 free_token(token);
2149
2150 return ret;
2151}
2152
2153static char *arg_eval (struct print_arg *arg);
2154
2155static unsigned long long
2156eval_type_str(unsigned long long val, const char *type, int pointer)
2157{
2158 int sign = 0;
2159 char *ref;
2160 int len;
2161
2162 len = strlen(type);
2163
2164 if (pointer) {
2165
2166 if (type[len-1] != '*') {
2167 do_warning("pointer expected with non pointer type");
2168 return val;
2169 }
2170
2171 ref = malloc(len);
2172 if (!ref) {
2173 do_warning("%s: not enough memory!", __func__);
2174 return val;
2175 }
2176 memcpy(ref, type, len);
2177
2178 /* chop off the " *" */
2179 ref[len - 2] = 0;
2180
2181 val = eval_type_str(val, ref, 0);
2182 free(ref);
2183 return val;
2184 }
2185
2186 /* check if this is a pointer */
2187 if (type[len - 1] == '*')
2188 return val;
2189
2190 /* Try to figure out the arg size*/
2191 if (strncmp(type, "struct", 6) == 0)
2192 /* all bets off */
2193 return val;
2194
2195 if (strcmp(type, "u8") == 0)
2196 return val & 0xff;
2197
2198 if (strcmp(type, "u16") == 0)
2199 return val & 0xffff;
2200
2201 if (strcmp(type, "u32") == 0)
2202 return val & 0xffffffff;
2203
2204 if (strcmp(type, "u64") == 0 ||
2205 strcmp(type, "s64"))
2206 return val;
2207
2208 if (strcmp(type, "s8") == 0)
2209 return (unsigned long long)(char)val & 0xff;
2210
2211 if (strcmp(type, "s16") == 0)
2212 return (unsigned long long)(short)val & 0xffff;
2213
2214 if (strcmp(type, "s32") == 0)
2215 return (unsigned long long)(int)val & 0xffffffff;
2216
2217 if (strncmp(type, "unsigned ", 9) == 0) {
2218 sign = 0;
2219 type += 9;
2220 }
2221
2222 if (strcmp(type, "char") == 0) {
2223 if (sign)
2224 return (unsigned long long)(char)val & 0xff;
2225 else
2226 return val & 0xff;
2227 }
2228
2229 if (strcmp(type, "short") == 0) {
2230 if (sign)
2231 return (unsigned long long)(short)val & 0xffff;
2232 else
2233 return val & 0xffff;
2234 }
2235
2236 if (strcmp(type, "int") == 0) {
2237 if (sign)
2238 return (unsigned long long)(int)val & 0xffffffff;
2239 else
2240 return val & 0xffffffff;
2241 }
2242
2243 return val;
2244}
2245
2246/*
2247 * Try to figure out the type.
2248 */
2249static unsigned long long
2250eval_type(unsigned long long val, struct print_arg *arg, int pointer)
2251{
2252 if (arg->type != PRINT_TYPE) {
2253 do_warning("expected type argument");
2254 return 0;
2255 }
2256
2257 return eval_type_str(val, arg->typecast.type, pointer);
2258}
2259
2260static int arg_num_eval(struct print_arg *arg, long long *val)
2261{
2262 long long left, right;
2263 int ret = 1;
2264
2265 switch (arg->type) {
2266 case PRINT_ATOM:
2267 *val = strtoll(arg->atom.atom, NULL, 0);
2268 break;
2269 case PRINT_TYPE:
2270 ret = arg_num_eval(arg->typecast.item, val);
2271 if (!ret)
2272 break;
2273 *val = eval_type(*val, arg, 0);
2274 break;
2275 case PRINT_OP:
2276 switch (arg->op.op[0]) {
2277 case '|':
2278 ret = arg_num_eval(arg->op.left, &left);
2279 if (!ret)
2280 break;
2281 ret = arg_num_eval(arg->op.right, &right);
2282 if (!ret)
2283 break;
2284 if (arg->op.op[1])
2285 *val = left || right;
2286 else
2287 *val = left | right;
2288 break;
2289 case '&':
2290 ret = arg_num_eval(arg->op.left, &left);
2291 if (!ret)
2292 break;
2293 ret = arg_num_eval(arg->op.right, &right);
2294 if (!ret)
2295 break;
2296 if (arg->op.op[1])
2297 *val = left && right;
2298 else
2299 *val = left & right;
2300 break;
2301 case '<':
2302 ret = arg_num_eval(arg->op.left, &left);
2303 if (!ret)
2304 break;
2305 ret = arg_num_eval(arg->op.right, &right);
2306 if (!ret)
2307 break;
2308 switch (arg->op.op[1]) {
2309 case 0:
2310 *val = left < right;
2311 break;
2312 case '<':
2313 *val = left << right;
2314 break;
2315 case '=':
2316 *val = left <= right;
2317 break;
2318 default:
2319 do_warning("unknown op '%s'", arg->op.op);
2320 ret = 0;
2321 }
2322 break;
2323 case '>':
2324 ret = arg_num_eval(arg->op.left, &left);
2325 if (!ret)
2326 break;
2327 ret = arg_num_eval(arg->op.right, &right);
2328 if (!ret)
2329 break;
2330 switch (arg->op.op[1]) {
2331 case 0:
2332 *val = left > right;
2333 break;
2334 case '>':
2335 *val = left >> right;
2336 break;
2337 case '=':
2338 *val = left >= right;
2339 break;
2340 default:
2341 do_warning("unknown op '%s'", arg->op.op);
2342 ret = 0;
2343 }
2344 break;
2345 case '=':
2346 ret = arg_num_eval(arg->op.left, &left);
2347 if (!ret)
2348 break;
2349 ret = arg_num_eval(arg->op.right, &right);
2350 if (!ret)
2351 break;
2352
2353 if (arg->op.op[1] != '=') {
2354 do_warning("unknown op '%s'", arg->op.op);
2355 ret = 0;
2356 } else
2357 *val = left == right;
2358 break;
2359 case '!':
2360 ret = arg_num_eval(arg->op.left, &left);
2361 if (!ret)
2362 break;
2363 ret = arg_num_eval(arg->op.right, &right);
2364 if (!ret)
2365 break;
2366
2367 switch (arg->op.op[1]) {
2368 case '=':
2369 *val = left != right;
2370 break;
2371 default:
2372 do_warning("unknown op '%s'", arg->op.op);
2373 ret = 0;
2374 }
2375 break;
2376 case '-':
2377 /* check for negative */
2378 if (arg->op.left->type == PRINT_NULL)
2379 left = 0;
2380 else
2381 ret = arg_num_eval(arg->op.left, &left);
2382 if (!ret)
2383 break;
2384 ret = arg_num_eval(arg->op.right, &right);
2385 if (!ret)
2386 break;
2387 *val = left - right;
2388 break;
2389 case '+':
2390 if (arg->op.left->type == PRINT_NULL)
2391 left = 0;
2392 else
2393 ret = arg_num_eval(arg->op.left, &left);
2394 if (!ret)
2395 break;
2396 ret = arg_num_eval(arg->op.right, &right);
2397 if (!ret)
2398 break;
2399 *val = left + right;
2400 break;
2401 case '~':
2402 ret = arg_num_eval(arg->op.right, &right);
2403 if (!ret)
2404 break;
2405 *val = ~right;
2406 break;
2407 default:
2408 do_warning("unknown op '%s'", arg->op.op);
2409 ret = 0;
2410 }
2411 break;
2412
2413 case PRINT_NULL:
2414 case PRINT_FIELD ... PRINT_SYMBOL:
2415 case PRINT_STRING:
2416 case PRINT_BSTRING:
2417 case PRINT_BITMASK:
2418 default:
2419 do_warning("invalid eval type %d", arg->type);
2420 ret = 0;
2421
2422 }
2423 return ret;
2424}
2425
2426static char *arg_eval (struct print_arg *arg)
2427{
2428 long long val;
2429 static char buf[20];
2430
2431 switch (arg->type) {
2432 case PRINT_ATOM:
2433 return arg->atom.atom;
2434 case PRINT_TYPE:
2435 return arg_eval(arg->typecast.item);
2436 case PRINT_OP:
2437 if (!arg_num_eval(arg, &val))
2438 break;
2439 sprintf(buf, "%lld", val);
2440 return buf;
2441
2442 case PRINT_NULL:
2443 case PRINT_FIELD ... PRINT_SYMBOL:
2444 case PRINT_STRING:
2445 case PRINT_BSTRING:
2446 case PRINT_BITMASK:
2447 default:
2448 do_warning("invalid eval type %d", arg->type);
2449 break;
2450 }
2451
2452 return NULL;
2453}
2454
2455static enum event_type
2456process_fields(struct event_format *event, struct print_flag_sym **list, char **tok)
2457{
2458 enum event_type type;
2459 struct print_arg *arg = NULL;
2460 struct print_flag_sym *field;
2461 char *token = *tok;
2462 char *value;
2463
2464 do {
2465 free_token(token);
2466 type = read_token_item(&token);
2467 if (test_type_token(type, token, EVENT_OP, "{"))
2468 break;
2469
2470 arg = alloc_arg();
2471 if (!arg)
2472 goto out_free;
2473
2474 free_token(token);
2475 type = process_arg(event, arg, &token);
2476
2477 if (type == EVENT_OP)
2478 type = process_op(event, arg, &token);
2479
2480 if (type == EVENT_ERROR)
2481 goto out_free;
2482
2483 if (test_type_token(type, token, EVENT_DELIM, ","))
2484 goto out_free;
2485
2486 field = calloc(1, sizeof(*field));
2487 if (!field)
2488 goto out_free;
2489
2490 value = arg_eval(arg);
2491 if (value == NULL)
2492 goto out_free_field;
2493 field->value = strdup(value);
2494 if (field->value == NULL)
2495 goto out_free_field;
2496
2497 free_arg(arg);
2498 arg = alloc_arg();
2499 if (!arg)
2500 goto out_free;
2501
2502 free_token(token);
2503 type = process_arg(event, arg, &token);
2504 if (test_type_token(type, token, EVENT_OP, "}"))
2505 goto out_free_field;
2506
2507 value = arg_eval(arg);
2508 if (value == NULL)
2509 goto out_free_field;
2510 field->str = strdup(value);
2511 if (field->str == NULL)
2512 goto out_free_field;
2513 free_arg(arg);
2514 arg = NULL;
2515
2516 *list = field;
2517 list = &field->next;
2518
2519 free_token(token);
2520 type = read_token_item(&token);
2521 } while (type == EVENT_DELIM && strcmp(token, ",") == 0);
2522
2523 *tok = token;
2524 return type;
2525
2526out_free_field:
2527 free_flag_sym(field);
2528out_free:
2529 free_arg(arg);
2530 free_token(token);
2531 *tok = NULL;
2532
2533 return EVENT_ERROR;
2534}
2535
2536static enum event_type
2537process_flags(struct event_format *event, struct print_arg *arg, char **tok)
2538{
2539 struct print_arg *field;
2540 enum event_type type;
2541 char *token = NULL;
2542
2543 memset(arg, 0, sizeof(*arg));
2544 arg->type = PRINT_FLAGS;
2545
2546 field = alloc_arg();
2547 if (!field) {
2548 do_warning_event(event, "%s: not enough memory!", __func__);
2549 goto out_free;
2550 }
2551
2552 type = process_field_arg(event, field, &token);
2553
2554 /* Handle operations in the first argument */
2555 while (type == EVENT_OP)
2556 type = process_op(event, field, &token);
2557
2558 if (test_type_token(type, token, EVENT_DELIM, ","))
2559 goto out_free_field;
2560 free_token(token);
2561
2562 arg->flags.field = field;
2563
2564 type = read_token_item(&token);
2565 if (event_item_type(type)) {
2566 arg->flags.delim = token;
2567 type = read_token_item(&token);
2568 }
2569
2570 if (test_type_token(type, token, EVENT_DELIM, ","))
2571 goto out_free;
2572
2573 type = process_fields(event, &arg->flags.flags, &token);
2574 if (test_type_token(type, token, EVENT_DELIM, ")"))
2575 goto out_free;
2576
2577 free_token(token);
2578 type = read_token_item(tok);
2579 return type;
2580
2581out_free_field:
2582 free_arg(field);
2583out_free:
2584 free_token(token);
2585 *tok = NULL;
2586 return EVENT_ERROR;
2587}
2588
2589static enum event_type
2590process_symbols(struct event_format *event, struct print_arg *arg, char **tok)
2591{
2592 struct print_arg *field;
2593 enum event_type type;
2594 char *token = NULL;
2595
2596 memset(arg, 0, sizeof(*arg));
2597 arg->type = PRINT_SYMBOL;
2598
2599 field = alloc_arg();
2600 if (!field) {
2601 do_warning_event(event, "%s: not enough memory!", __func__);
2602 goto out_free;
2603 }
2604
2605 type = process_field_arg(event, field, &token);
2606
2607 if (test_type_token(type, token, EVENT_DELIM, ","))
2608 goto out_free_field;
2609
2610 arg->symbol.field = field;
2611
2612 type = process_fields(event, &arg->symbol.symbols, &token);
2613 if (test_type_token(type, token, EVENT_DELIM, ")"))
2614 goto out_free;
2615
2616 free_token(token);
2617 type = read_token_item(tok);
2618 return type;
2619
2620out_free_field:
2621 free_arg(field);
2622out_free:
2623 free_token(token);
2624 *tok = NULL;
2625 return EVENT_ERROR;
2626}
2627
2628static enum event_type
2629process_hex(struct event_format *event, struct print_arg *arg, char **tok)
2630{
2631 memset(arg, 0, sizeof(*arg));
2632 arg->type = PRINT_HEX;
2633
2634 if (alloc_and_process_delim(event, ",", &arg->hex.field))
2635 goto out;
2636
2637 if (alloc_and_process_delim(event, ")", &arg->hex.size))
2638 goto free_field;
2639
2640 return read_token_item(tok);
2641
2642free_field:
2643 free_arg(arg->hex.field);
2644 arg->hex.field = NULL;
2645out:
2646 *tok = NULL;
2647 return EVENT_ERROR;
2648}
2649
2650static enum event_type
2651process_int_array(struct event_format *event, struct print_arg *arg, char **tok)
2652{
2653 memset(arg, 0, sizeof(*arg));
2654 arg->type = PRINT_INT_ARRAY;
2655
2656 if (alloc_and_process_delim(event, ",", &arg->int_array.field))
2657 goto out;
2658
2659 if (alloc_and_process_delim(event, ",", &arg->int_array.count))
2660 goto free_field;
2661
2662 if (alloc_and_process_delim(event, ")", &arg->int_array.el_size))
2663 goto free_size;
2664
2665 return read_token_item(tok);
2666
2667free_size:
2668 free_arg(arg->int_array.count);
2669 arg->int_array.count = NULL;
2670free_field:
2671 free_arg(arg->int_array.field);
2672 arg->int_array.field = NULL;
2673out:
2674 *tok = NULL;
2675 return EVENT_ERROR;
2676}
2677
2678static enum event_type
2679process_dynamic_array(struct event_format *event, struct print_arg *arg, char **tok)
2680{
2681 struct format_field *field;
2682 enum event_type type;
2683 char *token;
2684
2685 memset(arg, 0, sizeof(*arg));
2686 arg->type = PRINT_DYNAMIC_ARRAY;
2687
2688 /*
2689 * The item within the parenthesis is another field that holds
2690 * the index into where the array starts.
2691 */
2692 type = read_token(&token);
2693 *tok = token;
2694 if (type != EVENT_ITEM)
2695 goto out_free;
2696
2697 /* Find the field */
2698
2699 field = pevent_find_field(event, token);
2700 if (!field)
2701 goto out_free;
2702
2703 arg->dynarray.field = field;
2704 arg->dynarray.index = 0;
2705
2706 if (read_expected(EVENT_DELIM, ")") < 0)
2707 goto out_free;
2708
2709 free_token(token);
2710 type = read_token_item(&token);
2711 *tok = token;
2712 if (type != EVENT_OP || strcmp(token, "[") != 0)
2713 return type;
2714
2715 free_token(token);
2716 arg = alloc_arg();
2717 if (!arg) {
2718 do_warning_event(event, "%s: not enough memory!", __func__);
2719 *tok = NULL;
2720 return EVENT_ERROR;
2721 }
2722
2723 type = process_arg(event, arg, &token);
2724 if (type == EVENT_ERROR)
2725 goto out_free_arg;
2726
2727 if (!test_type_token(type, token, EVENT_OP, "]"))
2728 goto out_free_arg;
2729
2730 free_token(token);
2731 type = read_token_item(tok);
2732 return type;
2733
2734 out_free_arg:
2735 free_arg(arg);
2736 out_free:
2737 free_token(token);
2738 *tok = NULL;
2739 return EVENT_ERROR;
2740}
2741
2742static enum event_type
2743process_dynamic_array_len(struct event_format *event, struct print_arg *arg,
2744 char **tok)
2745{
2746 struct format_field *field;
2747 enum event_type type;
2748 char *token;
2749
2750 if (read_expect_type(EVENT_ITEM, &token) < 0)
2751 goto out_free;
2752
2753 arg->type = PRINT_DYNAMIC_ARRAY_LEN;
2754
2755 /* Find the field */
2756 field = pevent_find_field(event, token);
2757 if (!field)
2758 goto out_free;
2759
2760 arg->dynarray.field = field;
2761 arg->dynarray.index = 0;
2762
2763 if (read_expected(EVENT_DELIM, ")") < 0)
2764 goto out_err;
2765
2766 type = read_token(&token);
2767 *tok = token;
2768
2769 return type;
2770
2771 out_free:
2772 free_token(token);
2773 out_err:
2774 *tok = NULL;
2775 return EVENT_ERROR;
2776}
2777
2778static enum event_type
2779process_paren(struct event_format *event, struct print_arg *arg, char **tok)
2780{
2781 struct print_arg *item_arg;
2782 enum event_type type;
2783 char *token;
2784
2785 type = process_arg(event, arg, &token);
2786
2787 if (type == EVENT_ERROR)
2788 goto out_free;
2789
2790 if (type == EVENT_OP)
2791 type = process_op(event, arg, &token);
2792
2793 if (type == EVENT_ERROR)
2794 goto out_free;
2795
2796 if (test_type_token(type, token, EVENT_DELIM, ")"))
2797 goto out_free;
2798
2799 free_token(token);
2800 type = read_token_item(&token);
2801
2802 /*
2803 * If the next token is an item or another open paren, then
2804 * this was a typecast.
2805 */
2806 if (event_item_type(type) ||
2807 (type == EVENT_DELIM && strcmp(token, "(") == 0)) {
2808
2809 /* make this a typecast and contine */
2810
2811 /* prevous must be an atom */
2812 if (arg->type != PRINT_ATOM) {
2813 do_warning_event(event, "previous needed to be PRINT_ATOM");
2814 goto out_free;
2815 }
2816
2817 item_arg = alloc_arg();
2818 if (!item_arg) {
2819 do_warning_event(event, "%s: not enough memory!",
2820 __func__);
2821 goto out_free;
2822 }
2823
2824 arg->type = PRINT_TYPE;
2825 arg->typecast.type = arg->atom.atom;
2826 arg->typecast.item = item_arg;
2827 type = process_arg_token(event, item_arg, &token, type);
2828
2829 }
2830
2831 *tok = token;
2832 return type;
2833
2834 out_free:
2835 free_token(token);
2836 *tok = NULL;
2837 return EVENT_ERROR;
2838}
2839
2840
2841static enum event_type
2842process_str(struct event_format *event __maybe_unused, struct print_arg *arg,
2843 char **tok)
2844{
2845 enum event_type type;
2846 char *token;
2847
2848 if (read_expect_type(EVENT_ITEM, &token) < 0)
2849 goto out_free;
2850
2851 arg->type = PRINT_STRING;
2852 arg->string.string = token;
2853 arg->string.offset = -1;
2854
2855 if (read_expected(EVENT_DELIM, ")") < 0)
2856 goto out_err;
2857
2858 type = read_token(&token);
2859 *tok = token;
2860
2861 return type;
2862
2863 out_free:
2864 free_token(token);
2865 out_err:
2866 *tok = NULL;
2867 return EVENT_ERROR;
2868}
2869
2870static enum event_type
2871process_bitmask(struct event_format *event __maybe_unused, struct print_arg *arg,
2872 char **tok)
2873{
2874 enum event_type type;
2875 char *token;
2876
2877 if (read_expect_type(EVENT_ITEM, &token) < 0)
2878 goto out_free;
2879
2880 arg->type = PRINT_BITMASK;
2881 arg->bitmask.bitmask = token;
2882 arg->bitmask.offset = -1;
2883
2884 if (read_expected(EVENT_DELIM, ")") < 0)
2885 goto out_err;
2886
2887 type = read_token(&token);
2888 *tok = token;
2889
2890 return type;
2891
2892 out_free:
2893 free_token(token);
2894 out_err:
2895 *tok = NULL;
2896 return EVENT_ERROR;
2897}
2898
2899static struct pevent_function_handler *
2900find_func_handler(struct pevent *pevent, char *func_name)
2901{
2902 struct pevent_function_handler *func;
2903
2904 if (!pevent)
2905 return NULL;
2906
2907 for (func = pevent->func_handlers; func; func = func->next) {
2908 if (strcmp(func->name, func_name) == 0)
2909 break;
2910 }
2911
2912 return func;
2913}
2914
2915static void remove_func_handler(struct pevent *pevent, char *func_name)
2916{
2917 struct pevent_function_handler *func;
2918 struct pevent_function_handler **next;
2919
2920 next = &pevent->func_handlers;
2921 while ((func = *next)) {
2922 if (strcmp(func->name, func_name) == 0) {
2923 *next = func->next;
2924 free_func_handle(func);
2925 break;
2926 }
2927 next = &func->next;
2928 }
2929}
2930
2931static enum event_type
2932process_func_handler(struct event_format *event, struct pevent_function_handler *func,
2933 struct print_arg *arg, char **tok)
2934{
2935 struct print_arg **next_arg;
2936 struct print_arg *farg;
2937 enum event_type type;
2938 char *token;
2939 int i;
2940
2941 arg->type = PRINT_FUNC;
2942 arg->func.func = func;
2943
2944 *tok = NULL;
2945
2946 next_arg = &(arg->func.args);
2947 for (i = 0; i < func->nr_args; i++) {
2948 farg = alloc_arg();
2949 if (!farg) {
2950 do_warning_event(event, "%s: not enough memory!",
2951 __func__);
2952 return EVENT_ERROR;
2953 }
2954
2955 type = process_arg(event, farg, &token);
2956 if (i < (func->nr_args - 1)) {
2957 if (type != EVENT_DELIM || strcmp(token, ",") != 0) {
2958 do_warning_event(event,
2959 "Error: function '%s()' expects %d arguments but event %s only uses %d",
2960 func->name, func->nr_args,
2961 event->name, i + 1);
2962 goto err;
2963 }
2964 } else {
2965 if (type != EVENT_DELIM || strcmp(token, ")") != 0) {
2966 do_warning_event(event,
2967 "Error: function '%s()' only expects %d arguments but event %s has more",
2968 func->name, func->nr_args, event->name);
2969 goto err;
2970 }
2971 }
2972
2973 *next_arg = farg;
2974 next_arg = &(farg->next);
2975 free_token(token);
2976 }
2977
2978 type = read_token(&token);
2979 *tok = token;
2980
2981 return type;
2982
2983err:
2984 free_arg(farg);
2985 free_token(token);
2986 return EVENT_ERROR;
2987}
2988
2989static enum event_type
2990process_function(struct event_format *event, struct print_arg *arg,
2991 char *token, char **tok)
2992{
2993 struct pevent_function_handler *func;
2994
2995 if (strcmp(token, "__print_flags") == 0) {
2996 free_token(token);
2997 is_flag_field = 1;
2998 return process_flags(event, arg, tok);
2999 }
3000 if (strcmp(token, "__print_symbolic") == 0) {
3001 free_token(token);
3002 is_symbolic_field = 1;
3003 return process_symbols(event, arg, tok);
3004 }
3005 if (strcmp(token, "__print_hex") == 0) {
3006 free_token(token);
3007 return process_hex(event, arg, tok);
3008 }
3009 if (strcmp(token, "__print_array") == 0) {
3010 free_token(token);
3011 return process_int_array(event, arg, tok);
3012 }
3013 if (strcmp(token, "__get_str") == 0) {
3014 free_token(token);
3015 return process_str(event, arg, tok);
3016 }
3017 if (strcmp(token, "__get_bitmask") == 0) {
3018 free_token(token);
3019 return process_bitmask(event, arg, tok);
3020 }
3021 if (strcmp(token, "__get_dynamic_array") == 0) {
3022 free_token(token);
3023 return process_dynamic_array(event, arg, tok);
3024 }
3025 if (strcmp(token, "__get_dynamic_array_len") == 0) {
3026 free_token(token);
3027 return process_dynamic_array_len(event, arg, tok);
3028 }
3029
3030 func = find_func_handler(event->pevent, token);
3031 if (func) {
3032 free_token(token);
3033 return process_func_handler(event, func, arg, tok);
3034 }
3035
3036 do_warning_event(event, "function %s not defined", token);
3037 free_token(token);
3038 return EVENT_ERROR;
3039}
3040
3041static enum event_type
3042process_arg_token(struct event_format *event, struct print_arg *arg,
3043 char **tok, enum event_type type)
3044{
3045 char *token;
3046 char *atom;
3047
3048 token = *tok;
3049
3050 switch (type) {
3051 case EVENT_ITEM:
3052 if (strcmp(token, "REC") == 0) {
3053 free_token(token);
3054 type = process_entry(event, arg, &token);
3055 break;
3056 }
3057 atom = token;
3058 /* test the next token */
3059 type = read_token_item(&token);
3060
3061 /*
3062 * If the next token is a parenthesis, then this
3063 * is a function.
3064 */
3065 if (type == EVENT_DELIM && strcmp(token, "(") == 0) {
3066 free_token(token);
3067 token = NULL;
3068 /* this will free atom. */
3069 type = process_function(event, arg, atom, &token);
3070 break;
3071 }
3072 /* atoms can be more than one token long */
3073 while (type == EVENT_ITEM) {
3074 char *new_atom;
3075 new_atom = realloc(atom,
3076 strlen(atom) + strlen(token) + 2);
3077 if (!new_atom) {
3078 free(atom);
3079 *tok = NULL;
3080 free_token(token);
3081 return EVENT_ERROR;
3082 }
3083 atom = new_atom;
3084 strcat(atom, " ");
3085 strcat(atom, token);
3086 free_token(token);
3087 type = read_token_item(&token);
3088 }
3089
3090 arg->type = PRINT_ATOM;
3091 arg->atom.atom = atom;
3092 break;
3093
3094 case EVENT_DQUOTE:
3095 case EVENT_SQUOTE:
3096 arg->type = PRINT_ATOM;
3097 arg->atom.atom = token;
3098 type = read_token_item(&token);
3099 break;
3100 case EVENT_DELIM:
3101 if (strcmp(token, "(") == 0) {
3102 free_token(token);
3103 type = process_paren(event, arg, &token);
3104 break;
3105 }
3106 case EVENT_OP:
3107 /* handle single ops */
3108 arg->type = PRINT_OP;
3109 arg->op.op = token;
3110 arg->op.left = NULL;
3111 type = process_op(event, arg, &token);
3112
3113 /* On error, the op is freed */
3114 if (type == EVENT_ERROR)
3115 arg->op.op = NULL;
3116
3117 /* return error type if errored */
3118 break;
3119
3120 case EVENT_ERROR ... EVENT_NEWLINE:
3121 default:
3122 do_warning_event(event, "unexpected type %d", type);
3123 return EVENT_ERROR;
3124 }
3125 *tok = token;
3126
3127 return type;
3128}
3129
3130static int event_read_print_args(struct event_format *event, struct print_arg **list)
3131{
3132 enum event_type type = EVENT_ERROR;
3133 struct print_arg *arg;
3134 char *token;
3135 int args = 0;
3136
3137 do {
3138 if (type == EVENT_NEWLINE) {
3139 type = read_token_item(&token);
3140 continue;
3141 }
3142
3143 arg = alloc_arg();
3144 if (!arg) {
3145 do_warning_event(event, "%s: not enough memory!",
3146 __func__);
3147 return -1;
3148 }
3149
3150 type = process_arg(event, arg, &token);
3151
3152 if (type == EVENT_ERROR) {
3153 free_token(token);
3154 free_arg(arg);
3155 return -1;
3156 }
3157
3158 *list = arg;
3159 args++;
3160
3161 if (type == EVENT_OP) {
3162 type = process_op(event, arg, &token);
3163 free_token(token);
3164 if (type == EVENT_ERROR) {
3165 *list = NULL;
3166 free_arg(arg);
3167 return -1;
3168 }
3169 list = &arg->next;
3170 continue;
3171 }
3172
3173 if (type == EVENT_DELIM && strcmp(token, ",") == 0) {
3174 free_token(token);
3175 *list = arg;
3176 list = &arg->next;
3177 continue;
3178 }
3179 break;
3180 } while (type != EVENT_NONE);
3181
3182 if (type != EVENT_NONE && type != EVENT_ERROR)
3183 free_token(token);
3184
3185 return args;
3186}
3187
3188static int event_read_print(struct event_format *event)
3189{
3190 enum event_type type;
3191 char *token;
3192 int ret;
3193
3194 if (read_expected_item(EVENT_ITEM, "print") < 0)
3195 return -1;
3196
3197 if (read_expected(EVENT_ITEM, "fmt") < 0)
3198 return -1;
3199
3200 if (read_expected(EVENT_OP, ":") < 0)
3201 return -1;
3202
3203 if (read_expect_type(EVENT_DQUOTE, &token) < 0)
3204 goto fail;
3205
3206 concat:
3207 event->print_fmt.format = token;
3208 event->print_fmt.args = NULL;
3209
3210 /* ok to have no arg */
3211 type = read_token_item(&token);
3212
3213 if (type == EVENT_NONE)
3214 return 0;
3215
3216 /* Handle concatenation of print lines */
3217 if (type == EVENT_DQUOTE) {
3218 char *cat;
3219
3220 if (asprintf(&cat, "%s%s", event->print_fmt.format, token) < 0)
3221 goto fail;
3222 free_token(token);
3223 free_token(event->print_fmt.format);
3224 event->print_fmt.format = NULL;
3225 token = cat;
3226 goto concat;
3227 }
3228
3229 if (test_type_token(type, token, EVENT_DELIM, ","))
3230 goto fail;
3231
3232 free_token(token);
3233
3234 ret = event_read_print_args(event, &event->print_fmt.args);
3235 if (ret < 0)
3236 return -1;
3237
3238 return ret;
3239
3240 fail:
3241 free_token(token);
3242 return -1;
3243}
3244
3245/**
3246 * pevent_find_common_field - return a common field by event
3247 * @event: handle for the event
3248 * @name: the name of the common field to return
3249 *
3250 * Returns a common field from the event by the given @name.
3251 * This only searchs the common fields and not all field.
3252 */
3253struct format_field *
3254pevent_find_common_field(struct event_format *event, const char *name)
3255{
3256 struct format_field *format;
3257
3258 for (format = event->format.common_fields;
3259 format; format = format->next) {
3260 if (strcmp(format->name, name) == 0)
3261 break;
3262 }
3263
3264 return format;
3265}
3266
3267/**
3268 * pevent_find_field - find a non-common field
3269 * @event: handle for the event
3270 * @name: the name of the non-common field
3271 *
3272 * Returns a non-common field by the given @name.
3273 * This does not search common fields.
3274 */
3275struct format_field *
3276pevent_find_field(struct event_format *event, const char *name)
3277{
3278 struct format_field *format;
3279
3280 for (format = event->format.fields;
3281 format; format = format->next) {
3282 if (strcmp(format->name, name) == 0)
3283 break;
3284 }
3285
3286 return format;
3287}
3288
3289/**
3290 * pevent_find_any_field - find any field by name
3291 * @event: handle for the event
3292 * @name: the name of the field
3293 *
3294 * Returns a field by the given @name.
3295 * This searchs the common field names first, then
3296 * the non-common ones if a common one was not found.
3297 */
3298struct format_field *
3299pevent_find_any_field(struct event_format *event, const char *name)
3300{
3301 struct format_field *format;
3302
3303 format = pevent_find_common_field(event, name);
3304 if (format)
3305 return format;
3306 return pevent_find_field(event, name);
3307}
3308
3309/**
3310 * pevent_read_number - read a number from data
3311 * @pevent: handle for the pevent
3312 * @ptr: the raw data
3313 * @size: the size of the data that holds the number
3314 *
3315 * Returns the number (converted to host) from the
3316 * raw data.
3317 */
3318unsigned long long pevent_read_number(struct pevent *pevent,
3319 const void *ptr, int size)
3320{
3321 switch (size) {
3322 case 1:
3323 return *(unsigned char *)ptr;
3324 case 2:
3325 return data2host2(pevent, ptr);
3326 case 4:
3327 return data2host4(pevent, ptr);
3328 case 8:
3329 return data2host8(pevent, ptr);
3330 default:
3331 /* BUG! */
3332 return 0;
3333 }
3334}
3335
3336/**
3337 * pevent_read_number_field - read a number from data
3338 * @field: a handle to the field
3339 * @data: the raw data to read
3340 * @value: the value to place the number in
3341 *
3342 * Reads raw data according to a field offset and size,
3343 * and translates it into @value.
3344 *
3345 * Returns 0 on success, -1 otherwise.
3346 */
3347int pevent_read_number_field(struct format_field *field, const void *data,
3348 unsigned long long *value)
3349{
3350 if (!field)
3351 return -1;
3352 switch (field->size) {
3353 case 1:
3354 case 2:
3355 case 4:
3356 case 8:
3357 *value = pevent_read_number(field->event->pevent,
3358 data + field->offset, field->size);
3359 return 0;
3360 default:
3361 return -1;
3362 }
3363}
3364
3365static int get_common_info(struct pevent *pevent,
3366 const char *type, int *offset, int *size)
3367{
3368 struct event_format *event;
3369 struct format_field *field;
3370
3371 /*
3372 * All events should have the same common elements.
3373 * Pick any event to find where the type is;
3374 */
3375 if (!pevent->events) {
3376 do_warning("no event_list!");
3377 return -1;
3378 }
3379
3380 event = pevent->events[0];
3381 field = pevent_find_common_field(event, type);
3382 if (!field)
3383 return -1;
3384
3385 *offset = field->offset;
3386 *size = field->size;
3387
3388 return 0;
3389}
3390
3391static int __parse_common(struct pevent *pevent, void *data,
3392 int *size, int *offset, const char *name)
3393{
3394 int ret;
3395
3396 if (!*size) {
3397 ret = get_common_info(pevent, name, offset, size);
3398 if (ret < 0)
3399 return ret;
3400 }
3401 return pevent_read_number(pevent, data + *offset, *size);
3402}
3403
3404static int trace_parse_common_type(struct pevent *pevent, void *data)
3405{
3406 return __parse_common(pevent, data,
3407 &pevent->type_size, &pevent->type_offset,
3408 "common_type");
3409}
3410
3411static int parse_common_pid(struct pevent *pevent, void *data)
3412{
3413 return __parse_common(pevent, data,
3414 &pevent->pid_size, &pevent->pid_offset,
3415 "common_pid");
3416}
3417
3418static int parse_common_pc(struct pevent *pevent, void *data)
3419{
3420 return __parse_common(pevent, data,
3421 &pevent->pc_size, &pevent->pc_offset,
3422 "common_preempt_count");
3423}
3424
3425static int parse_common_flags(struct pevent *pevent, void *data)
3426{
3427 return __parse_common(pevent, data,
3428 &pevent->flags_size, &pevent->flags_offset,
3429 "common_flags");
3430}
3431
3432static int parse_common_lock_depth(struct pevent *pevent, void *data)
3433{
3434 return __parse_common(pevent, data,
3435 &pevent->ld_size, &pevent->ld_offset,
3436 "common_lock_depth");
3437}
3438
3439static int parse_common_migrate_disable(struct pevent *pevent, void *data)
3440{
3441 return __parse_common(pevent, data,
3442 &pevent->ld_size, &pevent->ld_offset,
3443 "common_migrate_disable");
3444}
3445
3446static int events_id_cmp(const void *a, const void *b);
3447
3448/**
3449 * pevent_find_event - find an event by given id
3450 * @pevent: a handle to the pevent
3451 * @id: the id of the event
3452 *
3453 * Returns an event that has a given @id.
3454 */
3455struct event_format *pevent_find_event(struct pevent *pevent, int id)
3456{
3457 struct event_format **eventptr;
3458 struct event_format key;
3459 struct event_format *pkey = &key;
3460
3461 /* Check cache first */
3462 if (pevent->last_event && pevent->last_event->id == id)
3463 return pevent->last_event;
3464
3465 key.id = id;
3466
3467 eventptr = bsearch(&pkey, pevent->events, pevent->nr_events,
3468 sizeof(*pevent->events), events_id_cmp);
3469
3470 if (eventptr) {
3471 pevent->last_event = *eventptr;
3472 return *eventptr;
3473 }
3474
3475 return NULL;
3476}
3477
3478/**
3479 * pevent_find_event_by_name - find an event by given name
3480 * @pevent: a handle to the pevent
3481 * @sys: the system name to search for
3482 * @name: the name of the event to search for
3483 *
3484 * This returns an event with a given @name and under the system
3485 * @sys. If @sys is NULL the first event with @name is returned.
3486 */
3487struct event_format *
3488pevent_find_event_by_name(struct pevent *pevent,
3489 const char *sys, const char *name)
3490{
3491 struct event_format *event;
3492 int i;
3493
3494 if (pevent->last_event &&
3495 strcmp(pevent->last_event->name, name) == 0 &&
3496 (!sys || strcmp(pevent->last_event->system, sys) == 0))
3497 return pevent->last_event;
3498
3499 for (i = 0; i < pevent->nr_events; i++) {
3500 event = pevent->events[i];
3501 if (strcmp(event->name, name) == 0) {
3502 if (!sys)
3503 break;
3504 if (strcmp(event->system, sys) == 0)
3505 break;
3506 }
3507 }
3508 if (i == pevent->nr_events)
3509 event = NULL;
3510
3511 pevent->last_event = event;
3512 return event;
3513}
3514
3515static unsigned long long
3516eval_num_arg(void *data, int size, struct event_format *event, struct print_arg *arg)
3517{
3518 struct pevent *pevent = event->pevent;
3519 unsigned long long val = 0;
3520 unsigned long long left, right;
3521 struct print_arg *typearg = NULL;
3522 struct print_arg *larg;
3523 unsigned long offset;
3524 unsigned int field_size;
3525
3526 switch (arg->type) {
3527 case PRINT_NULL:
3528 /* ?? */
3529 return 0;
3530 case PRINT_ATOM:
3531 return strtoull(arg->atom.atom, NULL, 0);
3532 case PRINT_FIELD:
3533 if (!arg->field.field) {
3534 arg->field.field = pevent_find_any_field(event, arg->field.name);
3535 if (!arg->field.field)
3536 goto out_warning_field;
3537
3538 }
3539 /* must be a number */
3540 val = pevent_read_number(pevent, data + arg->field.field->offset,
3541 arg->field.field->size);
3542 break;
3543 case PRINT_FLAGS:
3544 case PRINT_SYMBOL:
3545 case PRINT_INT_ARRAY:
3546 case PRINT_HEX:
3547 break;
3548 case PRINT_TYPE:
3549 val = eval_num_arg(data, size, event, arg->typecast.item);
3550 return eval_type(val, arg, 0);
3551 case PRINT_STRING:
3552 case PRINT_BSTRING:
3553 case PRINT_BITMASK:
3554 return 0;
3555 case PRINT_FUNC: {
3556 struct trace_seq s;
3557 trace_seq_init(&s);
3558 val = process_defined_func(&s, data, size, event, arg);
3559 trace_seq_destroy(&s);
3560 return val;
3561 }
3562 case PRINT_OP:
3563 if (strcmp(arg->op.op, "[") == 0) {
3564 /*
3565 * Arrays are special, since we don't want
3566 * to read the arg as is.
3567 */
3568 right = eval_num_arg(data, size, event, arg->op.right);
3569
3570 /* handle typecasts */
3571 larg = arg->op.left;
3572 while (larg->type == PRINT_TYPE) {
3573 if (!typearg)
3574 typearg = larg;
3575 larg = larg->typecast.item;
3576 }
3577
3578 /* Default to long size */
3579 field_size = pevent->long_size;
3580
3581 switch (larg->type) {
3582 case PRINT_DYNAMIC_ARRAY:
3583 offset = pevent_read_number(pevent,
3584 data + larg->dynarray.field->offset,
3585 larg->dynarray.field->size);
3586 if (larg->dynarray.field->elementsize)
3587 field_size = larg->dynarray.field->elementsize;
3588 /*
3589 * The actual length of the dynamic array is stored
3590 * in the top half of the field, and the offset
3591 * is in the bottom half of the 32 bit field.
3592 */
3593 offset &= 0xffff;
3594 offset += right;
3595 break;
3596 case PRINT_FIELD:
3597 if (!larg->field.field) {
3598 larg->field.field =
3599 pevent_find_any_field(event, larg->field.name);
3600 if (!larg->field.field) {
3601 arg = larg;
3602 goto out_warning_field;
3603 }
3604 }
3605 field_size = larg->field.field->elementsize;
3606 offset = larg->field.field->offset +
3607 right * larg->field.field->elementsize;
3608 break;
3609 default:
3610 goto default_op; /* oops, all bets off */
3611 }
3612 val = pevent_read_number(pevent,
3613 data + offset, field_size);
3614 if (typearg)
3615 val = eval_type(val, typearg, 1);
3616 break;
3617 } else if (strcmp(arg->op.op, "?") == 0) {
3618 left = eval_num_arg(data, size, event, arg->op.left);
3619 arg = arg->op.right;
3620 if (left)
3621 val = eval_num_arg(data, size, event, arg->op.left);
3622 else
3623 val = eval_num_arg(data, size, event, arg->op.right);
3624 break;
3625 }
3626 default_op:
3627 left = eval_num_arg(data, size, event, arg->op.left);
3628 right = eval_num_arg(data, size, event, arg->op.right);
3629 switch (arg->op.op[0]) {
3630 case '!':
3631 switch (arg->op.op[1]) {
3632 case 0:
3633 val = !right;
3634 break;
3635 case '=':
3636 val = left != right;
3637 break;
3638 default:
3639 goto out_warning_op;
3640 }
3641 break;
3642 case '~':
3643 val = ~right;
3644 break;
3645 case '|':
3646 if (arg->op.op[1])
3647 val = left || right;
3648 else
3649 val = left | right;
3650 break;
3651 case '&':
3652 if (arg->op.op[1])
3653 val = left && right;
3654 else
3655 val = left & right;
3656 break;
3657 case '<':
3658 switch (arg->op.op[1]) {
3659 case 0:
3660 val = left < right;
3661 break;
3662 case '<':
3663 val = left << right;
3664 break;
3665 case '=':
3666 val = left <= right;
3667 break;
3668 default:
3669 goto out_warning_op;
3670 }
3671 break;
3672 case '>':
3673 switch (arg->op.op[1]) {
3674 case 0:
3675 val = left > right;
3676 break;
3677 case '>':
3678 val = left >> right;
3679 break;
3680 case '=':
3681 val = left >= right;
3682 break;
3683 default:
3684 goto out_warning_op;
3685 }
3686 break;
3687 case '=':
3688 if (arg->op.op[1] != '=')
3689 goto out_warning_op;
3690
3691 val = left == right;
3692 break;
3693 case '-':
3694 val = left - right;
3695 break;
3696 case '+':
3697 val = left + right;
3698 break;
3699 case '/':
3700 val = left / right;
3701 break;
3702 case '%':
3703 val = left % right;
3704 break;
3705 case '*':
3706 val = left * right;
3707 break;
3708 default:
3709 goto out_warning_op;
3710 }
3711 break;
3712 case PRINT_DYNAMIC_ARRAY_LEN:
3713 offset = pevent_read_number(pevent,
3714 data + arg->dynarray.field->offset,
3715 arg->dynarray.field->size);
3716 /*
3717 * The total allocated length of the dynamic array is
3718 * stored in the top half of the field, and the offset
3719 * is in the bottom half of the 32 bit field.
3720 */
3721 val = (unsigned long long)(offset >> 16);
3722 break;
3723 case PRINT_DYNAMIC_ARRAY:
3724 /* Without [], we pass the address to the dynamic data */
3725 offset = pevent_read_number(pevent,
3726 data + arg->dynarray.field->offset,
3727 arg->dynarray.field->size);
3728 /*
3729 * The total allocated length of the dynamic array is
3730 * stored in the top half of the field, and the offset
3731 * is in the bottom half of the 32 bit field.
3732 */
3733 offset &= 0xffff;
3734 val = (unsigned long long)((unsigned long)data + offset);
3735 break;
3736 default: /* not sure what to do there */
3737 return 0;
3738 }
3739 return val;
3740
3741out_warning_op:
3742 do_warning_event(event, "%s: unknown op '%s'", __func__, arg->op.op);
3743 return 0;
3744
3745out_warning_field:
3746 do_warning_event(event, "%s: field %s not found",
3747 __func__, arg->field.name);
3748 return 0;
3749}
3750
3751struct flag {
3752 const char *name;
3753 unsigned long long value;
3754};
3755
3756static const struct flag flags[] = {
3757 { "HI_SOFTIRQ", 0 },
3758 { "TIMER_SOFTIRQ", 1 },
3759 { "NET_TX_SOFTIRQ", 2 },
3760 { "NET_RX_SOFTIRQ", 3 },
3761 { "BLOCK_SOFTIRQ", 4 },
3762 { "IRQ_POLL_SOFTIRQ", 5 },
3763 { "TASKLET_SOFTIRQ", 6 },
3764 { "SCHED_SOFTIRQ", 7 },
3765 { "HRTIMER_SOFTIRQ", 8 },
3766 { "RCU_SOFTIRQ", 9 },
3767
3768 { "HRTIMER_NORESTART", 0 },
3769 { "HRTIMER_RESTART", 1 },
3770};
3771
3772static long long eval_flag(const char *flag)
3773{
3774 int i;
3775
3776 /*
3777 * Some flags in the format files do not get converted.
3778 * If the flag is not numeric, see if it is something that
3779 * we already know about.
3780 */
3781 if (isdigit(flag[0]))
3782 return strtoull(flag, NULL, 0);
3783
3784 for (i = 0; i < (int)(sizeof(flags)/sizeof(flags[0])); i++)
3785 if (strcmp(flags[i].name, flag) == 0)
3786 return flags[i].value;
3787
3788 return -1LL;
3789}
3790
3791static void print_str_to_seq(struct trace_seq *s, const char *format,
3792 int len_arg, const char *str)
3793{
3794 if (len_arg >= 0)
3795 trace_seq_printf(s, format, len_arg, str);
3796 else
3797 trace_seq_printf(s, format, str);
3798}
3799
3800static void print_bitmask_to_seq(struct pevent *pevent,
3801 struct trace_seq *s, const char *format,
3802 int len_arg, const void *data, int size)
3803{
3804 int nr_bits = size * 8;
3805 int str_size = (nr_bits + 3) / 4;
3806 int len = 0;
3807 char buf[3];
3808 char *str;
3809 int index;
3810 int i;
3811
3812 /*
3813 * The kernel likes to put in commas every 32 bits, we
3814 * can do the same.
3815 */
3816 str_size += (nr_bits - 1) / 32;
3817
3818 str = malloc(str_size + 1);
3819 if (!str) {
3820 do_warning("%s: not enough memory!", __func__);
3821 return;
3822 }
3823 str[str_size] = 0;
3824
3825 /* Start out with -2 for the two chars per byte */
3826 for (i = str_size - 2; i >= 0; i -= 2) {
3827 /*
3828 * data points to a bit mask of size bytes.
3829 * In the kernel, this is an array of long words, thus
3830 * endianess is very important.
3831 */
3832 if (pevent->file_bigendian)
3833 index = size - (len + 1);
3834 else
3835 index = len;
3836
3837 snprintf(buf, 3, "%02x", *((unsigned char *)data + index));
3838 memcpy(str + i, buf, 2);
3839 len++;
3840 if (!(len & 3) && i > 0) {
3841 i--;
3842 str[i] = ',';
3843 }
3844 }
3845
3846 if (len_arg >= 0)
3847 trace_seq_printf(s, format, len_arg, str);
3848 else
3849 trace_seq_printf(s, format, str);
3850
3851 free(str);
3852}
3853
3854static void print_str_arg(struct trace_seq *s, void *data, int size,
3855 struct event_format *event, const char *format,
3856 int len_arg, struct print_arg *arg)
3857{
3858 struct pevent *pevent = event->pevent;
3859 struct print_flag_sym *flag;
3860 struct format_field *field;
3861 struct printk_map *printk;
3862 long long val, fval;
3863 unsigned long long addr;
3864 char *str;
3865 unsigned char *hex;
3866 int print;
3867 int i, len;
3868
3869 switch (arg->type) {
3870 case PRINT_NULL:
3871 /* ?? */
3872 return;
3873 case PRINT_ATOM:
3874 print_str_to_seq(s, format, len_arg, arg->atom.atom);
3875 return;
3876 case PRINT_FIELD:
3877 field = arg->field.field;
3878 if (!field) {
3879 field = pevent_find_any_field(event, arg->field.name);
3880 if (!field) {
3881 str = arg->field.name;
3882 goto out_warning_field;
3883 }
3884 arg->field.field = field;
3885 }
3886 /* Zero sized fields, mean the rest of the data */
3887 len = field->size ? : size - field->offset;
3888
3889 /*
3890 * Some events pass in pointers. If this is not an array
3891 * and the size is the same as long_size, assume that it
3892 * is a pointer.
3893 */
3894 if (!(field->flags & FIELD_IS_ARRAY) &&
3895 field->size == pevent->long_size) {
3896
3897 /* Handle heterogeneous recording and processing
3898 * architectures
3899 *
3900 * CASE I:
3901 * Traces recorded on 32-bit devices (32-bit
3902 * addressing) and processed on 64-bit devices:
3903 * In this case, only 32 bits should be read.
3904 *
3905 * CASE II:
3906 * Traces recorded on 64 bit devices and processed
3907 * on 32-bit devices:
3908 * In this case, 64 bits must be read.
3909 */
3910 addr = (pevent->long_size == 8) ?
3911 *(unsigned long long *)(data + field->offset) :
3912 (unsigned long long)*(unsigned int *)(data + field->offset);
3913
3914 /* Check if it matches a print format */
3915 printk = find_printk(pevent, addr);
3916 if (printk)
3917 trace_seq_puts(s, printk->printk);
3918 else
3919 trace_seq_printf(s, "%llx", addr);
3920 break;
3921 }
3922 str = malloc(len + 1);
3923 if (!str) {
3924 do_warning_event(event, "%s: not enough memory!",
3925 __func__);
3926 return;
3927 }
3928 memcpy(str, data + field->offset, len);
3929 str[len] = 0;
3930 print_str_to_seq(s, format, len_arg, str);
3931 free(str);
3932 break;
3933 case PRINT_FLAGS:
3934 val = eval_num_arg(data, size, event, arg->flags.field);
3935 print = 0;
3936 for (flag = arg->flags.flags; flag; flag = flag->next) {
3937 fval = eval_flag(flag->value);
3938 if (!val && fval < 0) {
3939 print_str_to_seq(s, format, len_arg, flag->str);
3940 break;
3941 }
3942 if (fval > 0 && (val & fval) == fval) {
3943 if (print && arg->flags.delim)
3944 trace_seq_puts(s, arg->flags.delim);
3945 print_str_to_seq(s, format, len_arg, flag->str);
3946 print = 1;
3947 val &= ~fval;
3948 }
3949 }
3950 break;
3951 case PRINT_SYMBOL:
3952 val = eval_num_arg(data, size, event, arg->symbol.field);
3953 for (flag = arg->symbol.symbols; flag; flag = flag->next) {
3954 fval = eval_flag(flag->value);
3955 if (val == fval) {
3956 print_str_to_seq(s, format, len_arg, flag->str);
3957 break;
3958 }
3959 }
3960 break;
3961 case PRINT_HEX:
3962 if (arg->hex.field->type == PRINT_DYNAMIC_ARRAY) {
3963 unsigned long offset;
3964 offset = pevent_read_number(pevent,
3965 data + arg->hex.field->dynarray.field->offset,
3966 arg->hex.field->dynarray.field->size);
3967 hex = data + (offset & 0xffff);
3968 } else {
3969 field = arg->hex.field->field.field;
3970 if (!field) {
3971 str = arg->hex.field->field.name;
3972 field = pevent_find_any_field(event, str);
3973 if (!field)
3974 goto out_warning_field;
3975 arg->hex.field->field.field = field;
3976 }
3977 hex = data + field->offset;
3978 }
3979 len = eval_num_arg(data, size, event, arg->hex.size);
3980 for (i = 0; i < len; i++) {
3981 if (i)
3982 trace_seq_putc(s, ' ');
3983 trace_seq_printf(s, "%02x", hex[i]);
3984 }
3985 break;
3986
3987 case PRINT_INT_ARRAY: {
3988 void *num;
3989 int el_size;
3990
3991 if (arg->int_array.field->type == PRINT_DYNAMIC_ARRAY) {
3992 unsigned long offset;
3993 struct format_field *field =
3994 arg->int_array.field->dynarray.field;
3995 offset = pevent_read_number(pevent,
3996 data + field->offset,
3997 field->size);
3998 num = data + (offset & 0xffff);
3999 } else {
4000 field = arg->int_array.field->field.field;
4001 if (!field) {
4002 str = arg->int_array.field->field.name;
4003 field = pevent_find_any_field(event, str);
4004 if (!field)
4005 goto out_warning_field;
4006 arg->int_array.field->field.field = field;
4007 }
4008 num = data + field->offset;
4009 }
4010 len = eval_num_arg(data, size, event, arg->int_array.count);
4011 el_size = eval_num_arg(data, size, event,
4012 arg->int_array.el_size);
4013 for (i = 0; i < len; i++) {
4014 if (i)
4015 trace_seq_putc(s, ' ');
4016
4017 if (el_size == 1) {
4018 trace_seq_printf(s, "%u", *(uint8_t *)num);
4019 } else if (el_size == 2) {
4020 trace_seq_printf(s, "%u", *(uint16_t *)num);
4021 } else if (el_size == 4) {
4022 trace_seq_printf(s, "%u", *(uint32_t *)num);
4023 } else if (el_size == 8) {
4024 trace_seq_printf(s, "%"PRIu64, *(uint64_t *)num);
4025 } else {
4026 trace_seq_printf(s, "BAD SIZE:%d 0x%x",
4027 el_size, *(uint8_t *)num);
4028 el_size = 1;
4029 }
4030
4031 num += el_size;
4032 }
4033 break;
4034 }
4035 case PRINT_TYPE:
4036 break;
4037 case PRINT_STRING: {
4038 int str_offset;
4039
4040 if (arg->string.offset == -1) {
4041 struct format_field *f;
4042
4043 f = pevent_find_any_field(event, arg->string.string);
4044 arg->string.offset = f->offset;
4045 }
4046 str_offset = data2host4(pevent, data + arg->string.offset);
4047 str_offset &= 0xffff;
4048 print_str_to_seq(s, format, len_arg, ((char *)data) + str_offset);
4049 break;
4050 }
4051 case PRINT_BSTRING:
4052 print_str_to_seq(s, format, len_arg, arg->string.string);
4053 break;
4054 case PRINT_BITMASK: {
4055 int bitmask_offset;
4056 int bitmask_size;
4057
4058 if (arg->bitmask.offset == -1) {
4059 struct format_field *f;
4060
4061 f = pevent_find_any_field(event, arg->bitmask.bitmask);
4062 arg->bitmask.offset = f->offset;
4063 }
4064 bitmask_offset = data2host4(pevent, data + arg->bitmask.offset);
4065 bitmask_size = bitmask_offset >> 16;
4066 bitmask_offset &= 0xffff;
4067 print_bitmask_to_seq(pevent, s, format, len_arg,
4068 data + bitmask_offset, bitmask_size);
4069 break;
4070 }
4071 case PRINT_OP:
4072 /*
4073 * The only op for string should be ? :
4074 */
4075 if (arg->op.op[0] != '?')
4076 return;
4077 val = eval_num_arg(data, size, event, arg->op.left);
4078 if (val)
4079 print_str_arg(s, data, size, event,
4080 format, len_arg, arg->op.right->op.left);
4081 else
4082 print_str_arg(s, data, size, event,
4083 format, len_arg, arg->op.right->op.right);
4084 break;
4085 case PRINT_FUNC:
4086 process_defined_func(s, data, size, event, arg);
4087 break;
4088 default:
4089 /* well... */
4090 break;
4091 }
4092
4093 return;
4094
4095out_warning_field:
4096 do_warning_event(event, "%s: field %s not found",
4097 __func__, arg->field.name);
4098}
4099
4100static unsigned long long
4101process_defined_func(struct trace_seq *s, void *data, int size,
4102 struct event_format *event, struct print_arg *arg)
4103{
4104 struct pevent_function_handler *func_handle = arg->func.func;
4105 struct pevent_func_params *param;
4106 unsigned long long *args;
4107 unsigned long long ret;
4108 struct print_arg *farg;
4109 struct trace_seq str;
4110 struct save_str {
4111 struct save_str *next;
4112 char *str;
4113 } *strings = NULL, *string;
4114 int i;
4115
4116 if (!func_handle->nr_args) {
4117 ret = (*func_handle->func)(s, NULL);
4118 goto out;
4119 }
4120
4121 farg = arg->func.args;
4122 param = func_handle->params;
4123
4124 ret = ULLONG_MAX;
4125 args = malloc(sizeof(*args) * func_handle->nr_args);
4126 if (!args)
4127 goto out;
4128
4129 for (i = 0; i < func_handle->nr_args; i++) {
4130 switch (param->type) {
4131 case PEVENT_FUNC_ARG_INT:
4132 case PEVENT_FUNC_ARG_LONG:
4133 case PEVENT_FUNC_ARG_PTR:
4134 args[i] = eval_num_arg(data, size, event, farg);
4135 break;
4136 case PEVENT_FUNC_ARG_STRING:
4137 trace_seq_init(&str);
4138 print_str_arg(&str, data, size, event, "%s", -1, farg);
4139 trace_seq_terminate(&str);
4140 string = malloc(sizeof(*string));
4141 if (!string) {
4142 do_warning_event(event, "%s(%d): malloc str",
4143 __func__, __LINE__);
4144 goto out_free;
4145 }
4146 string->next = strings;
4147 string->str = strdup(str.buffer);
4148 if (!string->str) {
4149 free(string);
4150 do_warning_event(event, "%s(%d): malloc str",
4151 __func__, __LINE__);
4152 goto out_free;
4153 }
4154 args[i] = (uintptr_t)string->str;
4155 strings = string;
4156 trace_seq_destroy(&str);
4157 break;
4158 default:
4159 /*
4160 * Something went totally wrong, this is not
4161 * an input error, something in this code broke.
4162 */
4163 do_warning_event(event, "Unexpected end of arguments\n");
4164 goto out_free;
4165 }
4166 farg = farg->next;
4167 param = param->next;
4168 }
4169
4170 ret = (*func_handle->func)(s, args);
4171out_free:
4172 free(args);
4173 while (strings) {
4174 string = strings;
4175 strings = string->next;
4176 free(string->str);
4177 free(string);
4178 }
4179
4180 out:
4181 /* TBD : handle return type here */
4182 return ret;
4183}
4184
4185static void free_args(struct print_arg *args)
4186{
4187 struct print_arg *next;
4188
4189 while (args) {
4190 next = args->next;
4191
4192 free_arg(args);
4193 args = next;
4194 }
4195}
4196
4197static struct print_arg *make_bprint_args(char *fmt, void *data, int size, struct event_format *event)
4198{
4199 struct pevent *pevent = event->pevent;
4200 struct format_field *field, *ip_field;
4201 struct print_arg *args, *arg, **next;
4202 unsigned long long ip, val;
4203 char *ptr;
4204 void *bptr;
4205 int vsize;
4206
4207 field = pevent->bprint_buf_field;
4208 ip_field = pevent->bprint_ip_field;
4209
4210 if (!field) {
4211 field = pevent_find_field(event, "buf");
4212 if (!field) {
4213 do_warning_event(event, "can't find buffer field for binary printk");
4214 return NULL;
4215 }
4216 ip_field = pevent_find_field(event, "ip");
4217 if (!ip_field) {
4218 do_warning_event(event, "can't find ip field for binary printk");
4219 return NULL;
4220 }
4221 pevent->bprint_buf_field = field;
4222 pevent->bprint_ip_field = ip_field;
4223 }
4224
4225 ip = pevent_read_number(pevent, data + ip_field->offset, ip_field->size);
4226
4227 /*
4228 * The first arg is the IP pointer.
4229 */
4230 args = alloc_arg();
4231 if (!args) {
4232 do_warning_event(event, "%s(%d): not enough memory!",
4233 __func__, __LINE__);
4234 return NULL;
4235 }
4236 arg = args;
4237 arg->next = NULL;
4238 next = &arg->next;
4239
4240 arg->type = PRINT_ATOM;
4241
4242 if (asprintf(&arg->atom.atom, "%lld", ip) < 0)
4243 goto out_free;
4244
4245 /* skip the first "%ps: " */
4246 for (ptr = fmt + 5, bptr = data + field->offset;
4247 bptr < data + size && *ptr; ptr++) {
4248 int ls = 0;
4249
4250 if (*ptr == '%') {
4251 process_again:
4252 ptr++;
4253 switch (*ptr) {
4254 case '%':
4255 break;
4256 case 'l':
4257 ls++;
4258 goto process_again;
4259 case 'L':
4260 ls = 2;
4261 goto process_again;
4262 case '0' ... '9':
4263 goto process_again;
4264 case '.':
4265 goto process_again;
4266 case 'z':
4267 case 'Z':
4268 ls = 1;
4269 goto process_again;
4270 case 'p':
4271 ls = 1;
4272 /* fall through */
4273 case 'd':
4274 case 'u':
4275 case 'x':
4276 case 'i':
4277 switch (ls) {
4278 case 0:
4279 vsize = 4;
4280 break;
4281 case 1:
4282 vsize = pevent->long_size;
4283 break;
4284 case 2:
4285 vsize = 8;
4286 break;
4287 default:
4288 vsize = ls; /* ? */
4289 break;
4290 }
4291 /* fall through */
4292 case '*':
4293 if (*ptr == '*')
4294 vsize = 4;
4295
4296 /* the pointers are always 4 bytes aligned */
4297 bptr = (void *)(((unsigned long)bptr + 3) &
4298 ~3);
4299 val = pevent_read_number(pevent, bptr, vsize);
4300 bptr += vsize;
4301 arg = alloc_arg();
4302 if (!arg) {
4303 do_warning_event(event, "%s(%d): not enough memory!",
4304 __func__, __LINE__);
4305 goto out_free;
4306 }
4307 arg->next = NULL;
4308 arg->type = PRINT_ATOM;
4309 if (asprintf(&arg->atom.atom, "%lld", val) < 0) {
4310 free(arg);
4311 goto out_free;
4312 }
4313 *next = arg;
4314 next = &arg->next;
4315 /*
4316 * The '*' case means that an arg is used as the length.
4317 * We need to continue to figure out for what.
4318 */
4319 if (*ptr == '*')
4320 goto process_again;
4321
4322 break;
4323 case 's':
4324 arg = alloc_arg();
4325 if (!arg) {
4326 do_warning_event(event, "%s(%d): not enough memory!",
4327 __func__, __LINE__);
4328 goto out_free;
4329 }
4330 arg->next = NULL;
4331 arg->type = PRINT_BSTRING;
4332 arg->string.string = strdup(bptr);
4333 if (!arg->string.string)
4334 goto out_free;
4335 bptr += strlen(bptr) + 1;
4336 *next = arg;
4337 next = &arg->next;
4338 default:
4339 break;
4340 }
4341 }
4342 }
4343
4344 return args;
4345
4346out_free:
4347 free_args(args);
4348 return NULL;
4349}
4350
4351static char *
4352get_bprint_format(void *data, int size __maybe_unused,
4353 struct event_format *event)
4354{
4355 struct pevent *pevent = event->pevent;
4356 unsigned long long addr;
4357 struct format_field *field;
4358 struct printk_map *printk;
4359 char *format;
4360
4361 field = pevent->bprint_fmt_field;
4362
4363 if (!field) {
4364 field = pevent_find_field(event, "fmt");
4365 if (!field) {
4366 do_warning_event(event, "can't find format field for binary printk");
4367 return NULL;
4368 }
4369 pevent->bprint_fmt_field = field;
4370 }
4371
4372 addr = pevent_read_number(pevent, data + field->offset, field->size);
4373
4374 printk = find_printk(pevent, addr);
4375 if (!printk) {
4376 if (asprintf(&format, "%%pf: (NO FORMAT FOUND at %llx)\n", addr) < 0)
4377 return NULL;
4378 return format;
4379 }
4380
4381 if (asprintf(&format, "%s: %s", "%pf", printk->printk) < 0)
4382 return NULL;
4383
4384 return format;
4385}
4386
4387static void print_mac_arg(struct trace_seq *s, int mac, void *data, int size,
4388 struct event_format *event, struct print_arg *arg)
4389{
4390 unsigned char *buf;
4391 const char *fmt = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x";
4392
4393 if (arg->type == PRINT_FUNC) {
4394 process_defined_func(s, data, size, event, arg);
4395 return;
4396 }
4397
4398 if (arg->type != PRINT_FIELD) {
4399 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d",
4400 arg->type);
4401 return;
4402 }
4403
4404 if (mac == 'm')
4405 fmt = "%.2x%.2x%.2x%.2x%.2x%.2x";
4406 if (!arg->field.field) {
4407 arg->field.field =
4408 pevent_find_any_field(event, arg->field.name);
4409 if (!arg->field.field) {
4410 do_warning_event(event, "%s: field %s not found",
4411 __func__, arg->field.name);
4412 return;
4413 }
4414 }
4415 if (arg->field.field->size != 6) {
4416 trace_seq_printf(s, "INVALIDMAC");
4417 return;
4418 }
4419 buf = data + arg->field.field->offset;
4420 trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
4421}
4422
4423static void print_ip4_addr(struct trace_seq *s, char i, unsigned char *buf)
4424{
4425 const char *fmt;
4426
4427 if (i == 'i')
4428 fmt = "%03d.%03d.%03d.%03d";
4429 else
4430 fmt = "%d.%d.%d.%d";
4431
4432 trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3]);
4433}
4434
4435static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
4436{
4437 return ((unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
4438 (unsigned long)(a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL;
4439}
4440
4441static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr)
4442{
4443 return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE);
4444}
4445
4446static void print_ip6c_addr(struct trace_seq *s, unsigned char *addr)
4447{
4448 int i, j, range;
4449 unsigned char zerolength[8];
4450 int longest = 1;
4451 int colonpos = -1;
4452 uint16_t word;
4453 uint8_t hi, lo;
4454 bool needcolon = false;
4455 bool useIPv4;
4456 struct in6_addr in6;
4457
4458 memcpy(&in6, addr, sizeof(struct in6_addr));
4459
4460 useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6);
4461
4462 memset(zerolength, 0, sizeof(zerolength));
4463
4464 if (useIPv4)
4465 range = 6;
4466 else
4467 range = 8;
4468
4469 /* find position of longest 0 run */
4470 for (i = 0; i < range; i++) {
4471 for (j = i; j < range; j++) {
4472 if (in6.s6_addr16[j] != 0)
4473 break;
4474 zerolength[i]++;
4475 }
4476 }
4477 for (i = 0; i < range; i++) {
4478 if (zerolength[i] > longest) {
4479 longest = zerolength[i];
4480 colonpos = i;
4481 }
4482 }
4483 if (longest == 1) /* don't compress a single 0 */
4484 colonpos = -1;
4485
4486 /* emit address */
4487 for (i = 0; i < range; i++) {
4488 if (i == colonpos) {
4489 if (needcolon || i == 0)
4490 trace_seq_printf(s, ":");
4491 trace_seq_printf(s, ":");
4492 needcolon = false;
4493 i += longest - 1;
4494 continue;
4495 }
4496 if (needcolon) {
4497 trace_seq_printf(s, ":");
4498 needcolon = false;
4499 }
4500 /* hex u16 without leading 0s */
4501 word = ntohs(in6.s6_addr16[i]);
4502 hi = word >> 8;
4503 lo = word & 0xff;
4504 if (hi)
4505 trace_seq_printf(s, "%x%02x", hi, lo);
4506 else
4507 trace_seq_printf(s, "%x", lo);
4508
4509 needcolon = true;
4510 }
4511
4512 if (useIPv4) {
4513 if (needcolon)
4514 trace_seq_printf(s, ":");
4515 print_ip4_addr(s, 'I', &in6.s6_addr[12]);
4516 }
4517
4518 return;
4519}
4520
4521static void print_ip6_addr(struct trace_seq *s, char i, unsigned char *buf)
4522{
4523 int j;
4524
4525 for (j = 0; j < 16; j += 2) {
4526 trace_seq_printf(s, "%02x%02x", buf[j], buf[j+1]);
4527 if (i == 'I' && j < 14)
4528 trace_seq_printf(s, ":");
4529 }
4530}
4531
4532/*
4533 * %pi4 print an IPv4 address with leading zeros
4534 * %pI4 print an IPv4 address without leading zeros
4535 * %pi6 print an IPv6 address without colons
4536 * %pI6 print an IPv6 address with colons
4537 * %pI6c print an IPv6 address in compressed form with colons
4538 * %pISpc print an IP address based on sockaddr; p adds port.
4539 */
4540static int print_ipv4_arg(struct trace_seq *s, const char *ptr, char i,
4541 void *data, int size, struct event_format *event,
4542 struct print_arg *arg)
4543{
4544 unsigned char *buf;
4545
4546 if (arg->type == PRINT_FUNC) {
4547 process_defined_func(s, data, size, event, arg);
4548 return 0;
4549 }
4550
4551 if (arg->type != PRINT_FIELD) {
4552 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4553 return 0;
4554 }
4555
4556 if (!arg->field.field) {
4557 arg->field.field =
4558 pevent_find_any_field(event, arg->field.name);
4559 if (!arg->field.field) {
4560 do_warning("%s: field %s not found",
4561 __func__, arg->field.name);
4562 return 0;
4563 }
4564 }
4565
4566 buf = data + arg->field.field->offset;
4567
4568 if (arg->field.field->size != 4) {
4569 trace_seq_printf(s, "INVALIDIPv4");
4570 return 0;
4571 }
4572 print_ip4_addr(s, i, buf);
4573
4574 return 0;
4575}
4576
4577static int print_ipv6_arg(struct trace_seq *s, const char *ptr, char i,
4578 void *data, int size, struct event_format *event,
4579 struct print_arg *arg)
4580{
4581 char have_c = 0;
4582 unsigned char *buf;
4583 int rc = 0;
4584
4585 /* pI6c */
4586 if (i == 'I' && *ptr == 'c') {
4587 have_c = 1;
4588 ptr++;
4589 rc++;
4590 }
4591
4592 if (arg->type == PRINT_FUNC) {
4593 process_defined_func(s, data, size, event, arg);
4594 return rc;
4595 }
4596
4597 if (arg->type != PRINT_FIELD) {
4598 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4599 return rc;
4600 }
4601
4602 if (!arg->field.field) {
4603 arg->field.field =
4604 pevent_find_any_field(event, arg->field.name);
4605 if (!arg->field.field) {
4606 do_warning("%s: field %s not found",
4607 __func__, arg->field.name);
4608 return rc;
4609 }
4610 }
4611
4612 buf = data + arg->field.field->offset;
4613
4614 if (arg->field.field->size != 16) {
4615 trace_seq_printf(s, "INVALIDIPv6");
4616 return rc;
4617 }
4618
4619 if (have_c)
4620 print_ip6c_addr(s, buf);
4621 else
4622 print_ip6_addr(s, i, buf);
4623
4624 return rc;
4625}
4626
4627static int print_ipsa_arg(struct trace_seq *s, const char *ptr, char i,
4628 void *data, int size, struct event_format *event,
4629 struct print_arg *arg)
4630{
4631 char have_c = 0, have_p = 0;
4632 unsigned char *buf;
4633 struct sockaddr_storage *sa;
4634 int rc = 0;
4635
4636 /* pISpc */
4637 if (i == 'I') {
4638 if (*ptr == 'p') {
4639 have_p = 1;
4640 ptr++;
4641 rc++;
4642 }
4643 if (*ptr == 'c') {
4644 have_c = 1;
4645 ptr++;
4646 rc++;
4647 }
4648 }
4649
4650 if (arg->type == PRINT_FUNC) {
4651 process_defined_func(s, data, size, event, arg);
4652 return rc;
4653 }
4654
4655 if (arg->type != PRINT_FIELD) {
4656 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4657 return rc;
4658 }
4659
4660 if (!arg->field.field) {
4661 arg->field.field =
4662 pevent_find_any_field(event, arg->field.name);
4663 if (!arg->field.field) {
4664 do_warning("%s: field %s not found",
4665 __func__, arg->field.name);
4666 return rc;
4667 }
4668 }
4669
4670 sa = (struct sockaddr_storage *) (data + arg->field.field->offset);
4671
4672 if (sa->ss_family == AF_INET) {
4673 struct sockaddr_in *sa4 = (struct sockaddr_in *) sa;
4674
4675 if (arg->field.field->size < sizeof(struct sockaddr_in)) {
4676 trace_seq_printf(s, "INVALIDIPv4");
4677 return rc;
4678 }
4679
4680 print_ip4_addr(s, i, (unsigned char *) &sa4->sin_addr);
4681 if (have_p)
4682 trace_seq_printf(s, ":%d", ntohs(sa4->sin_port));
4683
4684
4685 } else if (sa->ss_family == AF_INET6) {
4686 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *) sa;
4687
4688 if (arg->field.field->size < sizeof(struct sockaddr_in6)) {
4689 trace_seq_printf(s, "INVALIDIPv6");
4690 return rc;
4691 }
4692
4693 if (have_p)
4694 trace_seq_printf(s, "[");
4695
4696 buf = (unsigned char *) &sa6->sin6_addr;
4697 if (have_c)
4698 print_ip6c_addr(s, buf);
4699 else
4700 print_ip6_addr(s, i, buf);
4701
4702 if (have_p)
4703 trace_seq_printf(s, "]:%d", ntohs(sa6->sin6_port));
4704 }
4705
4706 return rc;
4707}
4708
4709static int print_ip_arg(struct trace_seq *s, const char *ptr,
4710 void *data, int size, struct event_format *event,
4711 struct print_arg *arg)
4712{
4713 char i = *ptr; /* 'i' or 'I' */
4714 char ver;
4715 int rc = 0;
4716
4717 ptr++;
4718 rc++;
4719
4720 ver = *ptr;
4721 ptr++;
4722 rc++;
4723
4724 switch (ver) {
4725 case '4':
4726 rc += print_ipv4_arg(s, ptr, i, data, size, event, arg);
4727 break;
4728 case '6':
4729 rc += print_ipv6_arg(s, ptr, i, data, size, event, arg);
4730 break;
4731 case 'S':
4732 rc += print_ipsa_arg(s, ptr, i, data, size, event, arg);
4733 break;
4734 default:
4735 return 0;
4736 }
4737
4738 return rc;
4739}
4740
4741static int is_printable_array(char *p, unsigned int len)
4742{
4743 unsigned int i;
4744
4745 for (i = 0; i < len && p[i]; i++)
4746 if (!isprint(p[i]) && !isspace(p[i]))
4747 return 0;
4748 return 1;
4749}
4750
4751void pevent_print_field(struct trace_seq *s, void *data,
4752 struct format_field *field)
4753{
4754 unsigned long long val;
4755 unsigned int offset, len, i;
4756 struct pevent *pevent = field->event->pevent;
4757
4758 if (field->flags & FIELD_IS_ARRAY) {
4759 offset = field->offset;
4760 len = field->size;
4761 if (field->flags & FIELD_IS_DYNAMIC) {
4762 val = pevent_read_number(pevent, data + offset, len);
4763 offset = val;
4764 len = offset >> 16;
4765 offset &= 0xffff;
4766 }
4767 if (field->flags & FIELD_IS_STRING &&
4768 is_printable_array(data + offset, len)) {
4769 trace_seq_printf(s, "%s", (char *)data + offset);
4770 } else {
4771 trace_seq_puts(s, "ARRAY[");
4772 for (i = 0; i < len; i++) {
4773 if (i)
4774 trace_seq_puts(s, ", ");
4775 trace_seq_printf(s, "%02x",
4776 *((unsigned char *)data + offset + i));
4777 }
4778 trace_seq_putc(s, ']');
4779 field->flags &= ~FIELD_IS_STRING;
4780 }
4781 } else {
4782 val = pevent_read_number(pevent, data + field->offset,
4783 field->size);
4784 if (field->flags & FIELD_IS_POINTER) {
4785 trace_seq_printf(s, "0x%llx", val);
4786 } else if (field->flags & FIELD_IS_SIGNED) {
4787 switch (field->size) {
4788 case 4:
4789 /*
4790 * If field is long then print it in hex.
4791 * A long usually stores pointers.
4792 */
4793 if (field->flags & FIELD_IS_LONG)
4794 trace_seq_printf(s, "0x%x", (int)val);
4795 else
4796 trace_seq_printf(s, "%d", (int)val);
4797 break;
4798 case 2:
4799 trace_seq_printf(s, "%2d", (short)val);
4800 break;
4801 case 1:
4802 trace_seq_printf(s, "%1d", (char)val);
4803 break;
4804 default:
4805 trace_seq_printf(s, "%lld", val);
4806 }
4807 } else {
4808 if (field->flags & FIELD_IS_LONG)
4809 trace_seq_printf(s, "0x%llx", val);
4810 else
4811 trace_seq_printf(s, "%llu", val);
4812 }
4813 }
4814}
4815
4816void pevent_print_fields(struct trace_seq *s, void *data,
4817 int size __maybe_unused, struct event_format *event)
4818{
4819 struct format_field *field;
4820
4821 field = event->format.fields;
4822 while (field) {
4823 trace_seq_printf(s, " %s=", field->name);
4824 pevent_print_field(s, data, field);
4825 field = field->next;
4826 }
4827}
4828
4829static void pretty_print(struct trace_seq *s, void *data, int size, struct event_format *event)
4830{
4831 struct pevent *pevent = event->pevent;
4832 struct print_fmt *print_fmt = &event->print_fmt;
4833 struct print_arg *arg = print_fmt->args;
4834 struct print_arg *args = NULL;
4835 const char *ptr = print_fmt->format;
4836 unsigned long long val;
4837 struct func_map *func;
4838 const char *saveptr;
4839 struct trace_seq p;
4840 char *bprint_fmt = NULL;
4841 char format[32];
4842 int show_func;
4843 int len_as_arg;
4844 int len_arg;
4845 int len;
4846 int ls;
4847
4848 if (event->flags & EVENT_FL_FAILED) {
4849 trace_seq_printf(s, "[FAILED TO PARSE]");
4850 pevent_print_fields(s, data, size, event);
4851 return;
4852 }
4853
4854 if (event->flags & EVENT_FL_ISBPRINT) {
4855 bprint_fmt = get_bprint_format(data, size, event);
4856 args = make_bprint_args(bprint_fmt, data, size, event);
4857 arg = args;
4858 ptr = bprint_fmt;
4859 }
4860
4861 for (; *ptr; ptr++) {
4862 ls = 0;
4863 if (*ptr == '\\') {
4864 ptr++;
4865 switch (*ptr) {
4866 case 'n':
4867 trace_seq_putc(s, '\n');
4868 break;
4869 case 't':
4870 trace_seq_putc(s, '\t');
4871 break;
4872 case 'r':
4873 trace_seq_putc(s, '\r');
4874 break;
4875 case '\\':
4876 trace_seq_putc(s, '\\');
4877 break;
4878 default:
4879 trace_seq_putc(s, *ptr);
4880 break;
4881 }
4882
4883 } else if (*ptr == '%') {
4884 saveptr = ptr;
4885 show_func = 0;
4886 len_as_arg = 0;
4887 cont_process:
4888 ptr++;
4889 switch (*ptr) {
4890 case '%':
4891 trace_seq_putc(s, '%');
4892 break;
4893 case '#':
4894 /* FIXME: need to handle properly */
4895 goto cont_process;
4896 case 'h':
4897 ls--;
4898 goto cont_process;
4899 case 'l':
4900 ls++;
4901 goto cont_process;
4902 case 'L':
4903 ls = 2;
4904 goto cont_process;
4905 case '*':
4906 /* The argument is the length. */
4907 if (!arg) {
4908 do_warning_event(event, "no argument match");
4909 event->flags |= EVENT_FL_FAILED;
4910 goto out_failed;
4911 }
4912 len_arg = eval_num_arg(data, size, event, arg);
4913 len_as_arg = 1;
4914 arg = arg->next;
4915 goto cont_process;
4916 case '.':
4917 case 'z':
4918 case 'Z':
4919 case '0' ... '9':
4920 case '-':
4921 goto cont_process;
4922 case 'p':
4923 if (pevent->long_size == 4)
4924 ls = 1;
4925 else
4926 ls = 2;
4927
4928 if (*(ptr+1) == 'F' || *(ptr+1) == 'f' ||
4929 *(ptr+1) == 'S' || *(ptr+1) == 's') {
4930 ptr++;
4931 show_func = *ptr;
4932 } else if (*(ptr+1) == 'M' || *(ptr+1) == 'm') {
4933 print_mac_arg(s, *(ptr+1), data, size, event, arg);
4934 ptr++;
4935 arg = arg->next;
4936 break;
4937 } else if (*(ptr+1) == 'I' || *(ptr+1) == 'i') {
4938 int n;
4939
4940 n = print_ip_arg(s, ptr+1, data, size, event, arg);
4941 if (n > 0) {
4942 ptr += n;
4943 arg = arg->next;
4944 break;
4945 }
4946 }
4947
4948 /* fall through */
4949 case 'd':
4950 case 'i':
4951 case 'x':
4952 case 'X':
4953 case 'u':
4954 if (!arg) {
4955 do_warning_event(event, "no argument match");
4956 event->flags |= EVENT_FL_FAILED;
4957 goto out_failed;
4958 }
4959
4960 len = ((unsigned long)ptr + 1) -
4961 (unsigned long)saveptr;
4962
4963 /* should never happen */
4964 if (len > 31) {
4965 do_warning_event(event, "bad format!");
4966 event->flags |= EVENT_FL_FAILED;
4967 len = 31;
4968 }
4969
4970 memcpy(format, saveptr, len);
4971 format[len] = 0;
4972
4973 val = eval_num_arg(data, size, event, arg);
4974 arg = arg->next;
4975
4976 if (show_func) {
4977 func = find_func(pevent, val);
4978 if (func) {
4979 trace_seq_puts(s, func->func);
4980 if (show_func == 'F')
4981 trace_seq_printf(s,
4982 "+0x%llx",
4983 val - func->addr);
4984 break;
4985 }
4986 }
4987 if (pevent->long_size == 8 && ls == 1 &&
4988 sizeof(long) != 8) {
4989 char *p;
4990
4991 /* make %l into %ll */
4992 if (ls == 1 && (p = strchr(format, 'l')))
4993 memmove(p+1, p, strlen(p)+1);
4994 else if (strcmp(format, "%p") == 0)
4995 strcpy(format, "0x%llx");
4996 ls = 2;
4997 }
4998 switch (ls) {
4999 case -2:
5000 if (len_as_arg)
5001 trace_seq_printf(s, format, len_arg, (char)val);
5002 else
5003 trace_seq_printf(s, format, (char)val);
5004 break;
5005 case -1:
5006 if (len_as_arg)
5007 trace_seq_printf(s, format, len_arg, (short)val);
5008 else
5009 trace_seq_printf(s, format, (short)val);
5010 break;
5011 case 0:
5012 if (len_as_arg)
5013 trace_seq_printf(s, format, len_arg, (int)val);
5014 else
5015 trace_seq_printf(s, format, (int)val);
5016 break;
5017 case 1:
5018 if (len_as_arg)
5019 trace_seq_printf(s, format, len_arg, (long)val);
5020 else
5021 trace_seq_printf(s, format, (long)val);
5022 break;
5023 case 2:
5024 if (len_as_arg)
5025 trace_seq_printf(s, format, len_arg,
5026 (long long)val);
5027 else
5028 trace_seq_printf(s, format, (long long)val);
5029 break;
5030 default:
5031 do_warning_event(event, "bad count (%d)", ls);
5032 event->flags |= EVENT_FL_FAILED;
5033 }
5034 break;
5035 case 's':
5036 if (!arg) {
5037 do_warning_event(event, "no matching argument");
5038 event->flags |= EVENT_FL_FAILED;
5039 goto out_failed;
5040 }
5041
5042 len = ((unsigned long)ptr + 1) -
5043 (unsigned long)saveptr;
5044
5045 /* should never happen */
5046 if (len > 31) {
5047 do_warning_event(event, "bad format!");
5048 event->flags |= EVENT_FL_FAILED;
5049 len = 31;
5050 }
5051
5052 memcpy(format, saveptr, len);
5053 format[len] = 0;
5054 if (!len_as_arg)
5055 len_arg = -1;
5056 /* Use helper trace_seq */
5057 trace_seq_init(&p);
5058 print_str_arg(&p, data, size, event,
5059 format, len_arg, arg);
5060 trace_seq_terminate(&p);
5061 trace_seq_puts(s, p.buffer);
5062 trace_seq_destroy(&p);
5063 arg = arg->next;
5064 break;
5065 default:
5066 trace_seq_printf(s, ">%c<", *ptr);
5067
5068 }
5069 } else
5070 trace_seq_putc(s, *ptr);
5071 }
5072
5073 if (event->flags & EVENT_FL_FAILED) {
5074out_failed:
5075 trace_seq_printf(s, "[FAILED TO PARSE]");
5076 }
5077
5078 if (args) {
5079 free_args(args);
5080 free(bprint_fmt);
5081 }
5082}
5083
5084/**
5085 * pevent_data_lat_fmt - parse the data for the latency format
5086 * @pevent: a handle to the pevent
5087 * @s: the trace_seq to write to
5088 * @record: the record to read from
5089 *
5090 * This parses out the Latency format (interrupts disabled,
5091 * need rescheduling, in hard/soft interrupt, preempt count
5092 * and lock depth) and places it into the trace_seq.
5093 */
5094void pevent_data_lat_fmt(struct pevent *pevent,
5095 struct trace_seq *s, struct pevent_record *record)
5096{
5097 static int check_lock_depth = 1;
5098 static int check_migrate_disable = 1;
5099 static int lock_depth_exists;
5100 static int migrate_disable_exists;
5101 unsigned int lat_flags;
5102 unsigned int pc;
5103 int lock_depth;
5104 int migrate_disable;
5105 int hardirq;
5106 int softirq;
5107 void *data = record->data;
5108
5109 lat_flags = parse_common_flags(pevent, data);
5110 pc = parse_common_pc(pevent, data);
5111 /* lock_depth may not always exist */
5112 if (lock_depth_exists)
5113 lock_depth = parse_common_lock_depth(pevent, data);
5114 else if (check_lock_depth) {
5115 lock_depth = parse_common_lock_depth(pevent, data);
5116 if (lock_depth < 0)
5117 check_lock_depth = 0;
5118 else
5119 lock_depth_exists = 1;
5120 }
5121
5122 /* migrate_disable may not always exist */
5123 if (migrate_disable_exists)
5124 migrate_disable = parse_common_migrate_disable(pevent, data);
5125 else if (check_migrate_disable) {
5126 migrate_disable = parse_common_migrate_disable(pevent, data);
5127 if (migrate_disable < 0)
5128 check_migrate_disable = 0;
5129 else
5130 migrate_disable_exists = 1;
5131 }
5132
5133 hardirq = lat_flags & TRACE_FLAG_HARDIRQ;
5134 softirq = lat_flags & TRACE_FLAG_SOFTIRQ;
5135
5136 trace_seq_printf(s, "%c%c%c",
5137 (lat_flags & TRACE_FLAG_IRQS_OFF) ? 'd' :
5138 (lat_flags & TRACE_FLAG_IRQS_NOSUPPORT) ?
5139 'X' : '.',
5140 (lat_flags & TRACE_FLAG_NEED_RESCHED) ?
5141 'N' : '.',
5142 (hardirq && softirq) ? 'H' :
5143 hardirq ? 'h' : softirq ? 's' : '.');
5144
5145 if (pc)
5146 trace_seq_printf(s, "%x", pc);
5147 else
5148 trace_seq_putc(s, '.');
5149
5150 if (migrate_disable_exists) {
5151 if (migrate_disable < 0)
5152 trace_seq_putc(s, '.');
5153 else
5154 trace_seq_printf(s, "%d", migrate_disable);
5155 }
5156
5157 if (lock_depth_exists) {
5158 if (lock_depth < 0)
5159 trace_seq_putc(s, '.');
5160 else
5161 trace_seq_printf(s, "%d", lock_depth);
5162 }
5163
5164 trace_seq_terminate(s);
5165}
5166
5167/**
5168 * pevent_data_type - parse out the given event type
5169 * @pevent: a handle to the pevent
5170 * @rec: the record to read from
5171 *
5172 * This returns the event id from the @rec.
5173 */
5174int pevent_data_type(struct pevent *pevent, struct pevent_record *rec)
5175{
5176 return trace_parse_common_type(pevent, rec->data);
5177}
5178
5179/**
5180 * pevent_data_event_from_type - find the event by a given type
5181 * @pevent: a handle to the pevent
5182 * @type: the type of the event.
5183 *
5184 * This returns the event form a given @type;
5185 */
5186struct event_format *pevent_data_event_from_type(struct pevent *pevent, int type)
5187{
5188 return pevent_find_event(pevent, type);
5189}
5190
5191/**
5192 * pevent_data_pid - parse the PID from raw data
5193 * @pevent: a handle to the pevent
5194 * @rec: the record to parse
5195 *
5196 * This returns the PID from a raw data.
5197 */
5198int pevent_data_pid(struct pevent *pevent, struct pevent_record *rec)
5199{
5200 return parse_common_pid(pevent, rec->data);
5201}
5202
5203/**
5204 * pevent_data_comm_from_pid - return the command line from PID
5205 * @pevent: a handle to the pevent
5206 * @pid: the PID of the task to search for
5207 *
5208 * This returns a pointer to the command line that has the given
5209 * @pid.
5210 */
5211const char *pevent_data_comm_from_pid(struct pevent *pevent, int pid)
5212{
5213 const char *comm;
5214
5215 comm = find_cmdline(pevent, pid);
5216 return comm;
5217}
5218
5219static struct cmdline *
5220pid_from_cmdlist(struct pevent *pevent, const char *comm, struct cmdline *next)
5221{
5222 struct cmdline_list *cmdlist = (struct cmdline_list *)next;
5223
5224 if (cmdlist)
5225 cmdlist = cmdlist->next;
5226 else
5227 cmdlist = pevent->cmdlist;
5228
5229 while (cmdlist && strcmp(cmdlist->comm, comm) != 0)
5230 cmdlist = cmdlist->next;
5231
5232 return (struct cmdline *)cmdlist;
5233}
5234
5235/**
5236 * pevent_data_pid_from_comm - return the pid from a given comm
5237 * @pevent: a handle to the pevent
5238 * @comm: the cmdline to find the pid from
5239 * @next: the cmdline structure to find the next comm
5240 *
5241 * This returns the cmdline structure that holds a pid for a given
5242 * comm, or NULL if none found. As there may be more than one pid for
5243 * a given comm, the result of this call can be passed back into
5244 * a recurring call in the @next paramater, and then it will find the
5245 * next pid.
5246 * Also, it does a linear seach, so it may be slow.
5247 */
5248struct cmdline *pevent_data_pid_from_comm(struct pevent *pevent, const char *comm,
5249 struct cmdline *next)
5250{
5251 struct cmdline *cmdline;
5252
5253 /*
5254 * If the cmdlines have not been converted yet, then use
5255 * the list.
5256 */
5257 if (!pevent->cmdlines)
5258 return pid_from_cmdlist(pevent, comm, next);
5259
5260 if (next) {
5261 /*
5262 * The next pointer could have been still from
5263 * a previous call before cmdlines were created
5264 */
5265 if (next < pevent->cmdlines ||
5266 next >= pevent->cmdlines + pevent->cmdline_count)
5267 next = NULL;
5268 else
5269 cmdline = next++;
5270 }
5271
5272 if (!next)
5273 cmdline = pevent->cmdlines;
5274
5275 while (cmdline < pevent->cmdlines + pevent->cmdline_count) {
5276 if (strcmp(cmdline->comm, comm) == 0)
5277 return cmdline;
5278 cmdline++;
5279 }
5280 return NULL;
5281}
5282
5283/**
5284 * pevent_cmdline_pid - return the pid associated to a given cmdline
5285 * @cmdline: The cmdline structure to get the pid from
5286 *
5287 * Returns the pid for a give cmdline. If @cmdline is NULL, then
5288 * -1 is returned.
5289 */
5290int pevent_cmdline_pid(struct pevent *pevent, struct cmdline *cmdline)
5291{
5292 struct cmdline_list *cmdlist = (struct cmdline_list *)cmdline;
5293
5294 if (!cmdline)
5295 return -1;
5296
5297 /*
5298 * If cmdlines have not been created yet, or cmdline is
5299 * not part of the array, then treat it as a cmdlist instead.
5300 */
5301 if (!pevent->cmdlines ||
5302 cmdline < pevent->cmdlines ||
5303 cmdline >= pevent->cmdlines + pevent->cmdline_count)
5304 return cmdlist->pid;
5305
5306 return cmdline->pid;
5307}
5308
5309/**
5310 * pevent_data_comm_from_pid - parse the data into the print format
5311 * @s: the trace_seq to write to
5312 * @event: the handle to the event
5313 * @record: the record to read from
5314 *
5315 * This parses the raw @data using the given @event information and
5316 * writes the print format into the trace_seq.
5317 */
5318void pevent_event_info(struct trace_seq *s, struct event_format *event,
5319 struct pevent_record *record)
5320{
5321 int print_pretty = 1;
5322
5323 if (event->pevent->print_raw || (event->flags & EVENT_FL_PRINTRAW))
5324 pevent_print_fields(s, record->data, record->size, event);
5325 else {
5326
5327 if (event->handler && !(event->flags & EVENT_FL_NOHANDLE))
5328 print_pretty = event->handler(s, record, event,
5329 event->context);
5330
5331 if (print_pretty)
5332 pretty_print(s, record->data, record->size, event);
5333 }
5334
5335 trace_seq_terminate(s);
5336}
5337
5338static bool is_timestamp_in_us(char *trace_clock, bool use_trace_clock)
5339{
5340 if (!use_trace_clock)
5341 return true;
5342
5343 if (!strcmp(trace_clock, "local") || !strcmp(trace_clock, "global")
5344 || !strcmp(trace_clock, "uptime") || !strcmp(trace_clock, "perf"))
5345 return true;
5346
5347 /* trace_clock is setting in tsc or counter mode */
5348 return false;
5349}
5350
5351/**
5352 * pevent_find_event_by_record - return the event from a given record
5353 * @pevent: a handle to the pevent
5354 * @record: The record to get the event from
5355 *
5356 * Returns the associated event for a given record, or NULL if non is
5357 * is found.
5358 */
5359struct event_format *
5360pevent_find_event_by_record(struct pevent *pevent, struct pevent_record *record)
5361{
5362 int type;
5363
5364 if (record->size < 0) {
5365 do_warning("ug! negative record size %d", record->size);
5366 return NULL;
5367 }
5368
5369 type = trace_parse_common_type(pevent, record->data);
5370
5371 return pevent_find_event(pevent, type);
5372}
5373
5374/**
5375 * pevent_print_event_task - Write the event task comm, pid and CPU
5376 * @pevent: a handle to the pevent
5377 * @s: the trace_seq to write to
5378 * @event: the handle to the record's event
5379 * @record: The record to get the event from
5380 *
5381 * Writes the tasks comm, pid and CPU to @s.
5382 */
5383void pevent_print_event_task(struct pevent *pevent, struct trace_seq *s,
5384 struct event_format *event,
5385 struct pevent_record *record)
5386{
5387 void *data = record->data;
5388 const char *comm;
5389 int pid;
5390
5391 pid = parse_common_pid(pevent, data);
5392 comm = find_cmdline(pevent, pid);
5393
5394 if (pevent->latency_format) {
5395 trace_seq_printf(s, "%8.8s-%-5d %3d",
5396 comm, pid, record->cpu);
5397 } else
5398 trace_seq_printf(s, "%16s-%-5d [%03d]", comm, pid, record->cpu);
5399}
5400
5401/**
5402 * pevent_print_event_time - Write the event timestamp
5403 * @pevent: a handle to the pevent
5404 * @s: the trace_seq to write to
5405 * @event: the handle to the record's event
5406 * @record: The record to get the event from
5407 * @use_trace_clock: Set to parse according to the @pevent->trace_clock
5408 *
5409 * Writes the timestamp of the record into @s.
5410 */
5411void pevent_print_event_time(struct pevent *pevent, struct trace_seq *s,
5412 struct event_format *event,
5413 struct pevent_record *record,
5414 bool use_trace_clock)
5415{
5416 unsigned long secs;
5417 unsigned long usecs;
5418 unsigned long nsecs;
5419 int p;
5420 bool use_usec_format;
5421
5422 use_usec_format = is_timestamp_in_us(pevent->trace_clock,
5423 use_trace_clock);
5424 if (use_usec_format) {
5425 secs = record->ts / NSECS_PER_SEC;
5426 nsecs = record->ts - secs * NSECS_PER_SEC;
5427 }
5428
5429 if (pevent->latency_format) {
5430 pevent_data_lat_fmt(pevent, s, record);
5431 }
5432
5433 if (use_usec_format) {
5434 if (pevent->flags & PEVENT_NSEC_OUTPUT) {
5435 usecs = nsecs;
5436 p = 9;
5437 } else {
5438 usecs = (nsecs + 500) / NSECS_PER_USEC;
5439 /* To avoid usecs larger than 1 sec */
5440 if (usecs >= 1000000) {
5441 usecs -= 1000000;
5442 secs++;
5443 }
5444 p = 6;
5445 }
5446
5447 trace_seq_printf(s, " %5lu.%0*lu:", secs, p, usecs);
5448 } else
5449 trace_seq_printf(s, " %12llu:", record->ts);
5450}
5451
5452/**
5453 * pevent_print_event_data - Write the event data section
5454 * @pevent: a handle to the pevent
5455 * @s: the trace_seq to write to
5456 * @event: the handle to the record's event
5457 * @record: The record to get the event from
5458 *
5459 * Writes the parsing of the record's data to @s.
5460 */
5461void pevent_print_event_data(struct pevent *pevent, struct trace_seq *s,
5462 struct event_format *event,
5463 struct pevent_record *record)
5464{
5465 static const char *spaces = " "; /* 20 spaces */
5466 int len;
5467
5468 trace_seq_printf(s, " %s: ", event->name);
5469
5470 /* Space out the event names evenly. */
5471 len = strlen(event->name);
5472 if (len < 20)
5473 trace_seq_printf(s, "%.*s", 20 - len, spaces);
5474
5475 pevent_event_info(s, event, record);
5476}
5477
5478void pevent_print_event(struct pevent *pevent, struct trace_seq *s,
5479 struct pevent_record *record, bool use_trace_clock)
5480{
5481 struct event_format *event;
5482
5483 event = pevent_find_event_by_record(pevent, record);
5484 if (!event) {
5485 do_warning("ug! no event found for type %d",
5486 trace_parse_common_type(pevent, record->data));
5487 return;
5488 }
5489
5490 pevent_print_event_task(pevent, s, event, record);
5491 pevent_print_event_time(pevent, s, event, record, use_trace_clock);
5492 pevent_print_event_data(pevent, s, event, record);
5493}
5494
5495static int events_id_cmp(const void *a, const void *b)
5496{
5497 struct event_format * const * ea = a;
5498 struct event_format * const * eb = b;
5499
5500 if ((*ea)->id < (*eb)->id)
5501 return -1;
5502
5503 if ((*ea)->id > (*eb)->id)
5504 return 1;
5505
5506 return 0;
5507}
5508
5509static int events_name_cmp(const void *a, const void *b)
5510{
5511 struct event_format * const * ea = a;
5512 struct event_format * const * eb = b;
5513 int res;
5514
5515 res = strcmp((*ea)->name, (*eb)->name);
5516 if (res)
5517 return res;
5518
5519 res = strcmp((*ea)->system, (*eb)->system);
5520 if (res)
5521 return res;
5522
5523 return events_id_cmp(a, b);
5524}
5525
5526static int events_system_cmp(const void *a, const void *b)
5527{
5528 struct event_format * const * ea = a;
5529 struct event_format * const * eb = b;
5530 int res;
5531
5532 res = strcmp((*ea)->system, (*eb)->system);
5533 if (res)
5534 return res;
5535
5536 res = strcmp((*ea)->name, (*eb)->name);
5537 if (res)
5538 return res;
5539
5540 return events_id_cmp(a, b);
5541}
5542
5543struct event_format **pevent_list_events(struct pevent *pevent, enum event_sort_type sort_type)
5544{
5545 struct event_format **events;
5546 int (*sort)(const void *a, const void *b);
5547
5548 events = pevent->sort_events;
5549
5550 if (events && pevent->last_type == sort_type)
5551 return events;
5552
5553 if (!events) {
5554 events = malloc(sizeof(*events) * (pevent->nr_events + 1));
5555 if (!events)
5556 return NULL;
5557
5558 memcpy(events, pevent->events, sizeof(*events) * pevent->nr_events);
5559 events[pevent->nr_events] = NULL;
5560
5561 pevent->sort_events = events;
5562
5563 /* the internal events are sorted by id */
5564 if (sort_type == EVENT_SORT_ID) {
5565 pevent->last_type = sort_type;
5566 return events;
5567 }
5568 }
5569
5570 switch (sort_type) {
5571 case EVENT_SORT_ID:
5572 sort = events_id_cmp;
5573 break;
5574 case EVENT_SORT_NAME:
5575 sort = events_name_cmp;
5576 break;
5577 case EVENT_SORT_SYSTEM:
5578 sort = events_system_cmp;
5579 break;
5580 default:
5581 return events;
5582 }
5583
5584 qsort(events, pevent->nr_events, sizeof(*events), sort);
5585 pevent->last_type = sort_type;
5586
5587 return events;
5588}
5589
5590static struct format_field **
5591get_event_fields(const char *type, const char *name,
5592 int count, struct format_field *list)
5593{
5594 struct format_field **fields;
5595 struct format_field *field;
5596 int i = 0;
5597
5598 fields = malloc(sizeof(*fields) * (count + 1));
5599 if (!fields)
5600 return NULL;
5601
5602 for (field = list; field; field = field->next) {
5603 fields[i++] = field;
5604 if (i == count + 1) {
5605 do_warning("event %s has more %s fields than specified",
5606 name, type);
5607 i--;
5608 break;
5609 }
5610 }
5611
5612 if (i != count)
5613 do_warning("event %s has less %s fields than specified",
5614 name, type);
5615
5616 fields[i] = NULL;
5617
5618 return fields;
5619}
5620
5621/**
5622 * pevent_event_common_fields - return a list of common fields for an event
5623 * @event: the event to return the common fields of.
5624 *
5625 * Returns an allocated array of fields. The last item in the array is NULL.
5626 * The array must be freed with free().
5627 */
5628struct format_field **pevent_event_common_fields(struct event_format *event)
5629{
5630 return get_event_fields("common", event->name,
5631 event->format.nr_common,
5632 event->format.common_fields);
5633}
5634
5635/**
5636 * pevent_event_fields - return a list of event specific fields for an event
5637 * @event: the event to return the fields of.
5638 *
5639 * Returns an allocated array of fields. The last item in the array is NULL.
5640 * The array must be freed with free().
5641 */
5642struct format_field **pevent_event_fields(struct event_format *event)
5643{
5644 return get_event_fields("event", event->name,
5645 event->format.nr_fields,
5646 event->format.fields);
5647}
5648
5649static void print_fields(struct trace_seq *s, struct print_flag_sym *field)
5650{
5651 trace_seq_printf(s, "{ %s, %s }", field->value, field->str);
5652 if (field->next) {
5653 trace_seq_puts(s, ", ");
5654 print_fields(s, field->next);
5655 }
5656}
5657
5658/* for debugging */
5659static void print_args(struct print_arg *args)
5660{
5661 int print_paren = 1;
5662 struct trace_seq s;
5663
5664 switch (args->type) {
5665 case PRINT_NULL:
5666 printf("null");
5667 break;
5668 case PRINT_ATOM:
5669 printf("%s", args->atom.atom);
5670 break;
5671 case PRINT_FIELD:
5672 printf("REC->%s", args->field.name);
5673 break;
5674 case PRINT_FLAGS:
5675 printf("__print_flags(");
5676 print_args(args->flags.field);
5677 printf(", %s, ", args->flags.delim);
5678 trace_seq_init(&s);
5679 print_fields(&s, args->flags.flags);
5680 trace_seq_do_printf(&s);
5681 trace_seq_destroy(&s);
5682 printf(")");
5683 break;
5684 case PRINT_SYMBOL:
5685 printf("__print_symbolic(");
5686 print_args(args->symbol.field);
5687 printf(", ");
5688 trace_seq_init(&s);
5689 print_fields(&s, args->symbol.symbols);
5690 trace_seq_do_printf(&s);
5691 trace_seq_destroy(&s);
5692 printf(")");
5693 break;
5694 case PRINT_HEX:
5695 printf("__print_hex(");
5696 print_args(args->hex.field);
5697 printf(", ");
5698 print_args(args->hex.size);
5699 printf(")");
5700 break;
5701 case PRINT_INT_ARRAY:
5702 printf("__print_array(");
5703 print_args(args->int_array.field);
5704 printf(", ");
5705 print_args(args->int_array.count);
5706 printf(", ");
5707 print_args(args->int_array.el_size);
5708 printf(")");
5709 break;
5710 case PRINT_STRING:
5711 case PRINT_BSTRING:
5712 printf("__get_str(%s)", args->string.string);
5713 break;
5714 case PRINT_BITMASK:
5715 printf("__get_bitmask(%s)", args->bitmask.bitmask);
5716 break;
5717 case PRINT_TYPE:
5718 printf("(%s)", args->typecast.type);
5719 print_args(args->typecast.item);
5720 break;
5721 case PRINT_OP:
5722 if (strcmp(args->op.op, ":") == 0)
5723 print_paren = 0;
5724 if (print_paren)
5725 printf("(");
5726 print_args(args->op.left);
5727 printf(" %s ", args->op.op);
5728 print_args(args->op.right);
5729 if (print_paren)
5730 printf(")");
5731 break;
5732 default:
5733 /* we should warn... */
5734 return;
5735 }
5736 if (args->next) {
5737 printf("\n");
5738 print_args(args->next);
5739 }
5740}
5741
5742static void parse_header_field(const char *field,
5743 int *offset, int *size, int mandatory)
5744{
5745 unsigned long long save_input_buf_ptr;
5746 unsigned long long save_input_buf_siz;
5747 char *token;
5748 int type;
5749
5750 save_input_buf_ptr = input_buf_ptr;
5751 save_input_buf_siz = input_buf_siz;
5752
5753 if (read_expected(EVENT_ITEM, "field") < 0)
5754 return;
5755 if (read_expected(EVENT_OP, ":") < 0)
5756 return;
5757
5758 /* type */
5759 if (read_expect_type(EVENT_ITEM, &token) < 0)
5760 goto fail;
5761 free_token(token);
5762
5763 /*
5764 * If this is not a mandatory field, then test it first.
5765 */
5766 if (mandatory) {
5767 if (read_expected(EVENT_ITEM, field) < 0)
5768 return;
5769 } else {
5770 if (read_expect_type(EVENT_ITEM, &token) < 0)
5771 goto fail;
5772 if (strcmp(token, field) != 0)
5773 goto discard;
5774 free_token(token);
5775 }
5776
5777 if (read_expected(EVENT_OP, ";") < 0)
5778 return;
5779 if (read_expected(EVENT_ITEM, "offset") < 0)
5780 return;
5781 if (read_expected(EVENT_OP, ":") < 0)
5782 return;
5783 if (read_expect_type(EVENT_ITEM, &token) < 0)
5784 goto fail;
5785 *offset = atoi(token);
5786 free_token(token);
5787 if (read_expected(EVENT_OP, ";") < 0)
5788 return;
5789 if (read_expected(EVENT_ITEM, "size") < 0)
5790 return;
5791 if (read_expected(EVENT_OP, ":") < 0)
5792 return;
5793 if (read_expect_type(EVENT_ITEM, &token) < 0)
5794 goto fail;
5795 *size = atoi(token);
5796 free_token(token);
5797 if (read_expected(EVENT_OP, ";") < 0)
5798 return;
5799 type = read_token(&token);
5800 if (type != EVENT_NEWLINE) {
5801 /* newer versions of the kernel have a "signed" type */
5802 if (type != EVENT_ITEM)
5803 goto fail;
5804
5805 if (strcmp(token, "signed") != 0)
5806 goto fail;
5807
5808 free_token(token);
5809
5810 if (read_expected(EVENT_OP, ":") < 0)
5811 return;
5812
5813 if (read_expect_type(EVENT_ITEM, &token))
5814 goto fail;
5815
5816 free_token(token);
5817 if (read_expected(EVENT_OP, ";") < 0)
5818 return;
5819
5820 if (read_expect_type(EVENT_NEWLINE, &token))
5821 goto fail;
5822 }
5823 fail:
5824 free_token(token);
5825 return;
5826
5827 discard:
5828 input_buf_ptr = save_input_buf_ptr;
5829 input_buf_siz = save_input_buf_siz;
5830 *offset = 0;
5831 *size = 0;
5832 free_token(token);
5833}
5834
5835/**
5836 * pevent_parse_header_page - parse the data stored in the header page
5837 * @pevent: the handle to the pevent
5838 * @buf: the buffer storing the header page format string
5839 * @size: the size of @buf
5840 * @long_size: the long size to use if there is no header
5841 *
5842 * This parses the header page format for information on the
5843 * ring buffer used. The @buf should be copied from
5844 *
5845 * /sys/kernel/debug/tracing/events/header_page
5846 */
5847int pevent_parse_header_page(struct pevent *pevent, char *buf, unsigned long size,
5848 int long_size)
5849{
5850 int ignore;
5851
5852 if (!size) {
5853 /*
5854 * Old kernels did not have header page info.
5855 * Sorry but we just use what we find here in user space.
5856 */
5857 pevent->header_page_ts_size = sizeof(long long);
5858 pevent->header_page_size_size = long_size;
5859 pevent->header_page_data_offset = sizeof(long long) + long_size;
5860 pevent->old_format = 1;
5861 return -1;
5862 }
5863 init_input_buf(buf, size);
5864
5865 parse_header_field("timestamp", &pevent->header_page_ts_offset,
5866 &pevent->header_page_ts_size, 1);
5867 parse_header_field("commit", &pevent->header_page_size_offset,
5868 &pevent->header_page_size_size, 1);
5869 parse_header_field("overwrite", &pevent->header_page_overwrite,
5870 &ignore, 0);
5871 parse_header_field("data", &pevent->header_page_data_offset,
5872 &pevent->header_page_data_size, 1);
5873
5874 return 0;
5875}
5876
5877static int event_matches(struct event_format *event,
5878 int id, const char *sys_name,
5879 const char *event_name)
5880{
5881 if (id >= 0 && id != event->id)
5882 return 0;
5883
5884 if (event_name && (strcmp(event_name, event->name) != 0))
5885 return 0;
5886
5887 if (sys_name && (strcmp(sys_name, event->system) != 0))
5888 return 0;
5889
5890 return 1;
5891}
5892
5893static void free_handler(struct event_handler *handle)
5894{
5895 free((void *)handle->sys_name);
5896 free((void *)handle->event_name);
5897 free(handle);
5898}
5899
5900static int find_event_handle(struct pevent *pevent, struct event_format *event)
5901{
5902 struct event_handler *handle, **next;
5903
5904 for (next = &pevent->handlers; *next;
5905 next = &(*next)->next) {
5906 handle = *next;
5907 if (event_matches(event, handle->id,
5908 handle->sys_name,
5909 handle->event_name))
5910 break;
5911 }
5912
5913 if (!(*next))
5914 return 0;
5915
5916 pr_stat("overriding event (%d) %s:%s with new print handler",
5917 event->id, event->system, event->name);
5918
5919 event->handler = handle->func;
5920 event->context = handle->context;
5921
5922 *next = handle->next;
5923 free_handler(handle);
5924
5925 return 1;
5926}
5927
5928/**
5929 * __pevent_parse_format - parse the event format
5930 * @buf: the buffer storing the event format string
5931 * @size: the size of @buf
5932 * @sys: the system the event belongs to
5933 *
5934 * This parses the event format and creates an event structure
5935 * to quickly parse raw data for a given event.
5936 *
5937 * These files currently come from:
5938 *
5939 * /sys/kernel/debug/tracing/events/.../.../format
5940 */
5941enum pevent_errno __pevent_parse_format(struct event_format **eventp,
5942 struct pevent *pevent, const char *buf,
5943 unsigned long size, const char *sys)
5944{
5945 struct event_format *event;
5946 int ret;
5947
5948 init_input_buf(buf, size);
5949
5950 *eventp = event = alloc_event();
5951 if (!event)
5952 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
5953
5954 event->name = event_read_name();
5955 if (!event->name) {
5956 /* Bad event? */
5957 ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
5958 goto event_alloc_failed;
5959 }
5960
5961 if (strcmp(sys, "ftrace") == 0) {
5962 event->flags |= EVENT_FL_ISFTRACE;
5963
5964 if (strcmp(event->name, "bprint") == 0)
5965 event->flags |= EVENT_FL_ISBPRINT;
5966 }
5967
5968 event->id = event_read_id();
5969 if (event->id < 0) {
5970 ret = PEVENT_ERRNO__READ_ID_FAILED;
5971 /*
5972 * This isn't an allocation error actually.
5973 * But as the ID is critical, just bail out.
5974 */
5975 goto event_alloc_failed;
5976 }
5977
5978 event->system = strdup(sys);
5979 if (!event->system) {
5980 ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
5981 goto event_alloc_failed;
5982 }
5983
5984 /* Add pevent to event so that it can be referenced */
5985 event->pevent = pevent;
5986
5987 ret = event_read_format(event);
5988 if (ret < 0) {
5989 ret = PEVENT_ERRNO__READ_FORMAT_FAILED;
5990 goto event_parse_failed;
5991 }
5992
5993 /*
5994 * If the event has an override, don't print warnings if the event
5995 * print format fails to parse.
5996 */
5997 if (pevent && find_event_handle(pevent, event))
5998 show_warning = 0;
5999
6000 ret = event_read_print(event);
6001 show_warning = 1;
6002
6003 if (ret < 0) {
6004 ret = PEVENT_ERRNO__READ_PRINT_FAILED;
6005 goto event_parse_failed;
6006 }
6007
6008 if (!ret && (event->flags & EVENT_FL_ISFTRACE)) {
6009 struct format_field *field;
6010 struct print_arg *arg, **list;
6011
6012 /* old ftrace had no args */
6013 list = &event->print_fmt.args;
6014 for (field = event->format.fields; field; field = field->next) {
6015 arg = alloc_arg();
6016 if (!arg) {
6017 event->flags |= EVENT_FL_FAILED;
6018 return PEVENT_ERRNO__OLD_FTRACE_ARG_FAILED;
6019 }
6020 arg->type = PRINT_FIELD;
6021 arg->field.name = strdup(field->name);
6022 if (!arg->field.name) {
6023 event->flags |= EVENT_FL_FAILED;
6024 free_arg(arg);
6025 return PEVENT_ERRNO__OLD_FTRACE_ARG_FAILED;
6026 }
6027 arg->field.field = field;
6028 *list = arg;
6029 list = &arg->next;
6030 }
6031 return 0;
6032 }
6033
6034 return 0;
6035
6036 event_parse_failed:
6037 event->flags |= EVENT_FL_FAILED;
6038 return ret;
6039
6040 event_alloc_failed:
6041 free(event->system);
6042 free(event->name);
6043 free(event);
6044 *eventp = NULL;
6045 return ret;
6046}
6047
6048static enum pevent_errno
6049__pevent_parse_event(struct pevent *pevent,
6050 struct event_format **eventp,
6051 const char *buf, unsigned long size,
6052 const char *sys)
6053{
6054 int ret = __pevent_parse_format(eventp, pevent, buf, size, sys);
6055 struct event_format *event = *eventp;
6056
6057 if (event == NULL)
6058 return ret;
6059
6060 if (pevent && add_event(pevent, event)) {
6061 ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
6062 goto event_add_failed;
6063 }
6064
6065#define PRINT_ARGS 0
6066 if (PRINT_ARGS && event->print_fmt.args)
6067 print_args(event->print_fmt.args);
6068
6069 return 0;
6070
6071event_add_failed:
6072 pevent_free_format(event);
6073 return ret;
6074}
6075
6076/**
6077 * pevent_parse_format - parse the event format
6078 * @pevent: the handle to the pevent
6079 * @eventp: returned format
6080 * @buf: the buffer storing the event format string
6081 * @size: the size of @buf
6082 * @sys: the system the event belongs to
6083 *
6084 * This parses the event format and creates an event structure
6085 * to quickly parse raw data for a given event.
6086 *
6087 * These files currently come from:
6088 *
6089 * /sys/kernel/debug/tracing/events/.../.../format
6090 */
6091enum pevent_errno pevent_parse_format(struct pevent *pevent,
6092 struct event_format **eventp,
6093 const char *buf,
6094 unsigned long size, const char *sys)
6095{
6096 return __pevent_parse_event(pevent, eventp, buf, size, sys);
6097}
6098
6099/**
6100 * pevent_parse_event - parse the event format
6101 * @pevent: the handle to the pevent
6102 * @buf: the buffer storing the event format string
6103 * @size: the size of @buf
6104 * @sys: the system the event belongs to
6105 *
6106 * This parses the event format and creates an event structure
6107 * to quickly parse raw data for a given event.
6108 *
6109 * These files currently come from:
6110 *
6111 * /sys/kernel/debug/tracing/events/.../.../format
6112 */
6113enum pevent_errno pevent_parse_event(struct pevent *pevent, const char *buf,
6114 unsigned long size, const char *sys)
6115{
6116 struct event_format *event = NULL;
6117 return __pevent_parse_event(pevent, &event, buf, size, sys);
6118}
6119
6120#undef _PE
6121#define _PE(code, str) str
6122static const char * const pevent_error_str[] = {
6123 PEVENT_ERRORS
6124};
6125#undef _PE
6126
6127int pevent_strerror(struct pevent *pevent __maybe_unused,
6128 enum pevent_errno errnum, char *buf, size_t buflen)
6129{
6130 int idx;
6131 const char *msg;
6132
6133 if (errnum >= 0) {
6134 msg = strerror_r(errnum, buf, buflen);
6135 if (msg != buf) {
6136 size_t len = strlen(msg);
6137 memcpy(buf, msg, min(buflen - 1, len));
6138 *(buf + min(buflen - 1, len)) = '\0';
6139 }
6140 return 0;
6141 }
6142
6143 if (errnum <= __PEVENT_ERRNO__START ||
6144 errnum >= __PEVENT_ERRNO__END)
6145 return -1;
6146
6147 idx = errnum - __PEVENT_ERRNO__START - 1;
6148 msg = pevent_error_str[idx];
6149 snprintf(buf, buflen, "%s", msg);
6150
6151 return 0;
6152}
6153
6154int get_field_val(struct trace_seq *s, struct format_field *field,
6155 const char *name, struct pevent_record *record,
6156 unsigned long long *val, int err)
6157{
6158 if (!field) {
6159 if (err)
6160 trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6161 return -1;
6162 }
6163
6164 if (pevent_read_number_field(field, record->data, val)) {
6165 if (err)
6166 trace_seq_printf(s, " %s=INVALID", name);
6167 return -1;
6168 }
6169
6170 return 0;
6171}
6172
6173/**
6174 * pevent_get_field_raw - return the raw pointer into the data field
6175 * @s: The seq to print to on error
6176 * @event: the event that the field is for
6177 * @name: The name of the field
6178 * @record: The record with the field name.
6179 * @len: place to store the field length.
6180 * @err: print default error if failed.
6181 *
6182 * Returns a pointer into record->data of the field and places
6183 * the length of the field in @len.
6184 *
6185 * On failure, it returns NULL.
6186 */
6187void *pevent_get_field_raw(struct trace_seq *s, struct event_format *event,
6188 const char *name, struct pevent_record *record,
6189 int *len, int err)
6190{
6191 struct format_field *field;
6192 void *data = record->data;
6193 unsigned offset;
6194 int dummy;
6195
6196 if (!event)
6197 return NULL;
6198
6199 field = pevent_find_field(event, name);
6200
6201 if (!field) {
6202 if (err)
6203 trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6204 return NULL;
6205 }
6206
6207 /* Allow @len to be NULL */
6208 if (!len)
6209 len = &dummy;
6210
6211 offset = field->offset;
6212 if (field->flags & FIELD_IS_DYNAMIC) {
6213 offset = pevent_read_number(event->pevent,
6214 data + offset, field->size);
6215 *len = offset >> 16;
6216 offset &= 0xffff;
6217 } else
6218 *len = field->size;
6219
6220 return data + offset;
6221}
6222
6223/**
6224 * pevent_get_field_val - find a field and return its value
6225 * @s: The seq to print to on error
6226 * @event: the event that the field is for
6227 * @name: The name of the field
6228 * @record: The record with the field name.
6229 * @val: place to store the value of the field.
6230 * @err: print default error if failed.
6231 *
6232 * Returns 0 on success -1 on field not found.
6233 */
6234int pevent_get_field_val(struct trace_seq *s, struct event_format *event,
6235 const char *name, struct pevent_record *record,
6236 unsigned long long *val, int err)
6237{
6238 struct format_field *field;
6239
6240 if (!event)
6241 return -1;
6242
6243 field = pevent_find_field(event, name);
6244
6245 return get_field_val(s, field, name, record, val, err);
6246}
6247
6248/**
6249 * pevent_get_common_field_val - find a common field and return its value
6250 * @s: The seq to print to on error
6251 * @event: the event that the field is for
6252 * @name: The name of the field
6253 * @record: The record with the field name.
6254 * @val: place to store the value of the field.
6255 * @err: print default error if failed.
6256 *
6257 * Returns 0 on success -1 on field not found.
6258 */
6259int pevent_get_common_field_val(struct trace_seq *s, struct event_format *event,
6260 const char *name, struct pevent_record *record,
6261 unsigned long long *val, int err)
6262{
6263 struct format_field *field;
6264
6265 if (!event)
6266 return -1;
6267
6268 field = pevent_find_common_field(event, name);
6269
6270 return get_field_val(s, field, name, record, val, err);
6271}
6272
6273/**
6274 * pevent_get_any_field_val - find a any field and return its value
6275 * @s: The seq to print to on error
6276 * @event: the event that the field is for
6277 * @name: The name of the field
6278 * @record: The record with the field name.
6279 * @val: place to store the value of the field.
6280 * @err: print default error if failed.
6281 *
6282 * Returns 0 on success -1 on field not found.
6283 */
6284int pevent_get_any_field_val(struct trace_seq *s, struct event_format *event,
6285 const char *name, struct pevent_record *record,
6286 unsigned long long *val, int err)
6287{
6288 struct format_field *field;
6289
6290 if (!event)
6291 return -1;
6292
6293 field = pevent_find_any_field(event, name);
6294
6295 return get_field_val(s, field, name, record, val, err);
6296}
6297
6298/**
6299 * pevent_print_num_field - print a field and a format
6300 * @s: The seq to print to
6301 * @fmt: The printf format to print the field with.
6302 * @event: the event that the field is for
6303 * @name: The name of the field
6304 * @record: The record with the field name.
6305 * @err: print default error if failed.
6306 *
6307 * Returns: 0 on success, -1 field not found, or 1 if buffer is full.
6308 */
6309int pevent_print_num_field(struct trace_seq *s, const char *fmt,
6310 struct event_format *event, const char *name,
6311 struct pevent_record *record, int err)
6312{
6313 struct format_field *field = pevent_find_field(event, name);
6314 unsigned long long val;
6315
6316 if (!field)
6317 goto failed;
6318
6319 if (pevent_read_number_field(field, record->data, &val))
6320 goto failed;
6321
6322 return trace_seq_printf(s, fmt, val);
6323
6324 failed:
6325 if (err)
6326 trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
6327 return -1;
6328}
6329
6330/**
6331 * pevent_print_func_field - print a field and a format for function pointers
6332 * @s: The seq to print to
6333 * @fmt: The printf format to print the field with.
6334 * @event: the event that the field is for
6335 * @name: The name of the field
6336 * @record: The record with the field name.
6337 * @err: print default error if failed.
6338 *
6339 * Returns: 0 on success, -1 field not found, or 1 if buffer is full.
6340 */
6341int pevent_print_func_field(struct trace_seq *s, const char *fmt,
6342 struct event_format *event, const char *name,
6343 struct pevent_record *record, int err)
6344{
6345 struct format_field *field = pevent_find_field(event, name);
6346 struct pevent *pevent = event->pevent;
6347 unsigned long long val;
6348 struct func_map *func;
6349 char tmp[128];
6350
6351 if (!field)
6352 goto failed;
6353
6354 if (pevent_read_number_field(field, record->data, &val))
6355 goto failed;
6356
6357 func = find_func(pevent, val);
6358
6359 if (func)
6360 snprintf(tmp, 128, "%s/0x%llx", func->func, func->addr - val);
6361 else
6362 sprintf(tmp, "0x%08llx", val);
6363
6364 return trace_seq_printf(s, fmt, tmp);
6365
6366 failed:
6367 if (err)
6368 trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
6369 return -1;
6370}
6371
6372static void free_func_handle(struct pevent_function_handler *func)
6373{
6374 struct pevent_func_params *params;
6375
6376 free(func->name);
6377
6378 while (func->params) {
6379 params = func->params;
6380 func->params = params->next;
6381 free(params);
6382 }
6383
6384 free(func);
6385}
6386
6387/**
6388 * pevent_register_print_function - register a helper function
6389 * @pevent: the handle to the pevent
6390 * @func: the function to process the helper function
6391 * @ret_type: the return type of the helper function
6392 * @name: the name of the helper function
6393 * @parameters: A list of enum pevent_func_arg_type
6394 *
6395 * Some events may have helper functions in the print format arguments.
6396 * This allows a plugin to dynamically create a way to process one
6397 * of these functions.
6398 *
6399 * The @parameters is a variable list of pevent_func_arg_type enums that
6400 * must end with PEVENT_FUNC_ARG_VOID.
6401 */
6402int pevent_register_print_function(struct pevent *pevent,
6403 pevent_func_handler func,
6404 enum pevent_func_arg_type ret_type,
6405 char *name, ...)
6406{
6407 struct pevent_function_handler *func_handle;
6408 struct pevent_func_params **next_param;
6409 struct pevent_func_params *param;
6410 enum pevent_func_arg_type type;
6411 va_list ap;
6412 int ret;
6413
6414 func_handle = find_func_handler(pevent, name);
6415 if (func_handle) {
6416 /*
6417 * This is most like caused by the users own
6418 * plugins updating the function. This overrides the
6419 * system defaults.
6420 */
6421 pr_stat("override of function helper '%s'", name);
6422 remove_func_handler(pevent, name);
6423 }
6424
6425 func_handle = calloc(1, sizeof(*func_handle));
6426 if (!func_handle) {
6427 do_warning("Failed to allocate function handler");
6428 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
6429 }
6430
6431 func_handle->ret_type = ret_type;
6432 func_handle->name = strdup(name);
6433 func_handle->func = func;
6434 if (!func_handle->name) {
6435 do_warning("Failed to allocate function name");
6436 free(func_handle);
6437 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
6438 }
6439
6440 next_param = &(func_handle->params);
6441 va_start(ap, name);
6442 for (;;) {
6443 type = va_arg(ap, enum pevent_func_arg_type);
6444 if (type == PEVENT_FUNC_ARG_VOID)
6445 break;
6446
6447 if (type >= PEVENT_FUNC_ARG_MAX_TYPES) {
6448 do_warning("Invalid argument type %d", type);
6449 ret = PEVENT_ERRNO__INVALID_ARG_TYPE;
6450 goto out_free;
6451 }
6452
6453 param = malloc(sizeof(*param));
6454 if (!param) {
6455 do_warning("Failed to allocate function param");
6456 ret = PEVENT_ERRNO__MEM_ALLOC_FAILED;
6457 goto out_free;
6458 }
6459 param->type = type;
6460 param->next = NULL;
6461
6462 *next_param = param;
6463 next_param = &(param->next);
6464
6465 func_handle->nr_args++;
6466 }
6467 va_end(ap);
6468
6469 func_handle->next = pevent->func_handlers;
6470 pevent->func_handlers = func_handle;
6471
6472 return 0;
6473 out_free:
6474 va_end(ap);
6475 free_func_handle(func_handle);
6476 return ret;
6477}
6478
6479/**
6480 * pevent_unregister_print_function - unregister a helper function
6481 * @pevent: the handle to the pevent
6482 * @func: the function to process the helper function
6483 * @name: the name of the helper function
6484 *
6485 * This function removes existing print handler for function @name.
6486 *
6487 * Returns 0 if the handler was removed successully, -1 otherwise.
6488 */
6489int pevent_unregister_print_function(struct pevent *pevent,
6490 pevent_func_handler func, char *name)
6491{
6492 struct pevent_function_handler *func_handle;
6493
6494 func_handle = find_func_handler(pevent, name);
6495 if (func_handle && func_handle->func == func) {
6496 remove_func_handler(pevent, name);
6497 return 0;
6498 }
6499 return -1;
6500}
6501
6502static struct event_format *pevent_search_event(struct pevent *pevent, int id,
6503 const char *sys_name,
6504 const char *event_name)
6505{
6506 struct event_format *event;
6507
6508 if (id >= 0) {
6509 /* search by id */
6510 event = pevent_find_event(pevent, id);
6511 if (!event)
6512 return NULL;
6513 if (event_name && (strcmp(event_name, event->name) != 0))
6514 return NULL;
6515 if (sys_name && (strcmp(sys_name, event->system) != 0))
6516 return NULL;
6517 } else {
6518 event = pevent_find_event_by_name(pevent, sys_name, event_name);
6519 if (!event)
6520 return NULL;
6521 }
6522 return event;
6523}
6524
6525/**
6526 * pevent_register_event_handler - register a way to parse an event
6527 * @pevent: the handle to the pevent
6528 * @id: the id of the event to register
6529 * @sys_name: the system name the event belongs to
6530 * @event_name: the name of the event
6531 * @func: the function to call to parse the event information
6532 * @context: the data to be passed to @func
6533 *
6534 * This function allows a developer to override the parsing of
6535 * a given event. If for some reason the default print format
6536 * is not sufficient, this function will register a function
6537 * for an event to be used to parse the data instead.
6538 *
6539 * If @id is >= 0, then it is used to find the event.
6540 * else @sys_name and @event_name are used.
6541 */
6542int pevent_register_event_handler(struct pevent *pevent, int id,
6543 const char *sys_name, const char *event_name,
6544 pevent_event_handler_func func, void *context)
6545{
6546 struct event_format *event;
6547 struct event_handler *handle;
6548
6549 event = pevent_search_event(pevent, id, sys_name, event_name);
6550 if (event == NULL)
6551 goto not_found;
6552
6553 pr_stat("overriding event (%d) %s:%s with new print handler",
6554 event->id, event->system, event->name);
6555
6556 event->handler = func;
6557 event->context = context;
6558 return 0;
6559
6560 not_found:
6561 /* Save for later use. */
6562 handle = calloc(1, sizeof(*handle));
6563 if (!handle) {
6564 do_warning("Failed to allocate event handler");
6565 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
6566 }
6567
6568 handle->id = id;
6569 if (event_name)
6570 handle->event_name = strdup(event_name);
6571 if (sys_name)
6572 handle->sys_name = strdup(sys_name);
6573
6574 if ((event_name && !handle->event_name) ||
6575 (sys_name && !handle->sys_name)) {
6576 do_warning("Failed to allocate event/sys name");
6577 free((void *)handle->event_name);
6578 free((void *)handle->sys_name);
6579 free(handle);
6580 return PEVENT_ERRNO__MEM_ALLOC_FAILED;
6581 }
6582
6583 handle->func = func;
6584 handle->next = pevent->handlers;
6585 pevent->handlers = handle;
6586 handle->context = context;
6587
6588 return -1;
6589}
6590
6591static int handle_matches(struct event_handler *handler, int id,
6592 const char *sys_name, const char *event_name,
6593 pevent_event_handler_func func, void *context)
6594{
6595 if (id >= 0 && id != handler->id)
6596 return 0;
6597
6598 if (event_name && (strcmp(event_name, handler->event_name) != 0))
6599 return 0;
6600
6601 if (sys_name && (strcmp(sys_name, handler->sys_name) != 0))
6602 return 0;
6603
6604 if (func != handler->func || context != handler->context)
6605 return 0;
6606
6607 return 1;
6608}
6609
6610/**
6611 * pevent_unregister_event_handler - unregister an existing event handler
6612 * @pevent: the handle to the pevent
6613 * @id: the id of the event to unregister
6614 * @sys_name: the system name the handler belongs to
6615 * @event_name: the name of the event handler
6616 * @func: the function to call to parse the event information
6617 * @context: the data to be passed to @func
6618 *
6619 * This function removes existing event handler (parser).
6620 *
6621 * If @id is >= 0, then it is used to find the event.
6622 * else @sys_name and @event_name are used.
6623 *
6624 * Returns 0 if handler was removed successfully, -1 if event was not found.
6625 */
6626int pevent_unregister_event_handler(struct pevent *pevent, int id,
6627 const char *sys_name, const char *event_name,
6628 pevent_event_handler_func func, void *context)
6629{
6630 struct event_format *event;
6631 struct event_handler *handle;
6632 struct event_handler **next;
6633
6634 event = pevent_search_event(pevent, id, sys_name, event_name);
6635 if (event == NULL)
6636 goto not_found;
6637
6638 if (event->handler == func && event->context == context) {
6639 pr_stat("removing override handler for event (%d) %s:%s. Going back to default handler.",
6640 event->id, event->system, event->name);
6641
6642 event->handler = NULL;
6643 event->context = NULL;
6644 return 0;
6645 }
6646
6647not_found:
6648 for (next = &pevent->handlers; *next; next = &(*next)->next) {
6649 handle = *next;
6650 if (handle_matches(handle, id, sys_name, event_name,
6651 func, context))
6652 break;
6653 }
6654
6655 if (!(*next))
6656 return -1;
6657
6658 *next = handle->next;
6659 free_handler(handle);
6660
6661 return 0;
6662}
6663
6664/**
6665 * pevent_alloc - create a pevent handle
6666 */
6667struct pevent *pevent_alloc(void)
6668{
6669 struct pevent *pevent = calloc(1, sizeof(*pevent));
6670
6671 if (pevent)
6672 pevent->ref_count = 1;
6673
6674 return pevent;
6675}
6676
6677void pevent_ref(struct pevent *pevent)
6678{
6679 pevent->ref_count++;
6680}
6681
6682void pevent_free_format_field(struct format_field *field)
6683{
6684 free(field->type);
6685 if (field->alias != field->name)
6686 free(field->alias);
6687 free(field->name);
6688 free(field);
6689}
6690
6691static void free_format_fields(struct format_field *field)
6692{
6693 struct format_field *next;
6694
6695 while (field) {
6696 next = field->next;
6697 pevent_free_format_field(field);
6698 field = next;
6699 }
6700}
6701
6702static void free_formats(struct format *format)
6703{
6704 free_format_fields(format->common_fields);
6705 free_format_fields(format->fields);
6706}
6707
6708void pevent_free_format(struct event_format *event)
6709{
6710 free(event->name);
6711 free(event->system);
6712
6713 free_formats(&event->format);
6714
6715 free(event->print_fmt.format);
6716 free_args(event->print_fmt.args);
6717
6718 free(event);
6719}
6720
6721/**
6722 * pevent_free - free a pevent handle
6723 * @pevent: the pevent handle to free
6724 */
6725void pevent_free(struct pevent *pevent)
6726{
6727 struct cmdline_list *cmdlist, *cmdnext;
6728 struct func_list *funclist, *funcnext;
6729 struct printk_list *printklist, *printknext;
6730 struct pevent_function_handler *func_handler;
6731 struct event_handler *handle;
6732 int i;
6733
6734 if (!pevent)
6735 return;
6736
6737 cmdlist = pevent->cmdlist;
6738 funclist = pevent->funclist;
6739 printklist = pevent->printklist;
6740
6741 pevent->ref_count--;
6742 if (pevent->ref_count)
6743 return;
6744
6745 if (pevent->cmdlines) {
6746 for (i = 0; i < pevent->cmdline_count; i++)
6747 free(pevent->cmdlines[i].comm);
6748 free(pevent->cmdlines);
6749 }
6750
6751 while (cmdlist) {
6752 cmdnext = cmdlist->next;
6753 free(cmdlist->comm);
6754 free(cmdlist);
6755 cmdlist = cmdnext;
6756 }
6757
6758 if (pevent->func_map) {
6759 for (i = 0; i < (int)pevent->func_count; i++) {
6760 free(pevent->func_map[i].func);
6761 free(pevent->func_map[i].mod);
6762 }
6763 free(pevent->func_map);
6764 }
6765
6766 while (funclist) {
6767 funcnext = funclist->next;
6768 free(funclist->func);
6769 free(funclist->mod);
6770 free(funclist);
6771 funclist = funcnext;
6772 }
6773
6774 while (pevent->func_handlers) {
6775 func_handler = pevent->func_handlers;
6776 pevent->func_handlers = func_handler->next;
6777 free_func_handle(func_handler);
6778 }
6779
6780 if (pevent->printk_map) {
6781 for (i = 0; i < (int)pevent->printk_count; i++)
6782 free(pevent->printk_map[i].printk);
6783 free(pevent->printk_map);
6784 }
6785
6786 while (printklist) {
6787 printknext = printklist->next;
6788 free(printklist->printk);
6789 free(printklist);
6790 printklist = printknext;
6791 }
6792
6793 for (i = 0; i < pevent->nr_events; i++)
6794 pevent_free_format(pevent->events[i]);
6795
6796 while (pevent->handlers) {
6797 handle = pevent->handlers;
6798 pevent->handlers = handle->next;
6799 free_handler(handle);
6800 }
6801
6802 free(pevent->trace_clock);
6803 free(pevent->events);
6804 free(pevent->sort_events);
6805 free(pevent->func_resolver);
6806
6807 free(pevent);
6808}
6809
6810void pevent_unref(struct pevent *pevent)
6811{
6812 pevent_free(pevent);
6813}
1// SPDX-License-Identifier: LGPL-2.1
2/*
3 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
4 *
5 *
6 * The parts for function graph printing was taken and modified from the
7 * Linux Kernel that were written by
8 * - Copyright (C) 2009 Frederic Weisbecker,
9 * Frederic Weisbecker gave his permission to relicense the code to
10 * the Lesser General Public License.
11 */
12#include <inttypes.h>
13#include <stdio.h>
14#include <stdlib.h>
15#include <string.h>
16#include <stdarg.h>
17#include <ctype.h>
18#include <errno.h>
19#include <stdint.h>
20#include <limits.h>
21#include <linux/time64.h>
22
23#include <netinet/in.h>
24#include "event-parse.h"
25
26#include "event-parse-local.h"
27#include "event-utils.h"
28#include "trace-seq.h"
29
30static const char *input_buf;
31static unsigned long long input_buf_ptr;
32static unsigned long long input_buf_siz;
33
34static int is_flag_field;
35static int is_symbolic_field;
36
37static int show_warning = 1;
38
39#define do_warning(fmt, ...) \
40 do { \
41 if (show_warning) \
42 warning(fmt, ##__VA_ARGS__); \
43 } while (0)
44
45#define do_warning_event(event, fmt, ...) \
46 do { \
47 if (!show_warning) \
48 continue; \
49 \
50 if (event) \
51 warning("[%s:%s] " fmt, event->system, \
52 event->name, ##__VA_ARGS__); \
53 else \
54 warning(fmt, ##__VA_ARGS__); \
55 } while (0)
56
57/**
58 * init_input_buf - init buffer for parsing
59 * @buf: buffer to parse
60 * @size: the size of the buffer
61 *
62 * Initializes the internal buffer that tep_read_token() will parse.
63 */
64__hidden void init_input_buf(const char *buf, unsigned long long size)
65{
66 input_buf = buf;
67 input_buf_siz = size;
68 input_buf_ptr = 0;
69}
70
71__hidden const char *get_input_buf(void)
72{
73 return input_buf;
74}
75
76__hidden unsigned long long get_input_buf_ptr(void)
77{
78 return input_buf_ptr;
79}
80
81struct event_handler {
82 struct event_handler *next;
83 int id;
84 const char *sys_name;
85 const char *event_name;
86 tep_event_handler_func func;
87 void *context;
88};
89
90struct func_params {
91 struct func_params *next;
92 enum tep_func_arg_type type;
93};
94
95struct tep_function_handler {
96 struct tep_function_handler *next;
97 enum tep_func_arg_type ret_type;
98 char *name;
99 tep_func_handler func;
100 struct func_params *params;
101 int nr_args;
102};
103
104static unsigned long long
105process_defined_func(struct trace_seq *s, void *data, int size,
106 struct tep_event *event, struct tep_print_arg *arg);
107
108static void free_func_handle(struct tep_function_handler *func);
109
110void breakpoint(void)
111{
112 static int x;
113 x++;
114}
115
116static struct tep_print_arg *alloc_arg(void)
117{
118 return calloc(1, sizeof(struct tep_print_arg));
119}
120
121struct tep_cmdline {
122 char *comm;
123 int pid;
124};
125
126static int cmdline_cmp(const void *a, const void *b)
127{
128 const struct tep_cmdline *ca = a;
129 const struct tep_cmdline *cb = b;
130
131 if (ca->pid < cb->pid)
132 return -1;
133 if (ca->pid > cb->pid)
134 return 1;
135
136 return 0;
137}
138
139/* Looking for where to place the key */
140static int cmdline_slot_cmp(const void *a, const void *b)
141{
142 const struct tep_cmdline *ca = a;
143 const struct tep_cmdline *cb = b;
144 const struct tep_cmdline *cb1 = cb + 1;
145
146 if (ca->pid < cb->pid)
147 return -1;
148
149 if (ca->pid > cb->pid) {
150 if (ca->pid <= cb1->pid)
151 return 0;
152 return 1;
153 }
154
155 return 0;
156}
157
158struct cmdline_list {
159 struct cmdline_list *next;
160 char *comm;
161 int pid;
162};
163
164static int cmdline_init(struct tep_handle *tep)
165{
166 struct cmdline_list *cmdlist = tep->cmdlist;
167 struct cmdline_list *item;
168 struct tep_cmdline *cmdlines;
169 int i;
170
171 cmdlines = malloc(sizeof(*cmdlines) * tep->cmdline_count);
172 if (!cmdlines)
173 return -1;
174
175 i = 0;
176 while (cmdlist) {
177 cmdlines[i].pid = cmdlist->pid;
178 cmdlines[i].comm = cmdlist->comm;
179 i++;
180 item = cmdlist;
181 cmdlist = cmdlist->next;
182 free(item);
183 }
184
185 qsort(cmdlines, tep->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
186
187 tep->cmdlines = cmdlines;
188 tep->cmdlist = NULL;
189
190 return 0;
191}
192
193static const char *find_cmdline(struct tep_handle *tep, int pid)
194{
195 const struct tep_cmdline *comm;
196 struct tep_cmdline key;
197
198 if (!pid)
199 return "<idle>";
200
201 if (!tep->cmdlines && cmdline_init(tep))
202 return "<not enough memory for cmdlines!>";
203
204 key.pid = pid;
205
206 comm = bsearch(&key, tep->cmdlines, tep->cmdline_count,
207 sizeof(*tep->cmdlines), cmdline_cmp);
208
209 if (comm)
210 return comm->comm;
211 return "<...>";
212}
213
214/**
215 * tep_is_pid_registered - return if a pid has a cmdline registered
216 * @tep: a handle to the trace event parser context
217 * @pid: The pid to check if it has a cmdline registered with.
218 *
219 * Returns true if the pid has a cmdline mapped to it
220 * false otherwise.
221 */
222bool tep_is_pid_registered(struct tep_handle *tep, int pid)
223{
224 const struct tep_cmdline *comm;
225 struct tep_cmdline key;
226
227 if (!pid)
228 return true;
229
230 if (!tep->cmdlines && cmdline_init(tep))
231 return false;
232
233 key.pid = pid;
234
235 comm = bsearch(&key, tep->cmdlines, tep->cmdline_count,
236 sizeof(*tep->cmdlines), cmdline_cmp);
237
238 if (comm)
239 return true;
240 return false;
241}
242
243/*
244 * If the command lines have been converted to an array, then
245 * we must add this pid. This is much slower than when cmdlines
246 * are added before the array is initialized.
247 */
248static int add_new_comm(struct tep_handle *tep,
249 const char *comm, int pid, bool override)
250{
251 struct tep_cmdline *cmdlines = tep->cmdlines;
252 struct tep_cmdline *cmdline;
253 struct tep_cmdline key;
254 char *new_comm;
255 int cnt;
256
257 if (!pid)
258 return 0;
259
260 /* avoid duplicates */
261 key.pid = pid;
262
263 cmdline = bsearch(&key, tep->cmdlines, tep->cmdline_count,
264 sizeof(*tep->cmdlines), cmdline_cmp);
265 if (cmdline) {
266 if (!override) {
267 errno = EEXIST;
268 return -1;
269 }
270 new_comm = strdup(comm);
271 if (!new_comm) {
272 errno = ENOMEM;
273 return -1;
274 }
275 free(cmdline->comm);
276 cmdline->comm = new_comm;
277
278 return 0;
279 }
280
281 cmdlines = realloc(cmdlines, sizeof(*cmdlines) * (tep->cmdline_count + 1));
282 if (!cmdlines) {
283 errno = ENOMEM;
284 return -1;
285 }
286 tep->cmdlines = cmdlines;
287
288 key.comm = strdup(comm);
289 if (!key.comm) {
290 errno = ENOMEM;
291 return -1;
292 }
293
294 if (!tep->cmdline_count) {
295 /* no entries yet */
296 tep->cmdlines[0] = key;
297 tep->cmdline_count++;
298 return 0;
299 }
300
301 /* Now find where we want to store the new cmdline */
302 cmdline = bsearch(&key, tep->cmdlines, tep->cmdline_count - 1,
303 sizeof(*tep->cmdlines), cmdline_slot_cmp);
304
305 cnt = tep->cmdline_count;
306 if (cmdline) {
307 /* cmdline points to the one before the spot we want */
308 cmdline++;
309 cnt -= cmdline - tep->cmdlines;
310
311 } else {
312 /* The new entry is either before or after the list */
313 if (key.pid > tep->cmdlines[tep->cmdline_count - 1].pid) {
314 tep->cmdlines[tep->cmdline_count++] = key;
315 return 0;
316 }
317 cmdline = &tep->cmdlines[0];
318 }
319 memmove(cmdline + 1, cmdline, (cnt * sizeof(*cmdline)));
320 *cmdline = key;
321
322 tep->cmdline_count++;
323
324 return 0;
325}
326
327static int _tep_register_comm(struct tep_handle *tep,
328 const char *comm, int pid, bool override)
329{
330 struct cmdline_list *item;
331
332 if (tep->cmdlines)
333 return add_new_comm(tep, comm, pid, override);
334
335 item = malloc(sizeof(*item));
336 if (!item)
337 return -1;
338
339 if (comm)
340 item->comm = strdup(comm);
341 else
342 item->comm = strdup("<...>");
343 if (!item->comm) {
344 free(item);
345 return -1;
346 }
347 item->pid = pid;
348 item->next = tep->cmdlist;
349
350 tep->cmdlist = item;
351 tep->cmdline_count++;
352
353 return 0;
354}
355
356/**
357 * tep_register_comm - register a pid / comm mapping
358 * @tep: a handle to the trace event parser context
359 * @comm: the command line to register
360 * @pid: the pid to map the command line to
361 *
362 * This adds a mapping to search for command line names with
363 * a given pid. The comm is duplicated. If a command with the same pid
364 * already exist, -1 is returned and errno is set to EEXIST
365 */
366int tep_register_comm(struct tep_handle *tep, const char *comm, int pid)
367{
368 return _tep_register_comm(tep, comm, pid, false);
369}
370
371/**
372 * tep_override_comm - register a pid / comm mapping
373 * @tep: a handle to the trace event parser context
374 * @comm: the command line to register
375 * @pid: the pid to map the command line to
376 *
377 * This adds a mapping to search for command line names with
378 * a given pid. The comm is duplicated. If a command with the same pid
379 * already exist, the command string is udapted with the new one
380 */
381int tep_override_comm(struct tep_handle *tep, const char *comm, int pid)
382{
383 if (!tep->cmdlines && cmdline_init(tep)) {
384 errno = ENOMEM;
385 return -1;
386 }
387 return _tep_register_comm(tep, comm, pid, true);
388}
389
390struct func_map {
391 unsigned long long addr;
392 char *func;
393 char *mod;
394};
395
396struct func_list {
397 struct func_list *next;
398 unsigned long long addr;
399 char *func;
400 char *mod;
401};
402
403static int func_cmp(const void *a, const void *b)
404{
405 const struct func_map *fa = a;
406 const struct func_map *fb = b;
407
408 if (fa->addr < fb->addr)
409 return -1;
410 if (fa->addr > fb->addr)
411 return 1;
412
413 return 0;
414}
415
416/*
417 * We are searching for a record in between, not an exact
418 * match.
419 */
420static int func_bcmp(const void *a, const void *b)
421{
422 const struct func_map *fa = a;
423 const struct func_map *fb = b;
424
425 if ((fa->addr == fb->addr) ||
426
427 (fa->addr > fb->addr &&
428 fa->addr < (fb+1)->addr))
429 return 0;
430
431 if (fa->addr < fb->addr)
432 return -1;
433
434 return 1;
435}
436
437static int func_map_init(struct tep_handle *tep)
438{
439 struct func_list *funclist;
440 struct func_list *item;
441 struct func_map *func_map;
442 int i;
443
444 func_map = malloc(sizeof(*func_map) * (tep->func_count + 1));
445 if (!func_map)
446 return -1;
447
448 funclist = tep->funclist;
449
450 i = 0;
451 while (funclist) {
452 func_map[i].func = funclist->func;
453 func_map[i].addr = funclist->addr;
454 func_map[i].mod = funclist->mod;
455 i++;
456 item = funclist;
457 funclist = funclist->next;
458 free(item);
459 }
460
461 qsort(func_map, tep->func_count, sizeof(*func_map), func_cmp);
462
463 /*
464 * Add a special record at the end.
465 */
466 func_map[tep->func_count].func = NULL;
467 func_map[tep->func_count].addr = 0;
468 func_map[tep->func_count].mod = NULL;
469
470 tep->func_map = func_map;
471 tep->funclist = NULL;
472
473 return 0;
474}
475
476static struct func_map *
477__find_func(struct tep_handle *tep, unsigned long long addr)
478{
479 struct func_map *func;
480 struct func_map key;
481
482 if (!tep->func_map)
483 func_map_init(tep);
484
485 key.addr = addr;
486
487 func = bsearch(&key, tep->func_map, tep->func_count,
488 sizeof(*tep->func_map), func_bcmp);
489
490 return func;
491}
492
493struct func_resolver {
494 tep_func_resolver_t *func;
495 void *priv;
496 struct func_map map;
497};
498
499/**
500 * tep_set_function_resolver - set an alternative function resolver
501 * @tep: a handle to the trace event parser context
502 * @resolver: function to be used
503 * @priv: resolver function private state.
504 *
505 * Some tools may have already a way to resolve kernel functions, allow them to
506 * keep using it instead of duplicating all the entries inside tep->funclist.
507 */
508int tep_set_function_resolver(struct tep_handle *tep,
509 tep_func_resolver_t *func, void *priv)
510{
511 struct func_resolver *resolver = malloc(sizeof(*resolver));
512
513 if (resolver == NULL)
514 return -1;
515
516 resolver->func = func;
517 resolver->priv = priv;
518
519 free(tep->func_resolver);
520 tep->func_resolver = resolver;
521
522 return 0;
523}
524
525/**
526 * tep_reset_function_resolver - reset alternative function resolver
527 * @tep: a handle to the trace event parser context
528 *
529 * Stop using whatever alternative resolver was set, use the default
530 * one instead.
531 */
532void tep_reset_function_resolver(struct tep_handle *tep)
533{
534 free(tep->func_resolver);
535 tep->func_resolver = NULL;
536}
537
538static struct func_map *
539find_func(struct tep_handle *tep, unsigned long long addr)
540{
541 struct func_map *map;
542
543 if (!tep->func_resolver)
544 return __find_func(tep, addr);
545
546 map = &tep->func_resolver->map;
547 map->mod = NULL;
548 map->addr = addr;
549 map->func = tep->func_resolver->func(tep->func_resolver->priv,
550 &map->addr, &map->mod);
551 if (map->func == NULL)
552 return NULL;
553
554 return map;
555}
556
557/**
558 * tep_find_function - find a function by a given address
559 * @tep: a handle to the trace event parser context
560 * @addr: the address to find the function with
561 *
562 * Returns a pointer to the function stored that has the given
563 * address. Note, the address does not have to be exact, it
564 * will select the function that would contain the address.
565 */
566const char *tep_find_function(struct tep_handle *tep, unsigned long long addr)
567{
568 struct func_map *map;
569
570 map = find_func(tep, addr);
571 if (!map)
572 return NULL;
573
574 return map->func;
575}
576
577/**
578 * tep_find_function_address - find a function address by a given address
579 * @tep: a handle to the trace event parser context
580 * @addr: the address to find the function with
581 *
582 * Returns the address the function starts at. This can be used in
583 * conjunction with tep_find_function to print both the function
584 * name and the function offset.
585 */
586unsigned long long
587tep_find_function_address(struct tep_handle *tep, unsigned long long addr)
588{
589 struct func_map *map;
590
591 map = find_func(tep, addr);
592 if (!map)
593 return 0;
594
595 return map->addr;
596}
597
598/**
599 * tep_register_function - register a function with a given address
600 * @tep: a handle to the trace event parser context
601 * @function: the function name to register
602 * @addr: the address the function starts at
603 * @mod: the kernel module the function may be in (NULL for none)
604 *
605 * This registers a function name with an address and module.
606 * The @func passed in is duplicated.
607 */
608int tep_register_function(struct tep_handle *tep, char *func,
609 unsigned long long addr, char *mod)
610{
611 struct func_list *item = malloc(sizeof(*item));
612
613 if (!item)
614 return -1;
615
616 item->next = tep->funclist;
617 item->func = strdup(func);
618 if (!item->func)
619 goto out_free;
620
621 if (mod) {
622 item->mod = strdup(mod);
623 if (!item->mod)
624 goto out_free_func;
625 } else
626 item->mod = NULL;
627 item->addr = addr;
628
629 tep->funclist = item;
630 tep->func_count++;
631
632 return 0;
633
634out_free_func:
635 free(item->func);
636 item->func = NULL;
637out_free:
638 free(item);
639 errno = ENOMEM;
640 return -1;
641}
642
643/**
644 * tep_print_funcs - print out the stored functions
645 * @tep: a handle to the trace event parser context
646 *
647 * This prints out the stored functions.
648 */
649void tep_print_funcs(struct tep_handle *tep)
650{
651 int i;
652
653 if (!tep->func_map)
654 func_map_init(tep);
655
656 for (i = 0; i < (int)tep->func_count; i++) {
657 printf("%016llx %s",
658 tep->func_map[i].addr,
659 tep->func_map[i].func);
660 if (tep->func_map[i].mod)
661 printf(" [%s]\n", tep->func_map[i].mod);
662 else
663 printf("\n");
664 }
665}
666
667struct printk_map {
668 unsigned long long addr;
669 char *printk;
670};
671
672struct printk_list {
673 struct printk_list *next;
674 unsigned long long addr;
675 char *printk;
676};
677
678static int printk_cmp(const void *a, const void *b)
679{
680 const struct printk_map *pa = a;
681 const struct printk_map *pb = b;
682
683 if (pa->addr < pb->addr)
684 return -1;
685 if (pa->addr > pb->addr)
686 return 1;
687
688 return 0;
689}
690
691static int printk_map_init(struct tep_handle *tep)
692{
693 struct printk_list *printklist;
694 struct printk_list *item;
695 struct printk_map *printk_map;
696 int i;
697
698 printk_map = malloc(sizeof(*printk_map) * (tep->printk_count + 1));
699 if (!printk_map)
700 return -1;
701
702 printklist = tep->printklist;
703
704 i = 0;
705 while (printklist) {
706 printk_map[i].printk = printklist->printk;
707 printk_map[i].addr = printklist->addr;
708 i++;
709 item = printklist;
710 printklist = printklist->next;
711 free(item);
712 }
713
714 qsort(printk_map, tep->printk_count, sizeof(*printk_map), printk_cmp);
715
716 tep->printk_map = printk_map;
717 tep->printklist = NULL;
718
719 return 0;
720}
721
722static struct printk_map *
723find_printk(struct tep_handle *tep, unsigned long long addr)
724{
725 struct printk_map *printk;
726 struct printk_map key;
727
728 if (!tep->printk_map && printk_map_init(tep))
729 return NULL;
730
731 key.addr = addr;
732
733 printk = bsearch(&key, tep->printk_map, tep->printk_count,
734 sizeof(*tep->printk_map), printk_cmp);
735
736 return printk;
737}
738
739/**
740 * tep_register_print_string - register a string by its address
741 * @tep: a handle to the trace event parser context
742 * @fmt: the string format to register
743 * @addr: the address the string was located at
744 *
745 * This registers a string by the address it was stored in the kernel.
746 * The @fmt passed in is duplicated.
747 */
748int tep_register_print_string(struct tep_handle *tep, const char *fmt,
749 unsigned long long addr)
750{
751 struct printk_list *item = malloc(sizeof(*item));
752 char *p;
753
754 if (!item)
755 return -1;
756
757 item->next = tep->printklist;
758 item->addr = addr;
759
760 /* Strip off quotes and '\n' from the end */
761 if (fmt[0] == '"')
762 fmt++;
763 item->printk = strdup(fmt);
764 if (!item->printk)
765 goto out_free;
766
767 p = item->printk + strlen(item->printk) - 1;
768 if (*p == '"')
769 *p = 0;
770
771 p -= 2;
772 if (strcmp(p, "\\n") == 0)
773 *p = 0;
774
775 tep->printklist = item;
776 tep->printk_count++;
777
778 return 0;
779
780out_free:
781 free(item);
782 errno = ENOMEM;
783 return -1;
784}
785
786/**
787 * tep_print_printk - print out the stored strings
788 * @tep: a handle to the trace event parser context
789 *
790 * This prints the string formats that were stored.
791 */
792void tep_print_printk(struct tep_handle *tep)
793{
794 int i;
795
796 if (!tep->printk_map)
797 printk_map_init(tep);
798
799 for (i = 0; i < (int)tep->printk_count; i++) {
800 printf("%016llx %s\n",
801 tep->printk_map[i].addr,
802 tep->printk_map[i].printk);
803 }
804}
805
806static struct tep_event *alloc_event(void)
807{
808 return calloc(1, sizeof(struct tep_event));
809}
810
811static int add_event(struct tep_handle *tep, struct tep_event *event)
812{
813 int i;
814 struct tep_event **events = realloc(tep->events, sizeof(event) *
815 (tep->nr_events + 1));
816 if (!events)
817 return -1;
818
819 tep->events = events;
820
821 for (i = 0; i < tep->nr_events; i++) {
822 if (tep->events[i]->id > event->id)
823 break;
824 }
825 if (i < tep->nr_events)
826 memmove(&tep->events[i + 1],
827 &tep->events[i],
828 sizeof(event) * (tep->nr_events - i));
829
830 tep->events[i] = event;
831 tep->nr_events++;
832
833 event->tep = tep;
834
835 return 0;
836}
837
838static int event_item_type(enum tep_event_type type)
839{
840 switch (type) {
841 case TEP_EVENT_ITEM ... TEP_EVENT_SQUOTE:
842 return 1;
843 case TEP_EVENT_ERROR ... TEP_EVENT_DELIM:
844 default:
845 return 0;
846 }
847}
848
849static void free_flag_sym(struct tep_print_flag_sym *fsym)
850{
851 struct tep_print_flag_sym *next;
852
853 while (fsym) {
854 next = fsym->next;
855 free(fsym->value);
856 free(fsym->str);
857 free(fsym);
858 fsym = next;
859 }
860}
861
862static void free_arg(struct tep_print_arg *arg)
863{
864 struct tep_print_arg *farg;
865
866 if (!arg)
867 return;
868
869 switch (arg->type) {
870 case TEP_PRINT_ATOM:
871 free(arg->atom.atom);
872 break;
873 case TEP_PRINT_FIELD:
874 free(arg->field.name);
875 break;
876 case TEP_PRINT_FLAGS:
877 free_arg(arg->flags.field);
878 free(arg->flags.delim);
879 free_flag_sym(arg->flags.flags);
880 break;
881 case TEP_PRINT_SYMBOL:
882 free_arg(arg->symbol.field);
883 free_flag_sym(arg->symbol.symbols);
884 break;
885 case TEP_PRINT_HEX:
886 case TEP_PRINT_HEX_STR:
887 free_arg(arg->hex.field);
888 free_arg(arg->hex.size);
889 break;
890 case TEP_PRINT_INT_ARRAY:
891 free_arg(arg->int_array.field);
892 free_arg(arg->int_array.count);
893 free_arg(arg->int_array.el_size);
894 break;
895 case TEP_PRINT_TYPE:
896 free(arg->typecast.type);
897 free_arg(arg->typecast.item);
898 break;
899 case TEP_PRINT_STRING:
900 case TEP_PRINT_BSTRING:
901 free(arg->string.string);
902 break;
903 case TEP_PRINT_BITMASK:
904 free(arg->bitmask.bitmask);
905 break;
906 case TEP_PRINT_DYNAMIC_ARRAY:
907 case TEP_PRINT_DYNAMIC_ARRAY_LEN:
908 free(arg->dynarray.index);
909 break;
910 case TEP_PRINT_OP:
911 free(arg->op.op);
912 free_arg(arg->op.left);
913 free_arg(arg->op.right);
914 break;
915 case TEP_PRINT_FUNC:
916 while (arg->func.args) {
917 farg = arg->func.args;
918 arg->func.args = farg->next;
919 free_arg(farg);
920 }
921 break;
922
923 case TEP_PRINT_NULL:
924 default:
925 break;
926 }
927
928 free(arg);
929}
930
931static enum tep_event_type get_type(int ch)
932{
933 if (ch == '\n')
934 return TEP_EVENT_NEWLINE;
935 if (isspace(ch))
936 return TEP_EVENT_SPACE;
937 if (isalnum(ch) || ch == '_')
938 return TEP_EVENT_ITEM;
939 if (ch == '\'')
940 return TEP_EVENT_SQUOTE;
941 if (ch == '"')
942 return TEP_EVENT_DQUOTE;
943 if (!isprint(ch))
944 return TEP_EVENT_NONE;
945 if (ch == '(' || ch == ')' || ch == ',')
946 return TEP_EVENT_DELIM;
947
948 return TEP_EVENT_OP;
949}
950
951static int __read_char(void)
952{
953 if (input_buf_ptr >= input_buf_siz)
954 return -1;
955
956 return input_buf[input_buf_ptr++];
957}
958
959/**
960 * peek_char - peek at the next character that will be read
961 *
962 * Returns the next character read, or -1 if end of buffer.
963 */
964__hidden int peek_char(void)
965{
966 if (input_buf_ptr >= input_buf_siz)
967 return -1;
968
969 return input_buf[input_buf_ptr];
970}
971
972static int extend_token(char **tok, char *buf, int size)
973{
974 char *newtok = realloc(*tok, size);
975
976 if (!newtok) {
977 free(*tok);
978 *tok = NULL;
979 return -1;
980 }
981
982 if (!*tok)
983 strcpy(newtok, buf);
984 else
985 strcat(newtok, buf);
986 *tok = newtok;
987
988 return 0;
989}
990
991static enum tep_event_type force_token(const char *str, char **tok);
992
993static enum tep_event_type __read_token(char **tok)
994{
995 char buf[BUFSIZ];
996 int ch, last_ch, quote_ch, next_ch;
997 int i = 0;
998 int tok_size = 0;
999 enum tep_event_type type;
1000
1001 *tok = NULL;
1002
1003
1004 ch = __read_char();
1005 if (ch < 0)
1006 return TEP_EVENT_NONE;
1007
1008 type = get_type(ch);
1009 if (type == TEP_EVENT_NONE)
1010 return type;
1011
1012 buf[i++] = ch;
1013
1014 switch (type) {
1015 case TEP_EVENT_NEWLINE:
1016 case TEP_EVENT_DELIM:
1017 if (asprintf(tok, "%c", ch) < 0)
1018 return TEP_EVENT_ERROR;
1019
1020 return type;
1021
1022 case TEP_EVENT_OP:
1023 switch (ch) {
1024 case '-':
1025 next_ch = peek_char();
1026 if (next_ch == '>') {
1027 buf[i++] = __read_char();
1028 break;
1029 }
1030 /* fall through */
1031 case '+':
1032 case '|':
1033 case '&':
1034 case '>':
1035 case '<':
1036 last_ch = ch;
1037 ch = peek_char();
1038 if (ch != last_ch)
1039 goto test_equal;
1040 buf[i++] = __read_char();
1041 switch (last_ch) {
1042 case '>':
1043 case '<':
1044 goto test_equal;
1045 default:
1046 break;
1047 }
1048 break;
1049 case '!':
1050 case '=':
1051 goto test_equal;
1052 default: /* what should we do instead? */
1053 break;
1054 }
1055 buf[i] = 0;
1056 *tok = strdup(buf);
1057 return type;
1058
1059 test_equal:
1060 ch = peek_char();
1061 if (ch == '=')
1062 buf[i++] = __read_char();
1063 goto out;
1064
1065 case TEP_EVENT_DQUOTE:
1066 case TEP_EVENT_SQUOTE:
1067 /* don't keep quotes */
1068 i--;
1069 quote_ch = ch;
1070 last_ch = 0;
1071 concat:
1072 do {
1073 if (i == (BUFSIZ - 1)) {
1074 buf[i] = 0;
1075 tok_size += BUFSIZ;
1076
1077 if (extend_token(tok, buf, tok_size) < 0)
1078 return TEP_EVENT_NONE;
1079 i = 0;
1080 }
1081 last_ch = ch;
1082 ch = __read_char();
1083 buf[i++] = ch;
1084 /* the '\' '\' will cancel itself */
1085 if (ch == '\\' && last_ch == '\\')
1086 last_ch = 0;
1087 } while (ch != quote_ch || last_ch == '\\');
1088 /* remove the last quote */
1089 i--;
1090
1091 /*
1092 * For strings (double quotes) check the next token.
1093 * If it is another string, concatinate the two.
1094 */
1095 if (type == TEP_EVENT_DQUOTE) {
1096 unsigned long long save_input_buf_ptr = input_buf_ptr;
1097
1098 do {
1099 ch = __read_char();
1100 } while (isspace(ch));
1101 if (ch == '"')
1102 goto concat;
1103 input_buf_ptr = save_input_buf_ptr;
1104 }
1105
1106 goto out;
1107
1108 case TEP_EVENT_ERROR ... TEP_EVENT_SPACE:
1109 case TEP_EVENT_ITEM:
1110 default:
1111 break;
1112 }
1113
1114 while (get_type(peek_char()) == type) {
1115 if (i == (BUFSIZ - 1)) {
1116 buf[i] = 0;
1117 tok_size += BUFSIZ;
1118
1119 if (extend_token(tok, buf, tok_size) < 0)
1120 return TEP_EVENT_NONE;
1121 i = 0;
1122 }
1123 ch = __read_char();
1124 buf[i++] = ch;
1125 }
1126
1127 out:
1128 buf[i] = 0;
1129 if (extend_token(tok, buf, tok_size + i + 1) < 0)
1130 return TEP_EVENT_NONE;
1131
1132 if (type == TEP_EVENT_ITEM) {
1133 /*
1134 * Older versions of the kernel has a bug that
1135 * creates invalid symbols and will break the mac80211
1136 * parsing. This is a work around to that bug.
1137 *
1138 * See Linux kernel commit:
1139 * 811cb50baf63461ce0bdb234927046131fc7fa8b
1140 */
1141 if (strcmp(*tok, "LOCAL_PR_FMT") == 0) {
1142 free(*tok);
1143 *tok = NULL;
1144 return force_token("\"%s\" ", tok);
1145 } else if (strcmp(*tok, "STA_PR_FMT") == 0) {
1146 free(*tok);
1147 *tok = NULL;
1148 return force_token("\" sta:%pM\" ", tok);
1149 } else if (strcmp(*tok, "VIF_PR_FMT") == 0) {
1150 free(*tok);
1151 *tok = NULL;
1152 return force_token("\" vif:%p(%d)\" ", tok);
1153 }
1154 }
1155
1156 return type;
1157}
1158
1159static enum tep_event_type force_token(const char *str, char **tok)
1160{
1161 const char *save_input_buf;
1162 unsigned long long save_input_buf_ptr;
1163 unsigned long long save_input_buf_siz;
1164 enum tep_event_type type;
1165
1166 /* save off the current input pointers */
1167 save_input_buf = input_buf;
1168 save_input_buf_ptr = input_buf_ptr;
1169 save_input_buf_siz = input_buf_siz;
1170
1171 init_input_buf(str, strlen(str));
1172
1173 type = __read_token(tok);
1174
1175 /* reset back to original token */
1176 input_buf = save_input_buf;
1177 input_buf_ptr = save_input_buf_ptr;
1178 input_buf_siz = save_input_buf_siz;
1179
1180 return type;
1181}
1182
1183/**
1184 * free_token - free a token returned by tep_read_token
1185 * @token: the token to free
1186 */
1187__hidden void free_token(char *tok)
1188{
1189 if (tok)
1190 free(tok);
1191}
1192
1193/**
1194 * read_token - access to utilities to use the tep parser
1195 * @tok: The token to return
1196 *
1197 * This will parse tokens from the string given by
1198 * tep_init_data().
1199 *
1200 * Returns the token type.
1201 */
1202__hidden enum tep_event_type read_token(char **tok)
1203{
1204 enum tep_event_type type;
1205
1206 for (;;) {
1207 type = __read_token(tok);
1208 if (type != TEP_EVENT_SPACE)
1209 return type;
1210
1211 free_token(*tok);
1212 }
1213
1214 /* not reached */
1215 *tok = NULL;
1216 return TEP_EVENT_NONE;
1217}
1218
1219/* no newline */
1220static enum tep_event_type read_token_item(char **tok)
1221{
1222 enum tep_event_type type;
1223
1224 for (;;) {
1225 type = __read_token(tok);
1226 if (type != TEP_EVENT_SPACE && type != TEP_EVENT_NEWLINE)
1227 return type;
1228 free_token(*tok);
1229 *tok = NULL;
1230 }
1231
1232 /* not reached */
1233 *tok = NULL;
1234 return TEP_EVENT_NONE;
1235}
1236
1237static int test_type(enum tep_event_type type, enum tep_event_type expect)
1238{
1239 if (type != expect) {
1240 do_warning("Error: expected type %d but read %d",
1241 expect, type);
1242 return -1;
1243 }
1244 return 0;
1245}
1246
1247static int test_type_token(enum tep_event_type type, const char *token,
1248 enum tep_event_type expect, const char *expect_tok)
1249{
1250 if (type != expect) {
1251 do_warning("Error: expected type %d but read %d",
1252 expect, type);
1253 return -1;
1254 }
1255
1256 if (strcmp(token, expect_tok) != 0) {
1257 do_warning("Error: expected '%s' but read '%s'",
1258 expect_tok, token);
1259 return -1;
1260 }
1261 return 0;
1262}
1263
1264static int __read_expect_type(enum tep_event_type expect, char **tok, int newline_ok)
1265{
1266 enum tep_event_type type;
1267
1268 if (newline_ok)
1269 type = read_token(tok);
1270 else
1271 type = read_token_item(tok);
1272 return test_type(type, expect);
1273}
1274
1275static int read_expect_type(enum tep_event_type expect, char **tok)
1276{
1277 return __read_expect_type(expect, tok, 1);
1278}
1279
1280static int __read_expected(enum tep_event_type expect, const char *str,
1281 int newline_ok)
1282{
1283 enum tep_event_type type;
1284 char *token;
1285 int ret;
1286
1287 if (newline_ok)
1288 type = read_token(&token);
1289 else
1290 type = read_token_item(&token);
1291
1292 ret = test_type_token(type, token, expect, str);
1293
1294 free_token(token);
1295
1296 return ret;
1297}
1298
1299static int read_expected(enum tep_event_type expect, const char *str)
1300{
1301 return __read_expected(expect, str, 1);
1302}
1303
1304static int read_expected_item(enum tep_event_type expect, const char *str)
1305{
1306 return __read_expected(expect, str, 0);
1307}
1308
1309static char *event_read_name(void)
1310{
1311 char *token;
1312
1313 if (read_expected(TEP_EVENT_ITEM, "name") < 0)
1314 return NULL;
1315
1316 if (read_expected(TEP_EVENT_OP, ":") < 0)
1317 return NULL;
1318
1319 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
1320 goto fail;
1321
1322 return token;
1323
1324 fail:
1325 free_token(token);
1326 return NULL;
1327}
1328
1329static int event_read_id(void)
1330{
1331 char *token;
1332 int id;
1333
1334 if (read_expected_item(TEP_EVENT_ITEM, "ID") < 0)
1335 return -1;
1336
1337 if (read_expected(TEP_EVENT_OP, ":") < 0)
1338 return -1;
1339
1340 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
1341 goto fail;
1342
1343 id = strtoul(token, NULL, 0);
1344 free_token(token);
1345 return id;
1346
1347 fail:
1348 free_token(token);
1349 return -1;
1350}
1351
1352static int field_is_string(struct tep_format_field *field)
1353{
1354 if ((field->flags & TEP_FIELD_IS_ARRAY) &&
1355 (strstr(field->type, "char") || strstr(field->type, "u8") ||
1356 strstr(field->type, "s8")))
1357 return 1;
1358
1359 return 0;
1360}
1361
1362static int field_is_dynamic(struct tep_format_field *field)
1363{
1364 if (strncmp(field->type, "__data_loc", 10) == 0)
1365 return 1;
1366
1367 return 0;
1368}
1369
1370static int field_is_long(struct tep_format_field *field)
1371{
1372 /* includes long long */
1373 if (strstr(field->type, "long"))
1374 return 1;
1375
1376 return 0;
1377}
1378
1379static unsigned int type_size(const char *name)
1380{
1381 /* This covers all TEP_FIELD_IS_STRING types. */
1382 static struct {
1383 const char *type;
1384 unsigned int size;
1385 } table[] = {
1386 { "u8", 1 },
1387 { "u16", 2 },
1388 { "u32", 4 },
1389 { "u64", 8 },
1390 { "s8", 1 },
1391 { "s16", 2 },
1392 { "s32", 4 },
1393 { "s64", 8 },
1394 { "char", 1 },
1395 { },
1396 };
1397 int i;
1398
1399 for (i = 0; table[i].type; i++) {
1400 if (!strcmp(table[i].type, name))
1401 return table[i].size;
1402 }
1403
1404 return 0;
1405}
1406
1407static int append(char **buf, const char *delim, const char *str)
1408{
1409 char *new_buf;
1410
1411 new_buf = realloc(*buf, strlen(*buf) + strlen(delim) + strlen(str) + 1);
1412 if (!new_buf)
1413 return -1;
1414 strcat(new_buf, delim);
1415 strcat(new_buf, str);
1416 *buf = new_buf;
1417 return 0;
1418}
1419
1420static int event_read_fields(struct tep_event *event, struct tep_format_field **fields)
1421{
1422 struct tep_format_field *field = NULL;
1423 enum tep_event_type type;
1424 char *token;
1425 char *last_token;
1426 char *delim = " ";
1427 int count = 0;
1428 int ret;
1429
1430 do {
1431 unsigned int size_dynamic = 0;
1432
1433 type = read_token(&token);
1434 if (type == TEP_EVENT_NEWLINE) {
1435 free_token(token);
1436 return count;
1437 }
1438
1439 count++;
1440
1441 if (test_type_token(type, token, TEP_EVENT_ITEM, "field"))
1442 goto fail;
1443 free_token(token);
1444
1445 type = read_token(&token);
1446 /*
1447 * The ftrace fields may still use the "special" name.
1448 * Just ignore it.
1449 */
1450 if (event->flags & TEP_EVENT_FL_ISFTRACE &&
1451 type == TEP_EVENT_ITEM && strcmp(token, "special") == 0) {
1452 free_token(token);
1453 type = read_token(&token);
1454 }
1455
1456 if (test_type_token(type, token, TEP_EVENT_OP, ":") < 0)
1457 goto fail;
1458
1459 free_token(token);
1460 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
1461 goto fail;
1462
1463 last_token = token;
1464
1465 field = calloc(1, sizeof(*field));
1466 if (!field)
1467 goto fail;
1468
1469 field->event = event;
1470
1471 /* read the rest of the type */
1472 for (;;) {
1473 type = read_token(&token);
1474 if (type == TEP_EVENT_ITEM ||
1475 (type == TEP_EVENT_OP && strcmp(token, "*") == 0) ||
1476 /*
1477 * Some of the ftrace fields are broken and have
1478 * an illegal "." in them.
1479 */
1480 (event->flags & TEP_EVENT_FL_ISFTRACE &&
1481 type == TEP_EVENT_OP && strcmp(token, ".") == 0)) {
1482
1483 if (strcmp(token, "*") == 0)
1484 field->flags |= TEP_FIELD_IS_POINTER;
1485
1486 if (field->type) {
1487 ret = append(&field->type, delim, last_token);
1488 free(last_token);
1489 if (ret < 0)
1490 goto fail;
1491 } else
1492 field->type = last_token;
1493 last_token = token;
1494 delim = " ";
1495 continue;
1496 }
1497
1498 /* Handle __attribute__((user)) */
1499 if ((type == TEP_EVENT_DELIM) &&
1500 strcmp("__attribute__", last_token) == 0 &&
1501 token[0] == '(') {
1502 int depth = 1;
1503 int ret;
1504
1505 ret = append(&field->type, " ", last_token);
1506 ret |= append(&field->type, "", "(");
1507 if (ret < 0)
1508 goto fail;
1509
1510 delim = " ";
1511 while ((type = read_token(&token)) != TEP_EVENT_NONE) {
1512 if (type == TEP_EVENT_DELIM) {
1513 if (token[0] == '(')
1514 depth++;
1515 else if (token[0] == ')')
1516 depth--;
1517 if (!depth)
1518 break;
1519 ret = append(&field->type, "", token);
1520 delim = "";
1521 } else {
1522 ret = append(&field->type, delim, token);
1523 delim = " ";
1524 }
1525 if (ret < 0)
1526 goto fail;
1527 free(last_token);
1528 last_token = token;
1529 }
1530 continue;
1531 }
1532 break;
1533 }
1534
1535 if (!field->type) {
1536 do_warning_event(event, "%s: no type found", __func__);
1537 goto fail;
1538 }
1539 field->name = field->alias = last_token;
1540
1541 if (test_type(type, TEP_EVENT_OP))
1542 goto fail;
1543
1544 if (strcmp(token, "[") == 0) {
1545 enum tep_event_type last_type = type;
1546 char *brackets = token;
1547
1548 field->flags |= TEP_FIELD_IS_ARRAY;
1549
1550 type = read_token(&token);
1551
1552 if (type == TEP_EVENT_ITEM)
1553 field->arraylen = strtoul(token, NULL, 0);
1554 else
1555 field->arraylen = 0;
1556
1557 while (strcmp(token, "]") != 0) {
1558 const char *delim;
1559
1560 if (last_type == TEP_EVENT_ITEM &&
1561 type == TEP_EVENT_ITEM)
1562 delim = " ";
1563 else
1564 delim = "";
1565
1566 last_type = type;
1567
1568 ret = append(&brackets, delim, token);
1569 if (ret < 0) {
1570 free(brackets);
1571 goto fail;
1572 }
1573 /* We only care about the last token */
1574 field->arraylen = strtoul(token, NULL, 0);
1575 free_token(token);
1576 type = read_token(&token);
1577 if (type == TEP_EVENT_NONE) {
1578 free(brackets);
1579 do_warning_event(event, "failed to find token");
1580 goto fail;
1581 }
1582 }
1583
1584 free_token(token);
1585
1586 ret = append(&brackets, "", "]");
1587 if (ret < 0) {
1588 free(brackets);
1589 goto fail;
1590 }
1591
1592 /* add brackets to type */
1593
1594 type = read_token(&token);
1595 /*
1596 * If the next token is not an OP, then it is of
1597 * the format: type [] item;
1598 */
1599 if (type == TEP_EVENT_ITEM) {
1600 ret = append(&field->type, " ", field->name);
1601 if (ret < 0) {
1602 free(brackets);
1603 goto fail;
1604 }
1605 ret = append(&field->type, "", brackets);
1606
1607 size_dynamic = type_size(field->name);
1608 free_token(field->name);
1609 field->name = field->alias = token;
1610 type = read_token(&token);
1611 } else {
1612 ret = append(&field->type, "", brackets);
1613 if (ret < 0) {
1614 free(brackets);
1615 goto fail;
1616 }
1617 }
1618 free(brackets);
1619 }
1620
1621 if (field_is_string(field))
1622 field->flags |= TEP_FIELD_IS_STRING;
1623 if (field_is_dynamic(field))
1624 field->flags |= TEP_FIELD_IS_DYNAMIC;
1625 if (field_is_long(field))
1626 field->flags |= TEP_FIELD_IS_LONG;
1627
1628 if (test_type_token(type, token, TEP_EVENT_OP, ";"))
1629 goto fail;
1630 free_token(token);
1631
1632 if (read_expected(TEP_EVENT_ITEM, "offset") < 0)
1633 goto fail_expect;
1634
1635 if (read_expected(TEP_EVENT_OP, ":") < 0)
1636 goto fail_expect;
1637
1638 if (read_expect_type(TEP_EVENT_ITEM, &token))
1639 goto fail;
1640 field->offset = strtoul(token, NULL, 0);
1641 free_token(token);
1642
1643 if (read_expected(TEP_EVENT_OP, ";") < 0)
1644 goto fail_expect;
1645
1646 if (read_expected(TEP_EVENT_ITEM, "size") < 0)
1647 goto fail_expect;
1648
1649 if (read_expected(TEP_EVENT_OP, ":") < 0)
1650 goto fail_expect;
1651
1652 if (read_expect_type(TEP_EVENT_ITEM, &token))
1653 goto fail;
1654 field->size = strtoul(token, NULL, 0);
1655 free_token(token);
1656
1657 if (read_expected(TEP_EVENT_OP, ";") < 0)
1658 goto fail_expect;
1659
1660 type = read_token(&token);
1661 if (type != TEP_EVENT_NEWLINE) {
1662 /* newer versions of the kernel have a "signed" type */
1663 if (test_type_token(type, token, TEP_EVENT_ITEM, "signed"))
1664 goto fail;
1665
1666 free_token(token);
1667
1668 if (read_expected(TEP_EVENT_OP, ":") < 0)
1669 goto fail_expect;
1670
1671 if (read_expect_type(TEP_EVENT_ITEM, &token))
1672 goto fail;
1673
1674 if (strtoul(token, NULL, 0))
1675 field->flags |= TEP_FIELD_IS_SIGNED;
1676
1677 free_token(token);
1678 if (read_expected(TEP_EVENT_OP, ";") < 0)
1679 goto fail_expect;
1680
1681 if (read_expect_type(TEP_EVENT_NEWLINE, &token))
1682 goto fail;
1683 }
1684
1685 free_token(token);
1686
1687 if (field->flags & TEP_FIELD_IS_ARRAY) {
1688 if (field->arraylen)
1689 field->elementsize = field->size / field->arraylen;
1690 else if (field->flags & TEP_FIELD_IS_DYNAMIC)
1691 field->elementsize = size_dynamic;
1692 else if (field->flags & TEP_FIELD_IS_STRING)
1693 field->elementsize = 1;
1694 else if (field->flags & TEP_FIELD_IS_LONG)
1695 field->elementsize = event->tep ?
1696 event->tep->long_size :
1697 sizeof(long);
1698 } else
1699 field->elementsize = field->size;
1700
1701 *fields = field;
1702 fields = &field->next;
1703
1704 } while (1);
1705
1706 return 0;
1707
1708fail:
1709 free_token(token);
1710fail_expect:
1711 if (field) {
1712 free(field->type);
1713 free(field->name);
1714 free(field);
1715 }
1716 return -1;
1717}
1718
1719static int event_read_format(struct tep_event *event)
1720{
1721 char *token;
1722 int ret;
1723
1724 if (read_expected_item(TEP_EVENT_ITEM, "format") < 0)
1725 return -1;
1726
1727 if (read_expected(TEP_EVENT_OP, ":") < 0)
1728 return -1;
1729
1730 if (read_expect_type(TEP_EVENT_NEWLINE, &token))
1731 goto fail;
1732 free_token(token);
1733
1734 ret = event_read_fields(event, &event->format.common_fields);
1735 if (ret < 0)
1736 return ret;
1737 event->format.nr_common = ret;
1738
1739 ret = event_read_fields(event, &event->format.fields);
1740 if (ret < 0)
1741 return ret;
1742 event->format.nr_fields = ret;
1743
1744 return 0;
1745
1746 fail:
1747 free_token(token);
1748 return -1;
1749}
1750
1751static enum tep_event_type
1752process_arg_token(struct tep_event *event, struct tep_print_arg *arg,
1753 char **tok, enum tep_event_type type);
1754
1755static enum tep_event_type
1756process_arg(struct tep_event *event, struct tep_print_arg *arg, char **tok)
1757{
1758 enum tep_event_type type;
1759 char *token;
1760
1761 type = read_token(&token);
1762 *tok = token;
1763
1764 return process_arg_token(event, arg, tok, type);
1765}
1766
1767static enum tep_event_type
1768process_op(struct tep_event *event, struct tep_print_arg *arg, char **tok);
1769
1770/*
1771 * For __print_symbolic() and __print_flags, we need to completely
1772 * evaluate the first argument, which defines what to print next.
1773 */
1774static enum tep_event_type
1775process_field_arg(struct tep_event *event, struct tep_print_arg *arg, char **tok)
1776{
1777 enum tep_event_type type;
1778
1779 type = process_arg(event, arg, tok);
1780
1781 while (type == TEP_EVENT_OP) {
1782 type = process_op(event, arg, tok);
1783 }
1784
1785 return type;
1786}
1787
1788static enum tep_event_type
1789process_cond(struct tep_event *event, struct tep_print_arg *top, char **tok)
1790{
1791 struct tep_print_arg *arg, *left, *right;
1792 enum tep_event_type type;
1793 char *token = NULL;
1794
1795 arg = alloc_arg();
1796 left = alloc_arg();
1797 right = alloc_arg();
1798
1799 if (!arg || !left || !right) {
1800 do_warning_event(event, "%s: not enough memory!", __func__);
1801 /* arg will be freed at out_free */
1802 free_arg(left);
1803 free_arg(right);
1804 goto out_free;
1805 }
1806
1807 arg->type = TEP_PRINT_OP;
1808 arg->op.left = left;
1809 arg->op.right = right;
1810
1811 *tok = NULL;
1812 type = process_arg(event, left, &token);
1813
1814 again:
1815 if (type == TEP_EVENT_ERROR)
1816 goto out_free;
1817
1818 /* Handle other operations in the arguments */
1819 if (type == TEP_EVENT_OP && strcmp(token, ":") != 0) {
1820 type = process_op(event, left, &token);
1821 goto again;
1822 }
1823
1824 if (test_type_token(type, token, TEP_EVENT_OP, ":"))
1825 goto out_free;
1826
1827 arg->op.op = token;
1828
1829 type = process_arg(event, right, &token);
1830
1831 top->op.right = arg;
1832
1833 *tok = token;
1834 return type;
1835
1836out_free:
1837 /* Top may point to itself */
1838 top->op.right = NULL;
1839 free_token(token);
1840 free_arg(arg);
1841 return TEP_EVENT_ERROR;
1842}
1843
1844static enum tep_event_type
1845process_array(struct tep_event *event, struct tep_print_arg *top, char **tok)
1846{
1847 struct tep_print_arg *arg;
1848 enum tep_event_type type;
1849 char *token = NULL;
1850
1851 arg = alloc_arg();
1852 if (!arg) {
1853 do_warning_event(event, "%s: not enough memory!", __func__);
1854 /* '*tok' is set to top->op.op. No need to free. */
1855 *tok = NULL;
1856 return TEP_EVENT_ERROR;
1857 }
1858
1859 *tok = NULL;
1860 type = process_arg(event, arg, &token);
1861 if (test_type_token(type, token, TEP_EVENT_OP, "]"))
1862 goto out_free;
1863
1864 top->op.right = arg;
1865
1866 free_token(token);
1867 type = read_token_item(&token);
1868 *tok = token;
1869
1870 return type;
1871
1872out_free:
1873 free_token(token);
1874 free_arg(arg);
1875 return TEP_EVENT_ERROR;
1876}
1877
1878static int get_op_prio(char *op)
1879{
1880 if (!op[1]) {
1881 switch (op[0]) {
1882 case '~':
1883 case '!':
1884 return 4;
1885 case '*':
1886 case '/':
1887 case '%':
1888 return 6;
1889 case '+':
1890 case '-':
1891 return 7;
1892 /* '>>' and '<<' are 8 */
1893 case '<':
1894 case '>':
1895 return 9;
1896 /* '==' and '!=' are 10 */
1897 case '&':
1898 return 11;
1899 case '^':
1900 return 12;
1901 case '|':
1902 return 13;
1903 case '?':
1904 return 16;
1905 default:
1906 do_warning("unknown op '%c'", op[0]);
1907 return -1;
1908 }
1909 } else {
1910 if (strcmp(op, "++") == 0 ||
1911 strcmp(op, "--") == 0) {
1912 return 3;
1913 } else if (strcmp(op, ">>") == 0 ||
1914 strcmp(op, "<<") == 0) {
1915 return 8;
1916 } else if (strcmp(op, ">=") == 0 ||
1917 strcmp(op, "<=") == 0) {
1918 return 9;
1919 } else if (strcmp(op, "==") == 0 ||
1920 strcmp(op, "!=") == 0) {
1921 return 10;
1922 } else if (strcmp(op, "&&") == 0) {
1923 return 14;
1924 } else if (strcmp(op, "||") == 0) {
1925 return 15;
1926 } else {
1927 do_warning("unknown op '%s'", op);
1928 return -1;
1929 }
1930 }
1931}
1932
1933static int set_op_prio(struct tep_print_arg *arg)
1934{
1935
1936 /* single ops are the greatest */
1937 if (!arg->op.left || arg->op.left->type == TEP_PRINT_NULL)
1938 arg->op.prio = 0;
1939 else
1940 arg->op.prio = get_op_prio(arg->op.op);
1941
1942 return arg->op.prio;
1943}
1944
1945/* Note, *tok does not get freed, but will most likely be saved */
1946static enum tep_event_type
1947process_op(struct tep_event *event, struct tep_print_arg *arg, char **tok)
1948{
1949 struct tep_print_arg *left, *right = NULL;
1950 enum tep_event_type type;
1951 char *token;
1952
1953 /* the op is passed in via tok */
1954 token = *tok;
1955
1956 if (arg->type == TEP_PRINT_OP && !arg->op.left) {
1957 /* handle single op */
1958 if (token[1]) {
1959 do_warning_event(event, "bad op token %s", token);
1960 goto out_free;
1961 }
1962 switch (token[0]) {
1963 case '~':
1964 case '!':
1965 case '+':
1966 case '-':
1967 break;
1968 default:
1969 do_warning_event(event, "bad op token %s", token);
1970 goto out_free;
1971
1972 }
1973
1974 /* make an empty left */
1975 left = alloc_arg();
1976 if (!left)
1977 goto out_warn_free;
1978
1979 left->type = TEP_PRINT_NULL;
1980 arg->op.left = left;
1981
1982 right = alloc_arg();
1983 if (!right)
1984 goto out_warn_free;
1985
1986 arg->op.right = right;
1987
1988 /* do not free the token, it belongs to an op */
1989 *tok = NULL;
1990 type = process_arg(event, right, tok);
1991
1992 } else if (strcmp(token, "?") == 0) {
1993
1994 left = alloc_arg();
1995 if (!left)
1996 goto out_warn_free;
1997
1998 /* copy the top arg to the left */
1999 *left = *arg;
2000
2001 arg->type = TEP_PRINT_OP;
2002 arg->op.op = token;
2003 arg->op.left = left;
2004 arg->op.prio = 0;
2005
2006 /* it will set arg->op.right */
2007 type = process_cond(event, arg, tok);
2008
2009 } else if (strcmp(token, ">>") == 0 ||
2010 strcmp(token, "<<") == 0 ||
2011 strcmp(token, "&") == 0 ||
2012 strcmp(token, "|") == 0 ||
2013 strcmp(token, "&&") == 0 ||
2014 strcmp(token, "||") == 0 ||
2015 strcmp(token, "-") == 0 ||
2016 strcmp(token, "+") == 0 ||
2017 strcmp(token, "*") == 0 ||
2018 strcmp(token, "^") == 0 ||
2019 strcmp(token, "/") == 0 ||
2020 strcmp(token, "%") == 0 ||
2021 strcmp(token, "<") == 0 ||
2022 strcmp(token, ">") == 0 ||
2023 strcmp(token, "<=") == 0 ||
2024 strcmp(token, ">=") == 0 ||
2025 strcmp(token, "==") == 0 ||
2026 strcmp(token, "!=") == 0) {
2027
2028 left = alloc_arg();
2029 if (!left)
2030 goto out_warn_free;
2031
2032 /* copy the top arg to the left */
2033 *left = *arg;
2034
2035 arg->type = TEP_PRINT_OP;
2036 arg->op.op = token;
2037 arg->op.left = left;
2038 arg->op.right = NULL;
2039
2040 if (set_op_prio(arg) == -1) {
2041 event->flags |= TEP_EVENT_FL_FAILED;
2042 /* arg->op.op (= token) will be freed at out_free */
2043 arg->op.op = NULL;
2044 goto out_free;
2045 }
2046
2047 type = read_token_item(&token);
2048 *tok = token;
2049
2050 /* could just be a type pointer */
2051 if ((strcmp(arg->op.op, "*") == 0) &&
2052 type == TEP_EVENT_DELIM && (strcmp(token, ")") == 0)) {
2053 int ret;
2054
2055 if (left->type != TEP_PRINT_ATOM) {
2056 do_warning_event(event, "bad pointer type");
2057 goto out_free;
2058 }
2059 ret = append(&left->atom.atom, " ", "*");
2060 if (ret < 0)
2061 goto out_warn_free;
2062
2063 free(arg->op.op);
2064 *arg = *left;
2065 free(left);
2066
2067 return type;
2068 }
2069
2070 right = alloc_arg();
2071 if (!right)
2072 goto out_warn_free;
2073
2074 type = process_arg_token(event, right, tok, type);
2075 if (type == TEP_EVENT_ERROR) {
2076 free_arg(right);
2077 /* token was freed in process_arg_token() via *tok */
2078 token = NULL;
2079 goto out_free;
2080 }
2081
2082 if (right->type == TEP_PRINT_OP &&
2083 get_op_prio(arg->op.op) < get_op_prio(right->op.op)) {
2084 struct tep_print_arg tmp;
2085
2086 /* rotate ops according to the priority */
2087 arg->op.right = right->op.left;
2088
2089 tmp = *arg;
2090 *arg = *right;
2091 *right = tmp;
2092
2093 arg->op.left = right;
2094 } else {
2095 arg->op.right = right;
2096 }
2097
2098 } else if (strcmp(token, "[") == 0) {
2099
2100 left = alloc_arg();
2101 if (!left)
2102 goto out_warn_free;
2103
2104 *left = *arg;
2105
2106 arg->type = TEP_PRINT_OP;
2107 arg->op.op = token;
2108 arg->op.left = left;
2109
2110 arg->op.prio = 0;
2111
2112 /* it will set arg->op.right */
2113 type = process_array(event, arg, tok);
2114
2115 } else {
2116 do_warning_event(event, "unknown op '%s'", token);
2117 event->flags |= TEP_EVENT_FL_FAILED;
2118 /* the arg is now the left side */
2119 goto out_free;
2120 }
2121
2122 if (type == TEP_EVENT_OP && strcmp(*tok, ":") != 0) {
2123 int prio;
2124
2125 /* higher prios need to be closer to the root */
2126 prio = get_op_prio(*tok);
2127
2128 if (prio > arg->op.prio)
2129 return process_op(event, arg, tok);
2130
2131 return process_op(event, right, tok);
2132 }
2133
2134 return type;
2135
2136out_warn_free:
2137 do_warning_event(event, "%s: not enough memory!", __func__);
2138out_free:
2139 free_token(token);
2140 *tok = NULL;
2141 return TEP_EVENT_ERROR;
2142}
2143
2144static enum tep_event_type
2145process_entry(struct tep_event *event __maybe_unused, struct tep_print_arg *arg,
2146 char **tok)
2147{
2148 enum tep_event_type type;
2149 char *field;
2150 char *token;
2151
2152 if (read_expected(TEP_EVENT_OP, "->") < 0)
2153 goto out_err;
2154
2155 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
2156 goto out_free;
2157 field = token;
2158
2159 arg->type = TEP_PRINT_FIELD;
2160 arg->field.name = field;
2161
2162 if (is_flag_field) {
2163 arg->field.field = tep_find_any_field(event, arg->field.name);
2164 arg->field.field->flags |= TEP_FIELD_IS_FLAG;
2165 is_flag_field = 0;
2166 } else if (is_symbolic_field) {
2167 arg->field.field = tep_find_any_field(event, arg->field.name);
2168 arg->field.field->flags |= TEP_FIELD_IS_SYMBOLIC;
2169 is_symbolic_field = 0;
2170 }
2171
2172 type = read_token(&token);
2173 *tok = token;
2174
2175 return type;
2176
2177 out_free:
2178 free_token(token);
2179 out_err:
2180 *tok = NULL;
2181 return TEP_EVENT_ERROR;
2182}
2183
2184static int alloc_and_process_delim(struct tep_event *event, char *next_token,
2185 struct tep_print_arg **print_arg)
2186{
2187 struct tep_print_arg *field;
2188 enum tep_event_type type;
2189 char *token;
2190 int ret = 0;
2191
2192 field = alloc_arg();
2193 if (!field) {
2194 do_warning_event(event, "%s: not enough memory!", __func__);
2195 errno = ENOMEM;
2196 return -1;
2197 }
2198
2199 type = process_arg(event, field, &token);
2200
2201 if (test_type_token(type, token, TEP_EVENT_DELIM, next_token)) {
2202 errno = EINVAL;
2203 ret = -1;
2204 free_arg(field);
2205 goto out_free_token;
2206 }
2207
2208 *print_arg = field;
2209
2210out_free_token:
2211 free_token(token);
2212
2213 return ret;
2214}
2215
2216static char *arg_eval (struct tep_print_arg *arg);
2217
2218static unsigned long long
2219eval_type_str(unsigned long long val, const char *type, int pointer)
2220{
2221 int sign = 0;
2222 char *ref;
2223 int len;
2224
2225 len = strlen(type);
2226
2227 if (pointer) {
2228
2229 if (type[len-1] != '*') {
2230 do_warning("pointer expected with non pointer type");
2231 return val;
2232 }
2233
2234 ref = malloc(len);
2235 if (!ref) {
2236 do_warning("%s: not enough memory!", __func__);
2237 return val;
2238 }
2239 memcpy(ref, type, len);
2240
2241 /* chop off the " *" */
2242 ref[len - 2] = 0;
2243
2244 val = eval_type_str(val, ref, 0);
2245 free(ref);
2246 return val;
2247 }
2248
2249 /* check if this is a pointer */
2250 if (type[len - 1] == '*')
2251 return val;
2252
2253 /* Try to figure out the arg size*/
2254 if (strncmp(type, "struct", 6) == 0)
2255 /* all bets off */
2256 return val;
2257
2258 if (strcmp(type, "u8") == 0)
2259 return val & 0xff;
2260
2261 if (strcmp(type, "u16") == 0)
2262 return val & 0xffff;
2263
2264 if (strcmp(type, "u32") == 0)
2265 return val & 0xffffffff;
2266
2267 if (strcmp(type, "u64") == 0 ||
2268 strcmp(type, "s64") == 0)
2269 return val;
2270
2271 if (strcmp(type, "s8") == 0)
2272 return (unsigned long long)(char)val & 0xff;
2273
2274 if (strcmp(type, "s16") == 0)
2275 return (unsigned long long)(short)val & 0xffff;
2276
2277 if (strcmp(type, "s32") == 0)
2278 return (unsigned long long)(int)val & 0xffffffff;
2279
2280 if (strncmp(type, "unsigned ", 9) == 0) {
2281 sign = 0;
2282 type += 9;
2283 }
2284
2285 if (strcmp(type, "char") == 0) {
2286 if (sign)
2287 return (unsigned long long)(char)val & 0xff;
2288 else
2289 return val & 0xff;
2290 }
2291
2292 if (strcmp(type, "short") == 0) {
2293 if (sign)
2294 return (unsigned long long)(short)val & 0xffff;
2295 else
2296 return val & 0xffff;
2297 }
2298
2299 if (strcmp(type, "int") == 0) {
2300 if (sign)
2301 return (unsigned long long)(int)val & 0xffffffff;
2302 else
2303 return val & 0xffffffff;
2304 }
2305
2306 return val;
2307}
2308
2309/*
2310 * Try to figure out the type.
2311 */
2312static unsigned long long
2313eval_type(unsigned long long val, struct tep_print_arg *arg, int pointer)
2314{
2315 if (arg->type != TEP_PRINT_TYPE) {
2316 do_warning("expected type argument");
2317 return 0;
2318 }
2319
2320 return eval_type_str(val, arg->typecast.type, pointer);
2321}
2322
2323static int arg_num_eval(struct tep_print_arg *arg, long long *val)
2324{
2325 long long left, right;
2326 int ret = 1;
2327
2328 switch (arg->type) {
2329 case TEP_PRINT_ATOM:
2330 *val = strtoll(arg->atom.atom, NULL, 0);
2331 break;
2332 case TEP_PRINT_TYPE:
2333 ret = arg_num_eval(arg->typecast.item, val);
2334 if (!ret)
2335 break;
2336 *val = eval_type(*val, arg, 0);
2337 break;
2338 case TEP_PRINT_OP:
2339 switch (arg->op.op[0]) {
2340 case '|':
2341 ret = arg_num_eval(arg->op.left, &left);
2342 if (!ret)
2343 break;
2344 ret = arg_num_eval(arg->op.right, &right);
2345 if (!ret)
2346 break;
2347 if (arg->op.op[1])
2348 *val = left || right;
2349 else
2350 *val = left | right;
2351 break;
2352 case '&':
2353 ret = arg_num_eval(arg->op.left, &left);
2354 if (!ret)
2355 break;
2356 ret = arg_num_eval(arg->op.right, &right);
2357 if (!ret)
2358 break;
2359 if (arg->op.op[1])
2360 *val = left && right;
2361 else
2362 *val = left & right;
2363 break;
2364 case '<':
2365 ret = arg_num_eval(arg->op.left, &left);
2366 if (!ret)
2367 break;
2368 ret = arg_num_eval(arg->op.right, &right);
2369 if (!ret)
2370 break;
2371 switch (arg->op.op[1]) {
2372 case 0:
2373 *val = left < right;
2374 break;
2375 case '<':
2376 *val = left << right;
2377 break;
2378 case '=':
2379 *val = left <= right;
2380 break;
2381 default:
2382 do_warning("unknown op '%s'", arg->op.op);
2383 ret = 0;
2384 }
2385 break;
2386 case '>':
2387 ret = arg_num_eval(arg->op.left, &left);
2388 if (!ret)
2389 break;
2390 ret = arg_num_eval(arg->op.right, &right);
2391 if (!ret)
2392 break;
2393 switch (arg->op.op[1]) {
2394 case 0:
2395 *val = left > right;
2396 break;
2397 case '>':
2398 *val = left >> right;
2399 break;
2400 case '=':
2401 *val = left >= right;
2402 break;
2403 default:
2404 do_warning("unknown op '%s'", arg->op.op);
2405 ret = 0;
2406 }
2407 break;
2408 case '=':
2409 ret = arg_num_eval(arg->op.left, &left);
2410 if (!ret)
2411 break;
2412 ret = arg_num_eval(arg->op.right, &right);
2413 if (!ret)
2414 break;
2415
2416 if (arg->op.op[1] != '=') {
2417 do_warning("unknown op '%s'", arg->op.op);
2418 ret = 0;
2419 } else
2420 *val = left == right;
2421 break;
2422 case '!':
2423 ret = arg_num_eval(arg->op.left, &left);
2424 if (!ret)
2425 break;
2426 ret = arg_num_eval(arg->op.right, &right);
2427 if (!ret)
2428 break;
2429
2430 switch (arg->op.op[1]) {
2431 case '=':
2432 *val = left != right;
2433 break;
2434 default:
2435 do_warning("unknown op '%s'", arg->op.op);
2436 ret = 0;
2437 }
2438 break;
2439 case '-':
2440 /* check for negative */
2441 if (arg->op.left->type == TEP_PRINT_NULL)
2442 left = 0;
2443 else
2444 ret = arg_num_eval(arg->op.left, &left);
2445 if (!ret)
2446 break;
2447 ret = arg_num_eval(arg->op.right, &right);
2448 if (!ret)
2449 break;
2450 *val = left - right;
2451 break;
2452 case '+':
2453 if (arg->op.left->type == TEP_PRINT_NULL)
2454 left = 0;
2455 else
2456 ret = arg_num_eval(arg->op.left, &left);
2457 if (!ret)
2458 break;
2459 ret = arg_num_eval(arg->op.right, &right);
2460 if (!ret)
2461 break;
2462 *val = left + right;
2463 break;
2464 case '~':
2465 ret = arg_num_eval(arg->op.right, &right);
2466 if (!ret)
2467 break;
2468 *val = ~right;
2469 break;
2470 default:
2471 do_warning("unknown op '%s'", arg->op.op);
2472 ret = 0;
2473 }
2474 break;
2475
2476 case TEP_PRINT_NULL:
2477 case TEP_PRINT_FIELD ... TEP_PRINT_SYMBOL:
2478 case TEP_PRINT_STRING:
2479 case TEP_PRINT_BSTRING:
2480 case TEP_PRINT_BITMASK:
2481 default:
2482 do_warning("invalid eval type %d", arg->type);
2483 ret = 0;
2484
2485 }
2486 return ret;
2487}
2488
2489static char *arg_eval (struct tep_print_arg *arg)
2490{
2491 long long val;
2492 static char buf[24];
2493
2494 switch (arg->type) {
2495 case TEP_PRINT_ATOM:
2496 return arg->atom.atom;
2497 case TEP_PRINT_TYPE:
2498 return arg_eval(arg->typecast.item);
2499 case TEP_PRINT_OP:
2500 if (!arg_num_eval(arg, &val))
2501 break;
2502 sprintf(buf, "%lld", val);
2503 return buf;
2504
2505 case TEP_PRINT_NULL:
2506 case TEP_PRINT_FIELD ... TEP_PRINT_SYMBOL:
2507 case TEP_PRINT_STRING:
2508 case TEP_PRINT_BSTRING:
2509 case TEP_PRINT_BITMASK:
2510 default:
2511 do_warning("invalid eval type %d", arg->type);
2512 break;
2513 }
2514
2515 return NULL;
2516}
2517
2518static enum tep_event_type
2519process_fields(struct tep_event *event, struct tep_print_flag_sym **list, char **tok)
2520{
2521 enum tep_event_type type;
2522 struct tep_print_arg *arg = NULL;
2523 struct tep_print_flag_sym *field;
2524 char *token = *tok;
2525 char *value;
2526
2527 do {
2528 free_token(token);
2529 type = read_token_item(&token);
2530 if (test_type_token(type, token, TEP_EVENT_OP, "{"))
2531 break;
2532
2533 arg = alloc_arg();
2534 if (!arg)
2535 goto out_free;
2536
2537 free_token(token);
2538 type = process_arg(event, arg, &token);
2539
2540 if (type == TEP_EVENT_OP)
2541 type = process_op(event, arg, &token);
2542
2543 if (type == TEP_EVENT_ERROR)
2544 goto out_free;
2545
2546 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
2547 goto out_free;
2548
2549 field = calloc(1, sizeof(*field));
2550 if (!field)
2551 goto out_free;
2552
2553 value = arg_eval(arg);
2554 if (value == NULL)
2555 goto out_free_field;
2556 field->value = strdup(value);
2557 if (field->value == NULL)
2558 goto out_free_field;
2559
2560 free_arg(arg);
2561 arg = alloc_arg();
2562 if (!arg)
2563 goto out_free;
2564
2565 free_token(token);
2566 type = process_arg(event, arg, &token);
2567 if (test_type_token(type, token, TEP_EVENT_OP, "}"))
2568 goto out_free_field;
2569
2570 value = arg_eval(arg);
2571 if (value == NULL)
2572 goto out_free_field;
2573 field->str = strdup(value);
2574 if (field->str == NULL)
2575 goto out_free_field;
2576 free_arg(arg);
2577 arg = NULL;
2578
2579 *list = field;
2580 list = &field->next;
2581
2582 free_token(token);
2583 type = read_token_item(&token);
2584 } while (type == TEP_EVENT_DELIM && strcmp(token, ",") == 0);
2585
2586 *tok = token;
2587 return type;
2588
2589out_free_field:
2590 free_flag_sym(field);
2591out_free:
2592 free_arg(arg);
2593 free_token(token);
2594 *tok = NULL;
2595
2596 return TEP_EVENT_ERROR;
2597}
2598
2599static enum tep_event_type
2600process_flags(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2601{
2602 struct tep_print_arg *field;
2603 enum tep_event_type type;
2604 char *token = NULL;
2605
2606 memset(arg, 0, sizeof(*arg));
2607 arg->type = TEP_PRINT_FLAGS;
2608
2609 field = alloc_arg();
2610 if (!field) {
2611 do_warning_event(event, "%s: not enough memory!", __func__);
2612 goto out_free;
2613 }
2614
2615 type = process_field_arg(event, field, &token);
2616
2617 /* Handle operations in the first argument */
2618 while (type == TEP_EVENT_OP)
2619 type = process_op(event, field, &token);
2620
2621 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
2622 goto out_free_field;
2623 free_token(token);
2624
2625 arg->flags.field = field;
2626
2627 type = read_token_item(&token);
2628 if (event_item_type(type)) {
2629 arg->flags.delim = token;
2630 type = read_token_item(&token);
2631 }
2632
2633 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
2634 goto out_free;
2635
2636 type = process_fields(event, &arg->flags.flags, &token);
2637 if (test_type_token(type, token, TEP_EVENT_DELIM, ")"))
2638 goto out_free;
2639
2640 free_token(token);
2641 type = read_token_item(tok);
2642 return type;
2643
2644out_free_field:
2645 free_arg(field);
2646out_free:
2647 free_token(token);
2648 *tok = NULL;
2649 return TEP_EVENT_ERROR;
2650}
2651
2652static enum tep_event_type
2653process_symbols(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2654{
2655 struct tep_print_arg *field;
2656 enum tep_event_type type;
2657 char *token = NULL;
2658
2659 memset(arg, 0, sizeof(*arg));
2660 arg->type = TEP_PRINT_SYMBOL;
2661
2662 field = alloc_arg();
2663 if (!field) {
2664 do_warning_event(event, "%s: not enough memory!", __func__);
2665 goto out_free;
2666 }
2667
2668 type = process_field_arg(event, field, &token);
2669
2670 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
2671 goto out_free_field;
2672
2673 arg->symbol.field = field;
2674
2675 type = process_fields(event, &arg->symbol.symbols, &token);
2676 if (test_type_token(type, token, TEP_EVENT_DELIM, ")"))
2677 goto out_free;
2678
2679 free_token(token);
2680 type = read_token_item(tok);
2681 return type;
2682
2683out_free_field:
2684 free_arg(field);
2685out_free:
2686 free_token(token);
2687 *tok = NULL;
2688 return TEP_EVENT_ERROR;
2689}
2690
2691static enum tep_event_type
2692process_hex_common(struct tep_event *event, struct tep_print_arg *arg,
2693 char **tok, enum tep_print_arg_type type)
2694{
2695 memset(arg, 0, sizeof(*arg));
2696 arg->type = type;
2697
2698 if (alloc_and_process_delim(event, ",", &arg->hex.field))
2699 goto out;
2700
2701 if (alloc_and_process_delim(event, ")", &arg->hex.size))
2702 goto free_field;
2703
2704 return read_token_item(tok);
2705
2706free_field:
2707 free_arg(arg->hex.field);
2708 arg->hex.field = NULL;
2709out:
2710 *tok = NULL;
2711 return TEP_EVENT_ERROR;
2712}
2713
2714static enum tep_event_type
2715process_hex(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2716{
2717 return process_hex_common(event, arg, tok, TEP_PRINT_HEX);
2718}
2719
2720static enum tep_event_type
2721process_hex_str(struct tep_event *event, struct tep_print_arg *arg,
2722 char **tok)
2723{
2724 return process_hex_common(event, arg, tok, TEP_PRINT_HEX_STR);
2725}
2726
2727static enum tep_event_type
2728process_int_array(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2729{
2730 memset(arg, 0, sizeof(*arg));
2731 arg->type = TEP_PRINT_INT_ARRAY;
2732
2733 if (alloc_and_process_delim(event, ",", &arg->int_array.field))
2734 goto out;
2735
2736 if (alloc_and_process_delim(event, ",", &arg->int_array.count))
2737 goto free_field;
2738
2739 if (alloc_and_process_delim(event, ")", &arg->int_array.el_size))
2740 goto free_size;
2741
2742 return read_token_item(tok);
2743
2744free_size:
2745 free_arg(arg->int_array.count);
2746 arg->int_array.count = NULL;
2747free_field:
2748 free_arg(arg->int_array.field);
2749 arg->int_array.field = NULL;
2750out:
2751 *tok = NULL;
2752 return TEP_EVENT_ERROR;
2753}
2754
2755static enum tep_event_type
2756process_dynamic_array(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2757{
2758 struct tep_format_field *field;
2759 enum tep_event_type type;
2760 char *token;
2761
2762 memset(arg, 0, sizeof(*arg));
2763 arg->type = TEP_PRINT_DYNAMIC_ARRAY;
2764
2765 /*
2766 * The item within the parenthesis is another field that holds
2767 * the index into where the array starts.
2768 */
2769 type = read_token(&token);
2770 *tok = token;
2771 if (type != TEP_EVENT_ITEM)
2772 goto out_free;
2773
2774 /* Find the field */
2775
2776 field = tep_find_field(event, token);
2777 if (!field)
2778 goto out_free;
2779
2780 arg->dynarray.field = field;
2781 arg->dynarray.index = 0;
2782
2783 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
2784 goto out_free;
2785
2786 free_token(token);
2787 type = read_token_item(&token);
2788 *tok = token;
2789 if (type != TEP_EVENT_OP || strcmp(token, "[") != 0)
2790 return type;
2791
2792 free_token(token);
2793 arg = alloc_arg();
2794 if (!arg) {
2795 do_warning_event(event, "%s: not enough memory!", __func__);
2796 *tok = NULL;
2797 return TEP_EVENT_ERROR;
2798 }
2799
2800 type = process_arg(event, arg, &token);
2801 if (type == TEP_EVENT_ERROR)
2802 goto out_free_arg;
2803
2804 if (!test_type_token(type, token, TEP_EVENT_OP, "]"))
2805 goto out_free_arg;
2806
2807 free_token(token);
2808 type = read_token_item(tok);
2809 return type;
2810
2811 out_free_arg:
2812 free_arg(arg);
2813 out_free:
2814 free_token(token);
2815 *tok = NULL;
2816 return TEP_EVENT_ERROR;
2817}
2818
2819static enum tep_event_type
2820process_dynamic_array_len(struct tep_event *event, struct tep_print_arg *arg,
2821 char **tok)
2822{
2823 struct tep_format_field *field;
2824 enum tep_event_type type;
2825 char *token;
2826
2827 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
2828 goto out_free;
2829
2830 arg->type = TEP_PRINT_DYNAMIC_ARRAY_LEN;
2831
2832 /* Find the field */
2833 field = tep_find_field(event, token);
2834 if (!field)
2835 goto out_free;
2836
2837 arg->dynarray.field = field;
2838 arg->dynarray.index = 0;
2839
2840 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
2841 goto out_err;
2842
2843 free_token(token);
2844 type = read_token(&token);
2845 *tok = token;
2846
2847 return type;
2848
2849 out_free:
2850 free_token(token);
2851 out_err:
2852 *tok = NULL;
2853 return TEP_EVENT_ERROR;
2854}
2855
2856static enum tep_event_type
2857process_paren(struct tep_event *event, struct tep_print_arg *arg, char **tok)
2858{
2859 struct tep_print_arg *item_arg;
2860 enum tep_event_type type;
2861 char *token;
2862
2863 type = process_arg(event, arg, &token);
2864
2865 if (type == TEP_EVENT_ERROR)
2866 goto out_free;
2867
2868 if (type == TEP_EVENT_OP)
2869 type = process_op(event, arg, &token);
2870
2871 if (type == TEP_EVENT_ERROR)
2872 goto out_free;
2873
2874 if (test_type_token(type, token, TEP_EVENT_DELIM, ")"))
2875 goto out_free;
2876
2877 free_token(token);
2878 type = read_token_item(&token);
2879
2880 /*
2881 * If the next token is an item or another open paren, then
2882 * this was a typecast.
2883 */
2884 if (event_item_type(type) ||
2885 (type == TEP_EVENT_DELIM && strcmp(token, "(") == 0)) {
2886
2887 /* make this a typecast and contine */
2888
2889 /* prevous must be an atom */
2890 if (arg->type != TEP_PRINT_ATOM) {
2891 do_warning_event(event, "previous needed to be TEP_PRINT_ATOM");
2892 goto out_free;
2893 }
2894
2895 item_arg = alloc_arg();
2896 if (!item_arg) {
2897 do_warning_event(event, "%s: not enough memory!",
2898 __func__);
2899 goto out_free;
2900 }
2901
2902 arg->type = TEP_PRINT_TYPE;
2903 arg->typecast.type = arg->atom.atom;
2904 arg->typecast.item = item_arg;
2905 type = process_arg_token(event, item_arg, &token, type);
2906
2907 }
2908
2909 *tok = token;
2910 return type;
2911
2912 out_free:
2913 free_token(token);
2914 *tok = NULL;
2915 return TEP_EVENT_ERROR;
2916}
2917
2918
2919static enum tep_event_type
2920process_str(struct tep_event *event __maybe_unused, struct tep_print_arg *arg,
2921 char **tok)
2922{
2923 enum tep_event_type type;
2924 char *token;
2925
2926 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
2927 goto out_free;
2928
2929 arg->type = TEP_PRINT_STRING;
2930 arg->string.string = token;
2931 arg->string.offset = -1;
2932
2933 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
2934 goto out_err;
2935
2936 type = read_token(&token);
2937 *tok = token;
2938
2939 return type;
2940
2941 out_free:
2942 free_token(token);
2943 out_err:
2944 *tok = NULL;
2945 return TEP_EVENT_ERROR;
2946}
2947
2948static enum tep_event_type
2949process_bitmask(struct tep_event *event __maybe_unused, struct tep_print_arg *arg,
2950 char **tok)
2951{
2952 enum tep_event_type type;
2953 char *token;
2954
2955 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
2956 goto out_free;
2957
2958 arg->type = TEP_PRINT_BITMASK;
2959 arg->bitmask.bitmask = token;
2960 arg->bitmask.offset = -1;
2961
2962 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
2963 goto out_err;
2964
2965 type = read_token(&token);
2966 *tok = token;
2967
2968 return type;
2969
2970 out_free:
2971 free_token(token);
2972 out_err:
2973 *tok = NULL;
2974 return TEP_EVENT_ERROR;
2975}
2976
2977static struct tep_function_handler *
2978find_func_handler(struct tep_handle *tep, char *func_name)
2979{
2980 struct tep_function_handler *func;
2981
2982 if (!tep)
2983 return NULL;
2984
2985 for (func = tep->func_handlers; func; func = func->next) {
2986 if (strcmp(func->name, func_name) == 0)
2987 break;
2988 }
2989
2990 return func;
2991}
2992
2993static void remove_func_handler(struct tep_handle *tep, char *func_name)
2994{
2995 struct tep_function_handler *func;
2996 struct tep_function_handler **next;
2997
2998 next = &tep->func_handlers;
2999 while ((func = *next)) {
3000 if (strcmp(func->name, func_name) == 0) {
3001 *next = func->next;
3002 free_func_handle(func);
3003 break;
3004 }
3005 next = &func->next;
3006 }
3007}
3008
3009static enum tep_event_type
3010process_func_handler(struct tep_event *event, struct tep_function_handler *func,
3011 struct tep_print_arg *arg, char **tok)
3012{
3013 struct tep_print_arg **next_arg;
3014 struct tep_print_arg *farg;
3015 enum tep_event_type type;
3016 char *token;
3017 int i;
3018
3019 arg->type = TEP_PRINT_FUNC;
3020 arg->func.func = func;
3021
3022 *tok = NULL;
3023
3024 next_arg = &(arg->func.args);
3025 for (i = 0; i < func->nr_args; i++) {
3026 farg = alloc_arg();
3027 if (!farg) {
3028 do_warning_event(event, "%s: not enough memory!",
3029 __func__);
3030 return TEP_EVENT_ERROR;
3031 }
3032
3033 type = process_arg(event, farg, &token);
3034 if (i < (func->nr_args - 1)) {
3035 if (type != TEP_EVENT_DELIM || strcmp(token, ",") != 0) {
3036 do_warning_event(event,
3037 "Error: function '%s()' expects %d arguments but event %s only uses %d",
3038 func->name, func->nr_args,
3039 event->name, i + 1);
3040 goto err;
3041 }
3042 } else {
3043 if (type != TEP_EVENT_DELIM || strcmp(token, ")") != 0) {
3044 do_warning_event(event,
3045 "Error: function '%s()' only expects %d arguments but event %s has more",
3046 func->name, func->nr_args, event->name);
3047 goto err;
3048 }
3049 }
3050
3051 *next_arg = farg;
3052 next_arg = &(farg->next);
3053 free_token(token);
3054 }
3055
3056 type = read_token(&token);
3057 *tok = token;
3058
3059 return type;
3060
3061err:
3062 free_arg(farg);
3063 free_token(token);
3064 return TEP_EVENT_ERROR;
3065}
3066
3067static enum tep_event_type
3068process_builtin_expect(struct tep_event *event, struct tep_print_arg *arg, char **tok)
3069{
3070 enum tep_event_type type;
3071 char *token = NULL;
3072
3073 /* Handle __builtin_expect( cond, #) */
3074 type = process_arg(event, arg, &token);
3075
3076 if (type != TEP_EVENT_DELIM || token[0] != ',')
3077 goto out_free;
3078
3079 free_token(token);
3080
3081 /* We don't care what the second parameter is of the __builtin_expect() */
3082 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
3083 goto out_free;
3084
3085 if (read_expected(TEP_EVENT_DELIM, ")") < 0)
3086 goto out_free;
3087
3088 free_token(token);
3089 type = read_token_item(tok);
3090 return type;
3091
3092out_free:
3093 free_token(token);
3094 *tok = NULL;
3095 return TEP_EVENT_ERROR;
3096}
3097
3098static enum tep_event_type
3099process_function(struct tep_event *event, struct tep_print_arg *arg,
3100 char *token, char **tok)
3101{
3102 struct tep_function_handler *func;
3103
3104 if (strcmp(token, "__print_flags") == 0) {
3105 free_token(token);
3106 is_flag_field = 1;
3107 return process_flags(event, arg, tok);
3108 }
3109 if (strcmp(token, "__print_symbolic") == 0) {
3110 free_token(token);
3111 is_symbolic_field = 1;
3112 return process_symbols(event, arg, tok);
3113 }
3114 if (strcmp(token, "__print_hex") == 0) {
3115 free_token(token);
3116 return process_hex(event, arg, tok);
3117 }
3118 if (strcmp(token, "__print_hex_str") == 0) {
3119 free_token(token);
3120 return process_hex_str(event, arg, tok);
3121 }
3122 if (strcmp(token, "__print_array") == 0) {
3123 free_token(token);
3124 return process_int_array(event, arg, tok);
3125 }
3126 if (strcmp(token, "__get_str") == 0) {
3127 free_token(token);
3128 return process_str(event, arg, tok);
3129 }
3130 if (strcmp(token, "__get_bitmask") == 0) {
3131 free_token(token);
3132 return process_bitmask(event, arg, tok);
3133 }
3134 if (strcmp(token, "__get_dynamic_array") == 0) {
3135 free_token(token);
3136 return process_dynamic_array(event, arg, tok);
3137 }
3138 if (strcmp(token, "__get_dynamic_array_len") == 0) {
3139 free_token(token);
3140 return process_dynamic_array_len(event, arg, tok);
3141 }
3142 if (strcmp(token, "__builtin_expect") == 0) {
3143 free_token(token);
3144 return process_builtin_expect(event, arg, tok);
3145 }
3146
3147 func = find_func_handler(event->tep, token);
3148 if (func) {
3149 free_token(token);
3150 return process_func_handler(event, func, arg, tok);
3151 }
3152
3153 do_warning_event(event, "function %s not defined", token);
3154 free_token(token);
3155 return TEP_EVENT_ERROR;
3156}
3157
3158static enum tep_event_type
3159process_arg_token(struct tep_event *event, struct tep_print_arg *arg,
3160 char **tok, enum tep_event_type type)
3161{
3162 char *token;
3163 char *atom;
3164
3165 token = *tok;
3166
3167 switch (type) {
3168 case TEP_EVENT_ITEM:
3169 if (strcmp(token, "REC") == 0) {
3170 free_token(token);
3171 type = process_entry(event, arg, &token);
3172 break;
3173 }
3174 atom = token;
3175 /* test the next token */
3176 type = read_token_item(&token);
3177
3178 /*
3179 * If the next token is a parenthesis, then this
3180 * is a function.
3181 */
3182 if (type == TEP_EVENT_DELIM && strcmp(token, "(") == 0) {
3183 free_token(token);
3184 token = NULL;
3185 /* this will free atom. */
3186 type = process_function(event, arg, atom, &token);
3187 break;
3188 }
3189 /* atoms can be more than one token long */
3190 while (type == TEP_EVENT_ITEM) {
3191 int ret;
3192
3193 ret = append(&atom, " ", token);
3194 if (ret < 0) {
3195 free(atom);
3196 *tok = NULL;
3197 free_token(token);
3198 return TEP_EVENT_ERROR;
3199 }
3200 free_token(token);
3201 type = read_token_item(&token);
3202 }
3203
3204 arg->type = TEP_PRINT_ATOM;
3205 arg->atom.atom = atom;
3206 break;
3207
3208 case TEP_EVENT_DQUOTE:
3209 case TEP_EVENT_SQUOTE:
3210 arg->type = TEP_PRINT_ATOM;
3211 arg->atom.atom = token;
3212 type = read_token_item(&token);
3213 break;
3214 case TEP_EVENT_DELIM:
3215 if (strcmp(token, "(") == 0) {
3216 free_token(token);
3217 type = process_paren(event, arg, &token);
3218 break;
3219 }
3220 case TEP_EVENT_OP:
3221 /* handle single ops */
3222 arg->type = TEP_PRINT_OP;
3223 arg->op.op = token;
3224 arg->op.left = NULL;
3225 type = process_op(event, arg, &token);
3226
3227 /* On error, the op is freed */
3228 if (type == TEP_EVENT_ERROR)
3229 arg->op.op = NULL;
3230
3231 /* return error type if errored */
3232 break;
3233
3234 case TEP_EVENT_ERROR ... TEP_EVENT_NEWLINE:
3235 default:
3236 do_warning_event(event, "unexpected type %d", type);
3237 return TEP_EVENT_ERROR;
3238 }
3239 *tok = token;
3240
3241 return type;
3242}
3243
3244static int event_read_print_args(struct tep_event *event, struct tep_print_arg **list)
3245{
3246 enum tep_event_type type = TEP_EVENT_ERROR;
3247 struct tep_print_arg *arg;
3248 char *token;
3249 int args = 0;
3250
3251 do {
3252 if (type == TEP_EVENT_NEWLINE) {
3253 type = read_token_item(&token);
3254 continue;
3255 }
3256
3257 arg = alloc_arg();
3258 if (!arg) {
3259 do_warning_event(event, "%s: not enough memory!",
3260 __func__);
3261 return -1;
3262 }
3263
3264 type = process_arg(event, arg, &token);
3265
3266 if (type == TEP_EVENT_ERROR) {
3267 free_token(token);
3268 free_arg(arg);
3269 return -1;
3270 }
3271
3272 *list = arg;
3273 args++;
3274
3275 if (type == TEP_EVENT_OP) {
3276 type = process_op(event, arg, &token);
3277 free_token(token);
3278 if (type == TEP_EVENT_ERROR) {
3279 *list = NULL;
3280 free_arg(arg);
3281 return -1;
3282 }
3283 list = &arg->next;
3284 continue;
3285 }
3286
3287 if (type == TEP_EVENT_DELIM && strcmp(token, ",") == 0) {
3288 free_token(token);
3289 *list = arg;
3290 list = &arg->next;
3291 continue;
3292 }
3293 break;
3294 } while (type != TEP_EVENT_NONE);
3295
3296 if (type != TEP_EVENT_NONE && type != TEP_EVENT_ERROR)
3297 free_token(token);
3298
3299 return args;
3300}
3301
3302static int event_read_print(struct tep_event *event)
3303{
3304 enum tep_event_type type;
3305 char *token;
3306 int ret;
3307
3308 if (read_expected_item(TEP_EVENT_ITEM, "print") < 0)
3309 return -1;
3310
3311 if (read_expected(TEP_EVENT_ITEM, "fmt") < 0)
3312 return -1;
3313
3314 if (read_expected(TEP_EVENT_OP, ":") < 0)
3315 return -1;
3316
3317 if (read_expect_type(TEP_EVENT_DQUOTE, &token) < 0)
3318 goto fail;
3319
3320 concat:
3321 event->print_fmt.format = token;
3322 event->print_fmt.args = NULL;
3323
3324 /* ok to have no arg */
3325 type = read_token_item(&token);
3326
3327 if (type == TEP_EVENT_NONE)
3328 return 0;
3329
3330 /* Handle concatenation of print lines */
3331 if (type == TEP_EVENT_DQUOTE) {
3332 char *cat;
3333
3334 if (asprintf(&cat, "%s%s", event->print_fmt.format, token) < 0)
3335 goto fail;
3336 free_token(token);
3337 free_token(event->print_fmt.format);
3338 event->print_fmt.format = NULL;
3339 token = cat;
3340 goto concat;
3341 }
3342
3343 if (test_type_token(type, token, TEP_EVENT_DELIM, ","))
3344 goto fail;
3345
3346 free_token(token);
3347
3348 ret = event_read_print_args(event, &event->print_fmt.args);
3349 if (ret < 0)
3350 return -1;
3351
3352 return ret;
3353
3354 fail:
3355 free_token(token);
3356 return -1;
3357}
3358
3359/**
3360 * tep_find_common_field - return a common field by event
3361 * @event: handle for the event
3362 * @name: the name of the common field to return
3363 *
3364 * Returns a common field from the event by the given @name.
3365 * This only searches the common fields and not all field.
3366 */
3367struct tep_format_field *
3368tep_find_common_field(struct tep_event *event, const char *name)
3369{
3370 struct tep_format_field *format;
3371
3372 for (format = event->format.common_fields;
3373 format; format = format->next) {
3374 if (strcmp(format->name, name) == 0)
3375 break;
3376 }
3377
3378 return format;
3379}
3380
3381/**
3382 * tep_find_field - find a non-common field
3383 * @event: handle for the event
3384 * @name: the name of the non-common field
3385 *
3386 * Returns a non-common field by the given @name.
3387 * This does not search common fields.
3388 */
3389struct tep_format_field *
3390tep_find_field(struct tep_event *event, const char *name)
3391{
3392 struct tep_format_field *format;
3393
3394 for (format = event->format.fields;
3395 format; format = format->next) {
3396 if (strcmp(format->name, name) == 0)
3397 break;
3398 }
3399
3400 return format;
3401}
3402
3403/**
3404 * tep_find_any_field - find any field by name
3405 * @event: handle for the event
3406 * @name: the name of the field
3407 *
3408 * Returns a field by the given @name.
3409 * This searches the common field names first, then
3410 * the non-common ones if a common one was not found.
3411 */
3412struct tep_format_field *
3413tep_find_any_field(struct tep_event *event, const char *name)
3414{
3415 struct tep_format_field *format;
3416
3417 format = tep_find_common_field(event, name);
3418 if (format)
3419 return format;
3420 return tep_find_field(event, name);
3421}
3422
3423/**
3424 * tep_read_number - read a number from data
3425 * @tep: a handle to the trace event parser context
3426 * @ptr: the raw data
3427 * @size: the size of the data that holds the number
3428 *
3429 * Returns the number (converted to host) from the
3430 * raw data.
3431 */
3432unsigned long long tep_read_number(struct tep_handle *tep,
3433 const void *ptr, int size)
3434{
3435 unsigned long long val;
3436
3437 switch (size) {
3438 case 1:
3439 return *(unsigned char *)ptr;
3440 case 2:
3441 return data2host2(tep, *(unsigned short *)ptr);
3442 case 4:
3443 return data2host4(tep, *(unsigned int *)ptr);
3444 case 8:
3445 memcpy(&val, (ptr), sizeof(unsigned long long));
3446 return data2host8(tep, val);
3447 default:
3448 /* BUG! */
3449 return 0;
3450 }
3451}
3452
3453/**
3454 * tep_read_number_field - read a number from data
3455 * @field: a handle to the field
3456 * @data: the raw data to read
3457 * @value: the value to place the number in
3458 *
3459 * Reads raw data according to a field offset and size,
3460 * and translates it into @value.
3461 *
3462 * Returns 0 on success, -1 otherwise.
3463 */
3464int tep_read_number_field(struct tep_format_field *field, const void *data,
3465 unsigned long long *value)
3466{
3467 if (!field)
3468 return -1;
3469 switch (field->size) {
3470 case 1:
3471 case 2:
3472 case 4:
3473 case 8:
3474 *value = tep_read_number(field->event->tep,
3475 data + field->offset, field->size);
3476 return 0;
3477 default:
3478 return -1;
3479 }
3480}
3481
3482static int get_common_info(struct tep_handle *tep,
3483 const char *type, int *offset, int *size)
3484{
3485 struct tep_event *event;
3486 struct tep_format_field *field;
3487
3488 /*
3489 * All events should have the same common elements.
3490 * Pick any event to find where the type is;
3491 */
3492 if (!tep->events) {
3493 do_warning("no event_list!");
3494 return -1;
3495 }
3496
3497 event = tep->events[0];
3498 field = tep_find_common_field(event, type);
3499 if (!field)
3500 return -1;
3501
3502 *offset = field->offset;
3503 *size = field->size;
3504
3505 return 0;
3506}
3507
3508static int __parse_common(struct tep_handle *tep, void *data,
3509 int *size, int *offset, const char *name)
3510{
3511 int ret;
3512
3513 if (!*size) {
3514 ret = get_common_info(tep, name, offset, size);
3515 if (ret < 0)
3516 return ret;
3517 }
3518 return tep_read_number(tep, data + *offset, *size);
3519}
3520
3521static int trace_parse_common_type(struct tep_handle *tep, void *data)
3522{
3523 return __parse_common(tep, data,
3524 &tep->type_size, &tep->type_offset,
3525 "common_type");
3526}
3527
3528static int parse_common_pid(struct tep_handle *tep, void *data)
3529{
3530 return __parse_common(tep, data,
3531 &tep->pid_size, &tep->pid_offset,
3532 "common_pid");
3533}
3534
3535static int parse_common_pc(struct tep_handle *tep, void *data)
3536{
3537 return __parse_common(tep, data,
3538 &tep->pc_size, &tep->pc_offset,
3539 "common_preempt_count");
3540}
3541
3542static int parse_common_flags(struct tep_handle *tep, void *data)
3543{
3544 return __parse_common(tep, data,
3545 &tep->flags_size, &tep->flags_offset,
3546 "common_flags");
3547}
3548
3549static int parse_common_lock_depth(struct tep_handle *tep, void *data)
3550{
3551 return __parse_common(tep, data,
3552 &tep->ld_size, &tep->ld_offset,
3553 "common_lock_depth");
3554}
3555
3556static int parse_common_migrate_disable(struct tep_handle *tep, void *data)
3557{
3558 return __parse_common(tep, data,
3559 &tep->ld_size, &tep->ld_offset,
3560 "common_migrate_disable");
3561}
3562
3563static int events_id_cmp(const void *a, const void *b);
3564
3565/**
3566 * tep_find_event - find an event by given id
3567 * @tep: a handle to the trace event parser context
3568 * @id: the id of the event
3569 *
3570 * Returns an event that has a given @id.
3571 */
3572struct tep_event *tep_find_event(struct tep_handle *tep, int id)
3573{
3574 struct tep_event **eventptr;
3575 struct tep_event key;
3576 struct tep_event *pkey = &key;
3577
3578 /* Check cache first */
3579 if (tep->last_event && tep->last_event->id == id)
3580 return tep->last_event;
3581
3582 key.id = id;
3583
3584 eventptr = bsearch(&pkey, tep->events, tep->nr_events,
3585 sizeof(*tep->events), events_id_cmp);
3586
3587 if (eventptr) {
3588 tep->last_event = *eventptr;
3589 return *eventptr;
3590 }
3591
3592 return NULL;
3593}
3594
3595/**
3596 * tep_find_event_by_name - find an event by given name
3597 * @tep: a handle to the trace event parser context
3598 * @sys: the system name to search for
3599 * @name: the name of the event to search for
3600 *
3601 * This returns an event with a given @name and under the system
3602 * @sys. If @sys is NULL the first event with @name is returned.
3603 */
3604struct tep_event *
3605tep_find_event_by_name(struct tep_handle *tep,
3606 const char *sys, const char *name)
3607{
3608 struct tep_event *event = NULL;
3609 int i;
3610
3611 if (tep->last_event &&
3612 strcmp(tep->last_event->name, name) == 0 &&
3613 (!sys || strcmp(tep->last_event->system, sys) == 0))
3614 return tep->last_event;
3615
3616 for (i = 0; i < tep->nr_events; i++) {
3617 event = tep->events[i];
3618 if (strcmp(event->name, name) == 0) {
3619 if (!sys)
3620 break;
3621 if (strcmp(event->system, sys) == 0)
3622 break;
3623 }
3624 }
3625 if (i == tep->nr_events)
3626 event = NULL;
3627
3628 tep->last_event = event;
3629 return event;
3630}
3631
3632static unsigned long long
3633eval_num_arg(void *data, int size, struct tep_event *event, struct tep_print_arg *arg)
3634{
3635 struct tep_handle *tep = event->tep;
3636 unsigned long long val = 0;
3637 unsigned long long left, right;
3638 struct tep_print_arg *typearg = NULL;
3639 struct tep_print_arg *larg;
3640 unsigned long offset;
3641 unsigned int field_size;
3642
3643 switch (arg->type) {
3644 case TEP_PRINT_NULL:
3645 /* ?? */
3646 return 0;
3647 case TEP_PRINT_ATOM:
3648 return strtoull(arg->atom.atom, NULL, 0);
3649 case TEP_PRINT_FIELD:
3650 if (!arg->field.field) {
3651 arg->field.field = tep_find_any_field(event, arg->field.name);
3652 if (!arg->field.field)
3653 goto out_warning_field;
3654
3655 }
3656 /* must be a number */
3657 val = tep_read_number(tep, data + arg->field.field->offset,
3658 arg->field.field->size);
3659 break;
3660 case TEP_PRINT_FLAGS:
3661 case TEP_PRINT_SYMBOL:
3662 case TEP_PRINT_INT_ARRAY:
3663 case TEP_PRINT_HEX:
3664 case TEP_PRINT_HEX_STR:
3665 break;
3666 case TEP_PRINT_TYPE:
3667 val = eval_num_arg(data, size, event, arg->typecast.item);
3668 return eval_type(val, arg, 0);
3669 case TEP_PRINT_STRING:
3670 case TEP_PRINT_BSTRING:
3671 case TEP_PRINT_BITMASK:
3672 return 0;
3673 case TEP_PRINT_FUNC: {
3674 struct trace_seq s;
3675 trace_seq_init(&s);
3676 val = process_defined_func(&s, data, size, event, arg);
3677 trace_seq_destroy(&s);
3678 return val;
3679 }
3680 case TEP_PRINT_OP:
3681 if (strcmp(arg->op.op, "[") == 0) {
3682 /*
3683 * Arrays are special, since we don't want
3684 * to read the arg as is.
3685 */
3686 right = eval_num_arg(data, size, event, arg->op.right);
3687
3688 /* handle typecasts */
3689 larg = arg->op.left;
3690 while (larg->type == TEP_PRINT_TYPE) {
3691 if (!typearg)
3692 typearg = larg;
3693 larg = larg->typecast.item;
3694 }
3695
3696 /* Default to long size */
3697 field_size = tep->long_size;
3698
3699 switch (larg->type) {
3700 case TEP_PRINT_DYNAMIC_ARRAY:
3701 offset = tep_read_number(tep,
3702 data + larg->dynarray.field->offset,
3703 larg->dynarray.field->size);
3704 if (larg->dynarray.field->elementsize)
3705 field_size = larg->dynarray.field->elementsize;
3706 /*
3707 * The actual length of the dynamic array is stored
3708 * in the top half of the field, and the offset
3709 * is in the bottom half of the 32 bit field.
3710 */
3711 offset &= 0xffff;
3712 offset += right;
3713 break;
3714 case TEP_PRINT_FIELD:
3715 if (!larg->field.field) {
3716 larg->field.field =
3717 tep_find_any_field(event, larg->field.name);
3718 if (!larg->field.field) {
3719 arg = larg;
3720 goto out_warning_field;
3721 }
3722 }
3723 field_size = larg->field.field->elementsize;
3724 offset = larg->field.field->offset +
3725 right * larg->field.field->elementsize;
3726 break;
3727 default:
3728 goto default_op; /* oops, all bets off */
3729 }
3730 val = tep_read_number(tep,
3731 data + offset, field_size);
3732 if (typearg)
3733 val = eval_type(val, typearg, 1);
3734 break;
3735 } else if (strcmp(arg->op.op, "?") == 0) {
3736 left = eval_num_arg(data, size, event, arg->op.left);
3737 arg = arg->op.right;
3738 if (left)
3739 val = eval_num_arg(data, size, event, arg->op.left);
3740 else
3741 val = eval_num_arg(data, size, event, arg->op.right);
3742 break;
3743 }
3744 default_op:
3745 left = eval_num_arg(data, size, event, arg->op.left);
3746 right = eval_num_arg(data, size, event, arg->op.right);
3747 switch (arg->op.op[0]) {
3748 case '!':
3749 switch (arg->op.op[1]) {
3750 case 0:
3751 val = !right;
3752 break;
3753 case '=':
3754 val = left != right;
3755 break;
3756 default:
3757 goto out_warning_op;
3758 }
3759 break;
3760 case '~':
3761 val = ~right;
3762 break;
3763 case '|':
3764 if (arg->op.op[1])
3765 val = left || right;
3766 else
3767 val = left | right;
3768 break;
3769 case '&':
3770 if (arg->op.op[1])
3771 val = left && right;
3772 else
3773 val = left & right;
3774 break;
3775 case '<':
3776 switch (arg->op.op[1]) {
3777 case 0:
3778 val = left < right;
3779 break;
3780 case '<':
3781 val = left << right;
3782 break;
3783 case '=':
3784 val = left <= right;
3785 break;
3786 default:
3787 goto out_warning_op;
3788 }
3789 break;
3790 case '>':
3791 switch (arg->op.op[1]) {
3792 case 0:
3793 val = left > right;
3794 break;
3795 case '>':
3796 val = left >> right;
3797 break;
3798 case '=':
3799 val = left >= right;
3800 break;
3801 default:
3802 goto out_warning_op;
3803 }
3804 break;
3805 case '=':
3806 if (arg->op.op[1] != '=')
3807 goto out_warning_op;
3808
3809 val = left == right;
3810 break;
3811 case '-':
3812 val = left - right;
3813 break;
3814 case '+':
3815 val = left + right;
3816 break;
3817 case '/':
3818 val = left / right;
3819 break;
3820 case '%':
3821 val = left % right;
3822 break;
3823 case '*':
3824 val = left * right;
3825 break;
3826 default:
3827 goto out_warning_op;
3828 }
3829 break;
3830 case TEP_PRINT_DYNAMIC_ARRAY_LEN:
3831 offset = tep_read_number(tep,
3832 data + arg->dynarray.field->offset,
3833 arg->dynarray.field->size);
3834 /*
3835 * The total allocated length of the dynamic array is
3836 * stored in the top half of the field, and the offset
3837 * is in the bottom half of the 32 bit field.
3838 */
3839 val = (unsigned long long)(offset >> 16);
3840 break;
3841 case TEP_PRINT_DYNAMIC_ARRAY:
3842 /* Without [], we pass the address to the dynamic data */
3843 offset = tep_read_number(tep,
3844 data + arg->dynarray.field->offset,
3845 arg->dynarray.field->size);
3846 /*
3847 * The total allocated length of the dynamic array is
3848 * stored in the top half of the field, and the offset
3849 * is in the bottom half of the 32 bit field.
3850 */
3851 offset &= 0xffff;
3852 val = (unsigned long long)((unsigned long)data + offset);
3853 break;
3854 default: /* not sure what to do there */
3855 return 0;
3856 }
3857 return val;
3858
3859out_warning_op:
3860 do_warning_event(event, "%s: unknown op '%s'", __func__, arg->op.op);
3861 return 0;
3862
3863out_warning_field:
3864 do_warning_event(event, "%s: field %s not found",
3865 __func__, arg->field.name);
3866 return 0;
3867}
3868
3869struct flag {
3870 const char *name;
3871 unsigned long long value;
3872};
3873
3874static const struct flag flags[] = {
3875 { "HI_SOFTIRQ", 0 },
3876 { "TIMER_SOFTIRQ", 1 },
3877 { "NET_TX_SOFTIRQ", 2 },
3878 { "NET_RX_SOFTIRQ", 3 },
3879 { "BLOCK_SOFTIRQ", 4 },
3880 { "IRQ_POLL_SOFTIRQ", 5 },
3881 { "TASKLET_SOFTIRQ", 6 },
3882 { "SCHED_SOFTIRQ", 7 },
3883 { "HRTIMER_SOFTIRQ", 8 },
3884 { "RCU_SOFTIRQ", 9 },
3885
3886 { "HRTIMER_NORESTART", 0 },
3887 { "HRTIMER_RESTART", 1 },
3888};
3889
3890static long long eval_flag(const char *flag)
3891{
3892 int i;
3893
3894 /*
3895 * Some flags in the format files do not get converted.
3896 * If the flag is not numeric, see if it is something that
3897 * we already know about.
3898 */
3899 if (isdigit(flag[0]))
3900 return strtoull(flag, NULL, 0);
3901
3902 for (i = 0; i < (int)(sizeof(flags)/sizeof(flags[0])); i++)
3903 if (strcmp(flags[i].name, flag) == 0)
3904 return flags[i].value;
3905
3906 return -1LL;
3907}
3908
3909static void print_str_to_seq(struct trace_seq *s, const char *format,
3910 int len_arg, const char *str)
3911{
3912 if (len_arg >= 0)
3913 trace_seq_printf(s, format, len_arg, str);
3914 else
3915 trace_seq_printf(s, format, str);
3916}
3917
3918static void print_bitmask_to_seq(struct tep_handle *tep,
3919 struct trace_seq *s, const char *format,
3920 int len_arg, const void *data, int size)
3921{
3922 int nr_bits = size * 8;
3923 int str_size = (nr_bits + 3) / 4;
3924 int len = 0;
3925 char buf[3];
3926 char *str;
3927 int index;
3928 int i;
3929
3930 /*
3931 * The kernel likes to put in commas every 32 bits, we
3932 * can do the same.
3933 */
3934 str_size += (nr_bits - 1) / 32;
3935
3936 str = malloc(str_size + 1);
3937 if (!str) {
3938 do_warning("%s: not enough memory!", __func__);
3939 return;
3940 }
3941 str[str_size] = 0;
3942
3943 /* Start out with -2 for the two chars per byte */
3944 for (i = str_size - 2; i >= 0; i -= 2) {
3945 /*
3946 * data points to a bit mask of size bytes.
3947 * In the kernel, this is an array of long words, thus
3948 * endianness is very important.
3949 */
3950 if (tep->file_bigendian)
3951 index = size - (len + 1);
3952 else
3953 index = len;
3954
3955 snprintf(buf, 3, "%02x", *((unsigned char *)data + index));
3956 memcpy(str + i, buf, 2);
3957 len++;
3958 if (!(len & 3) && i > 0) {
3959 i--;
3960 str[i] = ',';
3961 }
3962 }
3963
3964 if (len_arg >= 0)
3965 trace_seq_printf(s, format, len_arg, str);
3966 else
3967 trace_seq_printf(s, format, str);
3968
3969 free(str);
3970}
3971
3972static void print_str_arg(struct trace_seq *s, void *data, int size,
3973 struct tep_event *event, const char *format,
3974 int len_arg, struct tep_print_arg *arg)
3975{
3976 struct tep_handle *tep = event->tep;
3977 struct tep_print_flag_sym *flag;
3978 struct tep_format_field *field;
3979 struct printk_map *printk;
3980 long long val, fval;
3981 unsigned long long addr;
3982 char *str;
3983 unsigned char *hex;
3984 int print;
3985 int i, len;
3986
3987 switch (arg->type) {
3988 case TEP_PRINT_NULL:
3989 /* ?? */
3990 return;
3991 case TEP_PRINT_ATOM:
3992 print_str_to_seq(s, format, len_arg, arg->atom.atom);
3993 return;
3994 case TEP_PRINT_FIELD:
3995 field = arg->field.field;
3996 if (!field) {
3997 field = tep_find_any_field(event, arg->field.name);
3998 if (!field) {
3999 str = arg->field.name;
4000 goto out_warning_field;
4001 }
4002 arg->field.field = field;
4003 }
4004 /* Zero sized fields, mean the rest of the data */
4005 len = field->size ? : size - field->offset;
4006
4007 /*
4008 * Some events pass in pointers. If this is not an array
4009 * and the size is the same as long_size, assume that it
4010 * is a pointer.
4011 */
4012 if (!(field->flags & TEP_FIELD_IS_ARRAY) &&
4013 field->size == tep->long_size) {
4014
4015 /* Handle heterogeneous recording and processing
4016 * architectures
4017 *
4018 * CASE I:
4019 * Traces recorded on 32-bit devices (32-bit
4020 * addressing) and processed on 64-bit devices:
4021 * In this case, only 32 bits should be read.
4022 *
4023 * CASE II:
4024 * Traces recorded on 64 bit devices and processed
4025 * on 32-bit devices:
4026 * In this case, 64 bits must be read.
4027 */
4028 addr = (tep->long_size == 8) ?
4029 *(unsigned long long *)(data + field->offset) :
4030 (unsigned long long)*(unsigned int *)(data + field->offset);
4031
4032 /* Check if it matches a print format */
4033 printk = find_printk(tep, addr);
4034 if (printk)
4035 trace_seq_puts(s, printk->printk);
4036 else
4037 trace_seq_printf(s, "%llx", addr);
4038 break;
4039 }
4040 str = malloc(len + 1);
4041 if (!str) {
4042 do_warning_event(event, "%s: not enough memory!",
4043 __func__);
4044 return;
4045 }
4046 memcpy(str, data + field->offset, len);
4047 str[len] = 0;
4048 print_str_to_seq(s, format, len_arg, str);
4049 free(str);
4050 break;
4051 case TEP_PRINT_FLAGS:
4052 val = eval_num_arg(data, size, event, arg->flags.field);
4053 print = 0;
4054 for (flag = arg->flags.flags; flag; flag = flag->next) {
4055 fval = eval_flag(flag->value);
4056 if (!val && fval < 0) {
4057 print_str_to_seq(s, format, len_arg, flag->str);
4058 break;
4059 }
4060 if (fval > 0 && (val & fval) == fval) {
4061 if (print && arg->flags.delim)
4062 trace_seq_puts(s, arg->flags.delim);
4063 print_str_to_seq(s, format, len_arg, flag->str);
4064 print = 1;
4065 val &= ~fval;
4066 }
4067 }
4068 if (val) {
4069 if (print && arg->flags.delim)
4070 trace_seq_puts(s, arg->flags.delim);
4071 trace_seq_printf(s, "0x%llx", val);
4072 }
4073 break;
4074 case TEP_PRINT_SYMBOL:
4075 val = eval_num_arg(data, size, event, arg->symbol.field);
4076 for (flag = arg->symbol.symbols; flag; flag = flag->next) {
4077 fval = eval_flag(flag->value);
4078 if (val == fval) {
4079 print_str_to_seq(s, format, len_arg, flag->str);
4080 break;
4081 }
4082 }
4083 if (!flag)
4084 trace_seq_printf(s, "0x%llx", val);
4085 break;
4086 case TEP_PRINT_HEX:
4087 case TEP_PRINT_HEX_STR:
4088 if (arg->hex.field->type == TEP_PRINT_DYNAMIC_ARRAY) {
4089 unsigned long offset;
4090 offset = tep_read_number(tep,
4091 data + arg->hex.field->dynarray.field->offset,
4092 arg->hex.field->dynarray.field->size);
4093 hex = data + (offset & 0xffff);
4094 } else {
4095 field = arg->hex.field->field.field;
4096 if (!field) {
4097 str = arg->hex.field->field.name;
4098 field = tep_find_any_field(event, str);
4099 if (!field)
4100 goto out_warning_field;
4101 arg->hex.field->field.field = field;
4102 }
4103 hex = data + field->offset;
4104 }
4105 len = eval_num_arg(data, size, event, arg->hex.size);
4106 for (i = 0; i < len; i++) {
4107 if (i && arg->type == TEP_PRINT_HEX)
4108 trace_seq_putc(s, ' ');
4109 trace_seq_printf(s, "%02x", hex[i]);
4110 }
4111 break;
4112
4113 case TEP_PRINT_INT_ARRAY: {
4114 void *num;
4115 int el_size;
4116
4117 if (arg->int_array.field->type == TEP_PRINT_DYNAMIC_ARRAY) {
4118 unsigned long offset;
4119 struct tep_format_field *field =
4120 arg->int_array.field->dynarray.field;
4121 offset = tep_read_number(tep,
4122 data + field->offset,
4123 field->size);
4124 num = data + (offset & 0xffff);
4125 } else {
4126 field = arg->int_array.field->field.field;
4127 if (!field) {
4128 str = arg->int_array.field->field.name;
4129 field = tep_find_any_field(event, str);
4130 if (!field)
4131 goto out_warning_field;
4132 arg->int_array.field->field.field = field;
4133 }
4134 num = data + field->offset;
4135 }
4136 len = eval_num_arg(data, size, event, arg->int_array.count);
4137 el_size = eval_num_arg(data, size, event,
4138 arg->int_array.el_size);
4139 for (i = 0; i < len; i++) {
4140 if (i)
4141 trace_seq_putc(s, ' ');
4142
4143 if (el_size == 1) {
4144 trace_seq_printf(s, "%u", *(uint8_t *)num);
4145 } else if (el_size == 2) {
4146 trace_seq_printf(s, "%u", *(uint16_t *)num);
4147 } else if (el_size == 4) {
4148 trace_seq_printf(s, "%u", *(uint32_t *)num);
4149 } else if (el_size == 8) {
4150 trace_seq_printf(s, "%"PRIu64, *(uint64_t *)num);
4151 } else {
4152 trace_seq_printf(s, "BAD SIZE:%d 0x%x",
4153 el_size, *(uint8_t *)num);
4154 el_size = 1;
4155 }
4156
4157 num += el_size;
4158 }
4159 break;
4160 }
4161 case TEP_PRINT_TYPE:
4162 break;
4163 case TEP_PRINT_STRING: {
4164 int str_offset;
4165
4166 if (arg->string.offset == -1) {
4167 struct tep_format_field *f;
4168
4169 f = tep_find_any_field(event, arg->string.string);
4170 arg->string.offset = f->offset;
4171 }
4172 str_offset = data2host4(tep, *(unsigned int *)(data + arg->string.offset));
4173 str_offset &= 0xffff;
4174 print_str_to_seq(s, format, len_arg, ((char *)data) + str_offset);
4175 break;
4176 }
4177 case TEP_PRINT_BSTRING:
4178 print_str_to_seq(s, format, len_arg, arg->string.string);
4179 break;
4180 case TEP_PRINT_BITMASK: {
4181 int bitmask_offset;
4182 int bitmask_size;
4183
4184 if (arg->bitmask.offset == -1) {
4185 struct tep_format_field *f;
4186
4187 f = tep_find_any_field(event, arg->bitmask.bitmask);
4188 arg->bitmask.offset = f->offset;
4189 }
4190 bitmask_offset = data2host4(tep, *(unsigned int *)(data + arg->bitmask.offset));
4191 bitmask_size = bitmask_offset >> 16;
4192 bitmask_offset &= 0xffff;
4193 print_bitmask_to_seq(tep, s, format, len_arg,
4194 data + bitmask_offset, bitmask_size);
4195 break;
4196 }
4197 case TEP_PRINT_OP:
4198 /*
4199 * The only op for string should be ? :
4200 */
4201 if (arg->op.op[0] != '?')
4202 return;
4203 val = eval_num_arg(data, size, event, arg->op.left);
4204 if (val)
4205 print_str_arg(s, data, size, event,
4206 format, len_arg, arg->op.right->op.left);
4207 else
4208 print_str_arg(s, data, size, event,
4209 format, len_arg, arg->op.right->op.right);
4210 break;
4211 case TEP_PRINT_FUNC:
4212 process_defined_func(s, data, size, event, arg);
4213 break;
4214 default:
4215 /* well... */
4216 break;
4217 }
4218
4219 return;
4220
4221out_warning_field:
4222 do_warning_event(event, "%s: field %s not found",
4223 __func__, arg->field.name);
4224}
4225
4226static unsigned long long
4227process_defined_func(struct trace_seq *s, void *data, int size,
4228 struct tep_event *event, struct tep_print_arg *arg)
4229{
4230 struct tep_function_handler *func_handle = arg->func.func;
4231 struct func_params *param;
4232 unsigned long long *args;
4233 unsigned long long ret;
4234 struct tep_print_arg *farg;
4235 struct trace_seq str;
4236 struct save_str {
4237 struct save_str *next;
4238 char *str;
4239 } *strings = NULL, *string;
4240 int i;
4241
4242 if (!func_handle->nr_args) {
4243 ret = (*func_handle->func)(s, NULL);
4244 goto out;
4245 }
4246
4247 farg = arg->func.args;
4248 param = func_handle->params;
4249
4250 ret = ULLONG_MAX;
4251 args = malloc(sizeof(*args) * func_handle->nr_args);
4252 if (!args)
4253 goto out;
4254
4255 for (i = 0; i < func_handle->nr_args; i++) {
4256 switch (param->type) {
4257 case TEP_FUNC_ARG_INT:
4258 case TEP_FUNC_ARG_LONG:
4259 case TEP_FUNC_ARG_PTR:
4260 args[i] = eval_num_arg(data, size, event, farg);
4261 break;
4262 case TEP_FUNC_ARG_STRING:
4263 trace_seq_init(&str);
4264 print_str_arg(&str, data, size, event, "%s", -1, farg);
4265 trace_seq_terminate(&str);
4266 string = malloc(sizeof(*string));
4267 if (!string) {
4268 do_warning_event(event, "%s(%d): malloc str",
4269 __func__, __LINE__);
4270 goto out_free;
4271 }
4272 string->next = strings;
4273 string->str = strdup(str.buffer);
4274 if (!string->str) {
4275 free(string);
4276 do_warning_event(event, "%s(%d): malloc str",
4277 __func__, __LINE__);
4278 goto out_free;
4279 }
4280 args[i] = (uintptr_t)string->str;
4281 strings = string;
4282 trace_seq_destroy(&str);
4283 break;
4284 default:
4285 /*
4286 * Something went totally wrong, this is not
4287 * an input error, something in this code broke.
4288 */
4289 do_warning_event(event, "Unexpected end of arguments\n");
4290 goto out_free;
4291 }
4292 farg = farg->next;
4293 param = param->next;
4294 }
4295
4296 ret = (*func_handle->func)(s, args);
4297out_free:
4298 free(args);
4299 while (strings) {
4300 string = strings;
4301 strings = string->next;
4302 free(string->str);
4303 free(string);
4304 }
4305
4306 out:
4307 /* TBD : handle return type here */
4308 return ret;
4309}
4310
4311static void free_args(struct tep_print_arg *args)
4312{
4313 struct tep_print_arg *next;
4314
4315 while (args) {
4316 next = args->next;
4317
4318 free_arg(args);
4319 args = next;
4320 }
4321}
4322
4323static struct tep_print_arg *make_bprint_args(char *fmt, void *data, int size, struct tep_event *event)
4324{
4325 struct tep_handle *tep = event->tep;
4326 struct tep_format_field *field, *ip_field;
4327 struct tep_print_arg *args, *arg, **next;
4328 unsigned long long ip, val;
4329 char *ptr;
4330 void *bptr;
4331 int vsize = 0;
4332
4333 field = tep->bprint_buf_field;
4334 ip_field = tep->bprint_ip_field;
4335
4336 if (!field) {
4337 field = tep_find_field(event, "buf");
4338 if (!field) {
4339 do_warning_event(event, "can't find buffer field for binary printk");
4340 return NULL;
4341 }
4342 ip_field = tep_find_field(event, "ip");
4343 if (!ip_field) {
4344 do_warning_event(event, "can't find ip field for binary printk");
4345 return NULL;
4346 }
4347 tep->bprint_buf_field = field;
4348 tep->bprint_ip_field = ip_field;
4349 }
4350
4351 ip = tep_read_number(tep, data + ip_field->offset, ip_field->size);
4352
4353 /*
4354 * The first arg is the IP pointer.
4355 */
4356 args = alloc_arg();
4357 if (!args) {
4358 do_warning_event(event, "%s(%d): not enough memory!",
4359 __func__, __LINE__);
4360 return NULL;
4361 }
4362 arg = args;
4363 arg->next = NULL;
4364 next = &arg->next;
4365
4366 arg->type = TEP_PRINT_ATOM;
4367
4368 if (asprintf(&arg->atom.atom, "%lld", ip) < 0)
4369 goto out_free;
4370
4371 /* skip the first "%ps: " */
4372 for (ptr = fmt + 5, bptr = data + field->offset;
4373 bptr < data + size && *ptr; ptr++) {
4374 int ls = 0;
4375
4376 if (*ptr == '%') {
4377 process_again:
4378 ptr++;
4379 switch (*ptr) {
4380 case '%':
4381 break;
4382 case 'l':
4383 ls++;
4384 goto process_again;
4385 case 'L':
4386 ls = 2;
4387 goto process_again;
4388 case '0' ... '9':
4389 goto process_again;
4390 case '.':
4391 goto process_again;
4392 case 'z':
4393 case 'Z':
4394 ls = 1;
4395 goto process_again;
4396 case 'p':
4397 ls = 1;
4398 if (isalnum(ptr[1])) {
4399 ptr++;
4400 /* Check for special pointers */
4401 switch (*ptr) {
4402 case 's':
4403 case 'S':
4404 case 'x':
4405 break;
4406 case 'f':
4407 case 'F':
4408 /*
4409 * Pre-5.5 kernels use %pf and
4410 * %pF for printing symbols
4411 * while kernels since 5.5 use
4412 * %pfw for fwnodes. So check
4413 * %p[fF] isn't followed by 'w'.
4414 */
4415 if (ptr[1] != 'w')
4416 break;
4417 /* fall through */
4418 default:
4419 /*
4420 * Older kernels do not process
4421 * dereferenced pointers.
4422 * Only process if the pointer
4423 * value is a printable.
4424 */
4425 if (isprint(*(char *)bptr))
4426 goto process_string;
4427 }
4428 }
4429 /* fall through */
4430 case 'd':
4431 case 'u':
4432 case 'i':
4433 case 'x':
4434 case 'X':
4435 case 'o':
4436 switch (ls) {
4437 case 0:
4438 vsize = 4;
4439 break;
4440 case 1:
4441 vsize = tep->long_size;
4442 break;
4443 case 2:
4444 vsize = 8;
4445 break;
4446 default:
4447 vsize = ls; /* ? */
4448 break;
4449 }
4450 /* fall through */
4451 case '*':
4452 if (*ptr == '*')
4453 vsize = 4;
4454
4455 /* the pointers are always 4 bytes aligned */
4456 bptr = (void *)(((unsigned long)bptr + 3) &
4457 ~3);
4458 val = tep_read_number(tep, bptr, vsize);
4459 bptr += vsize;
4460 arg = alloc_arg();
4461 if (!arg) {
4462 do_warning_event(event, "%s(%d): not enough memory!",
4463 __func__, __LINE__);
4464 goto out_free;
4465 }
4466 arg->next = NULL;
4467 arg->type = TEP_PRINT_ATOM;
4468 if (asprintf(&arg->atom.atom, "%lld", val) < 0) {
4469 free(arg);
4470 goto out_free;
4471 }
4472 *next = arg;
4473 next = &arg->next;
4474 /*
4475 * The '*' case means that an arg is used as the length.
4476 * We need to continue to figure out for what.
4477 */
4478 if (*ptr == '*')
4479 goto process_again;
4480
4481 break;
4482 case 's':
4483 process_string:
4484 arg = alloc_arg();
4485 if (!arg) {
4486 do_warning_event(event, "%s(%d): not enough memory!",
4487 __func__, __LINE__);
4488 goto out_free;
4489 }
4490 arg->next = NULL;
4491 arg->type = TEP_PRINT_BSTRING;
4492 arg->string.string = strdup(bptr);
4493 if (!arg->string.string)
4494 goto out_free;
4495 bptr += strlen(bptr) + 1;
4496 *next = arg;
4497 next = &arg->next;
4498 default:
4499 break;
4500 }
4501 }
4502 }
4503
4504 return args;
4505
4506out_free:
4507 free_args(args);
4508 return NULL;
4509}
4510
4511static char *
4512get_bprint_format(void *data, int size __maybe_unused,
4513 struct tep_event *event)
4514{
4515 struct tep_handle *tep = event->tep;
4516 unsigned long long addr;
4517 struct tep_format_field *field;
4518 struct printk_map *printk;
4519 char *format;
4520
4521 field = tep->bprint_fmt_field;
4522
4523 if (!field) {
4524 field = tep_find_field(event, "fmt");
4525 if (!field) {
4526 do_warning_event(event, "can't find format field for binary printk");
4527 return NULL;
4528 }
4529 tep->bprint_fmt_field = field;
4530 }
4531
4532 addr = tep_read_number(tep, data + field->offset, field->size);
4533
4534 printk = find_printk(tep, addr);
4535 if (!printk) {
4536 if (asprintf(&format, "%%ps: (NO FORMAT FOUND at %llx)\n", addr) < 0)
4537 return NULL;
4538 return format;
4539 }
4540
4541 if (asprintf(&format, "%s: %s", "%ps", printk->printk) < 0)
4542 return NULL;
4543
4544 return format;
4545}
4546
4547static int print_mac_arg(struct trace_seq *s, const char *format,
4548 void *data, int size, struct tep_event *event,
4549 struct tep_print_arg *arg)
4550{
4551 const char *fmt = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x";
4552 bool reverse = false;
4553 unsigned char *buf;
4554 int ret = 0;
4555
4556 if (arg->type == TEP_PRINT_FUNC) {
4557 process_defined_func(s, data, size, event, arg);
4558 return 0;
4559 }
4560
4561 if (arg->type != TEP_PRINT_FIELD) {
4562 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d",
4563 arg->type);
4564 return 0;
4565 }
4566
4567 if (format[0] == 'm') {
4568 fmt = "%.2x%.2x%.2x%.2x%.2x%.2x";
4569 } else if (format[0] == 'M' && format[1] == 'F') {
4570 fmt = "%.2x-%.2x-%.2x-%.2x-%.2x-%.2x";
4571 ret++;
4572 }
4573 if (format[1] == 'R') {
4574 reverse = true;
4575 ret++;
4576 }
4577
4578 if (!arg->field.field) {
4579 arg->field.field =
4580 tep_find_any_field(event, arg->field.name);
4581 if (!arg->field.field) {
4582 do_warning_event(event, "%s: field %s not found",
4583 __func__, arg->field.name);
4584 return ret;
4585 }
4586 }
4587 if (arg->field.field->size != 6) {
4588 trace_seq_printf(s, "INVALIDMAC");
4589 return ret;
4590 }
4591
4592 buf = data + arg->field.field->offset;
4593 if (reverse)
4594 trace_seq_printf(s, fmt, buf[5], buf[4], buf[3], buf[2], buf[1], buf[0]);
4595 else
4596 trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
4597
4598 return ret;
4599}
4600
4601static int parse_ip4_print_args(struct tep_handle *tep,
4602 const char *ptr, bool *reverse)
4603{
4604 int ret = 0;
4605
4606 *reverse = false;
4607
4608 /* hnbl */
4609 switch (*ptr) {
4610 case 'h':
4611 if (tep->file_bigendian)
4612 *reverse = false;
4613 else
4614 *reverse = true;
4615 ret++;
4616 break;
4617 case 'l':
4618 *reverse = true;
4619 ret++;
4620 break;
4621 case 'n':
4622 case 'b':
4623 ret++;
4624 /* fall through */
4625 default:
4626 *reverse = false;
4627 break;
4628 }
4629
4630 return ret;
4631}
4632
4633static void print_ip4_addr(struct trace_seq *s, char i, bool reverse, unsigned char *buf)
4634{
4635 const char *fmt;
4636
4637 if (i == 'i')
4638 fmt = "%03d.%03d.%03d.%03d";
4639 else
4640 fmt = "%d.%d.%d.%d";
4641
4642 if (reverse)
4643 trace_seq_printf(s, fmt, buf[3], buf[2], buf[1], buf[0]);
4644 else
4645 trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3]);
4646
4647}
4648
4649static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
4650{
4651 return ((unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
4652 (unsigned long)(a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL;
4653}
4654
4655static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr)
4656{
4657 return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE);
4658}
4659
4660static void print_ip6c_addr(struct trace_seq *s, unsigned char *addr)
4661{
4662 int i, j, range;
4663 unsigned char zerolength[8];
4664 int longest = 1;
4665 int colonpos = -1;
4666 uint16_t word;
4667 uint8_t hi, lo;
4668 bool needcolon = false;
4669 bool useIPv4;
4670 struct in6_addr in6;
4671
4672 memcpy(&in6, addr, sizeof(struct in6_addr));
4673
4674 useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6);
4675
4676 memset(zerolength, 0, sizeof(zerolength));
4677
4678 if (useIPv4)
4679 range = 6;
4680 else
4681 range = 8;
4682
4683 /* find position of longest 0 run */
4684 for (i = 0; i < range; i++) {
4685 for (j = i; j < range; j++) {
4686 if (in6.s6_addr16[j] != 0)
4687 break;
4688 zerolength[i]++;
4689 }
4690 }
4691 for (i = 0; i < range; i++) {
4692 if (zerolength[i] > longest) {
4693 longest = zerolength[i];
4694 colonpos = i;
4695 }
4696 }
4697 if (longest == 1) /* don't compress a single 0 */
4698 colonpos = -1;
4699
4700 /* emit address */
4701 for (i = 0; i < range; i++) {
4702 if (i == colonpos) {
4703 if (needcolon || i == 0)
4704 trace_seq_printf(s, ":");
4705 trace_seq_printf(s, ":");
4706 needcolon = false;
4707 i += longest - 1;
4708 continue;
4709 }
4710 if (needcolon) {
4711 trace_seq_printf(s, ":");
4712 needcolon = false;
4713 }
4714 /* hex u16 without leading 0s */
4715 word = ntohs(in6.s6_addr16[i]);
4716 hi = word >> 8;
4717 lo = word & 0xff;
4718 if (hi)
4719 trace_seq_printf(s, "%x%02x", hi, lo);
4720 else
4721 trace_seq_printf(s, "%x", lo);
4722
4723 needcolon = true;
4724 }
4725
4726 if (useIPv4) {
4727 if (needcolon)
4728 trace_seq_printf(s, ":");
4729 print_ip4_addr(s, 'I', false, &in6.s6_addr[12]);
4730 }
4731
4732 return;
4733}
4734
4735static void print_ip6_addr(struct trace_seq *s, char i, unsigned char *buf)
4736{
4737 int j;
4738
4739 for (j = 0; j < 16; j += 2) {
4740 trace_seq_printf(s, "%02x%02x", buf[j], buf[j+1]);
4741 if (i == 'I' && j < 14)
4742 trace_seq_printf(s, ":");
4743 }
4744}
4745
4746/*
4747 * %pi4 print an IPv4 address with leading zeros
4748 * %pI4 print an IPv4 address without leading zeros
4749 * %pi6 print an IPv6 address without colons
4750 * %pI6 print an IPv6 address with colons
4751 * %pI6c print an IPv6 address in compressed form with colons
4752 * %pISpc print an IP address based on sockaddr; p adds port.
4753 */
4754static int print_ipv4_arg(struct trace_seq *s, const char *ptr, char i,
4755 void *data, int size, struct tep_event *event,
4756 struct tep_print_arg *arg)
4757{
4758 bool reverse = false;
4759 unsigned char *buf;
4760 int ret;
4761
4762 ret = parse_ip4_print_args(event->tep, ptr, &reverse);
4763
4764 if (arg->type == TEP_PRINT_FUNC) {
4765 process_defined_func(s, data, size, event, arg);
4766 return ret;
4767 }
4768
4769 if (arg->type != TEP_PRINT_FIELD) {
4770 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4771 return ret;
4772 }
4773
4774 if (!arg->field.field) {
4775 arg->field.field =
4776 tep_find_any_field(event, arg->field.name);
4777 if (!arg->field.field) {
4778 do_warning("%s: field %s not found",
4779 __func__, arg->field.name);
4780 return ret;
4781 }
4782 }
4783
4784 buf = data + arg->field.field->offset;
4785
4786 if (arg->field.field->size != 4) {
4787 trace_seq_printf(s, "INVALIDIPv4");
4788 return ret;
4789 }
4790
4791 print_ip4_addr(s, i, reverse, buf);
4792 return ret;
4793
4794}
4795
4796static int print_ipv6_arg(struct trace_seq *s, const char *ptr, char i,
4797 void *data, int size, struct tep_event *event,
4798 struct tep_print_arg *arg)
4799{
4800 char have_c = 0;
4801 unsigned char *buf;
4802 int rc = 0;
4803
4804 /* pI6c */
4805 if (i == 'I' && *ptr == 'c') {
4806 have_c = 1;
4807 ptr++;
4808 rc++;
4809 }
4810
4811 if (arg->type == TEP_PRINT_FUNC) {
4812 process_defined_func(s, data, size, event, arg);
4813 return rc;
4814 }
4815
4816 if (arg->type != TEP_PRINT_FIELD) {
4817 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4818 return rc;
4819 }
4820
4821 if (!arg->field.field) {
4822 arg->field.field =
4823 tep_find_any_field(event, arg->field.name);
4824 if (!arg->field.field) {
4825 do_warning("%s: field %s not found",
4826 __func__, arg->field.name);
4827 return rc;
4828 }
4829 }
4830
4831 buf = data + arg->field.field->offset;
4832
4833 if (arg->field.field->size != 16) {
4834 trace_seq_printf(s, "INVALIDIPv6");
4835 return rc;
4836 }
4837
4838 if (have_c)
4839 print_ip6c_addr(s, buf);
4840 else
4841 print_ip6_addr(s, i, buf);
4842
4843 return rc;
4844}
4845
4846static int print_ipsa_arg(struct trace_seq *s, const char *ptr, char i,
4847 void *data, int size, struct tep_event *event,
4848 struct tep_print_arg *arg)
4849{
4850 char have_c = 0, have_p = 0;
4851 unsigned char *buf;
4852 struct sockaddr_storage *sa;
4853 bool reverse = false;
4854 int rc = 0;
4855 int ret;
4856
4857 /* pISpc */
4858 if (i == 'I') {
4859 if (*ptr == 'p') {
4860 have_p = 1;
4861 ptr++;
4862 rc++;
4863 }
4864 if (*ptr == 'c') {
4865 have_c = 1;
4866 ptr++;
4867 rc++;
4868 }
4869 }
4870 ret = parse_ip4_print_args(event->tep, ptr, &reverse);
4871 ptr += ret;
4872 rc += ret;
4873
4874 if (arg->type == TEP_PRINT_FUNC) {
4875 process_defined_func(s, data, size, event, arg);
4876 return rc;
4877 }
4878
4879 if (arg->type != TEP_PRINT_FIELD) {
4880 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4881 return rc;
4882 }
4883
4884 if (!arg->field.field) {
4885 arg->field.field =
4886 tep_find_any_field(event, arg->field.name);
4887 if (!arg->field.field) {
4888 do_warning("%s: field %s not found",
4889 __func__, arg->field.name);
4890 return rc;
4891 }
4892 }
4893
4894 sa = (struct sockaddr_storage *) (data + arg->field.field->offset);
4895
4896 if (sa->ss_family == AF_INET) {
4897 struct sockaddr_in *sa4 = (struct sockaddr_in *) sa;
4898
4899 if (arg->field.field->size < sizeof(struct sockaddr_in)) {
4900 trace_seq_printf(s, "INVALIDIPv4");
4901 return rc;
4902 }
4903
4904 print_ip4_addr(s, i, reverse, (unsigned char *) &sa4->sin_addr);
4905 if (have_p)
4906 trace_seq_printf(s, ":%d", ntohs(sa4->sin_port));
4907
4908
4909 } else if (sa->ss_family == AF_INET6) {
4910 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *) sa;
4911
4912 if (arg->field.field->size < sizeof(struct sockaddr_in6)) {
4913 trace_seq_printf(s, "INVALIDIPv6");
4914 return rc;
4915 }
4916
4917 if (have_p)
4918 trace_seq_printf(s, "[");
4919
4920 buf = (unsigned char *) &sa6->sin6_addr;
4921 if (have_c)
4922 print_ip6c_addr(s, buf);
4923 else
4924 print_ip6_addr(s, i, buf);
4925
4926 if (have_p)
4927 trace_seq_printf(s, "]:%d", ntohs(sa6->sin6_port));
4928 }
4929
4930 return rc;
4931}
4932
4933static int print_ip_arg(struct trace_seq *s, const char *ptr,
4934 void *data, int size, struct tep_event *event,
4935 struct tep_print_arg *arg)
4936{
4937 char i = *ptr; /* 'i' or 'I' */
4938 int rc = 1;
4939
4940 /* IP version */
4941 ptr++;
4942
4943 switch (*ptr) {
4944 case '4':
4945 rc += print_ipv4_arg(s, ptr + 1, i, data, size, event, arg);
4946 break;
4947 case '6':
4948 rc += print_ipv6_arg(s, ptr + 1, i, data, size, event, arg);
4949 break;
4950 case 'S':
4951 rc += print_ipsa_arg(s, ptr + 1, i, data, size, event, arg);
4952 break;
4953 default:
4954 return 0;
4955 }
4956
4957 return rc;
4958}
4959
4960static const int guid_index[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15};
4961static const int uuid_index[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4962
4963static int print_uuid_arg(struct trace_seq *s, const char *ptr,
4964 void *data, int size, struct tep_event *event,
4965 struct tep_print_arg *arg)
4966{
4967 const int *index = uuid_index;
4968 char *format = "%02x";
4969 int ret = 0;
4970 char *buf;
4971 int i;
4972
4973 switch (*(ptr + 1)) {
4974 case 'L':
4975 format = "%02X";
4976 /* fall through */
4977 case 'l':
4978 index = guid_index;
4979 ret++;
4980 break;
4981 case 'B':
4982 format = "%02X";
4983 /* fall through */
4984 case 'b':
4985 ret++;
4986 break;
4987 }
4988
4989 if (arg->type == TEP_PRINT_FUNC) {
4990 process_defined_func(s, data, size, event, arg);
4991 return ret;
4992 }
4993
4994 if (arg->type != TEP_PRINT_FIELD) {
4995 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4996 return ret;
4997 }
4998
4999 if (!arg->field.field) {
5000 arg->field.field =
5001 tep_find_any_field(event, arg->field.name);
5002 if (!arg->field.field) {
5003 do_warning("%s: field %s not found",
5004 __func__, arg->field.name);
5005 return ret;
5006 }
5007 }
5008
5009 if (arg->field.field->size != 16) {
5010 trace_seq_printf(s, "INVALIDUUID");
5011 return ret;
5012 }
5013
5014 buf = data + arg->field.field->offset;
5015
5016 for (i = 0; i < 16; i++) {
5017 trace_seq_printf(s, format, buf[index[i]] & 0xff);
5018 switch (i) {
5019 case 3:
5020 case 5:
5021 case 7:
5022 case 9:
5023 trace_seq_printf(s, "-");
5024 break;
5025 }
5026 }
5027
5028 return ret;
5029}
5030
5031static int print_raw_buff_arg(struct trace_seq *s, const char *ptr,
5032 void *data, int size, struct tep_event *event,
5033 struct tep_print_arg *arg, int print_len)
5034{
5035 int plen = print_len;
5036 char *delim = " ";
5037 int ret = 0;
5038 char *buf;
5039 int i;
5040 unsigned long offset;
5041 int arr_len;
5042
5043 switch (*(ptr + 1)) {
5044 case 'C':
5045 delim = ":";
5046 ret++;
5047 break;
5048 case 'D':
5049 delim = "-";
5050 ret++;
5051 break;
5052 case 'N':
5053 delim = "";
5054 ret++;
5055 break;
5056 }
5057
5058 if (arg->type == TEP_PRINT_FUNC) {
5059 process_defined_func(s, data, size, event, arg);
5060 return ret;
5061 }
5062
5063 if (arg->type != TEP_PRINT_DYNAMIC_ARRAY) {
5064 trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
5065 return ret;
5066 }
5067
5068 offset = tep_read_number(event->tep,
5069 data + arg->dynarray.field->offset,
5070 arg->dynarray.field->size);
5071 arr_len = (unsigned long long)(offset >> 16);
5072 buf = data + (offset & 0xffff);
5073
5074 if (arr_len < plen)
5075 plen = arr_len;
5076
5077 if (plen < 1)
5078 return ret;
5079
5080 trace_seq_printf(s, "%02x", buf[0] & 0xff);
5081 for (i = 1; i < plen; i++)
5082 trace_seq_printf(s, "%s%02x", delim, buf[i] & 0xff);
5083
5084 return ret;
5085}
5086
5087static int is_printable_array(char *p, unsigned int len)
5088{
5089 unsigned int i;
5090
5091 for (i = 0; i < len && p[i]; i++)
5092 if (!isprint(p[i]) && !isspace(p[i]))
5093 return 0;
5094 return 1;
5095}
5096
5097void tep_print_field(struct trace_seq *s, void *data,
5098 struct tep_format_field *field)
5099{
5100 unsigned long long val;
5101 unsigned int offset, len, i;
5102 struct tep_handle *tep = field->event->tep;
5103
5104 if (field->flags & TEP_FIELD_IS_ARRAY) {
5105 offset = field->offset;
5106 len = field->size;
5107 if (field->flags & TEP_FIELD_IS_DYNAMIC) {
5108 val = tep_read_number(tep, data + offset, len);
5109 offset = val;
5110 len = offset >> 16;
5111 offset &= 0xffff;
5112 }
5113 if (field->flags & TEP_FIELD_IS_STRING &&
5114 is_printable_array(data + offset, len)) {
5115 trace_seq_printf(s, "%s", (char *)data + offset);
5116 } else {
5117 trace_seq_puts(s, "ARRAY[");
5118 for (i = 0; i < len; i++) {
5119 if (i)
5120 trace_seq_puts(s, ", ");
5121 trace_seq_printf(s, "%02x",
5122 *((unsigned char *)data + offset + i));
5123 }
5124 trace_seq_putc(s, ']');
5125 field->flags &= ~TEP_FIELD_IS_STRING;
5126 }
5127 } else {
5128 val = tep_read_number(tep, data + field->offset,
5129 field->size);
5130 if (field->flags & TEP_FIELD_IS_POINTER) {
5131 trace_seq_printf(s, "0x%llx", val);
5132 } else if (field->flags & TEP_FIELD_IS_SIGNED) {
5133 switch (field->size) {
5134 case 4:
5135 /*
5136 * If field is long then print it in hex.
5137 * A long usually stores pointers.
5138 */
5139 if (field->flags & TEP_FIELD_IS_LONG)
5140 trace_seq_printf(s, "0x%x", (int)val);
5141 else
5142 trace_seq_printf(s, "%d", (int)val);
5143 break;
5144 case 2:
5145 trace_seq_printf(s, "%2d", (short)val);
5146 break;
5147 case 1:
5148 trace_seq_printf(s, "%1d", (char)val);
5149 break;
5150 default:
5151 trace_seq_printf(s, "%lld", val);
5152 }
5153 } else {
5154 if (field->flags & TEP_FIELD_IS_LONG)
5155 trace_seq_printf(s, "0x%llx", val);
5156 else
5157 trace_seq_printf(s, "%llu", val);
5158 }
5159 }
5160}
5161
5162void tep_print_fields(struct trace_seq *s, void *data,
5163 int size __maybe_unused, struct tep_event *event)
5164{
5165 struct tep_format_field *field;
5166
5167 field = event->format.fields;
5168 while (field) {
5169 trace_seq_printf(s, " %s=", field->name);
5170 tep_print_field(s, data, field);
5171 field = field->next;
5172 }
5173}
5174
5175static int print_function(struct trace_seq *s, const char *format,
5176 void *data, int size, struct tep_event *event,
5177 struct tep_print_arg *arg)
5178{
5179 struct func_map *func;
5180 unsigned long long val;
5181
5182 val = eval_num_arg(data, size, event, arg);
5183 func = find_func(event->tep, val);
5184 if (func) {
5185 trace_seq_puts(s, func->func);
5186 if (*format == 'F' || *format == 'S')
5187 trace_seq_printf(s, "+0x%llx", val - func->addr);
5188 } else {
5189 if (event->tep->long_size == 4)
5190 trace_seq_printf(s, "0x%lx", (long)val);
5191 else
5192 trace_seq_printf(s, "0x%llx", (long long)val);
5193 }
5194
5195 return 0;
5196}
5197
5198static int print_arg_pointer(struct trace_seq *s, const char *format, int plen,
5199 void *data, int size,
5200 struct tep_event *event, struct tep_print_arg *arg)
5201{
5202 unsigned long long val;
5203 int ret = 1;
5204
5205 if (arg->type == TEP_PRINT_BSTRING) {
5206 trace_seq_puts(s, arg->string.string);
5207 return 0;
5208 }
5209 while (*format) {
5210 if (*format == 'p') {
5211 format++;
5212 break;
5213 }
5214 format++;
5215 }
5216
5217 switch (*format) {
5218 case 'F':
5219 case 'f':
5220 case 'S':
5221 case 's':
5222 ret += print_function(s, format, data, size, event, arg);
5223 break;
5224 case 'M':
5225 case 'm':
5226 ret += print_mac_arg(s, format, data, size, event, arg);
5227 break;
5228 case 'I':
5229 case 'i':
5230 ret += print_ip_arg(s, format, data, size, event, arg);
5231 break;
5232 case 'U':
5233 ret += print_uuid_arg(s, format, data, size, event, arg);
5234 break;
5235 case 'h':
5236 ret += print_raw_buff_arg(s, format, data, size, event, arg, plen);
5237 break;
5238 default:
5239 ret = 0;
5240 val = eval_num_arg(data, size, event, arg);
5241 trace_seq_printf(s, "%p", (void *)(intptr_t)val);
5242 break;
5243 }
5244
5245 return ret;
5246
5247}
5248
5249static int print_arg_number(struct trace_seq *s, const char *format, int plen,
5250 void *data, int size, int ls,
5251 struct tep_event *event, struct tep_print_arg *arg)
5252{
5253 unsigned long long val;
5254
5255 val = eval_num_arg(data, size, event, arg);
5256
5257 switch (ls) {
5258 case -2:
5259 if (plen >= 0)
5260 trace_seq_printf(s, format, plen, (char)val);
5261 else
5262 trace_seq_printf(s, format, (char)val);
5263 break;
5264 case -1:
5265 if (plen >= 0)
5266 trace_seq_printf(s, format, plen, (short)val);
5267 else
5268 trace_seq_printf(s, format, (short)val);
5269 break;
5270 case 0:
5271 if (plen >= 0)
5272 trace_seq_printf(s, format, plen, (int)val);
5273 else
5274 trace_seq_printf(s, format, (int)val);
5275 break;
5276 case 1:
5277 if (plen >= 0)
5278 trace_seq_printf(s, format, plen, (long)val);
5279 else
5280 trace_seq_printf(s, format, (long)val);
5281 break;
5282 case 2:
5283 if (plen >= 0)
5284 trace_seq_printf(s, format, plen, (long long)val);
5285 else
5286 trace_seq_printf(s, format, (long long)val);
5287 break;
5288 default:
5289 do_warning_event(event, "bad count (%d)", ls);
5290 event->flags |= TEP_EVENT_FL_FAILED;
5291 }
5292 return 0;
5293}
5294
5295
5296static void print_arg_string(struct trace_seq *s, const char *format, int plen,
5297 void *data, int size,
5298 struct tep_event *event, struct tep_print_arg *arg)
5299{
5300 struct trace_seq p;
5301
5302 /* Use helper trace_seq */
5303 trace_seq_init(&p);
5304 print_str_arg(&p, data, size, event,
5305 format, plen, arg);
5306 trace_seq_terminate(&p);
5307 trace_seq_puts(s, p.buffer);
5308 trace_seq_destroy(&p);
5309}
5310
5311static int parse_arg_format_pointer(const char *format)
5312{
5313 int ret = 0;
5314 int index;
5315 int loop;
5316
5317 switch (*format) {
5318 case 'F':
5319 case 'S':
5320 case 'f':
5321 case 's':
5322 ret++;
5323 break;
5324 case 'M':
5325 case 'm':
5326 /* [mM]R , [mM]F */
5327 switch (format[1]) {
5328 case 'R':
5329 case 'F':
5330 ret++;
5331 break;
5332 }
5333 ret++;
5334 break;
5335 case 'I':
5336 case 'i':
5337 index = 2;
5338 loop = 1;
5339 switch (format[1]) {
5340 case 'S':
5341 /*[S][pfs]*/
5342 while (loop) {
5343 switch (format[index]) {
5344 case 'p':
5345 case 'f':
5346 case 's':
5347 ret++;
5348 index++;
5349 break;
5350 default:
5351 loop = 0;
5352 break;
5353 }
5354 }
5355 /* fall through */
5356 case '4':
5357 /* [4S][hnbl] */
5358 switch (format[index]) {
5359 case 'h':
5360 case 'n':
5361 case 'l':
5362 case 'b':
5363 ret++;
5364 index++;
5365 break;
5366 }
5367 if (format[1] == '4') {
5368 ret++;
5369 break;
5370 }
5371 /* fall through */
5372 case '6':
5373 /* [6S]c */
5374 if (format[index] == 'c')
5375 ret++;
5376 ret++;
5377 break;
5378 }
5379 ret++;
5380 break;
5381 case 'U':
5382 switch (format[1]) {
5383 case 'L':
5384 case 'l':
5385 case 'B':
5386 case 'b':
5387 ret++;
5388 break;
5389 }
5390 ret++;
5391 break;
5392 case 'h':
5393 switch (format[1]) {
5394 case 'C':
5395 case 'D':
5396 case 'N':
5397 ret++;
5398 break;
5399 }
5400 ret++;
5401 break;
5402 default:
5403 break;
5404 }
5405
5406 return ret;
5407}
5408
5409static void free_parse_args(struct tep_print_parse *arg)
5410{
5411 struct tep_print_parse *del;
5412
5413 while (arg) {
5414 del = arg;
5415 arg = del->next;
5416 free(del->format);
5417 free(del);
5418 }
5419}
5420
5421static int parse_arg_add(struct tep_print_parse **parse, char *format,
5422 enum tep_print_parse_type type,
5423 struct tep_print_arg *arg,
5424 struct tep_print_arg *len_as_arg,
5425 int ls)
5426{
5427 struct tep_print_parse *parg = NULL;
5428
5429 parg = calloc(1, sizeof(*parg));
5430 if (!parg)
5431 goto error;
5432 parg->format = strdup(format);
5433 if (!parg->format)
5434 goto error;
5435 parg->type = type;
5436 parg->arg = arg;
5437 parg->len_as_arg = len_as_arg;
5438 parg->ls = ls;
5439 *parse = parg;
5440 return 0;
5441error:
5442 if (parg) {
5443 free(parg->format);
5444 free(parg);
5445 }
5446 return -1;
5447}
5448
5449static int parse_arg_format(struct tep_print_parse **parse,
5450 struct tep_event *event,
5451 const char *format, struct tep_print_arg **arg)
5452{
5453 struct tep_print_arg *len_arg = NULL;
5454 char print_format[32];
5455 const char *start = format;
5456 int ret = 0;
5457 int ls = 0;
5458 int res;
5459 int len;
5460
5461 format++;
5462 ret++;
5463 for (; *format; format++) {
5464 switch (*format) {
5465 case '#':
5466 /* FIXME: need to handle properly */
5467 break;
5468 case 'h':
5469 ls--;
5470 break;
5471 case 'l':
5472 ls++;
5473 break;
5474 case 'L':
5475 ls = 2;
5476 break;
5477 case '.':
5478 case 'z':
5479 case 'Z':
5480 case '0' ... '9':
5481 case '-':
5482 break;
5483 case '*':
5484 /* The argument is the length. */
5485 if (!*arg) {
5486 do_warning_event(event, "no argument match");
5487 event->flags |= TEP_EVENT_FL_FAILED;
5488 goto out_failed;
5489 }
5490 if (len_arg) {
5491 do_warning_event(event, "argument already matched");
5492 event->flags |= TEP_EVENT_FL_FAILED;
5493 goto out_failed;
5494 }
5495 len_arg = *arg;
5496 *arg = (*arg)->next;
5497 break;
5498 case 'p':
5499 if (!*arg) {
5500 do_warning_event(event, "no argument match");
5501 event->flags |= TEP_EVENT_FL_FAILED;
5502 goto out_failed;
5503 }
5504 res = parse_arg_format_pointer(format + 1);
5505 if (res > 0) {
5506 format += res;
5507 ret += res;
5508 }
5509 len = ((unsigned long)format + 1) -
5510 (unsigned long)start;
5511 /* should never happen */
5512 if (len > 31) {
5513 do_warning_event(event, "bad format!");
5514 event->flags |= TEP_EVENT_FL_FAILED;
5515 len = 31;
5516 }
5517 memcpy(print_format, start, len);
5518 print_format[len] = 0;
5519
5520 parse_arg_add(parse, print_format,
5521 PRINT_FMT_ARG_POINTER, *arg, len_arg, ls);
5522 *arg = (*arg)->next;
5523 ret++;
5524 return ret;
5525 case 'd':
5526 case 'u':
5527 case 'i':
5528 case 'x':
5529 case 'X':
5530 case 'o':
5531 if (!*arg) {
5532 do_warning_event(event, "no argument match");
5533 event->flags |= TEP_EVENT_FL_FAILED;
5534 goto out_failed;
5535 }
5536
5537 len = ((unsigned long)format + 1) -
5538 (unsigned long)start;
5539
5540 /* should never happen */
5541 if (len > 30) {
5542 do_warning_event(event, "bad format!");
5543 event->flags |= TEP_EVENT_FL_FAILED;
5544 len = 31;
5545 }
5546 memcpy(print_format, start, len);
5547 print_format[len] = 0;
5548
5549 if (event->tep->long_size == 8 && ls == 1 &&
5550 sizeof(long) != 8) {
5551 char *p;
5552
5553 /* make %l into %ll */
5554 if (ls == 1 && (p = strchr(print_format, 'l')))
5555 memmove(p+1, p, strlen(p)+1);
5556 ls = 2;
5557 }
5558 if (ls < -2 || ls > 2) {
5559 do_warning_event(event, "bad count (%d)", ls);
5560 event->flags |= TEP_EVENT_FL_FAILED;
5561 }
5562 parse_arg_add(parse, print_format,
5563 PRINT_FMT_ARG_DIGIT, *arg, len_arg, ls);
5564 *arg = (*arg)->next;
5565 ret++;
5566 return ret;
5567 case 's':
5568 if (!*arg) {
5569 do_warning_event(event, "no matching argument");
5570 event->flags |= TEP_EVENT_FL_FAILED;
5571 goto out_failed;
5572 }
5573
5574 len = ((unsigned long)format + 1) -
5575 (unsigned long)start;
5576
5577 /* should never happen */
5578 if (len > 31) {
5579 do_warning_event(event, "bad format!");
5580 event->flags |= TEP_EVENT_FL_FAILED;
5581 len = 31;
5582 }
5583
5584 memcpy(print_format, start, len);
5585 print_format[len] = 0;
5586
5587 parse_arg_add(parse, print_format,
5588 PRINT_FMT_ARG_STRING, *arg, len_arg, 0);
5589 *arg = (*arg)->next;
5590 ret++;
5591 return ret;
5592 default:
5593 snprintf(print_format, 32, ">%c<", *format);
5594 parse_arg_add(parse, print_format,
5595 PRINT_FMT_STRING, NULL, NULL, 0);
5596 ret++;
5597 return ret;
5598 }
5599 ret++;
5600 }
5601
5602out_failed:
5603 return ret;
5604
5605}
5606
5607static int parse_arg_string(struct tep_print_parse **parse, const char *format)
5608{
5609 struct trace_seq s;
5610 int ret = 0;
5611
5612 trace_seq_init(&s);
5613 for (; *format; format++) {
5614 if (*format == '\\') {
5615 format++;
5616 ret++;
5617 switch (*format) {
5618 case 'n':
5619 trace_seq_putc(&s, '\n');
5620 break;
5621 case 't':
5622 trace_seq_putc(&s, '\t');
5623 break;
5624 case 'r':
5625 trace_seq_putc(&s, '\r');
5626 break;
5627 case '\\':
5628 trace_seq_putc(&s, '\\');
5629 break;
5630 default:
5631 trace_seq_putc(&s, *format);
5632 break;
5633 }
5634 } else if (*format == '%') {
5635 if (*(format + 1) == '%') {
5636 trace_seq_putc(&s, '%');
5637 format++;
5638 ret++;
5639 } else
5640 break;
5641 } else
5642 trace_seq_putc(&s, *format);
5643
5644 ret++;
5645 }
5646 trace_seq_terminate(&s);
5647 parse_arg_add(parse, s.buffer, PRINT_FMT_STRING, NULL, NULL, 0);
5648 trace_seq_destroy(&s);
5649
5650 return ret;
5651}
5652
5653static struct tep_print_parse *
5654parse_args(struct tep_event *event, const char *format, struct tep_print_arg *arg)
5655{
5656 struct tep_print_parse *parse_ret = NULL;
5657 struct tep_print_parse **parse = NULL;
5658 int ret;
5659 int len;
5660
5661 len = strlen(format);
5662 while (*format) {
5663 if (!parse_ret)
5664 parse = &parse_ret;
5665 if (*format == '%' && *(format + 1) != '%')
5666 ret = parse_arg_format(parse, event, format, &arg);
5667 else
5668 ret = parse_arg_string(parse, format);
5669 if (*parse)
5670 parse = &((*parse)->next);
5671
5672 len -= ret;
5673 if (len > 0)
5674 format += ret;
5675 else
5676 break;
5677 }
5678 return parse_ret;
5679}
5680
5681static void print_event_cache(struct tep_print_parse *parse, struct trace_seq *s,
5682 void *data, int size, struct tep_event *event)
5683{
5684 int len_arg;
5685
5686 while (parse) {
5687 if (parse->len_as_arg)
5688 len_arg = eval_num_arg(data, size, event, parse->len_as_arg);
5689 switch (parse->type) {
5690 case PRINT_FMT_ARG_DIGIT:
5691 print_arg_number(s, parse->format,
5692 parse->len_as_arg ? len_arg : -1, data,
5693 size, parse->ls, event, parse->arg);
5694 break;
5695 case PRINT_FMT_ARG_POINTER:
5696 print_arg_pointer(s, parse->format,
5697 parse->len_as_arg ? len_arg : 1,
5698 data, size, event, parse->arg);
5699 break;
5700 case PRINT_FMT_ARG_STRING:
5701 print_arg_string(s, parse->format,
5702 parse->len_as_arg ? len_arg : -1,
5703 data, size, event, parse->arg);
5704 break;
5705 case PRINT_FMT_STRING:
5706 default:
5707 trace_seq_printf(s, "%s", parse->format);
5708 break;
5709 }
5710 parse = parse->next;
5711 }
5712}
5713
5714static void pretty_print(struct trace_seq *s, void *data, int size, struct tep_event *event)
5715{
5716 struct tep_print_parse *parse = event->print_fmt.print_cache;
5717 struct tep_print_arg *args = NULL;
5718 char *bprint_fmt = NULL;
5719
5720 if (event->flags & TEP_EVENT_FL_FAILED) {
5721 trace_seq_printf(s, "[FAILED TO PARSE]");
5722 tep_print_fields(s, data, size, event);
5723 return;
5724 }
5725
5726 if (event->flags & TEP_EVENT_FL_ISBPRINT) {
5727 bprint_fmt = get_bprint_format(data, size, event);
5728 args = make_bprint_args(bprint_fmt, data, size, event);
5729 parse = parse_args(event, bprint_fmt, args);
5730 }
5731
5732 print_event_cache(parse, s, data, size, event);
5733
5734 if (event->flags & TEP_EVENT_FL_ISBPRINT) {
5735 free_parse_args(parse);
5736 free_args(args);
5737 free(bprint_fmt);
5738 }
5739}
5740
5741/*
5742 * This parses out the Latency format (interrupts disabled,
5743 * need rescheduling, in hard/soft interrupt, preempt count
5744 * and lock depth) and places it into the trace_seq.
5745 */
5746static void data_latency_format(struct tep_handle *tep, struct trace_seq *s,
5747 char *format, struct tep_record *record)
5748{
5749 static int check_lock_depth = 1;
5750 static int check_migrate_disable = 1;
5751 static int lock_depth_exists;
5752 static int migrate_disable_exists;
5753 unsigned int lat_flags;
5754 struct trace_seq sq;
5755 unsigned int pc;
5756 int lock_depth = 0;
5757 int migrate_disable = 0;
5758 int hardirq;
5759 int softirq;
5760 void *data = record->data;
5761
5762 trace_seq_init(&sq);
5763 lat_flags = parse_common_flags(tep, data);
5764 pc = parse_common_pc(tep, data);
5765 /* lock_depth may not always exist */
5766 if (lock_depth_exists)
5767 lock_depth = parse_common_lock_depth(tep, data);
5768 else if (check_lock_depth) {
5769 lock_depth = parse_common_lock_depth(tep, data);
5770 if (lock_depth < 0)
5771 check_lock_depth = 0;
5772 else
5773 lock_depth_exists = 1;
5774 }
5775
5776 /* migrate_disable may not always exist */
5777 if (migrate_disable_exists)
5778 migrate_disable = parse_common_migrate_disable(tep, data);
5779 else if (check_migrate_disable) {
5780 migrate_disable = parse_common_migrate_disable(tep, data);
5781 if (migrate_disable < 0)
5782 check_migrate_disable = 0;
5783 else
5784 migrate_disable_exists = 1;
5785 }
5786
5787 hardirq = lat_flags & TRACE_FLAG_HARDIRQ;
5788 softirq = lat_flags & TRACE_FLAG_SOFTIRQ;
5789
5790 trace_seq_printf(&sq, "%c%c%c",
5791 (lat_flags & TRACE_FLAG_IRQS_OFF) ? 'd' :
5792 (lat_flags & TRACE_FLAG_IRQS_NOSUPPORT) ?
5793 'X' : '.',
5794 (lat_flags & TRACE_FLAG_NEED_RESCHED) ?
5795 'N' : '.',
5796 (hardirq && softirq) ? 'H' :
5797 hardirq ? 'h' : softirq ? 's' : '.');
5798
5799 if (pc)
5800 trace_seq_printf(&sq, "%x", pc);
5801 else
5802 trace_seq_printf(&sq, ".");
5803
5804 if (migrate_disable_exists) {
5805 if (migrate_disable < 0)
5806 trace_seq_printf(&sq, ".");
5807 else
5808 trace_seq_printf(&sq, "%d", migrate_disable);
5809 }
5810
5811 if (lock_depth_exists) {
5812 if (lock_depth < 0)
5813 trace_seq_printf(&sq, ".");
5814 else
5815 trace_seq_printf(&sq, "%d", lock_depth);
5816 }
5817
5818 if (sq.state == TRACE_SEQ__MEM_ALLOC_FAILED) {
5819 s->state = TRACE_SEQ__MEM_ALLOC_FAILED;
5820 return;
5821 }
5822
5823 trace_seq_terminate(&sq);
5824 trace_seq_puts(s, sq.buffer);
5825 trace_seq_destroy(&sq);
5826 trace_seq_terminate(s);
5827}
5828
5829/**
5830 * tep_data_type - parse out the given event type
5831 * @tep: a handle to the trace event parser context
5832 * @rec: the record to read from
5833 *
5834 * This returns the event id from the @rec.
5835 */
5836int tep_data_type(struct tep_handle *tep, struct tep_record *rec)
5837{
5838 return trace_parse_common_type(tep, rec->data);
5839}
5840
5841/**
5842 * tep_data_pid - parse the PID from record
5843 * @tep: a handle to the trace event parser context
5844 * @rec: the record to parse
5845 *
5846 * This returns the PID from a record.
5847 */
5848int tep_data_pid(struct tep_handle *tep, struct tep_record *rec)
5849{
5850 return parse_common_pid(tep, rec->data);
5851}
5852
5853/**
5854 * tep_data_preempt_count - parse the preempt count from the record
5855 * @tep: a handle to the trace event parser context
5856 * @rec: the record to parse
5857 *
5858 * This returns the preempt count from a record.
5859 */
5860int tep_data_preempt_count(struct tep_handle *tep, struct tep_record *rec)
5861{
5862 return parse_common_pc(tep, rec->data);
5863}
5864
5865/**
5866 * tep_data_flags - parse the latency flags from the record
5867 * @tep: a handle to the trace event parser context
5868 * @rec: the record to parse
5869 *
5870 * This returns the latency flags from a record.
5871 *
5872 * Use trace_flag_type enum for the flags (see event-parse.h).
5873 */
5874int tep_data_flags(struct tep_handle *tep, struct tep_record *rec)
5875{
5876 return parse_common_flags(tep, rec->data);
5877}
5878
5879/**
5880 * tep_data_comm_from_pid - return the command line from PID
5881 * @tep: a handle to the trace event parser context
5882 * @pid: the PID of the task to search for
5883 *
5884 * This returns a pointer to the command line that has the given
5885 * @pid.
5886 */
5887const char *tep_data_comm_from_pid(struct tep_handle *tep, int pid)
5888{
5889 const char *comm;
5890
5891 comm = find_cmdline(tep, pid);
5892 return comm;
5893}
5894
5895static struct tep_cmdline *
5896pid_from_cmdlist(struct tep_handle *tep, const char *comm, struct tep_cmdline *next)
5897{
5898 struct cmdline_list *cmdlist = (struct cmdline_list *)next;
5899
5900 if (cmdlist)
5901 cmdlist = cmdlist->next;
5902 else
5903 cmdlist = tep->cmdlist;
5904
5905 while (cmdlist && strcmp(cmdlist->comm, comm) != 0)
5906 cmdlist = cmdlist->next;
5907
5908 return (struct tep_cmdline *)cmdlist;
5909}
5910
5911/**
5912 * tep_data_pid_from_comm - return the pid from a given comm
5913 * @tep: a handle to the trace event parser context
5914 * @comm: the cmdline to find the pid from
5915 * @next: the cmdline structure to find the next comm
5916 *
5917 * This returns the cmdline structure that holds a pid for a given
5918 * comm, or NULL if none found. As there may be more than one pid for
5919 * a given comm, the result of this call can be passed back into
5920 * a recurring call in the @next parameter, and then it will find the
5921 * next pid.
5922 * Also, it does a linear search, so it may be slow.
5923 */
5924struct tep_cmdline *tep_data_pid_from_comm(struct tep_handle *tep, const char *comm,
5925 struct tep_cmdline *next)
5926{
5927 struct tep_cmdline *cmdline;
5928
5929 /*
5930 * If the cmdlines have not been converted yet, then use
5931 * the list.
5932 */
5933 if (!tep->cmdlines)
5934 return pid_from_cmdlist(tep, comm, next);
5935
5936 if (next) {
5937 /*
5938 * The next pointer could have been still from
5939 * a previous call before cmdlines were created
5940 */
5941 if (next < tep->cmdlines ||
5942 next >= tep->cmdlines + tep->cmdline_count)
5943 next = NULL;
5944 else
5945 cmdline = next++;
5946 }
5947
5948 if (!next)
5949 cmdline = tep->cmdlines;
5950
5951 while (cmdline < tep->cmdlines + tep->cmdline_count) {
5952 if (strcmp(cmdline->comm, comm) == 0)
5953 return cmdline;
5954 cmdline++;
5955 }
5956 return NULL;
5957}
5958
5959/**
5960 * tep_cmdline_pid - return the pid associated to a given cmdline
5961 * @tep: a handle to the trace event parser context
5962 * @cmdline: The cmdline structure to get the pid from
5963 *
5964 * Returns the pid for a give cmdline. If @cmdline is NULL, then
5965 * -1 is returned.
5966 */
5967int tep_cmdline_pid(struct tep_handle *tep, struct tep_cmdline *cmdline)
5968{
5969 struct cmdline_list *cmdlist = (struct cmdline_list *)cmdline;
5970
5971 if (!cmdline)
5972 return -1;
5973
5974 /*
5975 * If cmdlines have not been created yet, or cmdline is
5976 * not part of the array, then treat it as a cmdlist instead.
5977 */
5978 if (!tep->cmdlines ||
5979 cmdline < tep->cmdlines ||
5980 cmdline >= tep->cmdlines + tep->cmdline_count)
5981 return cmdlist->pid;
5982
5983 return cmdline->pid;
5984}
5985
5986/*
5987 * This parses the raw @data using the given @event information and
5988 * writes the print format into the trace_seq.
5989 */
5990static void print_event_info(struct trace_seq *s, char *format, bool raw,
5991 struct tep_event *event, struct tep_record *record)
5992{
5993 int print_pretty = 1;
5994
5995 if (raw || (event->flags & TEP_EVENT_FL_PRINTRAW))
5996 tep_print_fields(s, record->data, record->size, event);
5997 else {
5998
5999 if (event->handler && !(event->flags & TEP_EVENT_FL_NOHANDLE))
6000 print_pretty = event->handler(s, record, event,
6001 event->context);
6002
6003 if (print_pretty)
6004 pretty_print(s, record->data, record->size, event);
6005 }
6006
6007 trace_seq_terminate(s);
6008}
6009
6010/**
6011 * tep_find_event_by_record - return the event from a given record
6012 * @tep: a handle to the trace event parser context
6013 * @record: The record to get the event from
6014 *
6015 * Returns the associated event for a given record, or NULL if non is
6016 * is found.
6017 */
6018struct tep_event *
6019tep_find_event_by_record(struct tep_handle *tep, struct tep_record *record)
6020{
6021 int type;
6022
6023 if (record->size < 0) {
6024 do_warning("ug! negative record size %d", record->size);
6025 return NULL;
6026 }
6027
6028 type = trace_parse_common_type(tep, record->data);
6029
6030 return tep_find_event(tep, type);
6031}
6032
6033/*
6034 * Writes the timestamp of the record into @s. Time divisor and precision can be
6035 * specified as part of printf @format string. Example:
6036 * "%3.1000d" - divide the time by 1000 and print the first 3 digits
6037 * before the dot. Thus, the timestamp "123456000" will be printed as
6038 * "123.456"
6039 */
6040static void print_event_time(struct tep_handle *tep, struct trace_seq *s,
6041 char *format, struct tep_event *event,
6042 struct tep_record *record)
6043{
6044 unsigned long long time;
6045 char *divstr;
6046 int prec = 0, pr;
6047 int div = 0;
6048 int p10 = 1;
6049
6050 if (isdigit(*(format + 1)))
6051 prec = atoi(format + 1);
6052 divstr = strchr(format, '.');
6053 if (divstr && isdigit(*(divstr + 1)))
6054 div = atoi(divstr + 1);
6055 time = record->ts;
6056 if (div) {
6057 time += div / 2;
6058 time /= div;
6059 }
6060 pr = prec;
6061 while (pr--)
6062 p10 *= 10;
6063
6064 if (p10 > 1 && p10 < time)
6065 trace_seq_printf(s, "%5llu.%0*llu", time / p10, prec, time % p10);
6066 else
6067 trace_seq_printf(s, "%12llu", time);
6068}
6069
6070struct print_event_type {
6071 enum {
6072 EVENT_TYPE_INT = 1,
6073 EVENT_TYPE_STRING,
6074 EVENT_TYPE_UNKNOWN,
6075 } type;
6076 char format[32];
6077};
6078
6079static void print_string(struct tep_handle *tep, struct trace_seq *s,
6080 struct tep_record *record, struct tep_event *event,
6081 const char *arg, struct print_event_type *type)
6082{
6083 const char *comm;
6084 int pid;
6085
6086 if (strncmp(arg, TEP_PRINT_LATENCY, strlen(TEP_PRINT_LATENCY)) == 0) {
6087 data_latency_format(tep, s, type->format, record);
6088 } else if (strncmp(arg, TEP_PRINT_COMM, strlen(TEP_PRINT_COMM)) == 0) {
6089 pid = parse_common_pid(tep, record->data);
6090 comm = find_cmdline(tep, pid);
6091 trace_seq_printf(s, type->format, comm);
6092 } else if (strncmp(arg, TEP_PRINT_INFO_RAW, strlen(TEP_PRINT_INFO_RAW)) == 0) {
6093 print_event_info(s, type->format, true, event, record);
6094 } else if (strncmp(arg, TEP_PRINT_INFO, strlen(TEP_PRINT_INFO)) == 0) {
6095 print_event_info(s, type->format, false, event, record);
6096 } else if (strncmp(arg, TEP_PRINT_NAME, strlen(TEP_PRINT_NAME)) == 0) {
6097 trace_seq_printf(s, type->format, event->name);
6098 } else {
6099 trace_seq_printf(s, "[UNKNOWN TEP TYPE %s]", arg);
6100 }
6101
6102}
6103
6104static void print_int(struct tep_handle *tep, struct trace_seq *s,
6105 struct tep_record *record, struct tep_event *event,
6106 int arg, struct print_event_type *type)
6107{
6108 int param;
6109
6110 switch (arg) {
6111 case TEP_PRINT_CPU:
6112 param = record->cpu;
6113 break;
6114 case TEP_PRINT_PID:
6115 param = parse_common_pid(tep, record->data);
6116 break;
6117 case TEP_PRINT_TIME:
6118 return print_event_time(tep, s, type->format, event, record);
6119 default:
6120 return;
6121 }
6122 trace_seq_printf(s, type->format, param);
6123}
6124
6125static int tep_print_event_param_type(char *format,
6126 struct print_event_type *type)
6127{
6128 char *str = format + 1;
6129 int i = 1;
6130
6131 type->type = EVENT_TYPE_UNKNOWN;
6132 while (*str) {
6133 switch (*str) {
6134 case 'd':
6135 case 'u':
6136 case 'i':
6137 case 'x':
6138 case 'X':
6139 case 'o':
6140 type->type = EVENT_TYPE_INT;
6141 break;
6142 case 's':
6143 type->type = EVENT_TYPE_STRING;
6144 break;
6145 }
6146 str++;
6147 i++;
6148 if (type->type != EVENT_TYPE_UNKNOWN)
6149 break;
6150 }
6151 memset(type->format, 0, 32);
6152 memcpy(type->format, format, i < 32 ? i : 31);
6153 return i;
6154}
6155
6156/**
6157 * tep_print_event - Write various event information
6158 * @tep: a handle to the trace event parser context
6159 * @s: the trace_seq to write to
6160 * @record: The record to get the event from
6161 * @format: a printf format string. Supported event fileds:
6162 * TEP_PRINT_PID, "%d" - event PID
6163 * TEP_PRINT_CPU, "%d" - event CPU
6164 * TEP_PRINT_COMM, "%s" - event command string
6165 * TEP_PRINT_NAME, "%s" - event name
6166 * TEP_PRINT_LATENCY, "%s" - event latency
6167 * TEP_PRINT_TIME, %d - event time stamp. A divisor and precision
6168 * can be specified as part of this format string:
6169 * "%precision.divisord". Example:
6170 * "%3.1000d" - divide the time by 1000 and print the first
6171 * 3 digits before the dot. Thus, the time stamp
6172 * "123456000" will be printed as "123.456"
6173 * TEP_PRINT_INFO, "%s" - event information. If any width is specified in
6174 * the format string, the event information will be printed
6175 * in raw format.
6176 * Writes the specified event information into @s.
6177 */
6178void tep_print_event(struct tep_handle *tep, struct trace_seq *s,
6179 struct tep_record *record, const char *fmt, ...)
6180{
6181 struct print_event_type type;
6182 char *format = strdup(fmt);
6183 char *current = format;
6184 char *str = format;
6185 int offset;
6186 va_list args;
6187 struct tep_event *event;
6188
6189 if (!format)
6190 return;
6191
6192 event = tep_find_event_by_record(tep, record);
6193 va_start(args, fmt);
6194 while (*current) {
6195 current = strchr(str, '%');
6196 if (!current) {
6197 trace_seq_puts(s, str);
6198 break;
6199 }
6200 memset(&type, 0, sizeof(type));
6201 offset = tep_print_event_param_type(current, &type);
6202 *current = '\0';
6203 trace_seq_puts(s, str);
6204 current += offset;
6205 switch (type.type) {
6206 case EVENT_TYPE_STRING:
6207 print_string(tep, s, record, event,
6208 va_arg(args, char*), &type);
6209 break;
6210 case EVENT_TYPE_INT:
6211 print_int(tep, s, record, event,
6212 va_arg(args, int), &type);
6213 break;
6214 case EVENT_TYPE_UNKNOWN:
6215 default:
6216 trace_seq_printf(s, "[UNKNOWN TYPE]");
6217 break;
6218 }
6219 str = current;
6220
6221 }
6222 va_end(args);
6223 free(format);
6224}
6225
6226static int events_id_cmp(const void *a, const void *b)
6227{
6228 struct tep_event * const * ea = a;
6229 struct tep_event * const * eb = b;
6230
6231 if ((*ea)->id < (*eb)->id)
6232 return -1;
6233
6234 if ((*ea)->id > (*eb)->id)
6235 return 1;
6236
6237 return 0;
6238}
6239
6240static int events_name_cmp(const void *a, const void *b)
6241{
6242 struct tep_event * const * ea = a;
6243 struct tep_event * const * eb = b;
6244 int res;
6245
6246 res = strcmp((*ea)->name, (*eb)->name);
6247 if (res)
6248 return res;
6249
6250 res = strcmp((*ea)->system, (*eb)->system);
6251 if (res)
6252 return res;
6253
6254 return events_id_cmp(a, b);
6255}
6256
6257static int events_system_cmp(const void *a, const void *b)
6258{
6259 struct tep_event * const * ea = a;
6260 struct tep_event * const * eb = b;
6261 int res;
6262
6263 res = strcmp((*ea)->system, (*eb)->system);
6264 if (res)
6265 return res;
6266
6267 res = strcmp((*ea)->name, (*eb)->name);
6268 if (res)
6269 return res;
6270
6271 return events_id_cmp(a, b);
6272}
6273
6274static struct tep_event **list_events_copy(struct tep_handle *tep)
6275{
6276 struct tep_event **events;
6277
6278 if (!tep)
6279 return NULL;
6280
6281 events = malloc(sizeof(*events) * (tep->nr_events + 1));
6282 if (!events)
6283 return NULL;
6284
6285 memcpy(events, tep->events, sizeof(*events) * tep->nr_events);
6286 events[tep->nr_events] = NULL;
6287 return events;
6288}
6289
6290static void list_events_sort(struct tep_event **events, int nr_events,
6291 enum tep_event_sort_type sort_type)
6292{
6293 int (*sort)(const void *a, const void *b);
6294
6295 switch (sort_type) {
6296 case TEP_EVENT_SORT_ID:
6297 sort = events_id_cmp;
6298 break;
6299 case TEP_EVENT_SORT_NAME:
6300 sort = events_name_cmp;
6301 break;
6302 case TEP_EVENT_SORT_SYSTEM:
6303 sort = events_system_cmp;
6304 break;
6305 default:
6306 sort = NULL;
6307 }
6308
6309 if (sort)
6310 qsort(events, nr_events, sizeof(*events), sort);
6311}
6312
6313/**
6314 * tep_list_events - Get events, sorted by given criteria.
6315 * @tep: a handle to the tep context
6316 * @sort_type: desired sort order of the events in the array
6317 *
6318 * Returns an array of pointers to all events, sorted by the given
6319 * @sort_type criteria. The last element of the array is NULL. The returned
6320 * memory must not be freed, it is managed by the library.
6321 * The function is not thread safe.
6322 */
6323struct tep_event **tep_list_events(struct tep_handle *tep,
6324 enum tep_event_sort_type sort_type)
6325{
6326 struct tep_event **events;
6327
6328 if (!tep)
6329 return NULL;
6330
6331 events = tep->sort_events;
6332 if (events && tep->last_type == sort_type)
6333 return events;
6334
6335 if (!events) {
6336 events = list_events_copy(tep);
6337 if (!events)
6338 return NULL;
6339
6340 tep->sort_events = events;
6341
6342 /* the internal events are sorted by id */
6343 if (sort_type == TEP_EVENT_SORT_ID) {
6344 tep->last_type = sort_type;
6345 return events;
6346 }
6347 }
6348
6349 list_events_sort(events, tep->nr_events, sort_type);
6350 tep->last_type = sort_type;
6351
6352 return events;
6353}
6354
6355
6356/**
6357 * tep_list_events_copy - Thread safe version of tep_list_events()
6358 * @tep: a handle to the tep context
6359 * @sort_type: desired sort order of the events in the array
6360 *
6361 * Returns an array of pointers to all events, sorted by the given
6362 * @sort_type criteria. The last element of the array is NULL. The returned
6363 * array is newly allocated inside the function and must be freed by the caller
6364 */
6365struct tep_event **tep_list_events_copy(struct tep_handle *tep,
6366 enum tep_event_sort_type sort_type)
6367{
6368 struct tep_event **events;
6369
6370 if (!tep)
6371 return NULL;
6372
6373 events = list_events_copy(tep);
6374 if (!events)
6375 return NULL;
6376
6377 /* the internal events are sorted by id */
6378 if (sort_type == TEP_EVENT_SORT_ID)
6379 return events;
6380
6381 list_events_sort(events, tep->nr_events, sort_type);
6382
6383 return events;
6384}
6385
6386static struct tep_format_field **
6387get_event_fields(const char *type, const char *name,
6388 int count, struct tep_format_field *list)
6389{
6390 struct tep_format_field **fields;
6391 struct tep_format_field *field;
6392 int i = 0;
6393
6394 fields = malloc(sizeof(*fields) * (count + 1));
6395 if (!fields)
6396 return NULL;
6397
6398 for (field = list; field; field = field->next) {
6399 fields[i++] = field;
6400 if (i == count + 1) {
6401 do_warning("event %s has more %s fields than specified",
6402 name, type);
6403 i--;
6404 break;
6405 }
6406 }
6407
6408 if (i != count)
6409 do_warning("event %s has less %s fields than specified",
6410 name, type);
6411
6412 fields[i] = NULL;
6413
6414 return fields;
6415}
6416
6417/**
6418 * tep_event_common_fields - return a list of common fields for an event
6419 * @event: the event to return the common fields of.
6420 *
6421 * Returns an allocated array of fields. The last item in the array is NULL.
6422 * The array must be freed with free().
6423 */
6424struct tep_format_field **tep_event_common_fields(struct tep_event *event)
6425{
6426 return get_event_fields("common", event->name,
6427 event->format.nr_common,
6428 event->format.common_fields);
6429}
6430
6431/**
6432 * tep_event_fields - return a list of event specific fields for an event
6433 * @event: the event to return the fields of.
6434 *
6435 * Returns an allocated array of fields. The last item in the array is NULL.
6436 * The array must be freed with free().
6437 */
6438struct tep_format_field **tep_event_fields(struct tep_event *event)
6439{
6440 return get_event_fields("event", event->name,
6441 event->format.nr_fields,
6442 event->format.fields);
6443}
6444
6445static void print_fields(struct trace_seq *s, struct tep_print_flag_sym *field)
6446{
6447 trace_seq_printf(s, "{ %s, %s }", field->value, field->str);
6448 if (field->next) {
6449 trace_seq_puts(s, ", ");
6450 print_fields(s, field->next);
6451 }
6452}
6453
6454/* for debugging */
6455static void print_args(struct tep_print_arg *args)
6456{
6457 int print_paren = 1;
6458 struct trace_seq s;
6459
6460 switch (args->type) {
6461 case TEP_PRINT_NULL:
6462 printf("null");
6463 break;
6464 case TEP_PRINT_ATOM:
6465 printf("%s", args->atom.atom);
6466 break;
6467 case TEP_PRINT_FIELD:
6468 printf("REC->%s", args->field.name);
6469 break;
6470 case TEP_PRINT_FLAGS:
6471 printf("__print_flags(");
6472 print_args(args->flags.field);
6473 printf(", %s, ", args->flags.delim);
6474 trace_seq_init(&s);
6475 print_fields(&s, args->flags.flags);
6476 trace_seq_do_printf(&s);
6477 trace_seq_destroy(&s);
6478 printf(")");
6479 break;
6480 case TEP_PRINT_SYMBOL:
6481 printf("__print_symbolic(");
6482 print_args(args->symbol.field);
6483 printf(", ");
6484 trace_seq_init(&s);
6485 print_fields(&s, args->symbol.symbols);
6486 trace_seq_do_printf(&s);
6487 trace_seq_destroy(&s);
6488 printf(")");
6489 break;
6490 case TEP_PRINT_HEX:
6491 printf("__print_hex(");
6492 print_args(args->hex.field);
6493 printf(", ");
6494 print_args(args->hex.size);
6495 printf(")");
6496 break;
6497 case TEP_PRINT_HEX_STR:
6498 printf("__print_hex_str(");
6499 print_args(args->hex.field);
6500 printf(", ");
6501 print_args(args->hex.size);
6502 printf(")");
6503 break;
6504 case TEP_PRINT_INT_ARRAY:
6505 printf("__print_array(");
6506 print_args(args->int_array.field);
6507 printf(", ");
6508 print_args(args->int_array.count);
6509 printf(", ");
6510 print_args(args->int_array.el_size);
6511 printf(")");
6512 break;
6513 case TEP_PRINT_STRING:
6514 case TEP_PRINT_BSTRING:
6515 printf("__get_str(%s)", args->string.string);
6516 break;
6517 case TEP_PRINT_BITMASK:
6518 printf("__get_bitmask(%s)", args->bitmask.bitmask);
6519 break;
6520 case TEP_PRINT_TYPE:
6521 printf("(%s)", args->typecast.type);
6522 print_args(args->typecast.item);
6523 break;
6524 case TEP_PRINT_OP:
6525 if (strcmp(args->op.op, ":") == 0)
6526 print_paren = 0;
6527 if (print_paren)
6528 printf("(");
6529 print_args(args->op.left);
6530 printf(" %s ", args->op.op);
6531 print_args(args->op.right);
6532 if (print_paren)
6533 printf(")");
6534 break;
6535 default:
6536 /* we should warn... */
6537 return;
6538 }
6539 if (args->next) {
6540 printf("\n");
6541 print_args(args->next);
6542 }
6543}
6544
6545static void parse_header_field(const char *field,
6546 int *offset, int *size, int mandatory)
6547{
6548 unsigned long long save_input_buf_ptr;
6549 unsigned long long save_input_buf_siz;
6550 char *token;
6551 int type;
6552
6553 save_input_buf_ptr = input_buf_ptr;
6554 save_input_buf_siz = input_buf_siz;
6555
6556 if (read_expected(TEP_EVENT_ITEM, "field") < 0)
6557 return;
6558 if (read_expected(TEP_EVENT_OP, ":") < 0)
6559 return;
6560
6561 /* type */
6562 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
6563 goto fail;
6564 free_token(token);
6565
6566 /*
6567 * If this is not a mandatory field, then test it first.
6568 */
6569 if (mandatory) {
6570 if (read_expected(TEP_EVENT_ITEM, field) < 0)
6571 return;
6572 } else {
6573 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
6574 goto fail;
6575 if (strcmp(token, field) != 0)
6576 goto discard;
6577 free_token(token);
6578 }
6579
6580 if (read_expected(TEP_EVENT_OP, ";") < 0)
6581 return;
6582 if (read_expected(TEP_EVENT_ITEM, "offset") < 0)
6583 return;
6584 if (read_expected(TEP_EVENT_OP, ":") < 0)
6585 return;
6586 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
6587 goto fail;
6588 *offset = atoi(token);
6589 free_token(token);
6590 if (read_expected(TEP_EVENT_OP, ";") < 0)
6591 return;
6592 if (read_expected(TEP_EVENT_ITEM, "size") < 0)
6593 return;
6594 if (read_expected(TEP_EVENT_OP, ":") < 0)
6595 return;
6596 if (read_expect_type(TEP_EVENT_ITEM, &token) < 0)
6597 goto fail;
6598 *size = atoi(token);
6599 free_token(token);
6600 if (read_expected(TEP_EVENT_OP, ";") < 0)
6601 return;
6602 type = read_token(&token);
6603 if (type != TEP_EVENT_NEWLINE) {
6604 /* newer versions of the kernel have a "signed" type */
6605 if (type != TEP_EVENT_ITEM)
6606 goto fail;
6607
6608 if (strcmp(token, "signed") != 0)
6609 goto fail;
6610
6611 free_token(token);
6612
6613 if (read_expected(TEP_EVENT_OP, ":") < 0)
6614 return;
6615
6616 if (read_expect_type(TEP_EVENT_ITEM, &token))
6617 goto fail;
6618
6619 free_token(token);
6620 if (read_expected(TEP_EVENT_OP, ";") < 0)
6621 return;
6622
6623 if (read_expect_type(TEP_EVENT_NEWLINE, &token))
6624 goto fail;
6625 }
6626 fail:
6627 free_token(token);
6628 return;
6629
6630 discard:
6631 input_buf_ptr = save_input_buf_ptr;
6632 input_buf_siz = save_input_buf_siz;
6633 *offset = 0;
6634 *size = 0;
6635 free_token(token);
6636}
6637
6638/**
6639 * tep_parse_header_page - parse the data stored in the header page
6640 * @tep: a handle to the trace event parser context
6641 * @buf: the buffer storing the header page format string
6642 * @size: the size of @buf
6643 * @long_size: the long size to use if there is no header
6644 *
6645 * This parses the header page format for information on the
6646 * ring buffer used. The @buf should be copied from
6647 *
6648 * /sys/kernel/debug/tracing/events/header_page
6649 */
6650int tep_parse_header_page(struct tep_handle *tep, char *buf, unsigned long size,
6651 int long_size)
6652{
6653 int ignore;
6654
6655 if (!size) {
6656 /*
6657 * Old kernels did not have header page info.
6658 * Sorry but we just use what we find here in user space.
6659 */
6660 tep->header_page_ts_size = sizeof(long long);
6661 tep->header_page_size_size = long_size;
6662 tep->header_page_data_offset = sizeof(long long) + long_size;
6663 tep->old_format = 1;
6664 return -1;
6665 }
6666 init_input_buf(buf, size);
6667
6668 parse_header_field("timestamp", &tep->header_page_ts_offset,
6669 &tep->header_page_ts_size, 1);
6670 parse_header_field("commit", &tep->header_page_size_offset,
6671 &tep->header_page_size_size, 1);
6672 parse_header_field("overwrite", &tep->header_page_overwrite,
6673 &ignore, 0);
6674 parse_header_field("data", &tep->header_page_data_offset,
6675 &tep->header_page_data_size, 1);
6676
6677 return 0;
6678}
6679
6680static int event_matches(struct tep_event *event,
6681 int id, const char *sys_name,
6682 const char *event_name)
6683{
6684 if (id >= 0 && id != event->id)
6685 return 0;
6686
6687 if (event_name && (strcmp(event_name, event->name) != 0))
6688 return 0;
6689
6690 if (sys_name && (strcmp(sys_name, event->system) != 0))
6691 return 0;
6692
6693 return 1;
6694}
6695
6696static void free_handler(struct event_handler *handle)
6697{
6698 free((void *)handle->sys_name);
6699 free((void *)handle->event_name);
6700 free(handle);
6701}
6702
6703static int find_event_handle(struct tep_handle *tep, struct tep_event *event)
6704{
6705 struct event_handler *handle, **next;
6706
6707 for (next = &tep->handlers; *next;
6708 next = &(*next)->next) {
6709 handle = *next;
6710 if (event_matches(event, handle->id,
6711 handle->sys_name,
6712 handle->event_name))
6713 break;
6714 }
6715
6716 if (!(*next))
6717 return 0;
6718
6719 pr_stat("overriding event (%d) %s:%s with new print handler",
6720 event->id, event->system, event->name);
6721
6722 event->handler = handle->func;
6723 event->context = handle->context;
6724
6725 *next = handle->next;
6726 free_handler(handle);
6727
6728 return 1;
6729}
6730
6731/**
6732 * parse_format - parse the event format
6733 * @buf: the buffer storing the event format string
6734 * @size: the size of @buf
6735 * @sys: the system the event belongs to
6736 *
6737 * This parses the event format and creates an event structure
6738 * to quickly parse raw data for a given event.
6739 *
6740 * These files currently come from:
6741 *
6742 * /sys/kernel/debug/tracing/events/.../.../format
6743 */
6744static enum tep_errno parse_format(struct tep_event **eventp,
6745 struct tep_handle *tep, const char *buf,
6746 unsigned long size, const char *sys)
6747{
6748 struct tep_event *event;
6749 int ret;
6750
6751 init_input_buf(buf, size);
6752
6753 *eventp = event = alloc_event();
6754 if (!event)
6755 return TEP_ERRNO__MEM_ALLOC_FAILED;
6756
6757 event->name = event_read_name();
6758 if (!event->name) {
6759 /* Bad event? */
6760 ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6761 goto event_alloc_failed;
6762 }
6763
6764 if (strcmp(sys, "ftrace") == 0) {
6765 event->flags |= TEP_EVENT_FL_ISFTRACE;
6766
6767 if (strcmp(event->name, "bprint") == 0)
6768 event->flags |= TEP_EVENT_FL_ISBPRINT;
6769 }
6770
6771 event->id = event_read_id();
6772 if (event->id < 0) {
6773 ret = TEP_ERRNO__READ_ID_FAILED;
6774 /*
6775 * This isn't an allocation error actually.
6776 * But as the ID is critical, just bail out.
6777 */
6778 goto event_alloc_failed;
6779 }
6780
6781 event->system = strdup(sys);
6782 if (!event->system) {
6783 ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6784 goto event_alloc_failed;
6785 }
6786
6787 /* Add tep to event so that it can be referenced */
6788 event->tep = tep;
6789
6790 ret = event_read_format(event);
6791 if (ret < 0) {
6792 ret = TEP_ERRNO__READ_FORMAT_FAILED;
6793 goto event_parse_failed;
6794 }
6795
6796 /*
6797 * If the event has an override, don't print warnings if the event
6798 * print format fails to parse.
6799 */
6800 if (tep && find_event_handle(tep, event))
6801 show_warning = 0;
6802
6803 ret = event_read_print(event);
6804 show_warning = 1;
6805
6806 if (ret < 0) {
6807 ret = TEP_ERRNO__READ_PRINT_FAILED;
6808 goto event_parse_failed;
6809 }
6810
6811 if (!ret && (event->flags & TEP_EVENT_FL_ISFTRACE)) {
6812 struct tep_format_field *field;
6813 struct tep_print_arg *arg, **list;
6814
6815 /* old ftrace had no args */
6816 list = &event->print_fmt.args;
6817 for (field = event->format.fields; field; field = field->next) {
6818 arg = alloc_arg();
6819 if (!arg) {
6820 event->flags |= TEP_EVENT_FL_FAILED;
6821 return TEP_ERRNO__OLD_FTRACE_ARG_FAILED;
6822 }
6823 arg->type = TEP_PRINT_FIELD;
6824 arg->field.name = strdup(field->name);
6825 if (!arg->field.name) {
6826 event->flags |= TEP_EVENT_FL_FAILED;
6827 free_arg(arg);
6828 return TEP_ERRNO__OLD_FTRACE_ARG_FAILED;
6829 }
6830 arg->field.field = field;
6831 *list = arg;
6832 list = &arg->next;
6833 }
6834 }
6835
6836 if (!(event->flags & TEP_EVENT_FL_ISBPRINT))
6837 event->print_fmt.print_cache = parse_args(event,
6838 event->print_fmt.format,
6839 event->print_fmt.args);
6840
6841 return 0;
6842
6843 event_parse_failed:
6844 event->flags |= TEP_EVENT_FL_FAILED;
6845 return ret;
6846
6847 event_alloc_failed:
6848 free(event->system);
6849 free(event->name);
6850 free(event);
6851 *eventp = NULL;
6852 return ret;
6853}
6854
6855static enum tep_errno
6856__parse_event(struct tep_handle *tep,
6857 struct tep_event **eventp,
6858 const char *buf, unsigned long size,
6859 const char *sys)
6860{
6861 int ret = parse_format(eventp, tep, buf, size, sys);
6862 struct tep_event *event = *eventp;
6863
6864 if (event == NULL)
6865 return ret;
6866
6867 if (tep && add_event(tep, event)) {
6868 ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6869 goto event_add_failed;
6870 }
6871
6872#define PRINT_ARGS 0
6873 if (PRINT_ARGS && event->print_fmt.args)
6874 print_args(event->print_fmt.args);
6875
6876 return 0;
6877
6878event_add_failed:
6879 free_tep_event(event);
6880 return ret;
6881}
6882
6883/**
6884 * tep_parse_format - parse the event format
6885 * @tep: a handle to the trace event parser context
6886 * @eventp: returned format
6887 * @buf: the buffer storing the event format string
6888 * @size: the size of @buf
6889 * @sys: the system the event belongs to
6890 *
6891 * This parses the event format and creates an event structure
6892 * to quickly parse raw data for a given event.
6893 *
6894 * These files currently come from:
6895 *
6896 * /sys/kernel/debug/tracing/events/.../.../format
6897 */
6898enum tep_errno tep_parse_format(struct tep_handle *tep,
6899 struct tep_event **eventp,
6900 const char *buf,
6901 unsigned long size, const char *sys)
6902{
6903 return __parse_event(tep, eventp, buf, size, sys);
6904}
6905
6906/**
6907 * tep_parse_event - parse the event format
6908 * @tep: a handle to the trace event parser context
6909 * @buf: the buffer storing the event format string
6910 * @size: the size of @buf
6911 * @sys: the system the event belongs to
6912 *
6913 * This parses the event format and creates an event structure
6914 * to quickly parse raw data for a given event.
6915 *
6916 * These files currently come from:
6917 *
6918 * /sys/kernel/debug/tracing/events/.../.../format
6919 */
6920enum tep_errno tep_parse_event(struct tep_handle *tep, const char *buf,
6921 unsigned long size, const char *sys)
6922{
6923 struct tep_event *event = NULL;
6924 return __parse_event(tep, &event, buf, size, sys);
6925}
6926
6927int get_field_val(struct trace_seq *s, struct tep_format_field *field,
6928 const char *name, struct tep_record *record,
6929 unsigned long long *val, int err)
6930{
6931 if (!field) {
6932 if (err)
6933 trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6934 return -1;
6935 }
6936
6937 if (tep_read_number_field(field, record->data, val)) {
6938 if (err)
6939 trace_seq_printf(s, " %s=INVALID", name);
6940 return -1;
6941 }
6942
6943 return 0;
6944}
6945
6946/**
6947 * tep_get_field_raw - return the raw pointer into the data field
6948 * @s: The seq to print to on error
6949 * @event: the event that the field is for
6950 * @name: The name of the field
6951 * @record: The record with the field name.
6952 * @len: place to store the field length.
6953 * @err: print default error if failed.
6954 *
6955 * Returns a pointer into record->data of the field and places
6956 * the length of the field in @len.
6957 *
6958 * On failure, it returns NULL.
6959 */
6960void *tep_get_field_raw(struct trace_seq *s, struct tep_event *event,
6961 const char *name, struct tep_record *record,
6962 int *len, int err)
6963{
6964 struct tep_format_field *field;
6965 void *data = record->data;
6966 unsigned offset;
6967 int dummy;
6968
6969 if (!event)
6970 return NULL;
6971
6972 field = tep_find_field(event, name);
6973
6974 if (!field) {
6975 if (err)
6976 trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6977 return NULL;
6978 }
6979
6980 /* Allow @len to be NULL */
6981 if (!len)
6982 len = &dummy;
6983
6984 offset = field->offset;
6985 if (field->flags & TEP_FIELD_IS_DYNAMIC) {
6986 offset = tep_read_number(event->tep,
6987 data + offset, field->size);
6988 *len = offset >> 16;
6989 offset &= 0xffff;
6990 } else
6991 *len = field->size;
6992
6993 return data + offset;
6994}
6995
6996/**
6997 * tep_get_field_val - find a field and return its value
6998 * @s: The seq to print to on error
6999 * @event: the event that the field is for
7000 * @name: The name of the field
7001 * @record: The record with the field name.
7002 * @val: place to store the value of the field.
7003 * @err: print default error if failed.
7004 *
7005 * Returns 0 on success -1 on field not found.
7006 */
7007int tep_get_field_val(struct trace_seq *s, struct tep_event *event,
7008 const char *name, struct tep_record *record,
7009 unsigned long long *val, int err)
7010{
7011 struct tep_format_field *field;
7012
7013 if (!event)
7014 return -1;
7015
7016 field = tep_find_field(event, name);
7017
7018 return get_field_val(s, field, name, record, val, err);
7019}
7020
7021/**
7022 * tep_get_common_field_val - find a common field and return its value
7023 * @s: The seq to print to on error
7024 * @event: the event that the field is for
7025 * @name: The name of the field
7026 * @record: The record with the field name.
7027 * @val: place to store the value of the field.
7028 * @err: print default error if failed.
7029 *
7030 * Returns 0 on success -1 on field not found.
7031 */
7032int tep_get_common_field_val(struct trace_seq *s, struct tep_event *event,
7033 const char *name, struct tep_record *record,
7034 unsigned long long *val, int err)
7035{
7036 struct tep_format_field *field;
7037
7038 if (!event)
7039 return -1;
7040
7041 field = tep_find_common_field(event, name);
7042
7043 return get_field_val(s, field, name, record, val, err);
7044}
7045
7046/**
7047 * tep_get_any_field_val - find a any field and return its value
7048 * @s: The seq to print to on error
7049 * @event: the event that the field is for
7050 * @name: The name of the field
7051 * @record: The record with the field name.
7052 * @val: place to store the value of the field.
7053 * @err: print default error if failed.
7054 *
7055 * Returns 0 on success -1 on field not found.
7056 */
7057int tep_get_any_field_val(struct trace_seq *s, struct tep_event *event,
7058 const char *name, struct tep_record *record,
7059 unsigned long long *val, int err)
7060{
7061 struct tep_format_field *field;
7062
7063 if (!event)
7064 return -1;
7065
7066 field = tep_find_any_field(event, name);
7067
7068 return get_field_val(s, field, name, record, val, err);
7069}
7070
7071/**
7072 * tep_print_num_field - print a field and a format
7073 * @s: The seq to print to
7074 * @fmt: The printf format to print the field with.
7075 * @event: the event that the field is for
7076 * @name: The name of the field
7077 * @record: The record with the field name.
7078 * @err: print default error if failed.
7079 *
7080 * Returns positive value on success, negative in case of an error,
7081 * or 0 if buffer is full.
7082 */
7083int tep_print_num_field(struct trace_seq *s, const char *fmt,
7084 struct tep_event *event, const char *name,
7085 struct tep_record *record, int err)
7086{
7087 struct tep_format_field *field = tep_find_field(event, name);
7088 unsigned long long val;
7089
7090 if (!field)
7091 goto failed;
7092
7093 if (tep_read_number_field(field, record->data, &val))
7094 goto failed;
7095
7096 return trace_seq_printf(s, fmt, val);
7097
7098 failed:
7099 if (err)
7100 trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
7101 return -1;
7102}
7103
7104/**
7105 * tep_print_func_field - print a field and a format for function pointers
7106 * @s: The seq to print to
7107 * @fmt: The printf format to print the field with.
7108 * @event: the event that the field is for
7109 * @name: The name of the field
7110 * @record: The record with the field name.
7111 * @err: print default error if failed.
7112 *
7113 * Returns positive value on success, negative in case of an error,
7114 * or 0 if buffer is full.
7115 */
7116int tep_print_func_field(struct trace_seq *s, const char *fmt,
7117 struct tep_event *event, const char *name,
7118 struct tep_record *record, int err)
7119{
7120 struct tep_format_field *field = tep_find_field(event, name);
7121 struct tep_handle *tep = event->tep;
7122 unsigned long long val;
7123 struct func_map *func;
7124 char tmp[128];
7125
7126 if (!field)
7127 goto failed;
7128
7129 if (tep_read_number_field(field, record->data, &val))
7130 goto failed;
7131
7132 func = find_func(tep, val);
7133
7134 if (func)
7135 snprintf(tmp, 128, "%s/0x%llx", func->func, func->addr - val);
7136 else
7137 sprintf(tmp, "0x%08llx", val);
7138
7139 return trace_seq_printf(s, fmt, tmp);
7140
7141 failed:
7142 if (err)
7143 trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
7144 return -1;
7145}
7146
7147static void free_func_handle(struct tep_function_handler *func)
7148{
7149 struct func_params *params;
7150
7151 free(func->name);
7152
7153 while (func->params) {
7154 params = func->params;
7155 func->params = params->next;
7156 free(params);
7157 }
7158
7159 free(func);
7160}
7161
7162/**
7163 * tep_register_print_function - register a helper function
7164 * @tep: a handle to the trace event parser context
7165 * @func: the function to process the helper function
7166 * @ret_type: the return type of the helper function
7167 * @name: the name of the helper function
7168 * @parameters: A list of enum tep_func_arg_type
7169 *
7170 * Some events may have helper functions in the print format arguments.
7171 * This allows a plugin to dynamically create a way to process one
7172 * of these functions.
7173 *
7174 * The @parameters is a variable list of tep_func_arg_type enums that
7175 * must end with TEP_FUNC_ARG_VOID.
7176 */
7177int tep_register_print_function(struct tep_handle *tep,
7178 tep_func_handler func,
7179 enum tep_func_arg_type ret_type,
7180 char *name, ...)
7181{
7182 struct tep_function_handler *func_handle;
7183 struct func_params **next_param;
7184 struct func_params *param;
7185 enum tep_func_arg_type type;
7186 va_list ap;
7187 int ret;
7188
7189 func_handle = find_func_handler(tep, name);
7190 if (func_handle) {
7191 /*
7192 * This is most like caused by the users own
7193 * plugins updating the function. This overrides the
7194 * system defaults.
7195 */
7196 pr_stat("override of function helper '%s'", name);
7197 remove_func_handler(tep, name);
7198 }
7199
7200 func_handle = calloc(1, sizeof(*func_handle));
7201 if (!func_handle) {
7202 do_warning("Failed to allocate function handler");
7203 return TEP_ERRNO__MEM_ALLOC_FAILED;
7204 }
7205
7206 func_handle->ret_type = ret_type;
7207 func_handle->name = strdup(name);
7208 func_handle->func = func;
7209 if (!func_handle->name) {
7210 do_warning("Failed to allocate function name");
7211 free(func_handle);
7212 return TEP_ERRNO__MEM_ALLOC_FAILED;
7213 }
7214
7215 next_param = &(func_handle->params);
7216 va_start(ap, name);
7217 for (;;) {
7218 type = va_arg(ap, enum tep_func_arg_type);
7219 if (type == TEP_FUNC_ARG_VOID)
7220 break;
7221
7222 if (type >= TEP_FUNC_ARG_MAX_TYPES) {
7223 do_warning("Invalid argument type %d", type);
7224 ret = TEP_ERRNO__INVALID_ARG_TYPE;
7225 goto out_free;
7226 }
7227
7228 param = malloc(sizeof(*param));
7229 if (!param) {
7230 do_warning("Failed to allocate function param");
7231 ret = TEP_ERRNO__MEM_ALLOC_FAILED;
7232 goto out_free;
7233 }
7234 param->type = type;
7235 param->next = NULL;
7236
7237 *next_param = param;
7238 next_param = &(param->next);
7239
7240 func_handle->nr_args++;
7241 }
7242 va_end(ap);
7243
7244 func_handle->next = tep->func_handlers;
7245 tep->func_handlers = func_handle;
7246
7247 return 0;
7248 out_free:
7249 va_end(ap);
7250 free_func_handle(func_handle);
7251 return ret;
7252}
7253
7254/**
7255 * tep_unregister_print_function - unregister a helper function
7256 * @tep: a handle to the trace event parser context
7257 * @func: the function to process the helper function
7258 * @name: the name of the helper function
7259 *
7260 * This function removes existing print handler for function @name.
7261 *
7262 * Returns 0 if the handler was removed successully, -1 otherwise.
7263 */
7264int tep_unregister_print_function(struct tep_handle *tep,
7265 tep_func_handler func, char *name)
7266{
7267 struct tep_function_handler *func_handle;
7268
7269 func_handle = find_func_handler(tep, name);
7270 if (func_handle && func_handle->func == func) {
7271 remove_func_handler(tep, name);
7272 return 0;
7273 }
7274 return -1;
7275}
7276
7277static struct tep_event *search_event(struct tep_handle *tep, int id,
7278 const char *sys_name,
7279 const char *event_name)
7280{
7281 struct tep_event *event;
7282
7283 if (id >= 0) {
7284 /* search by id */
7285 event = tep_find_event(tep, id);
7286 if (!event)
7287 return NULL;
7288 if (event_name && (strcmp(event_name, event->name) != 0))
7289 return NULL;
7290 if (sys_name && (strcmp(sys_name, event->system) != 0))
7291 return NULL;
7292 } else {
7293 event = tep_find_event_by_name(tep, sys_name, event_name);
7294 if (!event)
7295 return NULL;
7296 }
7297 return event;
7298}
7299
7300/**
7301 * tep_register_event_handler - register a way to parse an event
7302 * @tep: a handle to the trace event parser context
7303 * @id: the id of the event to register
7304 * @sys_name: the system name the event belongs to
7305 * @event_name: the name of the event
7306 * @func: the function to call to parse the event information
7307 * @context: the data to be passed to @func
7308 *
7309 * This function allows a developer to override the parsing of
7310 * a given event. If for some reason the default print format
7311 * is not sufficient, this function will register a function
7312 * for an event to be used to parse the data instead.
7313 *
7314 * If @id is >= 0, then it is used to find the event.
7315 * else @sys_name and @event_name are used.
7316 *
7317 * Returns:
7318 * TEP_REGISTER_SUCCESS_OVERWRITE if an existing handler is overwritten
7319 * TEP_REGISTER_SUCCESS if a new handler is registered successfully
7320 * negative TEP_ERRNO_... in case of an error
7321 *
7322 */
7323int tep_register_event_handler(struct tep_handle *tep, int id,
7324 const char *sys_name, const char *event_name,
7325 tep_event_handler_func func, void *context)
7326{
7327 struct tep_event *event;
7328 struct event_handler *handle;
7329
7330 event = search_event(tep, id, sys_name, event_name);
7331 if (event == NULL)
7332 goto not_found;
7333
7334 pr_stat("overriding event (%d) %s:%s with new print handler",
7335 event->id, event->system, event->name);
7336
7337 event->handler = func;
7338 event->context = context;
7339 return TEP_REGISTER_SUCCESS_OVERWRITE;
7340
7341 not_found:
7342 /* Save for later use. */
7343 handle = calloc(1, sizeof(*handle));
7344 if (!handle) {
7345 do_warning("Failed to allocate event handler");
7346 return TEP_ERRNO__MEM_ALLOC_FAILED;
7347 }
7348
7349 handle->id = id;
7350 if (event_name)
7351 handle->event_name = strdup(event_name);
7352 if (sys_name)
7353 handle->sys_name = strdup(sys_name);
7354
7355 if ((event_name && !handle->event_name) ||
7356 (sys_name && !handle->sys_name)) {
7357 do_warning("Failed to allocate event/sys name");
7358 free((void *)handle->event_name);
7359 free((void *)handle->sys_name);
7360 free(handle);
7361 return TEP_ERRNO__MEM_ALLOC_FAILED;
7362 }
7363
7364 handle->func = func;
7365 handle->next = tep->handlers;
7366 tep->handlers = handle;
7367 handle->context = context;
7368
7369 return TEP_REGISTER_SUCCESS;
7370}
7371
7372static int handle_matches(struct event_handler *handler, int id,
7373 const char *sys_name, const char *event_name,
7374 tep_event_handler_func func, void *context)
7375{
7376 if (id >= 0 && id != handler->id)
7377 return 0;
7378
7379 if (event_name && (strcmp(event_name, handler->event_name) != 0))
7380 return 0;
7381
7382 if (sys_name && (strcmp(sys_name, handler->sys_name) != 0))
7383 return 0;
7384
7385 if (func != handler->func || context != handler->context)
7386 return 0;
7387
7388 return 1;
7389}
7390
7391/**
7392 * tep_unregister_event_handler - unregister an existing event handler
7393 * @tep: a handle to the trace event parser context
7394 * @id: the id of the event to unregister
7395 * @sys_name: the system name the handler belongs to
7396 * @event_name: the name of the event handler
7397 * @func: the function to call to parse the event information
7398 * @context: the data to be passed to @func
7399 *
7400 * This function removes existing event handler (parser).
7401 *
7402 * If @id is >= 0, then it is used to find the event.
7403 * else @sys_name and @event_name are used.
7404 *
7405 * Returns 0 if handler was removed successfully, -1 if event was not found.
7406 */
7407int tep_unregister_event_handler(struct tep_handle *tep, int id,
7408 const char *sys_name, const char *event_name,
7409 tep_event_handler_func func, void *context)
7410{
7411 struct tep_event *event;
7412 struct event_handler *handle;
7413 struct event_handler **next;
7414
7415 event = search_event(tep, id, sys_name, event_name);
7416 if (event == NULL)
7417 goto not_found;
7418
7419 if (event->handler == func && event->context == context) {
7420 pr_stat("removing override handler for event (%d) %s:%s. Going back to default handler.",
7421 event->id, event->system, event->name);
7422
7423 event->handler = NULL;
7424 event->context = NULL;
7425 return 0;
7426 }
7427
7428not_found:
7429 for (next = &tep->handlers; *next; next = &(*next)->next) {
7430 handle = *next;
7431 if (handle_matches(handle, id, sys_name, event_name,
7432 func, context))
7433 break;
7434 }
7435
7436 if (!(*next))
7437 return -1;
7438
7439 *next = handle->next;
7440 free_handler(handle);
7441
7442 return 0;
7443}
7444
7445/**
7446 * tep_alloc - create a tep handle
7447 */
7448struct tep_handle *tep_alloc(void)
7449{
7450 struct tep_handle *tep = calloc(1, sizeof(*tep));
7451
7452 if (tep) {
7453 tep->ref_count = 1;
7454 tep->host_bigendian = tep_is_bigendian();
7455 }
7456
7457 return tep;
7458}
7459
7460void tep_ref(struct tep_handle *tep)
7461{
7462 tep->ref_count++;
7463}
7464
7465int tep_get_ref(struct tep_handle *tep)
7466{
7467 if (tep)
7468 return tep->ref_count;
7469 return 0;
7470}
7471
7472__hidden void free_tep_format_field(struct tep_format_field *field)
7473{
7474 free(field->type);
7475 if (field->alias != field->name)
7476 free(field->alias);
7477 free(field->name);
7478 free(field);
7479}
7480
7481static void free_format_fields(struct tep_format_field *field)
7482{
7483 struct tep_format_field *next;
7484
7485 while (field) {
7486 next = field->next;
7487 free_tep_format_field(field);
7488 field = next;
7489 }
7490}
7491
7492static void free_formats(struct tep_format *format)
7493{
7494 free_format_fields(format->common_fields);
7495 free_format_fields(format->fields);
7496}
7497
7498__hidden void free_tep_event(struct tep_event *event)
7499{
7500 free(event->name);
7501 free(event->system);
7502
7503 free_formats(&event->format);
7504
7505 free(event->print_fmt.format);
7506 free_args(event->print_fmt.args);
7507 free_parse_args(event->print_fmt.print_cache);
7508 free(event);
7509}
7510
7511/**
7512 * tep_free - free a tep handle
7513 * @tep: the tep handle to free
7514 */
7515void tep_free(struct tep_handle *tep)
7516{
7517 struct cmdline_list *cmdlist, *cmdnext;
7518 struct func_list *funclist, *funcnext;
7519 struct printk_list *printklist, *printknext;
7520 struct tep_function_handler *func_handler;
7521 struct event_handler *handle;
7522 int i;
7523
7524 if (!tep)
7525 return;
7526
7527 cmdlist = tep->cmdlist;
7528 funclist = tep->funclist;
7529 printklist = tep->printklist;
7530
7531 tep->ref_count--;
7532 if (tep->ref_count)
7533 return;
7534
7535 if (tep->cmdlines) {
7536 for (i = 0; i < tep->cmdline_count; i++)
7537 free(tep->cmdlines[i].comm);
7538 free(tep->cmdlines);
7539 }
7540
7541 while (cmdlist) {
7542 cmdnext = cmdlist->next;
7543 free(cmdlist->comm);
7544 free(cmdlist);
7545 cmdlist = cmdnext;
7546 }
7547
7548 if (tep->func_map) {
7549 for (i = 0; i < (int)tep->func_count; i++) {
7550 free(tep->func_map[i].func);
7551 free(tep->func_map[i].mod);
7552 }
7553 free(tep->func_map);
7554 }
7555
7556 while (funclist) {
7557 funcnext = funclist->next;
7558 free(funclist->func);
7559 free(funclist->mod);
7560 free(funclist);
7561 funclist = funcnext;
7562 }
7563
7564 while (tep->func_handlers) {
7565 func_handler = tep->func_handlers;
7566 tep->func_handlers = func_handler->next;
7567 free_func_handle(func_handler);
7568 }
7569
7570 if (tep->printk_map) {
7571 for (i = 0; i < (int)tep->printk_count; i++)
7572 free(tep->printk_map[i].printk);
7573 free(tep->printk_map);
7574 }
7575
7576 while (printklist) {
7577 printknext = printklist->next;
7578 free(printklist->printk);
7579 free(printklist);
7580 printklist = printknext;
7581 }
7582
7583 for (i = 0; i < tep->nr_events; i++)
7584 free_tep_event(tep->events[i]);
7585
7586 while (tep->handlers) {
7587 handle = tep->handlers;
7588 tep->handlers = handle->next;
7589 free_handler(handle);
7590 }
7591
7592 free(tep->events);
7593 free(tep->sort_events);
7594 free(tep->func_resolver);
7595 free_tep_plugin_paths(tep);
7596
7597 free(tep);
7598}
7599
7600void tep_unref(struct tep_handle *tep)
7601{
7602 tep_free(tep);
7603}