Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v4.6
 
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *		make semaphores SMP safe
  10 *  1998-11-19	Implemented schedule_timeout() and related stuff
  11 *		by Andrea Arcangeli
  12 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *		hybrid priority-list and round-robin design with
  14 *		an array-switch method of distributing timeslices
  15 *		and per-CPU runqueues.  Cleanups and useful suggestions
  16 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03	Interactivity tuning by Con Kolivas.
  18 *  2004-04-02	Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/kasan.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
  32#include <linux/nmi.h>
  33#include <linux/init.h>
  34#include <linux/uaccess.h>
  35#include <linux/highmem.h>
  36#include <asm/mmu_context.h>
  37#include <linux/interrupt.h>
  38#include <linux/capability.h>
  39#include <linux/completion.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/debug_locks.h>
  42#include <linux/perf_event.h>
  43#include <linux/security.h>
  44#include <linux/notifier.h>
  45#include <linux/profile.h>
  46#include <linux/freezer.h>
  47#include <linux/vmalloc.h>
  48#include <linux/blkdev.h>
  49#include <linux/delay.h>
  50#include <linux/pid_namespace.h>
  51#include <linux/smp.h>
  52#include <linux/threads.h>
  53#include <linux/timer.h>
  54#include <linux/rcupdate.h>
  55#include <linux/cpu.h>
  56#include <linux/cpuset.h>
  57#include <linux/percpu.h>
  58#include <linux/proc_fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/sysctl.h>
  61#include <linux/syscalls.h>
  62#include <linux/times.h>
  63#include <linux/tsacct_kern.h>
  64#include <linux/kprobes.h>
  65#include <linux/delayacct.h>
  66#include <linux/unistd.h>
  67#include <linux/pagemap.h>
  68#include <linux/hrtimer.h>
  69#include <linux/tick.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/context_tracking.h>
  75#include <linux/compiler.h>
  76#include <linux/frame.h>
  77
  78#include <asm/switch_to.h>
  79#include <asm/tlb.h>
  80#include <asm/irq_regs.h>
  81#include <asm/mutex.h>
  82#ifdef CONFIG_PARAVIRT
  83#include <asm/paravirt.h>
  84#endif
  85
  86#include "sched.h"
  87#include "../workqueue_internal.h"
  88#include "../smpboot.h"
  89
  90#define CREATE_TRACE_POINTS
  91#include <trace/events/sched.h>
  92
  93DEFINE_MUTEX(sched_domains_mutex);
  94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  95
  96static void update_rq_clock_task(struct rq *rq, s64 delta);
 
  97
  98void update_rq_clock(struct rq *rq)
  99{
 100	s64 delta;
 101
 102	lockdep_assert_held(&rq->lock);
 
 103
 104	if (rq->clock_skip_update & RQCF_ACT_SKIP)
 105		return;
 
 
 
 
 
 
 
 
 
 
 
 106
 107	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 108	if (delta < 0)
 109		return;
 110	rq->clock += delta;
 111	update_rq_clock_task(rq, delta);
 112}
 113
 
 114/*
 115 * Debugging: various feature bits
 
 
 
 
 116 */
 117
 118#define SCHED_FEAT(name, enabled)	\
 119	(1UL << __SCHED_FEAT_##name) * enabled |
 120
 121const_debug unsigned int sysctl_sched_features =
 122#include "features.h"
 123	0;
 124
 125#undef SCHED_FEAT
 
 126
 127/*
 128 * Number of tasks to iterate in a single balance run.
 129 * Limited because this is done with IRQs disabled.
 130 */
 131const_debug unsigned int sysctl_sched_nr_migrate = 32;
 132
 133/*
 134 * period over which we average the RT time consumption, measured
 135 * in ms.
 136 *
 137 * default: 1s
 138 */
 139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 140
 141/*
 142 * period over which we measure -rt task cpu usage in us.
 143 * default: 1s
 144 */
 145unsigned int sysctl_sched_rt_period = 1000000;
 146
 147__read_mostly int scheduler_running;
 148
 149/*
 150 * part of the period that we allow rt tasks to run in us.
 151 * default: 0.95s
 152 */
 153int sysctl_sched_rt_runtime = 950000;
 154
 155/* cpus with isolated domains */
 156cpumask_var_t cpu_isolated_map;
 157
 158/*
 159 * this_rq_lock - lock this runqueue and disable interrupts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160 */
 161static struct rq *this_rq_lock(void)
 162	__acquires(rq->lock)
 163{
 164	struct rq *rq;
 165
 166	local_irq_disable();
 167	rq = this_rq();
 168	raw_spin_lock(&rq->lock);
 169
 170	return rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171}
 172
 173#ifdef CONFIG_SCHED_HRTICK
 174/*
 175 * Use HR-timers to deliver accurate preemption points.
 176 */
 177
 178static void hrtick_clear(struct rq *rq)
 179{
 180	if (hrtimer_active(&rq->hrtick_timer))
 181		hrtimer_cancel(&rq->hrtick_timer);
 182}
 183
 184/*
 185 * High-resolution timer tick.
 186 * Runs from hardirq context with interrupts disabled.
 187 */
 188static enum hrtimer_restart hrtick(struct hrtimer *timer)
 189{
 190	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 
 191
 192	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 193
 194	raw_spin_lock(&rq->lock);
 195	update_rq_clock(rq);
 196	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 197	raw_spin_unlock(&rq->lock);
 198
 199	return HRTIMER_NORESTART;
 200}
 201
 202#ifdef CONFIG_SMP
 203
 204static void __hrtick_restart(struct rq *rq)
 205{
 206	struct hrtimer *timer = &rq->hrtick_timer;
 207
 208	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 209}
 210
 211/*
 212 * called from hardirq (IPI) context
 213 */
 214static void __hrtick_start(void *arg)
 215{
 216	struct rq *rq = arg;
 
 217
 218	raw_spin_lock(&rq->lock);
 219	__hrtick_restart(rq);
 220	rq->hrtick_csd_pending = 0;
 221	raw_spin_unlock(&rq->lock);
 222}
 223
 224/*
 225 * Called to set the hrtick timer state.
 226 *
 227 * called with rq->lock held and irqs disabled
 228 */
 229void hrtick_start(struct rq *rq, u64 delay)
 230{
 231	struct hrtimer *timer = &rq->hrtick_timer;
 232	ktime_t time;
 233	s64 delta;
 234
 235	/*
 236	 * Don't schedule slices shorter than 10000ns, that just
 237	 * doesn't make sense and can cause timer DoS.
 238	 */
 239	delta = max_t(s64, delay, 10000LL);
 240	time = ktime_add_ns(timer->base->get_time(), delta);
 241
 242	hrtimer_set_expires(timer, time);
 243
 244	if (rq == this_rq()) {
 245		__hrtick_restart(rq);
 246	} else if (!rq->hrtick_csd_pending) {
 247		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 248		rq->hrtick_csd_pending = 1;
 249	}
 250}
 251
 252static int
 253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 254{
 255	int cpu = (int)(long)hcpu;
 256
 257	switch (action) {
 258	case CPU_UP_CANCELED:
 259	case CPU_UP_CANCELED_FROZEN:
 260	case CPU_DOWN_PREPARE:
 261	case CPU_DOWN_PREPARE_FROZEN:
 262	case CPU_DEAD:
 263	case CPU_DEAD_FROZEN:
 264		hrtick_clear(cpu_rq(cpu));
 265		return NOTIFY_OK;
 266	}
 267
 268	return NOTIFY_DONE;
 269}
 270
 271static __init void init_hrtick(void)
 272{
 273	hotcpu_notifier(hotplug_hrtick, 0);
 274}
 275#else
 276/*
 277 * Called to set the hrtick timer state.
 278 *
 279 * called with rq->lock held and irqs disabled
 280 */
 281void hrtick_start(struct rq *rq, u64 delay)
 282{
 283	/*
 284	 * Don't schedule slices shorter than 10000ns, that just
 285	 * doesn't make sense. Rely on vruntime for fairness.
 286	 */
 287	delay = max_t(u64, delay, 10000LL);
 288	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 289		      HRTIMER_MODE_REL_PINNED);
 290}
 291
 292static inline void init_hrtick(void)
 293{
 294}
 295#endif /* CONFIG_SMP */
 296
 297static void init_rq_hrtick(struct rq *rq)
 298{
 299#ifdef CONFIG_SMP
 300	rq->hrtick_csd_pending = 0;
 301
 302	rq->hrtick_csd.flags = 0;
 303	rq->hrtick_csd.func = __hrtick_start;
 304	rq->hrtick_csd.info = rq;
 305#endif
 306
 307	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 308	rq->hrtick_timer.function = hrtick;
 309}
 310#else	/* CONFIG_SCHED_HRTICK */
 311static inline void hrtick_clear(struct rq *rq)
 312{
 313}
 314
 315static inline void init_rq_hrtick(struct rq *rq)
 316{
 317}
 318
 319static inline void init_hrtick(void)
 320{
 321}
 322#endif	/* CONFIG_SCHED_HRTICK */
 323
 324/*
 325 * cmpxchg based fetch_or, macro so it works for different integer types
 326 */
 327#define fetch_or(ptr, mask)						\
 328	({								\
 329		typeof(ptr) _ptr = (ptr);				\
 330		typeof(mask) _mask = (mask);				\
 331		typeof(*_ptr) _old, _val = *_ptr;			\
 332									\
 333		for (;;) {						\
 334			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 335			if (_old == _val)				\
 336				break;					\
 337			_val = _old;					\
 338		}							\
 339	_old;								\
 340})
 341
 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 343/*
 344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 345 * this avoids any races wrt polling state changes and thereby avoids
 346 * spurious IPIs.
 347 */
 348static bool set_nr_and_not_polling(struct task_struct *p)
 349{
 350	struct thread_info *ti = task_thread_info(p);
 351	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 352}
 353
 354/*
 355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 356 *
 357 * If this returns true, then the idle task promises to call
 358 * sched_ttwu_pending() and reschedule soon.
 359 */
 360static bool set_nr_if_polling(struct task_struct *p)
 361{
 362	struct thread_info *ti = task_thread_info(p);
 363	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 364
 365	for (;;) {
 366		if (!(val & _TIF_POLLING_NRFLAG))
 367			return false;
 368		if (val & _TIF_NEED_RESCHED)
 369			return true;
 370		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 371		if (old == val)
 372			break;
 373		val = old;
 374	}
 375	return true;
 376}
 377
 378#else
 379static bool set_nr_and_not_polling(struct task_struct *p)
 380{
 381	set_tsk_need_resched(p);
 382	return true;
 383}
 384
 385#ifdef CONFIG_SMP
 386static bool set_nr_if_polling(struct task_struct *p)
 387{
 388	return false;
 389}
 390#endif
 391#endif
 392
 393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 394{
 395	struct wake_q_node *node = &task->wake_q;
 396
 397	/*
 398	 * Atomically grab the task, if ->wake_q is !nil already it means
 399	 * its already queued (either by us or someone else) and will get the
 400	 * wakeup due to that.
 401	 *
 402	 * This cmpxchg() implies a full barrier, which pairs with the write
 403	 * barrier implied by the wakeup in wake_up_list().
 404	 */
 405	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
 406		return;
 407
 408	get_task_struct(task);
 409
 410	/*
 411	 * The head is context local, there can be no concurrency.
 412	 */
 413	*head->lastp = node;
 414	head->lastp = &node->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415}
 416
 417void wake_up_q(struct wake_q_head *head)
 418{
 419	struct wake_q_node *node = head->first;
 420
 421	while (node != WAKE_Q_TAIL) {
 422		struct task_struct *task;
 423
 424		task = container_of(node, struct task_struct, wake_q);
 425		BUG_ON(!task);
 426		/* task can safely be re-inserted now */
 427		node = node->next;
 428		task->wake_q.next = NULL;
 429
 430		/*
 431		 * wake_up_process() implies a wmb() to pair with the queueing
 432		 * in wake_q_add() so as not to miss wakeups.
 433		 */
 434		wake_up_process(task);
 435		put_task_struct(task);
 436	}
 437}
 438
 439/*
 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
 441 *
 442 * On UP this means the setting of the need_resched flag, on SMP it
 443 * might also involve a cross-CPU call to trigger the scheduler on
 444 * the target CPU.
 445 */
 446void resched_curr(struct rq *rq)
 447{
 448	struct task_struct *curr = rq->curr;
 449	int cpu;
 450
 451	lockdep_assert_held(&rq->lock);
 452
 453	if (test_tsk_need_resched(curr))
 454		return;
 455
 456	cpu = cpu_of(rq);
 457
 458	if (cpu == smp_processor_id()) {
 459		set_tsk_need_resched(curr);
 460		set_preempt_need_resched();
 461		return;
 462	}
 463
 464	if (set_nr_and_not_polling(curr))
 465		smp_send_reschedule(cpu);
 466	else
 467		trace_sched_wake_idle_without_ipi(cpu);
 468}
 469
 470void resched_cpu(int cpu)
 471{
 472	struct rq *rq = cpu_rq(cpu);
 473	unsigned long flags;
 474
 475	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 476		return;
 477	resched_curr(rq);
 478	raw_spin_unlock_irqrestore(&rq->lock, flags);
 479}
 480
 481#ifdef CONFIG_SMP
 482#ifdef CONFIG_NO_HZ_COMMON
 483/*
 484 * In the semi idle case, use the nearest busy cpu for migrating timers
 485 * from an idle cpu.  This is good for power-savings.
 486 *
 487 * We don't do similar optimization for completely idle system, as
 488 * selecting an idle cpu will add more delays to the timers than intended
 489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 490 */
 491int get_nohz_timer_target(void)
 492{
 493	int i, cpu = smp_processor_id();
 494	struct sched_domain *sd;
 495
 496	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
 497		return cpu;
 
 
 
 498
 499	rcu_read_lock();
 500	for_each_domain(cpu, sd) {
 501		for_each_cpu(i, sched_domain_span(sd)) {
 502			if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
 
 
 
 
 503				cpu = i;
 504				goto unlock;
 505			}
 506		}
 507	}
 508
 509	if (!is_housekeeping_cpu(cpu))
 510		cpu = housekeeping_any_cpu();
 
 511unlock:
 512	rcu_read_unlock();
 513	return cpu;
 514}
 
 515/*
 516 * When add_timer_on() enqueues a timer into the timer wheel of an
 517 * idle CPU then this timer might expire before the next timer event
 518 * which is scheduled to wake up that CPU. In case of a completely
 519 * idle system the next event might even be infinite time into the
 520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 521 * leaves the inner idle loop so the newly added timer is taken into
 522 * account when the CPU goes back to idle and evaluates the timer
 523 * wheel for the next timer event.
 524 */
 525static void wake_up_idle_cpu(int cpu)
 526{
 527	struct rq *rq = cpu_rq(cpu);
 528
 529	if (cpu == smp_processor_id())
 530		return;
 531
 532	if (set_nr_and_not_polling(rq->idle))
 533		smp_send_reschedule(cpu);
 534	else
 535		trace_sched_wake_idle_without_ipi(cpu);
 536}
 537
 538static bool wake_up_full_nohz_cpu(int cpu)
 539{
 540	/*
 541	 * We just need the target to call irq_exit() and re-evaluate
 542	 * the next tick. The nohz full kick at least implies that.
 543	 * If needed we can still optimize that later with an
 544	 * empty IRQ.
 545	 */
 
 
 546	if (tick_nohz_full_cpu(cpu)) {
 547		if (cpu != smp_processor_id() ||
 548		    tick_nohz_tick_stopped())
 549			tick_nohz_full_kick_cpu(cpu);
 550		return true;
 551	}
 552
 553	return false;
 554}
 555
 
 
 
 
 
 556void wake_up_nohz_cpu(int cpu)
 557{
 558	if (!wake_up_full_nohz_cpu(cpu))
 559		wake_up_idle_cpu(cpu);
 560}
 561
 562static inline bool got_nohz_idle_kick(void)
 563{
 564	int cpu = smp_processor_id();
 565
 566	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 567		return false;
 568
 569	if (idle_cpu(cpu) && !need_resched())
 570		return true;
 571
 572	/*
 573	 * We can't run Idle Load Balance on this CPU for this time so we
 574	 * cancel it and clear NOHZ_BALANCE_KICK
 575	 */
 576	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 577	return false;
 578}
 579
 580#else /* CONFIG_NO_HZ_COMMON */
 581
 582static inline bool got_nohz_idle_kick(void)
 583{
 584	return false;
 
 
 585}
 586
 587#endif /* CONFIG_NO_HZ_COMMON */
 588
 589#ifdef CONFIG_NO_HZ_FULL
 590bool sched_can_stop_tick(struct rq *rq)
 591{
 592	int fifo_nr_running;
 593
 594	/* Deadline tasks, even if single, need the tick */
 595	if (rq->dl.dl_nr_running)
 596		return false;
 597
 598	/*
 599	 * If there are more than one RR tasks, we need the tick to effect the
 600	 * actual RR behaviour.
 601	 */
 602	if (rq->rt.rr_nr_running) {
 603		if (rq->rt.rr_nr_running == 1)
 604			return true;
 605		else
 606			return false;
 607	}
 608
 609	/*
 610	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 611	 * forced preemption between FIFO tasks.
 612	 */
 613	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 614	if (fifo_nr_running)
 615		return true;
 616
 617	/*
 618	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 619	 * if there's more than one we need the tick for involuntary
 620	 * preemption.
 621	 */
 622	if (rq->nr_running > 1)
 623		return false;
 624
 625	return true;
 626}
 627#endif /* CONFIG_NO_HZ_FULL */
 628
 629void sched_avg_update(struct rq *rq)
 630{
 631	s64 period = sched_avg_period();
 632
 633	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 634		/*
 635		 * Inline assembly required to prevent the compiler
 636		 * optimising this loop into a divmod call.
 637		 * See __iter_div_u64_rem() for another example of this.
 638		 */
 639		asm("" : "+rm" (rq->age_stamp));
 640		rq->age_stamp += period;
 641		rq->rt_avg /= 2;
 642	}
 643}
 644
 645#endif /* CONFIG_SMP */
 646
 647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 648			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 649/*
 650 * Iterate task_group tree rooted at *from, calling @down when first entering a
 651 * node and @up when leaving it for the final time.
 652 *
 653 * Caller must hold rcu_lock or sufficient equivalent.
 654 */
 655int walk_tg_tree_from(struct task_group *from,
 656			     tg_visitor down, tg_visitor up, void *data)
 657{
 658	struct task_group *parent, *child;
 659	int ret;
 660
 661	parent = from;
 662
 663down:
 664	ret = (*down)(parent, data);
 665	if (ret)
 666		goto out;
 667	list_for_each_entry_rcu(child, &parent->children, siblings) {
 668		parent = child;
 669		goto down;
 670
 671up:
 672		continue;
 673	}
 674	ret = (*up)(parent, data);
 675	if (ret || parent == from)
 676		goto out;
 677
 678	child = parent;
 679	parent = parent->parent;
 680	if (parent)
 681		goto up;
 682out:
 683	return ret;
 684}
 685
 686int tg_nop(struct task_group *tg, void *data)
 687{
 688	return 0;
 689}
 690#endif
 691
 692static void set_load_weight(struct task_struct *p)
 693{
 694	int prio = p->static_prio - MAX_RT_PRIO;
 695	struct load_weight *load = &p->se.load;
 696
 697	/*
 698	 * SCHED_IDLE tasks get minimal weight:
 699	 */
 700	if (idle_policy(p->policy)) {
 701		load->weight = scale_load(WEIGHT_IDLEPRIO);
 702		load->inv_weight = WMULT_IDLEPRIO;
 703		return;
 704	}
 705
 706	load->weight = scale_load(sched_prio_to_weight[prio]);
 707	load->inv_weight = sched_prio_to_wmult[prio];
 
 
 
 
 
 
 
 
 708}
 709
 710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711{
 712	update_rq_clock(rq);
 713	if (!(flags & ENQUEUE_RESTORE))
 714		sched_info_queued(rq, p);
 715	p->sched_class->enqueue_task(rq, p, flags);
 716}
 717
 718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 719{
 720	update_rq_clock(rq);
 721	if (!(flags & DEQUEUE_SAVE))
 722		sched_info_dequeued(rq, p);
 723	p->sched_class->dequeue_task(rq, p, flags);
 724}
 725
 726void activate_task(struct rq *rq, struct task_struct *p, int flags)
 727{
 728	if (task_contributes_to_load(p))
 729		rq->nr_uninterruptible--;
 
 
 730
 731	enqueue_task(rq, p, flags);
 
 
 
 
 
 732}
 733
 734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 
 
 735{
 736	if (task_contributes_to_load(p))
 737		rq->nr_uninterruptible++;
 
 
 
 
 
 
 
 738
 739	dequeue_task(rq, p, flags);
 740}
 741
 742static void update_rq_clock_task(struct rq *rq, s64 delta)
 
 743{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744/*
 745 * In theory, the compile should just see 0 here, and optimize out the call
 746 * to sched_rt_avg_update. But I don't trust it...
 
 
 
 
 747 */
 748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 749	s64 steal = 0, irq_delta = 0;
 750#endif
 751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 752	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754	/*
 755	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 756	 * this case when a previous update_rq_clock() happened inside a
 757	 * {soft,}irq region.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758	 *
 759	 * When this happens, we stop ->clock_task and only update the
 760	 * prev_irq_time stamp to account for the part that fit, so that a next
 761	 * update will consume the rest. This ensures ->clock_task is
 762	 * monotonic.
 763	 *
 764	 * It does however cause some slight miss-attribution of {soft,}irq
 765	 * time, a more accurate solution would be to update the irq_time using
 766	 * the current rq->clock timestamp, except that would require using
 767	 * atomic ops.
 
 
 
 
 
 
 
 
 
 
 768	 */
 769	if (irq_delta > delta)
 770		irq_delta = delta;
 771
 772	rq->prev_irq_time += irq_delta;
 773	delta -= irq_delta;
 774#endif
 775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 776	if (static_key_false((&paravirt_steal_rq_enabled))) {
 777		steal = paravirt_steal_clock(cpu_of(rq));
 778		steal -= rq->prev_steal_time_rq;
 779
 780		if (unlikely(steal > delta))
 781			steal = delta;
 
 782
 783		rq->prev_steal_time_rq += steal;
 784		delta -= steal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	}
 786#endif
 787
 788	rq->clock_task += delta;
 
 
 789
 790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 791	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 792		sched_rt_avg_update(rq, irq_delta + steal);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794}
 795
 796void sched_set_stop_task(int cpu, struct task_struct *stop)
 
 797{
 798	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 799	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800
 801	if (stop) {
 802		/*
 803		 * Make it appear like a SCHED_FIFO task, its something
 804		 * userspace knows about and won't get confused about.
 805		 *
 806		 * Also, it will make PI more or less work without too
 807		 * much confusion -- but then, stop work should not
 808		 * rely on PI working anyway.
 809		 */
 810		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 
 
 
 811
 812		stop->sched_class = &stop_sched_class;
 813	}
 814
 815	cpu_rq(cpu)->stop = stop;
 
 816
 817	if (old_stop) {
 818		/*
 819		 * Reset it back to a normal scheduling class so that
 820		 * it can die in pieces.
 821		 */
 822		old_stop->sched_class = &rt_sched_class;
 
 
 823	}
 824}
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826/*
 827 * __normal_prio - return the priority that is based on the static prio
 828 */
 829static inline int __normal_prio(struct task_struct *p)
 830{
 831	return p->static_prio;
 832}
 833
 834/*
 835 * Calculate the expected normal priority: i.e. priority
 836 * without taking RT-inheritance into account. Might be
 837 * boosted by interactivity modifiers. Changes upon fork,
 838 * setprio syscalls, and whenever the interactivity
 839 * estimator recalculates.
 840 */
 841static inline int normal_prio(struct task_struct *p)
 842{
 843	int prio;
 844
 845	if (task_has_dl_policy(p))
 846		prio = MAX_DL_PRIO-1;
 847	else if (task_has_rt_policy(p))
 848		prio = MAX_RT_PRIO-1 - p->rt_priority;
 849	else
 850		prio = __normal_prio(p);
 851	return prio;
 852}
 853
 854/*
 855 * Calculate the current priority, i.e. the priority
 856 * taken into account by the scheduler. This value might
 857 * be boosted by RT tasks, or might be boosted by
 858 * interactivity modifiers. Will be RT if the task got
 859 * RT-boosted. If not then it returns p->normal_prio.
 860 */
 861static int effective_prio(struct task_struct *p)
 862{
 863	p->normal_prio = normal_prio(p);
 864	/*
 865	 * If we are RT tasks or we were boosted to RT priority,
 866	 * keep the priority unchanged. Otherwise, update priority
 867	 * to the normal priority:
 868	 */
 869	if (!rt_prio(p->prio))
 870		return p->normal_prio;
 871	return p->prio;
 872}
 873
 874/**
 875 * task_curr - is this task currently executing on a CPU?
 876 * @p: the task in question.
 877 *
 878 * Return: 1 if the task is currently executing. 0 otherwise.
 879 */
 880inline int task_curr(const struct task_struct *p)
 881{
 882	return cpu_curr(task_cpu(p)) == p;
 883}
 884
 885/*
 886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 887 * use the balance_callback list if you want balancing.
 888 *
 889 * this means any call to check_class_changed() must be followed by a call to
 890 * balance_callback().
 891 */
 892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 893				       const struct sched_class *prev_class,
 894				       int oldprio)
 895{
 896	if (prev_class != p->sched_class) {
 897		if (prev_class->switched_from)
 898			prev_class->switched_from(rq, p);
 899
 900		p->sched_class->switched_to(rq, p);
 901	} else if (oldprio != p->prio || dl_task(p))
 902		p->sched_class->prio_changed(rq, p, oldprio);
 903}
 904
 905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 906{
 907	const struct sched_class *class;
 908
 909	if (p->sched_class == rq->curr->sched_class) {
 910		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 911	} else {
 912		for_each_class(class) {
 913			if (class == rq->curr->sched_class)
 914				break;
 915			if (class == p->sched_class) {
 916				resched_curr(rq);
 917				break;
 918			}
 919		}
 920	}
 921
 922	/*
 923	 * A queue event has occurred, and we're going to schedule.  In
 924	 * this case, we can save a useless back to back clock update.
 925	 */
 926	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 927		rq_clock_skip_update(rq, true);
 928}
 929
 930#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931/*
 932 * This is how migration works:
 933 *
 934 * 1) we invoke migration_cpu_stop() on the target CPU using
 935 *    stop_one_cpu().
 936 * 2) stopper starts to run (implicitly forcing the migrated thread
 937 *    off the CPU)
 938 * 3) it checks whether the migrated task is still in the wrong runqueue.
 939 * 4) if it's in the wrong runqueue then the migration thread removes
 940 *    it and puts it into the right queue.
 941 * 5) stopper completes and stop_one_cpu() returns and the migration
 942 *    is done.
 943 */
 944
 945/*
 946 * move_queued_task - move a queued task to new rq.
 947 *
 948 * Returns (locked) new rq. Old rq's lock is released.
 949 */
 950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
 
 951{
 952	lockdep_assert_held(&rq->lock);
 953
 954	p->on_rq = TASK_ON_RQ_MIGRATING;
 955	dequeue_task(rq, p, 0);
 956	set_task_cpu(p, new_cpu);
 957	raw_spin_unlock(&rq->lock);
 958
 959	rq = cpu_rq(new_cpu);
 960
 961	raw_spin_lock(&rq->lock);
 962	BUG_ON(task_cpu(p) != new_cpu);
 963	enqueue_task(rq, p, 0);
 964	p->on_rq = TASK_ON_RQ_QUEUED;
 965	check_preempt_curr(rq, p, 0);
 966
 967	return rq;
 968}
 969
 970struct migration_arg {
 971	struct task_struct *task;
 972	int dest_cpu;
 973};
 974
 975/*
 976 * Move (not current) task off this cpu, onto dest cpu. We're doing
 977 * this because either it can't run here any more (set_cpus_allowed()
 978 * away from this CPU, or CPU going down), or because we're
 979 * attempting to rebalance this task on exec (sched_exec).
 980 *
 981 * So we race with normal scheduler movements, but that's OK, as long
 982 * as the task is no longer on this CPU.
 983 */
 984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
 
 985{
 986	if (unlikely(!cpu_active(dest_cpu)))
 987		return rq;
 988
 989	/* Affinity changed (again). */
 990	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
 991		return rq;
 992
 993	rq = move_queued_task(rq, p, dest_cpu);
 
 994
 995	return rq;
 996}
 997
 998/*
 999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005	struct migration_arg *arg = data;
1006	struct task_struct *p = arg->task;
1007	struct rq *rq = this_rq();
 
1008
1009	/*
1010	 * The original target cpu might have gone down and we might
1011	 * be on another cpu but it doesn't matter.
1012	 */
1013	local_irq_disable();
1014	/*
1015	 * We need to explicitly wake pending tasks before running
1016	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018	 */
1019	sched_ttwu_pending();
1020
1021	raw_spin_lock(&p->pi_lock);
1022	raw_spin_lock(&rq->lock);
1023	/*
1024	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026	 * we're holding p->pi_lock.
1027	 */
1028	if (task_rq(p) == rq && task_on_rq_queued(p))
1029		rq = __migrate_task(rq, p, arg->dest_cpu);
1030	raw_spin_unlock(&rq->lock);
 
 
 
 
1031	raw_spin_unlock(&p->pi_lock);
1032
1033	local_irq_enable();
1034	return 0;
1035}
1036
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1042{
1043	cpumask_copy(&p->cpus_allowed, new_mask);
1044	p->nr_cpus_allowed = cpumask_weight(new_mask);
1045}
1046
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048{
1049	struct rq *rq = task_rq(p);
1050	bool queued, running;
1051
1052	lockdep_assert_held(&p->pi_lock);
1053
1054	queued = task_on_rq_queued(p);
1055	running = task_current(rq, p);
1056
1057	if (queued) {
1058		/*
1059		 * Because __kthread_bind() calls this on blocked tasks without
1060		 * holding rq->lock.
1061		 */
1062		lockdep_assert_held(&rq->lock);
1063		dequeue_task(rq, p, DEQUEUE_SAVE);
1064	}
1065	if (running)
1066		put_prev_task(rq, p);
1067
1068	p->sched_class->set_cpus_allowed(p, new_mask);
1069
1070	if (running)
1071		p->sched_class->set_curr_task(rq);
1072	if (queued)
1073		enqueue_task(rq, p, ENQUEUE_RESTORE);
 
 
1074}
1075
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086				  const struct cpumask *new_mask, bool check)
1087{
1088	unsigned long flags;
1089	struct rq *rq;
1090	unsigned int dest_cpu;
 
 
1091	int ret = 0;
1092
1093	rq = task_rq_lock(p, &flags);
 
 
 
 
 
 
 
 
1094
1095	/*
1096	 * Must re-check here, to close a race against __kthread_bind(),
1097	 * sched_setaffinity() is not guaranteed to observe the flag.
1098	 */
1099	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100		ret = -EINVAL;
1101		goto out;
1102	}
1103
1104	if (cpumask_equal(&p->cpus_allowed, new_mask))
1105		goto out;
1106
1107	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
 
 
 
 
 
 
1108		ret = -EINVAL;
1109		goto out;
1110	}
1111
1112	do_set_cpus_allowed(p, new_mask);
1113
 
 
 
 
 
 
 
 
 
 
1114	/* Can the task run on the task's current CPU? If so, we're done */
1115	if (cpumask_test_cpu(task_cpu(p), new_mask))
1116		goto out;
1117
1118	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119	if (task_running(rq, p) || p->state == TASK_WAKING) {
1120		struct migration_arg arg = { p, dest_cpu };
1121		/* Need help from migration thread: drop lock and wait. */
1122		task_rq_unlock(rq, p, &flags);
1123		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124		tlb_migrate_finish(p->mm);
1125		return 0;
1126	} else if (task_on_rq_queued(p)) {
1127		/*
1128		 * OK, since we're going to drop the lock immediately
1129		 * afterwards anyway.
1130		 */
1131		lockdep_unpin_lock(&rq->lock);
1132		rq = move_queued_task(rq, p, dest_cpu);
1133		lockdep_pin_lock(&rq->lock);
1134	}
1135out:
1136	task_rq_unlock(rq, p, &flags);
1137
1138	return ret;
1139}
1140
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143	return __set_cpus_allowed_ptr(p, new_mask, false);
1144}
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1148{
1149#ifdef CONFIG_SCHED_DEBUG
1150	/*
1151	 * We should never call set_task_cpu() on a blocked task,
1152	 * ttwu() will sort out the placement.
1153	 */
1154	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1155			!p->on_rq);
1156
1157	/*
1158	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160	 * time relying on p->on_rq.
1161	 */
1162	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163		     p->sched_class == &fair_sched_class &&
1164		     (p->on_rq && !task_on_rq_migrating(p)));
1165
1166#ifdef CONFIG_LOCKDEP
1167	/*
1168	 * The caller should hold either p->pi_lock or rq->lock, when changing
1169	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170	 *
1171	 * sched_move_task() holds both and thus holding either pins the cgroup,
1172	 * see task_group().
1173	 *
1174	 * Furthermore, all task_rq users should acquire both locks, see
1175	 * task_rq_lock().
1176	 */
1177	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178				      lockdep_is_held(&task_rq(p)->lock)));
1179#endif
 
 
 
 
1180#endif
1181
1182	trace_sched_migrate_task(p, new_cpu);
1183
1184	if (task_cpu(p) != new_cpu) {
1185		if (p->sched_class->migrate_task_rq)
1186			p->sched_class->migrate_task_rq(p);
1187		p->se.nr_migrations++;
 
1188		perf_event_task_migrate(p);
1189	}
1190
1191	__set_task_cpu(p, new_cpu);
1192}
1193
 
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
1196	if (task_on_rq_queued(p)) {
1197		struct rq *src_rq, *dst_rq;
 
1198
1199		src_rq = task_rq(p);
1200		dst_rq = cpu_rq(cpu);
1201
1202		p->on_rq = TASK_ON_RQ_MIGRATING;
 
 
1203		deactivate_task(src_rq, p, 0);
1204		set_task_cpu(p, cpu);
1205		activate_task(dst_rq, p, 0);
1206		p->on_rq = TASK_ON_RQ_QUEUED;
1207		check_preempt_curr(dst_rq, p, 0);
 
 
 
 
1208	} else {
1209		/*
1210		 * Task isn't running anymore; make it appear like we migrated
1211		 * it before it went to sleep. This means on wakeup we make the
1212		 * previous cpu our targer instead of where it really is.
1213		 */
1214		p->wake_cpu = cpu;
1215	}
1216}
1217
1218struct migration_swap_arg {
1219	struct task_struct *src_task, *dst_task;
1220	int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225	struct migration_swap_arg *arg = data;
1226	struct rq *src_rq, *dst_rq;
1227	int ret = -EAGAIN;
1228
1229	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230		return -EAGAIN;
1231
1232	src_rq = cpu_rq(arg->src_cpu);
1233	dst_rq = cpu_rq(arg->dst_cpu);
1234
1235	double_raw_lock(&arg->src_task->pi_lock,
1236			&arg->dst_task->pi_lock);
1237	double_rq_lock(src_rq, dst_rq);
1238
1239	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240		goto unlock;
1241
1242	if (task_cpu(arg->src_task) != arg->src_cpu)
1243		goto unlock;
1244
1245	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246		goto unlock;
1247
1248	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249		goto unlock;
1250
1251	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1252	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254	ret = 0;
1255
1256unlock:
1257	double_rq_unlock(src_rq, dst_rq);
1258	raw_spin_unlock(&arg->dst_task->pi_lock);
1259	raw_spin_unlock(&arg->src_task->pi_lock);
1260
1261	return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
 
1268{
1269	struct migration_swap_arg arg;
1270	int ret = -EINVAL;
1271
1272	arg = (struct migration_swap_arg){
1273		.src_task = cur,
1274		.src_cpu = task_cpu(cur),
1275		.dst_task = p,
1276		.dst_cpu = task_cpu(p),
1277	};
1278
1279	if (arg.src_cpu == arg.dst_cpu)
1280		goto out;
1281
1282	/*
1283	 * These three tests are all lockless; this is OK since all of them
1284	 * will be re-checked with proper locks held further down the line.
1285	 */
1286	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287		goto out;
1288
1289	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290		goto out;
1291
1292	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293		goto out;
1294
1295	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
1299	return ret;
1300}
 
1301
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change.  If it changes, i.e. @p might have woken up,
1307 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count).  If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1319{
1320	unsigned long flags;
1321	int running, queued;
 
1322	unsigned long ncsw;
1323	struct rq *rq;
1324
1325	for (;;) {
1326		/*
1327		 * We do the initial early heuristics without holding
1328		 * any task-queue locks at all. We'll only try to get
1329		 * the runqueue lock when things look like they will
1330		 * work out!
1331		 */
1332		rq = task_rq(p);
1333
1334		/*
1335		 * If the task is actively running on another CPU
1336		 * still, just relax and busy-wait without holding
1337		 * any locks.
1338		 *
1339		 * NOTE! Since we don't hold any locks, it's not
1340		 * even sure that "rq" stays as the right runqueue!
1341		 * But we don't care, since "task_running()" will
1342		 * return false if the runqueue has changed and p
1343		 * is actually now running somewhere else!
1344		 */
1345		while (task_running(rq, p)) {
1346			if (match_state && unlikely(p->state != match_state))
1347				return 0;
1348			cpu_relax();
1349		}
1350
1351		/*
1352		 * Ok, time to look more closely! We need the rq
1353		 * lock now, to be *sure*. If we're wrong, we'll
1354		 * just go back and repeat.
1355		 */
1356		rq = task_rq_lock(p, &flags);
1357		trace_sched_wait_task(p);
1358		running = task_running(rq, p);
1359		queued = task_on_rq_queued(p);
1360		ncsw = 0;
1361		if (!match_state || p->state == match_state)
1362			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1363		task_rq_unlock(rq, p, &flags);
1364
1365		/*
1366		 * If it changed from the expected state, bail out now.
1367		 */
1368		if (unlikely(!ncsw))
1369			break;
1370
1371		/*
1372		 * Was it really running after all now that we
1373		 * checked with the proper locks actually held?
1374		 *
1375		 * Oops. Go back and try again..
1376		 */
1377		if (unlikely(running)) {
1378			cpu_relax();
1379			continue;
1380		}
1381
1382		/*
1383		 * It's not enough that it's not actively running,
1384		 * it must be off the runqueue _entirely_, and not
1385		 * preempted!
1386		 *
1387		 * So if it was still runnable (but just not actively
1388		 * running right now), it's preempted, and we should
1389		 * yield - it could be a while.
1390		 */
1391		if (unlikely(queued)) {
1392			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394			set_current_state(TASK_UNINTERRUPTIBLE);
1395			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396			continue;
1397		}
1398
1399		/*
1400		 * Ahh, all good. It wasn't running, and it wasn't
1401		 * runnable, which means that it will never become
1402		 * running in the future either. We're all done!
1403		 */
1404		break;
1405	}
1406
1407	return ncsw;
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
1417 * NOTE: this function doesn't have to take the runqueue lock,
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
1423void kick_process(struct task_struct *p)
1424{
1425	int cpu;
1426
1427	preempt_disable();
1428	cpu = task_cpu(p);
1429	if ((cpu != smp_processor_id()) && task_curr(p))
1430		smp_send_reschedule(cpu);
1431	preempt_enable();
1432}
1433EXPORT_SYMBOL_GPL(kick_process);
1434
1435/*
1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437 */
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
1440	int nid = cpu_to_node(cpu);
1441	const struct cpumask *nodemask = NULL;
1442	enum { cpuset, possible, fail } state = cpuset;
1443	int dest_cpu;
1444
1445	/*
1446	 * If the node that the cpu is on has been offlined, cpu_to_node()
1447	 * will return -1. There is no cpu on the node, and we should
1448	 * select the cpu on the other node.
1449	 */
1450	if (nid != -1) {
1451		nodemask = cpumask_of_node(nid);
1452
1453		/* Look for allowed, online CPU in same node. */
1454		for_each_cpu(dest_cpu, nodemask) {
1455			if (!cpu_online(dest_cpu))
1456				continue;
1457			if (!cpu_active(dest_cpu))
1458				continue;
1459			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460				return dest_cpu;
1461		}
1462	}
1463
1464	for (;;) {
1465		/* Any allowed, online CPU? */
1466		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1467			if (!cpu_online(dest_cpu))
1468				continue;
1469			if (!cpu_active(dest_cpu))
1470				continue;
 
1471			goto out;
1472		}
1473
1474		/* No more Mr. Nice Guy. */
1475		switch (state) {
1476		case cpuset:
1477			if (IS_ENABLED(CONFIG_CPUSETS)) {
1478				cpuset_cpus_allowed_fallback(p);
1479				state = possible;
1480				break;
1481			}
1482			/* fall-through */
1483		case possible:
1484			do_set_cpus_allowed(p, cpu_possible_mask);
1485			state = fail;
1486			break;
1487
1488		case fail:
1489			BUG();
1490			break;
1491		}
1492	}
1493
1494out:
1495	if (state != cpuset) {
1496		/*
1497		 * Don't tell them about moving exiting tasks or
1498		 * kernel threads (both mm NULL), since they never
1499		 * leave kernel.
1500		 */
1501		if (p->mm && printk_ratelimit()) {
1502			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1503					task_pid_nr(p), p->comm, cpu);
1504		}
1505	}
1506
1507	return dest_cpu;
1508}
1509
1510/*
1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1512 */
1513static inline
1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1515{
1516	lockdep_assert_held(&p->pi_lock);
1517
1518	if (p->nr_cpus_allowed > 1)
1519		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
 
 
1520
1521	/*
1522	 * In order not to call set_task_cpu() on a blocking task we need
1523	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524	 * cpu.
1525	 *
1526	 * Since this is common to all placement strategies, this lives here.
1527	 *
1528	 * [ this allows ->select_task() to simply return task_cpu(p) and
1529	 *   not worry about this generic constraint ]
1530	 */
1531	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1532		     !cpu_online(cpu)))
1533		cpu = select_fallback_rq(task_cpu(p), p);
1534
1535	return cpu;
1536}
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540	s64 diff = sample - *avg;
1541	*avg += diff >> 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542}
1543
1544#else
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547					 const struct cpumask *new_mask, bool check)
1548{
1549	return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
1552#endif /* CONFIG_SMP */
1553
1554static void
1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1556{
1557#ifdef CONFIG_SCHEDSTATS
1558	struct rq *rq = this_rq();
1559
1560#ifdef CONFIG_SMP
1561	int this_cpu = smp_processor_id();
 
 
1562
1563	if (cpu == this_cpu) {
1564		schedstat_inc(rq, ttwu_local);
1565		schedstat_inc(p, se.statistics.nr_wakeups_local);
 
1566	} else {
1567		struct sched_domain *sd;
1568
1569		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1570		rcu_read_lock();
1571		for_each_domain(this_cpu, sd) {
1572			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573				schedstat_inc(sd, ttwu_wake_remote);
1574				break;
1575			}
1576		}
1577		rcu_read_unlock();
1578	}
1579
1580	if (wake_flags & WF_MIGRATED)
1581		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
1583#endif /* CONFIG_SMP */
1584
1585	schedstat_inc(rq, ttwu_count);
1586	schedstat_inc(p, se.statistics.nr_wakeups);
1587
1588	if (wake_flags & WF_SYNC)
1589		schedstat_inc(p, se.statistics.nr_wakeups_sync);
1590
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1595{
1596	activate_task(rq, p, en_flags);
1597	p->on_rq = TASK_ON_RQ_QUEUED;
1598
1599	/* if a worker is waking up, notify workqueue */
1600	if (p->flags & PF_WQ_WORKER)
1601		wq_worker_waking_up(p, cpu_of(rq));
1602}
1603
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
1607static void
1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1609{
1610	check_preempt_curr(rq, p, wake_flags);
1611	p->state = TASK_RUNNING;
1612	trace_sched_wakeup(p);
1613
1614#ifdef CONFIG_SMP
1615	if (p->sched_class->task_woken) {
1616		/*
1617		 * Our task @p is fully woken up and running; so its safe to
1618		 * drop the rq->lock, hereafter rq is only used for statistics.
1619		 */
1620		lockdep_unpin_lock(&rq->lock);
1621		p->sched_class->task_woken(rq, p);
1622		lockdep_pin_lock(&rq->lock);
1623	}
1624
1625	if (rq->idle_stamp) {
1626		u64 delta = rq_clock(rq) - rq->idle_stamp;
1627		u64 max = 2*rq->max_idle_balance_cost;
1628
1629		update_avg(&rq->avg_idle, delta);
1630
1631		if (rq->avg_idle > max)
1632			rq->avg_idle = max;
1633
1634		rq->idle_stamp = 0;
1635	}
1636#endif
1637}
1638
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
 
1641{
 
 
1642	lockdep_assert_held(&rq->lock);
1643
1644#ifdef CONFIG_SMP
1645	if (p->sched_contributes_to_load)
1646		rq->nr_uninterruptible--;
 
 
 
 
1647#endif
1648
1649	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650	ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
 
1661	struct rq *rq;
1662	int ret = 0;
1663
1664	rq = __task_rq_lock(p);
1665	if (task_on_rq_queued(p)) {
1666		/* check_preempt_curr() may use rq clock */
1667		update_rq_clock(rq);
1668		ttwu_do_wakeup(rq, p, wake_flags);
1669		ret = 1;
1670	}
1671	__task_rq_unlock(rq);
1672
1673	return ret;
1674}
1675
1676#ifdef CONFIG_SMP
1677void sched_ttwu_pending(void)
1678{
 
1679	struct rq *rq = this_rq();
1680	struct llist_node *llist = llist_del_all(&rq->wake_list);
1681	struct task_struct *p;
1682	unsigned long flags;
1683
1684	if (!llist)
1685		return;
1686
1687	raw_spin_lock_irqsave(&rq->lock, flags);
1688	lockdep_pin_lock(&rq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1689
1690	while (llist) {
1691		p = llist_entry(llist, struct task_struct, wake_entry);
1692		llist = llist_next(llist);
1693		ttwu_do_activate(rq, p, 0);
1694	}
1695
1696	lockdep_unpin_lock(&rq->lock);
1697	raw_spin_unlock_irqrestore(&rq->lock, flags);
1698}
1699
1700void scheduler_ipi(void)
1701{
1702	/*
1703	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705	 * this IPI.
1706	 */
1707	preempt_fold_need_resched();
1708
1709	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1710		return;
1711
1712	/*
1713	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714	 * traditionally all their work was done from the interrupt return
1715	 * path. Now that we actually do some work, we need to make sure
1716	 * we do call them.
1717	 *
1718	 * Some archs already do call them, luckily irq_enter/exit nest
1719	 * properly.
1720	 *
1721	 * Arguably we should visit all archs and update all handlers,
1722	 * however a fair share of IPIs are still resched only so this would
1723	 * somewhat pessimize the simple resched case.
1724	 */
1725	irq_enter();
1726	sched_ttwu_pending();
1727
1728	/*
1729	 * Check if someone kicked us for doing the nohz idle load balance.
1730	 */
1731	if (unlikely(got_nohz_idle_kick())) {
1732		this_rq()->idle_balance = 1;
1733		raise_softirq_irqoff(SCHED_SOFTIRQ);
1734	}
1735	irq_exit();
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
 
 
 
 
 
 
1739{
1740	struct rq *rq = cpu_rq(cpu);
1741
1742	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743		if (!set_nr_if_polling(rq->idle))
1744			smp_send_reschedule(cpu);
1745		else
1746			trace_sched_wake_idle_without_ipi(cpu);
1747	}
1748}
1749
1750void wake_up_if_idle(int cpu)
1751{
1752	struct rq *rq = cpu_rq(cpu);
1753	unsigned long flags;
1754
1755	rcu_read_lock();
1756
1757	if (!is_idle_task(rcu_dereference(rq->curr)))
1758		goto out;
1759
1760	if (set_nr_if_polling(rq->idle)) {
1761		trace_sched_wake_idle_without_ipi(cpu);
1762	} else {
1763		raw_spin_lock_irqsave(&rq->lock, flags);
1764		if (is_idle_task(rq->curr))
1765			smp_send_reschedule(cpu);
1766		/* Else cpu is not in idle, do nothing here */
1767		raw_spin_unlock_irqrestore(&rq->lock, flags);
1768	}
1769
1770out:
1771	rcu_read_unlock();
1772}
1773
1774bool cpus_share_cache(int this_cpu, int that_cpu)
1775{
1776	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778#endif /* CONFIG_SMP */
1779
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782	struct rq *rq = cpu_rq(cpu);
 
1783
1784#if defined(CONFIG_SMP)
1785	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1786		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1787		ttwu_queue_remote(p, cpu);
1788		return;
1789	}
1790#endif
1791
1792	raw_spin_lock(&rq->lock);
1793	lockdep_pin_lock(&rq->lock);
1794	ttwu_do_activate(rq, p, 0);
1795	lockdep_unpin_lock(&rq->lock);
1796	raw_spin_unlock(&rq->lock);
1797}
1798
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 *  MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 *     rq(c1)->lock (if not at the same time, then in that order).
1813 *  C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 *   CPU0            CPU1            CPU2
1822 *
1823 *   LOCK rq(0)->lock
1824 *   sched-out X
1825 *   sched-in Y
1826 *   UNLOCK rq(0)->lock
1827 *
1828 *                                   LOCK rq(0)->lock // orders against CPU0
1829 *                                   dequeue X
1830 *                                   UNLOCK rq(0)->lock
1831 *
1832 *                                   LOCK rq(1)->lock
1833 *                                   enqueue X
1834 *                                   UNLOCK rq(1)->lock
1835 *
1836 *                   LOCK rq(1)->lock // orders against CPU2
1837 *                   sched-out Z
1838 *                   sched-in X
1839 *                   UNLOCK rq(1)->lock
1840 *
1841 *
1842 *  BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 *   1) smp_store_release(X->on_cpu, 0)
1849 *   2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 *   LOCK rq(0)->lock LOCK X->pi_lock
1856 *   dequeue X
1857 *   sched-out X
1858 *   smp_store_release(X->on_cpu, 0);
1859 *
1860 *                    smp_cond_acquire(!X->on_cpu);
1861 *                    X->state = WAKING
1862 *                    set_task_cpu(X,2)
1863 *
1864 *                    LOCK rq(2)->lock
1865 *                    enqueue X
1866 *                    X->state = RUNNING
1867 *                    UNLOCK rq(2)->lock
1868 *
1869 *                                          LOCK rq(2)->lock // orders against CPU1
1870 *                                          sched-out Z
1871 *                                          sched-in X
1872 *                                          UNLOCK rq(2)->lock
1873 *
1874 *                    UNLOCK X->pi_lock
1875 *   UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
1890/**
1891 * try_to_wake_up - wake up a thread
1892 * @p: the thread to be awakened
1893 * @state: the mask of task states that can be woken
1894 * @wake_flags: wake modifier flags (WF_*)
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
1902 * Return: %true if @p was woken up, %false if it was already running.
1903 * or @state didn't match @p's state.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904 */
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1907{
1908	unsigned long flags;
1909	int cpu, success = 0;
1910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911	/*
1912	 * If we are going to wake up a thread waiting for CONDITION we
1913	 * need to ensure that CONDITION=1 done by the caller can not be
1914	 * reordered with p->state check below. This pairs with mb() in
1915	 * set_current_state() the waiting thread does.
1916	 */
1917	smp_mb__before_spinlock();
1918	raw_spin_lock_irqsave(&p->pi_lock, flags);
 
1919	if (!(p->state & state))
1920		goto out;
1921
1922	trace_sched_waking(p);
1923
1924	success = 1; /* we're going to change ->state */
1925	cpu = task_cpu(p);
1926
1927	if (p->on_rq && ttwu_remote(p, wake_flags))
1928		goto stat;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929
1930#ifdef CONFIG_SMP
1931	/*
1932	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933	 * possible to, falsely, observe p->on_cpu == 0.
1934	 *
1935	 * One must be running (->on_cpu == 1) in order to remove oneself
1936	 * from the runqueue.
1937	 *
1938	 *  [S] ->on_cpu = 1;	[L] ->on_rq
1939	 *      UNLOCK rq->lock
1940	 *			RMB
1941	 *      LOCK   rq->lock
1942	 *  [S] ->on_rq = 0;    [L] ->on_cpu
1943	 *
1944	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945	 * from the consecutive calls to schedule(); the first switching to our
1946	 * task, the second putting it to sleep.
 
 
 
 
 
 
1947	 */
1948	smp_rmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949
1950	/*
1951	 * If the owning (remote) cpu is still in the middle of schedule() with
1952	 * this task as prev, wait until its done referencing the task.
1953	 *
1954	 * Pairs with the smp_store_release() in finish_lock_switch().
1955	 *
1956	 * This ensures that tasks getting woken will be fully ordered against
1957	 * their previous state and preserve Program Order.
1958	 */
1959	smp_cond_acquire(!p->on_cpu);
1960
1961	p->sched_contributes_to_load = !!task_contributes_to_load(p);
1962	p->state = TASK_WAKING;
1963
1964	if (p->sched_class->task_waking)
1965		p->sched_class->task_waking(p);
1966
1967	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1968	if (task_cpu(p) != cpu) {
1969		wake_flags |= WF_MIGRATED;
 
1970		set_task_cpu(p, cpu);
1971	}
 
 
1972#endif /* CONFIG_SMP */
1973
1974	ttwu_queue(p, cpu);
1975stat:
1976	if (schedstat_enabled())
1977		ttwu_stat(p, cpu, wake_flags);
1978out:
1979	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 
 
 
 
1980
1981	return success;
1982}
1983
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
1988 * Put @p on the run-queue if it's not already there. The caller must
1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1990 * the current task.
 
 
 
 
 
 
 
 
 
 
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994	struct rq *rq = task_rq(p);
1995
1996	if (WARN_ON_ONCE(rq != this_rq()) ||
1997	    WARN_ON_ONCE(p == current))
1998		return;
1999
2000	lockdep_assert_held(&rq->lock);
2001
2002	if (!raw_spin_trylock(&p->pi_lock)) {
2003		/*
2004		 * This is OK, because current is on_cpu, which avoids it being
2005		 * picked for load-balance and preemption/IRQs are still
2006		 * disabled avoiding further scheduler activity on it and we've
2007		 * not yet picked a replacement task.
2008		 */
2009		lockdep_unpin_lock(&rq->lock);
2010		raw_spin_unlock(&rq->lock);
2011		raw_spin_lock(&p->pi_lock);
2012		raw_spin_lock(&rq->lock);
2013		lockdep_pin_lock(&rq->lock);
 
 
 
 
 
2014	}
2015
2016	if (!(p->state & TASK_NORMAL))
2017		goto out;
2018
2019	trace_sched_waking(p);
2020
2021	if (!task_on_rq_queued(p))
2022		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
2024	ttwu_do_wakeup(rq, p, 0);
2025	if (schedstat_enabled())
2026		ttwu_stat(p, smp_processor_id(), 0);
2027out:
2028	raw_spin_unlock(&p->pi_lock);
2029}
2030
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
2043int wake_up_process(struct task_struct *p)
2044{
2045	return try_to_wake_up(p, TASK_NORMAL, 0);
2046}
2047EXPORT_SYMBOL(wake_up_process);
2048
2049int wake_up_state(struct task_struct *p, unsigned int state)
2050{
2051	return try_to_wake_up(p, state, 0);
2052}
2053
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059	struct sched_dl_entity *dl_se = &p->dl;
2060
2061	dl_se->dl_runtime = 0;
2062	dl_se->dl_deadline = 0;
2063	dl_se->dl_period = 0;
2064	dl_se->flags = 0;
2065	dl_se->dl_bw = 0;
2066
2067	dl_se->dl_throttled = 0;
2068	dl_se->dl_yielded = 0;
2069}
2070
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2078{
2079	p->on_rq			= 0;
2080
2081	p->se.on_rq			= 0;
2082	p->se.exec_start		= 0;
2083	p->se.sum_exec_runtime		= 0;
2084	p->se.prev_sum_exec_runtime	= 0;
2085	p->se.nr_migrations		= 0;
2086	p->se.vruntime			= 0;
2087	INIT_LIST_HEAD(&p->se.group_node);
2088
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090	p->se.cfs_rq			= NULL;
2091#endif
2092
2093#ifdef CONFIG_SCHEDSTATS
2094	/* Even if schedstat is disabled, there should not be garbage */
2095	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2096#endif
2097
2098	RB_CLEAR_NODE(&p->dl.rb_node);
2099	init_dl_task_timer(&p->dl);
 
2100	__dl_clear_params(p);
2101
2102	INIT_LIST_HEAD(&p->rt.run_list);
2103	p->rt.timeout		= 0;
2104	p->rt.time_slice	= sched_rr_timeslice;
2105	p->rt.on_rq		= 0;
2106	p->rt.on_list		= 0;
2107
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109	INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2114		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2115		p->mm->numa_scan_seq = 0;
2116	}
2117
2118	if (clone_flags & CLONE_VM)
2119		p->numa_preferred_nid = current->numa_preferred_nid;
2120	else
2121		p->numa_preferred_nid = -1;
2122
2123	p->node_stamp = 0ULL;
2124	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2125	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2126	p->numa_work.next = &p->numa_work;
2127	p->numa_faults = NULL;
2128	p->last_task_numa_placement = 0;
2129	p->last_sum_exec_runtime = 0;
2130
2131	p->numa_group = NULL;
2132#endif /* CONFIG_NUMA_BALANCING */
2133}
2134
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
2137#ifdef CONFIG_NUMA_BALANCING
2138
2139void set_numabalancing_state(bool enabled)
2140{
2141	if (enabled)
2142		static_branch_enable(&sched_numa_balancing);
2143	else
2144		static_branch_disable(&sched_numa_balancing);
2145}
2146
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149			 void __user *buffer, size_t *lenp, loff_t *ppos)
2150{
2151	struct ctl_table t;
2152	int err;
2153	int state = static_branch_likely(&sched_numa_balancing);
2154
2155	if (write && !capable(CAP_SYS_ADMIN))
2156		return -EPERM;
2157
2158	t = *table;
2159	t.data = &state;
2160	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161	if (err < 0)
2162		return err;
2163	if (write)
2164		set_numabalancing_state(state);
2165	return err;
2166}
2167#endif
2168#endif
2169
 
 
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
 
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175	if (enabled)
2176		static_branch_enable(&sched_schedstats);
2177	else
2178		static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183	if (!schedstat_enabled()) {
2184		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185		static_branch_enable(&sched_schedstats);
2186	}
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191	int ret = 0;
2192	if (!str)
2193		goto out;
2194
 
 
 
 
 
2195	if (!strcmp(str, "enable")) {
2196		set_schedstats(true);
2197		ret = 1;
2198	} else if (!strcmp(str, "disable")) {
2199		set_schedstats(false);
2200		ret = 1;
2201	}
2202out:
2203	if (!ret)
2204		pr_warn("Unable to parse schedstats=\n");
2205
2206	return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
 
 
 
 
 
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212			 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214	struct ctl_table t;
2215	int err;
2216	int state = static_branch_likely(&sched_schedstats);
2217
2218	if (write && !capable(CAP_SYS_ADMIN))
2219		return -EPERM;
2220
2221	t = *table;
2222	t.data = &state;
2223	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224	if (err < 0)
2225		return err;
2226	if (write)
2227		set_schedstats(state);
2228	return err;
2229}
2230#endif
2231#endif
 
 
2232
2233/*
2234 * fork()/clone()-time setup:
2235 */
2236int sched_fork(unsigned long clone_flags, struct task_struct *p)
2237{
2238	unsigned long flags;
2239	int cpu = get_cpu();
2240
2241	__sched_fork(clone_flags, p);
2242	/*
2243	 * We mark the process as running here. This guarantees that
2244	 * nobody will actually run it, and a signal or other external
2245	 * event cannot wake it up and insert it on the runqueue either.
2246	 */
2247	p->state = TASK_RUNNING;
2248
2249	/*
2250	 * Make sure we do not leak PI boosting priority to the child.
2251	 */
2252	p->prio = current->normal_prio;
2253
 
 
2254	/*
2255	 * Revert to default priority/policy on fork if requested.
2256	 */
2257	if (unlikely(p->sched_reset_on_fork)) {
2258		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2259			p->policy = SCHED_NORMAL;
2260			p->static_prio = NICE_TO_PRIO(0);
2261			p->rt_priority = 0;
2262		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2263			p->static_prio = NICE_TO_PRIO(0);
2264
2265		p->prio = p->normal_prio = __normal_prio(p);
2266		set_load_weight(p);
2267
2268		/*
2269		 * We don't need the reset flag anymore after the fork. It has
2270		 * fulfilled its duty:
2271		 */
2272		p->sched_reset_on_fork = 0;
2273	}
2274
2275	if (dl_prio(p->prio)) {
2276		put_cpu();
2277		return -EAGAIN;
2278	} else if (rt_prio(p->prio)) {
2279		p->sched_class = &rt_sched_class;
2280	} else {
2281		p->sched_class = &fair_sched_class;
2282	}
2283
2284	if (p->sched_class->task_fork)
2285		p->sched_class->task_fork(p);
2286
2287	/*
2288	 * The child is not yet in the pid-hash so no cgroup attach races,
2289	 * and the cgroup is pinned to this child due to cgroup_fork()
2290	 * is ran before sched_fork().
2291	 *
2292	 * Silence PROVE_RCU.
2293	 */
2294	raw_spin_lock_irqsave(&p->pi_lock, flags);
2295	set_task_cpu(p, cpu);
 
 
 
 
 
 
 
2296	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2297
2298#ifdef CONFIG_SCHED_INFO
2299	if (likely(sched_info_on()))
2300		memset(&p->sched_info, 0, sizeof(p->sched_info));
2301#endif
2302#if defined(CONFIG_SMP)
2303	p->on_cpu = 0;
2304#endif
2305	init_task_preempt_count(p);
2306#ifdef CONFIG_SMP
2307	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2308	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2309#endif
2310
2311	put_cpu();
2312	return 0;
2313}
2314
 
 
 
 
 
2315unsigned long to_ratio(u64 period, u64 runtime)
2316{
2317	if (runtime == RUNTIME_INF)
2318		return 1ULL << 20;
2319
2320	/*
2321	 * Doing this here saves a lot of checks in all
2322	 * the calling paths, and returning zero seems
2323	 * safe for them anyway.
2324	 */
2325	if (period == 0)
2326		return 0;
2327
2328	return div64_u64(runtime << 20, period);
2329}
2330
2331#ifdef CONFIG_SMP
2332inline struct dl_bw *dl_bw_of(int i)
2333{
2334	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2335			 "sched RCU must be held");
2336	return &cpu_rq(i)->rd->dl_bw;
2337}
2338
2339static inline int dl_bw_cpus(int i)
2340{
2341	struct root_domain *rd = cpu_rq(i)->rd;
2342	int cpus = 0;
2343
2344	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2345			 "sched RCU must be held");
2346	for_each_cpu_and(i, rd->span, cpu_active_mask)
2347		cpus++;
2348
2349	return cpus;
2350}
2351#else
2352inline struct dl_bw *dl_bw_of(int i)
2353{
2354	return &cpu_rq(i)->dl.dl_bw;
2355}
2356
2357static inline int dl_bw_cpus(int i)
2358{
2359	return 1;
2360}
2361#endif
2362
2363/*
2364 * We must be sure that accepting a new task (or allowing changing the
2365 * parameters of an existing one) is consistent with the bandwidth
2366 * constraints. If yes, this function also accordingly updates the currently
2367 * allocated bandwidth to reflect the new situation.
2368 *
2369 * This function is called while holding p's rq->lock.
2370 *
2371 * XXX we should delay bw change until the task's 0-lag point, see
2372 * __setparam_dl().
2373 */
2374static int dl_overflow(struct task_struct *p, int policy,
2375		       const struct sched_attr *attr)
2376{
2377
2378	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2379	u64 period = attr->sched_period ?: attr->sched_deadline;
2380	u64 runtime = attr->sched_runtime;
2381	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2382	int cpus, err = -1;
2383
2384	if (new_bw == p->dl.dl_bw)
2385		return 0;
2386
2387	/*
2388	 * Either if a task, enters, leave, or stays -deadline but changes
2389	 * its parameters, we may need to update accordingly the total
2390	 * allocated bandwidth of the container.
2391	 */
2392	raw_spin_lock(&dl_b->lock);
2393	cpus = dl_bw_cpus(task_cpu(p));
2394	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2395	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2396		__dl_add(dl_b, new_bw);
2397		err = 0;
2398	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2399		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2400		__dl_clear(dl_b, p->dl.dl_bw);
2401		__dl_add(dl_b, new_bw);
2402		err = 0;
2403	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2404		__dl_clear(dl_b, p->dl.dl_bw);
2405		err = 0;
2406	}
2407	raw_spin_unlock(&dl_b->lock);
2408
2409	return err;
2410}
2411
2412extern void init_dl_bw(struct dl_bw *dl_b);
2413
2414/*
2415 * wake_up_new_task - wake up a newly created task for the first time.
2416 *
2417 * This function will do some initial scheduler statistics housekeeping
2418 * that must be done for every newly created context, then puts the task
2419 * on the runqueue and wakes it.
2420 */
2421void wake_up_new_task(struct task_struct *p)
2422{
2423	unsigned long flags;
2424	struct rq *rq;
2425
2426	raw_spin_lock_irqsave(&p->pi_lock, flags);
2427	/* Initialize new task's runnable average */
2428	init_entity_runnable_average(&p->se);
2429#ifdef CONFIG_SMP
2430	/*
2431	 * Fork balancing, do it here and not earlier because:
2432	 *  - cpus_allowed can change in the fork path
2433	 *  - any previously selected cpu might disappear through hotplug
 
 
 
2434	 */
2435	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
 
 
2436#endif
 
 
 
2437
2438	rq = __task_rq_lock(p);
2439	activate_task(rq, p, 0);
2440	p->on_rq = TASK_ON_RQ_QUEUED;
2441	trace_sched_wakeup_new(p);
2442	check_preempt_curr(rq, p, WF_FORK);
2443#ifdef CONFIG_SMP
2444	if (p->sched_class->task_woken) {
2445		/*
2446		 * Nothing relies on rq->lock after this, so its fine to
2447		 * drop it.
2448		 */
2449		lockdep_unpin_lock(&rq->lock);
2450		p->sched_class->task_woken(rq, p);
2451		lockdep_pin_lock(&rq->lock);
2452	}
2453#endif
2454	task_rq_unlock(rq, p, &flags);
2455}
2456
2457#ifdef CONFIG_PREEMPT_NOTIFIERS
2458
2459static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2460
2461void preempt_notifier_inc(void)
2462{
2463	static_key_slow_inc(&preempt_notifier_key);
2464}
2465EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2466
2467void preempt_notifier_dec(void)
2468{
2469	static_key_slow_dec(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2472
2473/**
2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2475 * @notifier: notifier struct to register
2476 */
2477void preempt_notifier_register(struct preempt_notifier *notifier)
2478{
2479	if (!static_key_false(&preempt_notifier_key))
2480		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2481
2482	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2483}
2484EXPORT_SYMBOL_GPL(preempt_notifier_register);
2485
2486/**
2487 * preempt_notifier_unregister - no longer interested in preemption notifications
2488 * @notifier: notifier struct to unregister
2489 *
2490 * This is *not* safe to call from within a preemption notifier.
2491 */
2492void preempt_notifier_unregister(struct preempt_notifier *notifier)
2493{
2494	hlist_del(&notifier->link);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2497
2498static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2499{
2500	struct preempt_notifier *notifier;
2501
2502	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2503		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504}
2505
2506static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508	if (static_key_false(&preempt_notifier_key))
2509		__fire_sched_in_preempt_notifiers(curr);
2510}
2511
2512static void
2513__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2514				   struct task_struct *next)
2515{
2516	struct preempt_notifier *notifier;
2517
2518	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2519		notifier->ops->sched_out(notifier, next);
2520}
2521
2522static __always_inline void
2523fire_sched_out_preempt_notifiers(struct task_struct *curr,
2524				 struct task_struct *next)
2525{
2526	if (static_key_false(&preempt_notifier_key))
2527		__fire_sched_out_preempt_notifiers(curr, next);
2528}
2529
2530#else /* !CONFIG_PREEMPT_NOTIFIERS */
2531
2532static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534}
2535
2536static inline void
2537fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538				 struct task_struct *next)
2539{
2540}
2541
2542#endif /* CONFIG_PREEMPT_NOTIFIERS */
2543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544/**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
2547 * @prev: the current task that is being switched out
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
2557static inline void
2558prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559		    struct task_struct *next)
2560{
 
2561	sched_info_switch(rq, prev, next);
2562	perf_event_task_sched_out(prev, next);
 
2563	fire_sched_out_preempt_notifiers(prev, next);
2564	prepare_lock_switch(rq, next);
2565	prepare_arch_switch(next);
2566}
2567
2568/**
2569 * finish_task_switch - clean up after a task-switch
2570 * @prev: the thread we just switched away from.
2571 *
2572 * finish_task_switch must be called after the context switch, paired
2573 * with a prepare_task_switch call before the context switch.
2574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575 * and do any other architecture-specific cleanup actions.
2576 *
2577 * Note that we may have delayed dropping an mm in context_switch(). If
2578 * so, we finish that here outside of the runqueue lock. (Doing it
2579 * with the lock held can cause deadlocks; see schedule() for
2580 * details.)
2581 *
2582 * The context switch have flipped the stack from under us and restored the
2583 * local variables which were saved when this task called schedule() in the
2584 * past. prev == current is still correct but we need to recalculate this_rq
2585 * because prev may have moved to another CPU.
2586 */
2587static struct rq *finish_task_switch(struct task_struct *prev)
2588	__releases(rq->lock)
2589{
2590	struct rq *rq = this_rq();
2591	struct mm_struct *mm = rq->prev_mm;
2592	long prev_state;
2593
2594	/*
2595	 * The previous task will have left us with a preempt_count of 2
2596	 * because it left us after:
2597	 *
2598	 *	schedule()
2599	 *	  preempt_disable();			// 1
2600	 *	  __schedule()
2601	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2602	 *
2603	 * Also, see FORK_PREEMPT_COUNT.
2604	 */
2605	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2606		      "corrupted preempt_count: %s/%d/0x%x\n",
2607		      current->comm, current->pid, preempt_count()))
2608		preempt_count_set(FORK_PREEMPT_COUNT);
2609
2610	rq->prev_mm = NULL;
2611
2612	/*
2613	 * A task struct has one reference for the use as "current".
2614	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2615	 * schedule one last time. The schedule call will never return, and
2616	 * the scheduled task must drop that reference.
2617	 *
2618	 * We must observe prev->state before clearing prev->on_cpu (in
2619	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2620	 * running on another CPU and we could rave with its RUNNING -> DEAD
2621	 * transition, resulting in a double drop.
2622	 */
2623	prev_state = prev->state;
2624	vtime_task_switch(prev);
2625	perf_event_task_sched_in(prev, current);
2626	finish_lock_switch(rq, prev);
 
2627	finish_arch_post_lock_switch();
 
2628
2629	fire_sched_in_preempt_notifiers(current);
2630	if (mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
2631		mmdrop(mm);
 
2632	if (unlikely(prev_state == TASK_DEAD)) {
2633		if (prev->sched_class->task_dead)
2634			prev->sched_class->task_dead(prev);
2635
2636		/*
2637		 * Remove function-return probe instances associated with this
2638		 * task and put them back on the free list.
2639		 */
2640		kprobe_flush_task(prev);
2641		put_task_struct(prev);
 
 
 
 
2642	}
2643
2644	tick_nohz_task_switch();
2645	return rq;
2646}
2647
2648#ifdef CONFIG_SMP
2649
2650/* rq->lock is NOT held, but preemption is disabled */
2651static void __balance_callback(struct rq *rq)
2652{
2653	struct callback_head *head, *next;
2654	void (*func)(struct rq *rq);
2655	unsigned long flags;
2656
2657	raw_spin_lock_irqsave(&rq->lock, flags);
2658	head = rq->balance_callback;
2659	rq->balance_callback = NULL;
2660	while (head) {
2661		func = (void (*)(struct rq *))head->func;
2662		next = head->next;
2663		head->next = NULL;
2664		head = next;
2665
2666		func(rq);
2667	}
2668	raw_spin_unlock_irqrestore(&rq->lock, flags);
2669}
2670
2671static inline void balance_callback(struct rq *rq)
2672{
2673	if (unlikely(rq->balance_callback))
2674		__balance_callback(rq);
2675}
2676
2677#else
2678
2679static inline void balance_callback(struct rq *rq)
2680{
2681}
2682
2683#endif
2684
2685/**
2686 * schedule_tail - first thing a freshly forked thread must call.
2687 * @prev: the thread we just switched away from.
2688 */
2689asmlinkage __visible void schedule_tail(struct task_struct *prev)
2690	__releases(rq->lock)
2691{
2692	struct rq *rq;
2693
2694	/*
2695	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2696	 * finish_task_switch() for details.
2697	 *
2698	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2699	 * and the preempt_enable() will end up enabling preemption (on
2700	 * PREEMPT_COUNT kernels).
2701	 */
2702
2703	rq = finish_task_switch(prev);
2704	balance_callback(rq);
2705	preempt_enable();
2706
2707	if (current->set_child_tid)
2708		put_user(task_pid_vnr(current), current->set_child_tid);
 
 
2709}
2710
2711/*
2712 * context_switch - switch to the new MM and the new thread's register state.
2713 */
2714static __always_inline struct rq *
2715context_switch(struct rq *rq, struct task_struct *prev,
2716	       struct task_struct *next)
2717{
2718	struct mm_struct *mm, *oldmm;
2719
2720	prepare_task_switch(rq, prev, next);
2721
2722	mm = next->mm;
2723	oldmm = prev->active_mm;
2724	/*
2725	 * For paravirt, this is coupled with an exit in switch_to to
2726	 * combine the page table reload and the switch backend into
2727	 * one hypercall.
2728	 */
2729	arch_start_context_switch(prev);
2730
2731	if (!mm) {
2732		next->active_mm = oldmm;
2733		atomic_inc(&oldmm->mm_count);
2734		enter_lazy_tlb(oldmm, next);
2735	} else
2736		switch_mm(oldmm, mm, next);
2737
2738	if (!prev->mm) {
2739		prev->active_mm = NULL;
2740		rq->prev_mm = oldmm;
2741	}
2742	/*
2743	 * Since the runqueue lock will be released by the next
2744	 * task (which is an invalid locking op but in the case
2745	 * of the scheduler it's an obvious special-case), so we
2746	 * do an early lockdep release here:
 
2747	 */
2748	lockdep_unpin_lock(&rq->lock);
2749	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750
2751	/* Here we just switch the register state and the stack. */
2752	switch_to(prev, next, prev);
2753	barrier();
2754
2755	return finish_task_switch(prev);
2756}
2757
2758/*
2759 * nr_running and nr_context_switches:
2760 *
2761 * externally visible scheduler statistics: current number of runnable
2762 * threads, total number of context switches performed since bootup.
2763 */
2764unsigned long nr_running(void)
2765{
2766	unsigned long i, sum = 0;
2767
2768	for_each_online_cpu(i)
2769		sum += cpu_rq(i)->nr_running;
2770
2771	return sum;
2772}
2773
2774/*
2775 * Check if only the current task is running on the cpu.
2776 *
2777 * Caution: this function does not check that the caller has disabled
2778 * preemption, thus the result might have a time-of-check-to-time-of-use
2779 * race.  The caller is responsible to use it correctly, for example:
2780 *
2781 * - from a non-preemptable section (of course)
2782 *
2783 * - from a thread that is bound to a single CPU
2784 *
2785 * - in a loop with very short iterations (e.g. a polling loop)
2786 */
2787bool single_task_running(void)
2788{
2789	return raw_rq()->nr_running == 1;
2790}
2791EXPORT_SYMBOL(single_task_running);
2792
2793unsigned long long nr_context_switches(void)
2794{
2795	int i;
2796	unsigned long long sum = 0;
2797
2798	for_each_possible_cpu(i)
2799		sum += cpu_rq(i)->nr_switches;
2800
2801	return sum;
2802}
2803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2804unsigned long nr_iowait(void)
2805{
2806	unsigned long i, sum = 0;
2807
2808	for_each_possible_cpu(i)
2809		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2810
2811	return sum;
2812}
2813
2814unsigned long nr_iowait_cpu(int cpu)
2815{
2816	struct rq *this = cpu_rq(cpu);
2817	return atomic_read(&this->nr_iowait);
2818}
2819
2820void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2821{
2822	struct rq *rq = this_rq();
2823	*nr_waiters = atomic_read(&rq->nr_iowait);
2824	*load = rq->load.weight;
2825}
2826
2827#ifdef CONFIG_SMP
2828
2829/*
2830 * sched_exec - execve() is a valuable balancing opportunity, because at
2831 * this point the task has the smallest effective memory and cache footprint.
2832 */
2833void sched_exec(void)
2834{
2835	struct task_struct *p = current;
2836	unsigned long flags;
2837	int dest_cpu;
2838
2839	raw_spin_lock_irqsave(&p->pi_lock, flags);
2840	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2841	if (dest_cpu == smp_processor_id())
2842		goto unlock;
2843
2844	if (likely(cpu_active(dest_cpu))) {
2845		struct migration_arg arg = { p, dest_cpu };
2846
2847		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2848		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2849		return;
2850	}
2851unlock:
2852	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2853}
2854
2855#endif
2856
2857DEFINE_PER_CPU(struct kernel_stat, kstat);
2858DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2859
2860EXPORT_PER_CPU_SYMBOL(kstat);
2861EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2862
2863/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864 * Return accounted runtime for the task.
2865 * In case the task is currently running, return the runtime plus current's
2866 * pending runtime that have not been accounted yet.
2867 */
2868unsigned long long task_sched_runtime(struct task_struct *p)
2869{
2870	unsigned long flags;
2871	struct rq *rq;
2872	u64 ns;
2873
2874#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2875	/*
2876	 * 64-bit doesn't need locks to atomically read a 64bit value.
2877	 * So we have a optimization chance when the task's delta_exec is 0.
2878	 * Reading ->on_cpu is racy, but this is ok.
2879	 *
2880	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2881	 * If we race with it entering cpu, unaccounted time is 0. This is
2882	 * indistinguishable from the read occurring a few cycles earlier.
2883	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2884	 * been accounted, so we're correct here as well.
2885	 */
2886	if (!p->on_cpu || !task_on_rq_queued(p))
2887		return p->se.sum_exec_runtime;
2888#endif
2889
2890	rq = task_rq_lock(p, &flags);
2891	/*
2892	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2893	 * project cycles that may never be accounted to this
2894	 * thread, breaking clock_gettime().
2895	 */
2896	if (task_current(rq, p) && task_on_rq_queued(p)) {
 
2897		update_rq_clock(rq);
2898		p->sched_class->update_curr(rq);
2899	}
2900	ns = p->se.sum_exec_runtime;
2901	task_rq_unlock(rq, p, &flags);
2902
2903	return ns;
2904}
2905
2906/*
2907 * This function gets called by the timer code, with HZ frequency.
2908 * We call it with interrupts disabled.
2909 */
2910void scheduler_tick(void)
2911{
2912	int cpu = smp_processor_id();
2913	struct rq *rq = cpu_rq(cpu);
2914	struct task_struct *curr = rq->curr;
 
 
2915
 
2916	sched_clock_tick();
2917
2918	raw_spin_lock(&rq->lock);
 
2919	update_rq_clock(rq);
 
 
2920	curr->sched_class->task_tick(rq, curr, 0);
2921	update_cpu_load_active(rq);
2922	calc_global_load_tick(rq);
2923	raw_spin_unlock(&rq->lock);
 
 
2924
2925	perf_event_task_tick();
2926
2927#ifdef CONFIG_SMP
2928	rq->idle_balance = idle_cpu(cpu);
2929	trigger_load_balance(rq);
2930#endif
2931	rq_last_tick_reset(rq);
2932}
2933
2934#ifdef CONFIG_NO_HZ_FULL
2935/**
2936 * scheduler_tick_max_deferment
 
 
 
 
 
 
 
 
 
 
 
 
2937 *
2938 * Keep at least one tick per second when a single
2939 * active task is running because the scheduler doesn't
2940 * yet completely support full dynticks environment.
 
 
 
 
 
 
 
 
 
 
2941 *
2942 * This makes sure that uptime, CFS vruntime, load
2943 * balancing, etc... continue to move forward, even
2944 * with a very low granularity.
2945 *
2946 * Return: Maximum deferment in nanoseconds.
 
2947 */
2948u64 scheduler_tick_max_deferment(void)
 
 
 
2949{
2950	struct rq *rq = this_rq();
2951	unsigned long next, now = READ_ONCE(jiffies);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2952
2953	next = rq->last_sched_tick + HZ;
2954
2955	if (time_before_eq(next, now))
2956		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2957
2958	return jiffies_to_nsecs(next - now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2959}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960#endif
2961
2962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2963				defined(CONFIG_PREEMPT_TRACER))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2964
2965void preempt_count_add(int val)
2966{
2967#ifdef CONFIG_DEBUG_PREEMPT
2968	/*
2969	 * Underflow?
2970	 */
2971	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2972		return;
2973#endif
2974	__preempt_count_add(val);
2975#ifdef CONFIG_DEBUG_PREEMPT
2976	/*
2977	 * Spinlock count overflowing soon?
2978	 */
2979	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2980				PREEMPT_MASK - 10);
2981#endif
2982	if (preempt_count() == val) {
2983		unsigned long ip = get_lock_parent_ip();
2984#ifdef CONFIG_DEBUG_PREEMPT
2985		current->preempt_disable_ip = ip;
2986#endif
2987		trace_preempt_off(CALLER_ADDR0, ip);
2988	}
2989}
2990EXPORT_SYMBOL(preempt_count_add);
2991NOKPROBE_SYMBOL(preempt_count_add);
2992
 
 
 
 
 
 
 
 
 
 
2993void preempt_count_sub(int val)
2994{
2995#ifdef CONFIG_DEBUG_PREEMPT
2996	/*
2997	 * Underflow?
2998	 */
2999	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3000		return;
3001	/*
3002	 * Is the spinlock portion underflowing?
3003	 */
3004	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3005			!(preempt_count() & PREEMPT_MASK)))
3006		return;
3007#endif
3008
3009	if (preempt_count() == val)
3010		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3011	__preempt_count_sub(val);
3012}
3013EXPORT_SYMBOL(preempt_count_sub);
3014NOKPROBE_SYMBOL(preempt_count_sub);
3015
 
 
 
3016#endif
3017
 
 
 
 
 
 
 
 
 
3018/*
3019 * Print scheduling while atomic bug:
3020 */
3021static noinline void __schedule_bug(struct task_struct *prev)
3022{
 
 
 
3023	if (oops_in_progress)
3024		return;
3025
3026	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3027		prev->comm, prev->pid, preempt_count());
3028
3029	debug_show_held_locks(prev);
3030	print_modules();
3031	if (irqs_disabled())
3032		print_irqtrace_events(prev);
3033#ifdef CONFIG_DEBUG_PREEMPT
3034	if (in_atomic_preempt_off()) {
3035		pr_err("Preemption disabled at:");
3036		print_ip_sym(current->preempt_disable_ip);
3037		pr_cont("\n");
3038	}
3039#endif
 
 
3040	dump_stack();
3041	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3042}
3043
3044/*
3045 * Various schedule()-time debugging checks and statistics:
3046 */
3047static inline void schedule_debug(struct task_struct *prev)
3048{
3049#ifdef CONFIG_SCHED_STACK_END_CHECK
3050	BUG_ON(task_stack_end_corrupted(prev));
 
 
 
 
 
 
 
 
 
 
 
 
 
3051#endif
3052
3053	if (unlikely(in_atomic_preempt_off())) {
3054		__schedule_bug(prev);
3055		preempt_count_set(PREEMPT_DISABLED);
3056	}
3057	rcu_sleep_check();
3058
3059	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3060
3061	schedstat_inc(this_rq(), sched_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3062}
3063
3064/*
3065 * Pick up the highest-prio task:
3066 */
3067static inline struct task_struct *
3068pick_next_task(struct rq *rq, struct task_struct *prev)
3069{
3070	const struct sched_class *class = &fair_sched_class;
3071	struct task_struct *p;
3072
3073	/*
3074	 * Optimization: we know that if all tasks are in
3075	 * the fair class we can call that function directly:
 
 
3076	 */
3077	if (likely(prev->sched_class == class &&
3078		   rq->nr_running == rq->cfs.h_nr_running)) {
3079		p = fair_sched_class.pick_next_task(rq, prev);
 
3080		if (unlikely(p == RETRY_TASK))
3081			goto again;
3082
3083		/* assumes fair_sched_class->next == idle_sched_class */
3084		if (unlikely(!p))
3085			p = idle_sched_class.pick_next_task(rq, prev);
 
 
3086
3087		return p;
3088	}
3089
3090again:
 
 
3091	for_each_class(class) {
3092		p = class->pick_next_task(rq, prev);
3093		if (p) {
3094			if (unlikely(p == RETRY_TASK))
3095				goto again;
3096			return p;
3097		}
3098	}
3099
3100	BUG(); /* the idle class will always have a runnable task */
 
3101}
3102
3103/*
3104 * __schedule() is the main scheduler function.
3105 *
3106 * The main means of driving the scheduler and thus entering this function are:
3107 *
3108 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3109 *
3110 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3111 *      paths. For example, see arch/x86/entry_64.S.
3112 *
3113 *      To drive preemption between tasks, the scheduler sets the flag in timer
3114 *      interrupt handler scheduler_tick().
3115 *
3116 *   3. Wakeups don't really cause entry into schedule(). They add a
3117 *      task to the run-queue and that's it.
3118 *
3119 *      Now, if the new task added to the run-queue preempts the current
3120 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3121 *      called on the nearest possible occasion:
3122 *
3123 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3124 *
3125 *         - in syscall or exception context, at the next outmost
3126 *           preempt_enable(). (this might be as soon as the wake_up()'s
3127 *           spin_unlock()!)
3128 *
3129 *         - in IRQ context, return from interrupt-handler to
3130 *           preemptible context
3131 *
3132 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3133 *         then at the next:
3134 *
3135 *          - cond_resched() call
3136 *          - explicit schedule() call
3137 *          - return from syscall or exception to user-space
3138 *          - return from interrupt-handler to user-space
3139 *
3140 * WARNING: must be called with preemption disabled!
3141 */
3142static void __sched notrace __schedule(bool preempt)
3143{
3144	struct task_struct *prev, *next;
3145	unsigned long *switch_count;
 
 
3146	struct rq *rq;
3147	int cpu;
3148
3149	cpu = smp_processor_id();
3150	rq = cpu_rq(cpu);
3151	prev = rq->curr;
3152
3153	/*
3154	 * do_exit() calls schedule() with preemption disabled as an exception;
3155	 * however we must fix that up, otherwise the next task will see an
3156	 * inconsistent (higher) preempt count.
3157	 *
3158	 * It also avoids the below schedule_debug() test from complaining
3159	 * about this.
3160	 */
3161	if (unlikely(prev->state == TASK_DEAD))
3162		preempt_enable_no_resched_notrace();
3163
3164	schedule_debug(prev);
3165
3166	if (sched_feat(HRTICK))
3167		hrtick_clear(rq);
3168
3169	local_irq_disable();
3170	rcu_note_context_switch();
3171
3172	/*
3173	 * Make sure that signal_pending_state()->signal_pending() below
3174	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3175	 * done by the caller to avoid the race with signal_wake_up().
 
 
 
 
 
 
 
 
 
 
3176	 */
3177	smp_mb__before_spinlock();
3178	raw_spin_lock(&rq->lock);
3179	lockdep_pin_lock(&rq->lock);
3180
3181	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
 
 
3182
3183	switch_count = &prev->nivcsw;
3184	if (!preempt && prev->state) {
3185		if (unlikely(signal_pending_state(prev->state, prev))) {
 
 
 
 
 
 
 
 
 
3186			prev->state = TASK_RUNNING;
3187		} else {
3188			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3189			prev->on_rq = 0;
 
 
 
 
 
3190
3191			/*
3192			 * If a worker went to sleep, notify and ask workqueue
3193			 * whether it wants to wake up a task to maintain
3194			 * concurrency.
 
 
 
 
 
 
3195			 */
3196			if (prev->flags & PF_WQ_WORKER) {
3197				struct task_struct *to_wakeup;
3198
3199				to_wakeup = wq_worker_sleeping(prev);
3200				if (to_wakeup)
3201					try_to_wake_up_local(to_wakeup);
3202			}
3203		}
3204		switch_count = &prev->nvcsw;
3205	}
3206
3207	if (task_on_rq_queued(prev))
3208		update_rq_clock(rq);
3209
3210	next = pick_next_task(rq, prev);
3211	clear_tsk_need_resched(prev);
3212	clear_preempt_need_resched();
3213	rq->clock_skip_update = 0;
3214
3215	if (likely(prev != next)) {
3216		rq->nr_switches++;
3217		rq->curr = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3218		++*switch_count;
3219
 
 
3220		trace_sched_switch(preempt, prev, next);
3221		rq = context_switch(rq, prev, next); /* unlocks the rq */
 
 
3222	} else {
3223		lockdep_unpin_lock(&rq->lock);
3224		raw_spin_unlock_irq(&rq->lock);
3225	}
3226
3227	balance_callback(rq);
3228}
3229STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3230
3231static inline void sched_submit_work(struct task_struct *tsk)
3232{
3233	if (!tsk->state || tsk_is_pi_blocked(tsk))
3234		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235	/*
3236	 * If we are going to sleep and we have plugged IO queued,
3237	 * make sure to submit it to avoid deadlocks.
3238	 */
3239	if (blk_needs_flush_plug(tsk))
3240		blk_schedule_flush_plug(tsk);
3241}
3242
 
 
 
 
 
 
 
 
 
 
3243asmlinkage __visible void __sched schedule(void)
3244{
3245	struct task_struct *tsk = current;
3246
3247	sched_submit_work(tsk);
3248	do {
3249		preempt_disable();
3250		__schedule(false);
3251		sched_preempt_enable_no_resched();
3252	} while (need_resched());
 
3253}
3254EXPORT_SYMBOL(schedule);
3255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3256#ifdef CONFIG_CONTEXT_TRACKING
3257asmlinkage __visible void __sched schedule_user(void)
3258{
3259	/*
3260	 * If we come here after a random call to set_need_resched(),
3261	 * or we have been woken up remotely but the IPI has not yet arrived,
3262	 * we haven't yet exited the RCU idle mode. Do it here manually until
3263	 * we find a better solution.
3264	 *
3265	 * NB: There are buggy callers of this function.  Ideally we
3266	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3267	 * too frequently to make sense yet.
3268	 */
3269	enum ctx_state prev_state = exception_enter();
3270	schedule();
3271	exception_exit(prev_state);
3272}
3273#endif
3274
3275/**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280void __sched schedule_preempt_disabled(void)
3281{
3282	sched_preempt_enable_no_resched();
3283	schedule();
3284	preempt_disable();
3285}
3286
3287static void __sched notrace preempt_schedule_common(void)
3288{
3289	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
3290		preempt_disable_notrace();
 
3291		__schedule(true);
 
3292		preempt_enable_no_resched_notrace();
3293
3294		/*
3295		 * Check again in case we missed a preemption opportunity
3296		 * between schedule and now.
3297		 */
3298	} while (need_resched());
3299}
3300
3301#ifdef CONFIG_PREEMPT
3302/*
3303 * this is the entry point to schedule() from in-kernel preemption
3304 * off of preempt_enable. Kernel preemptions off return from interrupt
3305 * occur there and call schedule directly.
3306 */
3307asmlinkage __visible void __sched notrace preempt_schedule(void)
3308{
3309	/*
3310	 * If there is a non-zero preempt_count or interrupts are disabled,
3311	 * we do not want to preempt the current task. Just return..
3312	 */
3313	if (likely(!preemptible()))
3314		return;
3315
3316	preempt_schedule_common();
3317}
3318NOKPROBE_SYMBOL(preempt_schedule);
3319EXPORT_SYMBOL(preempt_schedule);
3320
3321/**
3322 * preempt_schedule_notrace - preempt_schedule called by tracing
3323 *
3324 * The tracing infrastructure uses preempt_enable_notrace to prevent
3325 * recursion and tracing preempt enabling caused by the tracing
3326 * infrastructure itself. But as tracing can happen in areas coming
3327 * from userspace or just about to enter userspace, a preempt enable
3328 * can occur before user_exit() is called. This will cause the scheduler
3329 * to be called when the system is still in usermode.
3330 *
3331 * To prevent this, the preempt_enable_notrace will use this function
3332 * instead of preempt_schedule() to exit user context if needed before
3333 * calling the scheduler.
3334 */
3335asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3336{
3337	enum ctx_state prev_ctx;
3338
3339	if (likely(!preemptible()))
3340		return;
3341
3342	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
3343		preempt_disable_notrace();
 
3344		/*
3345		 * Needs preempt disabled in case user_exit() is traced
3346		 * and the tracer calls preempt_enable_notrace() causing
3347		 * an infinite recursion.
3348		 */
3349		prev_ctx = exception_enter();
3350		__schedule(true);
3351		exception_exit(prev_ctx);
3352
 
3353		preempt_enable_no_resched_notrace();
3354	} while (need_resched());
3355}
3356EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3357
3358#endif /* CONFIG_PREEMPT */
3359
3360/*
3361 * this is the entry point to schedule() from kernel preemption
3362 * off of irq context.
3363 * Note, that this is called and return with irqs disabled. This will
3364 * protect us against recursive calling from irq.
3365 */
3366asmlinkage __visible void __sched preempt_schedule_irq(void)
3367{
3368	enum ctx_state prev_state;
3369
3370	/* Catch callers which need to be fixed */
3371	BUG_ON(preempt_count() || !irqs_disabled());
3372
3373	prev_state = exception_enter();
3374
3375	do {
3376		preempt_disable();
3377		local_irq_enable();
3378		__schedule(true);
3379		local_irq_disable();
3380		sched_preempt_enable_no_resched();
3381	} while (need_resched());
3382
3383	exception_exit(prev_state);
3384}
3385
3386int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3387			  void *key)
3388{
 
3389	return try_to_wake_up(curr->private, mode, wake_flags);
3390}
3391EXPORT_SYMBOL(default_wake_function);
3392
3393#ifdef CONFIG_RT_MUTEXES
3394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3395/*
3396 * rt_mutex_setprio - set the current priority of a task
3397 * @p: task
3398 * @prio: prio value (kernel-internal form)
3399 *
3400 * This function changes the 'effective' priority of a task. It does
3401 * not touch ->normal_prio like __setscheduler().
3402 *
3403 * Used by the rt_mutex code to implement priority inheritance
3404 * logic. Call site only calls if the priority of the task changed.
3405 */
3406void rt_mutex_setprio(struct task_struct *p, int prio)
3407{
3408	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3409	struct rq *rq;
3410	const struct sched_class *prev_class;
 
 
3411
3412	BUG_ON(prio > MAX_PRIO);
 
3413
3414	rq = __task_rq_lock(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3415
3416	/*
3417	 * Idle task boosting is a nono in general. There is one
3418	 * exception, when PREEMPT_RT and NOHZ is active:
3419	 *
3420	 * The idle task calls get_next_timer_interrupt() and holds
3421	 * the timer wheel base->lock on the CPU and another CPU wants
3422	 * to access the timer (probably to cancel it). We can safely
3423	 * ignore the boosting request, as the idle CPU runs this code
3424	 * with interrupts disabled and will complete the lock
3425	 * protected section without being interrupted. So there is no
3426	 * real need to boost.
3427	 */
3428	if (unlikely(p == rq->idle)) {
3429		WARN_ON(p != rq->curr);
3430		WARN_ON(p->pi_blocked_on);
3431		goto out_unlock;
3432	}
3433
3434	trace_sched_pi_setprio(p, prio);
3435	oldprio = p->prio;
3436
3437	if (oldprio == prio)
3438		queue_flag &= ~DEQUEUE_MOVE;
3439
3440	prev_class = p->sched_class;
3441	queued = task_on_rq_queued(p);
3442	running = task_current(rq, p);
3443	if (queued)
3444		dequeue_task(rq, p, queue_flag);
3445	if (running)
3446		put_prev_task(rq, p);
3447
3448	/*
3449	 * Boosting condition are:
3450	 * 1. -rt task is running and holds mutex A
3451	 *      --> -dl task blocks on mutex A
3452	 *
3453	 * 2. -dl task is running and holds mutex A
3454	 *      --> -dl task blocks on mutex A and could preempt the
3455	 *          running task
3456	 */
3457	if (dl_prio(prio)) {
3458		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3459		if (!dl_prio(p->normal_prio) ||
3460		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
 
3461			p->dl.dl_boosted = 1;
3462			queue_flag |= ENQUEUE_REPLENISH;
3463		} else
3464			p->dl.dl_boosted = 0;
3465		p->sched_class = &dl_sched_class;
3466	} else if (rt_prio(prio)) {
3467		if (dl_prio(oldprio))
3468			p->dl.dl_boosted = 0;
3469		if (oldprio < prio)
3470			queue_flag |= ENQUEUE_HEAD;
3471		p->sched_class = &rt_sched_class;
3472	} else {
3473		if (dl_prio(oldprio))
3474			p->dl.dl_boosted = 0;
3475		if (rt_prio(oldprio))
3476			p->rt.timeout = 0;
3477		p->sched_class = &fair_sched_class;
3478	}
3479
3480	p->prio = prio;
3481
3482	if (running)
3483		p->sched_class->set_curr_task(rq);
3484	if (queued)
3485		enqueue_task(rq, p, queue_flag);
 
 
3486
3487	check_class_changed(rq, p, prev_class, oldprio);
3488out_unlock:
3489	preempt_disable(); /* avoid rq from going away on us */
3490	__task_rq_unlock(rq);
 
3491
3492	balance_callback(rq);
3493	preempt_enable();
3494}
 
 
 
 
 
3495#endif
3496
3497void set_user_nice(struct task_struct *p, long nice)
3498{
3499	int old_prio, delta, queued;
3500	unsigned long flags;
 
3501	struct rq *rq;
3502
3503	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3504		return;
3505	/*
3506	 * We have to be careful, if called from sys_setpriority(),
3507	 * the task might be in the middle of scheduling on another CPU.
3508	 */
3509	rq = task_rq_lock(p, &flags);
 
 
3510	/*
3511	 * The RT priorities are set via sched_setscheduler(), but we still
3512	 * allow the 'normal' nice value to be set - but as expected
3513	 * it wont have any effect on scheduling until the task is
3514	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3515	 */
3516	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3517		p->static_prio = NICE_TO_PRIO(nice);
3518		goto out_unlock;
3519	}
3520	queued = task_on_rq_queued(p);
 
3521	if (queued)
3522		dequeue_task(rq, p, DEQUEUE_SAVE);
 
 
3523
3524	p->static_prio = NICE_TO_PRIO(nice);
3525	set_load_weight(p);
3526	old_prio = p->prio;
3527	p->prio = effective_prio(p);
3528	delta = p->prio - old_prio;
3529
3530	if (queued) {
3531		enqueue_task(rq, p, ENQUEUE_RESTORE);
3532		/*
3533		 * If the task increased its priority or is running and
3534		 * lowered its priority, then reschedule its CPU:
3535		 */
3536		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3537			resched_curr(rq);
3538	}
 
 
3539out_unlock:
3540	task_rq_unlock(rq, p, &flags);
3541}
3542EXPORT_SYMBOL(set_user_nice);
3543
3544/*
3545 * can_nice - check if a task can reduce its nice value
3546 * @p: task
3547 * @nice: nice value
3548 */
3549int can_nice(const struct task_struct *p, const int nice)
3550{
3551	/* convert nice value [19,-20] to rlimit style value [1,40] */
3552	int nice_rlim = nice_to_rlimit(nice);
3553
3554	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3555		capable(CAP_SYS_NICE));
3556}
3557
3558#ifdef __ARCH_WANT_SYS_NICE
3559
3560/*
3561 * sys_nice - change the priority of the current process.
3562 * @increment: priority increment
3563 *
3564 * sys_setpriority is a more generic, but much slower function that
3565 * does similar things.
3566 */
3567SYSCALL_DEFINE1(nice, int, increment)
3568{
3569	long nice, retval;
3570
3571	/*
3572	 * Setpriority might change our priority at the same moment.
3573	 * We don't have to worry. Conceptually one call occurs first
3574	 * and we have a single winner.
3575	 */
3576	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3577	nice = task_nice(current) + increment;
3578
3579	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3580	if (increment < 0 && !can_nice(current, nice))
3581		return -EPERM;
3582
3583	retval = security_task_setnice(current, nice);
3584	if (retval)
3585		return retval;
3586
3587	set_user_nice(current, nice);
3588	return 0;
3589}
3590
3591#endif
3592
3593/**
3594 * task_prio - return the priority value of a given task.
3595 * @p: the task in question.
3596 *
3597 * Return: The priority value as seen by users in /proc.
3598 * RT tasks are offset by -200. Normal tasks are centered
3599 * around 0, value goes from -16 to +15.
3600 */
3601int task_prio(const struct task_struct *p)
3602{
3603	return p->prio - MAX_RT_PRIO;
3604}
3605
3606/**
3607 * idle_cpu - is a given cpu idle currently?
3608 * @cpu: the processor in question.
3609 *
3610 * Return: 1 if the CPU is currently idle. 0 otherwise.
3611 */
3612int idle_cpu(int cpu)
3613{
3614	struct rq *rq = cpu_rq(cpu);
3615
3616	if (rq->curr != rq->idle)
3617		return 0;
3618
3619	if (rq->nr_running)
3620		return 0;
3621
3622#ifdef CONFIG_SMP
3623	if (!llist_empty(&rq->wake_list))
3624		return 0;
3625#endif
3626
3627	return 1;
3628}
3629
3630/**
3631 * idle_task - return the idle task for a given cpu.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3632 * @cpu: the processor in question.
3633 *
3634 * Return: The idle task for the cpu @cpu.
3635 */
3636struct task_struct *idle_task(int cpu)
3637{
3638	return cpu_rq(cpu)->idle;
3639}
3640
3641/**
3642 * find_process_by_pid - find a process with a matching PID value.
3643 * @pid: the pid in question.
3644 *
3645 * The task of @pid, if found. %NULL otherwise.
3646 */
3647static struct task_struct *find_process_by_pid(pid_t pid)
3648{
3649	return pid ? find_task_by_vpid(pid) : current;
3650}
3651
3652/*
3653 * This function initializes the sched_dl_entity of a newly becoming
3654 * SCHED_DEADLINE task.
3655 *
3656 * Only the static values are considered here, the actual runtime and the
3657 * absolute deadline will be properly calculated when the task is enqueued
3658 * for the first time with its new policy.
3659 */
3660static void
3661__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3662{
3663	struct sched_dl_entity *dl_se = &p->dl;
3664
3665	dl_se->dl_runtime = attr->sched_runtime;
3666	dl_se->dl_deadline = attr->sched_deadline;
3667	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3668	dl_se->flags = attr->sched_flags;
3669	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3670
3671	/*
3672	 * Changing the parameters of a task is 'tricky' and we're not doing
3673	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3674	 *
3675	 * What we SHOULD do is delay the bandwidth release until the 0-lag
3676	 * point. This would include retaining the task_struct until that time
3677	 * and change dl_overflow() to not immediately decrement the current
3678	 * amount.
3679	 *
3680	 * Instead we retain the current runtime/deadline and let the new
3681	 * parameters take effect after the current reservation period lapses.
3682	 * This is safe (albeit pessimistic) because the 0-lag point is always
3683	 * before the current scheduling deadline.
3684	 *
3685	 * We can still have temporary overloads because we do not delay the
3686	 * change in bandwidth until that time; so admission control is
3687	 * not on the safe side. It does however guarantee tasks will never
3688	 * consume more than promised.
3689	 */
3690}
3691
3692/*
3693 * sched_setparam() passes in -1 for its policy, to let the functions
3694 * it calls know not to change it.
3695 */
3696#define SETPARAM_POLICY	-1
3697
3698static void __setscheduler_params(struct task_struct *p,
3699		const struct sched_attr *attr)
3700{
3701	int policy = attr->sched_policy;
3702
3703	if (policy == SETPARAM_POLICY)
3704		policy = p->policy;
3705
3706	p->policy = policy;
3707
3708	if (dl_policy(policy))
3709		__setparam_dl(p, attr);
3710	else if (fair_policy(policy))
3711		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3712
3713	/*
3714	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3715	 * !rt_policy. Always setting this ensures that things like
3716	 * getparam()/getattr() don't report silly values for !rt tasks.
3717	 */
3718	p->rt_priority = attr->sched_priority;
3719	p->normal_prio = normal_prio(p);
3720	set_load_weight(p);
3721}
3722
3723/* Actually do priority change: must hold pi & rq lock. */
3724static void __setscheduler(struct rq *rq, struct task_struct *p,
3725			   const struct sched_attr *attr, bool keep_boost)
3726{
 
 
 
 
 
 
 
3727	__setscheduler_params(p, attr);
3728
3729	/*
3730	 * Keep a potential priority boosting if called from
3731	 * sched_setscheduler().
3732	 */
 
3733	if (keep_boost)
3734		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3735	else
3736		p->prio = normal_prio(p);
3737
3738	if (dl_prio(p->prio))
3739		p->sched_class = &dl_sched_class;
3740	else if (rt_prio(p->prio))
3741		p->sched_class = &rt_sched_class;
3742	else
3743		p->sched_class = &fair_sched_class;
3744}
3745
3746static void
3747__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3748{
3749	struct sched_dl_entity *dl_se = &p->dl;
3750
3751	attr->sched_priority = p->rt_priority;
3752	attr->sched_runtime = dl_se->dl_runtime;
3753	attr->sched_deadline = dl_se->dl_deadline;
3754	attr->sched_period = dl_se->dl_period;
3755	attr->sched_flags = dl_se->flags;
3756}
3757
3758/*
3759 * This function validates the new parameters of a -deadline task.
3760 * We ask for the deadline not being zero, and greater or equal
3761 * than the runtime, as well as the period of being zero or
3762 * greater than deadline. Furthermore, we have to be sure that
3763 * user parameters are above the internal resolution of 1us (we
3764 * check sched_runtime only since it is always the smaller one) and
3765 * below 2^63 ns (we have to check both sched_deadline and
3766 * sched_period, as the latter can be zero).
3767 */
3768static bool
3769__checkparam_dl(const struct sched_attr *attr)
3770{
3771	/* deadline != 0 */
3772	if (attr->sched_deadline == 0)
3773		return false;
3774
3775	/*
3776	 * Since we truncate DL_SCALE bits, make sure we're at least
3777	 * that big.
3778	 */
3779	if (attr->sched_runtime < (1ULL << DL_SCALE))
3780		return false;
3781
3782	/*
3783	 * Since we use the MSB for wrap-around and sign issues, make
3784	 * sure it's not set (mind that period can be equal to zero).
3785	 */
3786	if (attr->sched_deadline & (1ULL << 63) ||
3787	    attr->sched_period & (1ULL << 63))
3788		return false;
3789
3790	/* runtime <= deadline <= period (if period != 0) */
3791	if ((attr->sched_period != 0 &&
3792	     attr->sched_period < attr->sched_deadline) ||
3793	    attr->sched_deadline < attr->sched_runtime)
3794		return false;
3795
3796	return true;
3797}
3798
3799/*
3800 * check the target process has a UID that matches the current process's
3801 */
3802static bool check_same_owner(struct task_struct *p)
3803{
3804	const struct cred *cred = current_cred(), *pcred;
3805	bool match;
3806
3807	rcu_read_lock();
3808	pcred = __task_cred(p);
3809	match = (uid_eq(cred->euid, pcred->euid) ||
3810		 uid_eq(cred->euid, pcred->uid));
3811	rcu_read_unlock();
3812	return match;
3813}
3814
3815static bool dl_param_changed(struct task_struct *p,
3816		const struct sched_attr *attr)
3817{
3818	struct sched_dl_entity *dl_se = &p->dl;
3819
3820	if (dl_se->dl_runtime != attr->sched_runtime ||
3821		dl_se->dl_deadline != attr->sched_deadline ||
3822		dl_se->dl_period != attr->sched_period ||
3823		dl_se->flags != attr->sched_flags)
3824		return true;
3825
3826	return false;
3827}
3828
3829static int __sched_setscheduler(struct task_struct *p,
3830				const struct sched_attr *attr,
3831				bool user, bool pi)
3832{
3833	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3834		      MAX_RT_PRIO - 1 - attr->sched_priority;
3835	int retval, oldprio, oldpolicy = -1, queued, running;
3836	int new_effective_prio, policy = attr->sched_policy;
3837	unsigned long flags;
3838	const struct sched_class *prev_class;
3839	struct rq *rq;
3840	int reset_on_fork;
3841	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
 
3842
3843	/* may grab non-irq protected spin_locks */
3844	BUG_ON(in_interrupt());
3845recheck:
3846	/* double check policy once rq lock held */
3847	if (policy < 0) {
3848		reset_on_fork = p->sched_reset_on_fork;
3849		policy = oldpolicy = p->policy;
3850	} else {
3851		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3852
3853		if (!valid_policy(policy))
3854			return -EINVAL;
3855	}
3856
3857	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3858		return -EINVAL;
3859
3860	/*
3861	 * Valid priorities for SCHED_FIFO and SCHED_RR are
3862	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863	 * SCHED_BATCH and SCHED_IDLE is 0.
3864	 */
3865	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3866	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3867		return -EINVAL;
3868	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3869	    (rt_policy(policy) != (attr->sched_priority != 0)))
3870		return -EINVAL;
3871
3872	/*
3873	 * Allow unprivileged RT tasks to decrease priority:
3874	 */
3875	if (user && !capable(CAP_SYS_NICE)) {
3876		if (fair_policy(policy)) {
3877			if (attr->sched_nice < task_nice(p) &&
3878			    !can_nice(p, attr->sched_nice))
3879				return -EPERM;
3880		}
3881
3882		if (rt_policy(policy)) {
3883			unsigned long rlim_rtprio =
3884					task_rlimit(p, RLIMIT_RTPRIO);
3885
3886			/* can't set/change the rt policy */
3887			if (policy != p->policy && !rlim_rtprio)
3888				return -EPERM;
3889
3890			/* can't increase priority */
3891			if (attr->sched_priority > p->rt_priority &&
3892			    attr->sched_priority > rlim_rtprio)
3893				return -EPERM;
3894		}
3895
3896		 /*
3897		  * Can't set/change SCHED_DEADLINE policy at all for now
3898		  * (safest behavior); in the future we would like to allow
3899		  * unprivileged DL tasks to increase their relative deadline
3900		  * or reduce their runtime (both ways reducing utilization)
3901		  */
3902		if (dl_policy(policy))
3903			return -EPERM;
3904
3905		/*
3906		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3907		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3908		 */
3909		if (idle_policy(p->policy) && !idle_policy(policy)) {
3910			if (!can_nice(p, task_nice(p)))
3911				return -EPERM;
3912		}
3913
3914		/* can't change other user's priorities */
3915		if (!check_same_owner(p))
3916			return -EPERM;
3917
3918		/* Normal users shall not reset the sched_reset_on_fork flag */
3919		if (p->sched_reset_on_fork && !reset_on_fork)
3920			return -EPERM;
3921	}
3922
3923	if (user) {
 
 
 
3924		retval = security_task_setscheduler(p);
3925		if (retval)
3926			return retval;
3927	}
3928
 
 
 
 
 
 
 
 
 
 
3929	/*
3930	 * make sure no PI-waiters arrive (or leave) while we are
3931	 * changing the priority of the task:
3932	 *
3933	 * To be able to change p->policy safely, the appropriate
3934	 * runqueue lock must be held.
3935	 */
3936	rq = task_rq_lock(p, &flags);
 
3937
3938	/*
3939	 * Changing the policy of the stop threads its a very bad idea
3940	 */
3941	if (p == rq->stop) {
3942		task_rq_unlock(rq, p, &flags);
3943		return -EINVAL;
3944	}
3945
3946	/*
3947	 * If not changing anything there's no need to proceed further,
3948	 * but store a possible modification of reset_on_fork.
3949	 */
3950	if (unlikely(policy == p->policy)) {
3951		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3952			goto change;
3953		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3954			goto change;
3955		if (dl_policy(policy) && dl_param_changed(p, attr))
3956			goto change;
 
 
3957
3958		p->sched_reset_on_fork = reset_on_fork;
3959		task_rq_unlock(rq, p, &flags);
3960		return 0;
3961	}
3962change:
3963
3964	if (user) {
3965#ifdef CONFIG_RT_GROUP_SCHED
3966		/*
3967		 * Do not allow realtime tasks into groups that have no runtime
3968		 * assigned.
3969		 */
3970		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3971				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3972				!task_group_is_autogroup(task_group(p))) {
3973			task_rq_unlock(rq, p, &flags);
3974			return -EPERM;
3975		}
3976#endif
3977#ifdef CONFIG_SMP
3978		if (dl_bandwidth_enabled() && dl_policy(policy)) {
 
3979			cpumask_t *span = rq->rd->span;
3980
3981			/*
3982			 * Don't allow tasks with an affinity mask smaller than
3983			 * the entire root_domain to become SCHED_DEADLINE. We
3984			 * will also fail if there's no bandwidth available.
3985			 */
3986			if (!cpumask_subset(span, &p->cpus_allowed) ||
3987			    rq->rd->dl_bw.bw == 0) {
3988				task_rq_unlock(rq, p, &flags);
3989				return -EPERM;
3990			}
3991		}
3992#endif
3993	}
3994
3995	/* recheck policy now with rq lock held */
3996	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3997		policy = oldpolicy = -1;
3998		task_rq_unlock(rq, p, &flags);
 
 
3999		goto recheck;
4000	}
4001
4002	/*
4003	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4004	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4005	 * is available.
4006	 */
4007	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4008		task_rq_unlock(rq, p, &flags);
4009		return -EBUSY;
4010	}
4011
4012	p->sched_reset_on_fork = reset_on_fork;
4013	oldprio = p->prio;
4014
4015	if (pi) {
4016		/*
4017		 * Take priority boosted tasks into account. If the new
4018		 * effective priority is unchanged, we just store the new
4019		 * normal parameters and do not touch the scheduler class and
4020		 * the runqueue. This will be done when the task deboost
4021		 * itself.
4022		 */
4023		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4024		if (new_effective_prio == oldprio)
4025			queue_flags &= ~DEQUEUE_MOVE;
4026	}
4027
4028	queued = task_on_rq_queued(p);
4029	running = task_current(rq, p);
4030	if (queued)
4031		dequeue_task(rq, p, queue_flags);
4032	if (running)
4033		put_prev_task(rq, p);
4034
4035	prev_class = p->sched_class;
 
4036	__setscheduler(rq, p, attr, pi);
 
4037
4038	if (running)
4039		p->sched_class->set_curr_task(rq);
4040	if (queued) {
4041		/*
4042		 * We enqueue to tail when the priority of a task is
4043		 * increased (user space view).
4044		 */
4045		if (oldprio < p->prio)
4046			queue_flags |= ENQUEUE_HEAD;
4047
4048		enqueue_task(rq, p, queue_flags);
4049	}
 
 
4050
4051	check_class_changed(rq, p, prev_class, oldprio);
4052	preempt_disable(); /* avoid rq from going away on us */
4053	task_rq_unlock(rq, p, &flags);
4054
4055	if (pi)
 
 
 
 
 
4056		rt_mutex_adjust_pi(p);
 
4057
4058	/*
4059	 * Run balance callbacks after we've adjusted the PI chain.
4060	 */
4061	balance_callback(rq);
4062	preempt_enable();
4063
4064	return 0;
 
 
 
 
 
 
4065}
4066
4067static int _sched_setscheduler(struct task_struct *p, int policy,
4068			       const struct sched_param *param, bool check)
4069{
4070	struct sched_attr attr = {
4071		.sched_policy   = policy,
4072		.sched_priority = param->sched_priority,
4073		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4074	};
4075
4076	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4077	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4078		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4079		policy &= ~SCHED_RESET_ON_FORK;
4080		attr.sched_policy = policy;
4081	}
4082
4083	return __sched_setscheduler(p, &attr, check, true);
4084}
4085/**
4086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4087 * @p: the task in question.
4088 * @policy: new policy.
4089 * @param: structure containing the new RT priority.
4090 *
 
 
4091 * Return: 0 on success. An error code otherwise.
4092 *
4093 * NOTE that the task may be already dead.
4094 */
4095int sched_setscheduler(struct task_struct *p, int policy,
4096		       const struct sched_param *param)
4097{
4098	return _sched_setscheduler(p, policy, param, true);
4099}
4100EXPORT_SYMBOL_GPL(sched_setscheduler);
4101
4102int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4103{
4104	return __sched_setscheduler(p, attr, true, true);
4105}
4106EXPORT_SYMBOL_GPL(sched_setattr);
 
 
 
 
4107
4108/**
4109 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4110 * @p: the task in question.
4111 * @policy: new policy.
4112 * @param: structure containing the new RT priority.
4113 *
4114 * Just like sched_setscheduler, only don't bother checking if the
4115 * current context has permission.  For example, this is needed in
4116 * stop_machine(): we create temporary high priority worker threads,
4117 * but our caller might not have that capability.
4118 *
4119 * Return: 0 on success. An error code otherwise.
4120 */
4121int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4122			       const struct sched_param *param)
4123{
4124	return _sched_setscheduler(p, policy, param, false);
4125}
4126EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4127
4128static int
4129do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4130{
4131	struct sched_param lparam;
4132	struct task_struct *p;
4133	int retval;
4134
4135	if (!param || pid < 0)
4136		return -EINVAL;
4137	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4138		return -EFAULT;
4139
4140	rcu_read_lock();
4141	retval = -ESRCH;
4142	p = find_process_by_pid(pid);
4143	if (p != NULL)
4144		retval = sched_setscheduler(p, policy, &lparam);
4145	rcu_read_unlock();
4146
 
 
 
 
 
4147	return retval;
4148}
4149
4150/*
4151 * Mimics kernel/events/core.c perf_copy_attr().
4152 */
4153static int sched_copy_attr(struct sched_attr __user *uattr,
4154			   struct sched_attr *attr)
4155{
4156	u32 size;
4157	int ret;
4158
4159	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4160		return -EFAULT;
4161
4162	/*
4163	 * zero the full structure, so that a short copy will be nice.
4164	 */
4165	memset(attr, 0, sizeof(*attr));
4166
4167	ret = get_user(size, &uattr->size);
4168	if (ret)
4169		return ret;
4170
4171	if (size > PAGE_SIZE)	/* silly large */
4172		goto err_size;
4173
4174	if (!size)		/* abi compat */
4175		size = SCHED_ATTR_SIZE_VER0;
4176
4177	if (size < SCHED_ATTR_SIZE_VER0)
4178		goto err_size;
4179
4180	/*
4181	 * If we're handed a bigger struct than we know of,
4182	 * ensure all the unknown bits are 0 - i.e. new
4183	 * user-space does not rely on any kernel feature
4184	 * extensions we dont know about yet.
4185	 */
4186	if (size > sizeof(*attr)) {
4187		unsigned char __user *addr;
4188		unsigned char __user *end;
4189		unsigned char val;
4190
4191		addr = (void __user *)uattr + sizeof(*attr);
4192		end  = (void __user *)uattr + size;
4193
4194		for (; addr < end; addr++) {
4195			ret = get_user(val, addr);
4196			if (ret)
4197				return ret;
4198			if (val)
4199				goto err_size;
4200		}
4201		size = sizeof(*attr);
4202	}
4203
4204	ret = copy_from_user(attr, uattr, size);
4205	if (ret)
4206		return -EFAULT;
4207
4208	/*
4209	 * XXX: do we want to be lenient like existing syscalls; or do we want
4210	 * to be strict and return an error on out-of-bounds values?
4211	 */
4212	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4213
4214	return 0;
4215
4216err_size:
4217	put_user(sizeof(*attr), &uattr->size);
4218	return -E2BIG;
4219}
4220
4221/**
4222 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4223 * @pid: the pid in question.
4224 * @policy: new policy.
4225 * @param: structure containing the new RT priority.
4226 *
4227 * Return: 0 on success. An error code otherwise.
4228 */
4229SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4230		struct sched_param __user *, param)
4231{
4232	/* negative values for policy are not valid */
4233	if (policy < 0)
4234		return -EINVAL;
4235
4236	return do_sched_setscheduler(pid, policy, param);
4237}
4238
4239/**
4240 * sys_sched_setparam - set/change the RT priority of a thread
4241 * @pid: the pid in question.
4242 * @param: structure containing the new RT priority.
4243 *
4244 * Return: 0 on success. An error code otherwise.
4245 */
4246SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4247{
4248	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4249}
4250
4251/**
4252 * sys_sched_setattr - same as above, but with extended sched_attr
4253 * @pid: the pid in question.
4254 * @uattr: structure containing the extended parameters.
4255 * @flags: for future extension.
4256 */
4257SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4258			       unsigned int, flags)
4259{
4260	struct sched_attr attr;
4261	struct task_struct *p;
4262	int retval;
4263
4264	if (!uattr || pid < 0 || flags)
4265		return -EINVAL;
4266
4267	retval = sched_copy_attr(uattr, &attr);
4268	if (retval)
4269		return retval;
4270
4271	if ((int)attr.sched_policy < 0)
4272		return -EINVAL;
 
 
4273
4274	rcu_read_lock();
4275	retval = -ESRCH;
4276	p = find_process_by_pid(pid);
4277	if (p != NULL)
4278		retval = sched_setattr(p, &attr);
4279	rcu_read_unlock();
4280
 
 
 
 
 
4281	return retval;
4282}
4283
4284/**
4285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4286 * @pid: the pid in question.
4287 *
4288 * Return: On success, the policy of the thread. Otherwise, a negative error
4289 * code.
4290 */
4291SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4292{
4293	struct task_struct *p;
4294	int retval;
4295
4296	if (pid < 0)
4297		return -EINVAL;
4298
4299	retval = -ESRCH;
4300	rcu_read_lock();
4301	p = find_process_by_pid(pid);
4302	if (p) {
4303		retval = security_task_getscheduler(p);
4304		if (!retval)
4305			retval = p->policy
4306				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4307	}
4308	rcu_read_unlock();
4309	return retval;
4310}
4311
4312/**
4313 * sys_sched_getparam - get the RT priority of a thread
4314 * @pid: the pid in question.
4315 * @param: structure containing the RT priority.
4316 *
4317 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4318 * code.
4319 */
4320SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4321{
4322	struct sched_param lp = { .sched_priority = 0 };
4323	struct task_struct *p;
4324	int retval;
4325
4326	if (!param || pid < 0)
4327		return -EINVAL;
4328
4329	rcu_read_lock();
4330	p = find_process_by_pid(pid);
4331	retval = -ESRCH;
4332	if (!p)
4333		goto out_unlock;
4334
4335	retval = security_task_getscheduler(p);
4336	if (retval)
4337		goto out_unlock;
4338
4339	if (task_has_rt_policy(p))
4340		lp.sched_priority = p->rt_priority;
4341	rcu_read_unlock();
4342
4343	/*
4344	 * This one might sleep, we cannot do it with a spinlock held ...
4345	 */
4346	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347
4348	return retval;
4349
4350out_unlock:
4351	rcu_read_unlock();
4352	return retval;
4353}
4354
4355static int sched_read_attr(struct sched_attr __user *uattr,
4356			   struct sched_attr *attr,
4357			   unsigned int usize)
 
 
 
 
 
 
 
 
 
4358{
4359	int ret;
4360
4361	if (!access_ok(VERIFY_WRITE, uattr, usize))
4362		return -EFAULT;
4363
4364	/*
4365	 * If we're handed a smaller struct than we know of,
4366	 * ensure all the unknown bits are 0 - i.e. old
4367	 * user-space does not get uncomplete information.
4368	 */
4369	if (usize < sizeof(*attr)) {
4370		unsigned char *addr;
4371		unsigned char *end;
4372
4373		addr = (void *)attr + usize;
4374		end  = (void *)attr + sizeof(*attr);
4375
4376		for (; addr < end; addr++) {
4377			if (*addr)
4378				return -EFBIG;
4379		}
4380
4381		attr->size = usize;
4382	}
4383
4384	ret = copy_to_user(uattr, attr, attr->size);
4385	if (ret)
4386		return -EFAULT;
4387
4388	return 0;
4389}
4390
4391/**
4392 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4393 * @pid: the pid in question.
4394 * @uattr: structure containing the extended parameters.
4395 * @size: sizeof(attr) for fwd/bwd comp.
4396 * @flags: for future extension.
4397 */
4398SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4399		unsigned int, size, unsigned int, flags)
4400{
4401	struct sched_attr attr = {
4402		.size = sizeof(struct sched_attr),
4403	};
4404	struct task_struct *p;
4405	int retval;
4406
4407	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4408	    size < SCHED_ATTR_SIZE_VER0 || flags)
4409		return -EINVAL;
4410
4411	rcu_read_lock();
4412	p = find_process_by_pid(pid);
4413	retval = -ESRCH;
4414	if (!p)
4415		goto out_unlock;
4416
4417	retval = security_task_getscheduler(p);
4418	if (retval)
4419		goto out_unlock;
4420
4421	attr.sched_policy = p->policy;
4422	if (p->sched_reset_on_fork)
4423		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4424	if (task_has_dl_policy(p))
4425		__getparam_dl(p, &attr);
4426	else if (task_has_rt_policy(p))
4427		attr.sched_priority = p->rt_priority;
4428	else
4429		attr.sched_nice = task_nice(p);
 
 
 
 
 
 
 
 
 
 
4430
4431	rcu_read_unlock();
4432
4433	retval = sched_read_attr(uattr, &attr, size);
4434	return retval;
4435
4436out_unlock:
4437	rcu_read_unlock();
4438	return retval;
4439}
4440
4441long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4442{
4443	cpumask_var_t cpus_allowed, new_mask;
4444	struct task_struct *p;
4445	int retval;
4446
4447	rcu_read_lock();
4448
4449	p = find_process_by_pid(pid);
4450	if (!p) {
4451		rcu_read_unlock();
4452		return -ESRCH;
4453	}
4454
4455	/* Prevent p going away */
4456	get_task_struct(p);
4457	rcu_read_unlock();
4458
4459	if (p->flags & PF_NO_SETAFFINITY) {
4460		retval = -EINVAL;
4461		goto out_put_task;
4462	}
4463	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4464		retval = -ENOMEM;
4465		goto out_put_task;
4466	}
4467	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4468		retval = -ENOMEM;
4469		goto out_free_cpus_allowed;
4470	}
4471	retval = -EPERM;
4472	if (!check_same_owner(p)) {
4473		rcu_read_lock();
4474		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4475			rcu_read_unlock();
4476			goto out_free_new_mask;
4477		}
4478		rcu_read_unlock();
4479	}
4480
4481	retval = security_task_setscheduler(p);
4482	if (retval)
4483		goto out_free_new_mask;
4484
4485
4486	cpuset_cpus_allowed(p, cpus_allowed);
4487	cpumask_and(new_mask, in_mask, cpus_allowed);
4488
4489	/*
4490	 * Since bandwidth control happens on root_domain basis,
4491	 * if admission test is enabled, we only admit -deadline
4492	 * tasks allowed to run on all the CPUs in the task's
4493	 * root_domain.
4494	 */
4495#ifdef CONFIG_SMP
4496	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4497		rcu_read_lock();
4498		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4499			retval = -EBUSY;
4500			rcu_read_unlock();
4501			goto out_free_new_mask;
4502		}
4503		rcu_read_unlock();
4504	}
4505#endif
4506again:
4507	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4508
4509	if (!retval) {
4510		cpuset_cpus_allowed(p, cpus_allowed);
4511		if (!cpumask_subset(new_mask, cpus_allowed)) {
4512			/*
4513			 * We must have raced with a concurrent cpuset
4514			 * update. Just reset the cpus_allowed to the
4515			 * cpuset's cpus_allowed
4516			 */
4517			cpumask_copy(new_mask, cpus_allowed);
4518			goto again;
4519		}
4520	}
4521out_free_new_mask:
4522	free_cpumask_var(new_mask);
4523out_free_cpus_allowed:
4524	free_cpumask_var(cpus_allowed);
4525out_put_task:
4526	put_task_struct(p);
4527	return retval;
4528}
4529
4530static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4531			     struct cpumask *new_mask)
4532{
4533	if (len < cpumask_size())
4534		cpumask_clear(new_mask);
4535	else if (len > cpumask_size())
4536		len = cpumask_size();
4537
4538	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4539}
4540
4541/**
4542 * sys_sched_setaffinity - set the cpu affinity of a process
4543 * @pid: pid of the process
4544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4545 * @user_mask_ptr: user-space pointer to the new cpu mask
4546 *
4547 * Return: 0 on success. An error code otherwise.
4548 */
4549SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4550		unsigned long __user *, user_mask_ptr)
4551{
4552	cpumask_var_t new_mask;
4553	int retval;
4554
4555	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4556		return -ENOMEM;
4557
4558	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4559	if (retval == 0)
4560		retval = sched_setaffinity(pid, new_mask);
4561	free_cpumask_var(new_mask);
4562	return retval;
4563}
4564
4565long sched_getaffinity(pid_t pid, struct cpumask *mask)
4566{
4567	struct task_struct *p;
4568	unsigned long flags;
4569	int retval;
4570
4571	rcu_read_lock();
4572
4573	retval = -ESRCH;
4574	p = find_process_by_pid(pid);
4575	if (!p)
4576		goto out_unlock;
4577
4578	retval = security_task_getscheduler(p);
4579	if (retval)
4580		goto out_unlock;
4581
4582	raw_spin_lock_irqsave(&p->pi_lock, flags);
4583	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4584	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4585
4586out_unlock:
4587	rcu_read_unlock();
4588
4589	return retval;
4590}
4591
4592/**
4593 * sys_sched_getaffinity - get the cpu affinity of a process
4594 * @pid: pid of the process
4595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4596 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4597 *
4598 * Return: 0 on success. An error code otherwise.
 
4599 */
4600SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4601		unsigned long __user *, user_mask_ptr)
4602{
4603	int ret;
4604	cpumask_var_t mask;
4605
4606	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4607		return -EINVAL;
4608	if (len & (sizeof(unsigned long)-1))
4609		return -EINVAL;
4610
4611	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4612		return -ENOMEM;
4613
4614	ret = sched_getaffinity(pid, mask);
4615	if (ret == 0) {
4616		size_t retlen = min_t(size_t, len, cpumask_size());
4617
4618		if (copy_to_user(user_mask_ptr, mask, retlen))
4619			ret = -EFAULT;
4620		else
4621			ret = retlen;
4622	}
4623	free_cpumask_var(mask);
4624
4625	return ret;
4626}
4627
4628/**
4629 * sys_sched_yield - yield the current processor to other threads.
4630 *
4631 * This function yields the current CPU to other tasks. If there are no
4632 * other threads running on this CPU then this function will return.
4633 *
4634 * Return: 0.
4635 */
4636SYSCALL_DEFINE0(sched_yield)
4637{
4638	struct rq *rq = this_rq_lock();
 
 
 
4639
4640	schedstat_inc(rq, yld_count);
4641	current->sched_class->yield_task(rq);
4642
4643	/*
4644	 * Since we are going to call schedule() anyway, there's
4645	 * no need to preempt or enable interrupts:
4646	 */
4647	__release(rq->lock);
4648	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4649	do_raw_spin_unlock(&rq->lock);
4650	sched_preempt_enable_no_resched();
4651
4652	schedule();
 
4653
 
 
 
4654	return 0;
4655}
4656
 
4657int __sched _cond_resched(void)
4658{
4659	if (should_resched(0)) {
4660		preempt_schedule_common();
4661		return 1;
4662	}
 
4663	return 0;
4664}
4665EXPORT_SYMBOL(_cond_resched);
 
4666
4667/*
4668 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4669 * call schedule, and on return reacquire the lock.
4670 *
4671 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4672 * operations here to prevent schedule() from being called twice (once via
4673 * spin_unlock(), once by hand).
4674 */
4675int __cond_resched_lock(spinlock_t *lock)
4676{
4677	int resched = should_resched(PREEMPT_LOCK_OFFSET);
4678	int ret = 0;
4679
4680	lockdep_assert_held(lock);
4681
4682	if (spin_needbreak(lock) || resched) {
4683		spin_unlock(lock);
4684		if (resched)
4685			preempt_schedule_common();
4686		else
4687			cpu_relax();
4688		ret = 1;
4689		spin_lock(lock);
4690	}
4691	return ret;
4692}
4693EXPORT_SYMBOL(__cond_resched_lock);
4694
4695int __sched __cond_resched_softirq(void)
4696{
4697	BUG_ON(!in_softirq());
4698
4699	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4700		local_bh_enable();
4701		preempt_schedule_common();
4702		local_bh_disable();
4703		return 1;
4704	}
4705	return 0;
4706}
4707EXPORT_SYMBOL(__cond_resched_softirq);
4708
4709/**
4710 * yield - yield the current processor to other threads.
4711 *
4712 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4713 *
4714 * The scheduler is at all times free to pick the calling task as the most
4715 * eligible task to run, if removing the yield() call from your code breaks
4716 * it, its already broken.
4717 *
4718 * Typical broken usage is:
4719 *
4720 * while (!event)
4721 * 	yield();
4722 *
4723 * where one assumes that yield() will let 'the other' process run that will
4724 * make event true. If the current task is a SCHED_FIFO task that will never
4725 * happen. Never use yield() as a progress guarantee!!
4726 *
4727 * If you want to use yield() to wait for something, use wait_event().
4728 * If you want to use yield() to be 'nice' for others, use cond_resched().
4729 * If you still want to use yield(), do not!
4730 */
4731void __sched yield(void)
4732{
4733	set_current_state(TASK_RUNNING);
4734	sys_sched_yield();
4735}
4736EXPORT_SYMBOL(yield);
4737
4738/**
4739 * yield_to - yield the current processor to another thread in
4740 * your thread group, or accelerate that thread toward the
4741 * processor it's on.
4742 * @p: target task
4743 * @preempt: whether task preemption is allowed or not
4744 *
4745 * It's the caller's job to ensure that the target task struct
4746 * can't go away on us before we can do any checks.
4747 *
4748 * Return:
4749 *	true (>0) if we indeed boosted the target task.
4750 *	false (0) if we failed to boost the target.
4751 *	-ESRCH if there's no task to yield to.
4752 */
4753int __sched yield_to(struct task_struct *p, bool preempt)
4754{
4755	struct task_struct *curr = current;
4756	struct rq *rq, *p_rq;
4757	unsigned long flags;
4758	int yielded = 0;
4759
4760	local_irq_save(flags);
4761	rq = this_rq();
4762
4763again:
4764	p_rq = task_rq(p);
4765	/*
4766	 * If we're the only runnable task on the rq and target rq also
4767	 * has only one task, there's absolutely no point in yielding.
4768	 */
4769	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4770		yielded = -ESRCH;
4771		goto out_irq;
4772	}
4773
4774	double_rq_lock(rq, p_rq);
4775	if (task_rq(p) != p_rq) {
4776		double_rq_unlock(rq, p_rq);
4777		goto again;
4778	}
4779
4780	if (!curr->sched_class->yield_to_task)
4781		goto out_unlock;
4782
4783	if (curr->sched_class != p->sched_class)
4784		goto out_unlock;
4785
4786	if (task_running(p_rq, p) || p->state)
4787		goto out_unlock;
4788
4789	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4790	if (yielded) {
4791		schedstat_inc(rq, yld_count);
4792		/*
4793		 * Make p's CPU reschedule; pick_next_entity takes care of
4794		 * fairness.
4795		 */
4796		if (preempt && rq != p_rq)
4797			resched_curr(p_rq);
4798	}
4799
4800out_unlock:
4801	double_rq_unlock(rq, p_rq);
4802out_irq:
4803	local_irq_restore(flags);
4804
4805	if (yielded > 0)
4806		schedule();
4807
4808	return yielded;
4809}
4810EXPORT_SYMBOL_GPL(yield_to);
4811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4812/*
4813 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4814 * that process accounting knows that this is a task in IO wait state.
4815 */
4816long __sched io_schedule_timeout(long timeout)
4817{
4818	int old_iowait = current->in_iowait;
4819	struct rq *rq;
4820	long ret;
4821
4822	current->in_iowait = 1;
4823	blk_schedule_flush_plug(current);
4824
4825	delayacct_blkio_start();
4826	rq = raw_rq();
4827	atomic_inc(&rq->nr_iowait);
4828	ret = schedule_timeout(timeout);
4829	current->in_iowait = old_iowait;
4830	atomic_dec(&rq->nr_iowait);
4831	delayacct_blkio_end();
4832
4833	return ret;
4834}
4835EXPORT_SYMBOL(io_schedule_timeout);
4836
 
 
 
 
 
 
 
 
 
 
4837/**
4838 * sys_sched_get_priority_max - return maximum RT priority.
4839 * @policy: scheduling class.
4840 *
4841 * Return: On success, this syscall returns the maximum
4842 * rt_priority that can be used by a given scheduling class.
4843 * On failure, a negative error code is returned.
4844 */
4845SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4846{
4847	int ret = -EINVAL;
4848
4849	switch (policy) {
4850	case SCHED_FIFO:
4851	case SCHED_RR:
4852		ret = MAX_USER_RT_PRIO-1;
4853		break;
4854	case SCHED_DEADLINE:
4855	case SCHED_NORMAL:
4856	case SCHED_BATCH:
4857	case SCHED_IDLE:
4858		ret = 0;
4859		break;
4860	}
4861	return ret;
4862}
4863
4864/**
4865 * sys_sched_get_priority_min - return minimum RT priority.
4866 * @policy: scheduling class.
4867 *
4868 * Return: On success, this syscall returns the minimum
4869 * rt_priority that can be used by a given scheduling class.
4870 * On failure, a negative error code is returned.
4871 */
4872SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4873{
4874	int ret = -EINVAL;
4875
4876	switch (policy) {
4877	case SCHED_FIFO:
4878	case SCHED_RR:
4879		ret = 1;
4880		break;
4881	case SCHED_DEADLINE:
4882	case SCHED_NORMAL:
4883	case SCHED_BATCH:
4884	case SCHED_IDLE:
4885		ret = 0;
4886	}
4887	return ret;
4888}
4889
4890/**
4891 * sys_sched_rr_get_interval - return the default timeslice of a process.
4892 * @pid: pid of the process.
4893 * @interval: userspace pointer to the timeslice value.
4894 *
4895 * this syscall writes the default timeslice value of a given process
4896 * into the user-space timespec buffer. A value of '0' means infinity.
4897 *
4898 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4899 * an error code.
4900 */
4901SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4902		struct timespec __user *, interval)
4903{
4904	struct task_struct *p;
4905	unsigned int time_slice;
4906	unsigned long flags;
4907	struct rq *rq;
4908	int retval;
4909	struct timespec t;
4910
4911	if (pid < 0)
4912		return -EINVAL;
4913
4914	retval = -ESRCH;
4915	rcu_read_lock();
4916	p = find_process_by_pid(pid);
4917	if (!p)
4918		goto out_unlock;
4919
4920	retval = security_task_getscheduler(p);
4921	if (retval)
4922		goto out_unlock;
4923
4924	rq = task_rq_lock(p, &flags);
4925	time_slice = 0;
4926	if (p->sched_class->get_rr_interval)
4927		time_slice = p->sched_class->get_rr_interval(rq, p);
4928	task_rq_unlock(rq, p, &flags);
4929
4930	rcu_read_unlock();
4931	jiffies_to_timespec(time_slice, &t);
4932	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4933	return retval;
4934
4935out_unlock:
4936	rcu_read_unlock();
4937	return retval;
4938}
4939
4940static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4941
4942void sched_show_task(struct task_struct *p)
4943{
4944	unsigned long free = 0;
4945	int ppid;
4946	unsigned long state = p->state;
4947
4948	if (state)
4949		state = __ffs(state) + 1;
4950	printk(KERN_INFO "%-15.15s %c", p->comm,
4951		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4952#if BITS_PER_LONG == 32
4953	if (state == TASK_RUNNING)
4954		printk(KERN_CONT " running  ");
4955	else
4956		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4957#else
4958	if (state == TASK_RUNNING)
4959		printk(KERN_CONT "  running task    ");
4960	else
4961		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4962#endif
4963#ifdef CONFIG_DEBUG_STACK_USAGE
4964	free = stack_not_used(p);
4965#endif
4966	ppid = 0;
4967	rcu_read_lock();
4968	if (pid_alive(p))
4969		ppid = task_pid_nr(rcu_dereference(p->real_parent));
4970	rcu_read_unlock();
4971	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4972		task_pid_nr(p), ppid,
4973		(unsigned long)task_thread_info(p)->flags);
4974
4975	print_worker_info(KERN_INFO, p);
4976	show_stack(p, NULL);
 
4977}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4978
4979void show_state_filter(unsigned long state_filter)
4980{
4981	struct task_struct *g, *p;
4982
4983#if BITS_PER_LONG == 32
4984	printk(KERN_INFO
4985		"  task                PC stack   pid father\n");
4986#else
4987	printk(KERN_INFO
4988		"  task                        PC stack   pid father\n");
4989#endif
4990	rcu_read_lock();
4991	for_each_process_thread(g, p) {
4992		/*
4993		 * reset the NMI-timeout, listing all files on a slow
4994		 * console might take a lot of time:
 
 
 
4995		 */
4996		touch_nmi_watchdog();
4997		if (!state_filter || (p->state & state_filter))
 
4998			sched_show_task(p);
4999	}
5000
5001	touch_all_softlockup_watchdogs();
5002
5003#ifdef CONFIG_SCHED_DEBUG
5004	sysrq_sched_debug_show();
 
5005#endif
5006	rcu_read_unlock();
5007	/*
5008	 * Only show locks if all tasks are dumped:
5009	 */
5010	if (!state_filter)
5011		debug_show_all_locks();
5012}
5013
5014void init_idle_bootup_task(struct task_struct *idle)
5015{
5016	idle->sched_class = &idle_sched_class;
5017}
5018
5019/**
5020 * init_idle - set up an idle thread for a given CPU
5021 * @idle: task in question
5022 * @cpu: cpu the idle task belongs to
5023 *
5024 * NOTE: this function does not set the idle thread's NEED_RESCHED
5025 * flag, to make booting more robust.
5026 */
5027void init_idle(struct task_struct *idle, int cpu)
5028{
5029	struct rq *rq = cpu_rq(cpu);
5030	unsigned long flags;
5031
 
 
5032	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5033	raw_spin_lock(&rq->lock);
5034
5035	__sched_fork(0, idle);
5036	idle->state = TASK_RUNNING;
5037	idle->se.exec_start = sched_clock();
 
5038
 
5039	kasan_unpoison_task_stack(idle);
5040
5041#ifdef CONFIG_SMP
5042	/*
5043	 * Its possible that init_idle() gets called multiple times on a task,
5044	 * in that case do_set_cpus_allowed() will not do the right thing.
5045	 *
5046	 * And since this is boot we can forgo the serialization.
5047	 */
5048	set_cpus_allowed_common(idle, cpumask_of(cpu));
5049#endif
5050	/*
5051	 * We're having a chicken and egg problem, even though we are
5052	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5053	 * lockdep check in task_group() will fail.
5054	 *
5055	 * Similar case to sched_fork(). / Alternatively we could
5056	 * use task_rq_lock() here and obtain the other rq->lock.
5057	 *
5058	 * Silence PROVE_RCU
5059	 */
5060	rcu_read_lock();
5061	__set_task_cpu(idle, cpu);
5062	rcu_read_unlock();
5063
5064	rq->curr = rq->idle = idle;
 
5065	idle->on_rq = TASK_ON_RQ_QUEUED;
5066#ifdef CONFIG_SMP
5067	idle->on_cpu = 1;
5068#endif
5069	raw_spin_unlock(&rq->lock);
5070	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5071
5072	/* Set the preempt count _outside_ the spinlocks! */
5073	init_idle_preempt_count(idle, cpu);
5074
5075	/*
5076	 * The idle tasks have their own, simple scheduling class:
5077	 */
5078	idle->sched_class = &idle_sched_class;
5079	ftrace_graph_init_idle_task(idle, cpu);
5080	vtime_init_idle(idle, cpu);
5081#ifdef CONFIG_SMP
5082	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5083#endif
5084}
5085
 
 
5086int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5087			      const struct cpumask *trial)
5088{
5089	int ret = 1, trial_cpus;
5090	struct dl_bw *cur_dl_b;
5091	unsigned long flags;
5092
5093	if (!cpumask_weight(cur))
5094		return ret;
5095
5096	rcu_read_lock_sched();
5097	cur_dl_b = dl_bw_of(cpumask_any(cur));
5098	trial_cpus = cpumask_weight(trial);
5099
5100	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5101	if (cur_dl_b->bw != -1 &&
5102	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5103		ret = 0;
5104	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5105	rcu_read_unlock_sched();
5106
5107	return ret;
5108}
5109
5110int task_can_attach(struct task_struct *p,
5111		    const struct cpumask *cs_cpus_allowed)
5112{
5113	int ret = 0;
5114
5115	/*
5116	 * Kthreads which disallow setaffinity shouldn't be moved
5117	 * to a new cpuset; we don't want to change their cpu
5118	 * affinity and isolating such threads by their set of
5119	 * allowed nodes is unnecessary.  Thus, cpusets are not
5120	 * applicable for such threads.  This prevents checking for
5121	 * success of set_cpus_allowed_ptr() on all attached tasks
5122	 * before cpus_allowed may be changed.
5123	 */
5124	if (p->flags & PF_NO_SETAFFINITY) {
5125		ret = -EINVAL;
5126		goto out;
5127	}
5128
5129#ifdef CONFIG_SMP
5130	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5131					      cs_cpus_allowed)) {
5132		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5133							cs_cpus_allowed);
5134		struct dl_bw *dl_b;
5135		bool overflow;
5136		int cpus;
5137		unsigned long flags;
5138
5139		rcu_read_lock_sched();
5140		dl_b = dl_bw_of(dest_cpu);
5141		raw_spin_lock_irqsave(&dl_b->lock, flags);
5142		cpus = dl_bw_cpus(dest_cpu);
5143		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5144		if (overflow)
5145			ret = -EBUSY;
5146		else {
5147			/*
5148			 * We reserve space for this task in the destination
5149			 * root_domain, as we can't fail after this point.
5150			 * We will free resources in the source root_domain
5151			 * later on (see set_cpus_allowed_dl()).
5152			 */
5153			__dl_add(dl_b, p->dl.dl_bw);
5154		}
5155		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5156		rcu_read_unlock_sched();
5157
5158	}
5159#endif
5160out:
5161	return ret;
5162}
5163
5164#ifdef CONFIG_SMP
5165
5166#ifdef CONFIG_NUMA_BALANCING
5167/* Migrate current task p to target_cpu */
5168int migrate_task_to(struct task_struct *p, int target_cpu)
5169{
5170	struct migration_arg arg = { p, target_cpu };
5171	int curr_cpu = task_cpu(p);
5172
5173	if (curr_cpu == target_cpu)
5174		return 0;
5175
5176	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5177		return -EINVAL;
5178
5179	/* TODO: This is not properly updating schedstats */
5180
5181	trace_sched_move_numa(p, curr_cpu, target_cpu);
5182	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5183}
5184
5185/*
5186 * Requeue a task on a given node and accurately track the number of NUMA
5187 * tasks on the runqueues
5188 */
5189void sched_setnuma(struct task_struct *p, int nid)
5190{
5191	struct rq *rq;
5192	unsigned long flags;
5193	bool queued, running;
 
 
5194
5195	rq = task_rq_lock(p, &flags);
5196	queued = task_on_rq_queued(p);
5197	running = task_current(rq, p);
5198
5199	if (queued)
5200		dequeue_task(rq, p, DEQUEUE_SAVE);
5201	if (running)
5202		put_prev_task(rq, p);
5203
5204	p->numa_preferred_nid = nid;
5205
5206	if (running)
5207		p->sched_class->set_curr_task(rq);
5208	if (queued)
5209		enqueue_task(rq, p, ENQUEUE_RESTORE);
5210	task_rq_unlock(rq, p, &flags);
 
 
5211}
5212#endif /* CONFIG_NUMA_BALANCING */
5213
5214#ifdef CONFIG_HOTPLUG_CPU
5215/*
5216 * Ensures that the idle task is using init_mm right before its cpu goes
5217 * offline.
5218 */
5219void idle_task_exit(void)
5220{
5221	struct mm_struct *mm = current->active_mm;
5222
5223	BUG_ON(cpu_online(smp_processor_id()));
 
5224
5225	if (mm != &init_mm) {
5226		switch_mm(mm, &init_mm, current);
5227		finish_arch_post_lock_switch();
5228	}
5229	mmdrop(mm);
 
5230}
5231
5232/*
5233 * Since this CPU is going 'away' for a while, fold any nr_active delta
5234 * we might have. Assumes we're called after migrate_tasks() so that the
5235 * nr_active count is stable.
 
 
5236 *
5237 * Also see the comment "Global load-average calculations".
5238 */
5239static void calc_load_migrate(struct rq *rq)
5240{
5241	long delta = calc_load_fold_active(rq);
5242	if (delta)
5243		atomic_long_add(delta, &calc_load_tasks);
5244}
5245
5246static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5247{
5248}
 
5249
5250static const struct sched_class fake_sched_class = {
5251	.put_prev_task = put_prev_task_fake,
5252};
 
 
 
 
5253
5254static struct task_struct fake_task = {
5255	/*
5256	 * Avoid pull_{rt,dl}_task()
5257	 */
5258	.prio = MAX_PRIO + 1,
5259	.sched_class = &fake_sched_class,
5260};
5261
5262/*
5263 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5264 * try_to_wake_up()->select_task_rq().
5265 *
5266 * Called with rq->lock held even though we'er in stop_machine() and
5267 * there's no concurrency possible, we hold the required locks anyway
5268 * because of lock validation efforts.
5269 */
5270static void migrate_tasks(struct rq *dead_rq)
5271{
5272	struct rq *rq = dead_rq;
5273	struct task_struct *next, *stop = rq->stop;
 
5274	int dest_cpu;
5275
5276	/*
5277	 * Fudge the rq selection such that the below task selection loop
5278	 * doesn't get stuck on the currently eligible stop task.
5279	 *
5280	 * We're currently inside stop_machine() and the rq is either stuck
5281	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5282	 * either way we should never end up calling schedule() until we're
5283	 * done here.
5284	 */
5285	rq->stop = NULL;
5286
5287	/*
5288	 * put_prev_task() and pick_next_task() sched
5289	 * class method both need to have an up-to-date
5290	 * value of rq->clock[_task]
5291	 */
5292	update_rq_clock(rq);
5293
5294	for (;;) {
5295		/*
5296		 * There's this thread running, bail when that's the only
5297		 * remaining thread.
5298		 */
5299		if (rq->nr_running == 1)
5300			break;
5301
5302		/*
5303		 * pick_next_task assumes pinned rq->lock.
5304		 */
5305		lockdep_pin_lock(&rq->lock);
5306		next = pick_next_task(rq, &fake_task);
5307		BUG_ON(!next);
5308		next->sched_class->put_prev_task(rq, next);
5309
5310		/*
5311		 * Rules for changing task_struct::cpus_allowed are holding
5312		 * both pi_lock and rq->lock, such that holding either
5313		 * stabilizes the mask.
5314		 *
5315		 * Drop rq->lock is not quite as disastrous as it usually is
5316		 * because !cpu_active at this point, which means load-balance
5317		 * will not interfere. Also, stop-machine.
5318		 */
5319		lockdep_unpin_lock(&rq->lock);
5320		raw_spin_unlock(&rq->lock);
5321		raw_spin_lock(&next->pi_lock);
5322		raw_spin_lock(&rq->lock);
5323
5324		/*
5325		 * Since we're inside stop-machine, _nothing_ should have
5326		 * changed the task, WARN if weird stuff happened, because in
5327		 * that case the above rq->lock drop is a fail too.
5328		 */
5329		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5330			raw_spin_unlock(&next->pi_lock);
5331			continue;
5332		}
5333
5334		/* Find suitable destination for @next, with force if needed. */
5335		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5336
5337		rq = __migrate_task(rq, next, dest_cpu);
5338		if (rq != dead_rq) {
5339			raw_spin_unlock(&rq->lock);
5340			rq = dead_rq;
5341			raw_spin_lock(&rq->lock);
 
5342		}
5343		raw_spin_unlock(&next->pi_lock);
5344	}
5345
5346	rq->stop = stop;
5347}
5348#endif /* CONFIG_HOTPLUG_CPU */
5349
5350static void set_rq_online(struct rq *rq)
5351{
5352	if (!rq->online) {
5353		const struct sched_class *class;
5354
5355		cpumask_set_cpu(rq->cpu, rq->rd->online);
5356		rq->online = 1;
5357
5358		for_each_class(class) {
5359			if (class->rq_online)
5360				class->rq_online(rq);
5361		}
5362	}
5363}
5364
5365static void set_rq_offline(struct rq *rq)
5366{
5367	if (rq->online) {
5368		const struct sched_class *class;
5369
5370		for_each_class(class) {
5371			if (class->rq_offline)
5372				class->rq_offline(rq);
5373		}
5374
5375		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5376		rq->online = 0;
5377	}
5378}
5379
5380/*
5381 * migration_call - callback that gets triggered when a CPU is added.
5382 * Here we can start up the necessary migration thread for the new CPU.
5383 */
5384static int
5385migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5386{
5387	int cpu = (long)hcpu;
5388	unsigned long flags;
5389	struct rq *rq = cpu_rq(cpu);
5390
5391	switch (action & ~CPU_TASKS_FROZEN) {
5392
5393	case CPU_UP_PREPARE:
5394		rq->calc_load_update = calc_load_update;
5395		account_reset_rq(rq);
5396		break;
5397
5398	case CPU_ONLINE:
5399		/* Update our root-domain */
5400		raw_spin_lock_irqsave(&rq->lock, flags);
5401		if (rq->rd) {
5402			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5403
5404			set_rq_online(rq);
5405		}
5406		raw_spin_unlock_irqrestore(&rq->lock, flags);
5407		break;
5408
5409#ifdef CONFIG_HOTPLUG_CPU
5410	case CPU_DYING:
5411		sched_ttwu_pending();
5412		/* Update our root-domain */
5413		raw_spin_lock_irqsave(&rq->lock, flags);
5414		if (rq->rd) {
5415			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5416			set_rq_offline(rq);
5417		}
5418		migrate_tasks(rq);
5419		BUG_ON(rq->nr_running != 1); /* the migration thread */
5420		raw_spin_unlock_irqrestore(&rq->lock, flags);
5421		break;
5422
5423	case CPU_DEAD:
5424		calc_load_migrate(rq);
5425		break;
5426#endif
5427	}
5428
5429	update_max_interval();
5430
5431	return NOTIFY_OK;
5432}
5433
5434/*
5435 * Register at high priority so that task migration (migrate_all_tasks)
5436 * happens before everything else.  This has to be lower priority than
5437 * the notifier in the perf_event subsystem, though.
5438 */
5439static struct notifier_block migration_notifier = {
5440	.notifier_call = migration_call,
5441	.priority = CPU_PRI_MIGRATION,
5442};
5443
5444static void set_cpu_rq_start_time(void)
5445{
5446	int cpu = smp_processor_id();
5447	struct rq *rq = cpu_rq(cpu);
5448	rq->age_stamp = sched_clock_cpu(cpu);
5449}
5450
5451static int sched_cpu_active(struct notifier_block *nfb,
5452				      unsigned long action, void *hcpu)
5453{
5454	int cpu = (long)hcpu;
5455
5456	switch (action & ~CPU_TASKS_FROZEN) {
5457	case CPU_STARTING:
5458		set_cpu_rq_start_time();
5459		return NOTIFY_OK;
5460
5461	case CPU_DOWN_FAILED:
5462		set_cpu_active(cpu, true);
5463		return NOTIFY_OK;
5464
5465	default:
5466		return NOTIFY_DONE;
5467	}
5468}
5469
5470static int sched_cpu_inactive(struct notifier_block *nfb,
5471					unsigned long action, void *hcpu)
5472{
5473	switch (action & ~CPU_TASKS_FROZEN) {
5474	case CPU_DOWN_PREPARE:
5475		set_cpu_active((long)hcpu, false);
5476		return NOTIFY_OK;
5477	default:
5478		return NOTIFY_DONE;
5479	}
5480}
5481
5482static int __init migration_init(void)
5483{
5484	void *cpu = (void *)(long)smp_processor_id();
5485	int err;
5486
5487	/* Initialize migration for the boot CPU */
5488	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5489	BUG_ON(err == NOTIFY_BAD);
5490	migration_call(&migration_notifier, CPU_ONLINE, cpu);
5491	register_cpu_notifier(&migration_notifier);
5492
5493	/* Register cpu active notifiers */
5494	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5495	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5496
5497	return 0;
5498}
5499early_initcall(migration_init);
5500
5501static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5502
5503#ifdef CONFIG_SCHED_DEBUG
5504
5505static __read_mostly int sched_debug_enabled;
5506
5507static int __init sched_debug_setup(char *str)
5508{
5509	sched_debug_enabled = 1;
5510
5511	return 0;
5512}
5513early_param("sched_debug", sched_debug_setup);
5514
5515static inline bool sched_debug(void)
5516{
5517	return sched_debug_enabled;
5518}
5519
5520static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5521				  struct cpumask *groupmask)
5522{
5523	struct sched_group *group = sd->groups;
5524
5525	cpumask_clear(groupmask);
5526
5527	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5528
5529	if (!(sd->flags & SD_LOAD_BALANCE)) {
5530		printk("does not load-balance\n");
5531		if (sd->parent)
5532			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5533					" has parent");
5534		return -1;
5535	}
5536
5537	printk(KERN_CONT "span %*pbl level %s\n",
5538	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5539
5540	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5541		printk(KERN_ERR "ERROR: domain->span does not contain "
5542				"CPU%d\n", cpu);
5543	}
5544	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5545		printk(KERN_ERR "ERROR: domain->groups does not contain"
5546				" CPU%d\n", cpu);
5547	}
5548
5549	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5550	do {
5551		if (!group) {
5552			printk("\n");
5553			printk(KERN_ERR "ERROR: group is NULL\n");
5554			break;
5555		}
5556
5557		if (!cpumask_weight(sched_group_cpus(group))) {
5558			printk(KERN_CONT "\n");
5559			printk(KERN_ERR "ERROR: empty group\n");
5560			break;
5561		}
5562
5563		if (!(sd->flags & SD_OVERLAP) &&
5564		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5565			printk(KERN_CONT "\n");
5566			printk(KERN_ERR "ERROR: repeated CPUs\n");
5567			break;
5568		}
5569
5570		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5571
5572		printk(KERN_CONT " %*pbl",
5573		       cpumask_pr_args(sched_group_cpus(group)));
5574		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5575			printk(KERN_CONT " (cpu_capacity = %d)",
5576				group->sgc->capacity);
5577		}
5578
5579		group = group->next;
5580	} while (group != sd->groups);
5581	printk(KERN_CONT "\n");
5582
5583	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585
5586	if (sd->parent &&
5587	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588		printk(KERN_ERR "ERROR: parent span is not a superset "
5589			"of domain->span\n");
5590	return 0;
5591}
5592
5593static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594{
5595	int level = 0;
5596
5597	if (!sched_debug_enabled)
5598		return;
5599
5600	if (!sd) {
5601		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602		return;
5603	}
5604
5605	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606
5607	for (;;) {
5608		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609			break;
5610		level++;
5611		sd = sd->parent;
5612		if (!sd)
5613			break;
5614	}
5615}
5616#else /* !CONFIG_SCHED_DEBUG */
5617# define sched_domain_debug(sd, cpu) do { } while (0)
5618static inline bool sched_debug(void)
5619{
5620	return false;
5621}
5622#endif /* CONFIG_SCHED_DEBUG */
5623
5624static int sd_degenerate(struct sched_domain *sd)
5625{
5626	if (cpumask_weight(sched_domain_span(sd)) == 1)
5627		return 1;
5628
5629	/* Following flags need at least 2 groups */
5630	if (sd->flags & (SD_LOAD_BALANCE |
5631			 SD_BALANCE_NEWIDLE |
5632			 SD_BALANCE_FORK |
5633			 SD_BALANCE_EXEC |
5634			 SD_SHARE_CPUCAPACITY |
5635			 SD_SHARE_PKG_RESOURCES |
5636			 SD_SHARE_POWERDOMAIN)) {
5637		if (sd->groups != sd->groups->next)
5638			return 0;
5639	}
5640
5641	/* Following flags don't use groups */
5642	if (sd->flags & (SD_WAKE_AFFINE))
5643		return 0;
5644
5645	return 1;
5646}
5647
5648static int
5649sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650{
5651	unsigned long cflags = sd->flags, pflags = parent->flags;
5652
5653	if (sd_degenerate(parent))
5654		return 1;
5655
5656	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5657		return 0;
5658
5659	/* Flags needing groups don't count if only 1 group in parent */
5660	if (parent->groups == parent->groups->next) {
5661		pflags &= ~(SD_LOAD_BALANCE |
5662				SD_BALANCE_NEWIDLE |
5663				SD_BALANCE_FORK |
5664				SD_BALANCE_EXEC |
5665				SD_SHARE_CPUCAPACITY |
5666				SD_SHARE_PKG_RESOURCES |
5667				SD_PREFER_SIBLING |
5668				SD_SHARE_POWERDOMAIN);
5669		if (nr_node_ids == 1)
5670			pflags &= ~SD_SERIALIZE;
5671	}
5672	if (~cflags & pflags)
5673		return 0;
5674
5675	return 1;
5676}
5677
5678static void free_rootdomain(struct rcu_head *rcu)
5679{
5680	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5681
5682	cpupri_cleanup(&rd->cpupri);
5683	cpudl_cleanup(&rd->cpudl);
5684	free_cpumask_var(rd->dlo_mask);
5685	free_cpumask_var(rd->rto_mask);
5686	free_cpumask_var(rd->online);
5687	free_cpumask_var(rd->span);
5688	kfree(rd);
5689}
5690
5691static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5692{
5693	struct root_domain *old_rd = NULL;
5694	unsigned long flags;
5695
5696	raw_spin_lock_irqsave(&rq->lock, flags);
5697
5698	if (rq->rd) {
5699		old_rd = rq->rd;
5700
5701		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5702			set_rq_offline(rq);
5703
5704		cpumask_clear_cpu(rq->cpu, old_rd->span);
5705
5706		/*
5707		 * If we dont want to free the old_rd yet then
5708		 * set old_rd to NULL to skip the freeing later
5709		 * in this function:
5710		 */
5711		if (!atomic_dec_and_test(&old_rd->refcount))
5712			old_rd = NULL;
5713	}
5714
5715	atomic_inc(&rd->refcount);
5716	rq->rd = rd;
5717
5718	cpumask_set_cpu(rq->cpu, rd->span);
5719	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5720		set_rq_online(rq);
5721
5722	raw_spin_unlock_irqrestore(&rq->lock, flags);
5723
5724	if (old_rd)
5725		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5726}
5727
5728static int init_rootdomain(struct root_domain *rd)
5729{
5730	memset(rd, 0, sizeof(*rd));
5731
5732	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5733		goto out;
5734	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5735		goto free_span;
5736	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5737		goto free_online;
5738	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5739		goto free_dlo_mask;
5740
5741	init_dl_bw(&rd->dl_bw);
5742	if (cpudl_init(&rd->cpudl) != 0)
5743		goto free_dlo_mask;
5744
5745	if (cpupri_init(&rd->cpupri) != 0)
5746		goto free_rto_mask;
5747	return 0;
5748
5749free_rto_mask:
5750	free_cpumask_var(rd->rto_mask);
5751free_dlo_mask:
5752	free_cpumask_var(rd->dlo_mask);
5753free_online:
5754	free_cpumask_var(rd->online);
5755free_span:
5756	free_cpumask_var(rd->span);
5757out:
5758	return -ENOMEM;
5759}
5760
5761/*
5762 * By default the system creates a single root-domain with all cpus as
5763 * members (mimicking the global state we have today).
5764 */
5765struct root_domain def_root_domain;
5766
5767static void init_defrootdomain(void)
5768{
5769	init_rootdomain(&def_root_domain);
5770
5771	atomic_set(&def_root_domain.refcount, 1);
5772}
5773
5774static struct root_domain *alloc_rootdomain(void)
5775{
5776	struct root_domain *rd;
5777
5778	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5779	if (!rd)
5780		return NULL;
5781
5782	if (init_rootdomain(rd) != 0) {
5783		kfree(rd);
5784		return NULL;
5785	}
5786
5787	return rd;
5788}
5789
5790static void free_sched_groups(struct sched_group *sg, int free_sgc)
5791{
5792	struct sched_group *tmp, *first;
5793
5794	if (!sg)
5795		return;
5796
5797	first = sg;
5798	do {
5799		tmp = sg->next;
5800
5801		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5802			kfree(sg->sgc);
5803
5804		kfree(sg);
5805		sg = tmp;
5806	} while (sg != first);
5807}
5808
5809static void free_sched_domain(struct rcu_head *rcu)
5810{
5811	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5812
5813	/*
5814	 * If its an overlapping domain it has private groups, iterate and
5815	 * nuke them all.
5816	 */
5817	if (sd->flags & SD_OVERLAP) {
5818		free_sched_groups(sd->groups, 1);
5819	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5820		kfree(sd->groups->sgc);
5821		kfree(sd->groups);
5822	}
5823	kfree(sd);
5824}
5825
5826static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5827{
5828	call_rcu(&sd->rcu, free_sched_domain);
5829}
5830
5831static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5832{
5833	for (; sd; sd = sd->parent)
5834		destroy_sched_domain(sd, cpu);
5835}
5836
5837/*
5838 * Keep a special pointer to the highest sched_domain that has
5839 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5840 * allows us to avoid some pointer chasing select_idle_sibling().
5841 *
5842 * Also keep a unique ID per domain (we use the first cpu number in
5843 * the cpumask of the domain), this allows us to quickly tell if
5844 * two cpus are in the same cache domain, see cpus_share_cache().
5845 */
5846DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5847DEFINE_PER_CPU(int, sd_llc_size);
5848DEFINE_PER_CPU(int, sd_llc_id);
5849DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5850DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5851DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5852
5853static void update_top_cache_domain(int cpu)
5854{
5855	struct sched_domain *sd;
5856	struct sched_domain *busy_sd = NULL;
5857	int id = cpu;
5858	int size = 1;
5859
5860	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5861	if (sd) {
5862		id = cpumask_first(sched_domain_span(sd));
5863		size = cpumask_weight(sched_domain_span(sd));
5864		busy_sd = sd->parent; /* sd_busy */
5865	}
5866	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5867
5868	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5869	per_cpu(sd_llc_size, cpu) = size;
5870	per_cpu(sd_llc_id, cpu) = id;
5871
5872	sd = lowest_flag_domain(cpu, SD_NUMA);
5873	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5874
5875	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5876	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5877}
5878
5879/*
5880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5881 * hold the hotplug lock.
5882 */
5883static void
5884cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5885{
5886	struct rq *rq = cpu_rq(cpu);
5887	struct sched_domain *tmp;
5888
5889	/* Remove the sched domains which do not contribute to scheduling. */
5890	for (tmp = sd; tmp; ) {
5891		struct sched_domain *parent = tmp->parent;
5892		if (!parent)
5893			break;
5894
5895		if (sd_parent_degenerate(tmp, parent)) {
5896			tmp->parent = parent->parent;
5897			if (parent->parent)
5898				parent->parent->child = tmp;
5899			/*
5900			 * Transfer SD_PREFER_SIBLING down in case of a
5901			 * degenerate parent; the spans match for this
5902			 * so the property transfers.
5903			 */
5904			if (parent->flags & SD_PREFER_SIBLING)
5905				tmp->flags |= SD_PREFER_SIBLING;
5906			destroy_sched_domain(parent, cpu);
5907		} else
5908			tmp = tmp->parent;
5909	}
5910
5911	if (sd && sd_degenerate(sd)) {
5912		tmp = sd;
5913		sd = sd->parent;
5914		destroy_sched_domain(tmp, cpu);
5915		if (sd)
5916			sd->child = NULL;
5917	}
5918
5919	sched_domain_debug(sd, cpu);
5920
5921	rq_attach_root(rq, rd);
5922	tmp = rq->sd;
5923	rcu_assign_pointer(rq->sd, sd);
5924	destroy_sched_domains(tmp, cpu);
5925
5926	update_top_cache_domain(cpu);
5927}
5928
5929/* Setup the mask of cpus configured for isolated domains */
5930static int __init isolated_cpu_setup(char *str)
5931{
5932	int ret;
5933
5934	alloc_bootmem_cpumask_var(&cpu_isolated_map);
5935	ret = cpulist_parse(str, cpu_isolated_map);
5936	if (ret) {
5937		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5938		return 0;
5939	}
5940	return 1;
5941}
5942__setup("isolcpus=", isolated_cpu_setup);
5943
5944struct s_data {
5945	struct sched_domain ** __percpu sd;
5946	struct root_domain	*rd;
5947};
5948
5949enum s_alloc {
5950	sa_rootdomain,
5951	sa_sd,
5952	sa_sd_storage,
5953	sa_none,
5954};
5955
5956/*
5957 * Build an iteration mask that can exclude certain CPUs from the upwards
5958 * domain traversal.
5959 *
5960 * Asymmetric node setups can result in situations where the domain tree is of
5961 * unequal depth, make sure to skip domains that already cover the entire
5962 * range.
5963 *
5964 * In that case build_sched_domains() will have terminated the iteration early
5965 * and our sibling sd spans will be empty. Domains should always include the
5966 * cpu they're built on, so check that.
5967 *
 
 
5968 */
5969static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5970{
5971	const struct cpumask *span = sched_domain_span(sd);
5972	struct sd_data *sdd = sd->private;
5973	struct sched_domain *sibling;
5974	int i;
5975
5976	for_each_cpu(i, span) {
5977		sibling = *per_cpu_ptr(sdd->sd, i);
5978		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5979			continue;
5980
5981		cpumask_set_cpu(i, sched_group_mask(sg));
5982	}
5983}
5984
5985/*
5986 * Return the canonical balance cpu for this group, this is the first cpu
5987 * of this group that's also in the iteration mask.
5988 */
5989int group_balance_cpu(struct sched_group *sg)
5990{
5991	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5992}
5993
5994static int
5995build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5996{
5997	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5998	const struct cpumask *span = sched_domain_span(sd);
5999	struct cpumask *covered = sched_domains_tmpmask;
6000	struct sd_data *sdd = sd->private;
6001	struct sched_domain *sibling;
6002	int i;
6003
6004	cpumask_clear(covered);
6005
6006	for_each_cpu(i, span) {
6007		struct cpumask *sg_span;
6008
6009		if (cpumask_test_cpu(i, covered))
6010			continue;
6011
6012		sibling = *per_cpu_ptr(sdd->sd, i);
6013
6014		/* See the comment near build_group_mask(). */
6015		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6016			continue;
6017
6018		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6019				GFP_KERNEL, cpu_to_node(cpu));
6020
6021		if (!sg)
6022			goto fail;
6023
6024		sg_span = sched_group_cpus(sg);
6025		if (sibling->child)
6026			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6027		else
6028			cpumask_set_cpu(i, sg_span);
6029
6030		cpumask_or(covered, covered, sg_span);
6031
6032		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6033		if (atomic_inc_return(&sg->sgc->ref) == 1)
6034			build_group_mask(sd, sg);
6035
6036		/*
6037		 * Initialize sgc->capacity such that even if we mess up the
6038		 * domains and no possible iteration will get us here, we won't
6039		 * die on a /0 trap.
 
6040		 */
6041		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6042
 
6043		/*
6044		 * Make sure the first group of this domain contains the
6045		 * canonical balance cpu. Otherwise the sched_domain iteration
6046		 * breaks. See update_sg_lb_stats().
6047		 */
6048		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6049		    group_balance_cpu(sg) == cpu)
6050			groups = sg;
6051
6052		if (!first)
6053			first = sg;
6054		if (last)
6055			last->next = sg;
6056		last = sg;
6057		last->next = first;
6058	}
6059	sd->groups = groups;
6060
6061	return 0;
6062
6063fail:
6064	free_sched_groups(first, 0);
6065
6066	return -ENOMEM;
6067}
6068
6069static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6070{
6071	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6072	struct sched_domain *child = sd->child;
6073
6074	if (child)
6075		cpu = cpumask_first(sched_domain_span(child));
6076
6077	if (sg) {
6078		*sg = *per_cpu_ptr(sdd->sg, cpu);
6079		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6080		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6081	}
6082
6083	return cpu;
6084}
6085
6086/*
6087 * build_sched_groups will build a circular linked list of the groups
6088 * covered by the given span, and will set each group's ->cpumask correctly,
6089 * and ->cpu_capacity to 0.
6090 *
6091 * Assumes the sched_domain tree is fully constructed
6092 */
6093static int
6094build_sched_groups(struct sched_domain *sd, int cpu)
6095{
6096	struct sched_group *first = NULL, *last = NULL;
6097	struct sd_data *sdd = sd->private;
6098	const struct cpumask *span = sched_domain_span(sd);
6099	struct cpumask *covered;
6100	int i;
6101
6102	get_group(cpu, sdd, &sd->groups);
6103	atomic_inc(&sd->groups->ref);
6104
6105	if (cpu != cpumask_first(span))
6106		return 0;
6107
6108	lockdep_assert_held(&sched_domains_mutex);
6109	covered = sched_domains_tmpmask;
6110
6111	cpumask_clear(covered);
6112
6113	for_each_cpu(i, span) {
6114		struct sched_group *sg;
6115		int group, j;
6116
6117		if (cpumask_test_cpu(i, covered))
6118			continue;
6119
6120		group = get_group(i, sdd, &sg);
6121		cpumask_setall(sched_group_mask(sg));
6122
6123		for_each_cpu(j, span) {
6124			if (get_group(j, sdd, NULL) != group)
6125				continue;
6126
6127			cpumask_set_cpu(j, covered);
6128			cpumask_set_cpu(j, sched_group_cpus(sg));
6129		}
6130
6131		if (!first)
6132			first = sg;
6133		if (last)
6134			last->next = sg;
6135		last = sg;
6136	}
6137	last->next = first;
6138
6139	return 0;
6140}
6141
6142/*
6143 * Initialize sched groups cpu_capacity.
6144 *
6145 * cpu_capacity indicates the capacity of sched group, which is used while
6146 * distributing the load between different sched groups in a sched domain.
6147 * Typically cpu_capacity for all the groups in a sched domain will be same
6148 * unless there are asymmetries in the topology. If there are asymmetries,
6149 * group having more cpu_capacity will pickup more load compared to the
6150 * group having less cpu_capacity.
6151 */
6152static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6153{
6154	struct sched_group *sg = sd->groups;
6155
6156	WARN_ON(!sg);
6157
6158	do {
6159		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6160		sg = sg->next;
6161	} while (sg != sd->groups);
6162
6163	if (cpu != group_balance_cpu(sg))
6164		return;
6165
6166	update_group_capacity(sd, cpu);
6167	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6168}
6169
6170/*
6171 * Initializers for schedule domains
6172 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6173 */
6174
6175static int default_relax_domain_level = -1;
6176int sched_domain_level_max;
6177
6178static int __init setup_relax_domain_level(char *str)
6179{
6180	if (kstrtoint(str, 0, &default_relax_domain_level))
6181		pr_warn("Unable to set relax_domain_level\n");
6182
6183	return 1;
6184}
6185__setup("relax_domain_level=", setup_relax_domain_level);
6186
6187static void set_domain_attribute(struct sched_domain *sd,
6188				 struct sched_domain_attr *attr)
6189{
6190	int request;
6191
6192	if (!attr || attr->relax_domain_level < 0) {
6193		if (default_relax_domain_level < 0)
6194			return;
6195		else
6196			request = default_relax_domain_level;
6197	} else
6198		request = attr->relax_domain_level;
6199	if (request < sd->level) {
6200		/* turn off idle balance on this domain */
6201		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202	} else {
6203		/* turn on idle balance on this domain */
6204		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6205	}
6206}
6207
6208static void __sdt_free(const struct cpumask *cpu_map);
6209static int __sdt_alloc(const struct cpumask *cpu_map);
6210
6211static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6212				 const struct cpumask *cpu_map)
6213{
6214	switch (what) {
6215	case sa_rootdomain:
6216		if (!atomic_read(&d->rd->refcount))
6217			free_rootdomain(&d->rd->rcu); /* fall through */
6218	case sa_sd:
6219		free_percpu(d->sd); /* fall through */
6220	case sa_sd_storage:
6221		__sdt_free(cpu_map); /* fall through */
6222	case sa_none:
6223		break;
6224	}
 
6225}
6226
6227static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6228						   const struct cpumask *cpu_map)
6229{
6230	memset(d, 0, sizeof(*d));
6231
6232	if (__sdt_alloc(cpu_map))
6233		return sa_sd_storage;
6234	d->sd = alloc_percpu(struct sched_domain *);
6235	if (!d->sd)
6236		return sa_sd_storage;
6237	d->rd = alloc_rootdomain();
6238	if (!d->rd)
6239		return sa_sd;
6240	return sa_rootdomain;
6241}
6242
6243/*
6244 * NULL the sd_data elements we've used to build the sched_domain and
6245 * sched_group structure so that the subsequent __free_domain_allocs()
6246 * will not free the data we're using.
6247 */
6248static void claim_allocations(int cpu, struct sched_domain *sd)
6249{
6250	struct sd_data *sdd = sd->private;
6251
6252	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6253	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6254
6255	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6256		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6257
6258	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6259		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6260}
6261
6262#ifdef CONFIG_NUMA
6263static int sched_domains_numa_levels;
6264enum numa_topology_type sched_numa_topology_type;
6265static int *sched_domains_numa_distance;
6266int sched_max_numa_distance;
6267static struct cpumask ***sched_domains_numa_masks;
6268static int sched_domains_curr_level;
6269#endif
6270
6271/*
6272 * SD_flags allowed in topology descriptions.
6273 *
6274 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6275 * SD_SHARE_PKG_RESOURCES - describes shared caches
6276 * SD_NUMA                - describes NUMA topologies
6277 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6278 *
6279 * Odd one out:
6280 * SD_ASYM_PACKING        - describes SMT quirks
6281 */
6282#define TOPOLOGY_SD_FLAGS		\
6283	(SD_SHARE_CPUCAPACITY |		\
6284	 SD_SHARE_PKG_RESOURCES |	\
6285	 SD_NUMA |			\
6286	 SD_ASYM_PACKING |		\
6287	 SD_SHARE_POWERDOMAIN)
6288
6289static struct sched_domain *
6290sd_init(struct sched_domain_topology_level *tl, int cpu)
6291{
6292	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6293	int sd_weight, sd_flags = 0;
6294
6295#ifdef CONFIG_NUMA
6296	/*
6297	 * Ugly hack to pass state to sd_numa_mask()...
6298	 */
6299	sched_domains_curr_level = tl->numa_level;
6300#endif
6301
6302	sd_weight = cpumask_weight(tl->mask(cpu));
6303
6304	if (tl->sd_flags)
6305		sd_flags = (*tl->sd_flags)();
6306	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6307			"wrong sd_flags in topology description\n"))
6308		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6309
6310	*sd = (struct sched_domain){
6311		.min_interval		= sd_weight,
6312		.max_interval		= 2*sd_weight,
6313		.busy_factor		= 32,
6314		.imbalance_pct		= 125,
6315
6316		.cache_nice_tries	= 0,
6317		.busy_idx		= 0,
6318		.idle_idx		= 0,
6319		.newidle_idx		= 0,
6320		.wake_idx		= 0,
6321		.forkexec_idx		= 0,
6322
6323		.flags			= 1*SD_LOAD_BALANCE
6324					| 1*SD_BALANCE_NEWIDLE
6325					| 1*SD_BALANCE_EXEC
6326					| 1*SD_BALANCE_FORK
6327					| 0*SD_BALANCE_WAKE
6328					| 1*SD_WAKE_AFFINE
6329					| 0*SD_SHARE_CPUCAPACITY
6330					| 0*SD_SHARE_PKG_RESOURCES
6331					| 0*SD_SERIALIZE
6332					| 0*SD_PREFER_SIBLING
6333					| 0*SD_NUMA
6334					| sd_flags
6335					,
6336
6337		.last_balance		= jiffies,
6338		.balance_interval	= sd_weight,
6339		.smt_gain		= 0,
6340		.max_newidle_lb_cost	= 0,
6341		.next_decay_max_lb_cost	= jiffies,
6342#ifdef CONFIG_SCHED_DEBUG
6343		.name			= tl->name,
6344#endif
6345	};
6346
6347	/*
6348	 * Convert topological properties into behaviour.
6349	 */
6350
6351	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6352		sd->flags |= SD_PREFER_SIBLING;
6353		sd->imbalance_pct = 110;
6354		sd->smt_gain = 1178; /* ~15% */
6355
6356	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6357		sd->imbalance_pct = 117;
6358		sd->cache_nice_tries = 1;
6359		sd->busy_idx = 2;
6360
6361#ifdef CONFIG_NUMA
6362	} else if (sd->flags & SD_NUMA) {
6363		sd->cache_nice_tries = 2;
6364		sd->busy_idx = 3;
6365		sd->idle_idx = 2;
6366
6367		sd->flags |= SD_SERIALIZE;
6368		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6369			sd->flags &= ~(SD_BALANCE_EXEC |
6370				       SD_BALANCE_FORK |
6371				       SD_WAKE_AFFINE);
6372		}
6373
6374#endif
6375	} else {
6376		sd->flags |= SD_PREFER_SIBLING;
6377		sd->cache_nice_tries = 1;
6378		sd->busy_idx = 2;
6379		sd->idle_idx = 1;
6380	}
6381
6382	sd->private = &tl->data;
6383
6384	return sd;
6385}
6386
6387/*
6388 * Topology list, bottom-up.
6389 */
6390static struct sched_domain_topology_level default_topology[] = {
6391#ifdef CONFIG_SCHED_SMT
6392	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6393#endif
6394#ifdef CONFIG_SCHED_MC
6395	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6396#endif
6397	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6398	{ NULL, },
6399};
6400
6401static struct sched_domain_topology_level *sched_domain_topology =
6402	default_topology;
6403
6404#define for_each_sd_topology(tl)			\
6405	for (tl = sched_domain_topology; tl->mask; tl++)
6406
6407void set_sched_topology(struct sched_domain_topology_level *tl)
6408{
6409	sched_domain_topology = tl;
6410}
6411
6412#ifdef CONFIG_NUMA
6413
6414static const struct cpumask *sd_numa_mask(int cpu)
6415{
6416	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417}
6418
6419static void sched_numa_warn(const char *str)
6420{
6421	static int done = false;
6422	int i,j;
6423
6424	if (done)
6425		return;
6426
6427	done = true;
6428
6429	printk(KERN_WARNING "ERROR: %s\n\n", str);
6430
6431	for (i = 0; i < nr_node_ids; i++) {
6432		printk(KERN_WARNING "  ");
6433		for (j = 0; j < nr_node_ids; j++)
6434			printk(KERN_CONT "%02d ", node_distance(i,j));
6435		printk(KERN_CONT "\n");
6436	}
6437	printk(KERN_WARNING "\n");
6438}
6439
6440bool find_numa_distance(int distance)
6441{
6442	int i;
6443
6444	if (distance == node_distance(0, 0))
6445		return true;
6446
6447	for (i = 0; i < sched_domains_numa_levels; i++) {
6448		if (sched_domains_numa_distance[i] == distance)
6449			return true;
6450	}
6451
6452	return false;
6453}
6454
6455/*
6456 * A system can have three types of NUMA topology:
6457 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460 *
6461 * The difference between a glueless mesh topology and a backplane
6462 * topology lies in whether communication between not directly
6463 * connected nodes goes through intermediary nodes (where programs
6464 * could run), or through backplane controllers. This affects
6465 * placement of programs.
6466 *
6467 * The type of topology can be discerned with the following tests:
6468 * - If the maximum distance between any nodes is 1 hop, the system
6469 *   is directly connected.
6470 * - If for two nodes A and B, located N > 1 hops away from each other,
6471 *   there is an intermediary node C, which is < N hops away from both
6472 *   nodes A and B, the system is a glueless mesh.
6473 */
6474static void init_numa_topology_type(void)
6475{
6476	int a, b, c, n;
6477
6478	n = sched_max_numa_distance;
6479
6480	if (sched_domains_numa_levels <= 1) {
6481		sched_numa_topology_type = NUMA_DIRECT;
6482		return;
6483	}
6484
6485	for_each_online_node(a) {
6486		for_each_online_node(b) {
6487			/* Find two nodes furthest removed from each other. */
6488			if (node_distance(a, b) < n)
6489				continue;
6490
6491			/* Is there an intermediary node between a and b? */
6492			for_each_online_node(c) {
6493				if (node_distance(a, c) < n &&
6494				    node_distance(b, c) < n) {
6495					sched_numa_topology_type =
6496							NUMA_GLUELESS_MESH;
6497					return;
6498				}
6499			}
6500
6501			sched_numa_topology_type = NUMA_BACKPLANE;
6502			return;
6503		}
6504	}
6505}
6506
6507static void sched_init_numa(void)
6508{
6509	int next_distance, curr_distance = node_distance(0, 0);
6510	struct sched_domain_topology_level *tl;
6511	int level = 0;
6512	int i, j, k;
6513
6514	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515	if (!sched_domains_numa_distance)
6516		return;
6517
6518	/*
6519	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520	 * unique distances in the node_distance() table.
6521	 *
6522	 * Assumes node_distance(0,j) includes all distances in
6523	 * node_distance(i,j) in order to avoid cubic time.
6524	 */
6525	next_distance = curr_distance;
6526	for (i = 0; i < nr_node_ids; i++) {
6527		for (j = 0; j < nr_node_ids; j++) {
6528			for (k = 0; k < nr_node_ids; k++) {
6529				int distance = node_distance(i, k);
6530
6531				if (distance > curr_distance &&
6532				    (distance < next_distance ||
6533				     next_distance == curr_distance))
6534					next_distance = distance;
6535
6536				/*
6537				 * While not a strong assumption it would be nice to know
6538				 * about cases where if node A is connected to B, B is not
6539				 * equally connected to A.
6540				 */
6541				if (sched_debug() && node_distance(k, i) != distance)
6542					sched_numa_warn("Node-distance not symmetric");
6543
6544				if (sched_debug() && i && !find_numa_distance(distance))
6545					sched_numa_warn("Node-0 not representative");
6546			}
6547			if (next_distance != curr_distance) {
6548				sched_domains_numa_distance[level++] = next_distance;
6549				sched_domains_numa_levels = level;
6550				curr_distance = next_distance;
6551			} else break;
6552		}
6553
6554		/*
6555		 * In case of sched_debug() we verify the above assumption.
6556		 */
6557		if (!sched_debug())
6558			break;
6559	}
6560
6561	if (!level)
6562		return;
6563
6564	/*
6565	 * 'level' contains the number of unique distances, excluding the
6566	 * identity distance node_distance(i,i).
6567	 *
6568	 * The sched_domains_numa_distance[] array includes the actual distance
6569	 * numbers.
6570	 */
6571
6572	/*
6573	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575	 * the array will contain less then 'level' members. This could be
6576	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577	 * in other functions.
6578	 *
6579	 * We reset it to 'level' at the end of this function.
6580	 */
6581	sched_domains_numa_levels = 0;
6582
6583	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584	if (!sched_domains_numa_masks)
6585		return;
6586
6587	/*
6588	 * Now for each level, construct a mask per node which contains all
6589	 * cpus of nodes that are that many hops away from us.
6590	 */
6591	for (i = 0; i < level; i++) {
6592		sched_domains_numa_masks[i] =
6593			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594		if (!sched_domains_numa_masks[i])
6595			return;
6596
6597		for (j = 0; j < nr_node_ids; j++) {
6598			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6599			if (!mask)
6600				return;
6601
6602			sched_domains_numa_masks[i][j] = mask;
6603
6604			for_each_node(k) {
6605				if (node_distance(j, k) > sched_domains_numa_distance[i])
6606					continue;
6607
6608				cpumask_or(mask, mask, cpumask_of_node(k));
6609			}
6610		}
6611	}
 
6612
6613	/* Compute default topology size */
6614	for (i = 0; sched_domain_topology[i].mask; i++);
6615
6616	tl = kzalloc((i + level + 1) *
6617			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618	if (!tl)
6619		return;
6620
 
6621	/*
6622	 * Copy the default topology bits..
 
 
 
 
6623	 */
6624	for (i = 0; sched_domain_topology[i].mask; i++)
6625		tl[i] = sched_domain_topology[i];
6626
 
6627	/*
6628	 * .. and append 'j' levels of NUMA goodness.
6629	 */
6630	for (j = 0; j < level; i++, j++) {
6631		tl[i] = (struct sched_domain_topology_level){
6632			.mask = sd_numa_mask,
6633			.sd_flags = cpu_numa_flags,
6634			.flags = SDTL_OVERLAP,
6635			.numa_level = j,
6636			SD_INIT_NAME(NUMA)
6637		};
6638	}
6639
6640	sched_domain_topology = tl;
6641
6642	sched_domains_numa_levels = level;
6643	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6644
6645	init_numa_topology_type();
6646}
6647
6648static void sched_domains_numa_masks_set(int cpu)
6649{
6650	int i, j;
6651	int node = cpu_to_node(cpu);
6652
6653	for (i = 0; i < sched_domains_numa_levels; i++) {
6654		for (j = 0; j < nr_node_ids; j++) {
6655			if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657		}
6658	}
6659}
6660
6661static void sched_domains_numa_masks_clear(int cpu)
6662{
6663	int i, j;
6664	for (i = 0; i < sched_domains_numa_levels; i++) {
6665		for (j = 0; j < nr_node_ids; j++)
6666			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667	}
 
 
6668}
6669
6670/*
6671 * Update sched_domains_numa_masks[level][node] array when new cpus
6672 * are onlined.
6673 */
6674static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675					   unsigned long action,
6676					   void *hcpu)
6677{
6678	int cpu = (long)hcpu;
6679
6680	switch (action & ~CPU_TASKS_FROZEN) {
6681	case CPU_ONLINE:
6682		sched_domains_numa_masks_set(cpu);
6683		break;
6684
6685	case CPU_DEAD:
6686		sched_domains_numa_masks_clear(cpu);
6687		break;
6688
6689	default:
6690		return NOTIFY_DONE;
6691	}
6692
6693	return NOTIFY_OK;
6694}
6695#else
6696static inline void sched_init_numa(void)
6697{
6698}
6699
6700static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701					   unsigned long action,
6702					   void *hcpu)
6703{
 
 
6704	return 0;
6705}
6706#endif /* CONFIG_NUMA */
6707
6708static int __sdt_alloc(const struct cpumask *cpu_map)
 
6709{
6710	struct sched_domain_topology_level *tl;
6711	int j;
6712
6713	for_each_sd_topology(tl) {
6714		struct sd_data *sdd = &tl->data;
6715
6716		sdd->sd = alloc_percpu(struct sched_domain *);
6717		if (!sdd->sd)
6718			return -ENOMEM;
6719
6720		sdd->sg = alloc_percpu(struct sched_group *);
6721		if (!sdd->sg)
6722			return -ENOMEM;
6723
6724		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725		if (!sdd->sgc)
6726			return -ENOMEM;
6727
6728		for_each_cpu(j, cpu_map) {
6729			struct sched_domain *sd;
6730			struct sched_group *sg;
6731			struct sched_group_capacity *sgc;
6732
6733			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734					GFP_KERNEL, cpu_to_node(j));
6735			if (!sd)
6736				return -ENOMEM;
6737
6738			*per_cpu_ptr(sdd->sd, j) = sd;
6739
6740			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741					GFP_KERNEL, cpu_to_node(j));
6742			if (!sg)
6743				return -ENOMEM;
6744
6745			sg->next = sg;
6746
6747			*per_cpu_ptr(sdd->sg, j) = sg;
6748
6749			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750					GFP_KERNEL, cpu_to_node(j));
6751			if (!sgc)
6752				return -ENOMEM;
6753
6754			*per_cpu_ptr(sdd->sgc, j) = sgc;
6755		}
 
 
6756	}
 
 
 
6757
 
 
 
 
6758	return 0;
6759}
6760
6761static void __sdt_free(const struct cpumask *cpu_map)
6762{
6763	struct sched_domain_topology_level *tl;
6764	int j;
6765
6766	for_each_sd_topology(tl) {
6767		struct sd_data *sdd = &tl->data;
6768
6769		for_each_cpu(j, cpu_map) {
6770			struct sched_domain *sd;
6771
6772			if (sdd->sd) {
6773				sd = *per_cpu_ptr(sdd->sd, j);
6774				if (sd && (sd->flags & SD_OVERLAP))
6775					free_sched_groups(sd->groups, 0);
6776				kfree(*per_cpu_ptr(sdd->sd, j));
6777			}
6778
6779			if (sdd->sg)
6780				kfree(*per_cpu_ptr(sdd->sg, j));
6781			if (sdd->sgc)
6782				kfree(*per_cpu_ptr(sdd->sgc, j));
6783		}
6784		free_percpu(sdd->sd);
6785		sdd->sd = NULL;
6786		free_percpu(sdd->sg);
6787		sdd->sg = NULL;
6788		free_percpu(sdd->sgc);
6789		sdd->sgc = NULL;
6790	}
6791}
6792
6793struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795		struct sched_domain *child, int cpu)
6796{
6797	struct sched_domain *sd = sd_init(tl, cpu);
6798	if (!sd)
6799		return child;
6800
6801	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802	if (child) {
6803		sd->level = child->level + 1;
6804		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805		child->parent = sd;
6806		sd->child = child;
6807
6808		if (!cpumask_subset(sched_domain_span(child),
6809				    sched_domain_span(sd))) {
6810			pr_err("BUG: arch topology borken\n");
6811#ifdef CONFIG_SCHED_DEBUG
6812			pr_err("     the %s domain not a subset of the %s domain\n",
6813					child->name, sd->name);
6814#endif
6815			/* Fixup, ensure @sd has at least @child cpus. */
6816			cpumask_or(sched_domain_span(sd),
6817				   sched_domain_span(sd),
6818				   sched_domain_span(child));
6819		}
6820
6821	}
6822	set_domain_attribute(sd, attr);
6823
6824	return sd;
6825}
6826
6827/*
6828 * Build sched domains for a given set of cpus and attach the sched domains
6829 * to the individual cpus
6830 */
6831static int build_sched_domains(const struct cpumask *cpu_map,
6832			       struct sched_domain_attr *attr)
6833{
6834	enum s_alloc alloc_state;
6835	struct sched_domain *sd;
6836	struct s_data d;
6837	int i, ret = -ENOMEM;
6838
6839	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840	if (alloc_state != sa_rootdomain)
6841		goto error;
6842
6843	/* Set up domains for cpus specified by the cpu_map. */
6844	for_each_cpu(i, cpu_map) {
6845		struct sched_domain_topology_level *tl;
6846
6847		sd = NULL;
6848		for_each_sd_topology(tl) {
6849			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850			if (tl == sched_domain_topology)
6851				*per_cpu_ptr(d.sd, i) = sd;
6852			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853				sd->flags |= SD_OVERLAP;
6854			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855				break;
6856		}
6857	}
6858
6859	/* Build the groups for the domains */
6860	for_each_cpu(i, cpu_map) {
6861		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863			if (sd->flags & SD_OVERLAP) {
6864				if (build_overlap_sched_groups(sd, i))
6865					goto error;
6866			} else {
6867				if (build_sched_groups(sd, i))
6868					goto error;
6869			}
6870		}
6871	}
6872
6873	/* Calculate CPU capacity for physical packages and nodes */
6874	for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875		if (!cpumask_test_cpu(i, cpu_map))
6876			continue;
6877
6878		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879			claim_allocations(i, sd);
6880			init_sched_groups_capacity(i, sd);
6881		}
6882	}
6883
6884	/* Attach the domains */
6885	rcu_read_lock();
6886	for_each_cpu(i, cpu_map) {
6887		sd = *per_cpu_ptr(d.sd, i);
6888		cpu_attach_domain(sd, d.rd, i);
6889	}
6890	rcu_read_unlock();
6891
6892	ret = 0;
6893error:
6894	__free_domain_allocs(&d, alloc_state, cpu_map);
6895	return ret;
6896}
6897
6898static cpumask_var_t *doms_cur;	/* current sched domains */
6899static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
6900static struct sched_domain_attr *dattr_cur;
6901				/* attribues of custom domains in 'doms_cur' */
6902
6903/*
6904 * Special case: If a kmalloc of a doms_cur partition (array of
6905 * cpumask) fails, then fallback to a single sched domain,
6906 * as determined by the single cpumask fallback_doms.
6907 */
6908static cpumask_var_t fallback_doms;
6909
6910/*
6911 * arch_update_cpu_topology lets virtualized architectures update the
6912 * cpu core maps. It is supposed to return 1 if the topology changed
6913 * or 0 if it stayed the same.
6914 */
6915int __weak arch_update_cpu_topology(void)
6916{
6917	return 0;
6918}
6919
6920cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921{
6922	int i;
6923	cpumask_var_t *doms;
6924
6925	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926	if (!doms)
6927		return NULL;
6928	for (i = 0; i < ndoms; i++) {
6929		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930			free_sched_domains(doms, i);
6931			return NULL;
6932		}
6933	}
6934	return doms;
6935}
6936
6937void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938{
6939	unsigned int i;
6940	for (i = 0; i < ndoms; i++)
6941		free_cpumask_var(doms[i]);
6942	kfree(doms);
6943}
6944
6945/*
6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947 * For now this just excludes isolated cpus, but could be used to
6948 * exclude other special cases in the future.
6949 */
6950static int init_sched_domains(const struct cpumask *cpu_map)
6951{
6952	int err;
6953
6954	arch_update_cpu_topology();
6955	ndoms_cur = 1;
6956	doms_cur = alloc_sched_domains(ndoms_cur);
6957	if (!doms_cur)
6958		doms_cur = &fallback_doms;
6959	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960	err = build_sched_domains(doms_cur[0], NULL);
6961	register_sched_domain_sysctl();
6962
6963	return err;
6964}
6965
6966/*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
6970static void detach_destroy_domains(const struct cpumask *cpu_map)
6971{
6972	int i;
6973
6974	rcu_read_lock();
6975	for_each_cpu(i, cpu_map)
6976		cpu_attach_domain(NULL, &def_root_domain, i);
6977	rcu_read_unlock();
6978}
6979
6980/* handle null as "default" */
6981static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982			struct sched_domain_attr *new, int idx_new)
6983{
6984	struct sched_domain_attr tmp;
6985
6986	/* fast path */
6987	if (!new && !cur)
6988		return 1;
6989
6990	tmp = SD_ATTR_INIT;
6991	return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992			new ? (new + idx_new) : &tmp,
6993			sizeof(struct sched_domain_attr));
6994}
6995
6996/*
6997 * Partition sched domains as specified by the 'ndoms_new'
6998 * cpumasks in the array doms_new[] of cpumasks. This compares
6999 * doms_new[] to the current sched domain partitioning, doms_cur[].
7000 * It destroys each deleted domain and builds each new domain.
7001 *
7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003 * The masks don't intersect (don't overlap.) We should setup one
7004 * sched domain for each mask. CPUs not in any of the cpumasks will
7005 * not be load balanced. If the same cpumask appears both in the
7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007 * it as it is.
7008 *
7009 * The passed in 'doms_new' should be allocated using
7010 * alloc_sched_domains.  This routine takes ownership of it and will
7011 * free_sched_domains it when done with it. If the caller failed the
7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013 * and partition_sched_domains() will fallback to the single partition
7014 * 'fallback_doms', it also forces the domains to be rebuilt.
7015 *
7016 * If doms_new == NULL it will be replaced with cpu_online_mask.
7017 * ndoms_new == 0 is a special case for destroying existing domains,
7018 * and it will not create the default domain.
7019 *
7020 * Call with hotplug lock held
7021 */
7022void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023			     struct sched_domain_attr *dattr_new)
7024{
7025	int i, j, n;
7026	int new_topology;
7027
7028	mutex_lock(&sched_domains_mutex);
7029
7030	/* always unregister in case we don't destroy any domains */
7031	unregister_sched_domain_sysctl();
7032
7033	/* Let architecture update cpu core mappings. */
7034	new_topology = arch_update_cpu_topology();
7035
7036	n = doms_new ? ndoms_new : 0;
7037
7038	/* Destroy deleted domains */
7039	for (i = 0; i < ndoms_cur; i++) {
7040		for (j = 0; j < n && !new_topology; j++) {
7041			if (cpumask_equal(doms_cur[i], doms_new[j])
7042			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7043				goto match1;
7044		}
7045		/* no match - a current sched domain not in new doms_new[] */
7046		detach_destroy_domains(doms_cur[i]);
7047match1:
7048		;
7049	}
7050
7051	n = ndoms_cur;
7052	if (doms_new == NULL) {
7053		n = 0;
7054		doms_new = &fallback_doms;
7055		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056		WARN_ON_ONCE(dattr_new);
7057	}
7058
7059	/* Build new domains */
7060	for (i = 0; i < ndoms_new; i++) {
7061		for (j = 0; j < n && !new_topology; j++) {
7062			if (cpumask_equal(doms_new[i], doms_cur[j])
7063			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7064				goto match2;
7065		}
7066		/* no match - add a new doms_new */
7067		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068match2:
7069		;
7070	}
7071
7072	/* Remember the new sched domains */
7073	if (doms_cur != &fallback_doms)
7074		free_sched_domains(doms_cur, ndoms_cur);
7075	kfree(dattr_cur);	/* kfree(NULL) is safe */
7076	doms_cur = doms_new;
7077	dattr_cur = dattr_new;
7078	ndoms_cur = ndoms_new;
7079
7080	register_sched_domain_sysctl();
7081
7082	mutex_unlock(&sched_domains_mutex);
7083}
7084
7085static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7086
7087/*
7088 * Update cpusets according to cpu_active mask.  If cpusets are
7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090 * around partition_sched_domains().
7091 *
7092 * If we come here as part of a suspend/resume, don't touch cpusets because we
7093 * want to restore it back to its original state upon resume anyway.
7094 */
7095static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096			     void *hcpu)
7097{
7098	switch (action) {
7099	case CPU_ONLINE_FROZEN:
7100	case CPU_DOWN_FAILED_FROZEN:
7101
7102		/*
7103		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104		 * resume sequence. As long as this is not the last online
7105		 * operation in the resume sequence, just build a single sched
7106		 * domain, ignoring cpusets.
7107		 */
7108		num_cpus_frozen--;
7109		if (likely(num_cpus_frozen)) {
7110			partition_sched_domains(1, NULL, NULL);
7111			break;
7112		}
7113
7114		/*
7115		 * This is the last CPU online operation. So fall through and
7116		 * restore the original sched domains by considering the
7117		 * cpuset configurations.
7118		 */
7119
7120	case CPU_ONLINE:
7121		cpuset_update_active_cpus(true);
7122		break;
7123	default:
7124		return NOTIFY_DONE;
7125	}
7126	return NOTIFY_OK;
7127}
7128
7129static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130			       void *hcpu)
7131{
7132	unsigned long flags;
7133	long cpu = (long)hcpu;
7134	struct dl_bw *dl_b;
7135	bool overflow;
7136	int cpus;
7137
7138	switch (action) {
7139	case CPU_DOWN_PREPARE:
7140		rcu_read_lock_sched();
7141		dl_b = dl_bw_of(cpu);
7142
7143		raw_spin_lock_irqsave(&dl_b->lock, flags);
7144		cpus = dl_bw_cpus(cpu);
7145		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147
7148		rcu_read_unlock_sched();
7149
7150		if (overflow)
7151			return notifier_from_errno(-EBUSY);
7152		cpuset_update_active_cpus(false);
7153		break;
7154	case CPU_DOWN_PREPARE_FROZEN:
7155		num_cpus_frozen++;
7156		partition_sched_domains(1, NULL, NULL);
7157		break;
7158	default:
7159		return NOTIFY_DONE;
7160	}
7161	return NOTIFY_OK;
7162}
7163
7164void __init sched_init_smp(void)
7165{
7166	cpumask_var_t non_isolated_cpus;
7167
7168	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7169	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7170
7171	sched_init_numa();
7172
7173	/*
7174	 * There's no userspace yet to cause hotplug operations; hence all the
7175	 * cpu masks are stable and all blatant races in the below code cannot
7176	 * happen.
7177	 */
7178	mutex_lock(&sched_domains_mutex);
7179	init_sched_domains(cpu_active_mask);
7180	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7181	if (cpumask_empty(non_isolated_cpus))
7182		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7183	mutex_unlock(&sched_domains_mutex);
7184
7185	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7186	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7187	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7188
7189	init_hrtick();
7190
7191	/* Move init over to a non-isolated CPU */
7192	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7193		BUG();
7194	sched_init_granularity();
7195	free_cpumask_var(non_isolated_cpus);
7196
7197	init_sched_rt_class();
7198	init_sched_dl_class();
 
 
7199}
 
 
 
 
 
 
 
 
7200#else
7201void __init sched_init_smp(void)
7202{
7203	sched_init_granularity();
7204}
7205#endif /* CONFIG_SMP */
7206
7207int in_sched_functions(unsigned long addr)
7208{
7209	return in_lock_functions(addr) ||
7210		(addr >= (unsigned long)__sched_text_start
7211		&& addr < (unsigned long)__sched_text_end);
7212}
7213
7214#ifdef CONFIG_CGROUP_SCHED
7215/*
7216 * Default task group.
7217 * Every task in system belongs to this group at bootup.
7218 */
7219struct task_group root_task_group;
7220LIST_HEAD(task_groups);
7221
7222/* Cacheline aligned slab cache for task_group */
7223static struct kmem_cache *task_group_cache __read_mostly;
7224#endif
7225
7226DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
 
7227
7228void __init sched_init(void)
7229{
7230	int i, j;
7231	unsigned long alloc_size = 0, ptr;
 
 
 
 
 
 
 
 
 
 
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235#endif
7236#ifdef CONFIG_RT_GROUP_SCHED
7237	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
7239	if (alloc_size) {
7240		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7241
7242#ifdef CONFIG_FAIR_GROUP_SCHED
7243		root_task_group.se = (struct sched_entity **)ptr;
7244		ptr += nr_cpu_ids * sizeof(void **);
7245
7246		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7247		ptr += nr_cpu_ids * sizeof(void **);
7248
 
 
7249#endif /* CONFIG_FAIR_GROUP_SCHED */
7250#ifdef CONFIG_RT_GROUP_SCHED
7251		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7252		ptr += nr_cpu_ids * sizeof(void **);
7253
7254		root_task_group.rt_rq = (struct rt_rq **)ptr;
7255		ptr += nr_cpu_ids * sizeof(void **);
7256
7257#endif /* CONFIG_RT_GROUP_SCHED */
7258	}
7259#ifdef CONFIG_CPUMASK_OFFSTACK
7260	for_each_possible_cpu(i) {
7261		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
 
 
7263	}
7264#endif /* CONFIG_CPUMASK_OFFSTACK */
7265
7266	init_rt_bandwidth(&def_rt_bandwidth,
7267			global_rt_period(), global_rt_runtime());
7268	init_dl_bandwidth(&def_dl_bandwidth,
7269			global_rt_period(), global_rt_runtime());
7270
7271#ifdef CONFIG_SMP
7272	init_defrootdomain();
7273#endif
7274
7275#ifdef CONFIG_RT_GROUP_SCHED
7276	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7277			global_rt_period(), global_rt_runtime());
7278#endif /* CONFIG_RT_GROUP_SCHED */
7279
7280#ifdef CONFIG_CGROUP_SCHED
7281	task_group_cache = KMEM_CACHE(task_group, 0);
7282
7283	list_add(&root_task_group.list, &task_groups);
7284	INIT_LIST_HEAD(&root_task_group.children);
7285	INIT_LIST_HEAD(&root_task_group.siblings);
7286	autogroup_init(&init_task);
7287#endif /* CONFIG_CGROUP_SCHED */
7288
7289	for_each_possible_cpu(i) {
7290		struct rq *rq;
7291
7292		rq = cpu_rq(i);
7293		raw_spin_lock_init(&rq->lock);
7294		rq->nr_running = 0;
7295		rq->calc_load_active = 0;
7296		rq->calc_load_update = jiffies + LOAD_FREQ;
7297		init_cfs_rq(&rq->cfs);
7298		init_rt_rq(&rq->rt);
7299		init_dl_rq(&rq->dl);
7300#ifdef CONFIG_FAIR_GROUP_SCHED
7301		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7302		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 
7303		/*
7304		 * How much cpu bandwidth does root_task_group get?
7305		 *
7306		 * In case of task-groups formed thr' the cgroup filesystem, it
7307		 * gets 100% of the cpu resources in the system. This overall
7308		 * system cpu resource is divided among the tasks of
7309		 * root_task_group and its child task-groups in a fair manner,
7310		 * based on each entity's (task or task-group's) weight
7311		 * (se->load.weight).
7312		 *
7313		 * In other words, if root_task_group has 10 tasks of weight
7314		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7315		 * then A0's share of the cpu resource is:
7316		 *
7317		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7318		 *
7319		 * We achieve this by letting root_task_group's tasks sit
7320		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7321		 */
7322		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7323		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7324#endif /* CONFIG_FAIR_GROUP_SCHED */
7325
7326		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7327#ifdef CONFIG_RT_GROUP_SCHED
7328		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7329#endif
7330
7331		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7332			rq->cpu_load[j] = 0;
7333
7334		rq->last_load_update_tick = jiffies;
7335
7336#ifdef CONFIG_SMP
7337		rq->sd = NULL;
7338		rq->rd = NULL;
7339		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7340		rq->balance_callback = NULL;
7341		rq->active_balance = 0;
7342		rq->next_balance = jiffies;
7343		rq->push_cpu = 0;
7344		rq->cpu = i;
7345		rq->online = 0;
7346		rq->idle_stamp = 0;
7347		rq->avg_idle = 2*sysctl_sched_migration_cost;
7348		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7349
7350		INIT_LIST_HEAD(&rq->cfs_tasks);
7351
7352		rq_attach_root(rq, &def_root_domain);
7353#ifdef CONFIG_NO_HZ_COMMON
7354		rq->nohz_flags = 0;
7355#endif
7356#ifdef CONFIG_NO_HZ_FULL
7357		rq->last_sched_tick = 0;
7358#endif
7359#endif
7360		init_rq_hrtick(rq);
 
7361		atomic_set(&rq->nr_iowait, 0);
7362	}
7363
7364	set_load_weight(&init_task);
7365
7366#ifdef CONFIG_PREEMPT_NOTIFIERS
7367	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7368#endif
7369
7370	/*
7371	 * The boot idle thread does lazy MMU switching as well:
7372	 */
7373	atomic_inc(&init_mm.mm_count);
7374	enter_lazy_tlb(&init_mm, current);
7375
7376	/*
7377	 * During early bootup we pretend to be a normal task:
7378	 */
7379	current->sched_class = &fair_sched_class;
7380
7381	/*
7382	 * Make us the idle thread. Technically, schedule() should not be
7383	 * called from this thread, however somewhere below it might be,
7384	 * but because we are the idle thread, we just pick up running again
7385	 * when this runqueue becomes "idle".
7386	 */
7387	init_idle(current, smp_processor_id());
7388
7389	calc_load_update = jiffies + LOAD_FREQ;
7390
7391#ifdef CONFIG_SMP
7392	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7393	/* May be allocated at isolcpus cmdline parse time */
7394	if (cpu_isolated_map == NULL)
7395		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7396	idle_thread_set_boot_cpu();
7397	set_cpu_rq_start_time();
7398#endif
7399	init_sched_fair_class();
7400
 
 
 
 
 
 
7401	scheduler_running = 1;
7402}
7403
7404#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7405static inline int preempt_count_equals(int preempt_offset)
7406{
7407	int nested = preempt_count() + rcu_preempt_depth();
7408
7409	return (nested == preempt_offset);
7410}
7411
7412void __might_sleep(const char *file, int line, int preempt_offset)
7413{
7414	/*
7415	 * Blocking primitives will set (and therefore destroy) current->state,
7416	 * since we will exit with TASK_RUNNING make sure we enter with it,
7417	 * otherwise we will destroy state.
7418	 */
7419	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7420			"do not call blocking ops when !TASK_RUNNING; "
7421			"state=%lx set at [<%p>] %pS\n",
7422			current->state,
7423			(void *)current->task_state_change,
7424			(void *)current->task_state_change);
7425
7426	___might_sleep(file, line, preempt_offset);
7427}
7428EXPORT_SYMBOL(__might_sleep);
7429
7430void ___might_sleep(const char *file, int line, int preempt_offset)
7431{
7432	static unsigned long prev_jiffy;	/* ratelimiting */
 
 
 
 
 
 
7433
7434	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7435	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7436	     !is_idle_task(current)) ||
7437	    system_state != SYSTEM_RUNNING || oops_in_progress)
 
7438		return;
 
7439	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7440		return;
7441	prev_jiffy = jiffies;
7442
 
 
 
7443	printk(KERN_ERR
7444		"BUG: sleeping function called from invalid context at %s:%d\n",
7445			file, line);
7446	printk(KERN_ERR
7447		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7448			in_atomic(), irqs_disabled(),
7449			current->pid, current->comm);
7450
7451	if (task_stack_end_corrupted(current))
7452		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7453
7454	debug_show_held_locks(current);
7455	if (irqs_disabled())
7456		print_irqtrace_events(current);
7457#ifdef CONFIG_DEBUG_PREEMPT
7458	if (!preempt_count_equals(preempt_offset)) {
7459		pr_err("Preemption disabled at:");
7460		print_ip_sym(current->preempt_disable_ip);
7461		pr_cont("\n");
7462	}
7463#endif
7464	dump_stack();
 
7465}
7466EXPORT_SYMBOL(___might_sleep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7467#endif
7468
7469#ifdef CONFIG_MAGIC_SYSRQ
7470void normalize_rt_tasks(void)
7471{
7472	struct task_struct *g, *p;
7473	struct sched_attr attr = {
7474		.sched_policy = SCHED_NORMAL,
7475	};
7476
7477	read_lock(&tasklist_lock);
7478	for_each_process_thread(g, p) {
7479		/*
7480		 * Only normalize user tasks:
7481		 */
7482		if (p->flags & PF_KTHREAD)
7483			continue;
7484
7485		p->se.exec_start		= 0;
7486#ifdef CONFIG_SCHEDSTATS
7487		p->se.statistics.wait_start	= 0;
7488		p->se.statistics.sleep_start	= 0;
7489		p->se.statistics.block_start	= 0;
7490#endif
7491
7492		if (!dl_task(p) && !rt_task(p)) {
7493			/*
7494			 * Renice negative nice level userspace
7495			 * tasks back to 0:
7496			 */
7497			if (task_nice(p) < 0)
7498				set_user_nice(p, 0);
7499			continue;
7500		}
7501
7502		__sched_setscheduler(p, &attr, false, false);
7503	}
7504	read_unlock(&tasklist_lock);
7505}
7506
7507#endif /* CONFIG_MAGIC_SYSRQ */
7508
7509#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7510/*
7511 * These functions are only useful for the IA64 MCA handling, or kdb.
7512 *
7513 * They can only be called when the whole system has been
7514 * stopped - every CPU needs to be quiescent, and no scheduling
7515 * activity can take place. Using them for anything else would
7516 * be a serious bug, and as a result, they aren't even visible
7517 * under any other configuration.
7518 */
7519
7520/**
7521 * curr_task - return the current task for a given cpu.
7522 * @cpu: the processor in question.
7523 *
7524 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7525 *
7526 * Return: The current task for @cpu.
7527 */
7528struct task_struct *curr_task(int cpu)
7529{
7530	return cpu_curr(cpu);
7531}
7532
7533#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7534
7535#ifdef CONFIG_IA64
7536/**
7537 * set_curr_task - set the current task for a given cpu.
7538 * @cpu: the processor in question.
7539 * @p: the task pointer to set.
7540 *
7541 * Description: This function must only be used when non-maskable interrupts
7542 * are serviced on a separate stack. It allows the architecture to switch the
7543 * notion of the current task on a cpu in a non-blocking manner. This function
7544 * must be called with all CPU's synchronized, and interrupts disabled, the
7545 * and caller must save the original value of the current task (see
7546 * curr_task() above) and restore that value before reenabling interrupts and
7547 * re-starting the system.
7548 *
7549 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7550 */
7551void set_curr_task(int cpu, struct task_struct *p)
7552{
7553	cpu_curr(cpu) = p;
7554}
7555
7556#endif
7557
7558#ifdef CONFIG_CGROUP_SCHED
7559/* task_group_lock serializes the addition/removal of task groups */
7560static DEFINE_SPINLOCK(task_group_lock);
7561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7562static void sched_free_group(struct task_group *tg)
7563{
7564	free_fair_sched_group(tg);
7565	free_rt_sched_group(tg);
7566	autogroup_free(tg);
7567	kmem_cache_free(task_group_cache, tg);
7568}
7569
7570/* allocate runqueue etc for a new task group */
7571struct task_group *sched_create_group(struct task_group *parent)
7572{
7573	struct task_group *tg;
7574
7575	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7576	if (!tg)
7577		return ERR_PTR(-ENOMEM);
7578
7579	if (!alloc_fair_sched_group(tg, parent))
7580		goto err;
7581
7582	if (!alloc_rt_sched_group(tg, parent))
7583		goto err;
7584
 
 
7585	return tg;
7586
7587err:
7588	sched_free_group(tg);
7589	return ERR_PTR(-ENOMEM);
7590}
7591
7592void sched_online_group(struct task_group *tg, struct task_group *parent)
7593{
7594	unsigned long flags;
7595
7596	spin_lock_irqsave(&task_group_lock, flags);
7597	list_add_rcu(&tg->list, &task_groups);
7598
7599	WARN_ON(!parent); /* root should already exist */
 
7600
7601	tg->parent = parent;
7602	INIT_LIST_HEAD(&tg->children);
7603	list_add_rcu(&tg->siblings, &parent->children);
7604	spin_unlock_irqrestore(&task_group_lock, flags);
 
 
7605}
7606
7607/* rcu callback to free various structures associated with a task group */
7608static void sched_free_group_rcu(struct rcu_head *rhp)
7609{
7610	/* now it should be safe to free those cfs_rqs */
7611	sched_free_group(container_of(rhp, struct task_group, rcu));
7612}
7613
7614void sched_destroy_group(struct task_group *tg)
7615{
7616	/* wait for possible concurrent references to cfs_rqs complete */
7617	call_rcu(&tg->rcu, sched_free_group_rcu);
7618}
7619
7620void sched_offline_group(struct task_group *tg)
7621{
7622	unsigned long flags;
7623
7624	/* end participation in shares distribution */
7625	unregister_fair_sched_group(tg);
7626
7627	spin_lock_irqsave(&task_group_lock, flags);
7628	list_del_rcu(&tg->list);
7629	list_del_rcu(&tg->siblings);
7630	spin_unlock_irqrestore(&task_group_lock, flags);
7631}
7632
7633/* change task's runqueue when it moves between groups.
7634 *	The caller of this function should have put the task in its new group
7635 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7636 *	reflect its new group.
7637 */
7638void sched_move_task(struct task_struct *tsk)
7639{
7640	struct task_group *tg;
7641	int queued, running;
7642	unsigned long flags;
7643	struct rq *rq;
7644
7645	rq = task_rq_lock(tsk, &flags);
7646
7647	running = task_current(rq, tsk);
7648	queued = task_on_rq_queued(tsk);
7649
7650	if (queued)
7651		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7652	if (unlikely(running))
7653		put_prev_task(rq, tsk);
7654
7655	/*
7656	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7657	 * which is pointless here. Thus, we pass "true" to task_css_check()
7658	 * to prevent lockdep warnings.
7659	 */
7660	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7661			  struct task_group, css);
7662	tg = autogroup_task_group(tsk, tg);
7663	tsk->sched_task_group = tg;
7664
7665#ifdef CONFIG_FAIR_GROUP_SCHED
7666	if (tsk->sched_class->task_move_group)
7667		tsk->sched_class->task_move_group(tsk);
7668	else
7669#endif
7670		set_task_rq(tsk, task_cpu(tsk));
7671
7672	if (unlikely(running))
7673		tsk->sched_class->set_curr_task(rq);
7674	if (queued)
7675		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7676
7677	task_rq_unlock(rq, tsk, &flags);
7678}
7679#endif /* CONFIG_CGROUP_SCHED */
7680
7681#ifdef CONFIG_RT_GROUP_SCHED
7682/*
7683 * Ensure that the real time constraints are schedulable.
 
 
 
 
7684 */
7685static DEFINE_MUTEX(rt_constraints_mutex);
7686
7687/* Must be called with tasklist_lock held */
7688static inline int tg_has_rt_tasks(struct task_group *tg)
7689{
7690	struct task_struct *g, *p;
7691
7692	/*
7693	 * Autogroups do not have RT tasks; see autogroup_create().
7694	 */
7695	if (task_group_is_autogroup(tg))
7696		return 0;
7697
7698	for_each_process_thread(g, p) {
7699		if (rt_task(p) && task_group(p) == tg)
7700			return 1;
7701	}
7702
7703	return 0;
7704}
7705
7706struct rt_schedulable_data {
7707	struct task_group *tg;
7708	u64 rt_period;
7709	u64 rt_runtime;
7710};
7711
7712static int tg_rt_schedulable(struct task_group *tg, void *data)
7713{
7714	struct rt_schedulable_data *d = data;
7715	struct task_group *child;
7716	unsigned long total, sum = 0;
7717	u64 period, runtime;
7718
7719	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7720	runtime = tg->rt_bandwidth.rt_runtime;
7721
7722	if (tg == d->tg) {
7723		period = d->rt_period;
7724		runtime = d->rt_runtime;
7725	}
7726
7727	/*
7728	 * Cannot have more runtime than the period.
7729	 */
7730	if (runtime > period && runtime != RUNTIME_INF)
7731		return -EINVAL;
7732
7733	/*
7734	 * Ensure we don't starve existing RT tasks.
7735	 */
7736	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7737		return -EBUSY;
7738
7739	total = to_ratio(period, runtime);
 
7740
7741	/*
7742	 * Nobody can have more than the global setting allows.
7743	 */
7744	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7745		return -EINVAL;
7746
7747	/*
7748	 * The sum of our children's runtime should not exceed our own.
7749	 */
7750	list_for_each_entry_rcu(child, &tg->children, siblings) {
7751		period = ktime_to_ns(child->rt_bandwidth.rt_period);
7752		runtime = child->rt_bandwidth.rt_runtime;
7753
7754		if (child == d->tg) {
7755			period = d->rt_period;
7756			runtime = d->rt_runtime;
7757		}
7758
7759		sum += to_ratio(period, runtime);
 
 
 
 
 
 
 
 
 
7760	}
7761
7762	if (sum > total)
7763		return -EINVAL;
7764
7765	return 0;
7766}
7767
7768static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7769{
7770	int ret;
7771
7772	struct rt_schedulable_data data = {
7773		.tg = tg,
7774		.rt_period = period,
7775		.rt_runtime = runtime,
7776	};
7777
7778	rcu_read_lock();
7779	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7780	rcu_read_unlock();
7781
7782	return ret;
7783}
7784
7785static int tg_set_rt_bandwidth(struct task_group *tg,
7786		u64 rt_period, u64 rt_runtime)
7787{
7788	int i, err = 0;
7789
7790	/*
7791	 * Disallowing the root group RT runtime is BAD, it would disallow the
7792	 * kernel creating (and or operating) RT threads.
7793	 */
7794	if (tg == &root_task_group && rt_runtime == 0)
7795		return -EINVAL;
7796
7797	/* No period doesn't make any sense. */
7798	if (rt_period == 0)
7799		return -EINVAL;
7800
7801	mutex_lock(&rt_constraints_mutex);
7802	read_lock(&tasklist_lock);
7803	err = __rt_schedulable(tg, rt_period, rt_runtime);
7804	if (err)
7805		goto unlock;
7806
7807	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7808	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7809	tg->rt_bandwidth.rt_runtime = rt_runtime;
7810
7811	for_each_possible_cpu(i) {
7812		struct rt_rq *rt_rq = tg->rt_rq[i];
7813
7814		raw_spin_lock(&rt_rq->rt_runtime_lock);
7815		rt_rq->rt_runtime = rt_runtime;
7816		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7817	}
7818	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7819unlock:
7820	read_unlock(&tasklist_lock);
7821	mutex_unlock(&rt_constraints_mutex);
7822
7823	return err;
7824}
7825
7826static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7827{
7828	u64 rt_runtime, rt_period;
7829
7830	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7832	if (rt_runtime_us < 0)
7833		rt_runtime = RUNTIME_INF;
7834
7835	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7836}
7837
7838static long sched_group_rt_runtime(struct task_group *tg)
7839{
7840	u64 rt_runtime_us;
7841
7842	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7843		return -1;
7844
7845	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7846	do_div(rt_runtime_us, NSEC_PER_USEC);
7847	return rt_runtime_us;
7848}
7849
7850static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
 
7851{
7852	u64 rt_runtime, rt_period;
7853
7854	rt_period = rt_period_us * NSEC_PER_USEC;
7855	rt_runtime = tg->rt_bandwidth.rt_runtime;
7856
7857	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7858}
7859
7860static long sched_group_rt_period(struct task_group *tg)
7861{
7862	u64 rt_period_us;
 
7863
7864	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7865	do_div(rt_period_us, NSEC_PER_USEC);
7866	return rt_period_us;
7867}
7868#endif /* CONFIG_RT_GROUP_SCHED */
7869
7870#ifdef CONFIG_RT_GROUP_SCHED
7871static int sched_rt_global_constraints(void)
7872{
7873	int ret = 0;
7874
7875	mutex_lock(&rt_constraints_mutex);
7876	read_lock(&tasklist_lock);
7877	ret = __rt_schedulable(NULL, 0, 0);
7878	read_unlock(&tasklist_lock);
7879	mutex_unlock(&rt_constraints_mutex);
7880
7881	return ret;
7882}
7883
7884static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7885{
7886	/* Don't accept realtime tasks when there is no way for them to run */
7887	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7888		return 0;
7889
7890	return 1;
 
 
 
7891}
7892
7893#else /* !CONFIG_RT_GROUP_SCHED */
7894static int sched_rt_global_constraints(void)
 
 
 
7895{
7896	unsigned long flags;
7897	int i, ret = 0;
7898
7899	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7900	for_each_possible_cpu(i) {
7901		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7902
7903		raw_spin_lock(&rt_rq->rt_runtime_lock);
7904		rt_rq->rt_runtime = global_rt_runtime();
7905		raw_spin_unlock(&rt_rq->rt_runtime_lock);
7906	}
7907	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7908
7909	return ret;
7910}
7911#endif /* CONFIG_RT_GROUP_SCHED */
7912
7913static int sched_dl_global_validate(void)
7914{
7915	u64 runtime = global_rt_runtime();
7916	u64 period = global_rt_period();
7917	u64 new_bw = to_ratio(period, runtime);
7918	struct dl_bw *dl_b;
7919	int cpu, ret = 0;
7920	unsigned long flags;
7921
7922	/*
7923	 * Here we want to check the bandwidth not being set to some
7924	 * value smaller than the currently allocated bandwidth in
7925	 * any of the root_domains.
7926	 *
7927	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7928	 * cycling on root_domains... Discussion on different/better
7929	 * solutions is welcome!
7930	 */
7931	for_each_possible_cpu(cpu) {
7932		rcu_read_lock_sched();
7933		dl_b = dl_bw_of(cpu);
7934
7935		raw_spin_lock_irqsave(&dl_b->lock, flags);
7936		if (new_bw < dl_b->total_bw)
7937			ret = -EBUSY;
7938		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7939
7940		rcu_read_unlock_sched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7941
7942		if (ret)
7943			break;
7944	}
7945
7946	return ret;
7947}
7948
7949static void sched_dl_do_global(void)
7950{
7951	u64 new_bw = -1;
7952	struct dl_bw *dl_b;
7953	int cpu;
7954	unsigned long flags;
7955
7956	def_dl_bandwidth.dl_period = global_rt_period();
7957	def_dl_bandwidth.dl_runtime = global_rt_runtime();
7958
7959	if (global_rt_runtime() != RUNTIME_INF)
7960		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7961
7962	/*
7963	 * FIXME: As above...
7964	 */
7965	for_each_possible_cpu(cpu) {
7966		rcu_read_lock_sched();
7967		dl_b = dl_bw_of(cpu);
7968
7969		raw_spin_lock_irqsave(&dl_b->lock, flags);
7970		dl_b->bw = new_bw;
7971		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7972
7973		rcu_read_unlock_sched();
7974	}
7975}
7976
7977static int sched_rt_global_validate(void)
 
7978{
7979	if (sysctl_sched_rt_period <= 0)
7980		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7981
7982	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7983		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7984		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
7985
7986	return 0;
 
 
7987}
7988
7989static void sched_rt_do_global(void)
7990{
7991	def_rt_bandwidth.rt_runtime = global_rt_runtime();
7992	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7993}
 
 
7994
7995int sched_rt_handler(struct ctl_table *table, int write,
7996		void __user *buffer, size_t *lenp,
7997		loff_t *ppos)
7998{
7999	int old_period, old_runtime;
8000	static DEFINE_MUTEX(mutex);
8001	int ret;
 
8002
8003	mutex_lock(&mutex);
8004	old_period = sysctl_sched_rt_period;
8005	old_runtime = sysctl_sched_rt_runtime;
8006
8007	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8008
8009	if (!ret && write) {
8010		ret = sched_rt_global_validate();
8011		if (ret)
8012			goto undo;
8013
8014		ret = sched_dl_global_validate();
8015		if (ret)
8016			goto undo;
8017
8018		ret = sched_rt_global_constraints();
8019		if (ret)
8020			goto undo;
 
 
 
 
 
 
 
8021
8022		sched_rt_do_global();
8023		sched_dl_do_global();
8024	}
8025	if (0) {
8026undo:
8027		sysctl_sched_rt_period = old_period;
8028		sysctl_sched_rt_runtime = old_runtime;
8029	}
8030	mutex_unlock(&mutex);
8031
8032	return ret;
8033}
8034
8035int sched_rr_handler(struct ctl_table *table, int write,
8036		void __user *buffer, size_t *lenp,
8037		loff_t *ppos)
8038{
8039	int ret;
8040	static DEFINE_MUTEX(mutex);
8041
8042	mutex_lock(&mutex);
8043	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8044	/* make sure that internally we keep jiffies */
8045	/* also, writing zero resets timeslice to default */
8046	if (!ret && write) {
8047		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8048			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8049	}
8050	mutex_unlock(&mutex);
8051	return ret;
8052}
8053
8054#ifdef CONFIG_CGROUP_SCHED
8055
8056static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8057{
8058	return css ? container_of(css, struct task_group, css) : NULL;
8059}
8060
8061static struct cgroup_subsys_state *
8062cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8063{
8064	struct task_group *parent = css_tg(parent_css);
8065	struct task_group *tg;
8066
8067	if (!parent) {
8068		/* This is early initialization for the top cgroup */
8069		return &root_task_group.css;
8070	}
 
8071
8072	tg = sched_create_group(parent);
8073	if (IS_ERR(tg))
8074		return ERR_PTR(-ENOMEM);
8075
8076	sched_online_group(tg, parent);
 
8077
8078	return &tg->css;
8079}
8080
8081static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
 
 
8082{
8083	struct task_group *tg = css_tg(css);
8084
8085	sched_offline_group(tg);
8086}
8087
8088static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
 
 
8089{
8090	struct task_group *tg = css_tg(css);
8091
8092	/*
8093	 * Relies on the RCU grace period between css_released() and this.
8094	 */
8095	sched_free_group(tg);
8096}
8097
8098static void cpu_cgroup_fork(struct task_struct *task)
 
8099{
8100	sched_move_task(task);
8101}
 
 
8102
8103static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8104{
8105	struct task_struct *task;
8106	struct cgroup_subsys_state *css;
8107
8108	cgroup_taskset_for_each(task, css, tset) {
8109#ifdef CONFIG_RT_GROUP_SCHED
8110		if (!sched_rt_can_attach(css_tg(css), task))
8111			return -EINVAL;
8112#else
8113		/* We don't support RT-tasks being in separate groups */
8114		if (task->sched_class != &fair_sched_class)
8115			return -EINVAL;
8116#endif
8117	}
8118	return 0;
 
 
 
8119}
8120
8121static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8122{
8123	struct task_struct *task;
8124	struct cgroup_subsys_state *css;
 
8125
8126	cgroup_taskset_for_each(task, css, tset)
8127		sched_move_task(task);
 
 
8128}
 
8129
8130#ifdef CONFIG_FAIR_GROUP_SCHED
8131static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8132				struct cftype *cftype, u64 shareval)
8133{
 
 
8134	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8135}
8136
8137static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8138			       struct cftype *cft)
8139{
8140	struct task_group *tg = css_tg(css);
8141
8142	return (u64) scale_load_down(tg->shares);
8143}
8144
8145#ifdef CONFIG_CFS_BANDWIDTH
8146static DEFINE_MUTEX(cfs_constraints_mutex);
8147
8148const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8149const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
 
 
8150
8151static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8152
8153static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8154{
8155	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8156	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8157
8158	if (tg == &root_task_group)
8159		return -EINVAL;
8160
8161	/*
8162	 * Ensure we have at some amount of bandwidth every period.  This is
8163	 * to prevent reaching a state of large arrears when throttled via
8164	 * entity_tick() resulting in prolonged exit starvation.
8165	 */
8166	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8167		return -EINVAL;
8168
8169	/*
8170	 * Likewise, bound things on the otherside by preventing insane quota
8171	 * periods.  This also allows us to normalize in computing quota
8172	 * feasibility.
8173	 */
8174	if (period > max_cfs_quota_period)
8175		return -EINVAL;
8176
8177	/*
 
 
 
 
 
 
8178	 * Prevent race between setting of cfs_rq->runtime_enabled and
8179	 * unthrottle_offline_cfs_rqs().
8180	 */
8181	get_online_cpus();
8182	mutex_lock(&cfs_constraints_mutex);
8183	ret = __cfs_schedulable(tg, period, quota);
8184	if (ret)
8185		goto out_unlock;
8186
8187	runtime_enabled = quota != RUNTIME_INF;
8188	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8189	/*
8190	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8191	 * before making related changes, and on->off must occur afterwards
8192	 */
8193	if (runtime_enabled && !runtime_was_enabled)
8194		cfs_bandwidth_usage_inc();
8195	raw_spin_lock_irq(&cfs_b->lock);
8196	cfs_b->period = ns_to_ktime(period);
8197	cfs_b->quota = quota;
8198
8199	__refill_cfs_bandwidth_runtime(cfs_b);
8200	/* restart the period timer (if active) to handle new period expiry */
 
8201	if (runtime_enabled)
8202		start_cfs_bandwidth(cfs_b);
 
8203	raw_spin_unlock_irq(&cfs_b->lock);
8204
8205	for_each_online_cpu(i) {
8206		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8207		struct rq *rq = cfs_rq->rq;
 
8208
8209		raw_spin_lock_irq(&rq->lock);
8210		cfs_rq->runtime_enabled = runtime_enabled;
8211		cfs_rq->runtime_remaining = 0;
8212
8213		if (cfs_rq->throttled)
8214			unthrottle_cfs_rq(cfs_rq);
8215		raw_spin_unlock_irq(&rq->lock);
8216	}
8217	if (runtime_was_enabled && !runtime_enabled)
8218		cfs_bandwidth_usage_dec();
8219out_unlock:
8220	mutex_unlock(&cfs_constraints_mutex);
8221	put_online_cpus();
8222
8223	return ret;
8224}
8225
8226int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8227{
8228	u64 quota, period;
8229
8230	period = ktime_to_ns(tg->cfs_bandwidth.period);
8231	if (cfs_quota_us < 0)
8232		quota = RUNTIME_INF;
8233	else
8234		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
 
 
8235
8236	return tg_set_cfs_bandwidth(tg, period, quota);
8237}
8238
8239long tg_get_cfs_quota(struct task_group *tg)
8240{
8241	u64 quota_us;
8242
8243	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8244		return -1;
8245
8246	quota_us = tg->cfs_bandwidth.quota;
8247	do_div(quota_us, NSEC_PER_USEC);
8248
8249	return quota_us;
8250}
8251
8252int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8253{
8254	u64 quota, period;
8255
 
 
 
8256	period = (u64)cfs_period_us * NSEC_PER_USEC;
8257	quota = tg->cfs_bandwidth.quota;
8258
8259	return tg_set_cfs_bandwidth(tg, period, quota);
8260}
8261
8262long tg_get_cfs_period(struct task_group *tg)
8263{
8264	u64 cfs_period_us;
8265
8266	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8267	do_div(cfs_period_us, NSEC_PER_USEC);
8268
8269	return cfs_period_us;
8270}
8271
8272static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8273				  struct cftype *cft)
8274{
8275	return tg_get_cfs_quota(css_tg(css));
8276}
8277
8278static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8279				   struct cftype *cftype, s64 cfs_quota_us)
8280{
8281	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8282}
8283
8284static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8285				   struct cftype *cft)
8286{
8287	return tg_get_cfs_period(css_tg(css));
8288}
8289
8290static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8291				    struct cftype *cftype, u64 cfs_period_us)
8292{
8293	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8294}
8295
8296struct cfs_schedulable_data {
8297	struct task_group *tg;
8298	u64 period, quota;
8299};
8300
8301/*
8302 * normalize group quota/period to be quota/max_period
8303 * note: units are usecs
8304 */
8305static u64 normalize_cfs_quota(struct task_group *tg,
8306			       struct cfs_schedulable_data *d)
8307{
8308	u64 quota, period;
8309
8310	if (tg == d->tg) {
8311		period = d->period;
8312		quota = d->quota;
8313	} else {
8314		period = tg_get_cfs_period(tg);
8315		quota = tg_get_cfs_quota(tg);
8316	}
8317
8318	/* note: these should typically be equivalent */
8319	if (quota == RUNTIME_INF || quota == -1)
8320		return RUNTIME_INF;
8321
8322	return to_ratio(period, quota);
8323}
8324
8325static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8326{
8327	struct cfs_schedulable_data *d = data;
8328	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8329	s64 quota = 0, parent_quota = -1;
8330
8331	if (!tg->parent) {
8332		quota = RUNTIME_INF;
8333	} else {
8334		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8335
8336		quota = normalize_cfs_quota(tg, d);
8337		parent_quota = parent_b->hierarchical_quota;
8338
8339		/*
8340		 * ensure max(child_quota) <= parent_quota, inherit when no
8341		 * limit is set
 
8342		 */
8343		if (quota == RUNTIME_INF)
8344			quota = parent_quota;
8345		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8346			return -EINVAL;
 
 
 
 
8347	}
8348	cfs_b->hierarchical_quota = quota;
8349
8350	return 0;
8351}
8352
8353static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8354{
8355	int ret;
8356	struct cfs_schedulable_data data = {
8357		.tg = tg,
8358		.period = period,
8359		.quota = quota,
8360	};
8361
8362	if (quota != RUNTIME_INF) {
8363		do_div(data.period, NSEC_PER_USEC);
8364		do_div(data.quota, NSEC_PER_USEC);
8365	}
8366
8367	rcu_read_lock();
8368	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8369	rcu_read_unlock();
8370
8371	return ret;
8372}
8373
8374static int cpu_stats_show(struct seq_file *sf, void *v)
8375{
8376	struct task_group *tg = css_tg(seq_css(sf));
8377	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8378
8379	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8380	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8381	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8382
 
 
 
 
 
 
 
 
 
 
8383	return 0;
8384}
8385#endif /* CONFIG_CFS_BANDWIDTH */
8386#endif /* CONFIG_FAIR_GROUP_SCHED */
8387
8388#ifdef CONFIG_RT_GROUP_SCHED
8389static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8390				struct cftype *cft, s64 val)
8391{
8392	return sched_group_set_rt_runtime(css_tg(css), val);
8393}
8394
8395static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8396			       struct cftype *cft)
8397{
8398	return sched_group_rt_runtime(css_tg(css));
8399}
8400
8401static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8402				    struct cftype *cftype, u64 rt_period_us)
8403{
8404	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8405}
8406
8407static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8408				   struct cftype *cft)
8409{
8410	return sched_group_rt_period(css_tg(css));
8411}
8412#endif /* CONFIG_RT_GROUP_SCHED */
8413
8414static struct cftype cpu_files[] = {
8415#ifdef CONFIG_FAIR_GROUP_SCHED
8416	{
8417		.name = "shares",
8418		.read_u64 = cpu_shares_read_u64,
8419		.write_u64 = cpu_shares_write_u64,
8420	},
8421#endif
8422#ifdef CONFIG_CFS_BANDWIDTH
8423	{
8424		.name = "cfs_quota_us",
8425		.read_s64 = cpu_cfs_quota_read_s64,
8426		.write_s64 = cpu_cfs_quota_write_s64,
8427	},
8428	{
8429		.name = "cfs_period_us",
8430		.read_u64 = cpu_cfs_period_read_u64,
8431		.write_u64 = cpu_cfs_period_write_u64,
8432	},
8433	{
8434		.name = "stat",
8435		.seq_show = cpu_stats_show,
8436	},
8437#endif
8438#ifdef CONFIG_RT_GROUP_SCHED
8439	{
8440		.name = "rt_runtime_us",
8441		.read_s64 = cpu_rt_runtime_read,
8442		.write_s64 = cpu_rt_runtime_write,
8443	},
8444	{
8445		.name = "rt_period_us",
8446		.read_u64 = cpu_rt_period_read_uint,
8447		.write_u64 = cpu_rt_period_write_uint,
8448	},
8449#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8450	{ }	/* terminate */
8451};
8452
8453struct cgroup_subsys cpu_cgrp_subsys = {
8454	.css_alloc	= cpu_cgroup_css_alloc,
 
8455	.css_released	= cpu_cgroup_css_released,
8456	.css_free	= cpu_cgroup_css_free,
 
8457	.fork		= cpu_cgroup_fork,
8458	.can_attach	= cpu_cgroup_can_attach,
8459	.attach		= cpu_cgroup_attach,
8460	.legacy_cftypes	= cpu_files,
 
8461	.early_init	= true,
 
8462};
8463
8464#endif	/* CONFIG_CGROUP_SCHED */
8465
8466void dump_cpu_task(int cpu)
8467{
8468	pr_info("Task dump for CPU %d:\n", cpu);
8469	sched_show_task(cpu_curr(cpu));
8470}
8471
8472/*
8473 * Nice levels are multiplicative, with a gentle 10% change for every
8474 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8475 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8476 * that remained on nice 0.
8477 *
8478 * The "10% effect" is relative and cumulative: from _any_ nice level,
8479 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8480 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8481 * If a task goes up by ~10% and another task goes down by ~10% then
8482 * the relative distance between them is ~25%.)
8483 */
8484const int sched_prio_to_weight[40] = {
8485 /* -20 */     88761,     71755,     56483,     46273,     36291,
8486 /* -15 */     29154,     23254,     18705,     14949,     11916,
8487 /* -10 */      9548,      7620,      6100,      4904,      3906,
8488 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8489 /*   0 */      1024,       820,       655,       526,       423,
8490 /*   5 */       335,       272,       215,       172,       137,
8491 /*  10 */       110,        87,        70,        56,        45,
8492 /*  15 */        36,        29,        23,        18,        15,
8493};
8494
8495/*
8496 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8497 *
8498 * In cases where the weight does not change often, we can use the
8499 * precalculated inverse to speed up arithmetics by turning divisions
8500 * into multiplications:
8501 */
8502const u32 sched_prio_to_wmult[40] = {
8503 /* -20 */     48388,     59856,     76040,     92818,    118348,
8504 /* -15 */    147320,    184698,    229616,    287308,    360437,
8505 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8506 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8507 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8508 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8509 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8510 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8511};
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
   9#define CREATE_TRACE_POINTS
  10#include <trace/events/sched.h>
  11#undef CREATE_TRACE_POINTS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12
  13#include "sched.h"
 
 
  14
  15#include <linux/nospec.h>
 
  16
  17#include <linux/kcov.h>
  18#include <linux/scs.h>
  19
  20#include <asm/switch_to.h>
  21#include <asm/tlb.h>
  22
  23#include "../workqueue_internal.h"
  24#include "../../fs/io-wq.h"
  25#include "../smpboot.h"
  26
  27#include "pelt.h"
  28#include "smp.h"
  29
  30/*
  31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  32 * associated with them) to allow external modules to probe them.
  33 */
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  43
  44DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 
 
 
 
 
  45
  46#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
  47/*
  48 * Debugging: various feature bits
  49 *
  50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  51 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  52 * at compile time and compiler optimization based on features default.
  53 */
 
  54#define SCHED_FEAT(name, enabled)	\
  55	(1UL << __SCHED_FEAT_##name) * enabled |
 
  56const_debug unsigned int sysctl_sched_features =
  57#include "features.h"
  58	0;
 
  59#undef SCHED_FEAT
  60#endif
  61
  62/*
  63 * Number of tasks to iterate in a single balance run.
  64 * Limited because this is done with IRQs disabled.
  65 */
  66const_debug unsigned int sysctl_sched_nr_migrate = 32;
  67
  68/*
  69 * period over which we measure -rt task CPU usage in us.
 
 
 
 
 
 
 
 
  70 * default: 1s
  71 */
  72unsigned int sysctl_sched_rt_period = 1000000;
  73
  74__read_mostly int scheduler_running;
  75
  76/*
  77 * part of the period that we allow rt tasks to run in us.
  78 * default: 0.95s
  79 */
  80int sysctl_sched_rt_runtime = 950000;
  81
 
 
  82
  83/*
  84 * Serialization rules:
  85 *
  86 * Lock order:
  87 *
  88 *   p->pi_lock
  89 *     rq->lock
  90 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  91 *
  92 *  rq1->lock
  93 *    rq2->lock  where: rq1 < rq2
  94 *
  95 * Regular state:
  96 *
  97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  98 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  99 * always looks at the local rq data structures to find the most elegible task
 100 * to run next.
 101 *
 102 * Task enqueue is also under rq->lock, possibly taken from another CPU.
 103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
 104 * the local CPU to avoid bouncing the runqueue state around [ see
 105 * ttwu_queue_wakelist() ]
 106 *
 107 * Task wakeup, specifically wakeups that involve migration, are horribly
 108 * complicated to avoid having to take two rq->locks.
 109 *
 110 * Special state:
 111 *
 112 * System-calls and anything external will use task_rq_lock() which acquires
 113 * both p->pi_lock and rq->lock. As a consequence the state they change is
 114 * stable while holding either lock:
 115 *
 116 *  - sched_setaffinity()/
 117 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
 118 *  - set_user_nice():		p->se.load, p->*prio
 119 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
 120 *				p->se.load, p->rt_priority,
 121 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
 122 *  - sched_setnuma():		p->numa_preferred_nid
 123 *  - sched_move_task()/
 124 *    cpu_cgroup_fork():	p->sched_task_group
 125 *  - uclamp_update_active()	p->uclamp*
 126 *
 127 * p->state <- TASK_*:
 128 *
 129 *   is changed locklessly using set_current_state(), __set_current_state() or
 130 *   set_special_state(), see their respective comments, or by
 131 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
 132 *   concurrent self.
 133 *
 134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
 135 *
 136 *   is set by activate_task() and cleared by deactivate_task(), under
 137 *   rq->lock. Non-zero indicates the task is runnable, the special
 138 *   ON_RQ_MIGRATING state is used for migration without holding both
 139 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
 140 *
 141 * p->on_cpu <- { 0, 1 }:
 142 *
 143 *   is set by prepare_task() and cleared by finish_task() such that it will be
 144 *   set before p is scheduled-in and cleared after p is scheduled-out, both
 145 *   under rq->lock. Non-zero indicates the task is running on its CPU.
 146 *
 147 *   [ The astute reader will observe that it is possible for two tasks on one
 148 *     CPU to have ->on_cpu = 1 at the same time. ]
 149 *
 150 * task_cpu(p): is changed by set_task_cpu(), the rules are:
 151 *
 152 *  - Don't call set_task_cpu() on a blocked task:
 153 *
 154 *    We don't care what CPU we're not running on, this simplifies hotplug,
 155 *    the CPU assignment of blocked tasks isn't required to be valid.
 156 *
 157 *  - for try_to_wake_up(), called under p->pi_lock:
 158 *
 159 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
 160 *
 161 *  - for migration called under rq->lock:
 162 *    [ see task_on_rq_migrating() in task_rq_lock() ]
 163 *
 164 *    o move_queued_task()
 165 *    o detach_task()
 166 *
 167 *  - for migration called under double_rq_lock():
 168 *
 169 *    o __migrate_swap_task()
 170 *    o push_rt_task() / pull_rt_task()
 171 *    o push_dl_task() / pull_dl_task()
 172 *    o dl_task_offline_migration()
 173 *
 174 */
 175
 176/*
 177 * __task_rq_lock - lock the rq @p resides on.
 178 */
 179struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 180	__acquires(rq->lock)
 181{
 182	struct rq *rq;
 183
 184	lockdep_assert_held(&p->pi_lock);
 
 
 185
 186	for (;;) {
 187		rq = task_rq(p);
 188		raw_spin_lock(&rq->lock);
 189		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 190			rq_pin_lock(rq, rf);
 191			return rq;
 192		}
 193		raw_spin_unlock(&rq->lock);
 194
 195		while (unlikely(task_on_rq_migrating(p)))
 196			cpu_relax();
 197	}
 198}
 199
 200/*
 201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 202 */
 203struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 204	__acquires(p->pi_lock)
 205	__acquires(rq->lock)
 206{
 207	struct rq *rq;
 208
 209	for (;;) {
 210		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 211		rq = task_rq(p);
 212		raw_spin_lock(&rq->lock);
 213		/*
 214		 *	move_queued_task()		task_rq_lock()
 215		 *
 216		 *	ACQUIRE (rq->lock)
 217		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
 218		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
 219		 *	[S] ->cpu = new_cpu		[L] task_rq()
 220		 *					[L] ->on_rq
 221		 *	RELEASE (rq->lock)
 222		 *
 223		 * If we observe the old CPU in task_rq_lock(), the acquire of
 224		 * the old rq->lock will fully serialize against the stores.
 225		 *
 226		 * If we observe the new CPU in task_rq_lock(), the address
 227		 * dependency headed by '[L] rq = task_rq()' and the acquire
 228		 * will pair with the WMB to ensure we then also see migrating.
 229		 */
 230		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 231			rq_pin_lock(rq, rf);
 232			return rq;
 233		}
 234		raw_spin_unlock(&rq->lock);
 235		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 236
 237		while (unlikely(task_on_rq_migrating(p)))
 238			cpu_relax();
 239	}
 240}
 241
 242/*
 243 * RQ-clock updating methods:
 244 */
 245
 246static void update_rq_clock_task(struct rq *rq, s64 delta)
 247{
 248/*
 249 * In theory, the compile should just see 0 here, and optimize out the call
 250 * to sched_rt_avg_update. But I don't trust it...
 251 */
 252	s64 __maybe_unused steal = 0, irq_delta = 0;
 253
 254#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 255	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 256
 257	/*
 258	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 259	 * this case when a previous update_rq_clock() happened inside a
 260	 * {soft,}irq region.
 261	 *
 262	 * When this happens, we stop ->clock_task and only update the
 263	 * prev_irq_time stamp to account for the part that fit, so that a next
 264	 * update will consume the rest. This ensures ->clock_task is
 265	 * monotonic.
 266	 *
 267	 * It does however cause some slight miss-attribution of {soft,}irq
 268	 * time, a more accurate solution would be to update the irq_time using
 269	 * the current rq->clock timestamp, except that would require using
 270	 * atomic ops.
 271	 */
 272	if (irq_delta > delta)
 273		irq_delta = delta;
 274
 275	rq->prev_irq_time += irq_delta;
 276	delta -= irq_delta;
 277#endif
 278#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 279	if (static_key_false((&paravirt_steal_rq_enabled))) {
 280		steal = paravirt_steal_clock(cpu_of(rq));
 281		steal -= rq->prev_steal_time_rq;
 282
 283		if (unlikely(steal > delta))
 284			steal = delta;
 285
 286		rq->prev_steal_time_rq += steal;
 287		delta -= steal;
 288	}
 289#endif
 290
 291	rq->clock_task += delta;
 292
 293#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 294	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 295		update_irq_load_avg(rq, irq_delta + steal);
 296#endif
 297	update_rq_clock_pelt(rq, delta);
 298}
 299
 300void update_rq_clock(struct rq *rq)
 301{
 302	s64 delta;
 303
 304	lockdep_assert_held(&rq->lock);
 305
 306	if (rq->clock_update_flags & RQCF_ACT_SKIP)
 307		return;
 308
 309#ifdef CONFIG_SCHED_DEBUG
 310	if (sched_feat(WARN_DOUBLE_CLOCK))
 311		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 312	rq->clock_update_flags |= RQCF_UPDATED;
 313#endif
 314
 315	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 316	if (delta < 0)
 317		return;
 318	rq->clock += delta;
 319	update_rq_clock_task(rq, delta);
 320}
 321
 322static inline void
 323rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
 324{
 325	csd->flags = 0;
 326	csd->func = func;
 327	csd->info = rq;
 328}
 329
 330#ifdef CONFIG_SCHED_HRTICK
 331/*
 332 * Use HR-timers to deliver accurate preemption points.
 333 */
 334
 335static void hrtick_clear(struct rq *rq)
 336{
 337	if (hrtimer_active(&rq->hrtick_timer))
 338		hrtimer_cancel(&rq->hrtick_timer);
 339}
 340
 341/*
 342 * High-resolution timer tick.
 343 * Runs from hardirq context with interrupts disabled.
 344 */
 345static enum hrtimer_restart hrtick(struct hrtimer *timer)
 346{
 347	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 348	struct rq_flags rf;
 349
 350	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 351
 352	rq_lock(rq, &rf);
 353	update_rq_clock(rq);
 354	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 355	rq_unlock(rq, &rf);
 356
 357	return HRTIMER_NORESTART;
 358}
 359
 360#ifdef CONFIG_SMP
 361
 362static void __hrtick_restart(struct rq *rq)
 363{
 364	struct hrtimer *timer = &rq->hrtick_timer;
 365
 366	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 367}
 368
 369/*
 370 * called from hardirq (IPI) context
 371 */
 372static void __hrtick_start(void *arg)
 373{
 374	struct rq *rq = arg;
 375	struct rq_flags rf;
 376
 377	rq_lock(rq, &rf);
 378	__hrtick_restart(rq);
 379	rq_unlock(rq, &rf);
 
 380}
 381
 382/*
 383 * Called to set the hrtick timer state.
 384 *
 385 * called with rq->lock held and irqs disabled
 386 */
 387void hrtick_start(struct rq *rq, u64 delay)
 388{
 389	struct hrtimer *timer = &rq->hrtick_timer;
 390	ktime_t time;
 391	s64 delta;
 392
 393	/*
 394	 * Don't schedule slices shorter than 10000ns, that just
 395	 * doesn't make sense and can cause timer DoS.
 396	 */
 397	delta = max_t(s64, delay, 10000LL);
 398	time = ktime_add_ns(timer->base->get_time(), delta);
 399
 400	hrtimer_set_expires(timer, time);
 401
 402	if (rq == this_rq())
 403		__hrtick_restart(rq);
 404	else
 405		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 
 
 406}
 407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408#else
 409/*
 410 * Called to set the hrtick timer state.
 411 *
 412 * called with rq->lock held and irqs disabled
 413 */
 414void hrtick_start(struct rq *rq, u64 delay)
 415{
 416	/*
 417	 * Don't schedule slices shorter than 10000ns, that just
 418	 * doesn't make sense. Rely on vruntime for fairness.
 419	 */
 420	delay = max_t(u64, delay, 10000LL);
 421	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 422		      HRTIMER_MODE_REL_PINNED_HARD);
 423}
 424
 
 
 
 425#endif /* CONFIG_SMP */
 426
 427static void hrtick_rq_init(struct rq *rq)
 428{
 429#ifdef CONFIG_SMP
 430	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
 
 
 
 
 431#endif
 432	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 
 433	rq->hrtick_timer.function = hrtick;
 434}
 435#else	/* CONFIG_SCHED_HRTICK */
 436static inline void hrtick_clear(struct rq *rq)
 437{
 438}
 439
 440static inline void hrtick_rq_init(struct rq *rq)
 
 
 
 
 441{
 442}
 443#endif	/* CONFIG_SCHED_HRTICK */
 444
 445/*
 446 * cmpxchg based fetch_or, macro so it works for different integer types
 447 */
 448#define fetch_or(ptr, mask)						\
 449	({								\
 450		typeof(ptr) _ptr = (ptr);				\
 451		typeof(mask) _mask = (mask);				\
 452		typeof(*_ptr) _old, _val = *_ptr;			\
 453									\
 454		for (;;) {						\
 455			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 456			if (_old == _val)				\
 457				break;					\
 458			_val = _old;					\
 459		}							\
 460	_old;								\
 461})
 462
 463#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 464/*
 465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 466 * this avoids any races wrt polling state changes and thereby avoids
 467 * spurious IPIs.
 468 */
 469static bool set_nr_and_not_polling(struct task_struct *p)
 470{
 471	struct thread_info *ti = task_thread_info(p);
 472	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 473}
 474
 475/*
 476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 477 *
 478 * If this returns true, then the idle task promises to call
 479 * sched_ttwu_pending() and reschedule soon.
 480 */
 481static bool set_nr_if_polling(struct task_struct *p)
 482{
 483	struct thread_info *ti = task_thread_info(p);
 484	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 485
 486	for (;;) {
 487		if (!(val & _TIF_POLLING_NRFLAG))
 488			return false;
 489		if (val & _TIF_NEED_RESCHED)
 490			return true;
 491		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 492		if (old == val)
 493			break;
 494		val = old;
 495	}
 496	return true;
 497}
 498
 499#else
 500static bool set_nr_and_not_polling(struct task_struct *p)
 501{
 502	set_tsk_need_resched(p);
 503	return true;
 504}
 505
 506#ifdef CONFIG_SMP
 507static bool set_nr_if_polling(struct task_struct *p)
 508{
 509	return false;
 510}
 511#endif
 512#endif
 513
 514static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 515{
 516	struct wake_q_node *node = &task->wake_q;
 517
 518	/*
 519	 * Atomically grab the task, if ->wake_q is !nil already it means
 520	 * its already queued (either by us or someone else) and will get the
 521	 * wakeup due to that.
 522	 *
 523	 * In order to ensure that a pending wakeup will observe our pending
 524	 * state, even in the failed case, an explicit smp_mb() must be used.
 525	 */
 526	smp_mb__before_atomic();
 527	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 528		return false;
 
 529
 530	/*
 531	 * The head is context local, there can be no concurrency.
 532	 */
 533	*head->lastp = node;
 534	head->lastp = &node->next;
 535	return true;
 536}
 537
 538/**
 539 * wake_q_add() - queue a wakeup for 'later' waking.
 540 * @head: the wake_q_head to add @task to
 541 * @task: the task to queue for 'later' wakeup
 542 *
 543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 545 * instantly.
 546 *
 547 * This function must be used as-if it were wake_up_process(); IOW the task
 548 * must be ready to be woken at this location.
 549 */
 550void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 551{
 552	if (__wake_q_add(head, task))
 553		get_task_struct(task);
 554}
 555
 556/**
 557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 558 * @head: the wake_q_head to add @task to
 559 * @task: the task to queue for 'later' wakeup
 560 *
 561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 563 * instantly.
 564 *
 565 * This function must be used as-if it were wake_up_process(); IOW the task
 566 * must be ready to be woken at this location.
 567 *
 568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 569 * that already hold reference to @task can call the 'safe' version and trust
 570 * wake_q to do the right thing depending whether or not the @task is already
 571 * queued for wakeup.
 572 */
 573void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 574{
 575	if (!__wake_q_add(head, task))
 576		put_task_struct(task);
 577}
 578
 579void wake_up_q(struct wake_q_head *head)
 580{
 581	struct wake_q_node *node = head->first;
 582
 583	while (node != WAKE_Q_TAIL) {
 584		struct task_struct *task;
 585
 586		task = container_of(node, struct task_struct, wake_q);
 587		BUG_ON(!task);
 588		/* Task can safely be re-inserted now: */
 589		node = node->next;
 590		task->wake_q.next = NULL;
 591
 592		/*
 593		 * wake_up_process() executes a full barrier, which pairs with
 594		 * the queueing in wake_q_add() so as not to miss wakeups.
 595		 */
 596		wake_up_process(task);
 597		put_task_struct(task);
 598	}
 599}
 600
 601/*
 602 * resched_curr - mark rq's current task 'to be rescheduled now'.
 603 *
 604 * On UP this means the setting of the need_resched flag, on SMP it
 605 * might also involve a cross-CPU call to trigger the scheduler on
 606 * the target CPU.
 607 */
 608void resched_curr(struct rq *rq)
 609{
 610	struct task_struct *curr = rq->curr;
 611	int cpu;
 612
 613	lockdep_assert_held(&rq->lock);
 614
 615	if (test_tsk_need_resched(curr))
 616		return;
 617
 618	cpu = cpu_of(rq);
 619
 620	if (cpu == smp_processor_id()) {
 621		set_tsk_need_resched(curr);
 622		set_preempt_need_resched();
 623		return;
 624	}
 625
 626	if (set_nr_and_not_polling(curr))
 627		smp_send_reschedule(cpu);
 628	else
 629		trace_sched_wake_idle_without_ipi(cpu);
 630}
 631
 632void resched_cpu(int cpu)
 633{
 634	struct rq *rq = cpu_rq(cpu);
 635	unsigned long flags;
 636
 637	raw_spin_lock_irqsave(&rq->lock, flags);
 638	if (cpu_online(cpu) || cpu == smp_processor_id())
 639		resched_curr(rq);
 640	raw_spin_unlock_irqrestore(&rq->lock, flags);
 641}
 642
 643#ifdef CONFIG_SMP
 644#ifdef CONFIG_NO_HZ_COMMON
 645/*
 646 * In the semi idle case, use the nearest busy CPU for migrating timers
 647 * from an idle CPU.  This is good for power-savings.
 648 *
 649 * We don't do similar optimization for completely idle system, as
 650 * selecting an idle CPU will add more delays to the timers than intended
 651 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 652 */
 653int get_nohz_timer_target(void)
 654{
 655	int i, cpu = smp_processor_id(), default_cpu = -1;
 656	struct sched_domain *sd;
 657
 658	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
 659		if (!idle_cpu(cpu))
 660			return cpu;
 661		default_cpu = cpu;
 662	}
 663
 664	rcu_read_lock();
 665	for_each_domain(cpu, sd) {
 666		for_each_cpu_and(i, sched_domain_span(sd),
 667			housekeeping_cpumask(HK_FLAG_TIMER)) {
 668			if (cpu == i)
 669				continue;
 670
 671			if (!idle_cpu(i)) {
 672				cpu = i;
 673				goto unlock;
 674			}
 675		}
 676	}
 677
 678	if (default_cpu == -1)
 679		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 680	cpu = default_cpu;
 681unlock:
 682	rcu_read_unlock();
 683	return cpu;
 684}
 685
 686/*
 687 * When add_timer_on() enqueues a timer into the timer wheel of an
 688 * idle CPU then this timer might expire before the next timer event
 689 * which is scheduled to wake up that CPU. In case of a completely
 690 * idle system the next event might even be infinite time into the
 691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 692 * leaves the inner idle loop so the newly added timer is taken into
 693 * account when the CPU goes back to idle and evaluates the timer
 694 * wheel for the next timer event.
 695 */
 696static void wake_up_idle_cpu(int cpu)
 697{
 698	struct rq *rq = cpu_rq(cpu);
 699
 700	if (cpu == smp_processor_id())
 701		return;
 702
 703	if (set_nr_and_not_polling(rq->idle))
 704		smp_send_reschedule(cpu);
 705	else
 706		trace_sched_wake_idle_without_ipi(cpu);
 707}
 708
 709static bool wake_up_full_nohz_cpu(int cpu)
 710{
 711	/*
 712	 * We just need the target to call irq_exit() and re-evaluate
 713	 * the next tick. The nohz full kick at least implies that.
 714	 * If needed we can still optimize that later with an
 715	 * empty IRQ.
 716	 */
 717	if (cpu_is_offline(cpu))
 718		return true;  /* Don't try to wake offline CPUs. */
 719	if (tick_nohz_full_cpu(cpu)) {
 720		if (cpu != smp_processor_id() ||
 721		    tick_nohz_tick_stopped())
 722			tick_nohz_full_kick_cpu(cpu);
 723		return true;
 724	}
 725
 726	return false;
 727}
 728
 729/*
 730 * Wake up the specified CPU.  If the CPU is going offline, it is the
 731 * caller's responsibility to deal with the lost wakeup, for example,
 732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 733 */
 734void wake_up_nohz_cpu(int cpu)
 735{
 736	if (!wake_up_full_nohz_cpu(cpu))
 737		wake_up_idle_cpu(cpu);
 738}
 739
 740static void nohz_csd_func(void *info)
 741{
 742	struct rq *rq = info;
 743	int cpu = cpu_of(rq);
 744	unsigned int flags;
 
 
 
 
 745
 746	/*
 747	 * Release the rq::nohz_csd.
 
 748	 */
 749	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 750	WARN_ON(!(flags & NOHZ_KICK_MASK));
 
 
 
 751
 752	rq->idle_balance = idle_cpu(cpu);
 753	if (rq->idle_balance && !need_resched()) {
 754		rq->nohz_idle_balance = flags;
 755		raise_softirq_irqoff(SCHED_SOFTIRQ);
 756	}
 757}
 758
 759#endif /* CONFIG_NO_HZ_COMMON */
 760
 761#ifdef CONFIG_NO_HZ_FULL
 762bool sched_can_stop_tick(struct rq *rq)
 763{
 764	int fifo_nr_running;
 765
 766	/* Deadline tasks, even if single, need the tick */
 767	if (rq->dl.dl_nr_running)
 768		return false;
 769
 770	/*
 771	 * If there are more than one RR tasks, we need the tick to effect the
 772	 * actual RR behaviour.
 773	 */
 774	if (rq->rt.rr_nr_running) {
 775		if (rq->rt.rr_nr_running == 1)
 776			return true;
 777		else
 778			return false;
 779	}
 780
 781	/*
 782	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 783	 * forced preemption between FIFO tasks.
 784	 */
 785	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 786	if (fifo_nr_running)
 787		return true;
 788
 789	/*
 790	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 791	 * if there's more than one we need the tick for involuntary
 792	 * preemption.
 793	 */
 794	if (rq->nr_running > 1)
 795		return false;
 796
 797	return true;
 798}
 799#endif /* CONFIG_NO_HZ_FULL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800#endif /* CONFIG_SMP */
 801
 802#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 803			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 804/*
 805 * Iterate task_group tree rooted at *from, calling @down when first entering a
 806 * node and @up when leaving it for the final time.
 807 *
 808 * Caller must hold rcu_lock or sufficient equivalent.
 809 */
 810int walk_tg_tree_from(struct task_group *from,
 811			     tg_visitor down, tg_visitor up, void *data)
 812{
 813	struct task_group *parent, *child;
 814	int ret;
 815
 816	parent = from;
 817
 818down:
 819	ret = (*down)(parent, data);
 820	if (ret)
 821		goto out;
 822	list_for_each_entry_rcu(child, &parent->children, siblings) {
 823		parent = child;
 824		goto down;
 825
 826up:
 827		continue;
 828	}
 829	ret = (*up)(parent, data);
 830	if (ret || parent == from)
 831		goto out;
 832
 833	child = parent;
 834	parent = parent->parent;
 835	if (parent)
 836		goto up;
 837out:
 838	return ret;
 839}
 840
 841int tg_nop(struct task_group *tg, void *data)
 842{
 843	return 0;
 844}
 845#endif
 846
 847static void set_load_weight(struct task_struct *p, bool update_load)
 848{
 849	int prio = p->static_prio - MAX_RT_PRIO;
 850	struct load_weight *load = &p->se.load;
 851
 852	/*
 853	 * SCHED_IDLE tasks get minimal weight:
 854	 */
 855	if (task_has_idle_policy(p)) {
 856		load->weight = scale_load(WEIGHT_IDLEPRIO);
 857		load->inv_weight = WMULT_IDLEPRIO;
 858		return;
 859	}
 860
 861	/*
 862	 * SCHED_OTHER tasks have to update their load when changing their
 863	 * weight
 864	 */
 865	if (update_load && p->sched_class == &fair_sched_class) {
 866		reweight_task(p, prio);
 867	} else {
 868		load->weight = scale_load(sched_prio_to_weight[prio]);
 869		load->inv_weight = sched_prio_to_wmult[prio];
 870	}
 871}
 872
 873#ifdef CONFIG_UCLAMP_TASK
 874/*
 875 * Serializes updates of utilization clamp values
 876 *
 877 * The (slow-path) user-space triggers utilization clamp value updates which
 878 * can require updates on (fast-path) scheduler's data structures used to
 879 * support enqueue/dequeue operations.
 880 * While the per-CPU rq lock protects fast-path update operations, user-space
 881 * requests are serialized using a mutex to reduce the risk of conflicting
 882 * updates or API abuses.
 883 */
 884static DEFINE_MUTEX(uclamp_mutex);
 885
 886/* Max allowed minimum utilization */
 887unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 888
 889/* Max allowed maximum utilization */
 890unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 891
 892/*
 893 * By default RT tasks run at the maximum performance point/capacity of the
 894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 895 * SCHED_CAPACITY_SCALE.
 896 *
 897 * This knob allows admins to change the default behavior when uclamp is being
 898 * used. In battery powered devices, particularly, running at the maximum
 899 * capacity and frequency will increase energy consumption and shorten the
 900 * battery life.
 901 *
 902 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 903 *
 904 * This knob will not override the system default sched_util_clamp_min defined
 905 * above.
 906 */
 907unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 908
 909/* All clamps are required to be less or equal than these values */
 910static struct uclamp_se uclamp_default[UCLAMP_CNT];
 911
 912/*
 913 * This static key is used to reduce the uclamp overhead in the fast path. It
 914 * primarily disables the call to uclamp_rq_{inc, dec}() in
 915 * enqueue/dequeue_task().
 916 *
 917 * This allows users to continue to enable uclamp in their kernel config with
 918 * minimum uclamp overhead in the fast path.
 919 *
 920 * As soon as userspace modifies any of the uclamp knobs, the static key is
 921 * enabled, since we have an actual users that make use of uclamp
 922 * functionality.
 923 *
 924 * The knobs that would enable this static key are:
 925 *
 926 *   * A task modifying its uclamp value with sched_setattr().
 927 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 928 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 929 */
 930DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 931
 932/* Integer rounded range for each bucket */
 933#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 934
 935#define for_each_clamp_id(clamp_id) \
 936	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 937
 938static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 939{
 940	return clamp_value / UCLAMP_BUCKET_DELTA;
 
 
 
 941}
 942
 943static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
 944{
 945	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
 
 
 
 946}
 947
 948static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 949{
 950	if (clamp_id == UCLAMP_MIN)
 951		return 0;
 952	return SCHED_CAPACITY_SCALE;
 953}
 954
 955static inline void uclamp_se_set(struct uclamp_se *uc_se,
 956				 unsigned int value, bool user_defined)
 957{
 958	uc_se->value = value;
 959	uc_se->bucket_id = uclamp_bucket_id(value);
 960	uc_se->user_defined = user_defined;
 961}
 962
 963static inline unsigned int
 964uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 965		  unsigned int clamp_value)
 966{
 967	/*
 968	 * Avoid blocked utilization pushing up the frequency when we go
 969	 * idle (which drops the max-clamp) by retaining the last known
 970	 * max-clamp.
 971	 */
 972	if (clamp_id == UCLAMP_MAX) {
 973		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 974		return clamp_value;
 975	}
 976
 977	return uclamp_none(UCLAMP_MIN);
 978}
 979
 980static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 981				     unsigned int clamp_value)
 982{
 983	/* Reset max-clamp retention only on idle exit */
 984	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 985		return;
 986
 987	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 988}
 989
 990static inline
 991unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 992				   unsigned int clamp_value)
 993{
 994	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 995	int bucket_id = UCLAMP_BUCKETS - 1;
 996
 997	/*
 998	 * Since both min and max clamps are max aggregated, find the
 999	 * top most bucket with tasks in.
1000	 */
1001	for ( ; bucket_id >= 0; bucket_id--) {
1002		if (!bucket[bucket_id].tasks)
1003			continue;
1004		return bucket[bucket_id].value;
1005	}
1006
1007	/* No tasks -- default clamp values */
1008	return uclamp_idle_value(rq, clamp_id, clamp_value);
1009}
1010
1011static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1012{
1013	unsigned int default_util_min;
1014	struct uclamp_se *uc_se;
1015
1016	lockdep_assert_held(&p->pi_lock);
1017
1018	uc_se = &p->uclamp_req[UCLAMP_MIN];
1019
1020	/* Only sync if user didn't override the default */
1021	if (uc_se->user_defined)
1022		return;
1023
1024	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1025	uclamp_se_set(uc_se, default_util_min, false);
1026}
1027
1028static void uclamp_update_util_min_rt_default(struct task_struct *p)
1029{
1030	struct rq_flags rf;
1031	struct rq *rq;
1032
1033	if (!rt_task(p))
1034		return;
1035
1036	/* Protect updates to p->uclamp_* */
1037	rq = task_rq_lock(p, &rf);
1038	__uclamp_update_util_min_rt_default(p);
1039	task_rq_unlock(rq, p, &rf);
1040}
1041
1042static void uclamp_sync_util_min_rt_default(void)
1043{
1044	struct task_struct *g, *p;
1045
1046	/*
1047	 * copy_process()			sysctl_uclamp
1048	 *					  uclamp_min_rt = X;
1049	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1050	 *   // link thread			  smp_mb__after_spinlock()
1051	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1052	 *   sched_post_fork()			  for_each_process_thread()
1053	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1054	 *
1055	 * Ensures that either sched_post_fork() will observe the new
1056	 * uclamp_min_rt or for_each_process_thread() will observe the new
1057	 * task.
1058	 */
1059	read_lock(&tasklist_lock);
1060	smp_mb__after_spinlock();
1061	read_unlock(&tasklist_lock);
1062
1063	rcu_read_lock();
1064	for_each_process_thread(g, p)
1065		uclamp_update_util_min_rt_default(p);
1066	rcu_read_unlock();
1067}
1068
1069static inline struct uclamp_se
1070uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1071{
1072	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1073#ifdef CONFIG_UCLAMP_TASK_GROUP
1074	struct uclamp_se uc_max;
1075
1076	/*
1077	 * Tasks in autogroups or root task group will be
1078	 * restricted by system defaults.
1079	 */
1080	if (task_group_is_autogroup(task_group(p)))
1081		return uc_req;
1082	if (task_group(p) == &root_task_group)
1083		return uc_req;
1084
1085	uc_max = task_group(p)->uclamp[clamp_id];
1086	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1087		return uc_max;
1088#endif
1089
1090	return uc_req;
1091}
1092
1093/*
1094 * The effective clamp bucket index of a task depends on, by increasing
1095 * priority:
1096 * - the task specific clamp value, when explicitly requested from userspace
1097 * - the task group effective clamp value, for tasks not either in the root
1098 *   group or in an autogroup
1099 * - the system default clamp value, defined by the sysadmin
1100 */
1101static inline struct uclamp_se
1102uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1103{
1104	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1105	struct uclamp_se uc_max = uclamp_default[clamp_id];
1106
1107	/* System default restrictions always apply */
1108	if (unlikely(uc_req.value > uc_max.value))
1109		return uc_max;
1110
1111	return uc_req;
1112}
1113
1114unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1115{
1116	struct uclamp_se uc_eff;
1117
1118	/* Task currently refcounted: use back-annotated (effective) value */
1119	if (p->uclamp[clamp_id].active)
1120		return (unsigned long)p->uclamp[clamp_id].value;
1121
1122	uc_eff = uclamp_eff_get(p, clamp_id);
1123
1124	return (unsigned long)uc_eff.value;
1125}
1126
1127/*
1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130 * updates the rq's clamp value if required.
1131 *
1132 * Tasks can have a task-specific value requested from user-space, track
1133 * within each bucket the maximum value for tasks refcounted in it.
1134 * This "local max aggregation" allows to track the exact "requested" value
1135 * for each bucket when all its RUNNABLE tasks require the same clamp.
1136 */
1137static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1138				    enum uclamp_id clamp_id)
1139{
1140	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1141	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1142	struct uclamp_bucket *bucket;
1143
1144	lockdep_assert_held(&rq->lock);
1145
1146	/* Update task effective clamp */
1147	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1148
1149	bucket = &uc_rq->bucket[uc_se->bucket_id];
1150	bucket->tasks++;
1151	uc_se->active = true;
1152
1153	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1154
1155	/*
1156	 * Local max aggregation: rq buckets always track the max
1157	 * "requested" clamp value of its RUNNABLE tasks.
1158	 */
1159	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1160		bucket->value = uc_se->value;
1161
1162	if (uc_se->value > READ_ONCE(uc_rq->value))
1163		WRITE_ONCE(uc_rq->value, uc_se->value);
1164}
1165
1166/*
1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168 * is released. If this is the last task reference counting the rq's max
1169 * active clamp value, then the rq's clamp value is updated.
1170 *
1171 * Both refcounted tasks and rq's cached clamp values are expected to be
1172 * always valid. If it's detected they are not, as defensive programming,
1173 * enforce the expected state and warn.
1174 */
1175static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1176				    enum uclamp_id clamp_id)
1177{
1178	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1179	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1180	struct uclamp_bucket *bucket;
1181	unsigned int bkt_clamp;
1182	unsigned int rq_clamp;
1183
1184	lockdep_assert_held(&rq->lock);
1185
1186	/*
1187	 * If sched_uclamp_used was enabled after task @p was enqueued,
1188	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1189	 *
1190	 * In this case the uc_se->active flag should be false since no uclamp
1191	 * accounting was performed at enqueue time and we can just return
1192	 * here.
 
1193	 *
1194	 * Need to be careful of the following enqeueue/dequeue ordering
1195	 * problem too
1196	 *
1197	 *	enqueue(taskA)
1198	 *	// sched_uclamp_used gets enabled
1199	 *	enqueue(taskB)
1200	 *	dequeue(taskA)
1201	 *	// Must not decrement bukcet->tasks here
1202	 *	dequeue(taskB)
1203	 *
1204	 * where we could end up with stale data in uc_se and
1205	 * bucket[uc_se->bucket_id].
1206	 *
1207	 * The following check here eliminates the possibility of such race.
1208	 */
1209	if (unlikely(!uc_se->active))
1210		return;
1211
1212	bucket = &uc_rq->bucket[uc_se->bucket_id];
 
 
 
 
 
 
1213
1214	SCHED_WARN_ON(!bucket->tasks);
1215	if (likely(bucket->tasks))
1216		bucket->tasks--;
1217
1218	uc_se->active = false;
1219
1220	/*
1221	 * Keep "local max aggregation" simple and accept to (possibly)
1222	 * overboost some RUNNABLE tasks in the same bucket.
1223	 * The rq clamp bucket value is reset to its base value whenever
1224	 * there are no more RUNNABLE tasks refcounting it.
1225	 */
1226	if (likely(bucket->tasks))
1227		return;
1228
1229	rq_clamp = READ_ONCE(uc_rq->value);
1230	/*
1231	 * Defensive programming: this should never happen. If it happens,
1232	 * e.g. due to future modification, warn and fixup the expected value.
1233	 */
1234	SCHED_WARN_ON(bucket->value > rq_clamp);
1235	if (bucket->value >= rq_clamp) {
1236		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1237		WRITE_ONCE(uc_rq->value, bkt_clamp);
1238	}
1239}
1240
1241static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1242{
1243	enum uclamp_id clamp_id;
1244
1245	/*
1246	 * Avoid any overhead until uclamp is actually used by the userspace.
1247	 *
1248	 * The condition is constructed such that a NOP is generated when
1249	 * sched_uclamp_used is disabled.
1250	 */
1251	if (!static_branch_unlikely(&sched_uclamp_used))
1252		return;
1253
1254	if (unlikely(!p->sched_class->uclamp_enabled))
1255		return;
1256
1257	for_each_clamp_id(clamp_id)
1258		uclamp_rq_inc_id(rq, p, clamp_id);
1259
1260	/* Reset clamp idle holding when there is one RUNNABLE task */
1261	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1262		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1263}
1264
1265static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1266{
1267	enum uclamp_id clamp_id;
1268
1269	/*
1270	 * Avoid any overhead until uclamp is actually used by the userspace.
1271	 *
1272	 * The condition is constructed such that a NOP is generated when
1273	 * sched_uclamp_used is disabled.
1274	 */
1275	if (!static_branch_unlikely(&sched_uclamp_used))
1276		return;
1277
1278	if (unlikely(!p->sched_class->uclamp_enabled))
1279		return;
1280
1281	for_each_clamp_id(clamp_id)
1282		uclamp_rq_dec_id(rq, p, clamp_id);
1283}
1284
1285static inline void
1286uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1287{
1288	struct rq_flags rf;
1289	struct rq *rq;
1290
1291	/*
1292	 * Lock the task and the rq where the task is (or was) queued.
1293	 *
1294	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295	 * price to pay to safely serialize util_{min,max} updates with
1296	 * enqueues, dequeues and migration operations.
1297	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1298	 */
1299	rq = task_rq_lock(p, &rf);
1300
1301	/*
1302	 * Setting the clamp bucket is serialized by task_rq_lock().
1303	 * If the task is not yet RUNNABLE and its task_struct is not
1304	 * affecting a valid clamp bucket, the next time it's enqueued,
1305	 * it will already see the updated clamp bucket value.
1306	 */
1307	if (p->uclamp[clamp_id].active) {
1308		uclamp_rq_dec_id(rq, p, clamp_id);
1309		uclamp_rq_inc_id(rq, p, clamp_id);
1310	}
1311
1312	task_rq_unlock(rq, p, &rf);
1313}
1314
1315#ifdef CONFIG_UCLAMP_TASK_GROUP
1316static inline void
1317uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1318			   unsigned int clamps)
1319{
1320	enum uclamp_id clamp_id;
1321	struct css_task_iter it;
1322	struct task_struct *p;
1323
1324	css_task_iter_start(css, 0, &it);
1325	while ((p = css_task_iter_next(&it))) {
1326		for_each_clamp_id(clamp_id) {
1327			if ((0x1 << clamp_id) & clamps)
1328				uclamp_update_active(p, clamp_id);
1329		}
1330	}
1331	css_task_iter_end(&it);
1332}
1333
1334static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1335static void uclamp_update_root_tg(void)
1336{
1337	struct task_group *tg = &root_task_group;
1338
1339	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1340		      sysctl_sched_uclamp_util_min, false);
1341	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1342		      sysctl_sched_uclamp_util_max, false);
1343
1344	rcu_read_lock();
1345	cpu_util_update_eff(&root_task_group.css);
1346	rcu_read_unlock();
1347}
1348#else
1349static void uclamp_update_root_tg(void) { }
1350#endif
1351
1352int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1353				void *buffer, size_t *lenp, loff_t *ppos)
1354{
1355	bool update_root_tg = false;
1356	int old_min, old_max, old_min_rt;
1357	int result;
1358
1359	mutex_lock(&uclamp_mutex);
1360	old_min = sysctl_sched_uclamp_util_min;
1361	old_max = sysctl_sched_uclamp_util_max;
1362	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1363
1364	result = proc_dointvec(table, write, buffer, lenp, ppos);
1365	if (result)
1366		goto undo;
1367	if (!write)
1368		goto done;
1369
1370	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1371	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1372	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1373
1374		result = -EINVAL;
1375		goto undo;
1376	}
1377
1378	if (old_min != sysctl_sched_uclamp_util_min) {
1379		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1380			      sysctl_sched_uclamp_util_min, false);
1381		update_root_tg = true;
1382	}
1383	if (old_max != sysctl_sched_uclamp_util_max) {
1384		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1385			      sysctl_sched_uclamp_util_max, false);
1386		update_root_tg = true;
1387	}
1388
1389	if (update_root_tg) {
1390		static_branch_enable(&sched_uclamp_used);
1391		uclamp_update_root_tg();
1392	}
1393
1394	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1395		static_branch_enable(&sched_uclamp_used);
1396		uclamp_sync_util_min_rt_default();
1397	}
1398
1399	/*
1400	 * We update all RUNNABLE tasks only when task groups are in use.
1401	 * Otherwise, keep it simple and do just a lazy update at each next
1402	 * task enqueue time.
1403	 */
1404
1405	goto done;
1406
1407undo:
1408	sysctl_sched_uclamp_util_min = old_min;
1409	sysctl_sched_uclamp_util_max = old_max;
1410	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1411done:
1412	mutex_unlock(&uclamp_mutex);
1413
1414	return result;
1415}
1416
1417static int uclamp_validate(struct task_struct *p,
1418			   const struct sched_attr *attr)
1419{
1420	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1421	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1422
1423	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1424		lower_bound = attr->sched_util_min;
1425	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1426		upper_bound = attr->sched_util_max;
1427
1428	if (lower_bound > upper_bound)
1429		return -EINVAL;
1430	if (upper_bound > SCHED_CAPACITY_SCALE)
1431		return -EINVAL;
1432
1433	/*
1434	 * We have valid uclamp attributes; make sure uclamp is enabled.
1435	 *
1436	 * We need to do that here, because enabling static branches is a
1437	 * blocking operation which obviously cannot be done while holding
1438	 * scheduler locks.
1439	 */
1440	static_branch_enable(&sched_uclamp_used);
1441
1442	return 0;
1443}
1444
1445static void __setscheduler_uclamp(struct task_struct *p,
1446				  const struct sched_attr *attr)
1447{
1448	enum uclamp_id clamp_id;
1449
1450	/*
1451	 * On scheduling class change, reset to default clamps for tasks
1452	 * without a task-specific value.
1453	 */
1454	for_each_clamp_id(clamp_id) {
1455		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1456
1457		/* Keep using defined clamps across class changes */
1458		if (uc_se->user_defined)
1459			continue;
1460
 
1461		/*
1462		 * RT by default have a 100% boost value that could be modified
1463		 * at runtime.
 
 
 
 
1464		 */
1465		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1466			__uclamp_update_util_min_rt_default(p);
1467		else
1468			uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1469
 
1470	}
1471
1472	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1473		return;
1474
1475	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1476		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1477			      attr->sched_util_min, true);
1478	}
1479
1480	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1481		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1482			      attr->sched_util_max, true);
1483	}
1484}
1485
1486static void uclamp_fork(struct task_struct *p)
1487{
1488	enum uclamp_id clamp_id;
1489
1490	/*
1491	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492	 * as the task is still at its early fork stages.
1493	 */
1494	for_each_clamp_id(clamp_id)
1495		p->uclamp[clamp_id].active = false;
1496
1497	if (likely(!p->sched_reset_on_fork))
1498		return;
1499
1500	for_each_clamp_id(clamp_id) {
1501		uclamp_se_set(&p->uclamp_req[clamp_id],
1502			      uclamp_none(clamp_id), false);
1503	}
1504}
1505
1506static void uclamp_post_fork(struct task_struct *p)
1507{
1508	uclamp_update_util_min_rt_default(p);
1509}
1510
1511static void __init init_uclamp_rq(struct rq *rq)
1512{
1513	enum uclamp_id clamp_id;
1514	struct uclamp_rq *uc_rq = rq->uclamp;
1515
1516	for_each_clamp_id(clamp_id) {
1517		uc_rq[clamp_id] = (struct uclamp_rq) {
1518			.value = uclamp_none(clamp_id)
1519		};
1520	}
1521
1522	rq->uclamp_flags = 0;
1523}
1524
1525static void __init init_uclamp(void)
1526{
1527	struct uclamp_se uc_max = {};
1528	enum uclamp_id clamp_id;
1529	int cpu;
1530
1531	for_each_possible_cpu(cpu)
1532		init_uclamp_rq(cpu_rq(cpu));
1533
1534	for_each_clamp_id(clamp_id) {
1535		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1536			      uclamp_none(clamp_id), false);
1537	}
1538
1539	/* System defaults allow max clamp values for both indexes */
1540	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1541	for_each_clamp_id(clamp_id) {
1542		uclamp_default[clamp_id] = uc_max;
1543#ifdef CONFIG_UCLAMP_TASK_GROUP
1544		root_task_group.uclamp_req[clamp_id] = uc_max;
1545		root_task_group.uclamp[clamp_id] = uc_max;
1546#endif
1547	}
1548}
1549
1550#else /* CONFIG_UCLAMP_TASK */
1551static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1552static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1553static inline int uclamp_validate(struct task_struct *p,
1554				  const struct sched_attr *attr)
1555{
1556	return -EOPNOTSUPP;
1557}
1558static void __setscheduler_uclamp(struct task_struct *p,
1559				  const struct sched_attr *attr) { }
1560static inline void uclamp_fork(struct task_struct *p) { }
1561static inline void uclamp_post_fork(struct task_struct *p) { }
1562static inline void init_uclamp(void) { }
1563#endif /* CONFIG_UCLAMP_TASK */
1564
1565static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1566{
1567	if (!(flags & ENQUEUE_NOCLOCK))
1568		update_rq_clock(rq);
1569
1570	if (!(flags & ENQUEUE_RESTORE)) {
1571		sched_info_queued(rq, p);
1572		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1573	}
1574
1575	uclamp_rq_inc(rq, p);
1576	p->sched_class->enqueue_task(rq, p, flags);
1577}
1578
1579static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1580{
1581	if (!(flags & DEQUEUE_NOCLOCK))
1582		update_rq_clock(rq);
1583
1584	if (!(flags & DEQUEUE_SAVE)) {
1585		sched_info_dequeued(rq, p);
1586		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1587	}
1588
1589	uclamp_rq_dec(rq, p);
1590	p->sched_class->dequeue_task(rq, p, flags);
1591}
1592
1593void activate_task(struct rq *rq, struct task_struct *p, int flags)
1594{
1595	enqueue_task(rq, p, flags);
1596
1597	p->on_rq = TASK_ON_RQ_QUEUED;
1598}
1599
1600void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1601{
1602	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1603
1604	dequeue_task(rq, p, flags);
1605}
1606
1607/*
1608 * __normal_prio - return the priority that is based on the static prio
1609 */
1610static inline int __normal_prio(struct task_struct *p)
1611{
1612	return p->static_prio;
1613}
1614
1615/*
1616 * Calculate the expected normal priority: i.e. priority
1617 * without taking RT-inheritance into account. Might be
1618 * boosted by interactivity modifiers. Changes upon fork,
1619 * setprio syscalls, and whenever the interactivity
1620 * estimator recalculates.
1621 */
1622static inline int normal_prio(struct task_struct *p)
1623{
1624	int prio;
1625
1626	if (task_has_dl_policy(p))
1627		prio = MAX_DL_PRIO-1;
1628	else if (task_has_rt_policy(p))
1629		prio = MAX_RT_PRIO-1 - p->rt_priority;
1630	else
1631		prio = __normal_prio(p);
1632	return prio;
1633}
1634
1635/*
1636 * Calculate the current priority, i.e. the priority
1637 * taken into account by the scheduler. This value might
1638 * be boosted by RT tasks, or might be boosted by
1639 * interactivity modifiers. Will be RT if the task got
1640 * RT-boosted. If not then it returns p->normal_prio.
1641 */
1642static int effective_prio(struct task_struct *p)
1643{
1644	p->normal_prio = normal_prio(p);
1645	/*
1646	 * If we are RT tasks or we were boosted to RT priority,
1647	 * keep the priority unchanged. Otherwise, update priority
1648	 * to the normal priority:
1649	 */
1650	if (!rt_prio(p->prio))
1651		return p->normal_prio;
1652	return p->prio;
1653}
1654
1655/**
1656 * task_curr - is this task currently executing on a CPU?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if the task is currently executing. 0 otherwise.
1660 */
1661inline int task_curr(const struct task_struct *p)
1662{
1663	return cpu_curr(task_cpu(p)) == p;
1664}
1665
1666/*
1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668 * use the balance_callback list if you want balancing.
1669 *
1670 * this means any call to check_class_changed() must be followed by a call to
1671 * balance_callback().
1672 */
1673static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1674				       const struct sched_class *prev_class,
1675				       int oldprio)
1676{
1677	if (prev_class != p->sched_class) {
1678		if (prev_class->switched_from)
1679			prev_class->switched_from(rq, p);
1680
1681		p->sched_class->switched_to(rq, p);
1682	} else if (oldprio != p->prio || dl_task(p))
1683		p->sched_class->prio_changed(rq, p, oldprio);
1684}
1685
1686void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1687{
1688	if (p->sched_class == rq->curr->sched_class)
 
 
1689		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1690	else if (p->sched_class > rq->curr->sched_class)
1691		resched_curr(rq);
 
 
 
 
 
 
 
 
1692
1693	/*
1694	 * A queue event has occurred, and we're going to schedule.  In
1695	 * this case, we can save a useless back to back clock update.
1696	 */
1697	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1698		rq_clock_skip_update(rq);
1699}
1700
1701#ifdef CONFIG_SMP
1702
1703/*
1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705 * __set_cpus_allowed_ptr() and select_fallback_rq().
1706 */
1707static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1708{
1709	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1710		return false;
1711
1712	if (is_per_cpu_kthread(p))
1713		return cpu_online(cpu);
1714
1715	return cpu_active(cpu);
1716}
1717
1718/*
1719 * This is how migration works:
1720 *
1721 * 1) we invoke migration_cpu_stop() on the target CPU using
1722 *    stop_one_cpu().
1723 * 2) stopper starts to run (implicitly forcing the migrated thread
1724 *    off the CPU)
1725 * 3) it checks whether the migrated task is still in the wrong runqueue.
1726 * 4) if it's in the wrong runqueue then the migration thread removes
1727 *    it and puts it into the right queue.
1728 * 5) stopper completes and stop_one_cpu() returns and the migration
1729 *    is done.
1730 */
1731
1732/*
1733 * move_queued_task - move a queued task to new rq.
1734 *
1735 * Returns (locked) new rq. Old rq's lock is released.
1736 */
1737static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1738				   struct task_struct *p, int new_cpu)
1739{
1740	lockdep_assert_held(&rq->lock);
1741
1742	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
 
1743	set_task_cpu(p, new_cpu);
1744	rq_unlock(rq, rf);
1745
1746	rq = cpu_rq(new_cpu);
1747
1748	rq_lock(rq, rf);
1749	BUG_ON(task_cpu(p) != new_cpu);
1750	activate_task(rq, p, 0);
 
1751	check_preempt_curr(rq, p, 0);
1752
1753	return rq;
1754}
1755
1756struct migration_arg {
1757	struct task_struct *task;
1758	int dest_cpu;
1759};
1760
1761/*
1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763 * this because either it can't run here any more (set_cpus_allowed()
1764 * away from this CPU, or CPU going down), or because we're
1765 * attempting to rebalance this task on exec (sched_exec).
1766 *
1767 * So we race with normal scheduler movements, but that's OK, as long
1768 * as the task is no longer on this CPU.
1769 */
1770static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1771				 struct task_struct *p, int dest_cpu)
1772{
 
 
 
1773	/* Affinity changed (again). */
1774	if (!is_cpu_allowed(p, dest_cpu))
1775		return rq;
1776
1777	update_rq_clock(rq);
1778	rq = move_queued_task(rq, rf, p, dest_cpu);
1779
1780	return rq;
1781}
1782
1783/*
1784 * migration_cpu_stop - this will be executed by a highprio stopper thread
1785 * and performs thread migration by bumping thread off CPU then
1786 * 'pushing' onto another runqueue.
1787 */
1788static int migration_cpu_stop(void *data)
1789{
1790	struct migration_arg *arg = data;
1791	struct task_struct *p = arg->task;
1792	struct rq *rq = this_rq();
1793	struct rq_flags rf;
1794
1795	/*
1796	 * The original target CPU might have gone down and we might
1797	 * be on another CPU but it doesn't matter.
1798	 */
1799	local_irq_disable();
1800	/*
1801	 * We need to explicitly wake pending tasks before running
1802	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1803	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1804	 */
1805	flush_smp_call_function_from_idle();
1806
1807	raw_spin_lock(&p->pi_lock);
1808	rq_lock(rq, &rf);
1809	/*
1810	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1811	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812	 * we're holding p->pi_lock.
1813	 */
1814	if (task_rq(p) == rq) {
1815		if (task_on_rq_queued(p))
1816			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1817		else
1818			p->wake_cpu = arg->dest_cpu;
1819	}
1820	rq_unlock(rq, &rf);
1821	raw_spin_unlock(&p->pi_lock);
1822
1823	local_irq_enable();
1824	return 0;
1825}
1826
1827/*
1828 * sched_class::set_cpus_allowed must do the below, but is not required to
1829 * actually call this function.
1830 */
1831void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1832{
1833	cpumask_copy(&p->cpus_mask, new_mask);
1834	p->nr_cpus_allowed = cpumask_weight(new_mask);
1835}
1836
1837void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1838{
1839	struct rq *rq = task_rq(p);
1840	bool queued, running;
1841
1842	lockdep_assert_held(&p->pi_lock);
1843
1844	queued = task_on_rq_queued(p);
1845	running = task_current(rq, p);
1846
1847	if (queued) {
1848		/*
1849		 * Because __kthread_bind() calls this on blocked tasks without
1850		 * holding rq->lock.
1851		 */
1852		lockdep_assert_held(&rq->lock);
1853		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1854	}
1855	if (running)
1856		put_prev_task(rq, p);
1857
1858	p->sched_class->set_cpus_allowed(p, new_mask);
1859
 
 
1860	if (queued)
1861		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1862	if (running)
1863		set_next_task(rq, p);
1864}
1865
1866/*
1867 * Change a given task's CPU affinity. Migrate the thread to a
1868 * proper CPU and schedule it away if the CPU it's executing on
1869 * is removed from the allowed bitmask.
1870 *
1871 * NOTE: the caller must have a valid reference to the task, the
1872 * task must not exit() & deallocate itself prematurely. The
1873 * call is not atomic; no spinlocks may be held.
1874 */
1875static int __set_cpus_allowed_ptr(struct task_struct *p,
1876				  const struct cpumask *new_mask, bool check)
1877{
1878	const struct cpumask *cpu_valid_mask = cpu_active_mask;
 
1879	unsigned int dest_cpu;
1880	struct rq_flags rf;
1881	struct rq *rq;
1882	int ret = 0;
1883
1884	rq = task_rq_lock(p, &rf);
1885	update_rq_clock(rq);
1886
1887	if (p->flags & PF_KTHREAD) {
1888		/*
1889		 * Kernel threads are allowed on online && !active CPUs
1890		 */
1891		cpu_valid_mask = cpu_online_mask;
1892	}
1893
1894	/*
1895	 * Must re-check here, to close a race against __kthread_bind(),
1896	 * sched_setaffinity() is not guaranteed to observe the flag.
1897	 */
1898	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1899		ret = -EINVAL;
1900		goto out;
1901	}
1902
1903	if (cpumask_equal(&p->cpus_mask, new_mask))
1904		goto out;
1905
1906	/*
1907	 * Picking a ~random cpu helps in cases where we are changing affinity
1908	 * for groups of tasks (ie. cpuset), so that load balancing is not
1909	 * immediately required to distribute the tasks within their new mask.
1910	 */
1911	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1912	if (dest_cpu >= nr_cpu_ids) {
1913		ret = -EINVAL;
1914		goto out;
1915	}
1916
1917	do_set_cpus_allowed(p, new_mask);
1918
1919	if (p->flags & PF_KTHREAD) {
1920		/*
1921		 * For kernel threads that do indeed end up on online &&
1922		 * !active we want to ensure they are strict per-CPU threads.
1923		 */
1924		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1925			!cpumask_intersects(new_mask, cpu_active_mask) &&
1926			p->nr_cpus_allowed != 1);
1927	}
1928
1929	/* Can the task run on the task's current CPU? If so, we're done */
1930	if (cpumask_test_cpu(task_cpu(p), new_mask))
1931		goto out;
1932
 
1933	if (task_running(rq, p) || p->state == TASK_WAKING) {
1934		struct migration_arg arg = { p, dest_cpu };
1935		/* Need help from migration thread: drop lock and wait. */
1936		task_rq_unlock(rq, p, &rf);
1937		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
 
1938		return 0;
1939	} else if (task_on_rq_queued(p)) {
1940		/*
1941		 * OK, since we're going to drop the lock immediately
1942		 * afterwards anyway.
1943		 */
1944		rq = move_queued_task(rq, &rf, p, dest_cpu);
 
 
1945	}
1946out:
1947	task_rq_unlock(rq, p, &rf);
1948
1949	return ret;
1950}
1951
1952int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1953{
1954	return __set_cpus_allowed_ptr(p, new_mask, false);
1955}
1956EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1957
1958void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959{
1960#ifdef CONFIG_SCHED_DEBUG
1961	/*
1962	 * We should never call set_task_cpu() on a blocked task,
1963	 * ttwu() will sort out the placement.
1964	 */
1965	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1966			!p->on_rq);
1967
1968	/*
1969	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971	 * time relying on p->on_rq.
1972	 */
1973	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1974		     p->sched_class == &fair_sched_class &&
1975		     (p->on_rq && !task_on_rq_migrating(p)));
1976
1977#ifdef CONFIG_LOCKDEP
1978	/*
1979	 * The caller should hold either p->pi_lock or rq->lock, when changing
1980	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1981	 *
1982	 * sched_move_task() holds both and thus holding either pins the cgroup,
1983	 * see task_group().
1984	 *
1985	 * Furthermore, all task_rq users should acquire both locks, see
1986	 * task_rq_lock().
1987	 */
1988	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1989				      lockdep_is_held(&task_rq(p)->lock)));
1990#endif
1991	/*
1992	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1993	 */
1994	WARN_ON_ONCE(!cpu_online(new_cpu));
1995#endif
1996
1997	trace_sched_migrate_task(p, new_cpu);
1998
1999	if (task_cpu(p) != new_cpu) {
2000		if (p->sched_class->migrate_task_rq)
2001			p->sched_class->migrate_task_rq(p, new_cpu);
2002		p->se.nr_migrations++;
2003		rseq_migrate(p);
2004		perf_event_task_migrate(p);
2005	}
2006
2007	__set_task_cpu(p, new_cpu);
2008}
2009
2010#ifdef CONFIG_NUMA_BALANCING
2011static void __migrate_swap_task(struct task_struct *p, int cpu)
2012{
2013	if (task_on_rq_queued(p)) {
2014		struct rq *src_rq, *dst_rq;
2015		struct rq_flags srf, drf;
2016
2017		src_rq = task_rq(p);
2018		dst_rq = cpu_rq(cpu);
2019
2020		rq_pin_lock(src_rq, &srf);
2021		rq_pin_lock(dst_rq, &drf);
2022
2023		deactivate_task(src_rq, p, 0);
2024		set_task_cpu(p, cpu);
2025		activate_task(dst_rq, p, 0);
 
2026		check_preempt_curr(dst_rq, p, 0);
2027
2028		rq_unpin_lock(dst_rq, &drf);
2029		rq_unpin_lock(src_rq, &srf);
2030
2031	} else {
2032		/*
2033		 * Task isn't running anymore; make it appear like we migrated
2034		 * it before it went to sleep. This means on wakeup we make the
2035		 * previous CPU our target instead of where it really is.
2036		 */
2037		p->wake_cpu = cpu;
2038	}
2039}
2040
2041struct migration_swap_arg {
2042	struct task_struct *src_task, *dst_task;
2043	int src_cpu, dst_cpu;
2044};
2045
2046static int migrate_swap_stop(void *data)
2047{
2048	struct migration_swap_arg *arg = data;
2049	struct rq *src_rq, *dst_rq;
2050	int ret = -EAGAIN;
2051
2052	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2053		return -EAGAIN;
2054
2055	src_rq = cpu_rq(arg->src_cpu);
2056	dst_rq = cpu_rq(arg->dst_cpu);
2057
2058	double_raw_lock(&arg->src_task->pi_lock,
2059			&arg->dst_task->pi_lock);
2060	double_rq_lock(src_rq, dst_rq);
2061
2062	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2063		goto unlock;
2064
2065	if (task_cpu(arg->src_task) != arg->src_cpu)
2066		goto unlock;
2067
2068	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2069		goto unlock;
2070
2071	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2072		goto unlock;
2073
2074	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2075	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2076
2077	ret = 0;
2078
2079unlock:
2080	double_rq_unlock(src_rq, dst_rq);
2081	raw_spin_unlock(&arg->dst_task->pi_lock);
2082	raw_spin_unlock(&arg->src_task->pi_lock);
2083
2084	return ret;
2085}
2086
2087/*
2088 * Cross migrate two tasks
2089 */
2090int migrate_swap(struct task_struct *cur, struct task_struct *p,
2091		int target_cpu, int curr_cpu)
2092{
2093	struct migration_swap_arg arg;
2094	int ret = -EINVAL;
2095
2096	arg = (struct migration_swap_arg){
2097		.src_task = cur,
2098		.src_cpu = curr_cpu,
2099		.dst_task = p,
2100		.dst_cpu = target_cpu,
2101	};
2102
2103	if (arg.src_cpu == arg.dst_cpu)
2104		goto out;
2105
2106	/*
2107	 * These three tests are all lockless; this is OK since all of them
2108	 * will be re-checked with proper locks held further down the line.
2109	 */
2110	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2111		goto out;
2112
2113	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2114		goto out;
2115
2116	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2117		goto out;
2118
2119	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2120	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2121
2122out:
2123	return ret;
2124}
2125#endif /* CONFIG_NUMA_BALANCING */
2126
2127/*
2128 * wait_task_inactive - wait for a thread to unschedule.
2129 *
2130 * If @match_state is nonzero, it's the @p->state value just checked and
2131 * not expected to change.  If it changes, i.e. @p might have woken up,
2132 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2133 * we return a positive number (its total switch count).  If a second call
2134 * a short while later returns the same number, the caller can be sure that
2135 * @p has remained unscheduled the whole time.
2136 *
2137 * The caller must ensure that the task *will* unschedule sometime soon,
2138 * else this function might spin for a *long* time. This function can't
2139 * be called with interrupts off, or it may introduce deadlock with
2140 * smp_call_function() if an IPI is sent by the same process we are
2141 * waiting to become inactive.
2142 */
2143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144{
 
2145	int running, queued;
2146	struct rq_flags rf;
2147	unsigned long ncsw;
2148	struct rq *rq;
2149
2150	for (;;) {
2151		/*
2152		 * We do the initial early heuristics without holding
2153		 * any task-queue locks at all. We'll only try to get
2154		 * the runqueue lock when things look like they will
2155		 * work out!
2156		 */
2157		rq = task_rq(p);
2158
2159		/*
2160		 * If the task is actively running on another CPU
2161		 * still, just relax and busy-wait without holding
2162		 * any locks.
2163		 *
2164		 * NOTE! Since we don't hold any locks, it's not
2165		 * even sure that "rq" stays as the right runqueue!
2166		 * But we don't care, since "task_running()" will
2167		 * return false if the runqueue has changed and p
2168		 * is actually now running somewhere else!
2169		 */
2170		while (task_running(rq, p)) {
2171			if (match_state && unlikely(p->state != match_state))
2172				return 0;
2173			cpu_relax();
2174		}
2175
2176		/*
2177		 * Ok, time to look more closely! We need the rq
2178		 * lock now, to be *sure*. If we're wrong, we'll
2179		 * just go back and repeat.
2180		 */
2181		rq = task_rq_lock(p, &rf);
2182		trace_sched_wait_task(p);
2183		running = task_running(rq, p);
2184		queued = task_on_rq_queued(p);
2185		ncsw = 0;
2186		if (!match_state || p->state == match_state)
2187			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2188		task_rq_unlock(rq, p, &rf);
2189
2190		/*
2191		 * If it changed from the expected state, bail out now.
2192		 */
2193		if (unlikely(!ncsw))
2194			break;
2195
2196		/*
2197		 * Was it really running after all now that we
2198		 * checked with the proper locks actually held?
2199		 *
2200		 * Oops. Go back and try again..
2201		 */
2202		if (unlikely(running)) {
2203			cpu_relax();
2204			continue;
2205		}
2206
2207		/*
2208		 * It's not enough that it's not actively running,
2209		 * it must be off the runqueue _entirely_, and not
2210		 * preempted!
2211		 *
2212		 * So if it was still runnable (but just not actively
2213		 * running right now), it's preempted, and we should
2214		 * yield - it could be a while.
2215		 */
2216		if (unlikely(queued)) {
2217			ktime_t to = NSEC_PER_SEC / HZ;
2218
2219			set_current_state(TASK_UNINTERRUPTIBLE);
2220			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2221			continue;
2222		}
2223
2224		/*
2225		 * Ahh, all good. It wasn't running, and it wasn't
2226		 * runnable, which means that it will never become
2227		 * running in the future either. We're all done!
2228		 */
2229		break;
2230	}
2231
2232	return ncsw;
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesn't have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
2248void kick_process(struct task_struct *p)
2249{
2250	int cpu;
2251
2252	preempt_disable();
2253	cpu = task_cpu(p);
2254	if ((cpu != smp_processor_id()) && task_curr(p))
2255		smp_send_reschedule(cpu);
2256	preempt_enable();
2257}
2258EXPORT_SYMBOL_GPL(kick_process);
2259
2260/*
2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2262 *
2263 * A few notes on cpu_active vs cpu_online:
2264 *
2265 *  - cpu_active must be a subset of cpu_online
2266 *
2267 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268 *    see __set_cpus_allowed_ptr(). At this point the newly online
2269 *    CPU isn't yet part of the sched domains, and balancing will not
2270 *    see it.
2271 *
2272 *  - on CPU-down we clear cpu_active() to mask the sched domains and
2273 *    avoid the load balancer to place new tasks on the to be removed
2274 *    CPU. Existing tasks will remain running there and will be taken
2275 *    off.
2276 *
2277 * This means that fallback selection must not select !active CPUs.
2278 * And can assume that any active CPU must be online. Conversely
2279 * select_task_rq() below may allow selection of !active CPUs in order
2280 * to satisfy the above rules.
2281 */
2282static int select_fallback_rq(int cpu, struct task_struct *p)
2283{
2284	int nid = cpu_to_node(cpu);
2285	const struct cpumask *nodemask = NULL;
2286	enum { cpuset, possible, fail } state = cpuset;
2287	int dest_cpu;
2288
2289	/*
2290	 * If the node that the CPU is on has been offlined, cpu_to_node()
2291	 * will return -1. There is no CPU on the node, and we should
2292	 * select the CPU on the other node.
2293	 */
2294	if (nid != -1) {
2295		nodemask = cpumask_of_node(nid);
2296
2297		/* Look for allowed, online CPU in same node. */
2298		for_each_cpu(dest_cpu, nodemask) {
 
 
2299			if (!cpu_active(dest_cpu))
2300				continue;
2301			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2302				return dest_cpu;
2303		}
2304	}
2305
2306	for (;;) {
2307		/* Any allowed, online CPU? */
2308		for_each_cpu(dest_cpu, p->cpus_ptr) {
2309			if (!is_cpu_allowed(p, dest_cpu))
 
 
2310				continue;
2311
2312			goto out;
2313		}
2314
2315		/* No more Mr. Nice Guy. */
2316		switch (state) {
2317		case cpuset:
2318			if (IS_ENABLED(CONFIG_CPUSETS)) {
2319				cpuset_cpus_allowed_fallback(p);
2320				state = possible;
2321				break;
2322			}
2323			fallthrough;
2324		case possible:
2325			do_set_cpus_allowed(p, cpu_possible_mask);
2326			state = fail;
2327			break;
2328
2329		case fail:
2330			BUG();
2331			break;
2332		}
2333	}
2334
2335out:
2336	if (state != cpuset) {
2337		/*
2338		 * Don't tell them about moving exiting tasks or
2339		 * kernel threads (both mm NULL), since they never
2340		 * leave kernel.
2341		 */
2342		if (p->mm && printk_ratelimit()) {
2343			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344					task_pid_nr(p), p->comm, cpu);
2345		}
2346	}
2347
2348	return dest_cpu;
2349}
2350
2351/*
2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2353 */
2354static inline
2355int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2356{
2357	lockdep_assert_held(&p->pi_lock);
2358
2359	if (p->nr_cpus_allowed > 1)
2360		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2361	else
2362		cpu = cpumask_any(p->cpus_ptr);
2363
2364	/*
2365	 * In order not to call set_task_cpu() on a blocking task we need
2366	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2367	 * CPU.
2368	 *
2369	 * Since this is common to all placement strategies, this lives here.
2370	 *
2371	 * [ this allows ->select_task() to simply return task_cpu(p) and
2372	 *   not worry about this generic constraint ]
2373	 */
2374	if (unlikely(!is_cpu_allowed(p, cpu)))
 
2375		cpu = select_fallback_rq(task_cpu(p), p);
2376
2377	return cpu;
2378}
2379
2380void sched_set_stop_task(int cpu, struct task_struct *stop)
2381{
2382	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2383	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2384
2385	if (stop) {
2386		/*
2387		 * Make it appear like a SCHED_FIFO task, its something
2388		 * userspace knows about and won't get confused about.
2389		 *
2390		 * Also, it will make PI more or less work without too
2391		 * much confusion -- but then, stop work should not
2392		 * rely on PI working anyway.
2393		 */
2394		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2395
2396		stop->sched_class = &stop_sched_class;
2397	}
2398
2399	cpu_rq(cpu)->stop = stop;
2400
2401	if (old_stop) {
2402		/*
2403		 * Reset it back to a normal scheduling class so that
2404		 * it can die in pieces.
2405		 */
2406		old_stop->sched_class = &rt_sched_class;
2407	}
2408}
2409
2410#else
2411
2412static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2413					 const struct cpumask *new_mask, bool check)
2414{
2415	return set_cpus_allowed_ptr(p, new_mask);
2416}
2417
2418#endif /* CONFIG_SMP */
2419
2420static void
2421ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2422{
2423	struct rq *rq;
 
2424
2425	if (!schedstat_enabled())
2426		return;
2427
2428	rq = this_rq();
2429
2430#ifdef CONFIG_SMP
2431	if (cpu == rq->cpu) {
2432		__schedstat_inc(rq->ttwu_local);
2433		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2434	} else {
2435		struct sched_domain *sd;
2436
2437		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2438		rcu_read_lock();
2439		for_each_domain(rq->cpu, sd) {
2440			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441				__schedstat_inc(sd->ttwu_wake_remote);
2442				break;
2443			}
2444		}
2445		rcu_read_unlock();
2446	}
2447
2448	if (wake_flags & WF_MIGRATED)
2449		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
 
2450#endif /* CONFIG_SMP */
2451
2452	__schedstat_inc(rq->ttwu_count);
2453	__schedstat_inc(p->se.statistics.nr_wakeups);
2454
2455	if (wake_flags & WF_SYNC)
2456		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
 
 
 
 
 
 
 
 
 
 
 
 
2457}
2458
2459/*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
2462static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2463			   struct rq_flags *rf)
2464{
2465	check_preempt_curr(rq, p, wake_flags);
2466	p->state = TASK_RUNNING;
2467	trace_sched_wakeup(p);
2468
2469#ifdef CONFIG_SMP
2470	if (p->sched_class->task_woken) {
2471		/*
2472		 * Our task @p is fully woken up and running; so its safe to
2473		 * drop the rq->lock, hereafter rq is only used for statistics.
2474		 */
2475		rq_unpin_lock(rq, rf);
2476		p->sched_class->task_woken(rq, p);
2477		rq_repin_lock(rq, rf);
2478	}
2479
2480	if (rq->idle_stamp) {
2481		u64 delta = rq_clock(rq) - rq->idle_stamp;
2482		u64 max = 2*rq->max_idle_balance_cost;
2483
2484		update_avg(&rq->avg_idle, delta);
2485
2486		if (rq->avg_idle > max)
2487			rq->avg_idle = max;
2488
2489		rq->idle_stamp = 0;
2490	}
2491#endif
2492}
2493
2494static void
2495ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2496		 struct rq_flags *rf)
2497{
2498	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2499
2500	lockdep_assert_held(&rq->lock);
2501
 
2502	if (p->sched_contributes_to_load)
2503		rq->nr_uninterruptible--;
2504
2505#ifdef CONFIG_SMP
2506	if (wake_flags & WF_MIGRATED)
2507		en_flags |= ENQUEUE_MIGRATED;
2508#endif
2509
2510	activate_task(rq, p, en_flags);
2511	ttwu_do_wakeup(rq, p, wake_flags, rf);
2512}
2513
2514/*
2515 * Consider @p being inside a wait loop:
2516 *
2517 *   for (;;) {
2518 *      set_current_state(TASK_UNINTERRUPTIBLE);
2519 *
2520 *      if (CONDITION)
2521 *         break;
2522 *
2523 *      schedule();
2524 *   }
2525 *   __set_current_state(TASK_RUNNING);
2526 *
2527 * between set_current_state() and schedule(). In this case @p is still
2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2529 * an atomic manner.
2530 *
2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532 * then schedule() must still happen and p->state can be changed to
2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534 * need to do a full wakeup with enqueue.
2535 *
2536 * Returns: %true when the wakeup is done,
2537 *          %false otherwise.
2538 */
2539static int ttwu_runnable(struct task_struct *p, int wake_flags)
2540{
2541	struct rq_flags rf;
2542	struct rq *rq;
2543	int ret = 0;
2544
2545	rq = __task_rq_lock(p, &rf);
2546	if (task_on_rq_queued(p)) {
2547		/* check_preempt_curr() may use rq clock */
2548		update_rq_clock(rq);
2549		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2550		ret = 1;
2551	}
2552	__task_rq_unlock(rq, &rf);
2553
2554	return ret;
2555}
2556
2557#ifdef CONFIG_SMP
2558void sched_ttwu_pending(void *arg)
2559{
2560	struct llist_node *llist = arg;
2561	struct rq *rq = this_rq();
2562	struct task_struct *p, *t;
2563	struct rq_flags rf;
 
2564
2565	if (!llist)
2566		return;
2567
2568	/*
2569	 * rq::ttwu_pending racy indication of out-standing wakeups.
2570	 * Races such that false-negatives are possible, since they
2571	 * are shorter lived that false-positives would be.
2572	 */
2573	WRITE_ONCE(rq->ttwu_pending, 0);
2574
2575	rq_lock_irqsave(rq, &rf);
2576	update_rq_clock(rq);
2577
2578	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2579		if (WARN_ON_ONCE(p->on_cpu))
2580			smp_cond_load_acquire(&p->on_cpu, !VAL);
2581
2582		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2583			set_task_cpu(p, cpu_of(rq));
2584
2585		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 
 
 
2586	}
2587
2588	rq_unlock_irqrestore(rq, &rf);
 
2589}
2590
2591void send_call_function_single_ipi(int cpu)
2592{
2593	struct rq *rq = cpu_rq(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2594
2595	if (!set_nr_if_polling(rq->idle))
2596		arch_send_call_function_single_ipi(cpu);
2597	else
2598		trace_sched_wake_idle_without_ipi(cpu);
 
 
 
 
2599}
2600
2601/*
2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603 * necessary. The wakee CPU on receipt of the IPI will queue the task
2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605 * of the wakeup instead of the waker.
2606 */
2607static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2608{
2609	struct rq *rq = cpu_rq(cpu);
2610
2611	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2612
2613	WRITE_ONCE(rq->ttwu_pending, 1);
2614	__smp_call_single_queue(cpu, &p->wake_entry.llist);
 
 
2615}
2616
2617void wake_up_if_idle(int cpu)
2618{
2619	struct rq *rq = cpu_rq(cpu);
2620	struct rq_flags rf;
2621
2622	rcu_read_lock();
2623
2624	if (!is_idle_task(rcu_dereference(rq->curr)))
2625		goto out;
2626
2627	if (set_nr_if_polling(rq->idle)) {
2628		trace_sched_wake_idle_without_ipi(cpu);
2629	} else {
2630		rq_lock_irqsave(rq, &rf);
2631		if (is_idle_task(rq->curr))
2632			smp_send_reschedule(cpu);
2633		/* Else CPU is not idle, do nothing here: */
2634		rq_unlock_irqrestore(rq, &rf);
2635	}
2636
2637out:
2638	rcu_read_unlock();
2639}
2640
2641bool cpus_share_cache(int this_cpu, int that_cpu)
2642{
2643	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2644}
2645
2646static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2647{
2648	/*
2649	 * If the CPU does not share cache, then queue the task on the
2650	 * remote rqs wakelist to avoid accessing remote data.
2651	 */
2652	if (!cpus_share_cache(smp_processor_id(), cpu))
2653		return true;
2654
2655	/*
2656	 * If the task is descheduling and the only running task on the
2657	 * CPU then use the wakelist to offload the task activation to
2658	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2659	 * nr_running is checked to avoid unnecessary task stacking.
2660	 */
2661	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2662		return true;
2663
2664	return false;
2665}
2666
2667static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2668{
2669	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2670		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2671			return false;
2672
2673		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2674		__ttwu_queue_wakelist(p, cpu, wake_flags);
2675		return true;
2676	}
2677
2678	return false;
2679}
2680
2681#else /* !CONFIG_SMP */
2682
2683static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2684{
2685	return false;
2686}
2687
2688#endif /* CONFIG_SMP */
2689
2690static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2691{
2692	struct rq *rq = cpu_rq(cpu);
2693	struct rq_flags rf;
2694
2695	if (ttwu_queue_wakelist(p, cpu, wake_flags))
 
 
 
2696		return;
 
 
2697
2698	rq_lock(rq, &rf);
2699	update_rq_clock(rq);
2700	ttwu_do_activate(rq, p, wake_flags, &rf);
2701	rq_unlock(rq, &rf);
 
2702}
2703
2704/*
2705 * Notes on Program-Order guarantees on SMP systems.
2706 *
2707 *  MIGRATION
2708 *
2709 * The basic program-order guarantee on SMP systems is that when a task [t]
2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711 * execution on its new CPU [c1].
2712 *
2713 * For migration (of runnable tasks) this is provided by the following means:
2714 *
2715 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2716 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2717 *     rq(c1)->lock (if not at the same time, then in that order).
2718 *  C) LOCK of the rq(c1)->lock scheduling in task
2719 *
2720 * Release/acquire chaining guarantees that B happens after A and C after B.
2721 * Note: the CPU doing B need not be c0 or c1
 
2722 *
2723 * Example:
2724 *
2725 *   CPU0            CPU1            CPU2
2726 *
2727 *   LOCK rq(0)->lock
2728 *   sched-out X
2729 *   sched-in Y
2730 *   UNLOCK rq(0)->lock
2731 *
2732 *                                   LOCK rq(0)->lock // orders against CPU0
2733 *                                   dequeue X
2734 *                                   UNLOCK rq(0)->lock
2735 *
2736 *                                   LOCK rq(1)->lock
2737 *                                   enqueue X
2738 *                                   UNLOCK rq(1)->lock
2739 *
2740 *                   LOCK rq(1)->lock // orders against CPU2
2741 *                   sched-out Z
2742 *                   sched-in X
2743 *                   UNLOCK rq(1)->lock
2744 *
2745 *
2746 *  BLOCKING -- aka. SLEEP + WAKEUP
2747 *
2748 * For blocking we (obviously) need to provide the same guarantee as for
2749 * migration. However the means are completely different as there is no lock
2750 * chain to provide order. Instead we do:
2751 *
2752 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2753 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2754 *
2755 * Example:
2756 *
2757 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2758 *
2759 *   LOCK rq(0)->lock LOCK X->pi_lock
2760 *   dequeue X
2761 *   sched-out X
2762 *   smp_store_release(X->on_cpu, 0);
2763 *
2764 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2765 *                    X->state = WAKING
2766 *                    set_task_cpu(X,2)
2767 *
2768 *                    LOCK rq(2)->lock
2769 *                    enqueue X
2770 *                    X->state = RUNNING
2771 *                    UNLOCK rq(2)->lock
2772 *
2773 *                                          LOCK rq(2)->lock // orders against CPU1
2774 *                                          sched-out Z
2775 *                                          sched-in X
2776 *                                          UNLOCK rq(2)->lock
2777 *
2778 *                    UNLOCK X->pi_lock
2779 *   UNLOCK rq(0)->lock
2780 *
2781 *
2782 * However, for wakeups there is a second guarantee we must provide, namely we
2783 * must ensure that CONDITION=1 done by the caller can not be reordered with
2784 * accesses to the task state; see try_to_wake_up() and set_current_state().
 
 
 
 
 
 
 
2785 */
2786
2787/**
2788 * try_to_wake_up - wake up a thread
2789 * @p: the thread to be awakened
2790 * @state: the mask of task states that can be woken
2791 * @wake_flags: wake modifier flags (WF_*)
2792 *
2793 * Conceptually does:
2794 *
2795 *   If (@state & @p->state) @p->state = TASK_RUNNING.
 
 
2796 *
2797 * If the task was not queued/runnable, also place it back on a runqueue.
2798 *
2799 * This function is atomic against schedule() which would dequeue the task.
2800 *
2801 * It issues a full memory barrier before accessing @p->state, see the comment
2802 * with set_current_state().
2803 *
2804 * Uses p->pi_lock to serialize against concurrent wake-ups.
2805 *
2806 * Relies on p->pi_lock stabilizing:
2807 *  - p->sched_class
2808 *  - p->cpus_ptr
2809 *  - p->sched_task_group
2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2811 *
2812 * Tries really hard to only take one task_rq(p)->lock for performance.
2813 * Takes rq->lock in:
2814 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
2815 *  - ttwu_queue()       -- new rq, for enqueue of the task;
2816 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2817 *
2818 * As a consequence we race really badly with just about everything. See the
2819 * many memory barriers and their comments for details.
2820 *
2821 * Return: %true if @p->state changes (an actual wakeup was done),
2822 *	   %false otherwise.
2823 */
2824static int
2825try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2826{
2827	unsigned long flags;
2828	int cpu, success = 0;
2829
2830	preempt_disable();
2831	if (p == current) {
2832		/*
2833		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834		 * == smp_processor_id()'. Together this means we can special
2835		 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836		 * without taking any locks.
2837		 *
2838		 * In particular:
2839		 *  - we rely on Program-Order guarantees for all the ordering,
2840		 *  - we're serialized against set_special_state() by virtue of
2841		 *    it disabling IRQs (this allows not taking ->pi_lock).
2842		 */
2843		if (!(p->state & state))
2844			goto out;
2845
2846		success = 1;
2847		trace_sched_waking(p);
2848		p->state = TASK_RUNNING;
2849		trace_sched_wakeup(p);
2850		goto out;
2851	}
2852
2853	/*
2854	 * If we are going to wake up a thread waiting for CONDITION we
2855	 * need to ensure that CONDITION=1 done by the caller can not be
2856	 * reordered with p->state check below. This pairs with smp_store_mb()
2857	 * in set_current_state() that the waiting thread does.
2858	 */
 
2859	raw_spin_lock_irqsave(&p->pi_lock, flags);
2860	smp_mb__after_spinlock();
2861	if (!(p->state & state))
2862		goto unlock;
2863
2864	trace_sched_waking(p);
2865
2866	/* We're going to change ->state: */
2867	success = 1;
2868
2869	/*
2870	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872	 * in smp_cond_load_acquire() below.
2873	 *
2874	 * sched_ttwu_pending()			try_to_wake_up()
2875	 *   STORE p->on_rq = 1			  LOAD p->state
2876	 *   UNLOCK rq->lock
2877	 *
2878	 * __schedule() (switch to task 'p')
2879	 *   LOCK rq->lock			  smp_rmb();
2880	 *   smp_mb__after_spinlock();
2881	 *   UNLOCK rq->lock
2882	 *
2883	 * [task p]
2884	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2885	 *
2886	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887	 * __schedule().  See the comment for smp_mb__after_spinlock().
2888	 *
2889	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2890	 */
2891	smp_rmb();
2892	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2893		goto unlock;
2894
2895	if (p->in_iowait) {
2896		delayacct_blkio_end(p);
2897		atomic_dec(&task_rq(p)->nr_iowait);
2898	}
2899
2900#ifdef CONFIG_SMP
2901	/*
2902	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903	 * possible to, falsely, observe p->on_cpu == 0.
2904	 *
2905	 * One must be running (->on_cpu == 1) in order to remove oneself
2906	 * from the runqueue.
2907	 *
2908	 * __schedule() (switch to task 'p')	try_to_wake_up()
2909	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2910	 *   UNLOCK rq->lock
2911	 *
2912	 * __schedule() (put 'p' to sleep)
2913	 *   LOCK rq->lock			  smp_rmb();
2914	 *   smp_mb__after_spinlock();
2915	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2916	 *
2917	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918	 * __schedule().  See the comment for smp_mb__after_spinlock().
2919	 *
2920	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921	 * schedule()'s deactivate_task() has 'happened' and p will no longer
2922	 * care about it's own p->state. See the comment in __schedule().
2923	 */
2924	smp_acquire__after_ctrl_dep();
2925
2926	/*
2927	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928	 * == 0), which means we need to do an enqueue, change p->state to
2929	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930	 * enqueue, such as ttwu_queue_wakelist().
2931	 */
2932	p->state = TASK_WAKING;
2933
2934	/*
2935	 * If the owning (remote) CPU is still in the middle of schedule() with
2936	 * this task as prev, considering queueing p on the remote CPUs wake_list
2937	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2938	 * let the waker make forward progress. This is safe because IRQs are
2939	 * disabled and the IPI will deliver after on_cpu is cleared.
2940	 *
2941	 * Ensure we load task_cpu(p) after p->on_cpu:
2942	 *
2943	 * set_task_cpu(p, cpu);
2944	 *   STORE p->cpu = @cpu
2945	 * __schedule() (switch to task 'p')
2946	 *   LOCK rq->lock
2947	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
2948	 *   STORE p->on_cpu = 1		LOAD p->cpu
2949	 *
2950	 * to ensure we observe the correct CPU on which the task is currently
2951	 * scheduling.
2952	 */
2953	if (smp_load_acquire(&p->on_cpu) &&
2954	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2955		goto unlock;
2956
2957	/*
2958	 * If the owning (remote) CPU is still in the middle of schedule() with
2959	 * this task as prev, wait until its done referencing the task.
2960	 *
2961	 * Pairs with the smp_store_release() in finish_task().
2962	 *
2963	 * This ensures that tasks getting woken will be fully ordered against
2964	 * their previous state and preserve Program Order.
2965	 */
2966	smp_cond_load_acquire(&p->on_cpu, !VAL);
 
 
 
 
 
 
2967
2968	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2969	if (task_cpu(p) != cpu) {
2970		wake_flags |= WF_MIGRATED;
2971		psi_ttwu_dequeue(p);
2972		set_task_cpu(p, cpu);
2973	}
2974#else
2975	cpu = task_cpu(p);
2976#endif /* CONFIG_SMP */
2977
2978	ttwu_queue(p, cpu, wake_flags);
2979unlock:
 
 
 
2980	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981out:
2982	if (success)
2983		ttwu_stat(p, task_cpu(p), wake_flags);
2984	preempt_enable();
2985
2986	return success;
2987}
2988
2989/**
2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991 * @p: Process for which the function is to be invoked.
2992 * @func: Function to invoke.
2993 * @arg: Argument to function.
2994 *
2995 * If the specified task can be quickly locked into a definite state
2996 * (either sleeping or on a given runqueue), arrange to keep it in that
2997 * state while invoking @func(@arg).  This function can use ->on_rq and
2998 * task_curr() to work out what the state is, if required.  Given that
2999 * @func can be invoked with a runqueue lock held, it had better be quite
3000 * lightweight.
3001 *
3002 * Returns:
3003 *	@false if the task slipped out from under the locks.
3004 *	@true if the task was locked onto a runqueue or is sleeping.
3005 *		However, @func can override this by returning @false.
3006 */
3007bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3008{
3009	bool ret = false;
3010	struct rq_flags rf;
3011	struct rq *rq;
 
 
 
 
3012
3013	lockdep_assert_irqs_enabled();
3014	raw_spin_lock_irq(&p->pi_lock);
3015	if (p->on_rq) {
3016		rq = __task_rq_lock(p, &rf);
3017		if (task_rq(p) == rq)
3018			ret = func(p, arg);
3019		rq_unlock(rq, &rf);
3020	} else {
3021		switch (p->state) {
3022		case TASK_RUNNING:
3023		case TASK_WAKING:
3024			break;
3025		default:
3026			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3027			if (!p->on_rq)
3028				ret = func(p, arg);
3029		}
3030	}
3031	raw_spin_unlock_irq(&p->pi_lock);
3032	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3033}
3034
3035/**
3036 * wake_up_process - Wake up a specific process
3037 * @p: The process to be woken up.
3038 *
3039 * Attempt to wake up the nominated process and move it to the set of runnable
3040 * processes.
3041 *
3042 * Return: 1 if the process was woken up, 0 if it was already running.
3043 *
3044 * This function executes a full memory barrier before accessing the task state.
 
3045 */
3046int wake_up_process(struct task_struct *p)
3047{
3048	return try_to_wake_up(p, TASK_NORMAL, 0);
3049}
3050EXPORT_SYMBOL(wake_up_process);
3051
3052int wake_up_state(struct task_struct *p, unsigned int state)
3053{
3054	return try_to_wake_up(p, state, 0);
3055}
3056
3057/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3058 * Perform scheduler related setup for a newly forked process p.
3059 * p is forked by current.
3060 *
3061 * __sched_fork() is basic setup used by init_idle() too:
3062 */
3063static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3064{
3065	p->on_rq			= 0;
3066
3067	p->se.on_rq			= 0;
3068	p->se.exec_start		= 0;
3069	p->se.sum_exec_runtime		= 0;
3070	p->se.prev_sum_exec_runtime	= 0;
3071	p->se.nr_migrations		= 0;
3072	p->se.vruntime			= 0;
3073	INIT_LIST_HEAD(&p->se.group_node);
3074
3075#ifdef CONFIG_FAIR_GROUP_SCHED
3076	p->se.cfs_rq			= NULL;
3077#endif
3078
3079#ifdef CONFIG_SCHEDSTATS
3080	/* Even if schedstat is disabled, there should not be garbage */
3081	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3082#endif
3083
3084	RB_CLEAR_NODE(&p->dl.rb_node);
3085	init_dl_task_timer(&p->dl);
3086	init_dl_inactive_task_timer(&p->dl);
3087	__dl_clear_params(p);
3088
3089	INIT_LIST_HEAD(&p->rt.run_list);
3090	p->rt.timeout		= 0;
3091	p->rt.time_slice	= sched_rr_timeslice;
3092	p->rt.on_rq		= 0;
3093	p->rt.on_list		= 0;
3094
3095#ifdef CONFIG_PREEMPT_NOTIFIERS
3096	INIT_HLIST_HEAD(&p->preempt_notifiers);
3097#endif
3098
3099#ifdef CONFIG_COMPACTION
3100	p->capture_control = NULL;
3101#endif
3102	init_numa_balancing(clone_flags, p);
3103#ifdef CONFIG_SMP
3104	p->wake_entry.u_flags = CSD_TYPE_TTWU;
3105#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106}
3107
3108DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3109
3110#ifdef CONFIG_NUMA_BALANCING
3111
3112void set_numabalancing_state(bool enabled)
3113{
3114	if (enabled)
3115		static_branch_enable(&sched_numa_balancing);
3116	else
3117		static_branch_disable(&sched_numa_balancing);
3118}
3119
3120#ifdef CONFIG_PROC_SYSCTL
3121int sysctl_numa_balancing(struct ctl_table *table, int write,
3122			  void *buffer, size_t *lenp, loff_t *ppos)
3123{
3124	struct ctl_table t;
3125	int err;
3126	int state = static_branch_likely(&sched_numa_balancing);
3127
3128	if (write && !capable(CAP_SYS_ADMIN))
3129		return -EPERM;
3130
3131	t = *table;
3132	t.data = &state;
3133	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3134	if (err < 0)
3135		return err;
3136	if (write)
3137		set_numabalancing_state(state);
3138	return err;
3139}
3140#endif
3141#endif
3142
3143#ifdef CONFIG_SCHEDSTATS
3144
3145DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3146static bool __initdata __sched_schedstats = false;
3147
 
3148static void set_schedstats(bool enabled)
3149{
3150	if (enabled)
3151		static_branch_enable(&sched_schedstats);
3152	else
3153		static_branch_disable(&sched_schedstats);
3154}
3155
3156void force_schedstat_enabled(void)
3157{
3158	if (!schedstat_enabled()) {
3159		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160		static_branch_enable(&sched_schedstats);
3161	}
3162}
3163
3164static int __init setup_schedstats(char *str)
3165{
3166	int ret = 0;
3167	if (!str)
3168		goto out;
3169
3170	/*
3171	 * This code is called before jump labels have been set up, so we can't
3172	 * change the static branch directly just yet.  Instead set a temporary
3173	 * variable so init_schedstats() can do it later.
3174	 */
3175	if (!strcmp(str, "enable")) {
3176		__sched_schedstats = true;
3177		ret = 1;
3178	} else if (!strcmp(str, "disable")) {
3179		__sched_schedstats = false;
3180		ret = 1;
3181	}
3182out:
3183	if (!ret)
3184		pr_warn("Unable to parse schedstats=\n");
3185
3186	return ret;
3187}
3188__setup("schedstats=", setup_schedstats);
3189
3190static void __init init_schedstats(void)
3191{
3192	set_schedstats(__sched_schedstats);
3193}
3194
3195#ifdef CONFIG_PROC_SYSCTL
3196int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3197		size_t *lenp, loff_t *ppos)
3198{
3199	struct ctl_table t;
3200	int err;
3201	int state = static_branch_likely(&sched_schedstats);
3202
3203	if (write && !capable(CAP_SYS_ADMIN))
3204		return -EPERM;
3205
3206	t = *table;
3207	t.data = &state;
3208	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3209	if (err < 0)
3210		return err;
3211	if (write)
3212		set_schedstats(state);
3213	return err;
3214}
3215#endif /* CONFIG_PROC_SYSCTL */
3216#else  /* !CONFIG_SCHEDSTATS */
3217static inline void init_schedstats(void) {}
3218#endif /* CONFIG_SCHEDSTATS */
3219
3220/*
3221 * fork()/clone()-time setup:
3222 */
3223int sched_fork(unsigned long clone_flags, struct task_struct *p)
3224{
3225	unsigned long flags;
 
3226
3227	__sched_fork(clone_flags, p);
3228	/*
3229	 * We mark the process as NEW here. This guarantees that
3230	 * nobody will actually run it, and a signal or other external
3231	 * event cannot wake it up and insert it on the runqueue either.
3232	 */
3233	p->state = TASK_NEW;
3234
3235	/*
3236	 * Make sure we do not leak PI boosting priority to the child.
3237	 */
3238	p->prio = current->normal_prio;
3239
3240	uclamp_fork(p);
3241
3242	/*
3243	 * Revert to default priority/policy on fork if requested.
3244	 */
3245	if (unlikely(p->sched_reset_on_fork)) {
3246		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3247			p->policy = SCHED_NORMAL;
3248			p->static_prio = NICE_TO_PRIO(0);
3249			p->rt_priority = 0;
3250		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3251			p->static_prio = NICE_TO_PRIO(0);
3252
3253		p->prio = p->normal_prio = __normal_prio(p);
3254		set_load_weight(p, false);
3255
3256		/*
3257		 * We don't need the reset flag anymore after the fork. It has
3258		 * fulfilled its duty:
3259		 */
3260		p->sched_reset_on_fork = 0;
3261	}
3262
3263	if (dl_prio(p->prio))
 
3264		return -EAGAIN;
3265	else if (rt_prio(p->prio))
3266		p->sched_class = &rt_sched_class;
3267	else
3268		p->sched_class = &fair_sched_class;
 
3269
3270	init_entity_runnable_average(&p->se);
 
3271
3272	/*
3273	 * The child is not yet in the pid-hash so no cgroup attach races,
3274	 * and the cgroup is pinned to this child due to cgroup_fork()
3275	 * is ran before sched_fork().
3276	 *
3277	 * Silence PROVE_RCU.
3278	 */
3279	raw_spin_lock_irqsave(&p->pi_lock, flags);
3280	rseq_migrate(p);
3281	/*
3282	 * We're setting the CPU for the first time, we don't migrate,
3283	 * so use __set_task_cpu().
3284	 */
3285	__set_task_cpu(p, smp_processor_id());
3286	if (p->sched_class->task_fork)
3287		p->sched_class->task_fork(p);
3288	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3289
3290#ifdef CONFIG_SCHED_INFO
3291	if (likely(sched_info_on()))
3292		memset(&p->sched_info, 0, sizeof(p->sched_info));
3293#endif
3294#if defined(CONFIG_SMP)
3295	p->on_cpu = 0;
3296#endif
3297	init_task_preempt_count(p);
3298#ifdef CONFIG_SMP
3299	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3300	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3301#endif
 
 
3302	return 0;
3303}
3304
3305void sched_post_fork(struct task_struct *p)
3306{
3307	uclamp_post_fork(p);
3308}
3309
3310unsigned long to_ratio(u64 period, u64 runtime)
3311{
3312	if (runtime == RUNTIME_INF)
3313		return BW_UNIT;
3314
3315	/*
3316	 * Doing this here saves a lot of checks in all
3317	 * the calling paths, and returning zero seems
3318	 * safe for them anyway.
3319	 */
3320	if (period == 0)
3321		return 0;
3322
3323	return div64_u64(runtime << BW_SHIFT, period);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3324}
3325
 
 
3326/*
3327 * wake_up_new_task - wake up a newly created task for the first time.
3328 *
3329 * This function will do some initial scheduler statistics housekeeping
3330 * that must be done for every newly created context, then puts the task
3331 * on the runqueue and wakes it.
3332 */
3333void wake_up_new_task(struct task_struct *p)
3334{
3335	struct rq_flags rf;
3336	struct rq *rq;
3337
3338	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3339	p->state = TASK_RUNNING;
 
3340#ifdef CONFIG_SMP
3341	/*
3342	 * Fork balancing, do it here and not earlier because:
3343	 *  - cpus_ptr can change in the fork path
3344	 *  - any previously selected CPU might disappear through hotplug
3345	 *
3346	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347	 * as we're not fully set-up yet.
3348	 */
3349	p->recent_used_cpu = task_cpu(p);
3350	rseq_migrate(p);
3351	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3352#endif
3353	rq = __task_rq_lock(p, &rf);
3354	update_rq_clock(rq);
3355	post_init_entity_util_avg(p);
3356
3357	activate_task(rq, p, ENQUEUE_NOCLOCK);
 
 
3358	trace_sched_wakeup_new(p);
3359	check_preempt_curr(rq, p, WF_FORK);
3360#ifdef CONFIG_SMP
3361	if (p->sched_class->task_woken) {
3362		/*
3363		 * Nothing relies on rq->lock after this, so its fine to
3364		 * drop it.
3365		 */
3366		rq_unpin_lock(rq, &rf);
3367		p->sched_class->task_woken(rq, p);
3368		rq_repin_lock(rq, &rf);
3369	}
3370#endif
3371	task_rq_unlock(rq, p, &rf);
3372}
3373
3374#ifdef CONFIG_PREEMPT_NOTIFIERS
3375
3376static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3377
3378void preempt_notifier_inc(void)
3379{
3380	static_branch_inc(&preempt_notifier_key);
3381}
3382EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3383
3384void preempt_notifier_dec(void)
3385{
3386	static_branch_dec(&preempt_notifier_key);
3387}
3388EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3389
3390/**
3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392 * @notifier: notifier struct to register
3393 */
3394void preempt_notifier_register(struct preempt_notifier *notifier)
3395{
3396	if (!static_branch_unlikely(&preempt_notifier_key))
3397		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3398
3399	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3400}
3401EXPORT_SYMBOL_GPL(preempt_notifier_register);
3402
3403/**
3404 * preempt_notifier_unregister - no longer interested in preemption notifications
3405 * @notifier: notifier struct to unregister
3406 *
3407 * This is *not* safe to call from within a preemption notifier.
3408 */
3409void preempt_notifier_unregister(struct preempt_notifier *notifier)
3410{
3411	hlist_del(&notifier->link);
3412}
3413EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3414
3415static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3416{
3417	struct preempt_notifier *notifier;
3418
3419	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3420		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3421}
3422
3423static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3424{
3425	if (static_branch_unlikely(&preempt_notifier_key))
3426		__fire_sched_in_preempt_notifiers(curr);
3427}
3428
3429static void
3430__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3431				   struct task_struct *next)
3432{
3433	struct preempt_notifier *notifier;
3434
3435	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3436		notifier->ops->sched_out(notifier, next);
3437}
3438
3439static __always_inline void
3440fire_sched_out_preempt_notifiers(struct task_struct *curr,
3441				 struct task_struct *next)
3442{
3443	if (static_branch_unlikely(&preempt_notifier_key))
3444		__fire_sched_out_preempt_notifiers(curr, next);
3445}
3446
3447#else /* !CONFIG_PREEMPT_NOTIFIERS */
3448
3449static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3450{
3451}
3452
3453static inline void
3454fire_sched_out_preempt_notifiers(struct task_struct *curr,
3455				 struct task_struct *next)
3456{
3457}
3458
3459#endif /* CONFIG_PREEMPT_NOTIFIERS */
3460
3461static inline void prepare_task(struct task_struct *next)
3462{
3463#ifdef CONFIG_SMP
3464	/*
3465	 * Claim the task as running, we do this before switching to it
3466	 * such that any running task will have this set.
3467	 *
3468	 * See the ttwu() WF_ON_CPU case and its ordering comment.
3469	 */
3470	WRITE_ONCE(next->on_cpu, 1);
3471#endif
3472}
3473
3474static inline void finish_task(struct task_struct *prev)
3475{
3476#ifdef CONFIG_SMP
3477	/*
3478	 * This must be the very last reference to @prev from this CPU. After
3479	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480	 * must ensure this doesn't happen until the switch is completely
3481	 * finished.
3482	 *
3483	 * In particular, the load of prev->state in finish_task_switch() must
3484	 * happen before this.
3485	 *
3486	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3487	 */
3488	smp_store_release(&prev->on_cpu, 0);
3489#endif
3490}
3491
3492static inline void
3493prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494{
3495	/*
3496	 * Since the runqueue lock will be released by the next
3497	 * task (which is an invalid locking op but in the case
3498	 * of the scheduler it's an obvious special-case), so we
3499	 * do an early lockdep release here:
3500	 */
3501	rq_unpin_lock(rq, rf);
3502	spin_release(&rq->lock.dep_map, _THIS_IP_);
3503#ifdef CONFIG_DEBUG_SPINLOCK
3504	/* this is a valid case when another task releases the spinlock */
3505	rq->lock.owner = next;
3506#endif
3507}
3508
3509static inline void finish_lock_switch(struct rq *rq)
3510{
3511	/*
3512	 * If we are tracking spinlock dependencies then we have to
3513	 * fix up the runqueue lock - which gets 'carried over' from
3514	 * prev into current:
3515	 */
3516	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3517	raw_spin_unlock_irq(&rq->lock);
3518}
3519
3520/*
3521 * NOP if the arch has not defined these:
3522 */
3523
3524#ifndef prepare_arch_switch
3525# define prepare_arch_switch(next)	do { } while (0)
3526#endif
3527
3528#ifndef finish_arch_post_lock_switch
3529# define finish_arch_post_lock_switch()	do { } while (0)
3530#endif
3531
3532/**
3533 * prepare_task_switch - prepare to switch tasks
3534 * @rq: the runqueue preparing to switch
3535 * @prev: the current task that is being switched out
3536 * @next: the task we are going to switch to.
3537 *
3538 * This is called with the rq lock held and interrupts off. It must
3539 * be paired with a subsequent finish_task_switch after the context
3540 * switch.
3541 *
3542 * prepare_task_switch sets up locking and calls architecture specific
3543 * hooks.
3544 */
3545static inline void
3546prepare_task_switch(struct rq *rq, struct task_struct *prev,
3547		    struct task_struct *next)
3548{
3549	kcov_prepare_switch(prev);
3550	sched_info_switch(rq, prev, next);
3551	perf_event_task_sched_out(prev, next);
3552	rseq_preempt(prev);
3553	fire_sched_out_preempt_notifiers(prev, next);
3554	prepare_task(next);
3555	prepare_arch_switch(next);
3556}
3557
3558/**
3559 * finish_task_switch - clean up after a task-switch
3560 * @prev: the thread we just switched away from.
3561 *
3562 * finish_task_switch must be called after the context switch, paired
3563 * with a prepare_task_switch call before the context switch.
3564 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565 * and do any other architecture-specific cleanup actions.
3566 *
3567 * Note that we may have delayed dropping an mm in context_switch(). If
3568 * so, we finish that here outside of the runqueue lock. (Doing it
3569 * with the lock held can cause deadlocks; see schedule() for
3570 * details.)
3571 *
3572 * The context switch have flipped the stack from under us and restored the
3573 * local variables which were saved when this task called schedule() in the
3574 * past. prev == current is still correct but we need to recalculate this_rq
3575 * because prev may have moved to another CPU.
3576 */
3577static struct rq *finish_task_switch(struct task_struct *prev)
3578	__releases(rq->lock)
3579{
3580	struct rq *rq = this_rq();
3581	struct mm_struct *mm = rq->prev_mm;
3582	long prev_state;
3583
3584	/*
3585	 * The previous task will have left us with a preempt_count of 2
3586	 * because it left us after:
3587	 *
3588	 *	schedule()
3589	 *	  preempt_disable();			// 1
3590	 *	  __schedule()
3591	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3592	 *
3593	 * Also, see FORK_PREEMPT_COUNT.
3594	 */
3595	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3596		      "corrupted preempt_count: %s/%d/0x%x\n",
3597		      current->comm, current->pid, preempt_count()))
3598		preempt_count_set(FORK_PREEMPT_COUNT);
3599
3600	rq->prev_mm = NULL;
3601
3602	/*
3603	 * A task struct has one reference for the use as "current".
3604	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605	 * schedule one last time. The schedule call will never return, and
3606	 * the scheduled task must drop that reference.
3607	 *
3608	 * We must observe prev->state before clearing prev->on_cpu (in
3609	 * finish_task), otherwise a concurrent wakeup can get prev
3610	 * running on another CPU and we could rave with its RUNNING -> DEAD
3611	 * transition, resulting in a double drop.
3612	 */
3613	prev_state = prev->state;
3614	vtime_task_switch(prev);
3615	perf_event_task_sched_in(prev, current);
3616	finish_task(prev);
3617	finish_lock_switch(rq);
3618	finish_arch_post_lock_switch();
3619	kcov_finish_switch(current);
3620
3621	fire_sched_in_preempt_notifiers(current);
3622	/*
3623	 * When switching through a kernel thread, the loop in
3624	 * membarrier_{private,global}_expedited() may have observed that
3625	 * kernel thread and not issued an IPI. It is therefore possible to
3626	 * schedule between user->kernel->user threads without passing though
3627	 * switch_mm(). Membarrier requires a barrier after storing to
3628	 * rq->curr, before returning to userspace, so provide them here:
3629	 *
3630	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631	 *   provided by mmdrop(),
3632	 * - a sync_core for SYNC_CORE.
3633	 */
3634	if (mm) {
3635		membarrier_mm_sync_core_before_usermode(mm);
3636		mmdrop(mm);
3637	}
3638	if (unlikely(prev_state == TASK_DEAD)) {
3639		if (prev->sched_class->task_dead)
3640			prev->sched_class->task_dead(prev);
3641
3642		/*
3643		 * Remove function-return probe instances associated with this
3644		 * task and put them back on the free list.
3645		 */
3646		kprobe_flush_task(prev);
3647
3648		/* Task is done with its stack. */
3649		put_task_stack(prev);
3650
3651		put_task_struct_rcu_user(prev);
3652	}
3653
3654	tick_nohz_task_switch();
3655	return rq;
3656}
3657
3658#ifdef CONFIG_SMP
3659
3660/* rq->lock is NOT held, but preemption is disabled */
3661static void __balance_callback(struct rq *rq)
3662{
3663	struct callback_head *head, *next;
3664	void (*func)(struct rq *rq);
3665	unsigned long flags;
3666
3667	raw_spin_lock_irqsave(&rq->lock, flags);
3668	head = rq->balance_callback;
3669	rq->balance_callback = NULL;
3670	while (head) {
3671		func = (void (*)(struct rq *))head->func;
3672		next = head->next;
3673		head->next = NULL;
3674		head = next;
3675
3676		func(rq);
3677	}
3678	raw_spin_unlock_irqrestore(&rq->lock, flags);
3679}
3680
3681static inline void balance_callback(struct rq *rq)
3682{
3683	if (unlikely(rq->balance_callback))
3684		__balance_callback(rq);
3685}
3686
3687#else
3688
3689static inline void balance_callback(struct rq *rq)
3690{
3691}
3692
3693#endif
3694
3695/**
3696 * schedule_tail - first thing a freshly forked thread must call.
3697 * @prev: the thread we just switched away from.
3698 */
3699asmlinkage __visible void schedule_tail(struct task_struct *prev)
3700	__releases(rq->lock)
3701{
3702	struct rq *rq;
3703
3704	/*
3705	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3706	 * finish_task_switch() for details.
3707	 *
3708	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3709	 * and the preempt_enable() will end up enabling preemption (on
3710	 * PREEMPT_COUNT kernels).
3711	 */
3712
3713	rq = finish_task_switch(prev);
3714	balance_callback(rq);
3715	preempt_enable();
3716
3717	if (current->set_child_tid)
3718		put_user(task_pid_vnr(current), current->set_child_tid);
3719
3720	calculate_sigpending();
3721}
3722
3723/*
3724 * context_switch - switch to the new MM and the new thread's register state.
3725 */
3726static __always_inline struct rq *
3727context_switch(struct rq *rq, struct task_struct *prev,
3728	       struct task_struct *next, struct rq_flags *rf)
3729{
 
 
3730	prepare_task_switch(rq, prev, next);
3731
 
 
3732	/*
3733	 * For paravirt, this is coupled with an exit in switch_to to
3734	 * combine the page table reload and the switch backend into
3735	 * one hypercall.
3736	 */
3737	arch_start_context_switch(prev);
3738
 
 
 
 
 
 
 
 
 
 
 
3739	/*
3740	 * kernel -> kernel   lazy + transfer active
3741	 *   user -> kernel   lazy + mmgrab() active
3742	 *
3743	 * kernel ->   user   switch + mmdrop() active
3744	 *   user ->   user   switch
3745	 */
3746	if (!next->mm) {                                // to kernel
3747		enter_lazy_tlb(prev->active_mm, next);
3748
3749		next->active_mm = prev->active_mm;
3750		if (prev->mm)                           // from user
3751			mmgrab(prev->active_mm);
3752		else
3753			prev->active_mm = NULL;
3754	} else {                                        // to user
3755		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3756		/*
3757		 * sys_membarrier() requires an smp_mb() between setting
3758		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3759		 *
3760		 * The below provides this either through switch_mm(), or in
3761		 * case 'prev->active_mm == next->mm' through
3762		 * finish_task_switch()'s mmdrop().
3763		 */
3764		switch_mm_irqs_off(prev->active_mm, next->mm, next);
3765
3766		if (!prev->mm) {                        // from kernel
3767			/* will mmdrop() in finish_task_switch(). */
3768			rq->prev_mm = prev->active_mm;
3769			prev->active_mm = NULL;
3770		}
3771	}
3772
3773	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3774
3775	prepare_lock_switch(rq, next, rf);
3776
3777	/* Here we just switch the register state and the stack. */
3778	switch_to(prev, next, prev);
3779	barrier();
3780
3781	return finish_task_switch(prev);
3782}
3783
3784/*
3785 * nr_running and nr_context_switches:
3786 *
3787 * externally visible scheduler statistics: current number of runnable
3788 * threads, total number of context switches performed since bootup.
3789 */
3790unsigned long nr_running(void)
3791{
3792	unsigned long i, sum = 0;
3793
3794	for_each_online_cpu(i)
3795		sum += cpu_rq(i)->nr_running;
3796
3797	return sum;
3798}
3799
3800/*
3801 * Check if only the current task is running on the CPU.
3802 *
3803 * Caution: this function does not check that the caller has disabled
3804 * preemption, thus the result might have a time-of-check-to-time-of-use
3805 * race.  The caller is responsible to use it correctly, for example:
3806 *
3807 * - from a non-preemptible section (of course)
3808 *
3809 * - from a thread that is bound to a single CPU
3810 *
3811 * - in a loop with very short iterations (e.g. a polling loop)
3812 */
3813bool single_task_running(void)
3814{
3815	return raw_rq()->nr_running == 1;
3816}
3817EXPORT_SYMBOL(single_task_running);
3818
3819unsigned long long nr_context_switches(void)
3820{
3821	int i;
3822	unsigned long long sum = 0;
3823
3824	for_each_possible_cpu(i)
3825		sum += cpu_rq(i)->nr_switches;
3826
3827	return sum;
3828}
3829
3830/*
3831 * Consumers of these two interfaces, like for example the cpuidle menu
3832 * governor, are using nonsensical data. Preferring shallow idle state selection
3833 * for a CPU that has IO-wait which might not even end up running the task when
3834 * it does become runnable.
3835 */
3836
3837unsigned long nr_iowait_cpu(int cpu)
3838{
3839	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3840}
3841
3842/*
3843 * IO-wait accounting, and how its mostly bollocks (on SMP).
3844 *
3845 * The idea behind IO-wait account is to account the idle time that we could
3846 * have spend running if it were not for IO. That is, if we were to improve the
3847 * storage performance, we'd have a proportional reduction in IO-wait time.
3848 *
3849 * This all works nicely on UP, where, when a task blocks on IO, we account
3850 * idle time as IO-wait, because if the storage were faster, it could've been
3851 * running and we'd not be idle.
3852 *
3853 * This has been extended to SMP, by doing the same for each CPU. This however
3854 * is broken.
3855 *
3856 * Imagine for instance the case where two tasks block on one CPU, only the one
3857 * CPU will have IO-wait accounted, while the other has regular idle. Even
3858 * though, if the storage were faster, both could've ran at the same time,
3859 * utilising both CPUs.
3860 *
3861 * This means, that when looking globally, the current IO-wait accounting on
3862 * SMP is a lower bound, by reason of under accounting.
3863 *
3864 * Worse, since the numbers are provided per CPU, they are sometimes
3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866 * associated with any one particular CPU, it can wake to another CPU than it
3867 * blocked on. This means the per CPU IO-wait number is meaningless.
3868 *
3869 * Task CPU affinities can make all that even more 'interesting'.
3870 */
3871
3872unsigned long nr_iowait(void)
3873{
3874	unsigned long i, sum = 0;
3875
3876	for_each_possible_cpu(i)
3877		sum += nr_iowait_cpu(i);
3878
3879	return sum;
3880}
3881
 
 
 
 
 
 
 
 
 
 
 
 
 
3882#ifdef CONFIG_SMP
3883
3884/*
3885 * sched_exec - execve() is a valuable balancing opportunity, because at
3886 * this point the task has the smallest effective memory and cache footprint.
3887 */
3888void sched_exec(void)
3889{
3890	struct task_struct *p = current;
3891	unsigned long flags;
3892	int dest_cpu;
3893
3894	raw_spin_lock_irqsave(&p->pi_lock, flags);
3895	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3896	if (dest_cpu == smp_processor_id())
3897		goto unlock;
3898
3899	if (likely(cpu_active(dest_cpu))) {
3900		struct migration_arg arg = { p, dest_cpu };
3901
3902		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3903		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3904		return;
3905	}
3906unlock:
3907	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3908}
3909
3910#endif
3911
3912DEFINE_PER_CPU(struct kernel_stat, kstat);
3913DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3914
3915EXPORT_PER_CPU_SYMBOL(kstat);
3916EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3917
3918/*
3919 * The function fair_sched_class.update_curr accesses the struct curr
3920 * and its field curr->exec_start; when called from task_sched_runtime(),
3921 * we observe a high rate of cache misses in practice.
3922 * Prefetching this data results in improved performance.
3923 */
3924static inline void prefetch_curr_exec_start(struct task_struct *p)
3925{
3926#ifdef CONFIG_FAIR_GROUP_SCHED
3927	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3928#else
3929	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3930#endif
3931	prefetch(curr);
3932	prefetch(&curr->exec_start);
3933}
3934
3935/*
3936 * Return accounted runtime for the task.
3937 * In case the task is currently running, return the runtime plus current's
3938 * pending runtime that have not been accounted yet.
3939 */
3940unsigned long long task_sched_runtime(struct task_struct *p)
3941{
3942	struct rq_flags rf;
3943	struct rq *rq;
3944	u64 ns;
3945
3946#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3947	/*
3948	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3949	 * So we have a optimization chance when the task's delta_exec is 0.
3950	 * Reading ->on_cpu is racy, but this is ok.
3951	 *
3952	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953	 * If we race with it entering CPU, unaccounted time is 0. This is
3954	 * indistinguishable from the read occurring a few cycles earlier.
3955	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956	 * been accounted, so we're correct here as well.
3957	 */
3958	if (!p->on_cpu || !task_on_rq_queued(p))
3959		return p->se.sum_exec_runtime;
3960#endif
3961
3962	rq = task_rq_lock(p, &rf);
3963	/*
3964	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3965	 * project cycles that may never be accounted to this
3966	 * thread, breaking clock_gettime().
3967	 */
3968	if (task_current(rq, p) && task_on_rq_queued(p)) {
3969		prefetch_curr_exec_start(p);
3970		update_rq_clock(rq);
3971		p->sched_class->update_curr(rq);
3972	}
3973	ns = p->se.sum_exec_runtime;
3974	task_rq_unlock(rq, p, &rf);
3975
3976	return ns;
3977}
3978
3979/*
3980 * This function gets called by the timer code, with HZ frequency.
3981 * We call it with interrupts disabled.
3982 */
3983void scheduler_tick(void)
3984{
3985	int cpu = smp_processor_id();
3986	struct rq *rq = cpu_rq(cpu);
3987	struct task_struct *curr = rq->curr;
3988	struct rq_flags rf;
3989	unsigned long thermal_pressure;
3990
3991	arch_scale_freq_tick();
3992	sched_clock_tick();
3993
3994	rq_lock(rq, &rf);
3995
3996	update_rq_clock(rq);
3997	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3998	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3999	curr->sched_class->task_tick(rq, curr, 0);
 
4000	calc_global_load_tick(rq);
4001	psi_task_tick(rq);
4002
4003	rq_unlock(rq, &rf);
4004
4005	perf_event_task_tick();
4006
4007#ifdef CONFIG_SMP
4008	rq->idle_balance = idle_cpu(cpu);
4009	trigger_load_balance(rq);
4010#endif
 
4011}
4012
4013#ifdef CONFIG_NO_HZ_FULL
4014
4015struct tick_work {
4016	int			cpu;
4017	atomic_t		state;
4018	struct delayed_work	work;
4019};
4020/* Values for ->state, see diagram below. */
4021#define TICK_SCHED_REMOTE_OFFLINE	0
4022#define TICK_SCHED_REMOTE_OFFLINING	1
4023#define TICK_SCHED_REMOTE_RUNNING	2
4024
4025/*
4026 * State diagram for ->state:
4027 *
4028 *
4029 *          TICK_SCHED_REMOTE_OFFLINE
4030 *                    |   ^
4031 *                    |   |
4032 *                    |   | sched_tick_remote()
4033 *                    |   |
4034 *                    |   |
4035 *                    +--TICK_SCHED_REMOTE_OFFLINING
4036 *                    |   ^
4037 *                    |   |
4038 * sched_tick_start() |   | sched_tick_stop()
4039 *                    |   |
4040 *                    V   |
4041 *          TICK_SCHED_REMOTE_RUNNING
4042 *
 
 
 
4043 *
4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045 * and sched_tick_start() are happy to leave the state in RUNNING.
4046 */
4047
4048static struct tick_work __percpu *tick_work_cpu;
4049
4050static void sched_tick_remote(struct work_struct *work)
4051{
4052	struct delayed_work *dwork = to_delayed_work(work);
4053	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4054	int cpu = twork->cpu;
4055	struct rq *rq = cpu_rq(cpu);
4056	struct task_struct *curr;
4057	struct rq_flags rf;
4058	u64 delta;
4059	int os;
4060
4061	/*
4062	 * Handle the tick only if it appears the remote CPU is running in full
4063	 * dynticks mode. The check is racy by nature, but missing a tick or
4064	 * having one too much is no big deal because the scheduler tick updates
4065	 * statistics and checks timeslices in a time-independent way, regardless
4066	 * of when exactly it is running.
4067	 */
4068	if (!tick_nohz_tick_stopped_cpu(cpu))
4069		goto out_requeue;
4070
4071	rq_lock_irq(rq, &rf);
4072	curr = rq->curr;
4073	if (cpu_is_offline(cpu))
4074		goto out_unlock;
4075
4076	update_rq_clock(rq);
4077
4078	if (!is_idle_task(curr)) {
4079		/*
4080		 * Make sure the next tick runs within a reasonable
4081		 * amount of time.
4082		 */
4083		delta = rq_clock_task(rq) - curr->se.exec_start;
4084		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4085	}
4086	curr->sched_class->task_tick(rq, curr, 0);
4087
4088	calc_load_nohz_remote(rq);
4089out_unlock:
4090	rq_unlock_irq(rq, &rf);
4091out_requeue:
4092
4093	/*
4094	 * Run the remote tick once per second (1Hz). This arbitrary
4095	 * frequency is large enough to avoid overload but short enough
4096	 * to keep scheduler internal stats reasonably up to date.  But
4097	 * first update state to reflect hotplug activity if required.
4098	 */
4099	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4100	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4101	if (os == TICK_SCHED_REMOTE_RUNNING)
4102		queue_delayed_work(system_unbound_wq, dwork, HZ);
4103}
4104
4105static void sched_tick_start(int cpu)
4106{
4107	int os;
4108	struct tick_work *twork;
4109
4110	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4111		return;
4112
4113	WARN_ON_ONCE(!tick_work_cpu);
4114
4115	twork = per_cpu_ptr(tick_work_cpu, cpu);
4116	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4117	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4118	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4119		twork->cpu = cpu;
4120		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4121		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4122	}
4123}
4124
4125#ifdef CONFIG_HOTPLUG_CPU
4126static void sched_tick_stop(int cpu)
4127{
4128	struct tick_work *twork;
4129	int os;
4130
4131	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4132		return;
4133
4134	WARN_ON_ONCE(!tick_work_cpu);
4135
4136	twork = per_cpu_ptr(tick_work_cpu, cpu);
4137	/* There cannot be competing actions, but don't rely on stop-machine. */
4138	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4139	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4140	/* Don't cancel, as this would mess up the state machine. */
4141}
4142#endif /* CONFIG_HOTPLUG_CPU */
4143
4144int __init sched_tick_offload_init(void)
4145{
4146	tick_work_cpu = alloc_percpu(struct tick_work);
4147	BUG_ON(!tick_work_cpu);
4148	return 0;
4149}
4150
4151#else /* !CONFIG_NO_HZ_FULL */
4152static inline void sched_tick_start(int cpu) { }
4153static inline void sched_tick_stop(int cpu) { }
4154#endif
4155
4156#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4158/*
4159 * If the value passed in is equal to the current preempt count
4160 * then we just disabled preemption. Start timing the latency.
4161 */
4162static inline void preempt_latency_start(int val)
4163{
4164	if (preempt_count() == val) {
4165		unsigned long ip = get_lock_parent_ip();
4166#ifdef CONFIG_DEBUG_PREEMPT
4167		current->preempt_disable_ip = ip;
4168#endif
4169		trace_preempt_off(CALLER_ADDR0, ip);
4170	}
4171}
4172
4173void preempt_count_add(int val)
4174{
4175#ifdef CONFIG_DEBUG_PREEMPT
4176	/*
4177	 * Underflow?
4178	 */
4179	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4180		return;
4181#endif
4182	__preempt_count_add(val);
4183#ifdef CONFIG_DEBUG_PREEMPT
4184	/*
4185	 * Spinlock count overflowing soon?
4186	 */
4187	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4188				PREEMPT_MASK - 10);
4189#endif
4190	preempt_latency_start(val);
 
 
 
 
 
 
4191}
4192EXPORT_SYMBOL(preempt_count_add);
4193NOKPROBE_SYMBOL(preempt_count_add);
4194
4195/*
4196 * If the value passed in equals to the current preempt count
4197 * then we just enabled preemption. Stop timing the latency.
4198 */
4199static inline void preempt_latency_stop(int val)
4200{
4201	if (preempt_count() == val)
4202		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4203}
4204
4205void preempt_count_sub(int val)
4206{
4207#ifdef CONFIG_DEBUG_PREEMPT
4208	/*
4209	 * Underflow?
4210	 */
4211	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4212		return;
4213	/*
4214	 * Is the spinlock portion underflowing?
4215	 */
4216	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4217			!(preempt_count() & PREEMPT_MASK)))
4218		return;
4219#endif
4220
4221	preempt_latency_stop(val);
 
4222	__preempt_count_sub(val);
4223}
4224EXPORT_SYMBOL(preempt_count_sub);
4225NOKPROBE_SYMBOL(preempt_count_sub);
4226
4227#else
4228static inline void preempt_latency_start(int val) { }
4229static inline void preempt_latency_stop(int val) { }
4230#endif
4231
4232static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4233{
4234#ifdef CONFIG_DEBUG_PREEMPT
4235	return p->preempt_disable_ip;
4236#else
4237	return 0;
4238#endif
4239}
4240
4241/*
4242 * Print scheduling while atomic bug:
4243 */
4244static noinline void __schedule_bug(struct task_struct *prev)
4245{
4246	/* Save this before calling printk(), since that will clobber it */
4247	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4248
4249	if (oops_in_progress)
4250		return;
4251
4252	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253		prev->comm, prev->pid, preempt_count());
4254
4255	debug_show_held_locks(prev);
4256	print_modules();
4257	if (irqs_disabled())
4258		print_irqtrace_events(prev);
4259	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4260	    && in_atomic_preempt_off()) {
4261		pr_err("Preemption disabled at:");
4262		print_ip_sym(KERN_ERR, preempt_disable_ip);
 
4263	}
4264	if (panic_on_warn)
4265		panic("scheduling while atomic\n");
4266
4267	dump_stack();
4268	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4269}
4270
4271/*
4272 * Various schedule()-time debugging checks and statistics:
4273 */
4274static inline void schedule_debug(struct task_struct *prev, bool preempt)
4275{
4276#ifdef CONFIG_SCHED_STACK_END_CHECK
4277	if (task_stack_end_corrupted(prev))
4278		panic("corrupted stack end detected inside scheduler\n");
4279
4280	if (task_scs_end_corrupted(prev))
4281		panic("corrupted shadow stack detected inside scheduler\n");
4282#endif
4283
4284#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285	if (!preempt && prev->state && prev->non_block_count) {
4286		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287			prev->comm, prev->pid, prev->non_block_count);
4288		dump_stack();
4289		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4290	}
4291#endif
4292
4293	if (unlikely(in_atomic_preempt_off())) {
4294		__schedule_bug(prev);
4295		preempt_count_set(PREEMPT_DISABLED);
4296	}
4297	rcu_sleep_check();
4298
4299	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4300
4301	schedstat_inc(this_rq()->sched_count);
4302}
4303
4304static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4305				  struct rq_flags *rf)
4306{
4307#ifdef CONFIG_SMP
4308	const struct sched_class *class;
4309	/*
4310	 * We must do the balancing pass before put_prev_task(), such
4311	 * that when we release the rq->lock the task is in the same
4312	 * state as before we took rq->lock.
4313	 *
4314	 * We can terminate the balance pass as soon as we know there is
4315	 * a runnable task of @class priority or higher.
4316	 */
4317	for_class_range(class, prev->sched_class, &idle_sched_class) {
4318		if (class->balance(rq, prev, rf))
4319			break;
4320	}
4321#endif
4322
4323	put_prev_task(rq, prev);
4324}
4325
4326/*
4327 * Pick up the highest-prio task:
4328 */
4329static inline struct task_struct *
4330pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4331{
4332	const struct sched_class *class;
4333	struct task_struct *p;
4334
4335	/*
4336	 * Optimization: we know that if all tasks are in the fair class we can
4337	 * call that function directly, but only if the @prev task wasn't of a
4338	 * higher scheduling class, because otherwise those loose the
4339	 * opportunity to pull in more work from other CPUs.
4340	 */
4341	if (likely(prev->sched_class <= &fair_sched_class &&
4342		   rq->nr_running == rq->cfs.h_nr_running)) {
4343
4344		p = pick_next_task_fair(rq, prev, rf);
4345		if (unlikely(p == RETRY_TASK))
4346			goto restart;
4347
4348		/* Assumes fair_sched_class->next == idle_sched_class */
4349		if (!p) {
4350			put_prev_task(rq, prev);
4351			p = pick_next_task_idle(rq);
4352		}
4353
4354		return p;
4355	}
4356
4357restart:
4358	put_prev_task_balance(rq, prev, rf);
4359
4360	for_each_class(class) {
4361		p = class->pick_next_task(rq);
4362		if (p)
 
 
4363			return p;
 
4364	}
4365
4366	/* The idle class should always have a runnable task: */
4367	BUG();
4368}
4369
4370/*
4371 * __schedule() is the main scheduler function.
4372 *
4373 * The main means of driving the scheduler and thus entering this function are:
4374 *
4375 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4376 *
4377 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378 *      paths. For example, see arch/x86/entry_64.S.
4379 *
4380 *      To drive preemption between tasks, the scheduler sets the flag in timer
4381 *      interrupt handler scheduler_tick().
4382 *
4383 *   3. Wakeups don't really cause entry into schedule(). They add a
4384 *      task to the run-queue and that's it.
4385 *
4386 *      Now, if the new task added to the run-queue preempts the current
4387 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388 *      called on the nearest possible occasion:
4389 *
4390 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4391 *
4392 *         - in syscall or exception context, at the next outmost
4393 *           preempt_enable(). (this might be as soon as the wake_up()'s
4394 *           spin_unlock()!)
4395 *
4396 *         - in IRQ context, return from interrupt-handler to
4397 *           preemptible context
4398 *
4399 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4400 *         then at the next:
4401 *
4402 *          - cond_resched() call
4403 *          - explicit schedule() call
4404 *          - return from syscall or exception to user-space
4405 *          - return from interrupt-handler to user-space
4406 *
4407 * WARNING: must be called with preemption disabled!
4408 */
4409static void __sched notrace __schedule(bool preempt)
4410{
4411	struct task_struct *prev, *next;
4412	unsigned long *switch_count;
4413	unsigned long prev_state;
4414	struct rq_flags rf;
4415	struct rq *rq;
4416	int cpu;
4417
4418	cpu = smp_processor_id();
4419	rq = cpu_rq(cpu);
4420	prev = rq->curr;
4421
4422	schedule_debug(prev, preempt);
 
 
 
 
 
 
 
 
 
 
 
4423
4424	if (sched_feat(HRTICK))
4425		hrtick_clear(rq);
4426
4427	local_irq_disable();
4428	rcu_note_context_switch(preempt);
4429
4430	/*
4431	 * Make sure that signal_pending_state()->signal_pending() below
4432	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433	 * done by the caller to avoid the race with signal_wake_up():
4434	 *
4435	 * __set_current_state(@state)		signal_wake_up()
4436	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4437	 *					  wake_up_state(p, state)
4438	 *   LOCK rq->lock			    LOCK p->pi_state
4439	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4440	 *     if (signal_pending_state())	    if (p->state & @state)
4441	 *
4442	 * Also, the membarrier system call requires a full memory barrier
4443	 * after coming from user-space, before storing to rq->curr.
4444	 */
4445	rq_lock(rq, &rf);
4446	smp_mb__after_spinlock();
 
4447
4448	/* Promote REQ to ACT */
4449	rq->clock_update_flags <<= 1;
4450	update_rq_clock(rq);
4451
4452	switch_count = &prev->nivcsw;
4453
4454	/*
4455	 * We must load prev->state once (task_struct::state is volatile), such
4456	 * that:
4457	 *
4458	 *  - we form a control dependency vs deactivate_task() below.
4459	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4460	 */
4461	prev_state = prev->state;
4462	if (!preempt && prev_state) {
4463		if (signal_pending_state(prev_state, prev)) {
4464			prev->state = TASK_RUNNING;
4465		} else {
4466			prev->sched_contributes_to_load =
4467				(prev_state & TASK_UNINTERRUPTIBLE) &&
4468				!(prev_state & TASK_NOLOAD) &&
4469				!(prev->flags & PF_FROZEN);
4470
4471			if (prev->sched_contributes_to_load)
4472				rq->nr_uninterruptible++;
4473
4474			/*
4475			 * __schedule()			ttwu()
4476			 *   prev_state = prev->state;    if (p->on_rq && ...)
4477			 *   if (prev_state)		    goto out;
4478			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
4479			 *				  p->state = TASK_WAKING
4480			 *
4481			 * Where __schedule() and ttwu() have matching control dependencies.
4482			 *
4483			 * After this, schedule() must not care about p->state any more.
4484			 */
4485			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
 
4486
4487			if (prev->in_iowait) {
4488				atomic_inc(&rq->nr_iowait);
4489				delayacct_blkio_start();
4490			}
4491		}
4492		switch_count = &prev->nvcsw;
4493	}
4494
4495	next = pick_next_task(rq, prev, &rf);
 
 
 
4496	clear_tsk_need_resched(prev);
4497	clear_preempt_need_resched();
 
4498
4499	if (likely(prev != next)) {
4500		rq->nr_switches++;
4501		/*
4502		 * RCU users of rcu_dereference(rq->curr) may not see
4503		 * changes to task_struct made by pick_next_task().
4504		 */
4505		RCU_INIT_POINTER(rq->curr, next);
4506		/*
4507		 * The membarrier system call requires each architecture
4508		 * to have a full memory barrier after updating
4509		 * rq->curr, before returning to user-space.
4510		 *
4511		 * Here are the schemes providing that barrier on the
4512		 * various architectures:
4513		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515		 * - finish_lock_switch() for weakly-ordered
4516		 *   architectures where spin_unlock is a full barrier,
4517		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518		 *   is a RELEASE barrier),
4519		 */
4520		++*switch_count;
4521
4522		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4523
4524		trace_sched_switch(preempt, prev, next);
4525
4526		/* Also unlocks the rq: */
4527		rq = context_switch(rq, prev, next, &rf);
4528	} else {
4529		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4530		rq_unlock_irq(rq, &rf);
4531	}
4532
4533	balance_callback(rq);
4534}
4535
4536void __noreturn do_task_dead(void)
4537{
4538	/* Causes final put_task_struct in finish_task_switch(): */
4539	set_special_state(TASK_DEAD);
4540
4541	/* Tell freezer to ignore us: */
4542	current->flags |= PF_NOFREEZE;
4543
4544	__schedule(false);
4545	BUG();
4546
4547	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4548	for (;;)
4549		cpu_relax();
4550}
4551
4552static inline void sched_submit_work(struct task_struct *tsk)
4553{
4554	if (!tsk->state)
4555		return;
4556
4557	/*
4558	 * If a worker went to sleep, notify and ask workqueue whether
4559	 * it wants to wake up a task to maintain concurrency.
4560	 * As this function is called inside the schedule() context,
4561	 * we disable preemption to avoid it calling schedule() again
4562	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4563	 * requires it.
4564	 */
4565	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4566		preempt_disable();
4567		if (tsk->flags & PF_WQ_WORKER)
4568			wq_worker_sleeping(tsk);
4569		else
4570			io_wq_worker_sleeping(tsk);
4571		preempt_enable_no_resched();
4572	}
4573
4574	if (tsk_is_pi_blocked(tsk))
4575		return;
4576
4577	/*
4578	 * If we are going to sleep and we have plugged IO queued,
4579	 * make sure to submit it to avoid deadlocks.
4580	 */
4581	if (blk_needs_flush_plug(tsk))
4582		blk_schedule_flush_plug(tsk);
4583}
4584
4585static void sched_update_worker(struct task_struct *tsk)
4586{
4587	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4588		if (tsk->flags & PF_WQ_WORKER)
4589			wq_worker_running(tsk);
4590		else
4591			io_wq_worker_running(tsk);
4592	}
4593}
4594
4595asmlinkage __visible void __sched schedule(void)
4596{
4597	struct task_struct *tsk = current;
4598
4599	sched_submit_work(tsk);
4600	do {
4601		preempt_disable();
4602		__schedule(false);
4603		sched_preempt_enable_no_resched();
4604	} while (need_resched());
4605	sched_update_worker(tsk);
4606}
4607EXPORT_SYMBOL(schedule);
4608
4609/*
4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611 * state (have scheduled out non-voluntarily) by making sure that all
4612 * tasks have either left the run queue or have gone into user space.
4613 * As idle tasks do not do either, they must not ever be preempted
4614 * (schedule out non-voluntarily).
4615 *
4616 * schedule_idle() is similar to schedule_preempt_disable() except that it
4617 * never enables preemption because it does not call sched_submit_work().
4618 */
4619void __sched schedule_idle(void)
4620{
4621	/*
4622	 * As this skips calling sched_submit_work(), which the idle task does
4623	 * regardless because that function is a nop when the task is in a
4624	 * TASK_RUNNING state, make sure this isn't used someplace that the
4625	 * current task can be in any other state. Note, idle is always in the
4626	 * TASK_RUNNING state.
4627	 */
4628	WARN_ON_ONCE(current->state);
4629	do {
4630		__schedule(false);
4631	} while (need_resched());
4632}
4633
4634#ifdef CONFIG_CONTEXT_TRACKING
4635asmlinkage __visible void __sched schedule_user(void)
4636{
4637	/*
4638	 * If we come here after a random call to set_need_resched(),
4639	 * or we have been woken up remotely but the IPI has not yet arrived,
4640	 * we haven't yet exited the RCU idle mode. Do it here manually until
4641	 * we find a better solution.
4642	 *
4643	 * NB: There are buggy callers of this function.  Ideally we
4644	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4645	 * too frequently to make sense yet.
4646	 */
4647	enum ctx_state prev_state = exception_enter();
4648	schedule();
4649	exception_exit(prev_state);
4650}
4651#endif
4652
4653/**
4654 * schedule_preempt_disabled - called with preemption disabled
4655 *
4656 * Returns with preemption disabled. Note: preempt_count must be 1
4657 */
4658void __sched schedule_preempt_disabled(void)
4659{
4660	sched_preempt_enable_no_resched();
4661	schedule();
4662	preempt_disable();
4663}
4664
4665static void __sched notrace preempt_schedule_common(void)
4666{
4667	do {
4668		/*
4669		 * Because the function tracer can trace preempt_count_sub()
4670		 * and it also uses preempt_enable/disable_notrace(), if
4671		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672		 * by the function tracer will call this function again and
4673		 * cause infinite recursion.
4674		 *
4675		 * Preemption must be disabled here before the function
4676		 * tracer can trace. Break up preempt_disable() into two
4677		 * calls. One to disable preemption without fear of being
4678		 * traced. The other to still record the preemption latency,
4679		 * which can also be traced by the function tracer.
4680		 */
4681		preempt_disable_notrace();
4682		preempt_latency_start(1);
4683		__schedule(true);
4684		preempt_latency_stop(1);
4685		preempt_enable_no_resched_notrace();
4686
4687		/*
4688		 * Check again in case we missed a preemption opportunity
4689		 * between schedule and now.
4690		 */
4691	} while (need_resched());
4692}
4693
4694#ifdef CONFIG_PREEMPTION
4695/*
4696 * This is the entry point to schedule() from in-kernel preemption
4697 * off of preempt_enable.
 
4698 */
4699asmlinkage __visible void __sched notrace preempt_schedule(void)
4700{
4701	/*
4702	 * If there is a non-zero preempt_count or interrupts are disabled,
4703	 * we do not want to preempt the current task. Just return..
4704	 */
4705	if (likely(!preemptible()))
4706		return;
4707
4708	preempt_schedule_common();
4709}
4710NOKPROBE_SYMBOL(preempt_schedule);
4711EXPORT_SYMBOL(preempt_schedule);
4712
4713/**
4714 * preempt_schedule_notrace - preempt_schedule called by tracing
4715 *
4716 * The tracing infrastructure uses preempt_enable_notrace to prevent
4717 * recursion and tracing preempt enabling caused by the tracing
4718 * infrastructure itself. But as tracing can happen in areas coming
4719 * from userspace or just about to enter userspace, a preempt enable
4720 * can occur before user_exit() is called. This will cause the scheduler
4721 * to be called when the system is still in usermode.
4722 *
4723 * To prevent this, the preempt_enable_notrace will use this function
4724 * instead of preempt_schedule() to exit user context if needed before
4725 * calling the scheduler.
4726 */
4727asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4728{
4729	enum ctx_state prev_ctx;
4730
4731	if (likely(!preemptible()))
4732		return;
4733
4734	do {
4735		/*
4736		 * Because the function tracer can trace preempt_count_sub()
4737		 * and it also uses preempt_enable/disable_notrace(), if
4738		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739		 * by the function tracer will call this function again and
4740		 * cause infinite recursion.
4741		 *
4742		 * Preemption must be disabled here before the function
4743		 * tracer can trace. Break up preempt_disable() into two
4744		 * calls. One to disable preemption without fear of being
4745		 * traced. The other to still record the preemption latency,
4746		 * which can also be traced by the function tracer.
4747		 */
4748		preempt_disable_notrace();
4749		preempt_latency_start(1);
4750		/*
4751		 * Needs preempt disabled in case user_exit() is traced
4752		 * and the tracer calls preempt_enable_notrace() causing
4753		 * an infinite recursion.
4754		 */
4755		prev_ctx = exception_enter();
4756		__schedule(true);
4757		exception_exit(prev_ctx);
4758
4759		preempt_latency_stop(1);
4760		preempt_enable_no_resched_notrace();
4761	} while (need_resched());
4762}
4763EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4764
4765#endif /* CONFIG_PREEMPTION */
4766
4767/*
4768 * This is the entry point to schedule() from kernel preemption
4769 * off of irq context.
4770 * Note, that this is called and return with irqs disabled. This will
4771 * protect us against recursive calling from irq.
4772 */
4773asmlinkage __visible void __sched preempt_schedule_irq(void)
4774{
4775	enum ctx_state prev_state;
4776
4777	/* Catch callers which need to be fixed */
4778	BUG_ON(preempt_count() || !irqs_disabled());
4779
4780	prev_state = exception_enter();
4781
4782	do {
4783		preempt_disable();
4784		local_irq_enable();
4785		__schedule(true);
4786		local_irq_disable();
4787		sched_preempt_enable_no_resched();
4788	} while (need_resched());
4789
4790	exception_exit(prev_state);
4791}
4792
4793int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4794			  void *key)
4795{
4796	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4797	return try_to_wake_up(curr->private, mode, wake_flags);
4798}
4799EXPORT_SYMBOL(default_wake_function);
4800
4801#ifdef CONFIG_RT_MUTEXES
4802
4803static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4804{
4805	if (pi_task)
4806		prio = min(prio, pi_task->prio);
4807
4808	return prio;
4809}
4810
4811static inline int rt_effective_prio(struct task_struct *p, int prio)
4812{
4813	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4814
4815	return __rt_effective_prio(pi_task, prio);
4816}
4817
4818/*
4819 * rt_mutex_setprio - set the current priority of a task
4820 * @p: task to boost
4821 * @pi_task: donor task
4822 *
4823 * This function changes the 'effective' priority of a task. It does
4824 * not touch ->normal_prio like __setscheduler().
4825 *
4826 * Used by the rt_mutex code to implement priority inheritance
4827 * logic. Call site only calls if the priority of the task changed.
4828 */
4829void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4830{
4831	int prio, oldprio, queued, running, queue_flag =
4832		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4833	const struct sched_class *prev_class;
4834	struct rq_flags rf;
4835	struct rq *rq;
4836
4837	/* XXX used to be waiter->prio, not waiter->task->prio */
4838	prio = __rt_effective_prio(pi_task, p->normal_prio);
4839
4840	/*
4841	 * If nothing changed; bail early.
4842	 */
4843	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4844		return;
4845
4846	rq = __task_rq_lock(p, &rf);
4847	update_rq_clock(rq);
4848	/*
4849	 * Set under pi_lock && rq->lock, such that the value can be used under
4850	 * either lock.
4851	 *
4852	 * Note that there is loads of tricky to make this pointer cache work
4853	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4855	 * task is allowed to run again (and can exit). This ensures the pointer
4856	 * points to a blocked task -- which guaratees the task is present.
4857	 */
4858	p->pi_top_task = pi_task;
4859
4860	/*
4861	 * For FIFO/RR we only need to set prio, if that matches we're done.
4862	 */
4863	if (prio == p->prio && !dl_prio(prio))
4864		goto out_unlock;
4865
4866	/*
4867	 * Idle task boosting is a nono in general. There is one
4868	 * exception, when PREEMPT_RT and NOHZ is active:
4869	 *
4870	 * The idle task calls get_next_timer_interrupt() and holds
4871	 * the timer wheel base->lock on the CPU and another CPU wants
4872	 * to access the timer (probably to cancel it). We can safely
4873	 * ignore the boosting request, as the idle CPU runs this code
4874	 * with interrupts disabled and will complete the lock
4875	 * protected section without being interrupted. So there is no
4876	 * real need to boost.
4877	 */
4878	if (unlikely(p == rq->idle)) {
4879		WARN_ON(p != rq->curr);
4880		WARN_ON(p->pi_blocked_on);
4881		goto out_unlock;
4882	}
4883
4884	trace_sched_pi_setprio(p, pi_task);
4885	oldprio = p->prio;
4886
4887	if (oldprio == prio)
4888		queue_flag &= ~DEQUEUE_MOVE;
4889
4890	prev_class = p->sched_class;
4891	queued = task_on_rq_queued(p);
4892	running = task_current(rq, p);
4893	if (queued)
4894		dequeue_task(rq, p, queue_flag);
4895	if (running)
4896		put_prev_task(rq, p);
4897
4898	/*
4899	 * Boosting condition are:
4900	 * 1. -rt task is running and holds mutex A
4901	 *      --> -dl task blocks on mutex A
4902	 *
4903	 * 2. -dl task is running and holds mutex A
4904	 *      --> -dl task blocks on mutex A and could preempt the
4905	 *          running task
4906	 */
4907	if (dl_prio(prio)) {
 
4908		if (!dl_prio(p->normal_prio) ||
4909		    (pi_task && dl_prio(pi_task->prio) &&
4910		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4911			p->dl.dl_boosted = 1;
4912			queue_flag |= ENQUEUE_REPLENISH;
4913		} else
4914			p->dl.dl_boosted = 0;
4915		p->sched_class = &dl_sched_class;
4916	} else if (rt_prio(prio)) {
4917		if (dl_prio(oldprio))
4918			p->dl.dl_boosted = 0;
4919		if (oldprio < prio)
4920			queue_flag |= ENQUEUE_HEAD;
4921		p->sched_class = &rt_sched_class;
4922	} else {
4923		if (dl_prio(oldprio))
4924			p->dl.dl_boosted = 0;
4925		if (rt_prio(oldprio))
4926			p->rt.timeout = 0;
4927		p->sched_class = &fair_sched_class;
4928	}
4929
4930	p->prio = prio;
4931
 
 
4932	if (queued)
4933		enqueue_task(rq, p, queue_flag);
4934	if (running)
4935		set_next_task(rq, p);
4936
4937	check_class_changed(rq, p, prev_class, oldprio);
4938out_unlock:
4939	/* Avoid rq from going away on us: */
4940	preempt_disable();
4941	__task_rq_unlock(rq, &rf);
4942
4943	balance_callback(rq);
4944	preempt_enable();
4945}
4946#else
4947static inline int rt_effective_prio(struct task_struct *p, int prio)
4948{
4949	return prio;
4950}
4951#endif
4952
4953void set_user_nice(struct task_struct *p, long nice)
4954{
4955	bool queued, running;
4956	int old_prio;
4957	struct rq_flags rf;
4958	struct rq *rq;
4959
4960	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4961		return;
4962	/*
4963	 * We have to be careful, if called from sys_setpriority(),
4964	 * the task might be in the middle of scheduling on another CPU.
4965	 */
4966	rq = task_rq_lock(p, &rf);
4967	update_rq_clock(rq);
4968
4969	/*
4970	 * The RT priorities are set via sched_setscheduler(), but we still
4971	 * allow the 'normal' nice value to be set - but as expected
4972	 * it wont have any effect on scheduling until the task is
4973	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4974	 */
4975	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4976		p->static_prio = NICE_TO_PRIO(nice);
4977		goto out_unlock;
4978	}
4979	queued = task_on_rq_queued(p);
4980	running = task_current(rq, p);
4981	if (queued)
4982		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4983	if (running)
4984		put_prev_task(rq, p);
4985
4986	p->static_prio = NICE_TO_PRIO(nice);
4987	set_load_weight(p, true);
4988	old_prio = p->prio;
4989	p->prio = effective_prio(p);
 
4990
4991	if (queued)
4992		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4993	if (running)
4994		set_next_task(rq, p);
4995
4996	/*
4997	 * If the task increased its priority or is running and
4998	 * lowered its priority, then reschedule its CPU:
4999	 */
5000	p->sched_class->prio_changed(rq, p, old_prio);
5001
5002out_unlock:
5003	task_rq_unlock(rq, p, &rf);
5004}
5005EXPORT_SYMBOL(set_user_nice);
5006
5007/*
5008 * can_nice - check if a task can reduce its nice value
5009 * @p: task
5010 * @nice: nice value
5011 */
5012int can_nice(const struct task_struct *p, const int nice)
5013{
5014	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015	int nice_rlim = nice_to_rlimit(nice);
5016
5017	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5018		capable(CAP_SYS_NICE));
5019}
5020
5021#ifdef __ARCH_WANT_SYS_NICE
5022
5023/*
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5026 *
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5029 */
5030SYSCALL_DEFINE1(nice, int, increment)
5031{
5032	long nice, retval;
5033
5034	/*
5035	 * Setpriority might change our priority at the same moment.
5036	 * We don't have to worry. Conceptually one call occurs first
5037	 * and we have a single winner.
5038	 */
5039	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5040	nice = task_nice(current) + increment;
5041
5042	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5043	if (increment < 0 && !can_nice(current, nice))
5044		return -EPERM;
5045
5046	retval = security_task_setnice(current, nice);
5047	if (retval)
5048		return retval;
5049
5050	set_user_nice(current, nice);
5051	return 0;
5052}
5053
5054#endif
5055
5056/**
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5059 *
5060 * Return: The priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
5063 */
5064int task_prio(const struct task_struct *p)
5065{
5066	return p->prio - MAX_RT_PRIO;
5067}
5068
5069/**
5070 * idle_cpu - is a given CPU idle currently?
5071 * @cpu: the processor in question.
5072 *
5073 * Return: 1 if the CPU is currently idle. 0 otherwise.
5074 */
5075int idle_cpu(int cpu)
5076{
5077	struct rq *rq = cpu_rq(cpu);
5078
5079	if (rq->curr != rq->idle)
5080		return 0;
5081
5082	if (rq->nr_running)
5083		return 0;
5084
5085#ifdef CONFIG_SMP
5086	if (rq->ttwu_pending)
5087		return 0;
5088#endif
5089
5090	return 1;
5091}
5092
5093/**
5094 * available_idle_cpu - is a given CPU idle for enqueuing work.
5095 * @cpu: the CPU in question.
5096 *
5097 * Return: 1 if the CPU is currently idle. 0 otherwise.
5098 */
5099int available_idle_cpu(int cpu)
5100{
5101	if (!idle_cpu(cpu))
5102		return 0;
5103
5104	if (vcpu_is_preempted(cpu))
5105		return 0;
5106
5107	return 1;
5108}
5109
5110/**
5111 * idle_task - return the idle task for a given CPU.
5112 * @cpu: the processor in question.
5113 *
5114 * Return: The idle task for the CPU @cpu.
5115 */
5116struct task_struct *idle_task(int cpu)
5117{
5118	return cpu_rq(cpu)->idle;
5119}
5120
5121/**
5122 * find_process_by_pid - find a process with a matching PID value.
5123 * @pid: the pid in question.
5124 *
5125 * The task of @pid, if found. %NULL otherwise.
5126 */
5127static struct task_struct *find_process_by_pid(pid_t pid)
5128{
5129	return pid ? find_task_by_vpid(pid) : current;
5130}
5131
5132/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5133 * sched_setparam() passes in -1 for its policy, to let the functions
5134 * it calls know not to change it.
5135 */
5136#define SETPARAM_POLICY	-1
5137
5138static void __setscheduler_params(struct task_struct *p,
5139		const struct sched_attr *attr)
5140{
5141	int policy = attr->sched_policy;
5142
5143	if (policy == SETPARAM_POLICY)
5144		policy = p->policy;
5145
5146	p->policy = policy;
5147
5148	if (dl_policy(policy))
5149		__setparam_dl(p, attr);
5150	else if (fair_policy(policy))
5151		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5152
5153	/*
5154	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155	 * !rt_policy. Always setting this ensures that things like
5156	 * getparam()/getattr() don't report silly values for !rt tasks.
5157	 */
5158	p->rt_priority = attr->sched_priority;
5159	p->normal_prio = normal_prio(p);
5160	set_load_weight(p, true);
5161}
5162
5163/* Actually do priority change: must hold pi & rq lock. */
5164static void __setscheduler(struct rq *rq, struct task_struct *p,
5165			   const struct sched_attr *attr, bool keep_boost)
5166{
5167	/*
5168	 * If params can't change scheduling class changes aren't allowed
5169	 * either.
5170	 */
5171	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5172		return;
5173
5174	__setscheduler_params(p, attr);
5175
5176	/*
5177	 * Keep a potential priority boosting if called from
5178	 * sched_setscheduler().
5179	 */
5180	p->prio = normal_prio(p);
5181	if (keep_boost)
5182		p->prio = rt_effective_prio(p, p->prio);
 
 
5183
5184	if (dl_prio(p->prio))
5185		p->sched_class = &dl_sched_class;
5186	else if (rt_prio(p->prio))
5187		p->sched_class = &rt_sched_class;
5188	else
5189		p->sched_class = &fair_sched_class;
5190}
5191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5192/*
5193 * Check the target process has a UID that matches the current process's:
5194 */
5195static bool check_same_owner(struct task_struct *p)
5196{
5197	const struct cred *cred = current_cred(), *pcred;
5198	bool match;
5199
5200	rcu_read_lock();
5201	pcred = __task_cred(p);
5202	match = (uid_eq(cred->euid, pcred->euid) ||
5203		 uid_eq(cred->euid, pcred->uid));
5204	rcu_read_unlock();
5205	return match;
5206}
5207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5208static int __sched_setscheduler(struct task_struct *p,
5209				const struct sched_attr *attr,
5210				bool user, bool pi)
5211{
5212	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5213		      MAX_RT_PRIO - 1 - attr->sched_priority;
5214	int retval, oldprio, oldpolicy = -1, queued, running;
5215	int new_effective_prio, policy = attr->sched_policy;
 
5216	const struct sched_class *prev_class;
5217	struct rq_flags rf;
5218	int reset_on_fork;
5219	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5220	struct rq *rq;
5221
5222	/* The pi code expects interrupts enabled */
5223	BUG_ON(pi && in_interrupt());
5224recheck:
5225	/* Double check policy once rq lock held: */
5226	if (policy < 0) {
5227		reset_on_fork = p->sched_reset_on_fork;
5228		policy = oldpolicy = p->policy;
5229	} else {
5230		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5231
5232		if (!valid_policy(policy))
5233			return -EINVAL;
5234	}
5235
5236	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5237		return -EINVAL;
5238
5239	/*
5240	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5241	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242	 * SCHED_BATCH and SCHED_IDLE is 0.
5243	 */
5244	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5245	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5246		return -EINVAL;
5247	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5248	    (rt_policy(policy) != (attr->sched_priority != 0)))
5249		return -EINVAL;
5250
5251	/*
5252	 * Allow unprivileged RT tasks to decrease priority:
5253	 */
5254	if (user && !capable(CAP_SYS_NICE)) {
5255		if (fair_policy(policy)) {
5256			if (attr->sched_nice < task_nice(p) &&
5257			    !can_nice(p, attr->sched_nice))
5258				return -EPERM;
5259		}
5260
5261		if (rt_policy(policy)) {
5262			unsigned long rlim_rtprio =
5263					task_rlimit(p, RLIMIT_RTPRIO);
5264
5265			/* Can't set/change the rt policy: */
5266			if (policy != p->policy && !rlim_rtprio)
5267				return -EPERM;
5268
5269			/* Can't increase priority: */
5270			if (attr->sched_priority > p->rt_priority &&
5271			    attr->sched_priority > rlim_rtprio)
5272				return -EPERM;
5273		}
5274
5275		 /*
5276		  * Can't set/change SCHED_DEADLINE policy at all for now
5277		  * (safest behavior); in the future we would like to allow
5278		  * unprivileged DL tasks to increase their relative deadline
5279		  * or reduce their runtime (both ways reducing utilization)
5280		  */
5281		if (dl_policy(policy))
5282			return -EPERM;
5283
5284		/*
5285		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287		 */
5288		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5289			if (!can_nice(p, task_nice(p)))
5290				return -EPERM;
5291		}
5292
5293		/* Can't change other user's priorities: */
5294		if (!check_same_owner(p))
5295			return -EPERM;
5296
5297		/* Normal users shall not reset the sched_reset_on_fork flag: */
5298		if (p->sched_reset_on_fork && !reset_on_fork)
5299			return -EPERM;
5300	}
5301
5302	if (user) {
5303		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5304			return -EINVAL;
5305
5306		retval = security_task_setscheduler(p);
5307		if (retval)
5308			return retval;
5309	}
5310
5311	/* Update task specific "requested" clamps */
5312	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5313		retval = uclamp_validate(p, attr);
5314		if (retval)
5315			return retval;
5316	}
5317
5318	if (pi)
5319		cpuset_read_lock();
5320
5321	/*
5322	 * Make sure no PI-waiters arrive (or leave) while we are
5323	 * changing the priority of the task:
5324	 *
5325	 * To be able to change p->policy safely, the appropriate
5326	 * runqueue lock must be held.
5327	 */
5328	rq = task_rq_lock(p, &rf);
5329	update_rq_clock(rq);
5330
5331	/*
5332	 * Changing the policy of the stop threads its a very bad idea:
5333	 */
5334	if (p == rq->stop) {
5335		retval = -EINVAL;
5336		goto unlock;
5337	}
5338
5339	/*
5340	 * If not changing anything there's no need to proceed further,
5341	 * but store a possible modification of reset_on_fork.
5342	 */
5343	if (unlikely(policy == p->policy)) {
5344		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5345			goto change;
5346		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5347			goto change;
5348		if (dl_policy(policy) && dl_param_changed(p, attr))
5349			goto change;
5350		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5351			goto change;
5352
5353		p->sched_reset_on_fork = reset_on_fork;
5354		retval = 0;
5355		goto unlock;
5356	}
5357change:
5358
5359	if (user) {
5360#ifdef CONFIG_RT_GROUP_SCHED
5361		/*
5362		 * Do not allow realtime tasks into groups that have no runtime
5363		 * assigned.
5364		 */
5365		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5366				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5367				!task_group_is_autogroup(task_group(p))) {
5368			retval = -EPERM;
5369			goto unlock;
5370		}
5371#endif
5372#ifdef CONFIG_SMP
5373		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5374				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5375			cpumask_t *span = rq->rd->span;
5376
5377			/*
5378			 * Don't allow tasks with an affinity mask smaller than
5379			 * the entire root_domain to become SCHED_DEADLINE. We
5380			 * will also fail if there's no bandwidth available.
5381			 */
5382			if (!cpumask_subset(span, p->cpus_ptr) ||
5383			    rq->rd->dl_bw.bw == 0) {
5384				retval = -EPERM;
5385				goto unlock;
5386			}
5387		}
5388#endif
5389	}
5390
5391	/* Re-check policy now with rq lock held: */
5392	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5393		policy = oldpolicy = -1;
5394		task_rq_unlock(rq, p, &rf);
5395		if (pi)
5396			cpuset_read_unlock();
5397		goto recheck;
5398	}
5399
5400	/*
5401	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5403	 * is available.
5404	 */
5405	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5406		retval = -EBUSY;
5407		goto unlock;
5408	}
5409
5410	p->sched_reset_on_fork = reset_on_fork;
5411	oldprio = p->prio;
5412
5413	if (pi) {
5414		/*
5415		 * Take priority boosted tasks into account. If the new
5416		 * effective priority is unchanged, we just store the new
5417		 * normal parameters and do not touch the scheduler class and
5418		 * the runqueue. This will be done when the task deboost
5419		 * itself.
5420		 */
5421		new_effective_prio = rt_effective_prio(p, newprio);
5422		if (new_effective_prio == oldprio)
5423			queue_flags &= ~DEQUEUE_MOVE;
5424	}
5425
5426	queued = task_on_rq_queued(p);
5427	running = task_current(rq, p);
5428	if (queued)
5429		dequeue_task(rq, p, queue_flags);
5430	if (running)
5431		put_prev_task(rq, p);
5432
5433	prev_class = p->sched_class;
5434
5435	__setscheduler(rq, p, attr, pi);
5436	__setscheduler_uclamp(p, attr);
5437
 
 
5438	if (queued) {
5439		/*
5440		 * We enqueue to tail when the priority of a task is
5441		 * increased (user space view).
5442		 */
5443		if (oldprio < p->prio)
5444			queue_flags |= ENQUEUE_HEAD;
5445
5446		enqueue_task(rq, p, queue_flags);
5447	}
5448	if (running)
5449		set_next_task(rq, p);
5450
5451	check_class_changed(rq, p, prev_class, oldprio);
 
 
5452
5453	/* Avoid rq from going away on us: */
5454	preempt_disable();
5455	task_rq_unlock(rq, p, &rf);
5456
5457	if (pi) {
5458		cpuset_read_unlock();
5459		rt_mutex_adjust_pi(p);
5460	}
5461
5462	/* Run balance callbacks after we've adjusted the PI chain: */
 
 
5463	balance_callback(rq);
5464	preempt_enable();
5465
5466	return 0;
5467
5468unlock:
5469	task_rq_unlock(rq, p, &rf);
5470	if (pi)
5471		cpuset_read_unlock();
5472	return retval;
5473}
5474
5475static int _sched_setscheduler(struct task_struct *p, int policy,
5476			       const struct sched_param *param, bool check)
5477{
5478	struct sched_attr attr = {
5479		.sched_policy   = policy,
5480		.sched_priority = param->sched_priority,
5481		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5482	};
5483
5484	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5486		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5487		policy &= ~SCHED_RESET_ON_FORK;
5488		attr.sched_policy = policy;
5489	}
5490
5491	return __sched_setscheduler(p, &attr, check, true);
5492}
5493/**
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5498 *
5499 * Use sched_set_fifo(), read its comment.
5500 *
5501 * Return: 0 on success. An error code otherwise.
5502 *
5503 * NOTE that the task may be already dead.
5504 */
5505int sched_setscheduler(struct task_struct *p, int policy,
5506		       const struct sched_param *param)
5507{
5508	return _sched_setscheduler(p, policy, param, true);
5509}
 
5510
5511int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5512{
5513	return __sched_setscheduler(p, attr, true, true);
5514}
5515
5516int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5517{
5518	return __sched_setscheduler(p, attr, false, true);
5519}
5520
5521/**
5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523 * @p: the task in question.
5524 * @policy: new policy.
5525 * @param: structure containing the new RT priority.
5526 *
5527 * Just like sched_setscheduler, only don't bother checking if the
5528 * current context has permission.  For example, this is needed in
5529 * stop_machine(): we create temporary high priority worker threads,
5530 * but our caller might not have that capability.
5531 *
5532 * Return: 0 on success. An error code otherwise.
5533 */
5534int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5535			       const struct sched_param *param)
5536{
5537	return _sched_setscheduler(p, policy, param, false);
5538}
5539
5540/*
5541 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542 * incapable of resource management, which is the one thing an OS really should
5543 * be doing.
5544 *
5545 * This is of course the reason it is limited to privileged users only.
5546 *
5547 * Worse still; it is fundamentally impossible to compose static priority
5548 * workloads. You cannot take two correctly working static prio workloads
5549 * and smash them together and still expect them to work.
5550 *
5551 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5552 *
5553 *   MAX_RT_PRIO / 2
5554 *
5555 * The administrator _MUST_ configure the system, the kernel simply doesn't
5556 * know enough information to make a sensible choice.
5557 */
5558void sched_set_fifo(struct task_struct *p)
5559{
5560	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5561	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5562}
5563EXPORT_SYMBOL_GPL(sched_set_fifo);
5564
5565/*
5566 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5567 */
5568void sched_set_fifo_low(struct task_struct *p)
5569{
5570	struct sched_param sp = { .sched_priority = 1 };
5571	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5572}
5573EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5574
5575void sched_set_normal(struct task_struct *p, int nice)
5576{
5577	struct sched_attr attr = {
5578		.sched_policy = SCHED_NORMAL,
5579		.sched_nice = nice,
5580	};
5581	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5582}
5583EXPORT_SYMBOL_GPL(sched_set_normal);
5584
5585static int
5586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5587{
5588	struct sched_param lparam;
5589	struct task_struct *p;
5590	int retval;
5591
5592	if (!param || pid < 0)
5593		return -EINVAL;
5594	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5595		return -EFAULT;
5596
5597	rcu_read_lock();
5598	retval = -ESRCH;
5599	p = find_process_by_pid(pid);
5600	if (likely(p))
5601		get_task_struct(p);
5602	rcu_read_unlock();
5603
5604	if (likely(p)) {
5605		retval = sched_setscheduler(p, policy, &lparam);
5606		put_task_struct(p);
5607	}
5608
5609	return retval;
5610}
5611
5612/*
5613 * Mimics kernel/events/core.c perf_copy_attr().
5614 */
5615static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
 
5616{
5617	u32 size;
5618	int ret;
5619
5620	/* Zero the full structure, so that a short copy will be nice: */
 
 
 
 
 
5621	memset(attr, 0, sizeof(*attr));
5622
5623	ret = get_user(size, &uattr->size);
5624	if (ret)
5625		return ret;
5626
5627	/* ABI compatibility quirk: */
5628	if (!size)
 
 
5629		size = SCHED_ATTR_SIZE_VER0;
5630	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 
5631		goto err_size;
5632
5633	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5634	if (ret) {
5635		if (ret == -E2BIG)
5636			goto err_size;
5637		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5638	}
5639
5640	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5641	    size < SCHED_ATTR_SIZE_VER1)
5642		return -EINVAL;
5643
5644	/*
5645	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5646	 * to be strict and return an error on out-of-bounds values?
5647	 */
5648	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5649
5650	return 0;
5651
5652err_size:
5653	put_user(sizeof(*attr), &uattr->size);
5654	return -E2BIG;
5655}
5656
5657/**
5658 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659 * @pid: the pid in question.
5660 * @policy: new policy.
5661 * @param: structure containing the new RT priority.
5662 *
5663 * Return: 0 on success. An error code otherwise.
5664 */
5665SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
 
5666{
 
5667	if (policy < 0)
5668		return -EINVAL;
5669
5670	return do_sched_setscheduler(pid, policy, param);
5671}
5672
5673/**
5674 * sys_sched_setparam - set/change the RT priority of a thread
5675 * @pid: the pid in question.
5676 * @param: structure containing the new RT priority.
5677 *
5678 * Return: 0 on success. An error code otherwise.
5679 */
5680SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5681{
5682	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5683}
5684
5685/**
5686 * sys_sched_setattr - same as above, but with extended sched_attr
5687 * @pid: the pid in question.
5688 * @uattr: structure containing the extended parameters.
5689 * @flags: for future extension.
5690 */
5691SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5692			       unsigned int, flags)
5693{
5694	struct sched_attr attr;
5695	struct task_struct *p;
5696	int retval;
5697
5698	if (!uattr || pid < 0 || flags)
5699		return -EINVAL;
5700
5701	retval = sched_copy_attr(uattr, &attr);
5702	if (retval)
5703		return retval;
5704
5705	if ((int)attr.sched_policy < 0)
5706		return -EINVAL;
5707	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5708		attr.sched_policy = SETPARAM_POLICY;
5709
5710	rcu_read_lock();
5711	retval = -ESRCH;
5712	p = find_process_by_pid(pid);
5713	if (likely(p))
5714		get_task_struct(p);
5715	rcu_read_unlock();
5716
5717	if (likely(p)) {
5718		retval = sched_setattr(p, &attr);
5719		put_task_struct(p);
5720	}
5721
5722	return retval;
5723}
5724
5725/**
5726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727 * @pid: the pid in question.
5728 *
5729 * Return: On success, the policy of the thread. Otherwise, a negative error
5730 * code.
5731 */
5732SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5733{
5734	struct task_struct *p;
5735	int retval;
5736
5737	if (pid < 0)
5738		return -EINVAL;
5739
5740	retval = -ESRCH;
5741	rcu_read_lock();
5742	p = find_process_by_pid(pid);
5743	if (p) {
5744		retval = security_task_getscheduler(p);
5745		if (!retval)
5746			retval = p->policy
5747				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5748	}
5749	rcu_read_unlock();
5750	return retval;
5751}
5752
5753/**
5754 * sys_sched_getparam - get the RT priority of a thread
5755 * @pid: the pid in question.
5756 * @param: structure containing the RT priority.
5757 *
5758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5759 * code.
5760 */
5761SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5762{
5763	struct sched_param lp = { .sched_priority = 0 };
5764	struct task_struct *p;
5765	int retval;
5766
5767	if (!param || pid < 0)
5768		return -EINVAL;
5769
5770	rcu_read_lock();
5771	p = find_process_by_pid(pid);
5772	retval = -ESRCH;
5773	if (!p)
5774		goto out_unlock;
5775
5776	retval = security_task_getscheduler(p);
5777	if (retval)
5778		goto out_unlock;
5779
5780	if (task_has_rt_policy(p))
5781		lp.sched_priority = p->rt_priority;
5782	rcu_read_unlock();
5783
5784	/*
5785	 * This one might sleep, we cannot do it with a spinlock held ...
5786	 */
5787	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5788
5789	return retval;
5790
5791out_unlock:
5792	rcu_read_unlock();
5793	return retval;
5794}
5795
5796/*
5797 * Copy the kernel size attribute structure (which might be larger
5798 * than what user-space knows about) to user-space.
5799 *
5800 * Note that all cases are valid: user-space buffer can be larger or
5801 * smaller than the kernel-space buffer. The usual case is that both
5802 * have the same size.
5803 */
5804static int
5805sched_attr_copy_to_user(struct sched_attr __user *uattr,
5806			struct sched_attr *kattr,
5807			unsigned int usize)
5808{
5809	unsigned int ksize = sizeof(*kattr);
5810
5811	if (!access_ok(uattr, usize))
5812		return -EFAULT;
5813
5814	/*
5815	 * sched_getattr() ABI forwards and backwards compatibility:
5816	 *
5817	 * If usize == ksize then we just copy everything to user-space and all is good.
5818	 *
5819	 * If usize < ksize then we only copy as much as user-space has space for,
5820	 * this keeps ABI compatibility as well. We skip the rest.
5821	 *
5822	 * If usize > ksize then user-space is using a newer version of the ABI,
5823	 * which part the kernel doesn't know about. Just ignore it - tooling can
5824	 * detect the kernel's knowledge of attributes from the attr->size value
5825	 * which is set to ksize in this case.
5826	 */
5827	kattr->size = min(usize, ksize);
 
 
 
 
 
5828
5829	if (copy_to_user(uattr, kattr, kattr->size))
 
5830		return -EFAULT;
5831
5832	return 0;
5833}
5834
5835/**
5836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837 * @pid: the pid in question.
5838 * @uattr: structure containing the extended parameters.
5839 * @usize: sizeof(attr) for fwd/bwd comp.
5840 * @flags: for future extension.
5841 */
5842SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5843		unsigned int, usize, unsigned int, flags)
5844{
5845	struct sched_attr kattr = { };
 
 
5846	struct task_struct *p;
5847	int retval;
5848
5849	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5850	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5851		return -EINVAL;
5852
5853	rcu_read_lock();
5854	p = find_process_by_pid(pid);
5855	retval = -ESRCH;
5856	if (!p)
5857		goto out_unlock;
5858
5859	retval = security_task_getscheduler(p);
5860	if (retval)
5861		goto out_unlock;
5862
5863	kattr.sched_policy = p->policy;
5864	if (p->sched_reset_on_fork)
5865		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5866	if (task_has_dl_policy(p))
5867		__getparam_dl(p, &kattr);
5868	else if (task_has_rt_policy(p))
5869		kattr.sched_priority = p->rt_priority;
5870	else
5871		kattr.sched_nice = task_nice(p);
5872
5873#ifdef CONFIG_UCLAMP_TASK
5874	/*
5875	 * This could race with another potential updater, but this is fine
5876	 * because it'll correctly read the old or the new value. We don't need
5877	 * to guarantee who wins the race as long as it doesn't return garbage.
5878	 */
5879	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5880	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5881#endif
5882
5883	rcu_read_unlock();
5884
5885	return sched_attr_copy_to_user(uattr, &kattr, usize);
 
5886
5887out_unlock:
5888	rcu_read_unlock();
5889	return retval;
5890}
5891
5892long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5893{
5894	cpumask_var_t cpus_allowed, new_mask;
5895	struct task_struct *p;
5896	int retval;
5897
5898	rcu_read_lock();
5899
5900	p = find_process_by_pid(pid);
5901	if (!p) {
5902		rcu_read_unlock();
5903		return -ESRCH;
5904	}
5905
5906	/* Prevent p going away */
5907	get_task_struct(p);
5908	rcu_read_unlock();
5909
5910	if (p->flags & PF_NO_SETAFFINITY) {
5911		retval = -EINVAL;
5912		goto out_put_task;
5913	}
5914	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5915		retval = -ENOMEM;
5916		goto out_put_task;
5917	}
5918	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5919		retval = -ENOMEM;
5920		goto out_free_cpus_allowed;
5921	}
5922	retval = -EPERM;
5923	if (!check_same_owner(p)) {
5924		rcu_read_lock();
5925		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5926			rcu_read_unlock();
5927			goto out_free_new_mask;
5928		}
5929		rcu_read_unlock();
5930	}
5931
5932	retval = security_task_setscheduler(p);
5933	if (retval)
5934		goto out_free_new_mask;
5935
5936
5937	cpuset_cpus_allowed(p, cpus_allowed);
5938	cpumask_and(new_mask, in_mask, cpus_allowed);
5939
5940	/*
5941	 * Since bandwidth control happens on root_domain basis,
5942	 * if admission test is enabled, we only admit -deadline
5943	 * tasks allowed to run on all the CPUs in the task's
5944	 * root_domain.
5945	 */
5946#ifdef CONFIG_SMP
5947	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5948		rcu_read_lock();
5949		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5950			retval = -EBUSY;
5951			rcu_read_unlock();
5952			goto out_free_new_mask;
5953		}
5954		rcu_read_unlock();
5955	}
5956#endif
5957again:
5958	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5959
5960	if (!retval) {
5961		cpuset_cpus_allowed(p, cpus_allowed);
5962		if (!cpumask_subset(new_mask, cpus_allowed)) {
5963			/*
5964			 * We must have raced with a concurrent cpuset
5965			 * update. Just reset the cpus_allowed to the
5966			 * cpuset's cpus_allowed
5967			 */
5968			cpumask_copy(new_mask, cpus_allowed);
5969			goto again;
5970		}
5971	}
5972out_free_new_mask:
5973	free_cpumask_var(new_mask);
5974out_free_cpus_allowed:
5975	free_cpumask_var(cpus_allowed);
5976out_put_task:
5977	put_task_struct(p);
5978	return retval;
5979}
5980
5981static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5982			     struct cpumask *new_mask)
5983{
5984	if (len < cpumask_size())
5985		cpumask_clear(new_mask);
5986	else if (len > cpumask_size())
5987		len = cpumask_size();
5988
5989	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5990}
5991
5992/**
5993 * sys_sched_setaffinity - set the CPU affinity of a process
5994 * @pid: pid of the process
5995 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996 * @user_mask_ptr: user-space pointer to the new CPU mask
5997 *
5998 * Return: 0 on success. An error code otherwise.
5999 */
6000SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6001		unsigned long __user *, user_mask_ptr)
6002{
6003	cpumask_var_t new_mask;
6004	int retval;
6005
6006	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6007		return -ENOMEM;
6008
6009	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6010	if (retval == 0)
6011		retval = sched_setaffinity(pid, new_mask);
6012	free_cpumask_var(new_mask);
6013	return retval;
6014}
6015
6016long sched_getaffinity(pid_t pid, struct cpumask *mask)
6017{
6018	struct task_struct *p;
6019	unsigned long flags;
6020	int retval;
6021
6022	rcu_read_lock();
6023
6024	retval = -ESRCH;
6025	p = find_process_by_pid(pid);
6026	if (!p)
6027		goto out_unlock;
6028
6029	retval = security_task_getscheduler(p);
6030	if (retval)
6031		goto out_unlock;
6032
6033	raw_spin_lock_irqsave(&p->pi_lock, flags);
6034	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6035	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6036
6037out_unlock:
6038	rcu_read_unlock();
6039
6040	return retval;
6041}
6042
6043/**
6044 * sys_sched_getaffinity - get the CPU affinity of a process
6045 * @pid: pid of the process
6046 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6048 *
6049 * Return: size of CPU mask copied to user_mask_ptr on success. An
6050 * error code otherwise.
6051 */
6052SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6053		unsigned long __user *, user_mask_ptr)
6054{
6055	int ret;
6056	cpumask_var_t mask;
6057
6058	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6059		return -EINVAL;
6060	if (len & (sizeof(unsigned long)-1))
6061		return -EINVAL;
6062
6063	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064		return -ENOMEM;
6065
6066	ret = sched_getaffinity(pid, mask);
6067	if (ret == 0) {
6068		unsigned int retlen = min(len, cpumask_size());
6069
6070		if (copy_to_user(user_mask_ptr, mask, retlen))
6071			ret = -EFAULT;
6072		else
6073			ret = retlen;
6074	}
6075	free_cpumask_var(mask);
6076
6077	return ret;
6078}
6079
6080/**
6081 * sys_sched_yield - yield the current processor to other threads.
6082 *
6083 * This function yields the current CPU to other tasks. If there are no
6084 * other threads running on this CPU then this function will return.
6085 *
6086 * Return: 0.
6087 */
6088static void do_sched_yield(void)
6089{
6090	struct rq_flags rf;
6091	struct rq *rq;
6092
6093	rq = this_rq_lock_irq(&rf);
6094
6095	schedstat_inc(rq->yld_count);
6096	current->sched_class->yield_task(rq);
6097
6098	/*
6099	 * Since we are going to call schedule() anyway, there's
6100	 * no need to preempt or enable interrupts:
6101	 */
6102	preempt_disable();
6103	rq_unlock(rq, &rf);
 
6104	sched_preempt_enable_no_resched();
6105
6106	schedule();
6107}
6108
6109SYSCALL_DEFINE0(sched_yield)
6110{
6111	do_sched_yield();
6112	return 0;
6113}
6114
6115#ifndef CONFIG_PREEMPTION
6116int __sched _cond_resched(void)
6117{
6118	if (should_resched(0)) {
6119		preempt_schedule_common();
6120		return 1;
6121	}
6122	rcu_all_qs();
6123	return 0;
6124}
6125EXPORT_SYMBOL(_cond_resched);
6126#endif
6127
6128/*
6129 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130 * call schedule, and on return reacquire the lock.
6131 *
6132 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133 * operations here to prevent schedule() from being called twice (once via
6134 * spin_unlock(), once by hand).
6135 */
6136int __cond_resched_lock(spinlock_t *lock)
6137{
6138	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6139	int ret = 0;
6140
6141	lockdep_assert_held(lock);
6142
6143	if (spin_needbreak(lock) || resched) {
6144		spin_unlock(lock);
6145		if (resched)
6146			preempt_schedule_common();
6147		else
6148			cpu_relax();
6149		ret = 1;
6150		spin_lock(lock);
6151	}
6152	return ret;
6153}
6154EXPORT_SYMBOL(__cond_resched_lock);
6155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156/**
6157 * yield - yield the current processor to other threads.
6158 *
6159 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6160 *
6161 * The scheduler is at all times free to pick the calling task as the most
6162 * eligible task to run, if removing the yield() call from your code breaks
6163 * it, its already broken.
6164 *
6165 * Typical broken usage is:
6166 *
6167 * while (!event)
6168 *	yield();
6169 *
6170 * where one assumes that yield() will let 'the other' process run that will
6171 * make event true. If the current task is a SCHED_FIFO task that will never
6172 * happen. Never use yield() as a progress guarantee!!
6173 *
6174 * If you want to use yield() to wait for something, use wait_event().
6175 * If you want to use yield() to be 'nice' for others, use cond_resched().
6176 * If you still want to use yield(), do not!
6177 */
6178void __sched yield(void)
6179{
6180	set_current_state(TASK_RUNNING);
6181	do_sched_yield();
6182}
6183EXPORT_SYMBOL(yield);
6184
6185/**
6186 * yield_to - yield the current processor to another thread in
6187 * your thread group, or accelerate that thread toward the
6188 * processor it's on.
6189 * @p: target task
6190 * @preempt: whether task preemption is allowed or not
6191 *
6192 * It's the caller's job to ensure that the target task struct
6193 * can't go away on us before we can do any checks.
6194 *
6195 * Return:
6196 *	true (>0) if we indeed boosted the target task.
6197 *	false (0) if we failed to boost the target.
6198 *	-ESRCH if there's no task to yield to.
6199 */
6200int __sched yield_to(struct task_struct *p, bool preempt)
6201{
6202	struct task_struct *curr = current;
6203	struct rq *rq, *p_rq;
6204	unsigned long flags;
6205	int yielded = 0;
6206
6207	local_irq_save(flags);
6208	rq = this_rq();
6209
6210again:
6211	p_rq = task_rq(p);
6212	/*
6213	 * If we're the only runnable task on the rq and target rq also
6214	 * has only one task, there's absolutely no point in yielding.
6215	 */
6216	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6217		yielded = -ESRCH;
6218		goto out_irq;
6219	}
6220
6221	double_rq_lock(rq, p_rq);
6222	if (task_rq(p) != p_rq) {
6223		double_rq_unlock(rq, p_rq);
6224		goto again;
6225	}
6226
6227	if (!curr->sched_class->yield_to_task)
6228		goto out_unlock;
6229
6230	if (curr->sched_class != p->sched_class)
6231		goto out_unlock;
6232
6233	if (task_running(p_rq, p) || p->state)
6234		goto out_unlock;
6235
6236	yielded = curr->sched_class->yield_to_task(rq, p);
6237	if (yielded) {
6238		schedstat_inc(rq->yld_count);
6239		/*
6240		 * Make p's CPU reschedule; pick_next_entity takes care of
6241		 * fairness.
6242		 */
6243		if (preempt && rq != p_rq)
6244			resched_curr(p_rq);
6245	}
6246
6247out_unlock:
6248	double_rq_unlock(rq, p_rq);
6249out_irq:
6250	local_irq_restore(flags);
6251
6252	if (yielded > 0)
6253		schedule();
6254
6255	return yielded;
6256}
6257EXPORT_SYMBOL_GPL(yield_to);
6258
6259int io_schedule_prepare(void)
6260{
6261	int old_iowait = current->in_iowait;
6262
6263	current->in_iowait = 1;
6264	blk_schedule_flush_plug(current);
6265
6266	return old_iowait;
6267}
6268
6269void io_schedule_finish(int token)
6270{
6271	current->in_iowait = token;
6272}
6273
6274/*
6275 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276 * that process accounting knows that this is a task in IO wait state.
6277 */
6278long __sched io_schedule_timeout(long timeout)
6279{
6280	int token;
 
6281	long ret;
6282
6283	token = io_schedule_prepare();
 
 
 
 
 
6284	ret = schedule_timeout(timeout);
6285	io_schedule_finish(token);
 
 
6286
6287	return ret;
6288}
6289EXPORT_SYMBOL(io_schedule_timeout);
6290
6291void __sched io_schedule(void)
6292{
6293	int token;
6294
6295	token = io_schedule_prepare();
6296	schedule();
6297	io_schedule_finish(token);
6298}
6299EXPORT_SYMBOL(io_schedule);
6300
6301/**
6302 * sys_sched_get_priority_max - return maximum RT priority.
6303 * @policy: scheduling class.
6304 *
6305 * Return: On success, this syscall returns the maximum
6306 * rt_priority that can be used by a given scheduling class.
6307 * On failure, a negative error code is returned.
6308 */
6309SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6310{
6311	int ret = -EINVAL;
6312
6313	switch (policy) {
6314	case SCHED_FIFO:
6315	case SCHED_RR:
6316		ret = MAX_USER_RT_PRIO-1;
6317		break;
6318	case SCHED_DEADLINE:
6319	case SCHED_NORMAL:
6320	case SCHED_BATCH:
6321	case SCHED_IDLE:
6322		ret = 0;
6323		break;
6324	}
6325	return ret;
6326}
6327
6328/**
6329 * sys_sched_get_priority_min - return minimum RT priority.
6330 * @policy: scheduling class.
6331 *
6332 * Return: On success, this syscall returns the minimum
6333 * rt_priority that can be used by a given scheduling class.
6334 * On failure, a negative error code is returned.
6335 */
6336SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6337{
6338	int ret = -EINVAL;
6339
6340	switch (policy) {
6341	case SCHED_FIFO:
6342	case SCHED_RR:
6343		ret = 1;
6344		break;
6345	case SCHED_DEADLINE:
6346	case SCHED_NORMAL:
6347	case SCHED_BATCH:
6348	case SCHED_IDLE:
6349		ret = 0;
6350	}
6351	return ret;
6352}
6353
6354static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
 
 
 
 
 
 
 
 
 
 
 
 
6355{
6356	struct task_struct *p;
6357	unsigned int time_slice;
6358	struct rq_flags rf;
6359	struct rq *rq;
6360	int retval;
 
6361
6362	if (pid < 0)
6363		return -EINVAL;
6364
6365	retval = -ESRCH;
6366	rcu_read_lock();
6367	p = find_process_by_pid(pid);
6368	if (!p)
6369		goto out_unlock;
6370
6371	retval = security_task_getscheduler(p);
6372	if (retval)
6373		goto out_unlock;
6374
6375	rq = task_rq_lock(p, &rf);
6376	time_slice = 0;
6377	if (p->sched_class->get_rr_interval)
6378		time_slice = p->sched_class->get_rr_interval(rq, p);
6379	task_rq_unlock(rq, p, &rf);
6380
6381	rcu_read_unlock();
6382	jiffies_to_timespec64(time_slice, t);
6383	return 0;
 
6384
6385out_unlock:
6386	rcu_read_unlock();
6387	return retval;
6388}
6389
6390/**
6391 * sys_sched_rr_get_interval - return the default timeslice of a process.
6392 * @pid: pid of the process.
6393 * @interval: userspace pointer to the timeslice value.
6394 *
6395 * this syscall writes the default timeslice value of a given process
6396 * into the user-space timespec buffer. A value of '0' means infinity.
6397 *
6398 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6399 * an error code.
6400 */
6401SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6402		struct __kernel_timespec __user *, interval)
6403{
6404	struct timespec64 t;
6405	int retval = sched_rr_get_interval(pid, &t);
6406
6407	if (retval == 0)
6408		retval = put_timespec64(&t, interval);
6409
6410	return retval;
6411}
6412
6413#ifdef CONFIG_COMPAT_32BIT_TIME
6414SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6415		struct old_timespec32 __user *, interval)
6416{
6417	struct timespec64 t;
6418	int retval = sched_rr_get_interval(pid, &t);
6419
6420	if (retval == 0)
6421		retval = put_old_timespec32(&t, interval);
6422	return retval;
6423}
6424#endif
6425
6426void sched_show_task(struct task_struct *p)
6427{
6428	unsigned long free = 0;
6429	int ppid;
 
6430
6431	if (!try_get_task_stack(p))
6432		return;
6433
6434	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6435
6436	if (p->state == TASK_RUNNING)
6437		pr_cont("  running task    ");
 
 
 
 
 
 
 
 
6438#ifdef CONFIG_DEBUG_STACK_USAGE
6439	free = stack_not_used(p);
6440#endif
6441	ppid = 0;
6442	rcu_read_lock();
6443	if (pid_alive(p))
6444		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6445	rcu_read_unlock();
6446	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447		free, task_pid_nr(p), ppid,
6448		(unsigned long)task_thread_info(p)->flags);
6449
6450	print_worker_info(KERN_INFO, p);
6451	show_stack(p, NULL, KERN_INFO);
6452	put_task_stack(p);
6453}
6454EXPORT_SYMBOL_GPL(sched_show_task);
6455
6456static inline bool
6457state_filter_match(unsigned long state_filter, struct task_struct *p)
6458{
6459	/* no filter, everything matches */
6460	if (!state_filter)
6461		return true;
6462
6463	/* filter, but doesn't match */
6464	if (!(p->state & state_filter))
6465		return false;
6466
6467	/*
6468	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6469	 * TASK_KILLABLE).
6470	 */
6471	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6472		return false;
6473
6474	return true;
6475}
6476
6477
6478void show_state_filter(unsigned long state_filter)
6479{
6480	struct task_struct *g, *p;
6481
 
 
 
 
 
 
 
6482	rcu_read_lock();
6483	for_each_process_thread(g, p) {
6484		/*
6485		 * reset the NMI-timeout, listing all files on a slow
6486		 * console might take a lot of time:
6487		 * Also, reset softlockup watchdogs on all CPUs, because
6488		 * another CPU might be blocked waiting for us to process
6489		 * an IPI.
6490		 */
6491		touch_nmi_watchdog();
6492		touch_all_softlockup_watchdogs();
6493		if (state_filter_match(state_filter, p))
6494			sched_show_task(p);
6495	}
6496
 
 
6497#ifdef CONFIG_SCHED_DEBUG
6498	if (!state_filter)
6499		sysrq_sched_debug_show();
6500#endif
6501	rcu_read_unlock();
6502	/*
6503	 * Only show locks if all tasks are dumped:
6504	 */
6505	if (!state_filter)
6506		debug_show_all_locks();
6507}
6508
 
 
 
 
 
6509/**
6510 * init_idle - set up an idle thread for a given CPU
6511 * @idle: task in question
6512 * @cpu: CPU the idle task belongs to
6513 *
6514 * NOTE: this function does not set the idle thread's NEED_RESCHED
6515 * flag, to make booting more robust.
6516 */
6517void init_idle(struct task_struct *idle, int cpu)
6518{
6519	struct rq *rq = cpu_rq(cpu);
6520	unsigned long flags;
6521
6522	__sched_fork(0, idle);
6523
6524	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6525	raw_spin_lock(&rq->lock);
6526
 
6527	idle->state = TASK_RUNNING;
6528	idle->se.exec_start = sched_clock();
6529	idle->flags |= PF_IDLE;
6530
6531	scs_task_reset(idle);
6532	kasan_unpoison_task_stack(idle);
6533
6534#ifdef CONFIG_SMP
6535	/*
6536	 * Its possible that init_idle() gets called multiple times on a task,
6537	 * in that case do_set_cpus_allowed() will not do the right thing.
6538	 *
6539	 * And since this is boot we can forgo the serialization.
6540	 */
6541	set_cpus_allowed_common(idle, cpumask_of(cpu));
6542#endif
6543	/*
6544	 * We're having a chicken and egg problem, even though we are
6545	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6546	 * lockdep check in task_group() will fail.
6547	 *
6548	 * Similar case to sched_fork(). / Alternatively we could
6549	 * use task_rq_lock() here and obtain the other rq->lock.
6550	 *
6551	 * Silence PROVE_RCU
6552	 */
6553	rcu_read_lock();
6554	__set_task_cpu(idle, cpu);
6555	rcu_read_unlock();
6556
6557	rq->idle = idle;
6558	rcu_assign_pointer(rq->curr, idle);
6559	idle->on_rq = TASK_ON_RQ_QUEUED;
6560#ifdef CONFIG_SMP
6561	idle->on_cpu = 1;
6562#endif
6563	raw_spin_unlock(&rq->lock);
6564	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6565
6566	/* Set the preempt count _outside_ the spinlocks! */
6567	init_idle_preempt_count(idle, cpu);
6568
6569	/*
6570	 * The idle tasks have their own, simple scheduling class:
6571	 */
6572	idle->sched_class = &idle_sched_class;
6573	ftrace_graph_init_idle_task(idle, cpu);
6574	vtime_init_idle(idle, cpu);
6575#ifdef CONFIG_SMP
6576	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6577#endif
6578}
6579
6580#ifdef CONFIG_SMP
6581
6582int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6583			      const struct cpumask *trial)
6584{
6585	int ret = 1;
 
 
6586
6587	if (!cpumask_weight(cur))
6588		return ret;
6589
6590	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
 
 
 
 
 
 
 
 
 
6591
6592	return ret;
6593}
6594
6595int task_can_attach(struct task_struct *p,
6596		    const struct cpumask *cs_cpus_allowed)
6597{
6598	int ret = 0;
6599
6600	/*
6601	 * Kthreads which disallow setaffinity shouldn't be moved
6602	 * to a new cpuset; we don't want to change their CPU
6603	 * affinity and isolating such threads by their set of
6604	 * allowed nodes is unnecessary.  Thus, cpusets are not
6605	 * applicable for such threads.  This prevents checking for
6606	 * success of set_cpus_allowed_ptr() on all attached tasks
6607	 * before cpus_mask may be changed.
6608	 */
6609	if (p->flags & PF_NO_SETAFFINITY) {
6610		ret = -EINVAL;
6611		goto out;
6612	}
6613
 
6614	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6615					      cs_cpus_allowed))
6616		ret = dl_task_can_attach(p, cs_cpus_allowed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6617
 
 
6618out:
6619	return ret;
6620}
6621
6622bool sched_smp_initialized __read_mostly;
6623
6624#ifdef CONFIG_NUMA_BALANCING
6625/* Migrate current task p to target_cpu */
6626int migrate_task_to(struct task_struct *p, int target_cpu)
6627{
6628	struct migration_arg arg = { p, target_cpu };
6629	int curr_cpu = task_cpu(p);
6630
6631	if (curr_cpu == target_cpu)
6632		return 0;
6633
6634	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6635		return -EINVAL;
6636
6637	/* TODO: This is not properly updating schedstats */
6638
6639	trace_sched_move_numa(p, curr_cpu, target_cpu);
6640	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6641}
6642
6643/*
6644 * Requeue a task on a given node and accurately track the number of NUMA
6645 * tasks on the runqueues
6646 */
6647void sched_setnuma(struct task_struct *p, int nid)
6648{
 
 
6649	bool queued, running;
6650	struct rq_flags rf;
6651	struct rq *rq;
6652
6653	rq = task_rq_lock(p, &rf);
6654	queued = task_on_rq_queued(p);
6655	running = task_current(rq, p);
6656
6657	if (queued)
6658		dequeue_task(rq, p, DEQUEUE_SAVE);
6659	if (running)
6660		put_prev_task(rq, p);
6661
6662	p->numa_preferred_nid = nid;
6663
 
 
6664	if (queued)
6665		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6666	if (running)
6667		set_next_task(rq, p);
6668	task_rq_unlock(rq, p, &rf);
6669}
6670#endif /* CONFIG_NUMA_BALANCING */
6671
6672#ifdef CONFIG_HOTPLUG_CPU
6673/*
6674 * Ensure that the idle task is using init_mm right before its CPU goes
6675 * offline.
6676 */
6677void idle_task_exit(void)
6678{
6679	struct mm_struct *mm = current->active_mm;
6680
6681	BUG_ON(cpu_online(smp_processor_id()));
6682	BUG_ON(current != this_rq()->idle);
6683
6684	if (mm != &init_mm) {
6685		switch_mm(mm, &init_mm, current);
6686		finish_arch_post_lock_switch();
6687	}
6688
6689	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6690}
6691
6692/*
6693 * Since this CPU is going 'away' for a while, fold any nr_active delta
6694 * we might have. Assumes we're called after migrate_tasks() so that the
6695 * nr_active count is stable. We need to take the teardown thread which
6696 * is calling this into account, so we hand in adjust = 1 to the load
6697 * calculation.
6698 *
6699 * Also see the comment "Global load-average calculations".
6700 */
6701static void calc_load_migrate(struct rq *rq)
6702{
6703	long delta = calc_load_fold_active(rq, 1);
6704	if (delta)
6705		atomic_long_add(delta, &calc_load_tasks);
6706}
6707
6708static struct task_struct *__pick_migrate_task(struct rq *rq)
6709{
6710	const struct sched_class *class;
6711	struct task_struct *next;
6712
6713	for_each_class(class) {
6714		next = class->pick_next_task(rq);
6715		if (next) {
6716			next->sched_class->put_prev_task(rq, next);
6717			return next;
6718		}
6719	}
6720
6721	/* The idle class should always have a runnable task */
6722	BUG();
6723}
 
 
 
 
6724
6725/*
6726 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727 * try_to_wake_up()->select_task_rq().
6728 *
6729 * Called with rq->lock held even though we'er in stop_machine() and
6730 * there's no concurrency possible, we hold the required locks anyway
6731 * because of lock validation efforts.
6732 */
6733static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6734{
6735	struct rq *rq = dead_rq;
6736	struct task_struct *next, *stop = rq->stop;
6737	struct rq_flags orf = *rf;
6738	int dest_cpu;
6739
6740	/*
6741	 * Fudge the rq selection such that the below task selection loop
6742	 * doesn't get stuck on the currently eligible stop task.
6743	 *
6744	 * We're currently inside stop_machine() and the rq is either stuck
6745	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746	 * either way we should never end up calling schedule() until we're
6747	 * done here.
6748	 */
6749	rq->stop = NULL;
6750
6751	/*
6752	 * put_prev_task() and pick_next_task() sched
6753	 * class method both need to have an up-to-date
6754	 * value of rq->clock[_task]
6755	 */
6756	update_rq_clock(rq);
6757
6758	for (;;) {
6759		/*
6760		 * There's this thread running, bail when that's the only
6761		 * remaining thread:
6762		 */
6763		if (rq->nr_running == 1)
6764			break;
6765
6766		next = __pick_migrate_task(rq);
 
 
 
 
 
 
6767
6768		/*
6769		 * Rules for changing task_struct::cpus_mask are holding
6770		 * both pi_lock and rq->lock, such that holding either
6771		 * stabilizes the mask.
6772		 *
6773		 * Drop rq->lock is not quite as disastrous as it usually is
6774		 * because !cpu_active at this point, which means load-balance
6775		 * will not interfere. Also, stop-machine.
6776		 */
6777		rq_unlock(rq, rf);
 
6778		raw_spin_lock(&next->pi_lock);
6779		rq_relock(rq, rf);
6780
6781		/*
6782		 * Since we're inside stop-machine, _nothing_ should have
6783		 * changed the task, WARN if weird stuff happened, because in
6784		 * that case the above rq->lock drop is a fail too.
6785		 */
6786		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6787			raw_spin_unlock(&next->pi_lock);
6788			continue;
6789		}
6790
6791		/* Find suitable destination for @next, with force if needed. */
6792		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6793		rq = __migrate_task(rq, rf, next, dest_cpu);
 
6794		if (rq != dead_rq) {
6795			rq_unlock(rq, rf);
6796			rq = dead_rq;
6797			*rf = orf;
6798			rq_relock(rq, rf);
6799		}
6800		raw_spin_unlock(&next->pi_lock);
6801	}
6802
6803	rq->stop = stop;
6804}
6805#endif /* CONFIG_HOTPLUG_CPU */
6806
6807void set_rq_online(struct rq *rq)
6808{
6809	if (!rq->online) {
6810		const struct sched_class *class;
6811
6812		cpumask_set_cpu(rq->cpu, rq->rd->online);
6813		rq->online = 1;
6814
6815		for_each_class(class) {
6816			if (class->rq_online)
6817				class->rq_online(rq);
6818		}
6819	}
6820}
6821
6822void set_rq_offline(struct rq *rq)
6823{
6824	if (rq->online) {
6825		const struct sched_class *class;
6826
6827		for_each_class(class) {
6828			if (class->rq_offline)
6829				class->rq_offline(rq);
6830		}
6831
6832		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6833		rq->online = 0;
6834	}
6835}
6836
6837/*
6838 * used to mark begin/end of suspend/resume:
 
6839 */
6840static int num_cpus_frozen;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6841
6842/*
6843 * Update cpusets according to cpu_active mask.  If cpusets are
6844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845 * around partition_sched_domains().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6846 *
6847 * If we come here as part of a suspend/resume, don't touch cpusets because we
6848 * want to restore it back to its original state upon resume anyway.
6849 */
6850static void cpuset_cpu_active(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6851{
6852	if (cpuhp_tasks_frozen) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6853		/*
6854		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855		 * resume sequence. As long as this is not the last online
6856		 * operation in the resume sequence, just build a single sched
6857		 * domain, ignoring cpusets.
6858		 */
6859		partition_sched_domains(1, NULL, NULL);
6860		if (--num_cpus_frozen)
6861			return;
6862		/*
6863		 * This is the last CPU online operation. So fall through and
6864		 * restore the original sched domains by considering the
6865		 * cpuset configurations.
6866		 */
6867		cpuset_force_rebuild();
 
 
 
 
 
 
 
 
 
6868	}
6869	cpuset_update_active_cpus();
 
 
 
 
 
 
 
6870}
6871
6872static int cpuset_cpu_inactive(unsigned int cpu)
6873{
6874	if (!cpuhp_tasks_frozen) {
6875		if (dl_cpu_busy(cpu))
6876			return -EBUSY;
6877		cpuset_update_active_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6878	} else {
6879		num_cpus_frozen++;
6880		partition_sched_domains(1, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6881	}
6882	return 0;
6883}
6884
6885int sched_cpu_activate(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6886{
6887	struct rq *rq = cpu_rq(cpu);
6888	struct rq_flags rf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6889
 
 
 
 
6890#ifdef CONFIG_SCHED_SMT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6891	/*
6892	 * When going up, increment the number of cores with SMT present.
 
 
 
 
6893	 */
6894	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6895		static_branch_inc_cpuslocked(&sched_smt_present);
6896#endif
6897	set_cpu_active(cpu, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6898
6899	if (sched_smp_initialized) {
6900		sched_domains_numa_masks_set(cpu);
6901		cpuset_cpu_active();
 
 
6902	}
6903
 
 
 
6904	/*
6905	 * Put the rq online, if not already. This happens:
 
6906	 *
6907	 * 1) In the early boot process, because we build the real domains
6908	 *    after all CPUs have been brought up.
 
 
 
 
 
 
 
 
6909	 *
6910	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6911	 *    domains.
 
 
 
 
 
 
 
 
 
6912	 */
6913	rq_lock_irqsave(rq, &rf);
6914	if (rq->rd) {
6915		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6916		set_rq_online(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6917	}
6918	rq_unlock_irqrestore(rq, &rf);
6919
6920	return 0;
6921}
6922
6923int sched_cpu_deactivate(unsigned int cpu)
6924{
6925	int ret;
 
6926
6927	set_cpu_active(cpu, false);
6928	/*
6929	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930	 * users of this state to go away such that all new such users will
6931	 * observe it.
6932	 *
6933	 * Do sync before park smpboot threads to take care the rcu boost case.
6934	 */
6935	synchronize_rcu();
 
6936
6937#ifdef CONFIG_SCHED_SMT
6938	/*
6939	 * When going down, decrement the number of cores with SMT present.
6940	 */
6941	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6942		static_branch_dec_cpuslocked(&sched_smt_present);
6943#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6944
6945	if (!sched_smp_initialized)
6946		return 0;
 
 
 
 
 
6947
6948	ret = cpuset_cpu_inactive(cpu);
6949	if (ret) {
6950		set_cpu_active(cpu, true);
6951		return ret;
 
 
6952	}
6953	sched_domains_numa_masks_clear(cpu);
6954	return 0;
6955}
6956
6957static void sched_rq_cpu_starting(unsigned int cpu)
 
 
 
 
 
 
6958{
6959	struct rq *rq = cpu_rq(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
6960
6961	rq->calc_load_update = calc_load_update;
6962	update_max_interval();
 
 
 
6963}
6964
6965int sched_cpu_starting(unsigned int cpu)
 
 
6966{
6967	sched_rq_cpu_starting(cpu);
6968	sched_tick_start(cpu);
6969	return 0;
6970}
 
6971
6972#ifdef CONFIG_HOTPLUG_CPU
6973int sched_cpu_dying(unsigned int cpu)
6974{
6975	struct rq *rq = cpu_rq(cpu);
6976	struct rq_flags rf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6977
6978	/* Handle pending wakeups and then migrate everything off */
6979	sched_tick_stop(cpu);
 
 
6980
6981	rq_lock_irqsave(rq, &rf);
6982	if (rq->rd) {
6983		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6984		set_rq_offline(rq);
6985	}
6986	migrate_tasks(rq, &rf);
6987	BUG_ON(rq->nr_running != 1);
6988	rq_unlock_irqrestore(rq, &rf);
6989
6990	calc_load_migrate(rq);
6991	update_max_interval();
6992	nohz_balance_exit_idle(rq);
6993	hrtick_clear(rq);
6994	return 0;
6995}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6996#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6997
6998void __init sched_init_smp(void)
6999{
 
 
 
 
 
7000	sched_init_numa();
7001
7002	/*
7003	 * There's no userspace yet to cause hotplug operations; hence all the
7004	 * CPU masks are stable and all blatant races in the below code cannot
7005	 * happen.
7006	 */
7007	mutex_lock(&sched_domains_mutex);
7008	sched_init_domains(cpu_active_mask);
 
 
 
7009	mutex_unlock(&sched_domains_mutex);
7010
 
 
 
 
 
 
7011	/* Move init over to a non-isolated CPU */
7012	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7013		BUG();
7014	sched_init_granularity();
 
7015
7016	init_sched_rt_class();
7017	init_sched_dl_class();
7018
7019	sched_smp_initialized = true;
7020}
7021
7022static int __init migration_init(void)
7023{
7024	sched_cpu_starting(smp_processor_id());
7025	return 0;
7026}
7027early_initcall(migration_init);
7028
7029#else
7030void __init sched_init_smp(void)
7031{
7032	sched_init_granularity();
7033}
7034#endif /* CONFIG_SMP */
7035
7036int in_sched_functions(unsigned long addr)
7037{
7038	return in_lock_functions(addr) ||
7039		(addr >= (unsigned long)__sched_text_start
7040		&& addr < (unsigned long)__sched_text_end);
7041}
7042
7043#ifdef CONFIG_CGROUP_SCHED
7044/*
7045 * Default task group.
7046 * Every task in system belongs to this group at bootup.
7047 */
7048struct task_group root_task_group;
7049LIST_HEAD(task_groups);
7050
7051/* Cacheline aligned slab cache for task_group */
7052static struct kmem_cache *task_group_cache __read_mostly;
7053#endif
7054
7055DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7056DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7057
7058void __init sched_init(void)
7059{
7060	unsigned long ptr = 0;
7061	int i;
7062
7063	/* Make sure the linker didn't screw up */
7064	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7065	       &fair_sched_class + 1 != &rt_sched_class ||
7066	       &rt_sched_class + 1   != &dl_sched_class);
7067#ifdef CONFIG_SMP
7068	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7069#endif
7070
7071	wait_bit_init();
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074	ptr += 2 * nr_cpu_ids * sizeof(void **);
7075#endif
7076#ifdef CONFIG_RT_GROUP_SCHED
7077	ptr += 2 * nr_cpu_ids * sizeof(void **);
7078#endif
7079	if (ptr) {
7080		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7081
7082#ifdef CONFIG_FAIR_GROUP_SCHED
7083		root_task_group.se = (struct sched_entity **)ptr;
7084		ptr += nr_cpu_ids * sizeof(void **);
7085
7086		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7087		ptr += nr_cpu_ids * sizeof(void **);
7088
7089		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7091#endif /* CONFIG_FAIR_GROUP_SCHED */
7092#ifdef CONFIG_RT_GROUP_SCHED
7093		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7094		ptr += nr_cpu_ids * sizeof(void **);
7095
7096		root_task_group.rt_rq = (struct rt_rq **)ptr;
7097		ptr += nr_cpu_ids * sizeof(void **);
7098
7099#endif /* CONFIG_RT_GROUP_SCHED */
7100	}
7101#ifdef CONFIG_CPUMASK_OFFSTACK
7102	for_each_possible_cpu(i) {
7103		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7104			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7105		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7106			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7107	}
7108#endif /* CONFIG_CPUMASK_OFFSTACK */
7109
7110	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7111	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
 
 
7112
7113#ifdef CONFIG_SMP
7114	init_defrootdomain();
7115#endif
7116
7117#ifdef CONFIG_RT_GROUP_SCHED
7118	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7119			global_rt_period(), global_rt_runtime());
7120#endif /* CONFIG_RT_GROUP_SCHED */
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123	task_group_cache = KMEM_CACHE(task_group, 0);
7124
7125	list_add(&root_task_group.list, &task_groups);
7126	INIT_LIST_HEAD(&root_task_group.children);
7127	INIT_LIST_HEAD(&root_task_group.siblings);
7128	autogroup_init(&init_task);
7129#endif /* CONFIG_CGROUP_SCHED */
7130
7131	for_each_possible_cpu(i) {
7132		struct rq *rq;
7133
7134		rq = cpu_rq(i);
7135		raw_spin_lock_init(&rq->lock);
7136		rq->nr_running = 0;
7137		rq->calc_load_active = 0;
7138		rq->calc_load_update = jiffies + LOAD_FREQ;
7139		init_cfs_rq(&rq->cfs);
7140		init_rt_rq(&rq->rt);
7141		init_dl_rq(&rq->dl);
7142#ifdef CONFIG_FAIR_GROUP_SCHED
 
7143		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7144		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7145		/*
7146		 * How much CPU bandwidth does root_task_group get?
7147		 *
7148		 * In case of task-groups formed thr' the cgroup filesystem, it
7149		 * gets 100% of the CPU resources in the system. This overall
7150		 * system CPU resource is divided among the tasks of
7151		 * root_task_group and its child task-groups in a fair manner,
7152		 * based on each entity's (task or task-group's) weight
7153		 * (se->load.weight).
7154		 *
7155		 * In other words, if root_task_group has 10 tasks of weight
7156		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157		 * then A0's share of the CPU resource is:
7158		 *
7159		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7160		 *
7161		 * We achieve this by letting root_task_group's tasks sit
7162		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7163		 */
 
7164		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7165#endif /* CONFIG_FAIR_GROUP_SCHED */
7166
7167		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7168#ifdef CONFIG_RT_GROUP_SCHED
7169		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7170#endif
 
 
 
 
 
 
7171#ifdef CONFIG_SMP
7172		rq->sd = NULL;
7173		rq->rd = NULL;
7174		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7175		rq->balance_callback = NULL;
7176		rq->active_balance = 0;
7177		rq->next_balance = jiffies;
7178		rq->push_cpu = 0;
7179		rq->cpu = i;
7180		rq->online = 0;
7181		rq->idle_stamp = 0;
7182		rq->avg_idle = 2*sysctl_sched_migration_cost;
7183		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7184
7185		INIT_LIST_HEAD(&rq->cfs_tasks);
7186
7187		rq_attach_root(rq, &def_root_domain);
7188#ifdef CONFIG_NO_HZ_COMMON
7189		rq->last_blocked_load_update_tick = jiffies;
7190		atomic_set(&rq->nohz_flags, 0);
7191
7192		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
 
7193#endif
7194#endif /* CONFIG_SMP */
7195		hrtick_rq_init(rq);
7196		atomic_set(&rq->nr_iowait, 0);
7197	}
7198
7199	set_load_weight(&init_task, false);
 
 
 
 
7200
7201	/*
7202	 * The boot idle thread does lazy MMU switching as well:
7203	 */
7204	mmgrab(&init_mm);
7205	enter_lazy_tlb(&init_mm, current);
7206
7207	/*
 
 
 
 
 
7208	 * Make us the idle thread. Technically, schedule() should not be
7209	 * called from this thread, however somewhere below it might be,
7210	 * but because we are the idle thread, we just pick up running again
7211	 * when this runqueue becomes "idle".
7212	 */
7213	init_idle(current, smp_processor_id());
7214
7215	calc_load_update = jiffies + LOAD_FREQ;
7216
7217#ifdef CONFIG_SMP
 
 
 
 
7218	idle_thread_set_boot_cpu();
 
7219#endif
7220	init_sched_fair_class();
7221
7222	init_schedstats();
7223
7224	psi_init();
7225
7226	init_uclamp();
7227
7228	scheduler_running = 1;
7229}
7230
7231#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232static inline int preempt_count_equals(int preempt_offset)
7233{
7234	int nested = preempt_count() + rcu_preempt_depth();
7235
7236	return (nested == preempt_offset);
7237}
7238
7239void __might_sleep(const char *file, int line, int preempt_offset)
7240{
7241	/*
7242	 * Blocking primitives will set (and therefore destroy) current->state,
7243	 * since we will exit with TASK_RUNNING make sure we enter with it,
7244	 * otherwise we will destroy state.
7245	 */
7246	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7247			"do not call blocking ops when !TASK_RUNNING; "
7248			"state=%lx set at [<%p>] %pS\n",
7249			current->state,
7250			(void *)current->task_state_change,
7251			(void *)current->task_state_change);
7252
7253	___might_sleep(file, line, preempt_offset);
7254}
7255EXPORT_SYMBOL(__might_sleep);
7256
7257void ___might_sleep(const char *file, int line, int preempt_offset)
7258{
7259	/* Ratelimiting timestamp: */
7260	static unsigned long prev_jiffy;
7261
7262	unsigned long preempt_disable_ip;
7263
7264	/* WARN_ON_ONCE() by default, no rate limit required: */
7265	rcu_sleep_check();
7266
 
7267	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7268	     !is_idle_task(current) && !current->non_block_count) ||
7269	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7270	    oops_in_progress)
7271		return;
7272
7273	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7274		return;
7275	prev_jiffy = jiffies;
7276
7277	/* Save this before calling printk(), since that will clobber it: */
7278	preempt_disable_ip = get_preempt_disable_ip(current);
7279
7280	printk(KERN_ERR
7281		"BUG: sleeping function called from invalid context at %s:%d\n",
7282			file, line);
7283	printk(KERN_ERR
7284		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285			in_atomic(), irqs_disabled(), current->non_block_count,
7286			current->pid, current->comm);
7287
7288	if (task_stack_end_corrupted(current))
7289		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7290
7291	debug_show_held_locks(current);
7292	if (irqs_disabled())
7293		print_irqtrace_events(current);
7294	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7295	    && !preempt_count_equals(preempt_offset)) {
7296		pr_err("Preemption disabled at:");
7297		print_ip_sym(KERN_ERR, preempt_disable_ip);
 
7298	}
 
7299	dump_stack();
7300	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7301}
7302EXPORT_SYMBOL(___might_sleep);
7303
7304void __cant_sleep(const char *file, int line, int preempt_offset)
7305{
7306	static unsigned long prev_jiffy;
7307
7308	if (irqs_disabled())
7309		return;
7310
7311	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7312		return;
7313
7314	if (preempt_count() > preempt_offset)
7315		return;
7316
7317	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7318		return;
7319	prev_jiffy = jiffies;
7320
7321	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7322	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323			in_atomic(), irqs_disabled(),
7324			current->pid, current->comm);
7325
7326	debug_show_held_locks(current);
7327	dump_stack();
7328	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7329}
7330EXPORT_SYMBOL_GPL(__cant_sleep);
7331#endif
7332
7333#ifdef CONFIG_MAGIC_SYSRQ
7334void normalize_rt_tasks(void)
7335{
7336	struct task_struct *g, *p;
7337	struct sched_attr attr = {
7338		.sched_policy = SCHED_NORMAL,
7339	};
7340
7341	read_lock(&tasklist_lock);
7342	for_each_process_thread(g, p) {
7343		/*
7344		 * Only normalize user tasks:
7345		 */
7346		if (p->flags & PF_KTHREAD)
7347			continue;
7348
7349		p->se.exec_start = 0;
7350		schedstat_set(p->se.statistics.wait_start,  0);
7351		schedstat_set(p->se.statistics.sleep_start, 0);
7352		schedstat_set(p->se.statistics.block_start, 0);
 
 
7353
7354		if (!dl_task(p) && !rt_task(p)) {
7355			/*
7356			 * Renice negative nice level userspace
7357			 * tasks back to 0:
7358			 */
7359			if (task_nice(p) < 0)
7360				set_user_nice(p, 0);
7361			continue;
7362		}
7363
7364		__sched_setscheduler(p, &attr, false, false);
7365	}
7366	read_unlock(&tasklist_lock);
7367}
7368
7369#endif /* CONFIG_MAGIC_SYSRQ */
7370
7371#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7372/*
7373 * These functions are only useful for the IA64 MCA handling, or kdb.
7374 *
7375 * They can only be called when the whole system has been
7376 * stopped - every CPU needs to be quiescent, and no scheduling
7377 * activity can take place. Using them for anything else would
7378 * be a serious bug, and as a result, they aren't even visible
7379 * under any other configuration.
7380 */
7381
7382/**
7383 * curr_task - return the current task for a given CPU.
7384 * @cpu: the processor in question.
7385 *
7386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7387 *
7388 * Return: The current task for @cpu.
7389 */
7390struct task_struct *curr_task(int cpu)
7391{
7392	return cpu_curr(cpu);
7393}
7394
7395#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7396
7397#ifdef CONFIG_IA64
7398/**
7399 * ia64_set_curr_task - set the current task for a given CPU.
7400 * @cpu: the processor in question.
7401 * @p: the task pointer to set.
7402 *
7403 * Description: This function must only be used when non-maskable interrupts
7404 * are serviced on a separate stack. It allows the architecture to switch the
7405 * notion of the current task on a CPU in a non-blocking manner. This function
7406 * must be called with all CPU's synchronized, and interrupts disabled, the
7407 * and caller must save the original value of the current task (see
7408 * curr_task() above) and restore that value before reenabling interrupts and
7409 * re-starting the system.
7410 *
7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412 */
7413void ia64_set_curr_task(int cpu, struct task_struct *p)
7414{
7415	cpu_curr(cpu) = p;
7416}
7417
7418#endif
7419
7420#ifdef CONFIG_CGROUP_SCHED
7421/* task_group_lock serializes the addition/removal of task groups */
7422static DEFINE_SPINLOCK(task_group_lock);
7423
7424static inline void alloc_uclamp_sched_group(struct task_group *tg,
7425					    struct task_group *parent)
7426{
7427#ifdef CONFIG_UCLAMP_TASK_GROUP
7428	enum uclamp_id clamp_id;
7429
7430	for_each_clamp_id(clamp_id) {
7431		uclamp_se_set(&tg->uclamp_req[clamp_id],
7432			      uclamp_none(clamp_id), false);
7433		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7434	}
7435#endif
7436}
7437
7438static void sched_free_group(struct task_group *tg)
7439{
7440	free_fair_sched_group(tg);
7441	free_rt_sched_group(tg);
7442	autogroup_free(tg);
7443	kmem_cache_free(task_group_cache, tg);
7444}
7445
7446/* allocate runqueue etc for a new task group */
7447struct task_group *sched_create_group(struct task_group *parent)
7448{
7449	struct task_group *tg;
7450
7451	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7452	if (!tg)
7453		return ERR_PTR(-ENOMEM);
7454
7455	if (!alloc_fair_sched_group(tg, parent))
7456		goto err;
7457
7458	if (!alloc_rt_sched_group(tg, parent))
7459		goto err;
7460
7461	alloc_uclamp_sched_group(tg, parent);
7462
7463	return tg;
7464
7465err:
7466	sched_free_group(tg);
7467	return ERR_PTR(-ENOMEM);
7468}
7469
7470void sched_online_group(struct task_group *tg, struct task_group *parent)
7471{
7472	unsigned long flags;
7473
7474	spin_lock_irqsave(&task_group_lock, flags);
7475	list_add_rcu(&tg->list, &task_groups);
7476
7477	/* Root should already exist: */
7478	WARN_ON(!parent);
7479
7480	tg->parent = parent;
7481	INIT_LIST_HEAD(&tg->children);
7482	list_add_rcu(&tg->siblings, &parent->children);
7483	spin_unlock_irqrestore(&task_group_lock, flags);
7484
7485	online_fair_sched_group(tg);
7486}
7487
7488/* rcu callback to free various structures associated with a task group */
7489static void sched_free_group_rcu(struct rcu_head *rhp)
7490{
7491	/* Now it should be safe to free those cfs_rqs: */
7492	sched_free_group(container_of(rhp, struct task_group, rcu));
7493}
7494
7495void sched_destroy_group(struct task_group *tg)
7496{
7497	/* Wait for possible concurrent references to cfs_rqs complete: */
7498	call_rcu(&tg->rcu, sched_free_group_rcu);
7499}
7500
7501void sched_offline_group(struct task_group *tg)
7502{
7503	unsigned long flags;
7504
7505	/* End participation in shares distribution: */
7506	unregister_fair_sched_group(tg);
7507
7508	spin_lock_irqsave(&task_group_lock, flags);
7509	list_del_rcu(&tg->list);
7510	list_del_rcu(&tg->siblings);
7511	spin_unlock_irqrestore(&task_group_lock, flags);
7512}
7513
7514static void sched_change_group(struct task_struct *tsk, int type)
 
 
 
 
 
7515{
7516	struct task_group *tg;
 
 
 
 
 
 
 
 
 
 
 
 
 
7517
7518	/*
7519	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7520	 * which is pointless here. Thus, we pass "true" to task_css_check()
7521	 * to prevent lockdep warnings.
7522	 */
7523	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7524			  struct task_group, css);
7525	tg = autogroup_task_group(tsk, tg);
7526	tsk->sched_task_group = tg;
7527
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529	if (tsk->sched_class->task_change_group)
7530		tsk->sched_class->task_change_group(tsk, type);
7531	else
7532#endif
7533		set_task_rq(tsk, task_cpu(tsk));
 
 
 
 
 
 
 
7534}
 
7535
 
7536/*
7537 * Change task's runqueue when it moves between groups.
7538 *
7539 * The caller of this function should have put the task in its new group by
7540 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7541 * its new group.
7542 */
7543void sched_move_task(struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7544{
7545	int queued, running, queue_flags =
7546		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7547	struct rq_flags rf;
7548	struct rq *rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7549
7550	rq = task_rq_lock(tsk, &rf);
7551	update_rq_clock(rq);
 
 
 
7552
7553	running = task_current(rq, tsk);
7554	queued = task_on_rq_queued(tsk);
7555
7556	if (queued)
7557		dequeue_task(rq, tsk, queue_flags);
7558	if (running)
7559		put_prev_task(rq, tsk);
 
7560
7561	sched_change_group(tsk, TASK_MOVE_GROUP);
 
 
 
 
 
 
 
 
 
 
7562
7563	if (queued)
7564		enqueue_task(rq, tsk, queue_flags);
7565	if (running) {
7566		set_next_task(rq, tsk);
7567		/*
7568		 * After changing group, the running task may have joined a
7569		 * throttled one but it's still the running task. Trigger a
7570		 * resched to make sure that task can still run.
7571		 */
7572		resched_curr(rq);
7573	}
7574
7575	task_rq_unlock(rq, tsk, &rf);
 
 
 
7576}
7577
7578static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7579{
7580	return css ? container_of(css, struct task_group, css) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
7581}
7582
7583static struct cgroup_subsys_state *
7584cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7585{
7586	struct task_group *parent = css_tg(parent_css);
7587	struct task_group *tg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7588
7589	if (!parent) {
7590		/* This is early initialization for the top cgroup */
7591		return &root_task_group.css;
7592	}
 
 
 
 
 
 
 
7593
7594	tg = sched_create_group(parent);
7595	if (IS_ERR(tg))
7596		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7597
7598	return &tg->css;
 
 
7599}
7600
7601/* Expose task group only after completing cgroup initialization */
7602static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603{
7604	struct task_group *tg = css_tg(css);
7605	struct task_group *parent = css_tg(css->parent);
 
 
7606
7607	if (parent)
7608		sched_online_group(tg, parent);
7609
7610#ifdef CONFIG_UCLAMP_TASK_GROUP
7611	/* Propagate the effective uclamp value for the new group */
7612	cpu_util_update_eff(css);
7613#endif
7614
7615	return 0;
 
 
7616}
 
7617
7618static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
 
7619{
7620	struct task_group *tg = css_tg(css);
 
 
 
 
 
 
7621
7622	sched_offline_group(tg);
7623}
7624
7625static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7626{
7627	struct task_group *tg = css_tg(css);
 
 
7628
7629	/*
7630	 * Relies on the RCU grace period between css_released() and this.
7631	 */
7632	sched_free_group(tg);
7633}
7634
7635/*
7636 * This is called before wake_up_new_task(), therefore we really only
7637 * have to set its group bits, all the other stuff does not apply.
7638 */
7639static void cpu_cgroup_fork(struct task_struct *task)
7640{
7641	struct rq_flags rf;
7642	struct rq *rq;
7643
7644	rq = task_rq_lock(task, &rf);
 
 
7645
7646	update_rq_clock(rq);
7647	sched_change_group(task, TASK_SET_GROUP);
 
 
 
7648
7649	task_rq_unlock(rq, task, &rf);
7650}
 
7651
7652static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7653{
7654	struct task_struct *task;
7655	struct cgroup_subsys_state *css;
7656	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7657
7658	cgroup_taskset_for_each(task, css, tset) {
7659#ifdef CONFIG_RT_GROUP_SCHED
7660		if (!sched_rt_can_attach(css_tg(css), task))
7661			return -EINVAL;
7662#endif
7663		/*
7664		 * Serialize against wake_up_new_task() such that if its
7665		 * running, we're sure to observe its full state.
7666		 */
7667		raw_spin_lock_irq(&task->pi_lock);
7668		/*
7669		 * Avoid calling sched_move_task() before wake_up_new_task()
7670		 * has happened. This would lead to problems with PELT, due to
7671		 * move wanting to detach+attach while we're not attached yet.
7672		 */
7673		if (task->state == TASK_NEW)
7674			ret = -EINVAL;
7675		raw_spin_unlock_irq(&task->pi_lock);
7676
7677		if (ret)
7678			break;
7679	}
 
7680	return ret;
7681}
7682
7683static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7684{
7685	struct task_struct *task;
7686	struct cgroup_subsys_state *css;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7687
7688	cgroup_taskset_for_each(task, css, tset)
7689		sched_move_task(task);
7690}
7691
7692#ifdef CONFIG_UCLAMP_TASK_GROUP
7693static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7694{
7695	struct cgroup_subsys_state *top_css = css;
7696	struct uclamp_se *uc_parent = NULL;
7697	struct uclamp_se *uc_se = NULL;
7698	unsigned int eff[UCLAMP_CNT];
7699	enum uclamp_id clamp_id;
7700	unsigned int clamps;
7701
7702	css_for_each_descendant_pre(css, top_css) {
7703		uc_parent = css_tg(css)->parent
7704			? css_tg(css)->parent->uclamp : NULL;
7705
7706		for_each_clamp_id(clamp_id) {
7707			/* Assume effective clamps matches requested clamps */
7708			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7709			/* Cap effective clamps with parent's effective clamps */
7710			if (uc_parent &&
7711			    eff[clamp_id] > uc_parent[clamp_id].value) {
7712				eff[clamp_id] = uc_parent[clamp_id].value;
7713			}
7714		}
7715		/* Ensure protection is always capped by limit */
7716		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7717
7718		/* Propagate most restrictive effective clamps */
7719		clamps = 0x0;
7720		uc_se = css_tg(css)->uclamp;
7721		for_each_clamp_id(clamp_id) {
7722			if (eff[clamp_id] == uc_se[clamp_id].value)
7723				continue;
7724			uc_se[clamp_id].value = eff[clamp_id];
7725			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7726			clamps |= (0x1 << clamp_id);
7727		}
7728		if (!clamps) {
7729			css = css_rightmost_descendant(css);
7730			continue;
7731		}
7732
7733		/* Immediately update descendants RUNNABLE tasks */
7734		uclamp_update_active_tasks(css, clamps);
7735	}
7736}
7737
7738/*
7739 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740 * C expression. Since there is no way to convert a macro argument (N) into a
7741 * character constant, use two levels of macros.
7742 */
7743#define _POW10(exp) ((unsigned int)1e##exp)
7744#define POW10(exp) _POW10(exp)
7745
7746struct uclamp_request {
7747#define UCLAMP_PERCENT_SHIFT	2
7748#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7749	s64 percent;
7750	u64 util;
 
7751	int ret;
7752};
7753
7754static inline struct uclamp_request
7755capacity_from_percent(char *buf)
7756{
7757	struct uclamp_request req = {
7758		.percent = UCLAMP_PERCENT_SCALE,
7759		.util = SCHED_CAPACITY_SCALE,
7760		.ret = 0,
7761	};
 
 
 
 
 
 
7762
7763	buf = strim(buf);
7764	if (strcmp(buf, "max")) {
7765		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7766					     &req.percent);
7767		if (req.ret)
7768			return req;
7769		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7770			req.ret = -ERANGE;
7771			return req;
7772		}
7773
7774		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7775		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7776	}
 
 
 
 
 
 
7777
7778	return req;
7779}
7780
7781static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7782				size_t nbytes, loff_t off,
7783				enum uclamp_id clamp_id)
7784{
7785	struct uclamp_request req;
7786	struct task_group *tg;
7787
7788	req = capacity_from_percent(buf);
7789	if (req.ret)
7790		return req.ret;
 
 
 
 
 
 
 
 
7791
7792	static_branch_enable(&sched_uclamp_used);
7793
7794	mutex_lock(&uclamp_mutex);
7795	rcu_read_lock();
 
 
7796
7797	tg = css_tg(of_css(of));
7798	if (tg->uclamp_req[clamp_id].value != req.util)
7799		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
 
 
7800
7801	/*
7802	 * Because of not recoverable conversion rounding we keep track of the
7803	 * exact requested value
7804	 */
7805	tg->uclamp_pct[clamp_id] = req.percent;
7806
7807	/* Update effective clamps to track the most restrictive value */
7808	cpu_util_update_eff(of_css(of));
 
7809
7810	rcu_read_unlock();
7811	mutex_unlock(&uclamp_mutex);
7812
7813	return nbytes;
7814}
7815
7816static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7817				    char *buf, size_t nbytes,
7818				    loff_t off)
7819{
7820	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
 
 
7821}
7822
7823static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7824				    char *buf, size_t nbytes,
7825				    loff_t off)
7826{
7827	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
 
 
 
 
 
7828}
7829
7830static inline void cpu_uclamp_print(struct seq_file *sf,
7831				    enum uclamp_id clamp_id)
7832{
7833	struct task_group *tg;
7834	u64 util_clamp;
7835	u64 percent;
7836	u32 rem;
7837
7838	rcu_read_lock();
7839	tg = css_tg(seq_css(sf));
7840	util_clamp = tg->uclamp_req[clamp_id].value;
7841	rcu_read_unlock();
7842
7843	if (util_clamp == SCHED_CAPACITY_SCALE) {
7844		seq_puts(sf, "max\n");
7845		return;
 
 
 
 
 
 
7846	}
7847
7848	percent = tg->uclamp_pct[clamp_id];
7849	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7850	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7851}
7852
7853static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7854{
7855	cpu_uclamp_print(sf, UCLAMP_MIN);
7856	return 0;
7857}
7858
7859static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7860{
7861	cpu_uclamp_print(sf, UCLAMP_MAX);
7862	return 0;
7863}
7864#endif /* CONFIG_UCLAMP_TASK_GROUP */
7865
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7868				struct cftype *cftype, u64 shareval)
7869{
7870	if (shareval > scale_load_down(ULONG_MAX))
7871		shareval = MAX_SHARES;
7872	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7873}
7874
7875static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7876			       struct cftype *cft)
7877{
7878	struct task_group *tg = css_tg(css);
7879
7880	return (u64) scale_load_down(tg->shares);
7881}
7882
7883#ifdef CONFIG_CFS_BANDWIDTH
7884static DEFINE_MUTEX(cfs_constraints_mutex);
7885
7886const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7887static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7888/* More than 203 days if BW_SHIFT equals 20. */
7889static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7890
7891static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892
7893static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7894{
7895	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898	if (tg == &root_task_group)
7899		return -EINVAL;
7900
7901	/*
7902	 * Ensure we have at some amount of bandwidth every period.  This is
7903	 * to prevent reaching a state of large arrears when throttled via
7904	 * entity_tick() resulting in prolonged exit starvation.
7905	 */
7906	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907		return -EINVAL;
7908
7909	/*
7910	 * Likewise, bound things on the otherside by preventing insane quota
7911	 * periods.  This also allows us to normalize in computing quota
7912	 * feasibility.
7913	 */
7914	if (period > max_cfs_quota_period)
7915		return -EINVAL;
7916
7917	/*
7918	 * Bound quota to defend quota against overflow during bandwidth shift.
7919	 */
7920	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7921		return -EINVAL;
7922
7923	/*
7924	 * Prevent race between setting of cfs_rq->runtime_enabled and
7925	 * unthrottle_offline_cfs_rqs().
7926	 */
7927	get_online_cpus();
7928	mutex_lock(&cfs_constraints_mutex);
7929	ret = __cfs_schedulable(tg, period, quota);
7930	if (ret)
7931		goto out_unlock;
7932
7933	runtime_enabled = quota != RUNTIME_INF;
7934	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7935	/*
7936	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7937	 * before making related changes, and on->off must occur afterwards
7938	 */
7939	if (runtime_enabled && !runtime_was_enabled)
7940		cfs_bandwidth_usage_inc();
7941	raw_spin_lock_irq(&cfs_b->lock);
7942	cfs_b->period = ns_to_ktime(period);
7943	cfs_b->quota = quota;
7944
7945	__refill_cfs_bandwidth_runtime(cfs_b);
7946
7947	/* Restart the period timer (if active) to handle new period expiry: */
7948	if (runtime_enabled)
7949		start_cfs_bandwidth(cfs_b);
7950
7951	raw_spin_unlock_irq(&cfs_b->lock);
7952
7953	for_each_online_cpu(i) {
7954		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7955		struct rq *rq = cfs_rq->rq;
7956		struct rq_flags rf;
7957
7958		rq_lock_irq(rq, &rf);
7959		cfs_rq->runtime_enabled = runtime_enabled;
7960		cfs_rq->runtime_remaining = 0;
7961
7962		if (cfs_rq->throttled)
7963			unthrottle_cfs_rq(cfs_rq);
7964		rq_unlock_irq(rq, &rf);
7965	}
7966	if (runtime_was_enabled && !runtime_enabled)
7967		cfs_bandwidth_usage_dec();
7968out_unlock:
7969	mutex_unlock(&cfs_constraints_mutex);
7970	put_online_cpus();
7971
7972	return ret;
7973}
7974
7975static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7976{
7977	u64 quota, period;
7978
7979	period = ktime_to_ns(tg->cfs_bandwidth.period);
7980	if (cfs_quota_us < 0)
7981		quota = RUNTIME_INF;
7982	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7983		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7984	else
7985		return -EINVAL;
7986
7987	return tg_set_cfs_bandwidth(tg, period, quota);
7988}
7989
7990static long tg_get_cfs_quota(struct task_group *tg)
7991{
7992	u64 quota_us;
7993
7994	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7995		return -1;
7996
7997	quota_us = tg->cfs_bandwidth.quota;
7998	do_div(quota_us, NSEC_PER_USEC);
7999
8000	return quota_us;
8001}
8002
8003static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8004{
8005	u64 quota, period;
8006
8007	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8008		return -EINVAL;
8009
8010	period = (u64)cfs_period_us * NSEC_PER_USEC;
8011	quota = tg->cfs_bandwidth.quota;
8012
8013	return tg_set_cfs_bandwidth(tg, period, quota);
8014}
8015
8016static long tg_get_cfs_period(struct task_group *tg)
8017{
8018	u64 cfs_period_us;
8019
8020	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021	do_div(cfs_period_us, NSEC_PER_USEC);
8022
8023	return cfs_period_us;
8024}
8025
8026static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027				  struct cftype *cft)
8028{
8029	return tg_get_cfs_quota(css_tg(css));
8030}
8031
8032static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033				   struct cftype *cftype, s64 cfs_quota_us)
8034{
8035	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036}
8037
8038static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039				   struct cftype *cft)
8040{
8041	return tg_get_cfs_period(css_tg(css));
8042}
8043
8044static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045				    struct cftype *cftype, u64 cfs_period_us)
8046{
8047	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048}
8049
8050struct cfs_schedulable_data {
8051	struct task_group *tg;
8052	u64 period, quota;
8053};
8054
8055/*
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8058 */
8059static u64 normalize_cfs_quota(struct task_group *tg,
8060			       struct cfs_schedulable_data *d)
8061{
8062	u64 quota, period;
8063
8064	if (tg == d->tg) {
8065		period = d->period;
8066		quota = d->quota;
8067	} else {
8068		period = tg_get_cfs_period(tg);
8069		quota = tg_get_cfs_quota(tg);
8070	}
8071
8072	/* note: these should typically be equivalent */
8073	if (quota == RUNTIME_INF || quota == -1)
8074		return RUNTIME_INF;
8075
8076	return to_ratio(period, quota);
8077}
8078
8079static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080{
8081	struct cfs_schedulable_data *d = data;
8082	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083	s64 quota = 0, parent_quota = -1;
8084
8085	if (!tg->parent) {
8086		quota = RUNTIME_INF;
8087	} else {
8088		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089
8090		quota = normalize_cfs_quota(tg, d);
8091		parent_quota = parent_b->hierarchical_quota;
8092
8093		/*
8094		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8095		 * always take the min.  On cgroup1, only inherit when no
8096		 * limit is set:
8097		 */
8098		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8099			quota = min(quota, parent_quota);
8100		} else {
8101			if (quota == RUNTIME_INF)
8102				quota = parent_quota;
8103			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8104				return -EINVAL;
8105		}
8106	}
8107	cfs_b->hierarchical_quota = quota;
8108
8109	return 0;
8110}
8111
8112static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8113{
8114	int ret;
8115	struct cfs_schedulable_data data = {
8116		.tg = tg,
8117		.period = period,
8118		.quota = quota,
8119	};
8120
8121	if (quota != RUNTIME_INF) {
8122		do_div(data.period, NSEC_PER_USEC);
8123		do_div(data.quota, NSEC_PER_USEC);
8124	}
8125
8126	rcu_read_lock();
8127	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8128	rcu_read_unlock();
8129
8130	return ret;
8131}
8132
8133static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8134{
8135	struct task_group *tg = css_tg(seq_css(sf));
8136	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8137
8138	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8139	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8140	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8141
8142	if (schedstat_enabled() && tg != &root_task_group) {
8143		u64 ws = 0;
8144		int i;
8145
8146		for_each_possible_cpu(i)
8147			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8148
8149		seq_printf(sf, "wait_sum %llu\n", ws);
8150	}
8151
8152	return 0;
8153}
8154#endif /* CONFIG_CFS_BANDWIDTH */
8155#endif /* CONFIG_FAIR_GROUP_SCHED */
8156
8157#ifdef CONFIG_RT_GROUP_SCHED
8158static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8159				struct cftype *cft, s64 val)
8160{
8161	return sched_group_set_rt_runtime(css_tg(css), val);
8162}
8163
8164static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8165			       struct cftype *cft)
8166{
8167	return sched_group_rt_runtime(css_tg(css));
8168}
8169
8170static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8171				    struct cftype *cftype, u64 rt_period_us)
8172{
8173	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8174}
8175
8176static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8177				   struct cftype *cft)
8178{
8179	return sched_group_rt_period(css_tg(css));
8180}
8181#endif /* CONFIG_RT_GROUP_SCHED */
8182
8183static struct cftype cpu_legacy_files[] = {
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185	{
8186		.name = "shares",
8187		.read_u64 = cpu_shares_read_u64,
8188		.write_u64 = cpu_shares_write_u64,
8189	},
8190#endif
8191#ifdef CONFIG_CFS_BANDWIDTH
8192	{
8193		.name = "cfs_quota_us",
8194		.read_s64 = cpu_cfs_quota_read_s64,
8195		.write_s64 = cpu_cfs_quota_write_s64,
8196	},
8197	{
8198		.name = "cfs_period_us",
8199		.read_u64 = cpu_cfs_period_read_u64,
8200		.write_u64 = cpu_cfs_period_write_u64,
8201	},
8202	{
8203		.name = "stat",
8204		.seq_show = cpu_cfs_stat_show,
8205	},
8206#endif
8207#ifdef CONFIG_RT_GROUP_SCHED
8208	{
8209		.name = "rt_runtime_us",
8210		.read_s64 = cpu_rt_runtime_read,
8211		.write_s64 = cpu_rt_runtime_write,
8212	},
8213	{
8214		.name = "rt_period_us",
8215		.read_u64 = cpu_rt_period_read_uint,
8216		.write_u64 = cpu_rt_period_write_uint,
8217	},
8218#endif
8219#ifdef CONFIG_UCLAMP_TASK_GROUP
8220	{
8221		.name = "uclamp.min",
8222		.flags = CFTYPE_NOT_ON_ROOT,
8223		.seq_show = cpu_uclamp_min_show,
8224		.write = cpu_uclamp_min_write,
8225	},
8226	{
8227		.name = "uclamp.max",
8228		.flags = CFTYPE_NOT_ON_ROOT,
8229		.seq_show = cpu_uclamp_max_show,
8230		.write = cpu_uclamp_max_write,
8231	},
8232#endif
8233	{ }	/* Terminate */
8234};
8235
8236static int cpu_extra_stat_show(struct seq_file *sf,
8237			       struct cgroup_subsys_state *css)
8238{
8239#ifdef CONFIG_CFS_BANDWIDTH
8240	{
8241		struct task_group *tg = css_tg(css);
8242		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243		u64 throttled_usec;
8244
8245		throttled_usec = cfs_b->throttled_time;
8246		do_div(throttled_usec, NSEC_PER_USEC);
8247
8248		seq_printf(sf, "nr_periods %d\n"
8249			   "nr_throttled %d\n"
8250			   "throttled_usec %llu\n",
8251			   cfs_b->nr_periods, cfs_b->nr_throttled,
8252			   throttled_usec);
8253	}
8254#endif
8255	return 0;
8256}
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
8259static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8260			       struct cftype *cft)
8261{
8262	struct task_group *tg = css_tg(css);
8263	u64 weight = scale_load_down(tg->shares);
8264
8265	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8266}
8267
8268static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8269				struct cftype *cft, u64 weight)
8270{
8271	/*
8272	 * cgroup weight knobs should use the common MIN, DFL and MAX
8273	 * values which are 1, 100 and 10000 respectively.  While it loses
8274	 * a bit of range on both ends, it maps pretty well onto the shares
8275	 * value used by scheduler and the round-trip conversions preserve
8276	 * the original value over the entire range.
8277	 */
8278	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8279		return -ERANGE;
8280
8281	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8282
8283	return sched_group_set_shares(css_tg(css), scale_load(weight));
8284}
8285
8286static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8287				    struct cftype *cft)
8288{
8289	unsigned long weight = scale_load_down(css_tg(css)->shares);
8290	int last_delta = INT_MAX;
8291	int prio, delta;
8292
8293	/* find the closest nice value to the current weight */
8294	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8295		delta = abs(sched_prio_to_weight[prio] - weight);
8296		if (delta >= last_delta)
8297			break;
8298		last_delta = delta;
8299	}
8300
8301	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8302}
8303
8304static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8305				     struct cftype *cft, s64 nice)
8306{
8307	unsigned long weight;
8308	int idx;
8309
8310	if (nice < MIN_NICE || nice > MAX_NICE)
8311		return -ERANGE;
8312
8313	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8314	idx = array_index_nospec(idx, 40);
8315	weight = sched_prio_to_weight[idx];
8316
8317	return sched_group_set_shares(css_tg(css), scale_load(weight));
8318}
8319#endif
8320
8321static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8322						  long period, long quota)
8323{
8324	if (quota < 0)
8325		seq_puts(sf, "max");
8326	else
8327		seq_printf(sf, "%ld", quota);
8328
8329	seq_printf(sf, " %ld\n", period);
8330}
8331
8332/* caller should put the current value in *@periodp before calling */
8333static int __maybe_unused cpu_period_quota_parse(char *buf,
8334						 u64 *periodp, u64 *quotap)
8335{
8336	char tok[21];	/* U64_MAX */
8337
8338	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8339		return -EINVAL;
8340
8341	*periodp *= NSEC_PER_USEC;
8342
8343	if (sscanf(tok, "%llu", quotap))
8344		*quotap *= NSEC_PER_USEC;
8345	else if (!strcmp(tok, "max"))
8346		*quotap = RUNTIME_INF;
8347	else
8348		return -EINVAL;
8349
8350	return 0;
8351}
8352
8353#ifdef CONFIG_CFS_BANDWIDTH
8354static int cpu_max_show(struct seq_file *sf, void *v)
8355{
8356	struct task_group *tg = css_tg(seq_css(sf));
8357
8358	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8359	return 0;
8360}
8361
8362static ssize_t cpu_max_write(struct kernfs_open_file *of,
8363			     char *buf, size_t nbytes, loff_t off)
8364{
8365	struct task_group *tg = css_tg(of_css(of));
8366	u64 period = tg_get_cfs_period(tg);
8367	u64 quota;
8368	int ret;
8369
8370	ret = cpu_period_quota_parse(buf, &period, &quota);
8371	if (!ret)
8372		ret = tg_set_cfs_bandwidth(tg, period, quota);
8373	return ret ?: nbytes;
8374}
8375#endif
8376
8377static struct cftype cpu_files[] = {
8378#ifdef CONFIG_FAIR_GROUP_SCHED
8379	{
8380		.name = "weight",
8381		.flags = CFTYPE_NOT_ON_ROOT,
8382		.read_u64 = cpu_weight_read_u64,
8383		.write_u64 = cpu_weight_write_u64,
8384	},
8385	{
8386		.name = "weight.nice",
8387		.flags = CFTYPE_NOT_ON_ROOT,
8388		.read_s64 = cpu_weight_nice_read_s64,
8389		.write_s64 = cpu_weight_nice_write_s64,
8390	},
8391#endif
8392#ifdef CONFIG_CFS_BANDWIDTH
8393	{
8394		.name = "max",
8395		.flags = CFTYPE_NOT_ON_ROOT,
8396		.seq_show = cpu_max_show,
8397		.write = cpu_max_write,
8398	},
8399#endif
8400#ifdef CONFIG_UCLAMP_TASK_GROUP
8401	{
8402		.name = "uclamp.min",
8403		.flags = CFTYPE_NOT_ON_ROOT,
8404		.seq_show = cpu_uclamp_min_show,
8405		.write = cpu_uclamp_min_write,
8406	},
8407	{
8408		.name = "uclamp.max",
8409		.flags = CFTYPE_NOT_ON_ROOT,
8410		.seq_show = cpu_uclamp_max_show,
8411		.write = cpu_uclamp_max_write,
8412	},
8413#endif
8414	{ }	/* terminate */
8415};
8416
8417struct cgroup_subsys cpu_cgrp_subsys = {
8418	.css_alloc	= cpu_cgroup_css_alloc,
8419	.css_online	= cpu_cgroup_css_online,
8420	.css_released	= cpu_cgroup_css_released,
8421	.css_free	= cpu_cgroup_css_free,
8422	.css_extra_stat_show = cpu_extra_stat_show,
8423	.fork		= cpu_cgroup_fork,
8424	.can_attach	= cpu_cgroup_can_attach,
8425	.attach		= cpu_cgroup_attach,
8426	.legacy_cftypes	= cpu_legacy_files,
8427	.dfl_cftypes	= cpu_files,
8428	.early_init	= true,
8429	.threaded	= true,
8430};
8431
8432#endif	/* CONFIG_CGROUP_SCHED */
8433
8434void dump_cpu_task(int cpu)
8435{
8436	pr_info("Task dump for CPU %d:\n", cpu);
8437	sched_show_task(cpu_curr(cpu));
8438}
8439
8440/*
8441 * Nice levels are multiplicative, with a gentle 10% change for every
8442 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444 * that remained on nice 0.
8445 *
8446 * The "10% effect" is relative and cumulative: from _any_ nice level,
8447 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449 * If a task goes up by ~10% and another task goes down by ~10% then
8450 * the relative distance between them is ~25%.)
8451 */
8452const int sched_prio_to_weight[40] = {
8453 /* -20 */     88761,     71755,     56483,     46273,     36291,
8454 /* -15 */     29154,     23254,     18705,     14949,     11916,
8455 /* -10 */      9548,      7620,      6100,      4904,      3906,
8456 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8457 /*   0 */      1024,       820,       655,       526,       423,
8458 /*   5 */       335,       272,       215,       172,       137,
8459 /*  10 */       110,        87,        70,        56,        45,
8460 /*  15 */        36,        29,        23,        18,        15,
8461};
8462
8463/*
8464 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8465 *
8466 * In cases where the weight does not change often, we can use the
8467 * precalculated inverse to speed up arithmetics by turning divisions
8468 * into multiplications:
8469 */
8470const u32 sched_prio_to_wmult[40] = {
8471 /* -20 */     48388,     59856,     76040,     92818,    118348,
8472 /* -15 */    147320,    184698,    229616,    287308,    360437,
8473 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8474 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8475 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8476 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8477 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8478 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8479};
8480
8481void call_trace_sched_update_nr_running(struct rq *rq, int count)
8482{
8483        trace_sched_update_nr_running_tp(rq, count);
8484}