Loading...
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/kasan.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
34#include <linux/uaccess.h>
35#include <linux/highmem.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
38#include <linux/capability.h>
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
41#include <linux/debug_locks.h>
42#include <linux/perf_event.h>
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
46#include <linux/freezer.h>
47#include <linux/vmalloc.h>
48#include <linux/blkdev.h>
49#include <linux/delay.h>
50#include <linux/pid_namespace.h>
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/sysctl.h>
61#include <linux/syscalls.h>
62#include <linux/times.h>
63#include <linux/tsacct_kern.h>
64#include <linux/kprobes.h>
65#include <linux/delayacct.h>
66#include <linux/unistd.h>
67#include <linux/pagemap.h>
68#include <linux/hrtimer.h>
69#include <linux/tick.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/context_tracking.h>
75#include <linux/compiler.h>
76#include <linux/frame.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98void update_rq_clock(struct rq *rq)
99{
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112}
113
114/*
115 * Debugging: various feature bits
116 */
117
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121const_debug unsigned int sysctl_sched_features =
122#include "features.h"
123 0;
124
125#undef SCHED_FEAT
126
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141/*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145unsigned int sysctl_sched_rt_period = 1000000;
146
147__read_mostly int scheduler_running;
148
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
154
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
158/*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163{
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171}
172
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
176 */
177
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
194 raw_spin_lock(&rq->lock);
195 update_rq_clock(rq);
196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 raw_spin_unlock(&rq->lock);
198
199 return HRTIMER_NORESTART;
200}
201
202#ifdef CONFIG_SMP
203
204static void __hrtick_restart(struct rq *rq)
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
207
208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209}
210
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
215{
216 struct rq *rq = arg;
217
218 raw_spin_lock(&rq->lock);
219 __hrtick_restart(rq);
220 rq->hrtick_csd_pending = 0;
221 raw_spin_unlock(&rq->lock);
222}
223
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
229void hrtick_start(struct rq *rq, u64 delay)
230{
231 struct hrtimer *timer = &rq->hrtick_timer;
232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
241
242 hrtimer_set_expires(timer, time);
243
244 if (rq == this_rq()) {
245 __hrtick_restart(rq);
246 } else if (!rq->hrtick_csd_pending) {
247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 rq->hrtick_csd_pending = 1;
249 }
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
264 hrtick_clear(cpu_rq(cpu));
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
271static __init void init_hrtick(void)
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
281void hrtick_start(struct rq *rq, u64 delay)
282{
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
290}
291
292static inline void init_hrtick(void)
293{
294}
295#endif /* CONFIG_SMP */
296
297static void init_rq_hrtick(struct rq *rq)
298{
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
301
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
306
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
309}
310#else /* CONFIG_SCHED_HRTICK */
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
319static inline void init_hrtick(void)
320{
321}
322#endif /* CONFIG_SCHED_HRTICK */
323
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
391#endif
392
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
439/*
440 * resched_curr - mark rq's current task 'to be rescheduled now'.
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
446void resched_curr(struct rq *rq)
447{
448 struct task_struct *curr = rq->curr;
449 int cpu;
450
451 lockdep_assert_held(&rq->lock);
452
453 if (test_tsk_need_resched(curr))
454 return;
455
456 cpu = cpu_of(rq);
457
458 if (cpu == smp_processor_id()) {
459 set_tsk_need_resched(curr);
460 set_preempt_need_resched();
461 return;
462 }
463
464 if (set_nr_and_not_polling(curr))
465 smp_send_reschedule(cpu);
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
468}
469
470void resched_cpu(int cpu)
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
476 return;
477 resched_curr(rq);
478 raw_spin_unlock_irqrestore(&rq->lock, flags);
479}
480
481#ifdef CONFIG_SMP
482#ifdef CONFIG_NO_HZ_COMMON
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
491int get_nohz_timer_target(void)
492{
493 int i, cpu = smp_processor_id();
494 struct sched_domain *sd;
495
496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 return cpu;
498
499 rcu_read_lock();
500 for_each_domain(cpu, sd) {
501 for_each_cpu(i, sched_domain_span(sd)) {
502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 cpu = i;
504 goto unlock;
505 }
506 }
507 }
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
511unlock:
512 rcu_read_unlock();
513 return cpu;
514}
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
525static void wake_up_idle_cpu(int cpu)
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
532 if (set_nr_and_not_polling(rq->idle))
533 smp_send_reschedule(cpu);
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
536}
537
538static bool wake_up_full_nohz_cpu(int cpu)
539{
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
546 if (tick_nohz_full_cpu(cpu)) {
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
549 tick_nohz_full_kick_cpu(cpu);
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
558 if (!wake_up_full_nohz_cpu(cpu))
559 wake_up_idle_cpu(cpu);
560}
561
562static inline bool got_nohz_idle_kick(void)
563{
564 int cpu = smp_processor_id();
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
578}
579
580#else /* CONFIG_NO_HZ_COMMON */
581
582static inline bool got_nohz_idle_kick(void)
583{
584 return false;
585}
586
587#endif /* CONFIG_NO_HZ_COMMON */
588
589#ifdef CONFIG_NO_HZ_FULL
590bool sched_can_stop_tick(struct rq *rq)
591{
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
598 /*
599 * If there are more than one RR tasks, we need the tick to effect the
600 * actual RR behaviour.
601 */
602 if (rq->rt.rr_nr_running) {
603 if (rq->rt.rr_nr_running == 1)
604 return true;
605 else
606 return false;
607 }
608
609 /*
610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 * forced preemption between FIFO tasks.
612 */
613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 if (fifo_nr_running)
615 return true;
616
617 /*
618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 * if there's more than one we need the tick for involuntary
620 * preemption.
621 */
622 if (rq->nr_running > 1)
623 return false;
624
625 return true;
626}
627#endif /* CONFIG_NO_HZ_FULL */
628
629void sched_avg_update(struct rq *rq)
630{
631 s64 period = sched_avg_period();
632
633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
634 /*
635 * Inline assembly required to prevent the compiler
636 * optimising this loop into a divmod call.
637 * See __iter_div_u64_rem() for another example of this.
638 */
639 asm("" : "+rm" (rq->age_stamp));
640 rq->age_stamp += period;
641 rq->rt_avg /= 2;
642 }
643}
644
645#endif /* CONFIG_SMP */
646
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649/*
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
654 */
655int walk_tg_tree_from(struct task_group *from,
656 tg_visitor down, tg_visitor up, void *data)
657{
658 struct task_group *parent, *child;
659 int ret;
660
661 parent = from;
662
663down:
664 ret = (*down)(parent, data);
665 if (ret)
666 goto out;
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
674 ret = (*up)(parent, data);
675 if (ret || parent == from)
676 goto out;
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
682out:
683 return ret;
684}
685
686int tg_nop(struct task_group *tg, void *data)
687{
688 return 0;
689}
690#endif
691
692static void set_load_weight(struct task_struct *p)
693{
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
700 if (idle_policy(p->policy)) {
701 load->weight = scale_load(WEIGHT_IDLEPRIO);
702 load->inv_weight = WMULT_IDLEPRIO;
703 return;
704 }
705
706 load->weight = scale_load(sched_prio_to_weight[prio]);
707 load->inv_weight = sched_prio_to_wmult[prio];
708}
709
710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
711{
712 update_rq_clock(rq);
713 if (!(flags & ENQUEUE_RESTORE))
714 sched_info_queued(rq, p);
715 p->sched_class->enqueue_task(rq, p, flags);
716}
717
718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
719{
720 update_rq_clock(rq);
721 if (!(flags & DEQUEUE_SAVE))
722 sched_info_dequeued(rq, p);
723 p->sched_class->dequeue_task(rq, p, flags);
724}
725
726void activate_task(struct rq *rq, struct task_struct *p, int flags)
727{
728 if (task_contributes_to_load(p))
729 rq->nr_uninterruptible--;
730
731 enqueue_task(rq, p, flags);
732}
733
734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
735{
736 if (task_contributes_to_load(p))
737 rq->nr_uninterruptible++;
738
739 dequeue_task(rq, p, flags);
740}
741
742static void update_rq_clock_task(struct rq *rq, s64 delta)
743{
744/*
745 * In theory, the compile should just see 0 here, and optimize out the call
746 * to sched_rt_avg_update. But I don't trust it...
747 */
748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 s64 steal = 0, irq_delta = 0;
750#endif
751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753
754 /*
755 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 * this case when a previous update_rq_clock() happened inside a
757 * {soft,}irq region.
758 *
759 * When this happens, we stop ->clock_task and only update the
760 * prev_irq_time stamp to account for the part that fit, so that a next
761 * update will consume the rest. This ensures ->clock_task is
762 * monotonic.
763 *
764 * It does however cause some slight miss-attribution of {soft,}irq
765 * time, a more accurate solution would be to update the irq_time using
766 * the current rq->clock timestamp, except that would require using
767 * atomic ops.
768 */
769 if (irq_delta > delta)
770 irq_delta = delta;
771
772 rq->prev_irq_time += irq_delta;
773 delta -= irq_delta;
774#endif
775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
776 if (static_key_false((¶virt_steal_rq_enabled))) {
777 steal = paravirt_steal_clock(cpu_of(rq));
778 steal -= rq->prev_steal_time_rq;
779
780 if (unlikely(steal > delta))
781 steal = delta;
782
783 rq->prev_steal_time_rq += steal;
784 delta -= steal;
785 }
786#endif
787
788 rq->clock_task += delta;
789
790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
792 sched_rt_avg_update(rq, irq_delta + steal);
793#endif
794}
795
796void sched_set_stop_task(int cpu, struct task_struct *stop)
797{
798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 struct task_struct *old_stop = cpu_rq(cpu)->stop;
800
801 if (stop) {
802 /*
803 * Make it appear like a SCHED_FIFO task, its something
804 * userspace knows about and won't get confused about.
805 *
806 * Also, it will make PI more or less work without too
807 * much confusion -- but then, stop work should not
808 * rely on PI working anyway.
809 */
810 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
811
812 stop->sched_class = &stop_sched_class;
813 }
814
815 cpu_rq(cpu)->stop = stop;
816
817 if (old_stop) {
818 /*
819 * Reset it back to a normal scheduling class so that
820 * it can die in pieces.
821 */
822 old_stop->sched_class = &rt_sched_class;
823 }
824}
825
826/*
827 * __normal_prio - return the priority that is based on the static prio
828 */
829static inline int __normal_prio(struct task_struct *p)
830{
831 return p->static_prio;
832}
833
834/*
835 * Calculate the expected normal priority: i.e. priority
836 * without taking RT-inheritance into account. Might be
837 * boosted by interactivity modifiers. Changes upon fork,
838 * setprio syscalls, and whenever the interactivity
839 * estimator recalculates.
840 */
841static inline int normal_prio(struct task_struct *p)
842{
843 int prio;
844
845 if (task_has_dl_policy(p))
846 prio = MAX_DL_PRIO-1;
847 else if (task_has_rt_policy(p))
848 prio = MAX_RT_PRIO-1 - p->rt_priority;
849 else
850 prio = __normal_prio(p);
851 return prio;
852}
853
854/*
855 * Calculate the current priority, i.e. the priority
856 * taken into account by the scheduler. This value might
857 * be boosted by RT tasks, or might be boosted by
858 * interactivity modifiers. Will be RT if the task got
859 * RT-boosted. If not then it returns p->normal_prio.
860 */
861static int effective_prio(struct task_struct *p)
862{
863 p->normal_prio = normal_prio(p);
864 /*
865 * If we are RT tasks or we were boosted to RT priority,
866 * keep the priority unchanged. Otherwise, update priority
867 * to the normal priority:
868 */
869 if (!rt_prio(p->prio))
870 return p->normal_prio;
871 return p->prio;
872}
873
874/**
875 * task_curr - is this task currently executing on a CPU?
876 * @p: the task in question.
877 *
878 * Return: 1 if the task is currently executing. 0 otherwise.
879 */
880inline int task_curr(const struct task_struct *p)
881{
882 return cpu_curr(task_cpu(p)) == p;
883}
884
885/*
886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887 * use the balance_callback list if you want balancing.
888 *
889 * this means any call to check_class_changed() must be followed by a call to
890 * balance_callback().
891 */
892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 const struct sched_class *prev_class,
894 int oldprio)
895{
896 if (prev_class != p->sched_class) {
897 if (prev_class->switched_from)
898 prev_class->switched_from(rq, p);
899
900 p->sched_class->switched_to(rq, p);
901 } else if (oldprio != p->prio || dl_task(p))
902 p->sched_class->prio_changed(rq, p, oldprio);
903}
904
905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
906{
907 const struct sched_class *class;
908
909 if (p->sched_class == rq->curr->sched_class) {
910 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 } else {
912 for_each_class(class) {
913 if (class == rq->curr->sched_class)
914 break;
915 if (class == p->sched_class) {
916 resched_curr(rq);
917 break;
918 }
919 }
920 }
921
922 /*
923 * A queue event has occurred, and we're going to schedule. In
924 * this case, we can save a useless back to back clock update.
925 */
926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
927 rq_clock_skip_update(rq, true);
928}
929
930#ifdef CONFIG_SMP
931/*
932 * This is how migration works:
933 *
934 * 1) we invoke migration_cpu_stop() on the target CPU using
935 * stop_one_cpu().
936 * 2) stopper starts to run (implicitly forcing the migrated thread
937 * off the CPU)
938 * 3) it checks whether the migrated task is still in the wrong runqueue.
939 * 4) if it's in the wrong runqueue then the migration thread removes
940 * it and puts it into the right queue.
941 * 5) stopper completes and stop_one_cpu() returns and the migration
942 * is done.
943 */
944
945/*
946 * move_queued_task - move a queued task to new rq.
947 *
948 * Returns (locked) new rq. Old rq's lock is released.
949 */
950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
951{
952 lockdep_assert_held(&rq->lock);
953
954 p->on_rq = TASK_ON_RQ_MIGRATING;
955 dequeue_task(rq, p, 0);
956 set_task_cpu(p, new_cpu);
957 raw_spin_unlock(&rq->lock);
958
959 rq = cpu_rq(new_cpu);
960
961 raw_spin_lock(&rq->lock);
962 BUG_ON(task_cpu(p) != new_cpu);
963 enqueue_task(rq, p, 0);
964 p->on_rq = TASK_ON_RQ_QUEUED;
965 check_preempt_curr(rq, p, 0);
966
967 return rq;
968}
969
970struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973};
974
975/*
976 * Move (not current) task off this cpu, onto dest cpu. We're doing
977 * this because either it can't run here any more (set_cpus_allowed()
978 * away from this CPU, or CPU going down), or because we're
979 * attempting to rebalance this task on exec (sched_exec).
980 *
981 * So we race with normal scheduler movements, but that's OK, as long
982 * as the task is no longer on this CPU.
983 */
984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
985{
986 if (unlikely(!cpu_active(dest_cpu)))
987 return rq;
988
989 /* Affinity changed (again). */
990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
991 return rq;
992
993 rq = move_queued_task(rq, p, dest_cpu);
994
995 return rq;
996}
997
998/*
999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005 struct migration_arg *arg = data;
1006 struct task_struct *p = arg->task;
1007 struct rq *rq = this_rq();
1008
1009 /*
1010 * The original target cpu might have gone down and we might
1011 * be on another cpu but it doesn't matter.
1012 */
1013 local_irq_disable();
1014 /*
1015 * We need to explicitly wake pending tasks before running
1016 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 */
1019 sched_ttwu_pending();
1020
1021 raw_spin_lock(&p->pi_lock);
1022 raw_spin_lock(&rq->lock);
1023 /*
1024 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 * we're holding p->pi_lock.
1027 */
1028 if (task_rq(p) == rq && task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 raw_spin_unlock(&rq->lock);
1031 raw_spin_unlock(&p->pi_lock);
1032
1033 local_irq_enable();
1034 return 0;
1035}
1036
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1042{
1043 cpumask_copy(&p->cpus_allowed, new_mask);
1044 p->nr_cpus_allowed = cpumask_weight(new_mask);
1045}
1046
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048{
1049 struct rq *rq = task_rq(p);
1050 bool queued, running;
1051
1052 lockdep_assert_held(&p->pi_lock);
1053
1054 queued = task_on_rq_queued(p);
1055 running = task_current(rq, p);
1056
1057 if (queued) {
1058 /*
1059 * Because __kthread_bind() calls this on blocked tasks without
1060 * holding rq->lock.
1061 */
1062 lockdep_assert_held(&rq->lock);
1063 dequeue_task(rq, p, DEQUEUE_SAVE);
1064 }
1065 if (running)
1066 put_prev_task(rq, p);
1067
1068 p->sched_class->set_cpus_allowed(p, new_mask);
1069
1070 if (running)
1071 p->sched_class->set_curr_task(rq);
1072 if (queued)
1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
1074}
1075
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 const struct cpumask *new_mask, bool check)
1087{
1088 unsigned long flags;
1089 struct rq *rq;
1090 unsigned int dest_cpu;
1091 int ret = 0;
1092
1093 rq = task_rq_lock(p, &flags);
1094
1095 /*
1096 * Must re-check here, to close a race against __kthread_bind(),
1097 * sched_setaffinity() is not guaranteed to observe the flag.
1098 */
1099 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 ret = -EINVAL;
1101 goto out;
1102 }
1103
1104 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 goto out;
1106
1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
1112 do_set_cpus_allowed(p, new_mask);
1113
1114 /* Can the task run on the task's current CPU? If so, we're done */
1115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 goto out;
1117
1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 struct migration_arg arg = { p, dest_cpu };
1121 /* Need help from migration thread: drop lock and wait. */
1122 task_rq_unlock(rq, p, &flags);
1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 tlb_migrate_finish(p->mm);
1125 return 0;
1126 } else if (task_on_rq_queued(p)) {
1127 /*
1128 * OK, since we're going to drop the lock immediately
1129 * afterwards anyway.
1130 */
1131 lockdep_unpin_lock(&rq->lock);
1132 rq = move_queued_task(rq, p, dest_cpu);
1133 lockdep_pin_lock(&rq->lock);
1134 }
1135out:
1136 task_rq_unlock(rq, p, &flags);
1137
1138 return ret;
1139}
1140
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143 return __set_cpus_allowed_ptr(p, new_mask, false);
1144}
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1148{
1149#ifdef CONFIG_SCHED_DEBUG
1150 /*
1151 * We should never call set_task_cpu() on a blocked task,
1152 * ttwu() will sort out the placement.
1153 */
1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1155 !p->on_rq);
1156
1157 /*
1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 * time relying on p->on_rq.
1161 */
1162 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 p->sched_class == &fair_sched_class &&
1164 (p->on_rq && !task_on_rq_migrating(p)));
1165
1166#ifdef CONFIG_LOCKDEP
1167 /*
1168 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 *
1171 * sched_move_task() holds both and thus holding either pins the cgroup,
1172 * see task_group().
1173 *
1174 * Furthermore, all task_rq users should acquire both locks, see
1175 * task_rq_lock().
1176 */
1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 lockdep_is_held(&task_rq(p)->lock)));
1179#endif
1180#endif
1181
1182 trace_sched_migrate_task(p, new_cpu);
1183
1184 if (task_cpu(p) != new_cpu) {
1185 if (p->sched_class->migrate_task_rq)
1186 p->sched_class->migrate_task_rq(p);
1187 p->se.nr_migrations++;
1188 perf_event_task_migrate(p);
1189 }
1190
1191 __set_task_cpu(p, new_cpu);
1192}
1193
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
1196 if (task_on_rq_queued(p)) {
1197 struct rq *src_rq, *dst_rq;
1198
1199 src_rq = task_rq(p);
1200 dst_rq = cpu_rq(cpu);
1201
1202 p->on_rq = TASK_ON_RQ_MIGRATING;
1203 deactivate_task(src_rq, p, 0);
1204 set_task_cpu(p, cpu);
1205 activate_task(dst_rq, p, 0);
1206 p->on_rq = TASK_ON_RQ_QUEUED;
1207 check_preempt_curr(dst_rq, p, 0);
1208 } else {
1209 /*
1210 * Task isn't running anymore; make it appear like we migrated
1211 * it before it went to sleep. This means on wakeup we make the
1212 * previous cpu our targer instead of where it really is.
1213 */
1214 p->wake_cpu = cpu;
1215 }
1216}
1217
1218struct migration_swap_arg {
1219 struct task_struct *src_task, *dst_task;
1220 int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225 struct migration_swap_arg *arg = data;
1226 struct rq *src_rq, *dst_rq;
1227 int ret = -EAGAIN;
1228
1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 return -EAGAIN;
1231
1232 src_rq = cpu_rq(arg->src_cpu);
1233 dst_rq = cpu_rq(arg->dst_cpu);
1234
1235 double_raw_lock(&arg->src_task->pi_lock,
1236 &arg->dst_task->pi_lock);
1237 double_rq_lock(src_rq, dst_rq);
1238
1239 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 goto unlock;
1241
1242 if (task_cpu(arg->src_task) != arg->src_cpu)
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 goto unlock;
1247
1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 goto unlock;
1250
1251 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254 ret = 0;
1255
1256unlock:
1257 double_rq_unlock(src_rq, dst_rq);
1258 raw_spin_unlock(&arg->dst_task->pi_lock);
1259 raw_spin_unlock(&arg->src_task->pi_lock);
1260
1261 return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268{
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = task_cpu(cur),
1275 .dst_task = p,
1276 .dst_cpu = task_cpu(p),
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 goto out;
1291
1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 goto out;
1294
1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
1299 return ret;
1300}
1301
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change. If it changes, i.e. @p might have woken up,
1307 * then return zero. When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count). If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1319{
1320 unsigned long flags;
1321 int running, queued;
1322 unsigned long ncsw;
1323 struct rq *rq;
1324
1325 for (;;) {
1326 /*
1327 * We do the initial early heuristics without holding
1328 * any task-queue locks at all. We'll only try to get
1329 * the runqueue lock when things look like they will
1330 * work out!
1331 */
1332 rq = task_rq(p);
1333
1334 /*
1335 * If the task is actively running on another CPU
1336 * still, just relax and busy-wait without holding
1337 * any locks.
1338 *
1339 * NOTE! Since we don't hold any locks, it's not
1340 * even sure that "rq" stays as the right runqueue!
1341 * But we don't care, since "task_running()" will
1342 * return false if the runqueue has changed and p
1343 * is actually now running somewhere else!
1344 */
1345 while (task_running(rq, p)) {
1346 if (match_state && unlikely(p->state != match_state))
1347 return 0;
1348 cpu_relax();
1349 }
1350
1351 /*
1352 * Ok, time to look more closely! We need the rq
1353 * lock now, to be *sure*. If we're wrong, we'll
1354 * just go back and repeat.
1355 */
1356 rq = task_rq_lock(p, &flags);
1357 trace_sched_wait_task(p);
1358 running = task_running(rq, p);
1359 queued = task_on_rq_queued(p);
1360 ncsw = 0;
1361 if (!match_state || p->state == match_state)
1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1363 task_rq_unlock(rq, p, &flags);
1364
1365 /*
1366 * If it changed from the expected state, bail out now.
1367 */
1368 if (unlikely(!ncsw))
1369 break;
1370
1371 /*
1372 * Was it really running after all now that we
1373 * checked with the proper locks actually held?
1374 *
1375 * Oops. Go back and try again..
1376 */
1377 if (unlikely(running)) {
1378 cpu_relax();
1379 continue;
1380 }
1381
1382 /*
1383 * It's not enough that it's not actively running,
1384 * it must be off the runqueue _entirely_, and not
1385 * preempted!
1386 *
1387 * So if it was still runnable (but just not actively
1388 * running right now), it's preempted, and we should
1389 * yield - it could be a while.
1390 */
1391 if (unlikely(queued)) {
1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396 continue;
1397 }
1398
1399 /*
1400 * Ahh, all good. It wasn't running, and it wasn't
1401 * runnable, which means that it will never become
1402 * running in the future either. We're all done!
1403 */
1404 break;
1405 }
1406
1407 return ncsw;
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
1417 * NOTE: this function doesn't have to take the runqueue lock,
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
1423void kick_process(struct task_struct *p)
1424{
1425 int cpu;
1426
1427 preempt_disable();
1428 cpu = task_cpu(p);
1429 if ((cpu != smp_processor_id()) && task_curr(p))
1430 smp_send_reschedule(cpu);
1431 preempt_enable();
1432}
1433EXPORT_SYMBOL_GPL(kick_process);
1434
1435/*
1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1437 */
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
1440 int nid = cpu_to_node(cpu);
1441 const struct cpumask *nodemask = NULL;
1442 enum { cpuset, possible, fail } state = cpuset;
1443 int dest_cpu;
1444
1445 /*
1446 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 * will return -1. There is no cpu on the node, and we should
1448 * select the cpu on the other node.
1449 */
1450 if (nid != -1) {
1451 nodemask = cpumask_of_node(nid);
1452
1453 /* Look for allowed, online CPU in same node. */
1454 for_each_cpu(dest_cpu, nodemask) {
1455 if (!cpu_online(dest_cpu))
1456 continue;
1457 if (!cpu_active(dest_cpu))
1458 continue;
1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 return dest_cpu;
1461 }
1462 }
1463
1464 for (;;) {
1465 /* Any allowed, online CPU? */
1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1467 if (!cpu_online(dest_cpu))
1468 continue;
1469 if (!cpu_active(dest_cpu))
1470 continue;
1471 goto out;
1472 }
1473
1474 /* No more Mr. Nice Guy. */
1475 switch (state) {
1476 case cpuset:
1477 if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 cpuset_cpus_allowed_fallback(p);
1479 state = possible;
1480 break;
1481 }
1482 /* fall-through */
1483 case possible:
1484 do_set_cpus_allowed(p, cpu_possible_mask);
1485 state = fail;
1486 break;
1487
1488 case fail:
1489 BUG();
1490 break;
1491 }
1492 }
1493
1494out:
1495 if (state != cpuset) {
1496 /*
1497 * Don't tell them about moving exiting tasks or
1498 * kernel threads (both mm NULL), since they never
1499 * leave kernel.
1500 */
1501 if (p->mm && printk_ratelimit()) {
1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1503 task_pid_nr(p), p->comm, cpu);
1504 }
1505 }
1506
1507 return dest_cpu;
1508}
1509
1510/*
1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1512 */
1513static inline
1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1515{
1516 lockdep_assert_held(&p->pi_lock);
1517
1518 if (p->nr_cpus_allowed > 1)
1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1520
1521 /*
1522 * In order not to call set_task_cpu() on a blocking task we need
1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 * cpu.
1525 *
1526 * Since this is common to all placement strategies, this lives here.
1527 *
1528 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 * not worry about this generic constraint ]
1530 */
1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1532 !cpu_online(cpu)))
1533 cpu = select_fallback_rq(task_cpu(p), p);
1534
1535 return cpu;
1536}
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540 s64 diff = sample - *avg;
1541 *avg += diff >> 3;
1542}
1543
1544#else
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 const struct cpumask *new_mask, bool check)
1548{
1549 return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
1552#endif /* CONFIG_SMP */
1553
1554static void
1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1556{
1557#ifdef CONFIG_SCHEDSTATS
1558 struct rq *rq = this_rq();
1559
1560#ifdef CONFIG_SMP
1561 int this_cpu = smp_processor_id();
1562
1563 if (cpu == this_cpu) {
1564 schedstat_inc(rq, ttwu_local);
1565 schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 } else {
1567 struct sched_domain *sd;
1568
1569 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1570 rcu_read_lock();
1571 for_each_domain(this_cpu, sd) {
1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 schedstat_inc(sd, ttwu_wake_remote);
1574 break;
1575 }
1576 }
1577 rcu_read_unlock();
1578 }
1579
1580 if (wake_flags & WF_MIGRATED)
1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
1583#endif /* CONFIG_SMP */
1584
1585 schedstat_inc(rq, ttwu_count);
1586 schedstat_inc(p, se.statistics.nr_wakeups);
1587
1588 if (wake_flags & WF_SYNC)
1589 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1590
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1595{
1596 activate_task(rq, p, en_flags);
1597 p->on_rq = TASK_ON_RQ_QUEUED;
1598
1599 /* if a worker is waking up, notify workqueue */
1600 if (p->flags & PF_WQ_WORKER)
1601 wq_worker_waking_up(p, cpu_of(rq));
1602}
1603
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
1607static void
1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1609{
1610 check_preempt_curr(rq, p, wake_flags);
1611 p->state = TASK_RUNNING;
1612 trace_sched_wakeup(p);
1613
1614#ifdef CONFIG_SMP
1615 if (p->sched_class->task_woken) {
1616 /*
1617 * Our task @p is fully woken up and running; so its safe to
1618 * drop the rq->lock, hereafter rq is only used for statistics.
1619 */
1620 lockdep_unpin_lock(&rq->lock);
1621 p->sched_class->task_woken(rq, p);
1622 lockdep_pin_lock(&rq->lock);
1623 }
1624
1625 if (rq->idle_stamp) {
1626 u64 delta = rq_clock(rq) - rq->idle_stamp;
1627 u64 max = 2*rq->max_idle_balance_cost;
1628
1629 update_avg(&rq->avg_idle, delta);
1630
1631 if (rq->avg_idle > max)
1632 rq->avg_idle = max;
1633
1634 rq->idle_stamp = 0;
1635 }
1636#endif
1637}
1638
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641{
1642 lockdep_assert_held(&rq->lock);
1643
1644#ifdef CONFIG_SMP
1645 if (p->sched_contributes_to_load)
1646 rq->nr_uninterruptible--;
1647#endif
1648
1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
1661 struct rq *rq;
1662 int ret = 0;
1663
1664 rq = __task_rq_lock(p);
1665 if (task_on_rq_queued(p)) {
1666 /* check_preempt_curr() may use rq clock */
1667 update_rq_clock(rq);
1668 ttwu_do_wakeup(rq, p, wake_flags);
1669 ret = 1;
1670 }
1671 __task_rq_unlock(rq);
1672
1673 return ret;
1674}
1675
1676#ifdef CONFIG_SMP
1677void sched_ttwu_pending(void)
1678{
1679 struct rq *rq = this_rq();
1680 struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 struct task_struct *p;
1682 unsigned long flags;
1683
1684 if (!llist)
1685 return;
1686
1687 raw_spin_lock_irqsave(&rq->lock, flags);
1688 lockdep_pin_lock(&rq->lock);
1689
1690 while (llist) {
1691 p = llist_entry(llist, struct task_struct, wake_entry);
1692 llist = llist_next(llist);
1693 ttwu_do_activate(rq, p, 0);
1694 }
1695
1696 lockdep_unpin_lock(&rq->lock);
1697 raw_spin_unlock_irqrestore(&rq->lock, flags);
1698}
1699
1700void scheduler_ipi(void)
1701{
1702 /*
1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 * this IPI.
1706 */
1707 preempt_fold_need_resched();
1708
1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1710 return;
1711
1712 /*
1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 * traditionally all their work was done from the interrupt return
1715 * path. Now that we actually do some work, we need to make sure
1716 * we do call them.
1717 *
1718 * Some archs already do call them, luckily irq_enter/exit nest
1719 * properly.
1720 *
1721 * Arguably we should visit all archs and update all handlers,
1722 * however a fair share of IPIs are still resched only so this would
1723 * somewhat pessimize the simple resched case.
1724 */
1725 irq_enter();
1726 sched_ttwu_pending();
1727
1728 /*
1729 * Check if someone kicked us for doing the nohz idle load balance.
1730 */
1731 if (unlikely(got_nohz_idle_kick())) {
1732 this_rq()->idle_balance = 1;
1733 raise_softirq_irqoff(SCHED_SOFTIRQ);
1734 }
1735 irq_exit();
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739{
1740 struct rq *rq = cpu_rq(cpu);
1741
1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 if (!set_nr_if_polling(rq->idle))
1744 smp_send_reschedule(cpu);
1745 else
1746 trace_sched_wake_idle_without_ipi(cpu);
1747 }
1748}
1749
1750void wake_up_if_idle(int cpu)
1751{
1752 struct rq *rq = cpu_rq(cpu);
1753 unsigned long flags;
1754
1755 rcu_read_lock();
1756
1757 if (!is_idle_task(rcu_dereference(rq->curr)))
1758 goto out;
1759
1760 if (set_nr_if_polling(rq->idle)) {
1761 trace_sched_wake_idle_without_ipi(cpu);
1762 } else {
1763 raw_spin_lock_irqsave(&rq->lock, flags);
1764 if (is_idle_task(rq->curr))
1765 smp_send_reschedule(cpu);
1766 /* Else cpu is not in idle, do nothing here */
1767 raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 }
1769
1770out:
1771 rcu_read_unlock();
1772}
1773
1774bool cpus_share_cache(int this_cpu, int that_cpu)
1775{
1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
1778#endif /* CONFIG_SMP */
1779
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782 struct rq *rq = cpu_rq(cpu);
1783
1784#if defined(CONFIG_SMP)
1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1787 ttwu_queue_remote(p, cpu);
1788 return;
1789 }
1790#endif
1791
1792 raw_spin_lock(&rq->lock);
1793 lockdep_pin_lock(&rq->lock);
1794 ttwu_do_activate(rq, p, 0);
1795 lockdep_unpin_lock(&rq->lock);
1796 raw_spin_unlock(&rq->lock);
1797}
1798
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 * MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 * rq(c1)->lock (if not at the same time, then in that order).
1813 * C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 * CPU0 CPU1 CPU2
1822 *
1823 * LOCK rq(0)->lock
1824 * sched-out X
1825 * sched-in Y
1826 * UNLOCK rq(0)->lock
1827 *
1828 * LOCK rq(0)->lock // orders against CPU0
1829 * dequeue X
1830 * UNLOCK rq(0)->lock
1831 *
1832 * LOCK rq(1)->lock
1833 * enqueue X
1834 * UNLOCK rq(1)->lock
1835 *
1836 * LOCK rq(1)->lock // orders against CPU2
1837 * sched-out Z
1838 * sched-in X
1839 * UNLOCK rq(1)->lock
1840 *
1841 *
1842 * BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 * 1) smp_store_release(X->on_cpu, 0)
1849 * 2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 * LOCK rq(0)->lock LOCK X->pi_lock
1856 * dequeue X
1857 * sched-out X
1858 * smp_store_release(X->on_cpu, 0);
1859 *
1860 * smp_cond_acquire(!X->on_cpu);
1861 * X->state = WAKING
1862 * set_task_cpu(X,2)
1863 *
1864 * LOCK rq(2)->lock
1865 * enqueue X
1866 * X->state = RUNNING
1867 * UNLOCK rq(2)->lock
1868 *
1869 * LOCK rq(2)->lock // orders against CPU1
1870 * sched-out Z
1871 * sched-in X
1872 * UNLOCK rq(2)->lock
1873 *
1874 * UNLOCK X->pi_lock
1875 * UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
1890/**
1891 * try_to_wake_up - wake up a thread
1892 * @p: the thread to be awakened
1893 * @state: the mask of task states that can be woken
1894 * @wake_flags: wake modifier flags (WF_*)
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
1902 * Return: %true if @p was woken up, %false if it was already running.
1903 * or @state didn't match @p's state.
1904 */
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1907{
1908 unsigned long flags;
1909 int cpu, success = 0;
1910
1911 /*
1912 * If we are going to wake up a thread waiting for CONDITION we
1913 * need to ensure that CONDITION=1 done by the caller can not be
1914 * reordered with p->state check below. This pairs with mb() in
1915 * set_current_state() the waiting thread does.
1916 */
1917 smp_mb__before_spinlock();
1918 raw_spin_lock_irqsave(&p->pi_lock, flags);
1919 if (!(p->state & state))
1920 goto out;
1921
1922 trace_sched_waking(p);
1923
1924 success = 1; /* we're going to change ->state */
1925 cpu = task_cpu(p);
1926
1927 if (p->on_rq && ttwu_remote(p, wake_flags))
1928 goto stat;
1929
1930#ifdef CONFIG_SMP
1931 /*
1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 * possible to, falsely, observe p->on_cpu == 0.
1934 *
1935 * One must be running (->on_cpu == 1) in order to remove oneself
1936 * from the runqueue.
1937 *
1938 * [S] ->on_cpu = 1; [L] ->on_rq
1939 * UNLOCK rq->lock
1940 * RMB
1941 * LOCK rq->lock
1942 * [S] ->on_rq = 0; [L] ->on_cpu
1943 *
1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 * from the consecutive calls to schedule(); the first switching to our
1946 * task, the second putting it to sleep.
1947 */
1948 smp_rmb();
1949
1950 /*
1951 * If the owning (remote) cpu is still in the middle of schedule() with
1952 * this task as prev, wait until its done referencing the task.
1953 *
1954 * Pairs with the smp_store_release() in finish_lock_switch().
1955 *
1956 * This ensures that tasks getting woken will be fully ordered against
1957 * their previous state and preserve Program Order.
1958 */
1959 smp_cond_acquire(!p->on_cpu);
1960
1961 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1962 p->state = TASK_WAKING;
1963
1964 if (p->sched_class->task_waking)
1965 p->sched_class->task_waking(p);
1966
1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1968 if (task_cpu(p) != cpu) {
1969 wake_flags |= WF_MIGRATED;
1970 set_task_cpu(p, cpu);
1971 }
1972#endif /* CONFIG_SMP */
1973
1974 ttwu_queue(p, cpu);
1975stat:
1976 if (schedstat_enabled())
1977 ttwu_stat(p, cpu, wake_flags);
1978out:
1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1980
1981 return success;
1982}
1983
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
1988 * Put @p on the run-queue if it's not already there. The caller must
1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1990 * the current task.
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994 struct rq *rq = task_rq(p);
1995
1996 if (WARN_ON_ONCE(rq != this_rq()) ||
1997 WARN_ON_ONCE(p == current))
1998 return;
1999
2000 lockdep_assert_held(&rq->lock);
2001
2002 if (!raw_spin_trylock(&p->pi_lock)) {
2003 /*
2004 * This is OK, because current is on_cpu, which avoids it being
2005 * picked for load-balance and preemption/IRQs are still
2006 * disabled avoiding further scheduler activity on it and we've
2007 * not yet picked a replacement task.
2008 */
2009 lockdep_unpin_lock(&rq->lock);
2010 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&p->pi_lock);
2012 raw_spin_lock(&rq->lock);
2013 lockdep_pin_lock(&rq->lock);
2014 }
2015
2016 if (!(p->state & TASK_NORMAL))
2017 goto out;
2018
2019 trace_sched_waking(p);
2020
2021 if (!task_on_rq_queued(p))
2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
2024 ttwu_do_wakeup(rq, p, 0);
2025 if (schedstat_enabled())
2026 ttwu_stat(p, smp_processor_id(), 0);
2027out:
2028 raw_spin_unlock(&p->pi_lock);
2029}
2030
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
2043int wake_up_process(struct task_struct *p)
2044{
2045 return try_to_wake_up(p, TASK_NORMAL, 0);
2046}
2047EXPORT_SYMBOL(wake_up_process);
2048
2049int wake_up_state(struct task_struct *p, unsigned int state)
2050{
2051 return try_to_wake_up(p, state, 0);
2052}
2053
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059 struct sched_dl_entity *dl_se = &p->dl;
2060
2061 dl_se->dl_runtime = 0;
2062 dl_se->dl_deadline = 0;
2063 dl_se->dl_period = 0;
2064 dl_se->flags = 0;
2065 dl_se->dl_bw = 0;
2066
2067 dl_se->dl_throttled = 0;
2068 dl_se->dl_yielded = 0;
2069}
2070
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2078{
2079 p->on_rq = 0;
2080
2081 p->se.on_rq = 0;
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
2084 p->se.prev_sum_exec_runtime = 0;
2085 p->se.nr_migrations = 0;
2086 p->se.vruntime = 0;
2087 INIT_LIST_HEAD(&p->se.group_node);
2088
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090 p->se.cfs_rq = NULL;
2091#endif
2092
2093#ifdef CONFIG_SCHEDSTATS
2094 /* Even if schedstat is disabled, there should not be garbage */
2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2096#endif
2097
2098 RB_CLEAR_NODE(&p->dl.rb_node);
2099 init_dl_task_timer(&p->dl);
2100 __dl_clear_params(p);
2101
2102 INIT_LIST_HEAD(&p->rt.run_list);
2103 p->rt.timeout = 0;
2104 p->rt.time_slice = sched_rr_timeslice;
2105 p->rt.on_rq = 0;
2106 p->rt.on_list = 0;
2107
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109 INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2115 p->mm->numa_scan_seq = 0;
2116 }
2117
2118 if (clone_flags & CLONE_VM)
2119 p->numa_preferred_nid = current->numa_preferred_nid;
2120 else
2121 p->numa_preferred_nid = -1;
2122
2123 p->node_stamp = 0ULL;
2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2126 p->numa_work.next = &p->numa_work;
2127 p->numa_faults = NULL;
2128 p->last_task_numa_placement = 0;
2129 p->last_sum_exec_runtime = 0;
2130
2131 p->numa_group = NULL;
2132#endif /* CONFIG_NUMA_BALANCING */
2133}
2134
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
2137#ifdef CONFIG_NUMA_BALANCING
2138
2139void set_numabalancing_state(bool enabled)
2140{
2141 if (enabled)
2142 static_branch_enable(&sched_numa_balancing);
2143 else
2144 static_branch_disable(&sched_numa_balancing);
2145}
2146
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *lenp, loff_t *ppos)
2150{
2151 struct ctl_table t;
2152 int err;
2153 int state = static_branch_likely(&sched_numa_balancing);
2154
2155 if (write && !capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 t = *table;
2159 t.data = &state;
2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 if (err < 0)
2162 return err;
2163 if (write)
2164 set_numabalancing_state(state);
2165 return err;
2166}
2167#endif
2168#endif
2169
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175 if (enabled)
2176 static_branch_enable(&sched_schedstats);
2177 else
2178 static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183 if (!schedstat_enabled()) {
2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 static_branch_enable(&sched_schedstats);
2186 }
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191 int ret = 0;
2192 if (!str)
2193 goto out;
2194
2195 if (!strcmp(str, "enable")) {
2196 set_schedstats(true);
2197 ret = 1;
2198 } else if (!strcmp(str, "disable")) {
2199 set_schedstats(false);
2200 ret = 1;
2201 }
2202out:
2203 if (!ret)
2204 pr_warn("Unable to parse schedstats=\n");
2205
2206 return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214 struct ctl_table t;
2215 int err;
2216 int state = static_branch_likely(&sched_schedstats);
2217
2218 if (write && !capable(CAP_SYS_ADMIN))
2219 return -EPERM;
2220
2221 t = *table;
2222 t.data = &state;
2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 if (err < 0)
2225 return err;
2226 if (write)
2227 set_schedstats(state);
2228 return err;
2229}
2230#endif
2231#endif
2232
2233/*
2234 * fork()/clone()-time setup:
2235 */
2236int sched_fork(unsigned long clone_flags, struct task_struct *p)
2237{
2238 unsigned long flags;
2239 int cpu = get_cpu();
2240
2241 __sched_fork(clone_flags, p);
2242 /*
2243 * We mark the process as running here. This guarantees that
2244 * nobody will actually run it, and a signal or other external
2245 * event cannot wake it up and insert it on the runqueue either.
2246 */
2247 p->state = TASK_RUNNING;
2248
2249 /*
2250 * Make sure we do not leak PI boosting priority to the child.
2251 */
2252 p->prio = current->normal_prio;
2253
2254 /*
2255 * Revert to default priority/policy on fork if requested.
2256 */
2257 if (unlikely(p->sched_reset_on_fork)) {
2258 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2259 p->policy = SCHED_NORMAL;
2260 p->static_prio = NICE_TO_PRIO(0);
2261 p->rt_priority = 0;
2262 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2263 p->static_prio = NICE_TO_PRIO(0);
2264
2265 p->prio = p->normal_prio = __normal_prio(p);
2266 set_load_weight(p);
2267
2268 /*
2269 * We don't need the reset flag anymore after the fork. It has
2270 * fulfilled its duty:
2271 */
2272 p->sched_reset_on_fork = 0;
2273 }
2274
2275 if (dl_prio(p->prio)) {
2276 put_cpu();
2277 return -EAGAIN;
2278 } else if (rt_prio(p->prio)) {
2279 p->sched_class = &rt_sched_class;
2280 } else {
2281 p->sched_class = &fair_sched_class;
2282 }
2283
2284 if (p->sched_class->task_fork)
2285 p->sched_class->task_fork(p);
2286
2287 /*
2288 * The child is not yet in the pid-hash so no cgroup attach races,
2289 * and the cgroup is pinned to this child due to cgroup_fork()
2290 * is ran before sched_fork().
2291 *
2292 * Silence PROVE_RCU.
2293 */
2294 raw_spin_lock_irqsave(&p->pi_lock, flags);
2295 set_task_cpu(p, cpu);
2296 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2297
2298#ifdef CONFIG_SCHED_INFO
2299 if (likely(sched_info_on()))
2300 memset(&p->sched_info, 0, sizeof(p->sched_info));
2301#endif
2302#if defined(CONFIG_SMP)
2303 p->on_cpu = 0;
2304#endif
2305 init_task_preempt_count(p);
2306#ifdef CONFIG_SMP
2307 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2308 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2309#endif
2310
2311 put_cpu();
2312 return 0;
2313}
2314
2315unsigned long to_ratio(u64 period, u64 runtime)
2316{
2317 if (runtime == RUNTIME_INF)
2318 return 1ULL << 20;
2319
2320 /*
2321 * Doing this here saves a lot of checks in all
2322 * the calling paths, and returning zero seems
2323 * safe for them anyway.
2324 */
2325 if (period == 0)
2326 return 0;
2327
2328 return div64_u64(runtime << 20, period);
2329}
2330
2331#ifdef CONFIG_SMP
2332inline struct dl_bw *dl_bw_of(int i)
2333{
2334 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2335 "sched RCU must be held");
2336 return &cpu_rq(i)->rd->dl_bw;
2337}
2338
2339static inline int dl_bw_cpus(int i)
2340{
2341 struct root_domain *rd = cpu_rq(i)->rd;
2342 int cpus = 0;
2343
2344 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2345 "sched RCU must be held");
2346 for_each_cpu_and(i, rd->span, cpu_active_mask)
2347 cpus++;
2348
2349 return cpus;
2350}
2351#else
2352inline struct dl_bw *dl_bw_of(int i)
2353{
2354 return &cpu_rq(i)->dl.dl_bw;
2355}
2356
2357static inline int dl_bw_cpus(int i)
2358{
2359 return 1;
2360}
2361#endif
2362
2363/*
2364 * We must be sure that accepting a new task (or allowing changing the
2365 * parameters of an existing one) is consistent with the bandwidth
2366 * constraints. If yes, this function also accordingly updates the currently
2367 * allocated bandwidth to reflect the new situation.
2368 *
2369 * This function is called while holding p's rq->lock.
2370 *
2371 * XXX we should delay bw change until the task's 0-lag point, see
2372 * __setparam_dl().
2373 */
2374static int dl_overflow(struct task_struct *p, int policy,
2375 const struct sched_attr *attr)
2376{
2377
2378 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2379 u64 period = attr->sched_period ?: attr->sched_deadline;
2380 u64 runtime = attr->sched_runtime;
2381 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2382 int cpus, err = -1;
2383
2384 if (new_bw == p->dl.dl_bw)
2385 return 0;
2386
2387 /*
2388 * Either if a task, enters, leave, or stays -deadline but changes
2389 * its parameters, we may need to update accordingly the total
2390 * allocated bandwidth of the container.
2391 */
2392 raw_spin_lock(&dl_b->lock);
2393 cpus = dl_bw_cpus(task_cpu(p));
2394 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2395 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2396 __dl_add(dl_b, new_bw);
2397 err = 0;
2398 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2399 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2400 __dl_clear(dl_b, p->dl.dl_bw);
2401 __dl_add(dl_b, new_bw);
2402 err = 0;
2403 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2404 __dl_clear(dl_b, p->dl.dl_bw);
2405 err = 0;
2406 }
2407 raw_spin_unlock(&dl_b->lock);
2408
2409 return err;
2410}
2411
2412extern void init_dl_bw(struct dl_bw *dl_b);
2413
2414/*
2415 * wake_up_new_task - wake up a newly created task for the first time.
2416 *
2417 * This function will do some initial scheduler statistics housekeeping
2418 * that must be done for every newly created context, then puts the task
2419 * on the runqueue and wakes it.
2420 */
2421void wake_up_new_task(struct task_struct *p)
2422{
2423 unsigned long flags;
2424 struct rq *rq;
2425
2426 raw_spin_lock_irqsave(&p->pi_lock, flags);
2427 /* Initialize new task's runnable average */
2428 init_entity_runnable_average(&p->se);
2429#ifdef CONFIG_SMP
2430 /*
2431 * Fork balancing, do it here and not earlier because:
2432 * - cpus_allowed can change in the fork path
2433 * - any previously selected cpu might disappear through hotplug
2434 */
2435 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2436#endif
2437
2438 rq = __task_rq_lock(p);
2439 activate_task(rq, p, 0);
2440 p->on_rq = TASK_ON_RQ_QUEUED;
2441 trace_sched_wakeup_new(p);
2442 check_preempt_curr(rq, p, WF_FORK);
2443#ifdef CONFIG_SMP
2444 if (p->sched_class->task_woken) {
2445 /*
2446 * Nothing relies on rq->lock after this, so its fine to
2447 * drop it.
2448 */
2449 lockdep_unpin_lock(&rq->lock);
2450 p->sched_class->task_woken(rq, p);
2451 lockdep_pin_lock(&rq->lock);
2452 }
2453#endif
2454 task_rq_unlock(rq, p, &flags);
2455}
2456
2457#ifdef CONFIG_PREEMPT_NOTIFIERS
2458
2459static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2460
2461void preempt_notifier_inc(void)
2462{
2463 static_key_slow_inc(&preempt_notifier_key);
2464}
2465EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2466
2467void preempt_notifier_dec(void)
2468{
2469 static_key_slow_dec(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2472
2473/**
2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2475 * @notifier: notifier struct to register
2476 */
2477void preempt_notifier_register(struct preempt_notifier *notifier)
2478{
2479 if (!static_key_false(&preempt_notifier_key))
2480 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2481
2482 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2483}
2484EXPORT_SYMBOL_GPL(preempt_notifier_register);
2485
2486/**
2487 * preempt_notifier_unregister - no longer interested in preemption notifications
2488 * @notifier: notifier struct to unregister
2489 *
2490 * This is *not* safe to call from within a preemption notifier.
2491 */
2492void preempt_notifier_unregister(struct preempt_notifier *notifier)
2493{
2494 hlist_del(¬ifier->link);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2497
2498static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2499{
2500 struct preempt_notifier *notifier;
2501
2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2503 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504}
2505
2506static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508 if (static_key_false(&preempt_notifier_key))
2509 __fire_sched_in_preempt_notifiers(curr);
2510}
2511
2512static void
2513__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2514 struct task_struct *next)
2515{
2516 struct preempt_notifier *notifier;
2517
2518 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2519 notifier->ops->sched_out(notifier, next);
2520}
2521
2522static __always_inline void
2523fire_sched_out_preempt_notifiers(struct task_struct *curr,
2524 struct task_struct *next)
2525{
2526 if (static_key_false(&preempt_notifier_key))
2527 __fire_sched_out_preempt_notifiers(curr, next);
2528}
2529
2530#else /* !CONFIG_PREEMPT_NOTIFIERS */
2531
2532static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534}
2535
2536static inline void
2537fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538 struct task_struct *next)
2539{
2540}
2541
2542#endif /* CONFIG_PREEMPT_NOTIFIERS */
2543
2544/**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
2547 * @prev: the current task that is being switched out
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
2557static inline void
2558prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559 struct task_struct *next)
2560{
2561 sched_info_switch(rq, prev, next);
2562 perf_event_task_sched_out(prev, next);
2563 fire_sched_out_preempt_notifiers(prev, next);
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566}
2567
2568/**
2569 * finish_task_switch - clean up after a task-switch
2570 * @prev: the thread we just switched away from.
2571 *
2572 * finish_task_switch must be called after the context switch, paired
2573 * with a prepare_task_switch call before the context switch.
2574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575 * and do any other architecture-specific cleanup actions.
2576 *
2577 * Note that we may have delayed dropping an mm in context_switch(). If
2578 * so, we finish that here outside of the runqueue lock. (Doing it
2579 * with the lock held can cause deadlocks; see schedule() for
2580 * details.)
2581 *
2582 * The context switch have flipped the stack from under us and restored the
2583 * local variables which were saved when this task called schedule() in the
2584 * past. prev == current is still correct but we need to recalculate this_rq
2585 * because prev may have moved to another CPU.
2586 */
2587static struct rq *finish_task_switch(struct task_struct *prev)
2588 __releases(rq->lock)
2589{
2590 struct rq *rq = this_rq();
2591 struct mm_struct *mm = rq->prev_mm;
2592 long prev_state;
2593
2594 /*
2595 * The previous task will have left us with a preempt_count of 2
2596 * because it left us after:
2597 *
2598 * schedule()
2599 * preempt_disable(); // 1
2600 * __schedule()
2601 * raw_spin_lock_irq(&rq->lock) // 2
2602 *
2603 * Also, see FORK_PREEMPT_COUNT.
2604 */
2605 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2606 "corrupted preempt_count: %s/%d/0x%x\n",
2607 current->comm, current->pid, preempt_count()))
2608 preempt_count_set(FORK_PREEMPT_COUNT);
2609
2610 rq->prev_mm = NULL;
2611
2612 /*
2613 * A task struct has one reference for the use as "current".
2614 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2615 * schedule one last time. The schedule call will never return, and
2616 * the scheduled task must drop that reference.
2617 *
2618 * We must observe prev->state before clearing prev->on_cpu (in
2619 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2620 * running on another CPU and we could rave with its RUNNING -> DEAD
2621 * transition, resulting in a double drop.
2622 */
2623 prev_state = prev->state;
2624 vtime_task_switch(prev);
2625 perf_event_task_sched_in(prev, current);
2626 finish_lock_switch(rq, prev);
2627 finish_arch_post_lock_switch();
2628
2629 fire_sched_in_preempt_notifiers(current);
2630 if (mm)
2631 mmdrop(mm);
2632 if (unlikely(prev_state == TASK_DEAD)) {
2633 if (prev->sched_class->task_dead)
2634 prev->sched_class->task_dead(prev);
2635
2636 /*
2637 * Remove function-return probe instances associated with this
2638 * task and put them back on the free list.
2639 */
2640 kprobe_flush_task(prev);
2641 put_task_struct(prev);
2642 }
2643
2644 tick_nohz_task_switch();
2645 return rq;
2646}
2647
2648#ifdef CONFIG_SMP
2649
2650/* rq->lock is NOT held, but preemption is disabled */
2651static void __balance_callback(struct rq *rq)
2652{
2653 struct callback_head *head, *next;
2654 void (*func)(struct rq *rq);
2655 unsigned long flags;
2656
2657 raw_spin_lock_irqsave(&rq->lock, flags);
2658 head = rq->balance_callback;
2659 rq->balance_callback = NULL;
2660 while (head) {
2661 func = (void (*)(struct rq *))head->func;
2662 next = head->next;
2663 head->next = NULL;
2664 head = next;
2665
2666 func(rq);
2667 }
2668 raw_spin_unlock_irqrestore(&rq->lock, flags);
2669}
2670
2671static inline void balance_callback(struct rq *rq)
2672{
2673 if (unlikely(rq->balance_callback))
2674 __balance_callback(rq);
2675}
2676
2677#else
2678
2679static inline void balance_callback(struct rq *rq)
2680{
2681}
2682
2683#endif
2684
2685/**
2686 * schedule_tail - first thing a freshly forked thread must call.
2687 * @prev: the thread we just switched away from.
2688 */
2689asmlinkage __visible void schedule_tail(struct task_struct *prev)
2690 __releases(rq->lock)
2691{
2692 struct rq *rq;
2693
2694 /*
2695 * New tasks start with FORK_PREEMPT_COUNT, see there and
2696 * finish_task_switch() for details.
2697 *
2698 * finish_task_switch() will drop rq->lock() and lower preempt_count
2699 * and the preempt_enable() will end up enabling preemption (on
2700 * PREEMPT_COUNT kernels).
2701 */
2702
2703 rq = finish_task_switch(prev);
2704 balance_callback(rq);
2705 preempt_enable();
2706
2707 if (current->set_child_tid)
2708 put_user(task_pid_vnr(current), current->set_child_tid);
2709}
2710
2711/*
2712 * context_switch - switch to the new MM and the new thread's register state.
2713 */
2714static __always_inline struct rq *
2715context_switch(struct rq *rq, struct task_struct *prev,
2716 struct task_struct *next)
2717{
2718 struct mm_struct *mm, *oldmm;
2719
2720 prepare_task_switch(rq, prev, next);
2721
2722 mm = next->mm;
2723 oldmm = prev->active_mm;
2724 /*
2725 * For paravirt, this is coupled with an exit in switch_to to
2726 * combine the page table reload and the switch backend into
2727 * one hypercall.
2728 */
2729 arch_start_context_switch(prev);
2730
2731 if (!mm) {
2732 next->active_mm = oldmm;
2733 atomic_inc(&oldmm->mm_count);
2734 enter_lazy_tlb(oldmm, next);
2735 } else
2736 switch_mm(oldmm, mm, next);
2737
2738 if (!prev->mm) {
2739 prev->active_mm = NULL;
2740 rq->prev_mm = oldmm;
2741 }
2742 /*
2743 * Since the runqueue lock will be released by the next
2744 * task (which is an invalid locking op but in the case
2745 * of the scheduler it's an obvious special-case), so we
2746 * do an early lockdep release here:
2747 */
2748 lockdep_unpin_lock(&rq->lock);
2749 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2750
2751 /* Here we just switch the register state and the stack. */
2752 switch_to(prev, next, prev);
2753 barrier();
2754
2755 return finish_task_switch(prev);
2756}
2757
2758/*
2759 * nr_running and nr_context_switches:
2760 *
2761 * externally visible scheduler statistics: current number of runnable
2762 * threads, total number of context switches performed since bootup.
2763 */
2764unsigned long nr_running(void)
2765{
2766 unsigned long i, sum = 0;
2767
2768 for_each_online_cpu(i)
2769 sum += cpu_rq(i)->nr_running;
2770
2771 return sum;
2772}
2773
2774/*
2775 * Check if only the current task is running on the cpu.
2776 *
2777 * Caution: this function does not check that the caller has disabled
2778 * preemption, thus the result might have a time-of-check-to-time-of-use
2779 * race. The caller is responsible to use it correctly, for example:
2780 *
2781 * - from a non-preemptable section (of course)
2782 *
2783 * - from a thread that is bound to a single CPU
2784 *
2785 * - in a loop with very short iterations (e.g. a polling loop)
2786 */
2787bool single_task_running(void)
2788{
2789 return raw_rq()->nr_running == 1;
2790}
2791EXPORT_SYMBOL(single_task_running);
2792
2793unsigned long long nr_context_switches(void)
2794{
2795 int i;
2796 unsigned long long sum = 0;
2797
2798 for_each_possible_cpu(i)
2799 sum += cpu_rq(i)->nr_switches;
2800
2801 return sum;
2802}
2803
2804unsigned long nr_iowait(void)
2805{
2806 unsigned long i, sum = 0;
2807
2808 for_each_possible_cpu(i)
2809 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2810
2811 return sum;
2812}
2813
2814unsigned long nr_iowait_cpu(int cpu)
2815{
2816 struct rq *this = cpu_rq(cpu);
2817 return atomic_read(&this->nr_iowait);
2818}
2819
2820void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2821{
2822 struct rq *rq = this_rq();
2823 *nr_waiters = atomic_read(&rq->nr_iowait);
2824 *load = rq->load.weight;
2825}
2826
2827#ifdef CONFIG_SMP
2828
2829/*
2830 * sched_exec - execve() is a valuable balancing opportunity, because at
2831 * this point the task has the smallest effective memory and cache footprint.
2832 */
2833void sched_exec(void)
2834{
2835 struct task_struct *p = current;
2836 unsigned long flags;
2837 int dest_cpu;
2838
2839 raw_spin_lock_irqsave(&p->pi_lock, flags);
2840 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2841 if (dest_cpu == smp_processor_id())
2842 goto unlock;
2843
2844 if (likely(cpu_active(dest_cpu))) {
2845 struct migration_arg arg = { p, dest_cpu };
2846
2847 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2848 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2849 return;
2850 }
2851unlock:
2852 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2853}
2854
2855#endif
2856
2857DEFINE_PER_CPU(struct kernel_stat, kstat);
2858DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2859
2860EXPORT_PER_CPU_SYMBOL(kstat);
2861EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2862
2863/*
2864 * Return accounted runtime for the task.
2865 * In case the task is currently running, return the runtime plus current's
2866 * pending runtime that have not been accounted yet.
2867 */
2868unsigned long long task_sched_runtime(struct task_struct *p)
2869{
2870 unsigned long flags;
2871 struct rq *rq;
2872 u64 ns;
2873
2874#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2875 /*
2876 * 64-bit doesn't need locks to atomically read a 64bit value.
2877 * So we have a optimization chance when the task's delta_exec is 0.
2878 * Reading ->on_cpu is racy, but this is ok.
2879 *
2880 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2881 * If we race with it entering cpu, unaccounted time is 0. This is
2882 * indistinguishable from the read occurring a few cycles earlier.
2883 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2884 * been accounted, so we're correct here as well.
2885 */
2886 if (!p->on_cpu || !task_on_rq_queued(p))
2887 return p->se.sum_exec_runtime;
2888#endif
2889
2890 rq = task_rq_lock(p, &flags);
2891 /*
2892 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2893 * project cycles that may never be accounted to this
2894 * thread, breaking clock_gettime().
2895 */
2896 if (task_current(rq, p) && task_on_rq_queued(p)) {
2897 update_rq_clock(rq);
2898 p->sched_class->update_curr(rq);
2899 }
2900 ns = p->se.sum_exec_runtime;
2901 task_rq_unlock(rq, p, &flags);
2902
2903 return ns;
2904}
2905
2906/*
2907 * This function gets called by the timer code, with HZ frequency.
2908 * We call it with interrupts disabled.
2909 */
2910void scheduler_tick(void)
2911{
2912 int cpu = smp_processor_id();
2913 struct rq *rq = cpu_rq(cpu);
2914 struct task_struct *curr = rq->curr;
2915
2916 sched_clock_tick();
2917
2918 raw_spin_lock(&rq->lock);
2919 update_rq_clock(rq);
2920 curr->sched_class->task_tick(rq, curr, 0);
2921 update_cpu_load_active(rq);
2922 calc_global_load_tick(rq);
2923 raw_spin_unlock(&rq->lock);
2924
2925 perf_event_task_tick();
2926
2927#ifdef CONFIG_SMP
2928 rq->idle_balance = idle_cpu(cpu);
2929 trigger_load_balance(rq);
2930#endif
2931 rq_last_tick_reset(rq);
2932}
2933
2934#ifdef CONFIG_NO_HZ_FULL
2935/**
2936 * scheduler_tick_max_deferment
2937 *
2938 * Keep at least one tick per second when a single
2939 * active task is running because the scheduler doesn't
2940 * yet completely support full dynticks environment.
2941 *
2942 * This makes sure that uptime, CFS vruntime, load
2943 * balancing, etc... continue to move forward, even
2944 * with a very low granularity.
2945 *
2946 * Return: Maximum deferment in nanoseconds.
2947 */
2948u64 scheduler_tick_max_deferment(void)
2949{
2950 struct rq *rq = this_rq();
2951 unsigned long next, now = READ_ONCE(jiffies);
2952
2953 next = rq->last_sched_tick + HZ;
2954
2955 if (time_before_eq(next, now))
2956 return 0;
2957
2958 return jiffies_to_nsecs(next - now);
2959}
2960#endif
2961
2962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2963 defined(CONFIG_PREEMPT_TRACER))
2964
2965void preempt_count_add(int val)
2966{
2967#ifdef CONFIG_DEBUG_PREEMPT
2968 /*
2969 * Underflow?
2970 */
2971 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2972 return;
2973#endif
2974 __preempt_count_add(val);
2975#ifdef CONFIG_DEBUG_PREEMPT
2976 /*
2977 * Spinlock count overflowing soon?
2978 */
2979 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2980 PREEMPT_MASK - 10);
2981#endif
2982 if (preempt_count() == val) {
2983 unsigned long ip = get_lock_parent_ip();
2984#ifdef CONFIG_DEBUG_PREEMPT
2985 current->preempt_disable_ip = ip;
2986#endif
2987 trace_preempt_off(CALLER_ADDR0, ip);
2988 }
2989}
2990EXPORT_SYMBOL(preempt_count_add);
2991NOKPROBE_SYMBOL(preempt_count_add);
2992
2993void preempt_count_sub(int val)
2994{
2995#ifdef CONFIG_DEBUG_PREEMPT
2996 /*
2997 * Underflow?
2998 */
2999 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3000 return;
3001 /*
3002 * Is the spinlock portion underflowing?
3003 */
3004 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3005 !(preempt_count() & PREEMPT_MASK)))
3006 return;
3007#endif
3008
3009 if (preempt_count() == val)
3010 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3011 __preempt_count_sub(val);
3012}
3013EXPORT_SYMBOL(preempt_count_sub);
3014NOKPROBE_SYMBOL(preempt_count_sub);
3015
3016#endif
3017
3018/*
3019 * Print scheduling while atomic bug:
3020 */
3021static noinline void __schedule_bug(struct task_struct *prev)
3022{
3023 if (oops_in_progress)
3024 return;
3025
3026 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3027 prev->comm, prev->pid, preempt_count());
3028
3029 debug_show_held_locks(prev);
3030 print_modules();
3031 if (irqs_disabled())
3032 print_irqtrace_events(prev);
3033#ifdef CONFIG_DEBUG_PREEMPT
3034 if (in_atomic_preempt_off()) {
3035 pr_err("Preemption disabled at:");
3036 print_ip_sym(current->preempt_disable_ip);
3037 pr_cont("\n");
3038 }
3039#endif
3040 dump_stack();
3041 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3042}
3043
3044/*
3045 * Various schedule()-time debugging checks and statistics:
3046 */
3047static inline void schedule_debug(struct task_struct *prev)
3048{
3049#ifdef CONFIG_SCHED_STACK_END_CHECK
3050 BUG_ON(task_stack_end_corrupted(prev));
3051#endif
3052
3053 if (unlikely(in_atomic_preempt_off())) {
3054 __schedule_bug(prev);
3055 preempt_count_set(PREEMPT_DISABLED);
3056 }
3057 rcu_sleep_check();
3058
3059 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3060
3061 schedstat_inc(this_rq(), sched_count);
3062}
3063
3064/*
3065 * Pick up the highest-prio task:
3066 */
3067static inline struct task_struct *
3068pick_next_task(struct rq *rq, struct task_struct *prev)
3069{
3070 const struct sched_class *class = &fair_sched_class;
3071 struct task_struct *p;
3072
3073 /*
3074 * Optimization: we know that if all tasks are in
3075 * the fair class we can call that function directly:
3076 */
3077 if (likely(prev->sched_class == class &&
3078 rq->nr_running == rq->cfs.h_nr_running)) {
3079 p = fair_sched_class.pick_next_task(rq, prev);
3080 if (unlikely(p == RETRY_TASK))
3081 goto again;
3082
3083 /* assumes fair_sched_class->next == idle_sched_class */
3084 if (unlikely(!p))
3085 p = idle_sched_class.pick_next_task(rq, prev);
3086
3087 return p;
3088 }
3089
3090again:
3091 for_each_class(class) {
3092 p = class->pick_next_task(rq, prev);
3093 if (p) {
3094 if (unlikely(p == RETRY_TASK))
3095 goto again;
3096 return p;
3097 }
3098 }
3099
3100 BUG(); /* the idle class will always have a runnable task */
3101}
3102
3103/*
3104 * __schedule() is the main scheduler function.
3105 *
3106 * The main means of driving the scheduler and thus entering this function are:
3107 *
3108 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3109 *
3110 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3111 * paths. For example, see arch/x86/entry_64.S.
3112 *
3113 * To drive preemption between tasks, the scheduler sets the flag in timer
3114 * interrupt handler scheduler_tick().
3115 *
3116 * 3. Wakeups don't really cause entry into schedule(). They add a
3117 * task to the run-queue and that's it.
3118 *
3119 * Now, if the new task added to the run-queue preempts the current
3120 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3121 * called on the nearest possible occasion:
3122 *
3123 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3124 *
3125 * - in syscall or exception context, at the next outmost
3126 * preempt_enable(). (this might be as soon as the wake_up()'s
3127 * spin_unlock()!)
3128 *
3129 * - in IRQ context, return from interrupt-handler to
3130 * preemptible context
3131 *
3132 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3133 * then at the next:
3134 *
3135 * - cond_resched() call
3136 * - explicit schedule() call
3137 * - return from syscall or exception to user-space
3138 * - return from interrupt-handler to user-space
3139 *
3140 * WARNING: must be called with preemption disabled!
3141 */
3142static void __sched notrace __schedule(bool preempt)
3143{
3144 struct task_struct *prev, *next;
3145 unsigned long *switch_count;
3146 struct rq *rq;
3147 int cpu;
3148
3149 cpu = smp_processor_id();
3150 rq = cpu_rq(cpu);
3151 prev = rq->curr;
3152
3153 /*
3154 * do_exit() calls schedule() with preemption disabled as an exception;
3155 * however we must fix that up, otherwise the next task will see an
3156 * inconsistent (higher) preempt count.
3157 *
3158 * It also avoids the below schedule_debug() test from complaining
3159 * about this.
3160 */
3161 if (unlikely(prev->state == TASK_DEAD))
3162 preempt_enable_no_resched_notrace();
3163
3164 schedule_debug(prev);
3165
3166 if (sched_feat(HRTICK))
3167 hrtick_clear(rq);
3168
3169 local_irq_disable();
3170 rcu_note_context_switch();
3171
3172 /*
3173 * Make sure that signal_pending_state()->signal_pending() below
3174 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3175 * done by the caller to avoid the race with signal_wake_up().
3176 */
3177 smp_mb__before_spinlock();
3178 raw_spin_lock(&rq->lock);
3179 lockdep_pin_lock(&rq->lock);
3180
3181 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3182
3183 switch_count = &prev->nivcsw;
3184 if (!preempt && prev->state) {
3185 if (unlikely(signal_pending_state(prev->state, prev))) {
3186 prev->state = TASK_RUNNING;
3187 } else {
3188 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3189 prev->on_rq = 0;
3190
3191 /*
3192 * If a worker went to sleep, notify and ask workqueue
3193 * whether it wants to wake up a task to maintain
3194 * concurrency.
3195 */
3196 if (prev->flags & PF_WQ_WORKER) {
3197 struct task_struct *to_wakeup;
3198
3199 to_wakeup = wq_worker_sleeping(prev);
3200 if (to_wakeup)
3201 try_to_wake_up_local(to_wakeup);
3202 }
3203 }
3204 switch_count = &prev->nvcsw;
3205 }
3206
3207 if (task_on_rq_queued(prev))
3208 update_rq_clock(rq);
3209
3210 next = pick_next_task(rq, prev);
3211 clear_tsk_need_resched(prev);
3212 clear_preempt_need_resched();
3213 rq->clock_skip_update = 0;
3214
3215 if (likely(prev != next)) {
3216 rq->nr_switches++;
3217 rq->curr = next;
3218 ++*switch_count;
3219
3220 trace_sched_switch(preempt, prev, next);
3221 rq = context_switch(rq, prev, next); /* unlocks the rq */
3222 } else {
3223 lockdep_unpin_lock(&rq->lock);
3224 raw_spin_unlock_irq(&rq->lock);
3225 }
3226
3227 balance_callback(rq);
3228}
3229STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3230
3231static inline void sched_submit_work(struct task_struct *tsk)
3232{
3233 if (!tsk->state || tsk_is_pi_blocked(tsk))
3234 return;
3235 /*
3236 * If we are going to sleep and we have plugged IO queued,
3237 * make sure to submit it to avoid deadlocks.
3238 */
3239 if (blk_needs_flush_plug(tsk))
3240 blk_schedule_flush_plug(tsk);
3241}
3242
3243asmlinkage __visible void __sched schedule(void)
3244{
3245 struct task_struct *tsk = current;
3246
3247 sched_submit_work(tsk);
3248 do {
3249 preempt_disable();
3250 __schedule(false);
3251 sched_preempt_enable_no_resched();
3252 } while (need_resched());
3253}
3254EXPORT_SYMBOL(schedule);
3255
3256#ifdef CONFIG_CONTEXT_TRACKING
3257asmlinkage __visible void __sched schedule_user(void)
3258{
3259 /*
3260 * If we come here after a random call to set_need_resched(),
3261 * or we have been woken up remotely but the IPI has not yet arrived,
3262 * we haven't yet exited the RCU idle mode. Do it here manually until
3263 * we find a better solution.
3264 *
3265 * NB: There are buggy callers of this function. Ideally we
3266 * should warn if prev_state != CONTEXT_USER, but that will trigger
3267 * too frequently to make sense yet.
3268 */
3269 enum ctx_state prev_state = exception_enter();
3270 schedule();
3271 exception_exit(prev_state);
3272}
3273#endif
3274
3275/**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280void __sched schedule_preempt_disabled(void)
3281{
3282 sched_preempt_enable_no_resched();
3283 schedule();
3284 preempt_disable();
3285}
3286
3287static void __sched notrace preempt_schedule_common(void)
3288{
3289 do {
3290 preempt_disable_notrace();
3291 __schedule(true);
3292 preempt_enable_no_resched_notrace();
3293
3294 /*
3295 * Check again in case we missed a preemption opportunity
3296 * between schedule and now.
3297 */
3298 } while (need_resched());
3299}
3300
3301#ifdef CONFIG_PREEMPT
3302/*
3303 * this is the entry point to schedule() from in-kernel preemption
3304 * off of preempt_enable. Kernel preemptions off return from interrupt
3305 * occur there and call schedule directly.
3306 */
3307asmlinkage __visible void __sched notrace preempt_schedule(void)
3308{
3309 /*
3310 * If there is a non-zero preempt_count or interrupts are disabled,
3311 * we do not want to preempt the current task. Just return..
3312 */
3313 if (likely(!preemptible()))
3314 return;
3315
3316 preempt_schedule_common();
3317}
3318NOKPROBE_SYMBOL(preempt_schedule);
3319EXPORT_SYMBOL(preempt_schedule);
3320
3321/**
3322 * preempt_schedule_notrace - preempt_schedule called by tracing
3323 *
3324 * The tracing infrastructure uses preempt_enable_notrace to prevent
3325 * recursion and tracing preempt enabling caused by the tracing
3326 * infrastructure itself. But as tracing can happen in areas coming
3327 * from userspace or just about to enter userspace, a preempt enable
3328 * can occur before user_exit() is called. This will cause the scheduler
3329 * to be called when the system is still in usermode.
3330 *
3331 * To prevent this, the preempt_enable_notrace will use this function
3332 * instead of preempt_schedule() to exit user context if needed before
3333 * calling the scheduler.
3334 */
3335asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3336{
3337 enum ctx_state prev_ctx;
3338
3339 if (likely(!preemptible()))
3340 return;
3341
3342 do {
3343 preempt_disable_notrace();
3344 /*
3345 * Needs preempt disabled in case user_exit() is traced
3346 * and the tracer calls preempt_enable_notrace() causing
3347 * an infinite recursion.
3348 */
3349 prev_ctx = exception_enter();
3350 __schedule(true);
3351 exception_exit(prev_ctx);
3352
3353 preempt_enable_no_resched_notrace();
3354 } while (need_resched());
3355}
3356EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3357
3358#endif /* CONFIG_PREEMPT */
3359
3360/*
3361 * this is the entry point to schedule() from kernel preemption
3362 * off of irq context.
3363 * Note, that this is called and return with irqs disabled. This will
3364 * protect us against recursive calling from irq.
3365 */
3366asmlinkage __visible void __sched preempt_schedule_irq(void)
3367{
3368 enum ctx_state prev_state;
3369
3370 /* Catch callers which need to be fixed */
3371 BUG_ON(preempt_count() || !irqs_disabled());
3372
3373 prev_state = exception_enter();
3374
3375 do {
3376 preempt_disable();
3377 local_irq_enable();
3378 __schedule(true);
3379 local_irq_disable();
3380 sched_preempt_enable_no_resched();
3381 } while (need_resched());
3382
3383 exception_exit(prev_state);
3384}
3385
3386int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3387 void *key)
3388{
3389 return try_to_wake_up(curr->private, mode, wake_flags);
3390}
3391EXPORT_SYMBOL(default_wake_function);
3392
3393#ifdef CONFIG_RT_MUTEXES
3394
3395/*
3396 * rt_mutex_setprio - set the current priority of a task
3397 * @p: task
3398 * @prio: prio value (kernel-internal form)
3399 *
3400 * This function changes the 'effective' priority of a task. It does
3401 * not touch ->normal_prio like __setscheduler().
3402 *
3403 * Used by the rt_mutex code to implement priority inheritance
3404 * logic. Call site only calls if the priority of the task changed.
3405 */
3406void rt_mutex_setprio(struct task_struct *p, int prio)
3407{
3408 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3409 struct rq *rq;
3410 const struct sched_class *prev_class;
3411
3412 BUG_ON(prio > MAX_PRIO);
3413
3414 rq = __task_rq_lock(p);
3415
3416 /*
3417 * Idle task boosting is a nono in general. There is one
3418 * exception, when PREEMPT_RT and NOHZ is active:
3419 *
3420 * The idle task calls get_next_timer_interrupt() and holds
3421 * the timer wheel base->lock on the CPU and another CPU wants
3422 * to access the timer (probably to cancel it). We can safely
3423 * ignore the boosting request, as the idle CPU runs this code
3424 * with interrupts disabled and will complete the lock
3425 * protected section without being interrupted. So there is no
3426 * real need to boost.
3427 */
3428 if (unlikely(p == rq->idle)) {
3429 WARN_ON(p != rq->curr);
3430 WARN_ON(p->pi_blocked_on);
3431 goto out_unlock;
3432 }
3433
3434 trace_sched_pi_setprio(p, prio);
3435 oldprio = p->prio;
3436
3437 if (oldprio == prio)
3438 queue_flag &= ~DEQUEUE_MOVE;
3439
3440 prev_class = p->sched_class;
3441 queued = task_on_rq_queued(p);
3442 running = task_current(rq, p);
3443 if (queued)
3444 dequeue_task(rq, p, queue_flag);
3445 if (running)
3446 put_prev_task(rq, p);
3447
3448 /*
3449 * Boosting condition are:
3450 * 1. -rt task is running and holds mutex A
3451 * --> -dl task blocks on mutex A
3452 *
3453 * 2. -dl task is running and holds mutex A
3454 * --> -dl task blocks on mutex A and could preempt the
3455 * running task
3456 */
3457 if (dl_prio(prio)) {
3458 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3459 if (!dl_prio(p->normal_prio) ||
3460 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3461 p->dl.dl_boosted = 1;
3462 queue_flag |= ENQUEUE_REPLENISH;
3463 } else
3464 p->dl.dl_boosted = 0;
3465 p->sched_class = &dl_sched_class;
3466 } else if (rt_prio(prio)) {
3467 if (dl_prio(oldprio))
3468 p->dl.dl_boosted = 0;
3469 if (oldprio < prio)
3470 queue_flag |= ENQUEUE_HEAD;
3471 p->sched_class = &rt_sched_class;
3472 } else {
3473 if (dl_prio(oldprio))
3474 p->dl.dl_boosted = 0;
3475 if (rt_prio(oldprio))
3476 p->rt.timeout = 0;
3477 p->sched_class = &fair_sched_class;
3478 }
3479
3480 p->prio = prio;
3481
3482 if (running)
3483 p->sched_class->set_curr_task(rq);
3484 if (queued)
3485 enqueue_task(rq, p, queue_flag);
3486
3487 check_class_changed(rq, p, prev_class, oldprio);
3488out_unlock:
3489 preempt_disable(); /* avoid rq from going away on us */
3490 __task_rq_unlock(rq);
3491
3492 balance_callback(rq);
3493 preempt_enable();
3494}
3495#endif
3496
3497void set_user_nice(struct task_struct *p, long nice)
3498{
3499 int old_prio, delta, queued;
3500 unsigned long flags;
3501 struct rq *rq;
3502
3503 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3504 return;
3505 /*
3506 * We have to be careful, if called from sys_setpriority(),
3507 * the task might be in the middle of scheduling on another CPU.
3508 */
3509 rq = task_rq_lock(p, &flags);
3510 /*
3511 * The RT priorities are set via sched_setscheduler(), but we still
3512 * allow the 'normal' nice value to be set - but as expected
3513 * it wont have any effect on scheduling until the task is
3514 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3515 */
3516 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3517 p->static_prio = NICE_TO_PRIO(nice);
3518 goto out_unlock;
3519 }
3520 queued = task_on_rq_queued(p);
3521 if (queued)
3522 dequeue_task(rq, p, DEQUEUE_SAVE);
3523
3524 p->static_prio = NICE_TO_PRIO(nice);
3525 set_load_weight(p);
3526 old_prio = p->prio;
3527 p->prio = effective_prio(p);
3528 delta = p->prio - old_prio;
3529
3530 if (queued) {
3531 enqueue_task(rq, p, ENQUEUE_RESTORE);
3532 /*
3533 * If the task increased its priority or is running and
3534 * lowered its priority, then reschedule its CPU:
3535 */
3536 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3537 resched_curr(rq);
3538 }
3539out_unlock:
3540 task_rq_unlock(rq, p, &flags);
3541}
3542EXPORT_SYMBOL(set_user_nice);
3543
3544/*
3545 * can_nice - check if a task can reduce its nice value
3546 * @p: task
3547 * @nice: nice value
3548 */
3549int can_nice(const struct task_struct *p, const int nice)
3550{
3551 /* convert nice value [19,-20] to rlimit style value [1,40] */
3552 int nice_rlim = nice_to_rlimit(nice);
3553
3554 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3555 capable(CAP_SYS_NICE));
3556}
3557
3558#ifdef __ARCH_WANT_SYS_NICE
3559
3560/*
3561 * sys_nice - change the priority of the current process.
3562 * @increment: priority increment
3563 *
3564 * sys_setpriority is a more generic, but much slower function that
3565 * does similar things.
3566 */
3567SYSCALL_DEFINE1(nice, int, increment)
3568{
3569 long nice, retval;
3570
3571 /*
3572 * Setpriority might change our priority at the same moment.
3573 * We don't have to worry. Conceptually one call occurs first
3574 * and we have a single winner.
3575 */
3576 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3577 nice = task_nice(current) + increment;
3578
3579 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3580 if (increment < 0 && !can_nice(current, nice))
3581 return -EPERM;
3582
3583 retval = security_task_setnice(current, nice);
3584 if (retval)
3585 return retval;
3586
3587 set_user_nice(current, nice);
3588 return 0;
3589}
3590
3591#endif
3592
3593/**
3594 * task_prio - return the priority value of a given task.
3595 * @p: the task in question.
3596 *
3597 * Return: The priority value as seen by users in /proc.
3598 * RT tasks are offset by -200. Normal tasks are centered
3599 * around 0, value goes from -16 to +15.
3600 */
3601int task_prio(const struct task_struct *p)
3602{
3603 return p->prio - MAX_RT_PRIO;
3604}
3605
3606/**
3607 * idle_cpu - is a given cpu idle currently?
3608 * @cpu: the processor in question.
3609 *
3610 * Return: 1 if the CPU is currently idle. 0 otherwise.
3611 */
3612int idle_cpu(int cpu)
3613{
3614 struct rq *rq = cpu_rq(cpu);
3615
3616 if (rq->curr != rq->idle)
3617 return 0;
3618
3619 if (rq->nr_running)
3620 return 0;
3621
3622#ifdef CONFIG_SMP
3623 if (!llist_empty(&rq->wake_list))
3624 return 0;
3625#endif
3626
3627 return 1;
3628}
3629
3630/**
3631 * idle_task - return the idle task for a given cpu.
3632 * @cpu: the processor in question.
3633 *
3634 * Return: The idle task for the cpu @cpu.
3635 */
3636struct task_struct *idle_task(int cpu)
3637{
3638 return cpu_rq(cpu)->idle;
3639}
3640
3641/**
3642 * find_process_by_pid - find a process with a matching PID value.
3643 * @pid: the pid in question.
3644 *
3645 * The task of @pid, if found. %NULL otherwise.
3646 */
3647static struct task_struct *find_process_by_pid(pid_t pid)
3648{
3649 return pid ? find_task_by_vpid(pid) : current;
3650}
3651
3652/*
3653 * This function initializes the sched_dl_entity of a newly becoming
3654 * SCHED_DEADLINE task.
3655 *
3656 * Only the static values are considered here, the actual runtime and the
3657 * absolute deadline will be properly calculated when the task is enqueued
3658 * for the first time with its new policy.
3659 */
3660static void
3661__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3662{
3663 struct sched_dl_entity *dl_se = &p->dl;
3664
3665 dl_se->dl_runtime = attr->sched_runtime;
3666 dl_se->dl_deadline = attr->sched_deadline;
3667 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3668 dl_se->flags = attr->sched_flags;
3669 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3670
3671 /*
3672 * Changing the parameters of a task is 'tricky' and we're not doing
3673 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3674 *
3675 * What we SHOULD do is delay the bandwidth release until the 0-lag
3676 * point. This would include retaining the task_struct until that time
3677 * and change dl_overflow() to not immediately decrement the current
3678 * amount.
3679 *
3680 * Instead we retain the current runtime/deadline and let the new
3681 * parameters take effect after the current reservation period lapses.
3682 * This is safe (albeit pessimistic) because the 0-lag point is always
3683 * before the current scheduling deadline.
3684 *
3685 * We can still have temporary overloads because we do not delay the
3686 * change in bandwidth until that time; so admission control is
3687 * not on the safe side. It does however guarantee tasks will never
3688 * consume more than promised.
3689 */
3690}
3691
3692/*
3693 * sched_setparam() passes in -1 for its policy, to let the functions
3694 * it calls know not to change it.
3695 */
3696#define SETPARAM_POLICY -1
3697
3698static void __setscheduler_params(struct task_struct *p,
3699 const struct sched_attr *attr)
3700{
3701 int policy = attr->sched_policy;
3702
3703 if (policy == SETPARAM_POLICY)
3704 policy = p->policy;
3705
3706 p->policy = policy;
3707
3708 if (dl_policy(policy))
3709 __setparam_dl(p, attr);
3710 else if (fair_policy(policy))
3711 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3712
3713 /*
3714 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3715 * !rt_policy. Always setting this ensures that things like
3716 * getparam()/getattr() don't report silly values for !rt tasks.
3717 */
3718 p->rt_priority = attr->sched_priority;
3719 p->normal_prio = normal_prio(p);
3720 set_load_weight(p);
3721}
3722
3723/* Actually do priority change: must hold pi & rq lock. */
3724static void __setscheduler(struct rq *rq, struct task_struct *p,
3725 const struct sched_attr *attr, bool keep_boost)
3726{
3727 __setscheduler_params(p, attr);
3728
3729 /*
3730 * Keep a potential priority boosting if called from
3731 * sched_setscheduler().
3732 */
3733 if (keep_boost)
3734 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3735 else
3736 p->prio = normal_prio(p);
3737
3738 if (dl_prio(p->prio))
3739 p->sched_class = &dl_sched_class;
3740 else if (rt_prio(p->prio))
3741 p->sched_class = &rt_sched_class;
3742 else
3743 p->sched_class = &fair_sched_class;
3744}
3745
3746static void
3747__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3748{
3749 struct sched_dl_entity *dl_se = &p->dl;
3750
3751 attr->sched_priority = p->rt_priority;
3752 attr->sched_runtime = dl_se->dl_runtime;
3753 attr->sched_deadline = dl_se->dl_deadline;
3754 attr->sched_period = dl_se->dl_period;
3755 attr->sched_flags = dl_se->flags;
3756}
3757
3758/*
3759 * This function validates the new parameters of a -deadline task.
3760 * We ask for the deadline not being zero, and greater or equal
3761 * than the runtime, as well as the period of being zero or
3762 * greater than deadline. Furthermore, we have to be sure that
3763 * user parameters are above the internal resolution of 1us (we
3764 * check sched_runtime only since it is always the smaller one) and
3765 * below 2^63 ns (we have to check both sched_deadline and
3766 * sched_period, as the latter can be zero).
3767 */
3768static bool
3769__checkparam_dl(const struct sched_attr *attr)
3770{
3771 /* deadline != 0 */
3772 if (attr->sched_deadline == 0)
3773 return false;
3774
3775 /*
3776 * Since we truncate DL_SCALE bits, make sure we're at least
3777 * that big.
3778 */
3779 if (attr->sched_runtime < (1ULL << DL_SCALE))
3780 return false;
3781
3782 /*
3783 * Since we use the MSB for wrap-around and sign issues, make
3784 * sure it's not set (mind that period can be equal to zero).
3785 */
3786 if (attr->sched_deadline & (1ULL << 63) ||
3787 attr->sched_period & (1ULL << 63))
3788 return false;
3789
3790 /* runtime <= deadline <= period (if period != 0) */
3791 if ((attr->sched_period != 0 &&
3792 attr->sched_period < attr->sched_deadline) ||
3793 attr->sched_deadline < attr->sched_runtime)
3794 return false;
3795
3796 return true;
3797}
3798
3799/*
3800 * check the target process has a UID that matches the current process's
3801 */
3802static bool check_same_owner(struct task_struct *p)
3803{
3804 const struct cred *cred = current_cred(), *pcred;
3805 bool match;
3806
3807 rcu_read_lock();
3808 pcred = __task_cred(p);
3809 match = (uid_eq(cred->euid, pcred->euid) ||
3810 uid_eq(cred->euid, pcred->uid));
3811 rcu_read_unlock();
3812 return match;
3813}
3814
3815static bool dl_param_changed(struct task_struct *p,
3816 const struct sched_attr *attr)
3817{
3818 struct sched_dl_entity *dl_se = &p->dl;
3819
3820 if (dl_se->dl_runtime != attr->sched_runtime ||
3821 dl_se->dl_deadline != attr->sched_deadline ||
3822 dl_se->dl_period != attr->sched_period ||
3823 dl_se->flags != attr->sched_flags)
3824 return true;
3825
3826 return false;
3827}
3828
3829static int __sched_setscheduler(struct task_struct *p,
3830 const struct sched_attr *attr,
3831 bool user, bool pi)
3832{
3833 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3834 MAX_RT_PRIO - 1 - attr->sched_priority;
3835 int retval, oldprio, oldpolicy = -1, queued, running;
3836 int new_effective_prio, policy = attr->sched_policy;
3837 unsigned long flags;
3838 const struct sched_class *prev_class;
3839 struct rq *rq;
3840 int reset_on_fork;
3841 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3842
3843 /* may grab non-irq protected spin_locks */
3844 BUG_ON(in_interrupt());
3845recheck:
3846 /* double check policy once rq lock held */
3847 if (policy < 0) {
3848 reset_on_fork = p->sched_reset_on_fork;
3849 policy = oldpolicy = p->policy;
3850 } else {
3851 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3852
3853 if (!valid_policy(policy))
3854 return -EINVAL;
3855 }
3856
3857 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3858 return -EINVAL;
3859
3860 /*
3861 * Valid priorities for SCHED_FIFO and SCHED_RR are
3862 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863 * SCHED_BATCH and SCHED_IDLE is 0.
3864 */
3865 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3866 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3867 return -EINVAL;
3868 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3869 (rt_policy(policy) != (attr->sched_priority != 0)))
3870 return -EINVAL;
3871
3872 /*
3873 * Allow unprivileged RT tasks to decrease priority:
3874 */
3875 if (user && !capable(CAP_SYS_NICE)) {
3876 if (fair_policy(policy)) {
3877 if (attr->sched_nice < task_nice(p) &&
3878 !can_nice(p, attr->sched_nice))
3879 return -EPERM;
3880 }
3881
3882 if (rt_policy(policy)) {
3883 unsigned long rlim_rtprio =
3884 task_rlimit(p, RLIMIT_RTPRIO);
3885
3886 /* can't set/change the rt policy */
3887 if (policy != p->policy && !rlim_rtprio)
3888 return -EPERM;
3889
3890 /* can't increase priority */
3891 if (attr->sched_priority > p->rt_priority &&
3892 attr->sched_priority > rlim_rtprio)
3893 return -EPERM;
3894 }
3895
3896 /*
3897 * Can't set/change SCHED_DEADLINE policy at all for now
3898 * (safest behavior); in the future we would like to allow
3899 * unprivileged DL tasks to increase their relative deadline
3900 * or reduce their runtime (both ways reducing utilization)
3901 */
3902 if (dl_policy(policy))
3903 return -EPERM;
3904
3905 /*
3906 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3907 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3908 */
3909 if (idle_policy(p->policy) && !idle_policy(policy)) {
3910 if (!can_nice(p, task_nice(p)))
3911 return -EPERM;
3912 }
3913
3914 /* can't change other user's priorities */
3915 if (!check_same_owner(p))
3916 return -EPERM;
3917
3918 /* Normal users shall not reset the sched_reset_on_fork flag */
3919 if (p->sched_reset_on_fork && !reset_on_fork)
3920 return -EPERM;
3921 }
3922
3923 if (user) {
3924 retval = security_task_setscheduler(p);
3925 if (retval)
3926 return retval;
3927 }
3928
3929 /*
3930 * make sure no PI-waiters arrive (or leave) while we are
3931 * changing the priority of the task:
3932 *
3933 * To be able to change p->policy safely, the appropriate
3934 * runqueue lock must be held.
3935 */
3936 rq = task_rq_lock(p, &flags);
3937
3938 /*
3939 * Changing the policy of the stop threads its a very bad idea
3940 */
3941 if (p == rq->stop) {
3942 task_rq_unlock(rq, p, &flags);
3943 return -EINVAL;
3944 }
3945
3946 /*
3947 * If not changing anything there's no need to proceed further,
3948 * but store a possible modification of reset_on_fork.
3949 */
3950 if (unlikely(policy == p->policy)) {
3951 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3952 goto change;
3953 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3954 goto change;
3955 if (dl_policy(policy) && dl_param_changed(p, attr))
3956 goto change;
3957
3958 p->sched_reset_on_fork = reset_on_fork;
3959 task_rq_unlock(rq, p, &flags);
3960 return 0;
3961 }
3962change:
3963
3964 if (user) {
3965#ifdef CONFIG_RT_GROUP_SCHED
3966 /*
3967 * Do not allow realtime tasks into groups that have no runtime
3968 * assigned.
3969 */
3970 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3971 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3972 !task_group_is_autogroup(task_group(p))) {
3973 task_rq_unlock(rq, p, &flags);
3974 return -EPERM;
3975 }
3976#endif
3977#ifdef CONFIG_SMP
3978 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3979 cpumask_t *span = rq->rd->span;
3980
3981 /*
3982 * Don't allow tasks with an affinity mask smaller than
3983 * the entire root_domain to become SCHED_DEADLINE. We
3984 * will also fail if there's no bandwidth available.
3985 */
3986 if (!cpumask_subset(span, &p->cpus_allowed) ||
3987 rq->rd->dl_bw.bw == 0) {
3988 task_rq_unlock(rq, p, &flags);
3989 return -EPERM;
3990 }
3991 }
3992#endif
3993 }
3994
3995 /* recheck policy now with rq lock held */
3996 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3997 policy = oldpolicy = -1;
3998 task_rq_unlock(rq, p, &flags);
3999 goto recheck;
4000 }
4001
4002 /*
4003 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4004 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4005 * is available.
4006 */
4007 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4008 task_rq_unlock(rq, p, &flags);
4009 return -EBUSY;
4010 }
4011
4012 p->sched_reset_on_fork = reset_on_fork;
4013 oldprio = p->prio;
4014
4015 if (pi) {
4016 /*
4017 * Take priority boosted tasks into account. If the new
4018 * effective priority is unchanged, we just store the new
4019 * normal parameters and do not touch the scheduler class and
4020 * the runqueue. This will be done when the task deboost
4021 * itself.
4022 */
4023 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4024 if (new_effective_prio == oldprio)
4025 queue_flags &= ~DEQUEUE_MOVE;
4026 }
4027
4028 queued = task_on_rq_queued(p);
4029 running = task_current(rq, p);
4030 if (queued)
4031 dequeue_task(rq, p, queue_flags);
4032 if (running)
4033 put_prev_task(rq, p);
4034
4035 prev_class = p->sched_class;
4036 __setscheduler(rq, p, attr, pi);
4037
4038 if (running)
4039 p->sched_class->set_curr_task(rq);
4040 if (queued) {
4041 /*
4042 * We enqueue to tail when the priority of a task is
4043 * increased (user space view).
4044 */
4045 if (oldprio < p->prio)
4046 queue_flags |= ENQUEUE_HEAD;
4047
4048 enqueue_task(rq, p, queue_flags);
4049 }
4050
4051 check_class_changed(rq, p, prev_class, oldprio);
4052 preempt_disable(); /* avoid rq from going away on us */
4053 task_rq_unlock(rq, p, &flags);
4054
4055 if (pi)
4056 rt_mutex_adjust_pi(p);
4057
4058 /*
4059 * Run balance callbacks after we've adjusted the PI chain.
4060 */
4061 balance_callback(rq);
4062 preempt_enable();
4063
4064 return 0;
4065}
4066
4067static int _sched_setscheduler(struct task_struct *p, int policy,
4068 const struct sched_param *param, bool check)
4069{
4070 struct sched_attr attr = {
4071 .sched_policy = policy,
4072 .sched_priority = param->sched_priority,
4073 .sched_nice = PRIO_TO_NICE(p->static_prio),
4074 };
4075
4076 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4077 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4078 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4079 policy &= ~SCHED_RESET_ON_FORK;
4080 attr.sched_policy = policy;
4081 }
4082
4083 return __sched_setscheduler(p, &attr, check, true);
4084}
4085/**
4086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4087 * @p: the task in question.
4088 * @policy: new policy.
4089 * @param: structure containing the new RT priority.
4090 *
4091 * Return: 0 on success. An error code otherwise.
4092 *
4093 * NOTE that the task may be already dead.
4094 */
4095int sched_setscheduler(struct task_struct *p, int policy,
4096 const struct sched_param *param)
4097{
4098 return _sched_setscheduler(p, policy, param, true);
4099}
4100EXPORT_SYMBOL_GPL(sched_setscheduler);
4101
4102int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4103{
4104 return __sched_setscheduler(p, attr, true, true);
4105}
4106EXPORT_SYMBOL_GPL(sched_setattr);
4107
4108/**
4109 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4110 * @p: the task in question.
4111 * @policy: new policy.
4112 * @param: structure containing the new RT priority.
4113 *
4114 * Just like sched_setscheduler, only don't bother checking if the
4115 * current context has permission. For example, this is needed in
4116 * stop_machine(): we create temporary high priority worker threads,
4117 * but our caller might not have that capability.
4118 *
4119 * Return: 0 on success. An error code otherwise.
4120 */
4121int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4122 const struct sched_param *param)
4123{
4124 return _sched_setscheduler(p, policy, param, false);
4125}
4126EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4127
4128static int
4129do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4130{
4131 struct sched_param lparam;
4132 struct task_struct *p;
4133 int retval;
4134
4135 if (!param || pid < 0)
4136 return -EINVAL;
4137 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4138 return -EFAULT;
4139
4140 rcu_read_lock();
4141 retval = -ESRCH;
4142 p = find_process_by_pid(pid);
4143 if (p != NULL)
4144 retval = sched_setscheduler(p, policy, &lparam);
4145 rcu_read_unlock();
4146
4147 return retval;
4148}
4149
4150/*
4151 * Mimics kernel/events/core.c perf_copy_attr().
4152 */
4153static int sched_copy_attr(struct sched_attr __user *uattr,
4154 struct sched_attr *attr)
4155{
4156 u32 size;
4157 int ret;
4158
4159 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4160 return -EFAULT;
4161
4162 /*
4163 * zero the full structure, so that a short copy will be nice.
4164 */
4165 memset(attr, 0, sizeof(*attr));
4166
4167 ret = get_user(size, &uattr->size);
4168 if (ret)
4169 return ret;
4170
4171 if (size > PAGE_SIZE) /* silly large */
4172 goto err_size;
4173
4174 if (!size) /* abi compat */
4175 size = SCHED_ATTR_SIZE_VER0;
4176
4177 if (size < SCHED_ATTR_SIZE_VER0)
4178 goto err_size;
4179
4180 /*
4181 * If we're handed a bigger struct than we know of,
4182 * ensure all the unknown bits are 0 - i.e. new
4183 * user-space does not rely on any kernel feature
4184 * extensions we dont know about yet.
4185 */
4186 if (size > sizeof(*attr)) {
4187 unsigned char __user *addr;
4188 unsigned char __user *end;
4189 unsigned char val;
4190
4191 addr = (void __user *)uattr + sizeof(*attr);
4192 end = (void __user *)uattr + size;
4193
4194 for (; addr < end; addr++) {
4195 ret = get_user(val, addr);
4196 if (ret)
4197 return ret;
4198 if (val)
4199 goto err_size;
4200 }
4201 size = sizeof(*attr);
4202 }
4203
4204 ret = copy_from_user(attr, uattr, size);
4205 if (ret)
4206 return -EFAULT;
4207
4208 /*
4209 * XXX: do we want to be lenient like existing syscalls; or do we want
4210 * to be strict and return an error on out-of-bounds values?
4211 */
4212 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4213
4214 return 0;
4215
4216err_size:
4217 put_user(sizeof(*attr), &uattr->size);
4218 return -E2BIG;
4219}
4220
4221/**
4222 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4223 * @pid: the pid in question.
4224 * @policy: new policy.
4225 * @param: structure containing the new RT priority.
4226 *
4227 * Return: 0 on success. An error code otherwise.
4228 */
4229SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4230 struct sched_param __user *, param)
4231{
4232 /* negative values for policy are not valid */
4233 if (policy < 0)
4234 return -EINVAL;
4235
4236 return do_sched_setscheduler(pid, policy, param);
4237}
4238
4239/**
4240 * sys_sched_setparam - set/change the RT priority of a thread
4241 * @pid: the pid in question.
4242 * @param: structure containing the new RT priority.
4243 *
4244 * Return: 0 on success. An error code otherwise.
4245 */
4246SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4247{
4248 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4249}
4250
4251/**
4252 * sys_sched_setattr - same as above, but with extended sched_attr
4253 * @pid: the pid in question.
4254 * @uattr: structure containing the extended parameters.
4255 * @flags: for future extension.
4256 */
4257SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4258 unsigned int, flags)
4259{
4260 struct sched_attr attr;
4261 struct task_struct *p;
4262 int retval;
4263
4264 if (!uattr || pid < 0 || flags)
4265 return -EINVAL;
4266
4267 retval = sched_copy_attr(uattr, &attr);
4268 if (retval)
4269 return retval;
4270
4271 if ((int)attr.sched_policy < 0)
4272 return -EINVAL;
4273
4274 rcu_read_lock();
4275 retval = -ESRCH;
4276 p = find_process_by_pid(pid);
4277 if (p != NULL)
4278 retval = sched_setattr(p, &attr);
4279 rcu_read_unlock();
4280
4281 return retval;
4282}
4283
4284/**
4285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4286 * @pid: the pid in question.
4287 *
4288 * Return: On success, the policy of the thread. Otherwise, a negative error
4289 * code.
4290 */
4291SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4292{
4293 struct task_struct *p;
4294 int retval;
4295
4296 if (pid < 0)
4297 return -EINVAL;
4298
4299 retval = -ESRCH;
4300 rcu_read_lock();
4301 p = find_process_by_pid(pid);
4302 if (p) {
4303 retval = security_task_getscheduler(p);
4304 if (!retval)
4305 retval = p->policy
4306 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4307 }
4308 rcu_read_unlock();
4309 return retval;
4310}
4311
4312/**
4313 * sys_sched_getparam - get the RT priority of a thread
4314 * @pid: the pid in question.
4315 * @param: structure containing the RT priority.
4316 *
4317 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4318 * code.
4319 */
4320SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4321{
4322 struct sched_param lp = { .sched_priority = 0 };
4323 struct task_struct *p;
4324 int retval;
4325
4326 if (!param || pid < 0)
4327 return -EINVAL;
4328
4329 rcu_read_lock();
4330 p = find_process_by_pid(pid);
4331 retval = -ESRCH;
4332 if (!p)
4333 goto out_unlock;
4334
4335 retval = security_task_getscheduler(p);
4336 if (retval)
4337 goto out_unlock;
4338
4339 if (task_has_rt_policy(p))
4340 lp.sched_priority = p->rt_priority;
4341 rcu_read_unlock();
4342
4343 /*
4344 * This one might sleep, we cannot do it with a spinlock held ...
4345 */
4346 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347
4348 return retval;
4349
4350out_unlock:
4351 rcu_read_unlock();
4352 return retval;
4353}
4354
4355static int sched_read_attr(struct sched_attr __user *uattr,
4356 struct sched_attr *attr,
4357 unsigned int usize)
4358{
4359 int ret;
4360
4361 if (!access_ok(VERIFY_WRITE, uattr, usize))
4362 return -EFAULT;
4363
4364 /*
4365 * If we're handed a smaller struct than we know of,
4366 * ensure all the unknown bits are 0 - i.e. old
4367 * user-space does not get uncomplete information.
4368 */
4369 if (usize < sizeof(*attr)) {
4370 unsigned char *addr;
4371 unsigned char *end;
4372
4373 addr = (void *)attr + usize;
4374 end = (void *)attr + sizeof(*attr);
4375
4376 for (; addr < end; addr++) {
4377 if (*addr)
4378 return -EFBIG;
4379 }
4380
4381 attr->size = usize;
4382 }
4383
4384 ret = copy_to_user(uattr, attr, attr->size);
4385 if (ret)
4386 return -EFAULT;
4387
4388 return 0;
4389}
4390
4391/**
4392 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4393 * @pid: the pid in question.
4394 * @uattr: structure containing the extended parameters.
4395 * @size: sizeof(attr) for fwd/bwd comp.
4396 * @flags: for future extension.
4397 */
4398SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4399 unsigned int, size, unsigned int, flags)
4400{
4401 struct sched_attr attr = {
4402 .size = sizeof(struct sched_attr),
4403 };
4404 struct task_struct *p;
4405 int retval;
4406
4407 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4408 size < SCHED_ATTR_SIZE_VER0 || flags)
4409 return -EINVAL;
4410
4411 rcu_read_lock();
4412 p = find_process_by_pid(pid);
4413 retval = -ESRCH;
4414 if (!p)
4415 goto out_unlock;
4416
4417 retval = security_task_getscheduler(p);
4418 if (retval)
4419 goto out_unlock;
4420
4421 attr.sched_policy = p->policy;
4422 if (p->sched_reset_on_fork)
4423 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4424 if (task_has_dl_policy(p))
4425 __getparam_dl(p, &attr);
4426 else if (task_has_rt_policy(p))
4427 attr.sched_priority = p->rt_priority;
4428 else
4429 attr.sched_nice = task_nice(p);
4430
4431 rcu_read_unlock();
4432
4433 retval = sched_read_attr(uattr, &attr, size);
4434 return retval;
4435
4436out_unlock:
4437 rcu_read_unlock();
4438 return retval;
4439}
4440
4441long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4442{
4443 cpumask_var_t cpus_allowed, new_mask;
4444 struct task_struct *p;
4445 int retval;
4446
4447 rcu_read_lock();
4448
4449 p = find_process_by_pid(pid);
4450 if (!p) {
4451 rcu_read_unlock();
4452 return -ESRCH;
4453 }
4454
4455 /* Prevent p going away */
4456 get_task_struct(p);
4457 rcu_read_unlock();
4458
4459 if (p->flags & PF_NO_SETAFFINITY) {
4460 retval = -EINVAL;
4461 goto out_put_task;
4462 }
4463 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4464 retval = -ENOMEM;
4465 goto out_put_task;
4466 }
4467 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4468 retval = -ENOMEM;
4469 goto out_free_cpus_allowed;
4470 }
4471 retval = -EPERM;
4472 if (!check_same_owner(p)) {
4473 rcu_read_lock();
4474 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4475 rcu_read_unlock();
4476 goto out_free_new_mask;
4477 }
4478 rcu_read_unlock();
4479 }
4480
4481 retval = security_task_setscheduler(p);
4482 if (retval)
4483 goto out_free_new_mask;
4484
4485
4486 cpuset_cpus_allowed(p, cpus_allowed);
4487 cpumask_and(new_mask, in_mask, cpus_allowed);
4488
4489 /*
4490 * Since bandwidth control happens on root_domain basis,
4491 * if admission test is enabled, we only admit -deadline
4492 * tasks allowed to run on all the CPUs in the task's
4493 * root_domain.
4494 */
4495#ifdef CONFIG_SMP
4496 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4497 rcu_read_lock();
4498 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4499 retval = -EBUSY;
4500 rcu_read_unlock();
4501 goto out_free_new_mask;
4502 }
4503 rcu_read_unlock();
4504 }
4505#endif
4506again:
4507 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4508
4509 if (!retval) {
4510 cpuset_cpus_allowed(p, cpus_allowed);
4511 if (!cpumask_subset(new_mask, cpus_allowed)) {
4512 /*
4513 * We must have raced with a concurrent cpuset
4514 * update. Just reset the cpus_allowed to the
4515 * cpuset's cpus_allowed
4516 */
4517 cpumask_copy(new_mask, cpus_allowed);
4518 goto again;
4519 }
4520 }
4521out_free_new_mask:
4522 free_cpumask_var(new_mask);
4523out_free_cpus_allowed:
4524 free_cpumask_var(cpus_allowed);
4525out_put_task:
4526 put_task_struct(p);
4527 return retval;
4528}
4529
4530static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4531 struct cpumask *new_mask)
4532{
4533 if (len < cpumask_size())
4534 cpumask_clear(new_mask);
4535 else if (len > cpumask_size())
4536 len = cpumask_size();
4537
4538 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4539}
4540
4541/**
4542 * sys_sched_setaffinity - set the cpu affinity of a process
4543 * @pid: pid of the process
4544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4545 * @user_mask_ptr: user-space pointer to the new cpu mask
4546 *
4547 * Return: 0 on success. An error code otherwise.
4548 */
4549SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4550 unsigned long __user *, user_mask_ptr)
4551{
4552 cpumask_var_t new_mask;
4553 int retval;
4554
4555 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4556 return -ENOMEM;
4557
4558 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4559 if (retval == 0)
4560 retval = sched_setaffinity(pid, new_mask);
4561 free_cpumask_var(new_mask);
4562 return retval;
4563}
4564
4565long sched_getaffinity(pid_t pid, struct cpumask *mask)
4566{
4567 struct task_struct *p;
4568 unsigned long flags;
4569 int retval;
4570
4571 rcu_read_lock();
4572
4573 retval = -ESRCH;
4574 p = find_process_by_pid(pid);
4575 if (!p)
4576 goto out_unlock;
4577
4578 retval = security_task_getscheduler(p);
4579 if (retval)
4580 goto out_unlock;
4581
4582 raw_spin_lock_irqsave(&p->pi_lock, flags);
4583 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4584 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4585
4586out_unlock:
4587 rcu_read_unlock();
4588
4589 return retval;
4590}
4591
4592/**
4593 * sys_sched_getaffinity - get the cpu affinity of a process
4594 * @pid: pid of the process
4595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4596 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4597 *
4598 * Return: 0 on success. An error code otherwise.
4599 */
4600SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4601 unsigned long __user *, user_mask_ptr)
4602{
4603 int ret;
4604 cpumask_var_t mask;
4605
4606 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4607 return -EINVAL;
4608 if (len & (sizeof(unsigned long)-1))
4609 return -EINVAL;
4610
4611 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4612 return -ENOMEM;
4613
4614 ret = sched_getaffinity(pid, mask);
4615 if (ret == 0) {
4616 size_t retlen = min_t(size_t, len, cpumask_size());
4617
4618 if (copy_to_user(user_mask_ptr, mask, retlen))
4619 ret = -EFAULT;
4620 else
4621 ret = retlen;
4622 }
4623 free_cpumask_var(mask);
4624
4625 return ret;
4626}
4627
4628/**
4629 * sys_sched_yield - yield the current processor to other threads.
4630 *
4631 * This function yields the current CPU to other tasks. If there are no
4632 * other threads running on this CPU then this function will return.
4633 *
4634 * Return: 0.
4635 */
4636SYSCALL_DEFINE0(sched_yield)
4637{
4638 struct rq *rq = this_rq_lock();
4639
4640 schedstat_inc(rq, yld_count);
4641 current->sched_class->yield_task(rq);
4642
4643 /*
4644 * Since we are going to call schedule() anyway, there's
4645 * no need to preempt or enable interrupts:
4646 */
4647 __release(rq->lock);
4648 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4649 do_raw_spin_unlock(&rq->lock);
4650 sched_preempt_enable_no_resched();
4651
4652 schedule();
4653
4654 return 0;
4655}
4656
4657int __sched _cond_resched(void)
4658{
4659 if (should_resched(0)) {
4660 preempt_schedule_common();
4661 return 1;
4662 }
4663 return 0;
4664}
4665EXPORT_SYMBOL(_cond_resched);
4666
4667/*
4668 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4669 * call schedule, and on return reacquire the lock.
4670 *
4671 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4672 * operations here to prevent schedule() from being called twice (once via
4673 * spin_unlock(), once by hand).
4674 */
4675int __cond_resched_lock(spinlock_t *lock)
4676{
4677 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4678 int ret = 0;
4679
4680 lockdep_assert_held(lock);
4681
4682 if (spin_needbreak(lock) || resched) {
4683 spin_unlock(lock);
4684 if (resched)
4685 preempt_schedule_common();
4686 else
4687 cpu_relax();
4688 ret = 1;
4689 spin_lock(lock);
4690 }
4691 return ret;
4692}
4693EXPORT_SYMBOL(__cond_resched_lock);
4694
4695int __sched __cond_resched_softirq(void)
4696{
4697 BUG_ON(!in_softirq());
4698
4699 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4700 local_bh_enable();
4701 preempt_schedule_common();
4702 local_bh_disable();
4703 return 1;
4704 }
4705 return 0;
4706}
4707EXPORT_SYMBOL(__cond_resched_softirq);
4708
4709/**
4710 * yield - yield the current processor to other threads.
4711 *
4712 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4713 *
4714 * The scheduler is at all times free to pick the calling task as the most
4715 * eligible task to run, if removing the yield() call from your code breaks
4716 * it, its already broken.
4717 *
4718 * Typical broken usage is:
4719 *
4720 * while (!event)
4721 * yield();
4722 *
4723 * where one assumes that yield() will let 'the other' process run that will
4724 * make event true. If the current task is a SCHED_FIFO task that will never
4725 * happen. Never use yield() as a progress guarantee!!
4726 *
4727 * If you want to use yield() to wait for something, use wait_event().
4728 * If you want to use yield() to be 'nice' for others, use cond_resched().
4729 * If you still want to use yield(), do not!
4730 */
4731void __sched yield(void)
4732{
4733 set_current_state(TASK_RUNNING);
4734 sys_sched_yield();
4735}
4736EXPORT_SYMBOL(yield);
4737
4738/**
4739 * yield_to - yield the current processor to another thread in
4740 * your thread group, or accelerate that thread toward the
4741 * processor it's on.
4742 * @p: target task
4743 * @preempt: whether task preemption is allowed or not
4744 *
4745 * It's the caller's job to ensure that the target task struct
4746 * can't go away on us before we can do any checks.
4747 *
4748 * Return:
4749 * true (>0) if we indeed boosted the target task.
4750 * false (0) if we failed to boost the target.
4751 * -ESRCH if there's no task to yield to.
4752 */
4753int __sched yield_to(struct task_struct *p, bool preempt)
4754{
4755 struct task_struct *curr = current;
4756 struct rq *rq, *p_rq;
4757 unsigned long flags;
4758 int yielded = 0;
4759
4760 local_irq_save(flags);
4761 rq = this_rq();
4762
4763again:
4764 p_rq = task_rq(p);
4765 /*
4766 * If we're the only runnable task on the rq and target rq also
4767 * has only one task, there's absolutely no point in yielding.
4768 */
4769 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4770 yielded = -ESRCH;
4771 goto out_irq;
4772 }
4773
4774 double_rq_lock(rq, p_rq);
4775 if (task_rq(p) != p_rq) {
4776 double_rq_unlock(rq, p_rq);
4777 goto again;
4778 }
4779
4780 if (!curr->sched_class->yield_to_task)
4781 goto out_unlock;
4782
4783 if (curr->sched_class != p->sched_class)
4784 goto out_unlock;
4785
4786 if (task_running(p_rq, p) || p->state)
4787 goto out_unlock;
4788
4789 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4790 if (yielded) {
4791 schedstat_inc(rq, yld_count);
4792 /*
4793 * Make p's CPU reschedule; pick_next_entity takes care of
4794 * fairness.
4795 */
4796 if (preempt && rq != p_rq)
4797 resched_curr(p_rq);
4798 }
4799
4800out_unlock:
4801 double_rq_unlock(rq, p_rq);
4802out_irq:
4803 local_irq_restore(flags);
4804
4805 if (yielded > 0)
4806 schedule();
4807
4808 return yielded;
4809}
4810EXPORT_SYMBOL_GPL(yield_to);
4811
4812/*
4813 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4814 * that process accounting knows that this is a task in IO wait state.
4815 */
4816long __sched io_schedule_timeout(long timeout)
4817{
4818 int old_iowait = current->in_iowait;
4819 struct rq *rq;
4820 long ret;
4821
4822 current->in_iowait = 1;
4823 blk_schedule_flush_plug(current);
4824
4825 delayacct_blkio_start();
4826 rq = raw_rq();
4827 atomic_inc(&rq->nr_iowait);
4828 ret = schedule_timeout(timeout);
4829 current->in_iowait = old_iowait;
4830 atomic_dec(&rq->nr_iowait);
4831 delayacct_blkio_end();
4832
4833 return ret;
4834}
4835EXPORT_SYMBOL(io_schedule_timeout);
4836
4837/**
4838 * sys_sched_get_priority_max - return maximum RT priority.
4839 * @policy: scheduling class.
4840 *
4841 * Return: On success, this syscall returns the maximum
4842 * rt_priority that can be used by a given scheduling class.
4843 * On failure, a negative error code is returned.
4844 */
4845SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4846{
4847 int ret = -EINVAL;
4848
4849 switch (policy) {
4850 case SCHED_FIFO:
4851 case SCHED_RR:
4852 ret = MAX_USER_RT_PRIO-1;
4853 break;
4854 case SCHED_DEADLINE:
4855 case SCHED_NORMAL:
4856 case SCHED_BATCH:
4857 case SCHED_IDLE:
4858 ret = 0;
4859 break;
4860 }
4861 return ret;
4862}
4863
4864/**
4865 * sys_sched_get_priority_min - return minimum RT priority.
4866 * @policy: scheduling class.
4867 *
4868 * Return: On success, this syscall returns the minimum
4869 * rt_priority that can be used by a given scheduling class.
4870 * On failure, a negative error code is returned.
4871 */
4872SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4873{
4874 int ret = -EINVAL;
4875
4876 switch (policy) {
4877 case SCHED_FIFO:
4878 case SCHED_RR:
4879 ret = 1;
4880 break;
4881 case SCHED_DEADLINE:
4882 case SCHED_NORMAL:
4883 case SCHED_BATCH:
4884 case SCHED_IDLE:
4885 ret = 0;
4886 }
4887 return ret;
4888}
4889
4890/**
4891 * sys_sched_rr_get_interval - return the default timeslice of a process.
4892 * @pid: pid of the process.
4893 * @interval: userspace pointer to the timeslice value.
4894 *
4895 * this syscall writes the default timeslice value of a given process
4896 * into the user-space timespec buffer. A value of '0' means infinity.
4897 *
4898 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4899 * an error code.
4900 */
4901SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4902 struct timespec __user *, interval)
4903{
4904 struct task_struct *p;
4905 unsigned int time_slice;
4906 unsigned long flags;
4907 struct rq *rq;
4908 int retval;
4909 struct timespec t;
4910
4911 if (pid < 0)
4912 return -EINVAL;
4913
4914 retval = -ESRCH;
4915 rcu_read_lock();
4916 p = find_process_by_pid(pid);
4917 if (!p)
4918 goto out_unlock;
4919
4920 retval = security_task_getscheduler(p);
4921 if (retval)
4922 goto out_unlock;
4923
4924 rq = task_rq_lock(p, &flags);
4925 time_slice = 0;
4926 if (p->sched_class->get_rr_interval)
4927 time_slice = p->sched_class->get_rr_interval(rq, p);
4928 task_rq_unlock(rq, p, &flags);
4929
4930 rcu_read_unlock();
4931 jiffies_to_timespec(time_slice, &t);
4932 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4933 return retval;
4934
4935out_unlock:
4936 rcu_read_unlock();
4937 return retval;
4938}
4939
4940static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4941
4942void sched_show_task(struct task_struct *p)
4943{
4944 unsigned long free = 0;
4945 int ppid;
4946 unsigned long state = p->state;
4947
4948 if (state)
4949 state = __ffs(state) + 1;
4950 printk(KERN_INFO "%-15.15s %c", p->comm,
4951 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4952#if BITS_PER_LONG == 32
4953 if (state == TASK_RUNNING)
4954 printk(KERN_CONT " running ");
4955 else
4956 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4957#else
4958 if (state == TASK_RUNNING)
4959 printk(KERN_CONT " running task ");
4960 else
4961 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4962#endif
4963#ifdef CONFIG_DEBUG_STACK_USAGE
4964 free = stack_not_used(p);
4965#endif
4966 ppid = 0;
4967 rcu_read_lock();
4968 if (pid_alive(p))
4969 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4970 rcu_read_unlock();
4971 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4972 task_pid_nr(p), ppid,
4973 (unsigned long)task_thread_info(p)->flags);
4974
4975 print_worker_info(KERN_INFO, p);
4976 show_stack(p, NULL);
4977}
4978
4979void show_state_filter(unsigned long state_filter)
4980{
4981 struct task_struct *g, *p;
4982
4983#if BITS_PER_LONG == 32
4984 printk(KERN_INFO
4985 " task PC stack pid father\n");
4986#else
4987 printk(KERN_INFO
4988 " task PC stack pid father\n");
4989#endif
4990 rcu_read_lock();
4991 for_each_process_thread(g, p) {
4992 /*
4993 * reset the NMI-timeout, listing all files on a slow
4994 * console might take a lot of time:
4995 */
4996 touch_nmi_watchdog();
4997 if (!state_filter || (p->state & state_filter))
4998 sched_show_task(p);
4999 }
5000
5001 touch_all_softlockup_watchdogs();
5002
5003#ifdef CONFIG_SCHED_DEBUG
5004 sysrq_sched_debug_show();
5005#endif
5006 rcu_read_unlock();
5007 /*
5008 * Only show locks if all tasks are dumped:
5009 */
5010 if (!state_filter)
5011 debug_show_all_locks();
5012}
5013
5014void init_idle_bootup_task(struct task_struct *idle)
5015{
5016 idle->sched_class = &idle_sched_class;
5017}
5018
5019/**
5020 * init_idle - set up an idle thread for a given CPU
5021 * @idle: task in question
5022 * @cpu: cpu the idle task belongs to
5023 *
5024 * NOTE: this function does not set the idle thread's NEED_RESCHED
5025 * flag, to make booting more robust.
5026 */
5027void init_idle(struct task_struct *idle, int cpu)
5028{
5029 struct rq *rq = cpu_rq(cpu);
5030 unsigned long flags;
5031
5032 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5033 raw_spin_lock(&rq->lock);
5034
5035 __sched_fork(0, idle);
5036 idle->state = TASK_RUNNING;
5037 idle->se.exec_start = sched_clock();
5038
5039 kasan_unpoison_task_stack(idle);
5040
5041#ifdef CONFIG_SMP
5042 /*
5043 * Its possible that init_idle() gets called multiple times on a task,
5044 * in that case do_set_cpus_allowed() will not do the right thing.
5045 *
5046 * And since this is boot we can forgo the serialization.
5047 */
5048 set_cpus_allowed_common(idle, cpumask_of(cpu));
5049#endif
5050 /*
5051 * We're having a chicken and egg problem, even though we are
5052 * holding rq->lock, the cpu isn't yet set to this cpu so the
5053 * lockdep check in task_group() will fail.
5054 *
5055 * Similar case to sched_fork(). / Alternatively we could
5056 * use task_rq_lock() here and obtain the other rq->lock.
5057 *
5058 * Silence PROVE_RCU
5059 */
5060 rcu_read_lock();
5061 __set_task_cpu(idle, cpu);
5062 rcu_read_unlock();
5063
5064 rq->curr = rq->idle = idle;
5065 idle->on_rq = TASK_ON_RQ_QUEUED;
5066#ifdef CONFIG_SMP
5067 idle->on_cpu = 1;
5068#endif
5069 raw_spin_unlock(&rq->lock);
5070 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5071
5072 /* Set the preempt count _outside_ the spinlocks! */
5073 init_idle_preempt_count(idle, cpu);
5074
5075 /*
5076 * The idle tasks have their own, simple scheduling class:
5077 */
5078 idle->sched_class = &idle_sched_class;
5079 ftrace_graph_init_idle_task(idle, cpu);
5080 vtime_init_idle(idle, cpu);
5081#ifdef CONFIG_SMP
5082 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5083#endif
5084}
5085
5086int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5087 const struct cpumask *trial)
5088{
5089 int ret = 1, trial_cpus;
5090 struct dl_bw *cur_dl_b;
5091 unsigned long flags;
5092
5093 if (!cpumask_weight(cur))
5094 return ret;
5095
5096 rcu_read_lock_sched();
5097 cur_dl_b = dl_bw_of(cpumask_any(cur));
5098 trial_cpus = cpumask_weight(trial);
5099
5100 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5101 if (cur_dl_b->bw != -1 &&
5102 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5103 ret = 0;
5104 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5105 rcu_read_unlock_sched();
5106
5107 return ret;
5108}
5109
5110int task_can_attach(struct task_struct *p,
5111 const struct cpumask *cs_cpus_allowed)
5112{
5113 int ret = 0;
5114
5115 /*
5116 * Kthreads which disallow setaffinity shouldn't be moved
5117 * to a new cpuset; we don't want to change their cpu
5118 * affinity and isolating such threads by their set of
5119 * allowed nodes is unnecessary. Thus, cpusets are not
5120 * applicable for such threads. This prevents checking for
5121 * success of set_cpus_allowed_ptr() on all attached tasks
5122 * before cpus_allowed may be changed.
5123 */
5124 if (p->flags & PF_NO_SETAFFINITY) {
5125 ret = -EINVAL;
5126 goto out;
5127 }
5128
5129#ifdef CONFIG_SMP
5130 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5131 cs_cpus_allowed)) {
5132 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5133 cs_cpus_allowed);
5134 struct dl_bw *dl_b;
5135 bool overflow;
5136 int cpus;
5137 unsigned long flags;
5138
5139 rcu_read_lock_sched();
5140 dl_b = dl_bw_of(dest_cpu);
5141 raw_spin_lock_irqsave(&dl_b->lock, flags);
5142 cpus = dl_bw_cpus(dest_cpu);
5143 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5144 if (overflow)
5145 ret = -EBUSY;
5146 else {
5147 /*
5148 * We reserve space for this task in the destination
5149 * root_domain, as we can't fail after this point.
5150 * We will free resources in the source root_domain
5151 * later on (see set_cpus_allowed_dl()).
5152 */
5153 __dl_add(dl_b, p->dl.dl_bw);
5154 }
5155 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5156 rcu_read_unlock_sched();
5157
5158 }
5159#endif
5160out:
5161 return ret;
5162}
5163
5164#ifdef CONFIG_SMP
5165
5166#ifdef CONFIG_NUMA_BALANCING
5167/* Migrate current task p to target_cpu */
5168int migrate_task_to(struct task_struct *p, int target_cpu)
5169{
5170 struct migration_arg arg = { p, target_cpu };
5171 int curr_cpu = task_cpu(p);
5172
5173 if (curr_cpu == target_cpu)
5174 return 0;
5175
5176 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5177 return -EINVAL;
5178
5179 /* TODO: This is not properly updating schedstats */
5180
5181 trace_sched_move_numa(p, curr_cpu, target_cpu);
5182 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5183}
5184
5185/*
5186 * Requeue a task on a given node and accurately track the number of NUMA
5187 * tasks on the runqueues
5188 */
5189void sched_setnuma(struct task_struct *p, int nid)
5190{
5191 struct rq *rq;
5192 unsigned long flags;
5193 bool queued, running;
5194
5195 rq = task_rq_lock(p, &flags);
5196 queued = task_on_rq_queued(p);
5197 running = task_current(rq, p);
5198
5199 if (queued)
5200 dequeue_task(rq, p, DEQUEUE_SAVE);
5201 if (running)
5202 put_prev_task(rq, p);
5203
5204 p->numa_preferred_nid = nid;
5205
5206 if (running)
5207 p->sched_class->set_curr_task(rq);
5208 if (queued)
5209 enqueue_task(rq, p, ENQUEUE_RESTORE);
5210 task_rq_unlock(rq, p, &flags);
5211}
5212#endif /* CONFIG_NUMA_BALANCING */
5213
5214#ifdef CONFIG_HOTPLUG_CPU
5215/*
5216 * Ensures that the idle task is using init_mm right before its cpu goes
5217 * offline.
5218 */
5219void idle_task_exit(void)
5220{
5221 struct mm_struct *mm = current->active_mm;
5222
5223 BUG_ON(cpu_online(smp_processor_id()));
5224
5225 if (mm != &init_mm) {
5226 switch_mm(mm, &init_mm, current);
5227 finish_arch_post_lock_switch();
5228 }
5229 mmdrop(mm);
5230}
5231
5232/*
5233 * Since this CPU is going 'away' for a while, fold any nr_active delta
5234 * we might have. Assumes we're called after migrate_tasks() so that the
5235 * nr_active count is stable.
5236 *
5237 * Also see the comment "Global load-average calculations".
5238 */
5239static void calc_load_migrate(struct rq *rq)
5240{
5241 long delta = calc_load_fold_active(rq);
5242 if (delta)
5243 atomic_long_add(delta, &calc_load_tasks);
5244}
5245
5246static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5247{
5248}
5249
5250static const struct sched_class fake_sched_class = {
5251 .put_prev_task = put_prev_task_fake,
5252};
5253
5254static struct task_struct fake_task = {
5255 /*
5256 * Avoid pull_{rt,dl}_task()
5257 */
5258 .prio = MAX_PRIO + 1,
5259 .sched_class = &fake_sched_class,
5260};
5261
5262/*
5263 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5264 * try_to_wake_up()->select_task_rq().
5265 *
5266 * Called with rq->lock held even though we'er in stop_machine() and
5267 * there's no concurrency possible, we hold the required locks anyway
5268 * because of lock validation efforts.
5269 */
5270static void migrate_tasks(struct rq *dead_rq)
5271{
5272 struct rq *rq = dead_rq;
5273 struct task_struct *next, *stop = rq->stop;
5274 int dest_cpu;
5275
5276 /*
5277 * Fudge the rq selection such that the below task selection loop
5278 * doesn't get stuck on the currently eligible stop task.
5279 *
5280 * We're currently inside stop_machine() and the rq is either stuck
5281 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5282 * either way we should never end up calling schedule() until we're
5283 * done here.
5284 */
5285 rq->stop = NULL;
5286
5287 /*
5288 * put_prev_task() and pick_next_task() sched
5289 * class method both need to have an up-to-date
5290 * value of rq->clock[_task]
5291 */
5292 update_rq_clock(rq);
5293
5294 for (;;) {
5295 /*
5296 * There's this thread running, bail when that's the only
5297 * remaining thread.
5298 */
5299 if (rq->nr_running == 1)
5300 break;
5301
5302 /*
5303 * pick_next_task assumes pinned rq->lock.
5304 */
5305 lockdep_pin_lock(&rq->lock);
5306 next = pick_next_task(rq, &fake_task);
5307 BUG_ON(!next);
5308 next->sched_class->put_prev_task(rq, next);
5309
5310 /*
5311 * Rules for changing task_struct::cpus_allowed are holding
5312 * both pi_lock and rq->lock, such that holding either
5313 * stabilizes the mask.
5314 *
5315 * Drop rq->lock is not quite as disastrous as it usually is
5316 * because !cpu_active at this point, which means load-balance
5317 * will not interfere. Also, stop-machine.
5318 */
5319 lockdep_unpin_lock(&rq->lock);
5320 raw_spin_unlock(&rq->lock);
5321 raw_spin_lock(&next->pi_lock);
5322 raw_spin_lock(&rq->lock);
5323
5324 /*
5325 * Since we're inside stop-machine, _nothing_ should have
5326 * changed the task, WARN if weird stuff happened, because in
5327 * that case the above rq->lock drop is a fail too.
5328 */
5329 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5330 raw_spin_unlock(&next->pi_lock);
5331 continue;
5332 }
5333
5334 /* Find suitable destination for @next, with force if needed. */
5335 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5336
5337 rq = __migrate_task(rq, next, dest_cpu);
5338 if (rq != dead_rq) {
5339 raw_spin_unlock(&rq->lock);
5340 rq = dead_rq;
5341 raw_spin_lock(&rq->lock);
5342 }
5343 raw_spin_unlock(&next->pi_lock);
5344 }
5345
5346 rq->stop = stop;
5347}
5348#endif /* CONFIG_HOTPLUG_CPU */
5349
5350static void set_rq_online(struct rq *rq)
5351{
5352 if (!rq->online) {
5353 const struct sched_class *class;
5354
5355 cpumask_set_cpu(rq->cpu, rq->rd->online);
5356 rq->online = 1;
5357
5358 for_each_class(class) {
5359 if (class->rq_online)
5360 class->rq_online(rq);
5361 }
5362 }
5363}
5364
5365static void set_rq_offline(struct rq *rq)
5366{
5367 if (rq->online) {
5368 const struct sched_class *class;
5369
5370 for_each_class(class) {
5371 if (class->rq_offline)
5372 class->rq_offline(rq);
5373 }
5374
5375 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5376 rq->online = 0;
5377 }
5378}
5379
5380/*
5381 * migration_call - callback that gets triggered when a CPU is added.
5382 * Here we can start up the necessary migration thread for the new CPU.
5383 */
5384static int
5385migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5386{
5387 int cpu = (long)hcpu;
5388 unsigned long flags;
5389 struct rq *rq = cpu_rq(cpu);
5390
5391 switch (action & ~CPU_TASKS_FROZEN) {
5392
5393 case CPU_UP_PREPARE:
5394 rq->calc_load_update = calc_load_update;
5395 account_reset_rq(rq);
5396 break;
5397
5398 case CPU_ONLINE:
5399 /* Update our root-domain */
5400 raw_spin_lock_irqsave(&rq->lock, flags);
5401 if (rq->rd) {
5402 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5403
5404 set_rq_online(rq);
5405 }
5406 raw_spin_unlock_irqrestore(&rq->lock, flags);
5407 break;
5408
5409#ifdef CONFIG_HOTPLUG_CPU
5410 case CPU_DYING:
5411 sched_ttwu_pending();
5412 /* Update our root-domain */
5413 raw_spin_lock_irqsave(&rq->lock, flags);
5414 if (rq->rd) {
5415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5416 set_rq_offline(rq);
5417 }
5418 migrate_tasks(rq);
5419 BUG_ON(rq->nr_running != 1); /* the migration thread */
5420 raw_spin_unlock_irqrestore(&rq->lock, flags);
5421 break;
5422
5423 case CPU_DEAD:
5424 calc_load_migrate(rq);
5425 break;
5426#endif
5427 }
5428
5429 update_max_interval();
5430
5431 return NOTIFY_OK;
5432}
5433
5434/*
5435 * Register at high priority so that task migration (migrate_all_tasks)
5436 * happens before everything else. This has to be lower priority than
5437 * the notifier in the perf_event subsystem, though.
5438 */
5439static struct notifier_block migration_notifier = {
5440 .notifier_call = migration_call,
5441 .priority = CPU_PRI_MIGRATION,
5442};
5443
5444static void set_cpu_rq_start_time(void)
5445{
5446 int cpu = smp_processor_id();
5447 struct rq *rq = cpu_rq(cpu);
5448 rq->age_stamp = sched_clock_cpu(cpu);
5449}
5450
5451static int sched_cpu_active(struct notifier_block *nfb,
5452 unsigned long action, void *hcpu)
5453{
5454 int cpu = (long)hcpu;
5455
5456 switch (action & ~CPU_TASKS_FROZEN) {
5457 case CPU_STARTING:
5458 set_cpu_rq_start_time();
5459 return NOTIFY_OK;
5460
5461 case CPU_DOWN_FAILED:
5462 set_cpu_active(cpu, true);
5463 return NOTIFY_OK;
5464
5465 default:
5466 return NOTIFY_DONE;
5467 }
5468}
5469
5470static int sched_cpu_inactive(struct notifier_block *nfb,
5471 unsigned long action, void *hcpu)
5472{
5473 switch (action & ~CPU_TASKS_FROZEN) {
5474 case CPU_DOWN_PREPARE:
5475 set_cpu_active((long)hcpu, false);
5476 return NOTIFY_OK;
5477 default:
5478 return NOTIFY_DONE;
5479 }
5480}
5481
5482static int __init migration_init(void)
5483{
5484 void *cpu = (void *)(long)smp_processor_id();
5485 int err;
5486
5487 /* Initialize migration for the boot CPU */
5488 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5489 BUG_ON(err == NOTIFY_BAD);
5490 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5491 register_cpu_notifier(&migration_notifier);
5492
5493 /* Register cpu active notifiers */
5494 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5495 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5496
5497 return 0;
5498}
5499early_initcall(migration_init);
5500
5501static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5502
5503#ifdef CONFIG_SCHED_DEBUG
5504
5505static __read_mostly int sched_debug_enabled;
5506
5507static int __init sched_debug_setup(char *str)
5508{
5509 sched_debug_enabled = 1;
5510
5511 return 0;
5512}
5513early_param("sched_debug", sched_debug_setup);
5514
5515static inline bool sched_debug(void)
5516{
5517 return sched_debug_enabled;
5518}
5519
5520static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5521 struct cpumask *groupmask)
5522{
5523 struct sched_group *group = sd->groups;
5524
5525 cpumask_clear(groupmask);
5526
5527 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5528
5529 if (!(sd->flags & SD_LOAD_BALANCE)) {
5530 printk("does not load-balance\n");
5531 if (sd->parent)
5532 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5533 " has parent");
5534 return -1;
5535 }
5536
5537 printk(KERN_CONT "span %*pbl level %s\n",
5538 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5539
5540 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5541 printk(KERN_ERR "ERROR: domain->span does not contain "
5542 "CPU%d\n", cpu);
5543 }
5544 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5545 printk(KERN_ERR "ERROR: domain->groups does not contain"
5546 " CPU%d\n", cpu);
5547 }
5548
5549 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5550 do {
5551 if (!group) {
5552 printk("\n");
5553 printk(KERN_ERR "ERROR: group is NULL\n");
5554 break;
5555 }
5556
5557 if (!cpumask_weight(sched_group_cpus(group))) {
5558 printk(KERN_CONT "\n");
5559 printk(KERN_ERR "ERROR: empty group\n");
5560 break;
5561 }
5562
5563 if (!(sd->flags & SD_OVERLAP) &&
5564 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5565 printk(KERN_CONT "\n");
5566 printk(KERN_ERR "ERROR: repeated CPUs\n");
5567 break;
5568 }
5569
5570 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5571
5572 printk(KERN_CONT " %*pbl",
5573 cpumask_pr_args(sched_group_cpus(group)));
5574 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5575 printk(KERN_CONT " (cpu_capacity = %d)",
5576 group->sgc->capacity);
5577 }
5578
5579 group = group->next;
5580 } while (group != sd->groups);
5581 printk(KERN_CONT "\n");
5582
5583 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585
5586 if (sd->parent &&
5587 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588 printk(KERN_ERR "ERROR: parent span is not a superset "
5589 "of domain->span\n");
5590 return 0;
5591}
5592
5593static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594{
5595 int level = 0;
5596
5597 if (!sched_debug_enabled)
5598 return;
5599
5600 if (!sd) {
5601 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602 return;
5603 }
5604
5605 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606
5607 for (;;) {
5608 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609 break;
5610 level++;
5611 sd = sd->parent;
5612 if (!sd)
5613 break;
5614 }
5615}
5616#else /* !CONFIG_SCHED_DEBUG */
5617# define sched_domain_debug(sd, cpu) do { } while (0)
5618static inline bool sched_debug(void)
5619{
5620 return false;
5621}
5622#endif /* CONFIG_SCHED_DEBUG */
5623
5624static int sd_degenerate(struct sched_domain *sd)
5625{
5626 if (cpumask_weight(sched_domain_span(sd)) == 1)
5627 return 1;
5628
5629 /* Following flags need at least 2 groups */
5630 if (sd->flags & (SD_LOAD_BALANCE |
5631 SD_BALANCE_NEWIDLE |
5632 SD_BALANCE_FORK |
5633 SD_BALANCE_EXEC |
5634 SD_SHARE_CPUCAPACITY |
5635 SD_SHARE_PKG_RESOURCES |
5636 SD_SHARE_POWERDOMAIN)) {
5637 if (sd->groups != sd->groups->next)
5638 return 0;
5639 }
5640
5641 /* Following flags don't use groups */
5642 if (sd->flags & (SD_WAKE_AFFINE))
5643 return 0;
5644
5645 return 1;
5646}
5647
5648static int
5649sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650{
5651 unsigned long cflags = sd->flags, pflags = parent->flags;
5652
5653 if (sd_degenerate(parent))
5654 return 1;
5655
5656 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5657 return 0;
5658
5659 /* Flags needing groups don't count if only 1 group in parent */
5660 if (parent->groups == parent->groups->next) {
5661 pflags &= ~(SD_LOAD_BALANCE |
5662 SD_BALANCE_NEWIDLE |
5663 SD_BALANCE_FORK |
5664 SD_BALANCE_EXEC |
5665 SD_SHARE_CPUCAPACITY |
5666 SD_SHARE_PKG_RESOURCES |
5667 SD_PREFER_SIBLING |
5668 SD_SHARE_POWERDOMAIN);
5669 if (nr_node_ids == 1)
5670 pflags &= ~SD_SERIALIZE;
5671 }
5672 if (~cflags & pflags)
5673 return 0;
5674
5675 return 1;
5676}
5677
5678static void free_rootdomain(struct rcu_head *rcu)
5679{
5680 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5681
5682 cpupri_cleanup(&rd->cpupri);
5683 cpudl_cleanup(&rd->cpudl);
5684 free_cpumask_var(rd->dlo_mask);
5685 free_cpumask_var(rd->rto_mask);
5686 free_cpumask_var(rd->online);
5687 free_cpumask_var(rd->span);
5688 kfree(rd);
5689}
5690
5691static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5692{
5693 struct root_domain *old_rd = NULL;
5694 unsigned long flags;
5695
5696 raw_spin_lock_irqsave(&rq->lock, flags);
5697
5698 if (rq->rd) {
5699 old_rd = rq->rd;
5700
5701 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5702 set_rq_offline(rq);
5703
5704 cpumask_clear_cpu(rq->cpu, old_rd->span);
5705
5706 /*
5707 * If we dont want to free the old_rd yet then
5708 * set old_rd to NULL to skip the freeing later
5709 * in this function:
5710 */
5711 if (!atomic_dec_and_test(&old_rd->refcount))
5712 old_rd = NULL;
5713 }
5714
5715 atomic_inc(&rd->refcount);
5716 rq->rd = rd;
5717
5718 cpumask_set_cpu(rq->cpu, rd->span);
5719 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5720 set_rq_online(rq);
5721
5722 raw_spin_unlock_irqrestore(&rq->lock, flags);
5723
5724 if (old_rd)
5725 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5726}
5727
5728static int init_rootdomain(struct root_domain *rd)
5729{
5730 memset(rd, 0, sizeof(*rd));
5731
5732 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5733 goto out;
5734 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5735 goto free_span;
5736 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5737 goto free_online;
5738 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5739 goto free_dlo_mask;
5740
5741 init_dl_bw(&rd->dl_bw);
5742 if (cpudl_init(&rd->cpudl) != 0)
5743 goto free_dlo_mask;
5744
5745 if (cpupri_init(&rd->cpupri) != 0)
5746 goto free_rto_mask;
5747 return 0;
5748
5749free_rto_mask:
5750 free_cpumask_var(rd->rto_mask);
5751free_dlo_mask:
5752 free_cpumask_var(rd->dlo_mask);
5753free_online:
5754 free_cpumask_var(rd->online);
5755free_span:
5756 free_cpumask_var(rd->span);
5757out:
5758 return -ENOMEM;
5759}
5760
5761/*
5762 * By default the system creates a single root-domain with all cpus as
5763 * members (mimicking the global state we have today).
5764 */
5765struct root_domain def_root_domain;
5766
5767static void init_defrootdomain(void)
5768{
5769 init_rootdomain(&def_root_domain);
5770
5771 atomic_set(&def_root_domain.refcount, 1);
5772}
5773
5774static struct root_domain *alloc_rootdomain(void)
5775{
5776 struct root_domain *rd;
5777
5778 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5779 if (!rd)
5780 return NULL;
5781
5782 if (init_rootdomain(rd) != 0) {
5783 kfree(rd);
5784 return NULL;
5785 }
5786
5787 return rd;
5788}
5789
5790static void free_sched_groups(struct sched_group *sg, int free_sgc)
5791{
5792 struct sched_group *tmp, *first;
5793
5794 if (!sg)
5795 return;
5796
5797 first = sg;
5798 do {
5799 tmp = sg->next;
5800
5801 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5802 kfree(sg->sgc);
5803
5804 kfree(sg);
5805 sg = tmp;
5806 } while (sg != first);
5807}
5808
5809static void free_sched_domain(struct rcu_head *rcu)
5810{
5811 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5812
5813 /*
5814 * If its an overlapping domain it has private groups, iterate and
5815 * nuke them all.
5816 */
5817 if (sd->flags & SD_OVERLAP) {
5818 free_sched_groups(sd->groups, 1);
5819 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5820 kfree(sd->groups->sgc);
5821 kfree(sd->groups);
5822 }
5823 kfree(sd);
5824}
5825
5826static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5827{
5828 call_rcu(&sd->rcu, free_sched_domain);
5829}
5830
5831static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5832{
5833 for (; sd; sd = sd->parent)
5834 destroy_sched_domain(sd, cpu);
5835}
5836
5837/*
5838 * Keep a special pointer to the highest sched_domain that has
5839 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5840 * allows us to avoid some pointer chasing select_idle_sibling().
5841 *
5842 * Also keep a unique ID per domain (we use the first cpu number in
5843 * the cpumask of the domain), this allows us to quickly tell if
5844 * two cpus are in the same cache domain, see cpus_share_cache().
5845 */
5846DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5847DEFINE_PER_CPU(int, sd_llc_size);
5848DEFINE_PER_CPU(int, sd_llc_id);
5849DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5850DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5851DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5852
5853static void update_top_cache_domain(int cpu)
5854{
5855 struct sched_domain *sd;
5856 struct sched_domain *busy_sd = NULL;
5857 int id = cpu;
5858 int size = 1;
5859
5860 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5861 if (sd) {
5862 id = cpumask_first(sched_domain_span(sd));
5863 size = cpumask_weight(sched_domain_span(sd));
5864 busy_sd = sd->parent; /* sd_busy */
5865 }
5866 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5867
5868 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5869 per_cpu(sd_llc_size, cpu) = size;
5870 per_cpu(sd_llc_id, cpu) = id;
5871
5872 sd = lowest_flag_domain(cpu, SD_NUMA);
5873 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5874
5875 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5876 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5877}
5878
5879/*
5880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5881 * hold the hotplug lock.
5882 */
5883static void
5884cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5885{
5886 struct rq *rq = cpu_rq(cpu);
5887 struct sched_domain *tmp;
5888
5889 /* Remove the sched domains which do not contribute to scheduling. */
5890 for (tmp = sd; tmp; ) {
5891 struct sched_domain *parent = tmp->parent;
5892 if (!parent)
5893 break;
5894
5895 if (sd_parent_degenerate(tmp, parent)) {
5896 tmp->parent = parent->parent;
5897 if (parent->parent)
5898 parent->parent->child = tmp;
5899 /*
5900 * Transfer SD_PREFER_SIBLING down in case of a
5901 * degenerate parent; the spans match for this
5902 * so the property transfers.
5903 */
5904 if (parent->flags & SD_PREFER_SIBLING)
5905 tmp->flags |= SD_PREFER_SIBLING;
5906 destroy_sched_domain(parent, cpu);
5907 } else
5908 tmp = tmp->parent;
5909 }
5910
5911 if (sd && sd_degenerate(sd)) {
5912 tmp = sd;
5913 sd = sd->parent;
5914 destroy_sched_domain(tmp, cpu);
5915 if (sd)
5916 sd->child = NULL;
5917 }
5918
5919 sched_domain_debug(sd, cpu);
5920
5921 rq_attach_root(rq, rd);
5922 tmp = rq->sd;
5923 rcu_assign_pointer(rq->sd, sd);
5924 destroy_sched_domains(tmp, cpu);
5925
5926 update_top_cache_domain(cpu);
5927}
5928
5929/* Setup the mask of cpus configured for isolated domains */
5930static int __init isolated_cpu_setup(char *str)
5931{
5932 int ret;
5933
5934 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5935 ret = cpulist_parse(str, cpu_isolated_map);
5936 if (ret) {
5937 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5938 return 0;
5939 }
5940 return 1;
5941}
5942__setup("isolcpus=", isolated_cpu_setup);
5943
5944struct s_data {
5945 struct sched_domain ** __percpu sd;
5946 struct root_domain *rd;
5947};
5948
5949enum s_alloc {
5950 sa_rootdomain,
5951 sa_sd,
5952 sa_sd_storage,
5953 sa_none,
5954};
5955
5956/*
5957 * Build an iteration mask that can exclude certain CPUs from the upwards
5958 * domain traversal.
5959 *
5960 * Asymmetric node setups can result in situations where the domain tree is of
5961 * unequal depth, make sure to skip domains that already cover the entire
5962 * range.
5963 *
5964 * In that case build_sched_domains() will have terminated the iteration early
5965 * and our sibling sd spans will be empty. Domains should always include the
5966 * cpu they're built on, so check that.
5967 *
5968 */
5969static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5970{
5971 const struct cpumask *span = sched_domain_span(sd);
5972 struct sd_data *sdd = sd->private;
5973 struct sched_domain *sibling;
5974 int i;
5975
5976 for_each_cpu(i, span) {
5977 sibling = *per_cpu_ptr(sdd->sd, i);
5978 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5979 continue;
5980
5981 cpumask_set_cpu(i, sched_group_mask(sg));
5982 }
5983}
5984
5985/*
5986 * Return the canonical balance cpu for this group, this is the first cpu
5987 * of this group that's also in the iteration mask.
5988 */
5989int group_balance_cpu(struct sched_group *sg)
5990{
5991 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5992}
5993
5994static int
5995build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5996{
5997 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5998 const struct cpumask *span = sched_domain_span(sd);
5999 struct cpumask *covered = sched_domains_tmpmask;
6000 struct sd_data *sdd = sd->private;
6001 struct sched_domain *sibling;
6002 int i;
6003
6004 cpumask_clear(covered);
6005
6006 for_each_cpu(i, span) {
6007 struct cpumask *sg_span;
6008
6009 if (cpumask_test_cpu(i, covered))
6010 continue;
6011
6012 sibling = *per_cpu_ptr(sdd->sd, i);
6013
6014 /* See the comment near build_group_mask(). */
6015 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6016 continue;
6017
6018 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6019 GFP_KERNEL, cpu_to_node(cpu));
6020
6021 if (!sg)
6022 goto fail;
6023
6024 sg_span = sched_group_cpus(sg);
6025 if (sibling->child)
6026 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6027 else
6028 cpumask_set_cpu(i, sg_span);
6029
6030 cpumask_or(covered, covered, sg_span);
6031
6032 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6033 if (atomic_inc_return(&sg->sgc->ref) == 1)
6034 build_group_mask(sd, sg);
6035
6036 /*
6037 * Initialize sgc->capacity such that even if we mess up the
6038 * domains and no possible iteration will get us here, we won't
6039 * die on a /0 trap.
6040 */
6041 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6042
6043 /*
6044 * Make sure the first group of this domain contains the
6045 * canonical balance cpu. Otherwise the sched_domain iteration
6046 * breaks. See update_sg_lb_stats().
6047 */
6048 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6049 group_balance_cpu(sg) == cpu)
6050 groups = sg;
6051
6052 if (!first)
6053 first = sg;
6054 if (last)
6055 last->next = sg;
6056 last = sg;
6057 last->next = first;
6058 }
6059 sd->groups = groups;
6060
6061 return 0;
6062
6063fail:
6064 free_sched_groups(first, 0);
6065
6066 return -ENOMEM;
6067}
6068
6069static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6070{
6071 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6072 struct sched_domain *child = sd->child;
6073
6074 if (child)
6075 cpu = cpumask_first(sched_domain_span(child));
6076
6077 if (sg) {
6078 *sg = *per_cpu_ptr(sdd->sg, cpu);
6079 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6080 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6081 }
6082
6083 return cpu;
6084}
6085
6086/*
6087 * build_sched_groups will build a circular linked list of the groups
6088 * covered by the given span, and will set each group's ->cpumask correctly,
6089 * and ->cpu_capacity to 0.
6090 *
6091 * Assumes the sched_domain tree is fully constructed
6092 */
6093static int
6094build_sched_groups(struct sched_domain *sd, int cpu)
6095{
6096 struct sched_group *first = NULL, *last = NULL;
6097 struct sd_data *sdd = sd->private;
6098 const struct cpumask *span = sched_domain_span(sd);
6099 struct cpumask *covered;
6100 int i;
6101
6102 get_group(cpu, sdd, &sd->groups);
6103 atomic_inc(&sd->groups->ref);
6104
6105 if (cpu != cpumask_first(span))
6106 return 0;
6107
6108 lockdep_assert_held(&sched_domains_mutex);
6109 covered = sched_domains_tmpmask;
6110
6111 cpumask_clear(covered);
6112
6113 for_each_cpu(i, span) {
6114 struct sched_group *sg;
6115 int group, j;
6116
6117 if (cpumask_test_cpu(i, covered))
6118 continue;
6119
6120 group = get_group(i, sdd, &sg);
6121 cpumask_setall(sched_group_mask(sg));
6122
6123 for_each_cpu(j, span) {
6124 if (get_group(j, sdd, NULL) != group)
6125 continue;
6126
6127 cpumask_set_cpu(j, covered);
6128 cpumask_set_cpu(j, sched_group_cpus(sg));
6129 }
6130
6131 if (!first)
6132 first = sg;
6133 if (last)
6134 last->next = sg;
6135 last = sg;
6136 }
6137 last->next = first;
6138
6139 return 0;
6140}
6141
6142/*
6143 * Initialize sched groups cpu_capacity.
6144 *
6145 * cpu_capacity indicates the capacity of sched group, which is used while
6146 * distributing the load between different sched groups in a sched domain.
6147 * Typically cpu_capacity for all the groups in a sched domain will be same
6148 * unless there are asymmetries in the topology. If there are asymmetries,
6149 * group having more cpu_capacity will pickup more load compared to the
6150 * group having less cpu_capacity.
6151 */
6152static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6153{
6154 struct sched_group *sg = sd->groups;
6155
6156 WARN_ON(!sg);
6157
6158 do {
6159 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6160 sg = sg->next;
6161 } while (sg != sd->groups);
6162
6163 if (cpu != group_balance_cpu(sg))
6164 return;
6165
6166 update_group_capacity(sd, cpu);
6167 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6168}
6169
6170/*
6171 * Initializers for schedule domains
6172 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6173 */
6174
6175static int default_relax_domain_level = -1;
6176int sched_domain_level_max;
6177
6178static int __init setup_relax_domain_level(char *str)
6179{
6180 if (kstrtoint(str, 0, &default_relax_domain_level))
6181 pr_warn("Unable to set relax_domain_level\n");
6182
6183 return 1;
6184}
6185__setup("relax_domain_level=", setup_relax_domain_level);
6186
6187static void set_domain_attribute(struct sched_domain *sd,
6188 struct sched_domain_attr *attr)
6189{
6190 int request;
6191
6192 if (!attr || attr->relax_domain_level < 0) {
6193 if (default_relax_domain_level < 0)
6194 return;
6195 else
6196 request = default_relax_domain_level;
6197 } else
6198 request = attr->relax_domain_level;
6199 if (request < sd->level) {
6200 /* turn off idle balance on this domain */
6201 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202 } else {
6203 /* turn on idle balance on this domain */
6204 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6205 }
6206}
6207
6208static void __sdt_free(const struct cpumask *cpu_map);
6209static int __sdt_alloc(const struct cpumask *cpu_map);
6210
6211static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6212 const struct cpumask *cpu_map)
6213{
6214 switch (what) {
6215 case sa_rootdomain:
6216 if (!atomic_read(&d->rd->refcount))
6217 free_rootdomain(&d->rd->rcu); /* fall through */
6218 case sa_sd:
6219 free_percpu(d->sd); /* fall through */
6220 case sa_sd_storage:
6221 __sdt_free(cpu_map); /* fall through */
6222 case sa_none:
6223 break;
6224 }
6225}
6226
6227static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6228 const struct cpumask *cpu_map)
6229{
6230 memset(d, 0, sizeof(*d));
6231
6232 if (__sdt_alloc(cpu_map))
6233 return sa_sd_storage;
6234 d->sd = alloc_percpu(struct sched_domain *);
6235 if (!d->sd)
6236 return sa_sd_storage;
6237 d->rd = alloc_rootdomain();
6238 if (!d->rd)
6239 return sa_sd;
6240 return sa_rootdomain;
6241}
6242
6243/*
6244 * NULL the sd_data elements we've used to build the sched_domain and
6245 * sched_group structure so that the subsequent __free_domain_allocs()
6246 * will not free the data we're using.
6247 */
6248static void claim_allocations(int cpu, struct sched_domain *sd)
6249{
6250 struct sd_data *sdd = sd->private;
6251
6252 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6253 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6254
6255 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6256 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6257
6258 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6259 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6260}
6261
6262#ifdef CONFIG_NUMA
6263static int sched_domains_numa_levels;
6264enum numa_topology_type sched_numa_topology_type;
6265static int *sched_domains_numa_distance;
6266int sched_max_numa_distance;
6267static struct cpumask ***sched_domains_numa_masks;
6268static int sched_domains_curr_level;
6269#endif
6270
6271/*
6272 * SD_flags allowed in topology descriptions.
6273 *
6274 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6275 * SD_SHARE_PKG_RESOURCES - describes shared caches
6276 * SD_NUMA - describes NUMA topologies
6277 * SD_SHARE_POWERDOMAIN - describes shared power domain
6278 *
6279 * Odd one out:
6280 * SD_ASYM_PACKING - describes SMT quirks
6281 */
6282#define TOPOLOGY_SD_FLAGS \
6283 (SD_SHARE_CPUCAPACITY | \
6284 SD_SHARE_PKG_RESOURCES | \
6285 SD_NUMA | \
6286 SD_ASYM_PACKING | \
6287 SD_SHARE_POWERDOMAIN)
6288
6289static struct sched_domain *
6290sd_init(struct sched_domain_topology_level *tl, int cpu)
6291{
6292 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6293 int sd_weight, sd_flags = 0;
6294
6295#ifdef CONFIG_NUMA
6296 /*
6297 * Ugly hack to pass state to sd_numa_mask()...
6298 */
6299 sched_domains_curr_level = tl->numa_level;
6300#endif
6301
6302 sd_weight = cpumask_weight(tl->mask(cpu));
6303
6304 if (tl->sd_flags)
6305 sd_flags = (*tl->sd_flags)();
6306 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6307 "wrong sd_flags in topology description\n"))
6308 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6309
6310 *sd = (struct sched_domain){
6311 .min_interval = sd_weight,
6312 .max_interval = 2*sd_weight,
6313 .busy_factor = 32,
6314 .imbalance_pct = 125,
6315
6316 .cache_nice_tries = 0,
6317 .busy_idx = 0,
6318 .idle_idx = 0,
6319 .newidle_idx = 0,
6320 .wake_idx = 0,
6321 .forkexec_idx = 0,
6322
6323 .flags = 1*SD_LOAD_BALANCE
6324 | 1*SD_BALANCE_NEWIDLE
6325 | 1*SD_BALANCE_EXEC
6326 | 1*SD_BALANCE_FORK
6327 | 0*SD_BALANCE_WAKE
6328 | 1*SD_WAKE_AFFINE
6329 | 0*SD_SHARE_CPUCAPACITY
6330 | 0*SD_SHARE_PKG_RESOURCES
6331 | 0*SD_SERIALIZE
6332 | 0*SD_PREFER_SIBLING
6333 | 0*SD_NUMA
6334 | sd_flags
6335 ,
6336
6337 .last_balance = jiffies,
6338 .balance_interval = sd_weight,
6339 .smt_gain = 0,
6340 .max_newidle_lb_cost = 0,
6341 .next_decay_max_lb_cost = jiffies,
6342#ifdef CONFIG_SCHED_DEBUG
6343 .name = tl->name,
6344#endif
6345 };
6346
6347 /*
6348 * Convert topological properties into behaviour.
6349 */
6350
6351 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6352 sd->flags |= SD_PREFER_SIBLING;
6353 sd->imbalance_pct = 110;
6354 sd->smt_gain = 1178; /* ~15% */
6355
6356 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6357 sd->imbalance_pct = 117;
6358 sd->cache_nice_tries = 1;
6359 sd->busy_idx = 2;
6360
6361#ifdef CONFIG_NUMA
6362 } else if (sd->flags & SD_NUMA) {
6363 sd->cache_nice_tries = 2;
6364 sd->busy_idx = 3;
6365 sd->idle_idx = 2;
6366
6367 sd->flags |= SD_SERIALIZE;
6368 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6369 sd->flags &= ~(SD_BALANCE_EXEC |
6370 SD_BALANCE_FORK |
6371 SD_WAKE_AFFINE);
6372 }
6373
6374#endif
6375 } else {
6376 sd->flags |= SD_PREFER_SIBLING;
6377 sd->cache_nice_tries = 1;
6378 sd->busy_idx = 2;
6379 sd->idle_idx = 1;
6380 }
6381
6382 sd->private = &tl->data;
6383
6384 return sd;
6385}
6386
6387/*
6388 * Topology list, bottom-up.
6389 */
6390static struct sched_domain_topology_level default_topology[] = {
6391#ifdef CONFIG_SCHED_SMT
6392 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6393#endif
6394#ifdef CONFIG_SCHED_MC
6395 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6396#endif
6397 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6398 { NULL, },
6399};
6400
6401static struct sched_domain_topology_level *sched_domain_topology =
6402 default_topology;
6403
6404#define for_each_sd_topology(tl) \
6405 for (tl = sched_domain_topology; tl->mask; tl++)
6406
6407void set_sched_topology(struct sched_domain_topology_level *tl)
6408{
6409 sched_domain_topology = tl;
6410}
6411
6412#ifdef CONFIG_NUMA
6413
6414static const struct cpumask *sd_numa_mask(int cpu)
6415{
6416 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417}
6418
6419static void sched_numa_warn(const char *str)
6420{
6421 static int done = false;
6422 int i,j;
6423
6424 if (done)
6425 return;
6426
6427 done = true;
6428
6429 printk(KERN_WARNING "ERROR: %s\n\n", str);
6430
6431 for (i = 0; i < nr_node_ids; i++) {
6432 printk(KERN_WARNING " ");
6433 for (j = 0; j < nr_node_ids; j++)
6434 printk(KERN_CONT "%02d ", node_distance(i,j));
6435 printk(KERN_CONT "\n");
6436 }
6437 printk(KERN_WARNING "\n");
6438}
6439
6440bool find_numa_distance(int distance)
6441{
6442 int i;
6443
6444 if (distance == node_distance(0, 0))
6445 return true;
6446
6447 for (i = 0; i < sched_domains_numa_levels; i++) {
6448 if (sched_domains_numa_distance[i] == distance)
6449 return true;
6450 }
6451
6452 return false;
6453}
6454
6455/*
6456 * A system can have three types of NUMA topology:
6457 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460 *
6461 * The difference between a glueless mesh topology and a backplane
6462 * topology lies in whether communication between not directly
6463 * connected nodes goes through intermediary nodes (where programs
6464 * could run), or through backplane controllers. This affects
6465 * placement of programs.
6466 *
6467 * The type of topology can be discerned with the following tests:
6468 * - If the maximum distance between any nodes is 1 hop, the system
6469 * is directly connected.
6470 * - If for two nodes A and B, located N > 1 hops away from each other,
6471 * there is an intermediary node C, which is < N hops away from both
6472 * nodes A and B, the system is a glueless mesh.
6473 */
6474static void init_numa_topology_type(void)
6475{
6476 int a, b, c, n;
6477
6478 n = sched_max_numa_distance;
6479
6480 if (sched_domains_numa_levels <= 1) {
6481 sched_numa_topology_type = NUMA_DIRECT;
6482 return;
6483 }
6484
6485 for_each_online_node(a) {
6486 for_each_online_node(b) {
6487 /* Find two nodes furthest removed from each other. */
6488 if (node_distance(a, b) < n)
6489 continue;
6490
6491 /* Is there an intermediary node between a and b? */
6492 for_each_online_node(c) {
6493 if (node_distance(a, c) < n &&
6494 node_distance(b, c) < n) {
6495 sched_numa_topology_type =
6496 NUMA_GLUELESS_MESH;
6497 return;
6498 }
6499 }
6500
6501 sched_numa_topology_type = NUMA_BACKPLANE;
6502 return;
6503 }
6504 }
6505}
6506
6507static void sched_init_numa(void)
6508{
6509 int next_distance, curr_distance = node_distance(0, 0);
6510 struct sched_domain_topology_level *tl;
6511 int level = 0;
6512 int i, j, k;
6513
6514 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515 if (!sched_domains_numa_distance)
6516 return;
6517
6518 /*
6519 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520 * unique distances in the node_distance() table.
6521 *
6522 * Assumes node_distance(0,j) includes all distances in
6523 * node_distance(i,j) in order to avoid cubic time.
6524 */
6525 next_distance = curr_distance;
6526 for (i = 0; i < nr_node_ids; i++) {
6527 for (j = 0; j < nr_node_ids; j++) {
6528 for (k = 0; k < nr_node_ids; k++) {
6529 int distance = node_distance(i, k);
6530
6531 if (distance > curr_distance &&
6532 (distance < next_distance ||
6533 next_distance == curr_distance))
6534 next_distance = distance;
6535
6536 /*
6537 * While not a strong assumption it would be nice to know
6538 * about cases where if node A is connected to B, B is not
6539 * equally connected to A.
6540 */
6541 if (sched_debug() && node_distance(k, i) != distance)
6542 sched_numa_warn("Node-distance not symmetric");
6543
6544 if (sched_debug() && i && !find_numa_distance(distance))
6545 sched_numa_warn("Node-0 not representative");
6546 }
6547 if (next_distance != curr_distance) {
6548 sched_domains_numa_distance[level++] = next_distance;
6549 sched_domains_numa_levels = level;
6550 curr_distance = next_distance;
6551 } else break;
6552 }
6553
6554 /*
6555 * In case of sched_debug() we verify the above assumption.
6556 */
6557 if (!sched_debug())
6558 break;
6559 }
6560
6561 if (!level)
6562 return;
6563
6564 /*
6565 * 'level' contains the number of unique distances, excluding the
6566 * identity distance node_distance(i,i).
6567 *
6568 * The sched_domains_numa_distance[] array includes the actual distance
6569 * numbers.
6570 */
6571
6572 /*
6573 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575 * the array will contain less then 'level' members. This could be
6576 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577 * in other functions.
6578 *
6579 * We reset it to 'level' at the end of this function.
6580 */
6581 sched_domains_numa_levels = 0;
6582
6583 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584 if (!sched_domains_numa_masks)
6585 return;
6586
6587 /*
6588 * Now for each level, construct a mask per node which contains all
6589 * cpus of nodes that are that many hops away from us.
6590 */
6591 for (i = 0; i < level; i++) {
6592 sched_domains_numa_masks[i] =
6593 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594 if (!sched_domains_numa_masks[i])
6595 return;
6596
6597 for (j = 0; j < nr_node_ids; j++) {
6598 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6599 if (!mask)
6600 return;
6601
6602 sched_domains_numa_masks[i][j] = mask;
6603
6604 for_each_node(k) {
6605 if (node_distance(j, k) > sched_domains_numa_distance[i])
6606 continue;
6607
6608 cpumask_or(mask, mask, cpumask_of_node(k));
6609 }
6610 }
6611 }
6612
6613 /* Compute default topology size */
6614 for (i = 0; sched_domain_topology[i].mask; i++);
6615
6616 tl = kzalloc((i + level + 1) *
6617 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618 if (!tl)
6619 return;
6620
6621 /*
6622 * Copy the default topology bits..
6623 */
6624 for (i = 0; sched_domain_topology[i].mask; i++)
6625 tl[i] = sched_domain_topology[i];
6626
6627 /*
6628 * .. and append 'j' levels of NUMA goodness.
6629 */
6630 for (j = 0; j < level; i++, j++) {
6631 tl[i] = (struct sched_domain_topology_level){
6632 .mask = sd_numa_mask,
6633 .sd_flags = cpu_numa_flags,
6634 .flags = SDTL_OVERLAP,
6635 .numa_level = j,
6636 SD_INIT_NAME(NUMA)
6637 };
6638 }
6639
6640 sched_domain_topology = tl;
6641
6642 sched_domains_numa_levels = level;
6643 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6644
6645 init_numa_topology_type();
6646}
6647
6648static void sched_domains_numa_masks_set(int cpu)
6649{
6650 int i, j;
6651 int node = cpu_to_node(cpu);
6652
6653 for (i = 0; i < sched_domains_numa_levels; i++) {
6654 for (j = 0; j < nr_node_ids; j++) {
6655 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657 }
6658 }
6659}
6660
6661static void sched_domains_numa_masks_clear(int cpu)
6662{
6663 int i, j;
6664 for (i = 0; i < sched_domains_numa_levels; i++) {
6665 for (j = 0; j < nr_node_ids; j++)
6666 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667 }
6668}
6669
6670/*
6671 * Update sched_domains_numa_masks[level][node] array when new cpus
6672 * are onlined.
6673 */
6674static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675 unsigned long action,
6676 void *hcpu)
6677{
6678 int cpu = (long)hcpu;
6679
6680 switch (action & ~CPU_TASKS_FROZEN) {
6681 case CPU_ONLINE:
6682 sched_domains_numa_masks_set(cpu);
6683 break;
6684
6685 case CPU_DEAD:
6686 sched_domains_numa_masks_clear(cpu);
6687 break;
6688
6689 default:
6690 return NOTIFY_DONE;
6691 }
6692
6693 return NOTIFY_OK;
6694}
6695#else
6696static inline void sched_init_numa(void)
6697{
6698}
6699
6700static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701 unsigned long action,
6702 void *hcpu)
6703{
6704 return 0;
6705}
6706#endif /* CONFIG_NUMA */
6707
6708static int __sdt_alloc(const struct cpumask *cpu_map)
6709{
6710 struct sched_domain_topology_level *tl;
6711 int j;
6712
6713 for_each_sd_topology(tl) {
6714 struct sd_data *sdd = &tl->data;
6715
6716 sdd->sd = alloc_percpu(struct sched_domain *);
6717 if (!sdd->sd)
6718 return -ENOMEM;
6719
6720 sdd->sg = alloc_percpu(struct sched_group *);
6721 if (!sdd->sg)
6722 return -ENOMEM;
6723
6724 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725 if (!sdd->sgc)
6726 return -ENOMEM;
6727
6728 for_each_cpu(j, cpu_map) {
6729 struct sched_domain *sd;
6730 struct sched_group *sg;
6731 struct sched_group_capacity *sgc;
6732
6733 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734 GFP_KERNEL, cpu_to_node(j));
6735 if (!sd)
6736 return -ENOMEM;
6737
6738 *per_cpu_ptr(sdd->sd, j) = sd;
6739
6740 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741 GFP_KERNEL, cpu_to_node(j));
6742 if (!sg)
6743 return -ENOMEM;
6744
6745 sg->next = sg;
6746
6747 *per_cpu_ptr(sdd->sg, j) = sg;
6748
6749 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750 GFP_KERNEL, cpu_to_node(j));
6751 if (!sgc)
6752 return -ENOMEM;
6753
6754 *per_cpu_ptr(sdd->sgc, j) = sgc;
6755 }
6756 }
6757
6758 return 0;
6759}
6760
6761static void __sdt_free(const struct cpumask *cpu_map)
6762{
6763 struct sched_domain_topology_level *tl;
6764 int j;
6765
6766 for_each_sd_topology(tl) {
6767 struct sd_data *sdd = &tl->data;
6768
6769 for_each_cpu(j, cpu_map) {
6770 struct sched_domain *sd;
6771
6772 if (sdd->sd) {
6773 sd = *per_cpu_ptr(sdd->sd, j);
6774 if (sd && (sd->flags & SD_OVERLAP))
6775 free_sched_groups(sd->groups, 0);
6776 kfree(*per_cpu_ptr(sdd->sd, j));
6777 }
6778
6779 if (sdd->sg)
6780 kfree(*per_cpu_ptr(sdd->sg, j));
6781 if (sdd->sgc)
6782 kfree(*per_cpu_ptr(sdd->sgc, j));
6783 }
6784 free_percpu(sdd->sd);
6785 sdd->sd = NULL;
6786 free_percpu(sdd->sg);
6787 sdd->sg = NULL;
6788 free_percpu(sdd->sgc);
6789 sdd->sgc = NULL;
6790 }
6791}
6792
6793struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795 struct sched_domain *child, int cpu)
6796{
6797 struct sched_domain *sd = sd_init(tl, cpu);
6798 if (!sd)
6799 return child;
6800
6801 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802 if (child) {
6803 sd->level = child->level + 1;
6804 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805 child->parent = sd;
6806 sd->child = child;
6807
6808 if (!cpumask_subset(sched_domain_span(child),
6809 sched_domain_span(sd))) {
6810 pr_err("BUG: arch topology borken\n");
6811#ifdef CONFIG_SCHED_DEBUG
6812 pr_err(" the %s domain not a subset of the %s domain\n",
6813 child->name, sd->name);
6814#endif
6815 /* Fixup, ensure @sd has at least @child cpus. */
6816 cpumask_or(sched_domain_span(sd),
6817 sched_domain_span(sd),
6818 sched_domain_span(child));
6819 }
6820
6821 }
6822 set_domain_attribute(sd, attr);
6823
6824 return sd;
6825}
6826
6827/*
6828 * Build sched domains for a given set of cpus and attach the sched domains
6829 * to the individual cpus
6830 */
6831static int build_sched_domains(const struct cpumask *cpu_map,
6832 struct sched_domain_attr *attr)
6833{
6834 enum s_alloc alloc_state;
6835 struct sched_domain *sd;
6836 struct s_data d;
6837 int i, ret = -ENOMEM;
6838
6839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840 if (alloc_state != sa_rootdomain)
6841 goto error;
6842
6843 /* Set up domains for cpus specified by the cpu_map. */
6844 for_each_cpu(i, cpu_map) {
6845 struct sched_domain_topology_level *tl;
6846
6847 sd = NULL;
6848 for_each_sd_topology(tl) {
6849 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850 if (tl == sched_domain_topology)
6851 *per_cpu_ptr(d.sd, i) = sd;
6852 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853 sd->flags |= SD_OVERLAP;
6854 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855 break;
6856 }
6857 }
6858
6859 /* Build the groups for the domains */
6860 for_each_cpu(i, cpu_map) {
6861 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863 if (sd->flags & SD_OVERLAP) {
6864 if (build_overlap_sched_groups(sd, i))
6865 goto error;
6866 } else {
6867 if (build_sched_groups(sd, i))
6868 goto error;
6869 }
6870 }
6871 }
6872
6873 /* Calculate CPU capacity for physical packages and nodes */
6874 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875 if (!cpumask_test_cpu(i, cpu_map))
6876 continue;
6877
6878 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879 claim_allocations(i, sd);
6880 init_sched_groups_capacity(i, sd);
6881 }
6882 }
6883
6884 /* Attach the domains */
6885 rcu_read_lock();
6886 for_each_cpu(i, cpu_map) {
6887 sd = *per_cpu_ptr(d.sd, i);
6888 cpu_attach_domain(sd, d.rd, i);
6889 }
6890 rcu_read_unlock();
6891
6892 ret = 0;
6893error:
6894 __free_domain_allocs(&d, alloc_state, cpu_map);
6895 return ret;
6896}
6897
6898static cpumask_var_t *doms_cur; /* current sched domains */
6899static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6900static struct sched_domain_attr *dattr_cur;
6901 /* attribues of custom domains in 'doms_cur' */
6902
6903/*
6904 * Special case: If a kmalloc of a doms_cur partition (array of
6905 * cpumask) fails, then fallback to a single sched domain,
6906 * as determined by the single cpumask fallback_doms.
6907 */
6908static cpumask_var_t fallback_doms;
6909
6910/*
6911 * arch_update_cpu_topology lets virtualized architectures update the
6912 * cpu core maps. It is supposed to return 1 if the topology changed
6913 * or 0 if it stayed the same.
6914 */
6915int __weak arch_update_cpu_topology(void)
6916{
6917 return 0;
6918}
6919
6920cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921{
6922 int i;
6923 cpumask_var_t *doms;
6924
6925 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926 if (!doms)
6927 return NULL;
6928 for (i = 0; i < ndoms; i++) {
6929 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930 free_sched_domains(doms, i);
6931 return NULL;
6932 }
6933 }
6934 return doms;
6935}
6936
6937void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938{
6939 unsigned int i;
6940 for (i = 0; i < ndoms; i++)
6941 free_cpumask_var(doms[i]);
6942 kfree(doms);
6943}
6944
6945/*
6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947 * For now this just excludes isolated cpus, but could be used to
6948 * exclude other special cases in the future.
6949 */
6950static int init_sched_domains(const struct cpumask *cpu_map)
6951{
6952 int err;
6953
6954 arch_update_cpu_topology();
6955 ndoms_cur = 1;
6956 doms_cur = alloc_sched_domains(ndoms_cur);
6957 if (!doms_cur)
6958 doms_cur = &fallback_doms;
6959 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960 err = build_sched_domains(doms_cur[0], NULL);
6961 register_sched_domain_sysctl();
6962
6963 return err;
6964}
6965
6966/*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
6970static void detach_destroy_domains(const struct cpumask *cpu_map)
6971{
6972 int i;
6973
6974 rcu_read_lock();
6975 for_each_cpu(i, cpu_map)
6976 cpu_attach_domain(NULL, &def_root_domain, i);
6977 rcu_read_unlock();
6978}
6979
6980/* handle null as "default" */
6981static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982 struct sched_domain_attr *new, int idx_new)
6983{
6984 struct sched_domain_attr tmp;
6985
6986 /* fast path */
6987 if (!new && !cur)
6988 return 1;
6989
6990 tmp = SD_ATTR_INIT;
6991 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992 new ? (new + idx_new) : &tmp,
6993 sizeof(struct sched_domain_attr));
6994}
6995
6996/*
6997 * Partition sched domains as specified by the 'ndoms_new'
6998 * cpumasks in the array doms_new[] of cpumasks. This compares
6999 * doms_new[] to the current sched domain partitioning, doms_cur[].
7000 * It destroys each deleted domain and builds each new domain.
7001 *
7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003 * The masks don't intersect (don't overlap.) We should setup one
7004 * sched domain for each mask. CPUs not in any of the cpumasks will
7005 * not be load balanced. If the same cpumask appears both in the
7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007 * it as it is.
7008 *
7009 * The passed in 'doms_new' should be allocated using
7010 * alloc_sched_domains. This routine takes ownership of it and will
7011 * free_sched_domains it when done with it. If the caller failed the
7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013 * and partition_sched_domains() will fallback to the single partition
7014 * 'fallback_doms', it also forces the domains to be rebuilt.
7015 *
7016 * If doms_new == NULL it will be replaced with cpu_online_mask.
7017 * ndoms_new == 0 is a special case for destroying existing domains,
7018 * and it will not create the default domain.
7019 *
7020 * Call with hotplug lock held
7021 */
7022void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023 struct sched_domain_attr *dattr_new)
7024{
7025 int i, j, n;
7026 int new_topology;
7027
7028 mutex_lock(&sched_domains_mutex);
7029
7030 /* always unregister in case we don't destroy any domains */
7031 unregister_sched_domain_sysctl();
7032
7033 /* Let architecture update cpu core mappings. */
7034 new_topology = arch_update_cpu_topology();
7035
7036 n = doms_new ? ndoms_new : 0;
7037
7038 /* Destroy deleted domains */
7039 for (i = 0; i < ndoms_cur; i++) {
7040 for (j = 0; j < n && !new_topology; j++) {
7041 if (cpumask_equal(doms_cur[i], doms_new[j])
7042 && dattrs_equal(dattr_cur, i, dattr_new, j))
7043 goto match1;
7044 }
7045 /* no match - a current sched domain not in new doms_new[] */
7046 detach_destroy_domains(doms_cur[i]);
7047match1:
7048 ;
7049 }
7050
7051 n = ndoms_cur;
7052 if (doms_new == NULL) {
7053 n = 0;
7054 doms_new = &fallback_doms;
7055 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056 WARN_ON_ONCE(dattr_new);
7057 }
7058
7059 /* Build new domains */
7060 for (i = 0; i < ndoms_new; i++) {
7061 for (j = 0; j < n && !new_topology; j++) {
7062 if (cpumask_equal(doms_new[i], doms_cur[j])
7063 && dattrs_equal(dattr_new, i, dattr_cur, j))
7064 goto match2;
7065 }
7066 /* no match - add a new doms_new */
7067 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068match2:
7069 ;
7070 }
7071
7072 /* Remember the new sched domains */
7073 if (doms_cur != &fallback_doms)
7074 free_sched_domains(doms_cur, ndoms_cur);
7075 kfree(dattr_cur); /* kfree(NULL) is safe */
7076 doms_cur = doms_new;
7077 dattr_cur = dattr_new;
7078 ndoms_cur = ndoms_new;
7079
7080 register_sched_domain_sysctl();
7081
7082 mutex_unlock(&sched_domains_mutex);
7083}
7084
7085static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7086
7087/*
7088 * Update cpusets according to cpu_active mask. If cpusets are
7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090 * around partition_sched_domains().
7091 *
7092 * If we come here as part of a suspend/resume, don't touch cpusets because we
7093 * want to restore it back to its original state upon resume anyway.
7094 */
7095static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096 void *hcpu)
7097{
7098 switch (action) {
7099 case CPU_ONLINE_FROZEN:
7100 case CPU_DOWN_FAILED_FROZEN:
7101
7102 /*
7103 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104 * resume sequence. As long as this is not the last online
7105 * operation in the resume sequence, just build a single sched
7106 * domain, ignoring cpusets.
7107 */
7108 num_cpus_frozen--;
7109 if (likely(num_cpus_frozen)) {
7110 partition_sched_domains(1, NULL, NULL);
7111 break;
7112 }
7113
7114 /*
7115 * This is the last CPU online operation. So fall through and
7116 * restore the original sched domains by considering the
7117 * cpuset configurations.
7118 */
7119
7120 case CPU_ONLINE:
7121 cpuset_update_active_cpus(true);
7122 break;
7123 default:
7124 return NOTIFY_DONE;
7125 }
7126 return NOTIFY_OK;
7127}
7128
7129static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130 void *hcpu)
7131{
7132 unsigned long flags;
7133 long cpu = (long)hcpu;
7134 struct dl_bw *dl_b;
7135 bool overflow;
7136 int cpus;
7137
7138 switch (action) {
7139 case CPU_DOWN_PREPARE:
7140 rcu_read_lock_sched();
7141 dl_b = dl_bw_of(cpu);
7142
7143 raw_spin_lock_irqsave(&dl_b->lock, flags);
7144 cpus = dl_bw_cpus(cpu);
7145 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147
7148 rcu_read_unlock_sched();
7149
7150 if (overflow)
7151 return notifier_from_errno(-EBUSY);
7152 cpuset_update_active_cpus(false);
7153 break;
7154 case CPU_DOWN_PREPARE_FROZEN:
7155 num_cpus_frozen++;
7156 partition_sched_domains(1, NULL, NULL);
7157 break;
7158 default:
7159 return NOTIFY_DONE;
7160 }
7161 return NOTIFY_OK;
7162}
7163
7164void __init sched_init_smp(void)
7165{
7166 cpumask_var_t non_isolated_cpus;
7167
7168 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7169 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7170
7171 sched_init_numa();
7172
7173 /*
7174 * There's no userspace yet to cause hotplug operations; hence all the
7175 * cpu masks are stable and all blatant races in the below code cannot
7176 * happen.
7177 */
7178 mutex_lock(&sched_domains_mutex);
7179 init_sched_domains(cpu_active_mask);
7180 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7181 if (cpumask_empty(non_isolated_cpus))
7182 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7183 mutex_unlock(&sched_domains_mutex);
7184
7185 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7186 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7187 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7188
7189 init_hrtick();
7190
7191 /* Move init over to a non-isolated CPU */
7192 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7193 BUG();
7194 sched_init_granularity();
7195 free_cpumask_var(non_isolated_cpus);
7196
7197 init_sched_rt_class();
7198 init_sched_dl_class();
7199}
7200#else
7201void __init sched_init_smp(void)
7202{
7203 sched_init_granularity();
7204}
7205#endif /* CONFIG_SMP */
7206
7207int in_sched_functions(unsigned long addr)
7208{
7209 return in_lock_functions(addr) ||
7210 (addr >= (unsigned long)__sched_text_start
7211 && addr < (unsigned long)__sched_text_end);
7212}
7213
7214#ifdef CONFIG_CGROUP_SCHED
7215/*
7216 * Default task group.
7217 * Every task in system belongs to this group at bootup.
7218 */
7219struct task_group root_task_group;
7220LIST_HEAD(task_groups);
7221
7222/* Cacheline aligned slab cache for task_group */
7223static struct kmem_cache *task_group_cache __read_mostly;
7224#endif
7225
7226DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7227
7228void __init sched_init(void)
7229{
7230 int i, j;
7231 unsigned long alloc_size = 0, ptr;
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235#endif
7236#ifdef CONFIG_RT_GROUP_SCHED
7237 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
7239 if (alloc_size) {
7240 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7241
7242#ifdef CONFIG_FAIR_GROUP_SCHED
7243 root_task_group.se = (struct sched_entity **)ptr;
7244 ptr += nr_cpu_ids * sizeof(void **);
7245
7246 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7247 ptr += nr_cpu_ids * sizeof(void **);
7248
7249#endif /* CONFIG_FAIR_GROUP_SCHED */
7250#ifdef CONFIG_RT_GROUP_SCHED
7251 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7252 ptr += nr_cpu_ids * sizeof(void **);
7253
7254 root_task_group.rt_rq = (struct rt_rq **)ptr;
7255 ptr += nr_cpu_ids * sizeof(void **);
7256
7257#endif /* CONFIG_RT_GROUP_SCHED */
7258 }
7259#ifdef CONFIG_CPUMASK_OFFSTACK
7260 for_each_possible_cpu(i) {
7261 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7263 }
7264#endif /* CONFIG_CPUMASK_OFFSTACK */
7265
7266 init_rt_bandwidth(&def_rt_bandwidth,
7267 global_rt_period(), global_rt_runtime());
7268 init_dl_bandwidth(&def_dl_bandwidth,
7269 global_rt_period(), global_rt_runtime());
7270
7271#ifdef CONFIG_SMP
7272 init_defrootdomain();
7273#endif
7274
7275#ifdef CONFIG_RT_GROUP_SCHED
7276 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7277 global_rt_period(), global_rt_runtime());
7278#endif /* CONFIG_RT_GROUP_SCHED */
7279
7280#ifdef CONFIG_CGROUP_SCHED
7281 task_group_cache = KMEM_CACHE(task_group, 0);
7282
7283 list_add(&root_task_group.list, &task_groups);
7284 INIT_LIST_HEAD(&root_task_group.children);
7285 INIT_LIST_HEAD(&root_task_group.siblings);
7286 autogroup_init(&init_task);
7287#endif /* CONFIG_CGROUP_SCHED */
7288
7289 for_each_possible_cpu(i) {
7290 struct rq *rq;
7291
7292 rq = cpu_rq(i);
7293 raw_spin_lock_init(&rq->lock);
7294 rq->nr_running = 0;
7295 rq->calc_load_active = 0;
7296 rq->calc_load_update = jiffies + LOAD_FREQ;
7297 init_cfs_rq(&rq->cfs);
7298 init_rt_rq(&rq->rt);
7299 init_dl_rq(&rq->dl);
7300#ifdef CONFIG_FAIR_GROUP_SCHED
7301 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7302 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7303 /*
7304 * How much cpu bandwidth does root_task_group get?
7305 *
7306 * In case of task-groups formed thr' the cgroup filesystem, it
7307 * gets 100% of the cpu resources in the system. This overall
7308 * system cpu resource is divided among the tasks of
7309 * root_task_group and its child task-groups in a fair manner,
7310 * based on each entity's (task or task-group's) weight
7311 * (se->load.weight).
7312 *
7313 * In other words, if root_task_group has 10 tasks of weight
7314 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7315 * then A0's share of the cpu resource is:
7316 *
7317 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7318 *
7319 * We achieve this by letting root_task_group's tasks sit
7320 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7321 */
7322 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7323 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7324#endif /* CONFIG_FAIR_GROUP_SCHED */
7325
7326 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7327#ifdef CONFIG_RT_GROUP_SCHED
7328 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7329#endif
7330
7331 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7332 rq->cpu_load[j] = 0;
7333
7334 rq->last_load_update_tick = jiffies;
7335
7336#ifdef CONFIG_SMP
7337 rq->sd = NULL;
7338 rq->rd = NULL;
7339 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7340 rq->balance_callback = NULL;
7341 rq->active_balance = 0;
7342 rq->next_balance = jiffies;
7343 rq->push_cpu = 0;
7344 rq->cpu = i;
7345 rq->online = 0;
7346 rq->idle_stamp = 0;
7347 rq->avg_idle = 2*sysctl_sched_migration_cost;
7348 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7349
7350 INIT_LIST_HEAD(&rq->cfs_tasks);
7351
7352 rq_attach_root(rq, &def_root_domain);
7353#ifdef CONFIG_NO_HZ_COMMON
7354 rq->nohz_flags = 0;
7355#endif
7356#ifdef CONFIG_NO_HZ_FULL
7357 rq->last_sched_tick = 0;
7358#endif
7359#endif
7360 init_rq_hrtick(rq);
7361 atomic_set(&rq->nr_iowait, 0);
7362 }
7363
7364 set_load_weight(&init_task);
7365
7366#ifdef CONFIG_PREEMPT_NOTIFIERS
7367 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7368#endif
7369
7370 /*
7371 * The boot idle thread does lazy MMU switching as well:
7372 */
7373 atomic_inc(&init_mm.mm_count);
7374 enter_lazy_tlb(&init_mm, current);
7375
7376 /*
7377 * During early bootup we pretend to be a normal task:
7378 */
7379 current->sched_class = &fair_sched_class;
7380
7381 /*
7382 * Make us the idle thread. Technically, schedule() should not be
7383 * called from this thread, however somewhere below it might be,
7384 * but because we are the idle thread, we just pick up running again
7385 * when this runqueue becomes "idle".
7386 */
7387 init_idle(current, smp_processor_id());
7388
7389 calc_load_update = jiffies + LOAD_FREQ;
7390
7391#ifdef CONFIG_SMP
7392 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7393 /* May be allocated at isolcpus cmdline parse time */
7394 if (cpu_isolated_map == NULL)
7395 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7396 idle_thread_set_boot_cpu();
7397 set_cpu_rq_start_time();
7398#endif
7399 init_sched_fair_class();
7400
7401 scheduler_running = 1;
7402}
7403
7404#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7405static inline int preempt_count_equals(int preempt_offset)
7406{
7407 int nested = preempt_count() + rcu_preempt_depth();
7408
7409 return (nested == preempt_offset);
7410}
7411
7412void __might_sleep(const char *file, int line, int preempt_offset)
7413{
7414 /*
7415 * Blocking primitives will set (and therefore destroy) current->state,
7416 * since we will exit with TASK_RUNNING make sure we enter with it,
7417 * otherwise we will destroy state.
7418 */
7419 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7420 "do not call blocking ops when !TASK_RUNNING; "
7421 "state=%lx set at [<%p>] %pS\n",
7422 current->state,
7423 (void *)current->task_state_change,
7424 (void *)current->task_state_change);
7425
7426 ___might_sleep(file, line, preempt_offset);
7427}
7428EXPORT_SYMBOL(__might_sleep);
7429
7430void ___might_sleep(const char *file, int line, int preempt_offset)
7431{
7432 static unsigned long prev_jiffy; /* ratelimiting */
7433
7434 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7435 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7436 !is_idle_task(current)) ||
7437 system_state != SYSTEM_RUNNING || oops_in_progress)
7438 return;
7439 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7440 return;
7441 prev_jiffy = jiffies;
7442
7443 printk(KERN_ERR
7444 "BUG: sleeping function called from invalid context at %s:%d\n",
7445 file, line);
7446 printk(KERN_ERR
7447 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7448 in_atomic(), irqs_disabled(),
7449 current->pid, current->comm);
7450
7451 if (task_stack_end_corrupted(current))
7452 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7453
7454 debug_show_held_locks(current);
7455 if (irqs_disabled())
7456 print_irqtrace_events(current);
7457#ifdef CONFIG_DEBUG_PREEMPT
7458 if (!preempt_count_equals(preempt_offset)) {
7459 pr_err("Preemption disabled at:");
7460 print_ip_sym(current->preempt_disable_ip);
7461 pr_cont("\n");
7462 }
7463#endif
7464 dump_stack();
7465}
7466EXPORT_SYMBOL(___might_sleep);
7467#endif
7468
7469#ifdef CONFIG_MAGIC_SYSRQ
7470void normalize_rt_tasks(void)
7471{
7472 struct task_struct *g, *p;
7473 struct sched_attr attr = {
7474 .sched_policy = SCHED_NORMAL,
7475 };
7476
7477 read_lock(&tasklist_lock);
7478 for_each_process_thread(g, p) {
7479 /*
7480 * Only normalize user tasks:
7481 */
7482 if (p->flags & PF_KTHREAD)
7483 continue;
7484
7485 p->se.exec_start = 0;
7486#ifdef CONFIG_SCHEDSTATS
7487 p->se.statistics.wait_start = 0;
7488 p->se.statistics.sleep_start = 0;
7489 p->se.statistics.block_start = 0;
7490#endif
7491
7492 if (!dl_task(p) && !rt_task(p)) {
7493 /*
7494 * Renice negative nice level userspace
7495 * tasks back to 0:
7496 */
7497 if (task_nice(p) < 0)
7498 set_user_nice(p, 0);
7499 continue;
7500 }
7501
7502 __sched_setscheduler(p, &attr, false, false);
7503 }
7504 read_unlock(&tasklist_lock);
7505}
7506
7507#endif /* CONFIG_MAGIC_SYSRQ */
7508
7509#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7510/*
7511 * These functions are only useful for the IA64 MCA handling, or kdb.
7512 *
7513 * They can only be called when the whole system has been
7514 * stopped - every CPU needs to be quiescent, and no scheduling
7515 * activity can take place. Using them for anything else would
7516 * be a serious bug, and as a result, they aren't even visible
7517 * under any other configuration.
7518 */
7519
7520/**
7521 * curr_task - return the current task for a given cpu.
7522 * @cpu: the processor in question.
7523 *
7524 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7525 *
7526 * Return: The current task for @cpu.
7527 */
7528struct task_struct *curr_task(int cpu)
7529{
7530 return cpu_curr(cpu);
7531}
7532
7533#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7534
7535#ifdef CONFIG_IA64
7536/**
7537 * set_curr_task - set the current task for a given cpu.
7538 * @cpu: the processor in question.
7539 * @p: the task pointer to set.
7540 *
7541 * Description: This function must only be used when non-maskable interrupts
7542 * are serviced on a separate stack. It allows the architecture to switch the
7543 * notion of the current task on a cpu in a non-blocking manner. This function
7544 * must be called with all CPU's synchronized, and interrupts disabled, the
7545 * and caller must save the original value of the current task (see
7546 * curr_task() above) and restore that value before reenabling interrupts and
7547 * re-starting the system.
7548 *
7549 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7550 */
7551void set_curr_task(int cpu, struct task_struct *p)
7552{
7553 cpu_curr(cpu) = p;
7554}
7555
7556#endif
7557
7558#ifdef CONFIG_CGROUP_SCHED
7559/* task_group_lock serializes the addition/removal of task groups */
7560static DEFINE_SPINLOCK(task_group_lock);
7561
7562static void sched_free_group(struct task_group *tg)
7563{
7564 free_fair_sched_group(tg);
7565 free_rt_sched_group(tg);
7566 autogroup_free(tg);
7567 kmem_cache_free(task_group_cache, tg);
7568}
7569
7570/* allocate runqueue etc for a new task group */
7571struct task_group *sched_create_group(struct task_group *parent)
7572{
7573 struct task_group *tg;
7574
7575 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7576 if (!tg)
7577 return ERR_PTR(-ENOMEM);
7578
7579 if (!alloc_fair_sched_group(tg, parent))
7580 goto err;
7581
7582 if (!alloc_rt_sched_group(tg, parent))
7583 goto err;
7584
7585 return tg;
7586
7587err:
7588 sched_free_group(tg);
7589 return ERR_PTR(-ENOMEM);
7590}
7591
7592void sched_online_group(struct task_group *tg, struct task_group *parent)
7593{
7594 unsigned long flags;
7595
7596 spin_lock_irqsave(&task_group_lock, flags);
7597 list_add_rcu(&tg->list, &task_groups);
7598
7599 WARN_ON(!parent); /* root should already exist */
7600
7601 tg->parent = parent;
7602 INIT_LIST_HEAD(&tg->children);
7603 list_add_rcu(&tg->siblings, &parent->children);
7604 spin_unlock_irqrestore(&task_group_lock, flags);
7605}
7606
7607/* rcu callback to free various structures associated with a task group */
7608static void sched_free_group_rcu(struct rcu_head *rhp)
7609{
7610 /* now it should be safe to free those cfs_rqs */
7611 sched_free_group(container_of(rhp, struct task_group, rcu));
7612}
7613
7614void sched_destroy_group(struct task_group *tg)
7615{
7616 /* wait for possible concurrent references to cfs_rqs complete */
7617 call_rcu(&tg->rcu, sched_free_group_rcu);
7618}
7619
7620void sched_offline_group(struct task_group *tg)
7621{
7622 unsigned long flags;
7623
7624 /* end participation in shares distribution */
7625 unregister_fair_sched_group(tg);
7626
7627 spin_lock_irqsave(&task_group_lock, flags);
7628 list_del_rcu(&tg->list);
7629 list_del_rcu(&tg->siblings);
7630 spin_unlock_irqrestore(&task_group_lock, flags);
7631}
7632
7633/* change task's runqueue when it moves between groups.
7634 * The caller of this function should have put the task in its new group
7635 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7636 * reflect its new group.
7637 */
7638void sched_move_task(struct task_struct *tsk)
7639{
7640 struct task_group *tg;
7641 int queued, running;
7642 unsigned long flags;
7643 struct rq *rq;
7644
7645 rq = task_rq_lock(tsk, &flags);
7646
7647 running = task_current(rq, tsk);
7648 queued = task_on_rq_queued(tsk);
7649
7650 if (queued)
7651 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7652 if (unlikely(running))
7653 put_prev_task(rq, tsk);
7654
7655 /*
7656 * All callers are synchronized by task_rq_lock(); we do not use RCU
7657 * which is pointless here. Thus, we pass "true" to task_css_check()
7658 * to prevent lockdep warnings.
7659 */
7660 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7661 struct task_group, css);
7662 tg = autogroup_task_group(tsk, tg);
7663 tsk->sched_task_group = tg;
7664
7665#ifdef CONFIG_FAIR_GROUP_SCHED
7666 if (tsk->sched_class->task_move_group)
7667 tsk->sched_class->task_move_group(tsk);
7668 else
7669#endif
7670 set_task_rq(tsk, task_cpu(tsk));
7671
7672 if (unlikely(running))
7673 tsk->sched_class->set_curr_task(rq);
7674 if (queued)
7675 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7676
7677 task_rq_unlock(rq, tsk, &flags);
7678}
7679#endif /* CONFIG_CGROUP_SCHED */
7680
7681#ifdef CONFIG_RT_GROUP_SCHED
7682/*
7683 * Ensure that the real time constraints are schedulable.
7684 */
7685static DEFINE_MUTEX(rt_constraints_mutex);
7686
7687/* Must be called with tasklist_lock held */
7688static inline int tg_has_rt_tasks(struct task_group *tg)
7689{
7690 struct task_struct *g, *p;
7691
7692 /*
7693 * Autogroups do not have RT tasks; see autogroup_create().
7694 */
7695 if (task_group_is_autogroup(tg))
7696 return 0;
7697
7698 for_each_process_thread(g, p) {
7699 if (rt_task(p) && task_group(p) == tg)
7700 return 1;
7701 }
7702
7703 return 0;
7704}
7705
7706struct rt_schedulable_data {
7707 struct task_group *tg;
7708 u64 rt_period;
7709 u64 rt_runtime;
7710};
7711
7712static int tg_rt_schedulable(struct task_group *tg, void *data)
7713{
7714 struct rt_schedulable_data *d = data;
7715 struct task_group *child;
7716 unsigned long total, sum = 0;
7717 u64 period, runtime;
7718
7719 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7720 runtime = tg->rt_bandwidth.rt_runtime;
7721
7722 if (tg == d->tg) {
7723 period = d->rt_period;
7724 runtime = d->rt_runtime;
7725 }
7726
7727 /*
7728 * Cannot have more runtime than the period.
7729 */
7730 if (runtime > period && runtime != RUNTIME_INF)
7731 return -EINVAL;
7732
7733 /*
7734 * Ensure we don't starve existing RT tasks.
7735 */
7736 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7737 return -EBUSY;
7738
7739 total = to_ratio(period, runtime);
7740
7741 /*
7742 * Nobody can have more than the global setting allows.
7743 */
7744 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7745 return -EINVAL;
7746
7747 /*
7748 * The sum of our children's runtime should not exceed our own.
7749 */
7750 list_for_each_entry_rcu(child, &tg->children, siblings) {
7751 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7752 runtime = child->rt_bandwidth.rt_runtime;
7753
7754 if (child == d->tg) {
7755 period = d->rt_period;
7756 runtime = d->rt_runtime;
7757 }
7758
7759 sum += to_ratio(period, runtime);
7760 }
7761
7762 if (sum > total)
7763 return -EINVAL;
7764
7765 return 0;
7766}
7767
7768static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7769{
7770 int ret;
7771
7772 struct rt_schedulable_data data = {
7773 .tg = tg,
7774 .rt_period = period,
7775 .rt_runtime = runtime,
7776 };
7777
7778 rcu_read_lock();
7779 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7780 rcu_read_unlock();
7781
7782 return ret;
7783}
7784
7785static int tg_set_rt_bandwidth(struct task_group *tg,
7786 u64 rt_period, u64 rt_runtime)
7787{
7788 int i, err = 0;
7789
7790 /*
7791 * Disallowing the root group RT runtime is BAD, it would disallow the
7792 * kernel creating (and or operating) RT threads.
7793 */
7794 if (tg == &root_task_group && rt_runtime == 0)
7795 return -EINVAL;
7796
7797 /* No period doesn't make any sense. */
7798 if (rt_period == 0)
7799 return -EINVAL;
7800
7801 mutex_lock(&rt_constraints_mutex);
7802 read_lock(&tasklist_lock);
7803 err = __rt_schedulable(tg, rt_period, rt_runtime);
7804 if (err)
7805 goto unlock;
7806
7807 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7808 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7809 tg->rt_bandwidth.rt_runtime = rt_runtime;
7810
7811 for_each_possible_cpu(i) {
7812 struct rt_rq *rt_rq = tg->rt_rq[i];
7813
7814 raw_spin_lock(&rt_rq->rt_runtime_lock);
7815 rt_rq->rt_runtime = rt_runtime;
7816 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7817 }
7818 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7819unlock:
7820 read_unlock(&tasklist_lock);
7821 mutex_unlock(&rt_constraints_mutex);
7822
7823 return err;
7824}
7825
7826static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7827{
7828 u64 rt_runtime, rt_period;
7829
7830 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7832 if (rt_runtime_us < 0)
7833 rt_runtime = RUNTIME_INF;
7834
7835 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7836}
7837
7838static long sched_group_rt_runtime(struct task_group *tg)
7839{
7840 u64 rt_runtime_us;
7841
7842 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7843 return -1;
7844
7845 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7846 do_div(rt_runtime_us, NSEC_PER_USEC);
7847 return rt_runtime_us;
7848}
7849
7850static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7851{
7852 u64 rt_runtime, rt_period;
7853
7854 rt_period = rt_period_us * NSEC_PER_USEC;
7855 rt_runtime = tg->rt_bandwidth.rt_runtime;
7856
7857 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7858}
7859
7860static long sched_group_rt_period(struct task_group *tg)
7861{
7862 u64 rt_period_us;
7863
7864 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7865 do_div(rt_period_us, NSEC_PER_USEC);
7866 return rt_period_us;
7867}
7868#endif /* CONFIG_RT_GROUP_SCHED */
7869
7870#ifdef CONFIG_RT_GROUP_SCHED
7871static int sched_rt_global_constraints(void)
7872{
7873 int ret = 0;
7874
7875 mutex_lock(&rt_constraints_mutex);
7876 read_lock(&tasklist_lock);
7877 ret = __rt_schedulable(NULL, 0, 0);
7878 read_unlock(&tasklist_lock);
7879 mutex_unlock(&rt_constraints_mutex);
7880
7881 return ret;
7882}
7883
7884static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7885{
7886 /* Don't accept realtime tasks when there is no way for them to run */
7887 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7888 return 0;
7889
7890 return 1;
7891}
7892
7893#else /* !CONFIG_RT_GROUP_SCHED */
7894static int sched_rt_global_constraints(void)
7895{
7896 unsigned long flags;
7897 int i, ret = 0;
7898
7899 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7900 for_each_possible_cpu(i) {
7901 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7902
7903 raw_spin_lock(&rt_rq->rt_runtime_lock);
7904 rt_rq->rt_runtime = global_rt_runtime();
7905 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7906 }
7907 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7908
7909 return ret;
7910}
7911#endif /* CONFIG_RT_GROUP_SCHED */
7912
7913static int sched_dl_global_validate(void)
7914{
7915 u64 runtime = global_rt_runtime();
7916 u64 period = global_rt_period();
7917 u64 new_bw = to_ratio(period, runtime);
7918 struct dl_bw *dl_b;
7919 int cpu, ret = 0;
7920 unsigned long flags;
7921
7922 /*
7923 * Here we want to check the bandwidth not being set to some
7924 * value smaller than the currently allocated bandwidth in
7925 * any of the root_domains.
7926 *
7927 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7928 * cycling on root_domains... Discussion on different/better
7929 * solutions is welcome!
7930 */
7931 for_each_possible_cpu(cpu) {
7932 rcu_read_lock_sched();
7933 dl_b = dl_bw_of(cpu);
7934
7935 raw_spin_lock_irqsave(&dl_b->lock, flags);
7936 if (new_bw < dl_b->total_bw)
7937 ret = -EBUSY;
7938 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7939
7940 rcu_read_unlock_sched();
7941
7942 if (ret)
7943 break;
7944 }
7945
7946 return ret;
7947}
7948
7949static void sched_dl_do_global(void)
7950{
7951 u64 new_bw = -1;
7952 struct dl_bw *dl_b;
7953 int cpu;
7954 unsigned long flags;
7955
7956 def_dl_bandwidth.dl_period = global_rt_period();
7957 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7958
7959 if (global_rt_runtime() != RUNTIME_INF)
7960 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7961
7962 /*
7963 * FIXME: As above...
7964 */
7965 for_each_possible_cpu(cpu) {
7966 rcu_read_lock_sched();
7967 dl_b = dl_bw_of(cpu);
7968
7969 raw_spin_lock_irqsave(&dl_b->lock, flags);
7970 dl_b->bw = new_bw;
7971 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7972
7973 rcu_read_unlock_sched();
7974 }
7975}
7976
7977static int sched_rt_global_validate(void)
7978{
7979 if (sysctl_sched_rt_period <= 0)
7980 return -EINVAL;
7981
7982 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7983 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7984 return -EINVAL;
7985
7986 return 0;
7987}
7988
7989static void sched_rt_do_global(void)
7990{
7991 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7992 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7993}
7994
7995int sched_rt_handler(struct ctl_table *table, int write,
7996 void __user *buffer, size_t *lenp,
7997 loff_t *ppos)
7998{
7999 int old_period, old_runtime;
8000 static DEFINE_MUTEX(mutex);
8001 int ret;
8002
8003 mutex_lock(&mutex);
8004 old_period = sysctl_sched_rt_period;
8005 old_runtime = sysctl_sched_rt_runtime;
8006
8007 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8008
8009 if (!ret && write) {
8010 ret = sched_rt_global_validate();
8011 if (ret)
8012 goto undo;
8013
8014 ret = sched_dl_global_validate();
8015 if (ret)
8016 goto undo;
8017
8018 ret = sched_rt_global_constraints();
8019 if (ret)
8020 goto undo;
8021
8022 sched_rt_do_global();
8023 sched_dl_do_global();
8024 }
8025 if (0) {
8026undo:
8027 sysctl_sched_rt_period = old_period;
8028 sysctl_sched_rt_runtime = old_runtime;
8029 }
8030 mutex_unlock(&mutex);
8031
8032 return ret;
8033}
8034
8035int sched_rr_handler(struct ctl_table *table, int write,
8036 void __user *buffer, size_t *lenp,
8037 loff_t *ppos)
8038{
8039 int ret;
8040 static DEFINE_MUTEX(mutex);
8041
8042 mutex_lock(&mutex);
8043 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8044 /* make sure that internally we keep jiffies */
8045 /* also, writing zero resets timeslice to default */
8046 if (!ret && write) {
8047 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8048 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8049 }
8050 mutex_unlock(&mutex);
8051 return ret;
8052}
8053
8054#ifdef CONFIG_CGROUP_SCHED
8055
8056static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8057{
8058 return css ? container_of(css, struct task_group, css) : NULL;
8059}
8060
8061static struct cgroup_subsys_state *
8062cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8063{
8064 struct task_group *parent = css_tg(parent_css);
8065 struct task_group *tg;
8066
8067 if (!parent) {
8068 /* This is early initialization for the top cgroup */
8069 return &root_task_group.css;
8070 }
8071
8072 tg = sched_create_group(parent);
8073 if (IS_ERR(tg))
8074 return ERR_PTR(-ENOMEM);
8075
8076 sched_online_group(tg, parent);
8077
8078 return &tg->css;
8079}
8080
8081static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8082{
8083 struct task_group *tg = css_tg(css);
8084
8085 sched_offline_group(tg);
8086}
8087
8088static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8089{
8090 struct task_group *tg = css_tg(css);
8091
8092 /*
8093 * Relies on the RCU grace period between css_released() and this.
8094 */
8095 sched_free_group(tg);
8096}
8097
8098static void cpu_cgroup_fork(struct task_struct *task)
8099{
8100 sched_move_task(task);
8101}
8102
8103static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8104{
8105 struct task_struct *task;
8106 struct cgroup_subsys_state *css;
8107
8108 cgroup_taskset_for_each(task, css, tset) {
8109#ifdef CONFIG_RT_GROUP_SCHED
8110 if (!sched_rt_can_attach(css_tg(css), task))
8111 return -EINVAL;
8112#else
8113 /* We don't support RT-tasks being in separate groups */
8114 if (task->sched_class != &fair_sched_class)
8115 return -EINVAL;
8116#endif
8117 }
8118 return 0;
8119}
8120
8121static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8122{
8123 struct task_struct *task;
8124 struct cgroup_subsys_state *css;
8125
8126 cgroup_taskset_for_each(task, css, tset)
8127 sched_move_task(task);
8128}
8129
8130#ifdef CONFIG_FAIR_GROUP_SCHED
8131static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8132 struct cftype *cftype, u64 shareval)
8133{
8134 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8135}
8136
8137static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8138 struct cftype *cft)
8139{
8140 struct task_group *tg = css_tg(css);
8141
8142 return (u64) scale_load_down(tg->shares);
8143}
8144
8145#ifdef CONFIG_CFS_BANDWIDTH
8146static DEFINE_MUTEX(cfs_constraints_mutex);
8147
8148const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8149const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8150
8151static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8152
8153static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8154{
8155 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8156 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8157
8158 if (tg == &root_task_group)
8159 return -EINVAL;
8160
8161 /*
8162 * Ensure we have at some amount of bandwidth every period. This is
8163 * to prevent reaching a state of large arrears when throttled via
8164 * entity_tick() resulting in prolonged exit starvation.
8165 */
8166 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8167 return -EINVAL;
8168
8169 /*
8170 * Likewise, bound things on the otherside by preventing insane quota
8171 * periods. This also allows us to normalize in computing quota
8172 * feasibility.
8173 */
8174 if (period > max_cfs_quota_period)
8175 return -EINVAL;
8176
8177 /*
8178 * Prevent race between setting of cfs_rq->runtime_enabled and
8179 * unthrottle_offline_cfs_rqs().
8180 */
8181 get_online_cpus();
8182 mutex_lock(&cfs_constraints_mutex);
8183 ret = __cfs_schedulable(tg, period, quota);
8184 if (ret)
8185 goto out_unlock;
8186
8187 runtime_enabled = quota != RUNTIME_INF;
8188 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8189 /*
8190 * If we need to toggle cfs_bandwidth_used, off->on must occur
8191 * before making related changes, and on->off must occur afterwards
8192 */
8193 if (runtime_enabled && !runtime_was_enabled)
8194 cfs_bandwidth_usage_inc();
8195 raw_spin_lock_irq(&cfs_b->lock);
8196 cfs_b->period = ns_to_ktime(period);
8197 cfs_b->quota = quota;
8198
8199 __refill_cfs_bandwidth_runtime(cfs_b);
8200 /* restart the period timer (if active) to handle new period expiry */
8201 if (runtime_enabled)
8202 start_cfs_bandwidth(cfs_b);
8203 raw_spin_unlock_irq(&cfs_b->lock);
8204
8205 for_each_online_cpu(i) {
8206 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8207 struct rq *rq = cfs_rq->rq;
8208
8209 raw_spin_lock_irq(&rq->lock);
8210 cfs_rq->runtime_enabled = runtime_enabled;
8211 cfs_rq->runtime_remaining = 0;
8212
8213 if (cfs_rq->throttled)
8214 unthrottle_cfs_rq(cfs_rq);
8215 raw_spin_unlock_irq(&rq->lock);
8216 }
8217 if (runtime_was_enabled && !runtime_enabled)
8218 cfs_bandwidth_usage_dec();
8219out_unlock:
8220 mutex_unlock(&cfs_constraints_mutex);
8221 put_online_cpus();
8222
8223 return ret;
8224}
8225
8226int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8227{
8228 u64 quota, period;
8229
8230 period = ktime_to_ns(tg->cfs_bandwidth.period);
8231 if (cfs_quota_us < 0)
8232 quota = RUNTIME_INF;
8233 else
8234 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8235
8236 return tg_set_cfs_bandwidth(tg, period, quota);
8237}
8238
8239long tg_get_cfs_quota(struct task_group *tg)
8240{
8241 u64 quota_us;
8242
8243 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8244 return -1;
8245
8246 quota_us = tg->cfs_bandwidth.quota;
8247 do_div(quota_us, NSEC_PER_USEC);
8248
8249 return quota_us;
8250}
8251
8252int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8253{
8254 u64 quota, period;
8255
8256 period = (u64)cfs_period_us * NSEC_PER_USEC;
8257 quota = tg->cfs_bandwidth.quota;
8258
8259 return tg_set_cfs_bandwidth(tg, period, quota);
8260}
8261
8262long tg_get_cfs_period(struct task_group *tg)
8263{
8264 u64 cfs_period_us;
8265
8266 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8267 do_div(cfs_period_us, NSEC_PER_USEC);
8268
8269 return cfs_period_us;
8270}
8271
8272static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8273 struct cftype *cft)
8274{
8275 return tg_get_cfs_quota(css_tg(css));
8276}
8277
8278static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8279 struct cftype *cftype, s64 cfs_quota_us)
8280{
8281 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8282}
8283
8284static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8285 struct cftype *cft)
8286{
8287 return tg_get_cfs_period(css_tg(css));
8288}
8289
8290static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8291 struct cftype *cftype, u64 cfs_period_us)
8292{
8293 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8294}
8295
8296struct cfs_schedulable_data {
8297 struct task_group *tg;
8298 u64 period, quota;
8299};
8300
8301/*
8302 * normalize group quota/period to be quota/max_period
8303 * note: units are usecs
8304 */
8305static u64 normalize_cfs_quota(struct task_group *tg,
8306 struct cfs_schedulable_data *d)
8307{
8308 u64 quota, period;
8309
8310 if (tg == d->tg) {
8311 period = d->period;
8312 quota = d->quota;
8313 } else {
8314 period = tg_get_cfs_period(tg);
8315 quota = tg_get_cfs_quota(tg);
8316 }
8317
8318 /* note: these should typically be equivalent */
8319 if (quota == RUNTIME_INF || quota == -1)
8320 return RUNTIME_INF;
8321
8322 return to_ratio(period, quota);
8323}
8324
8325static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8326{
8327 struct cfs_schedulable_data *d = data;
8328 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8329 s64 quota = 0, parent_quota = -1;
8330
8331 if (!tg->parent) {
8332 quota = RUNTIME_INF;
8333 } else {
8334 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8335
8336 quota = normalize_cfs_quota(tg, d);
8337 parent_quota = parent_b->hierarchical_quota;
8338
8339 /*
8340 * ensure max(child_quota) <= parent_quota, inherit when no
8341 * limit is set
8342 */
8343 if (quota == RUNTIME_INF)
8344 quota = parent_quota;
8345 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8346 return -EINVAL;
8347 }
8348 cfs_b->hierarchical_quota = quota;
8349
8350 return 0;
8351}
8352
8353static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8354{
8355 int ret;
8356 struct cfs_schedulable_data data = {
8357 .tg = tg,
8358 .period = period,
8359 .quota = quota,
8360 };
8361
8362 if (quota != RUNTIME_INF) {
8363 do_div(data.period, NSEC_PER_USEC);
8364 do_div(data.quota, NSEC_PER_USEC);
8365 }
8366
8367 rcu_read_lock();
8368 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8369 rcu_read_unlock();
8370
8371 return ret;
8372}
8373
8374static int cpu_stats_show(struct seq_file *sf, void *v)
8375{
8376 struct task_group *tg = css_tg(seq_css(sf));
8377 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8378
8379 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8380 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8381 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8382
8383 return 0;
8384}
8385#endif /* CONFIG_CFS_BANDWIDTH */
8386#endif /* CONFIG_FAIR_GROUP_SCHED */
8387
8388#ifdef CONFIG_RT_GROUP_SCHED
8389static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8390 struct cftype *cft, s64 val)
8391{
8392 return sched_group_set_rt_runtime(css_tg(css), val);
8393}
8394
8395static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8396 struct cftype *cft)
8397{
8398 return sched_group_rt_runtime(css_tg(css));
8399}
8400
8401static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8402 struct cftype *cftype, u64 rt_period_us)
8403{
8404 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8405}
8406
8407static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8408 struct cftype *cft)
8409{
8410 return sched_group_rt_period(css_tg(css));
8411}
8412#endif /* CONFIG_RT_GROUP_SCHED */
8413
8414static struct cftype cpu_files[] = {
8415#ifdef CONFIG_FAIR_GROUP_SCHED
8416 {
8417 .name = "shares",
8418 .read_u64 = cpu_shares_read_u64,
8419 .write_u64 = cpu_shares_write_u64,
8420 },
8421#endif
8422#ifdef CONFIG_CFS_BANDWIDTH
8423 {
8424 .name = "cfs_quota_us",
8425 .read_s64 = cpu_cfs_quota_read_s64,
8426 .write_s64 = cpu_cfs_quota_write_s64,
8427 },
8428 {
8429 .name = "cfs_period_us",
8430 .read_u64 = cpu_cfs_period_read_u64,
8431 .write_u64 = cpu_cfs_period_write_u64,
8432 },
8433 {
8434 .name = "stat",
8435 .seq_show = cpu_stats_show,
8436 },
8437#endif
8438#ifdef CONFIG_RT_GROUP_SCHED
8439 {
8440 .name = "rt_runtime_us",
8441 .read_s64 = cpu_rt_runtime_read,
8442 .write_s64 = cpu_rt_runtime_write,
8443 },
8444 {
8445 .name = "rt_period_us",
8446 .read_u64 = cpu_rt_period_read_uint,
8447 .write_u64 = cpu_rt_period_write_uint,
8448 },
8449#endif
8450 { } /* terminate */
8451};
8452
8453struct cgroup_subsys cpu_cgrp_subsys = {
8454 .css_alloc = cpu_cgroup_css_alloc,
8455 .css_released = cpu_cgroup_css_released,
8456 .css_free = cpu_cgroup_css_free,
8457 .fork = cpu_cgroup_fork,
8458 .can_attach = cpu_cgroup_can_attach,
8459 .attach = cpu_cgroup_attach,
8460 .legacy_cftypes = cpu_files,
8461 .early_init = true,
8462};
8463
8464#endif /* CONFIG_CGROUP_SCHED */
8465
8466void dump_cpu_task(int cpu)
8467{
8468 pr_info("Task dump for CPU %d:\n", cpu);
8469 sched_show_task(cpu_curr(cpu));
8470}
8471
8472/*
8473 * Nice levels are multiplicative, with a gentle 10% change for every
8474 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8475 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8476 * that remained on nice 0.
8477 *
8478 * The "10% effect" is relative and cumulative: from _any_ nice level,
8479 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8480 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8481 * If a task goes up by ~10% and another task goes down by ~10% then
8482 * the relative distance between them is ~25%.)
8483 */
8484const int sched_prio_to_weight[40] = {
8485 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8486 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8487 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8488 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8489 /* 0 */ 1024, 820, 655, 526, 423,
8490 /* 5 */ 335, 272, 215, 172, 137,
8491 /* 10 */ 110, 87, 70, 56, 45,
8492 /* 15 */ 36, 29, 23, 18, 15,
8493};
8494
8495/*
8496 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8497 *
8498 * In cases where the weight does not change often, we can use the
8499 * precalculated inverse to speed up arithmetics by turning divisions
8500 * into multiplications:
8501 */
8502const u32 sched_prio_to_wmult[40] = {
8503 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8504 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8505 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8506 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8507 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8508 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8509 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8510 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8511};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
13#include "sched.h"
14
15#include <linux/nospec.h>
16
17#include <linux/kcov.h>
18#include <linux/scs.h>
19
20#include <asm/switch_to.h>
21#include <asm/tlb.h>
22
23#include "../workqueue_internal.h"
24#include "../../fs/io-wq.h"
25#include "../smpboot.h"
26
27#include "pelt.h"
28#include "smp.h"
29
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
43
44DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
45
46#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
47/*
48 * Debugging: various feature bits
49 *
50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
51 * sysctl_sched_features, defined in sched.h, to allow constants propagation
52 * at compile time and compiler optimization based on features default.
53 */
54#define SCHED_FEAT(name, enabled) \
55 (1UL << __SCHED_FEAT_##name) * enabled |
56const_debug unsigned int sysctl_sched_features =
57#include "features.h"
58 0;
59#undef SCHED_FEAT
60#endif
61
62/*
63 * Number of tasks to iterate in a single balance run.
64 * Limited because this is done with IRQs disabled.
65 */
66const_debug unsigned int sysctl_sched_nr_migrate = 32;
67
68/*
69 * period over which we measure -rt task CPU usage in us.
70 * default: 1s
71 */
72unsigned int sysctl_sched_rt_period = 1000000;
73
74__read_mostly int scheduler_running;
75
76/*
77 * part of the period that we allow rt tasks to run in us.
78 * default: 0.95s
79 */
80int sysctl_sched_rt_runtime = 950000;
81
82
83/*
84 * Serialization rules:
85 *
86 * Lock order:
87 *
88 * p->pi_lock
89 * rq->lock
90 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
91 *
92 * rq1->lock
93 * rq2->lock where: rq1 < rq2
94 *
95 * Regular state:
96 *
97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
98 * local CPU's rq->lock, it optionally removes the task from the runqueue and
99 * always looks at the local rq data structures to find the most elegible task
100 * to run next.
101 *
102 * Task enqueue is also under rq->lock, possibly taken from another CPU.
103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
104 * the local CPU to avoid bouncing the runqueue state around [ see
105 * ttwu_queue_wakelist() ]
106 *
107 * Task wakeup, specifically wakeups that involve migration, are horribly
108 * complicated to avoid having to take two rq->locks.
109 *
110 * Special state:
111 *
112 * System-calls and anything external will use task_rq_lock() which acquires
113 * both p->pi_lock and rq->lock. As a consequence the state they change is
114 * stable while holding either lock:
115 *
116 * - sched_setaffinity()/
117 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
118 * - set_user_nice(): p->se.load, p->*prio
119 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
120 * p->se.load, p->rt_priority,
121 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
122 * - sched_setnuma(): p->numa_preferred_nid
123 * - sched_move_task()/
124 * cpu_cgroup_fork(): p->sched_task_group
125 * - uclamp_update_active() p->uclamp*
126 *
127 * p->state <- TASK_*:
128 *
129 * is changed locklessly using set_current_state(), __set_current_state() or
130 * set_special_state(), see their respective comments, or by
131 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
132 * concurrent self.
133 *
134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
135 *
136 * is set by activate_task() and cleared by deactivate_task(), under
137 * rq->lock. Non-zero indicates the task is runnable, the special
138 * ON_RQ_MIGRATING state is used for migration without holding both
139 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
140 *
141 * p->on_cpu <- { 0, 1 }:
142 *
143 * is set by prepare_task() and cleared by finish_task() such that it will be
144 * set before p is scheduled-in and cleared after p is scheduled-out, both
145 * under rq->lock. Non-zero indicates the task is running on its CPU.
146 *
147 * [ The astute reader will observe that it is possible for two tasks on one
148 * CPU to have ->on_cpu = 1 at the same time. ]
149 *
150 * task_cpu(p): is changed by set_task_cpu(), the rules are:
151 *
152 * - Don't call set_task_cpu() on a blocked task:
153 *
154 * We don't care what CPU we're not running on, this simplifies hotplug,
155 * the CPU assignment of blocked tasks isn't required to be valid.
156 *
157 * - for try_to_wake_up(), called under p->pi_lock:
158 *
159 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
160 *
161 * - for migration called under rq->lock:
162 * [ see task_on_rq_migrating() in task_rq_lock() ]
163 *
164 * o move_queued_task()
165 * o detach_task()
166 *
167 * - for migration called under double_rq_lock():
168 *
169 * o __migrate_swap_task()
170 * o push_rt_task() / pull_rt_task()
171 * o push_dl_task() / pull_dl_task()
172 * o dl_task_offline_migration()
173 *
174 */
175
176/*
177 * __task_rq_lock - lock the rq @p resides on.
178 */
179struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
180 __acquires(rq->lock)
181{
182 struct rq *rq;
183
184 lockdep_assert_held(&p->pi_lock);
185
186 for (;;) {
187 rq = task_rq(p);
188 raw_spin_lock(&rq->lock);
189 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
190 rq_pin_lock(rq, rf);
191 return rq;
192 }
193 raw_spin_unlock(&rq->lock);
194
195 while (unlikely(task_on_rq_migrating(p)))
196 cpu_relax();
197 }
198}
199
200/*
201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
202 */
203struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
204 __acquires(p->pi_lock)
205 __acquires(rq->lock)
206{
207 struct rq *rq;
208
209 for (;;) {
210 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
211 rq = task_rq(p);
212 raw_spin_lock(&rq->lock);
213 /*
214 * move_queued_task() task_rq_lock()
215 *
216 * ACQUIRE (rq->lock)
217 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
218 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
219 * [S] ->cpu = new_cpu [L] task_rq()
220 * [L] ->on_rq
221 * RELEASE (rq->lock)
222 *
223 * If we observe the old CPU in task_rq_lock(), the acquire of
224 * the old rq->lock will fully serialize against the stores.
225 *
226 * If we observe the new CPU in task_rq_lock(), the address
227 * dependency headed by '[L] rq = task_rq()' and the acquire
228 * will pair with the WMB to ensure we then also see migrating.
229 */
230 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
231 rq_pin_lock(rq, rf);
232 return rq;
233 }
234 raw_spin_unlock(&rq->lock);
235 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
236
237 while (unlikely(task_on_rq_migrating(p)))
238 cpu_relax();
239 }
240}
241
242/*
243 * RQ-clock updating methods:
244 */
245
246static void update_rq_clock_task(struct rq *rq, s64 delta)
247{
248/*
249 * In theory, the compile should just see 0 here, and optimize out the call
250 * to sched_rt_avg_update. But I don't trust it...
251 */
252 s64 __maybe_unused steal = 0, irq_delta = 0;
253
254#ifdef CONFIG_IRQ_TIME_ACCOUNTING
255 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
256
257 /*
258 * Since irq_time is only updated on {soft,}irq_exit, we might run into
259 * this case when a previous update_rq_clock() happened inside a
260 * {soft,}irq region.
261 *
262 * When this happens, we stop ->clock_task and only update the
263 * prev_irq_time stamp to account for the part that fit, so that a next
264 * update will consume the rest. This ensures ->clock_task is
265 * monotonic.
266 *
267 * It does however cause some slight miss-attribution of {soft,}irq
268 * time, a more accurate solution would be to update the irq_time using
269 * the current rq->clock timestamp, except that would require using
270 * atomic ops.
271 */
272 if (irq_delta > delta)
273 irq_delta = delta;
274
275 rq->prev_irq_time += irq_delta;
276 delta -= irq_delta;
277#endif
278#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
279 if (static_key_false((¶virt_steal_rq_enabled))) {
280 steal = paravirt_steal_clock(cpu_of(rq));
281 steal -= rq->prev_steal_time_rq;
282
283 if (unlikely(steal > delta))
284 steal = delta;
285
286 rq->prev_steal_time_rq += steal;
287 delta -= steal;
288 }
289#endif
290
291 rq->clock_task += delta;
292
293#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
294 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
295 update_irq_load_avg(rq, irq_delta + steal);
296#endif
297 update_rq_clock_pelt(rq, delta);
298}
299
300void update_rq_clock(struct rq *rq)
301{
302 s64 delta;
303
304 lockdep_assert_held(&rq->lock);
305
306 if (rq->clock_update_flags & RQCF_ACT_SKIP)
307 return;
308
309#ifdef CONFIG_SCHED_DEBUG
310 if (sched_feat(WARN_DOUBLE_CLOCK))
311 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
312 rq->clock_update_flags |= RQCF_UPDATED;
313#endif
314
315 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
316 if (delta < 0)
317 return;
318 rq->clock += delta;
319 update_rq_clock_task(rq, delta);
320}
321
322static inline void
323rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
324{
325 csd->flags = 0;
326 csd->func = func;
327 csd->info = rq;
328}
329
330#ifdef CONFIG_SCHED_HRTICK
331/*
332 * Use HR-timers to deliver accurate preemption points.
333 */
334
335static void hrtick_clear(struct rq *rq)
336{
337 if (hrtimer_active(&rq->hrtick_timer))
338 hrtimer_cancel(&rq->hrtick_timer);
339}
340
341/*
342 * High-resolution timer tick.
343 * Runs from hardirq context with interrupts disabled.
344 */
345static enum hrtimer_restart hrtick(struct hrtimer *timer)
346{
347 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
348 struct rq_flags rf;
349
350 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
351
352 rq_lock(rq, &rf);
353 update_rq_clock(rq);
354 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
355 rq_unlock(rq, &rf);
356
357 return HRTIMER_NORESTART;
358}
359
360#ifdef CONFIG_SMP
361
362static void __hrtick_restart(struct rq *rq)
363{
364 struct hrtimer *timer = &rq->hrtick_timer;
365
366 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
367}
368
369/*
370 * called from hardirq (IPI) context
371 */
372static void __hrtick_start(void *arg)
373{
374 struct rq *rq = arg;
375 struct rq_flags rf;
376
377 rq_lock(rq, &rf);
378 __hrtick_restart(rq);
379 rq_unlock(rq, &rf);
380}
381
382/*
383 * Called to set the hrtick timer state.
384 *
385 * called with rq->lock held and irqs disabled
386 */
387void hrtick_start(struct rq *rq, u64 delay)
388{
389 struct hrtimer *timer = &rq->hrtick_timer;
390 ktime_t time;
391 s64 delta;
392
393 /*
394 * Don't schedule slices shorter than 10000ns, that just
395 * doesn't make sense and can cause timer DoS.
396 */
397 delta = max_t(s64, delay, 10000LL);
398 time = ktime_add_ns(timer->base->get_time(), delta);
399
400 hrtimer_set_expires(timer, time);
401
402 if (rq == this_rq())
403 __hrtick_restart(rq);
404 else
405 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
406}
407
408#else
409/*
410 * Called to set the hrtick timer state.
411 *
412 * called with rq->lock held and irqs disabled
413 */
414void hrtick_start(struct rq *rq, u64 delay)
415{
416 /*
417 * Don't schedule slices shorter than 10000ns, that just
418 * doesn't make sense. Rely on vruntime for fairness.
419 */
420 delay = max_t(u64, delay, 10000LL);
421 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
422 HRTIMER_MODE_REL_PINNED_HARD);
423}
424
425#endif /* CONFIG_SMP */
426
427static void hrtick_rq_init(struct rq *rq)
428{
429#ifdef CONFIG_SMP
430 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
431#endif
432 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
433 rq->hrtick_timer.function = hrtick;
434}
435#else /* CONFIG_SCHED_HRTICK */
436static inline void hrtick_clear(struct rq *rq)
437{
438}
439
440static inline void hrtick_rq_init(struct rq *rq)
441{
442}
443#endif /* CONFIG_SCHED_HRTICK */
444
445/*
446 * cmpxchg based fetch_or, macro so it works for different integer types
447 */
448#define fetch_or(ptr, mask) \
449 ({ \
450 typeof(ptr) _ptr = (ptr); \
451 typeof(mask) _mask = (mask); \
452 typeof(*_ptr) _old, _val = *_ptr; \
453 \
454 for (;;) { \
455 _old = cmpxchg(_ptr, _val, _val | _mask); \
456 if (_old == _val) \
457 break; \
458 _val = _old; \
459 } \
460 _old; \
461})
462
463#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
464/*
465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
466 * this avoids any races wrt polling state changes and thereby avoids
467 * spurious IPIs.
468 */
469static bool set_nr_and_not_polling(struct task_struct *p)
470{
471 struct thread_info *ti = task_thread_info(p);
472 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
473}
474
475/*
476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
477 *
478 * If this returns true, then the idle task promises to call
479 * sched_ttwu_pending() and reschedule soon.
480 */
481static bool set_nr_if_polling(struct task_struct *p)
482{
483 struct thread_info *ti = task_thread_info(p);
484 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
485
486 for (;;) {
487 if (!(val & _TIF_POLLING_NRFLAG))
488 return false;
489 if (val & _TIF_NEED_RESCHED)
490 return true;
491 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
492 if (old == val)
493 break;
494 val = old;
495 }
496 return true;
497}
498
499#else
500static bool set_nr_and_not_polling(struct task_struct *p)
501{
502 set_tsk_need_resched(p);
503 return true;
504}
505
506#ifdef CONFIG_SMP
507static bool set_nr_if_polling(struct task_struct *p)
508{
509 return false;
510}
511#endif
512#endif
513
514static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
515{
516 struct wake_q_node *node = &task->wake_q;
517
518 /*
519 * Atomically grab the task, if ->wake_q is !nil already it means
520 * its already queued (either by us or someone else) and will get the
521 * wakeup due to that.
522 *
523 * In order to ensure that a pending wakeup will observe our pending
524 * state, even in the failed case, an explicit smp_mb() must be used.
525 */
526 smp_mb__before_atomic();
527 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
528 return false;
529
530 /*
531 * The head is context local, there can be no concurrency.
532 */
533 *head->lastp = node;
534 head->lastp = &node->next;
535 return true;
536}
537
538/**
539 * wake_q_add() - queue a wakeup for 'later' waking.
540 * @head: the wake_q_head to add @task to
541 * @task: the task to queue for 'later' wakeup
542 *
543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
545 * instantly.
546 *
547 * This function must be used as-if it were wake_up_process(); IOW the task
548 * must be ready to be woken at this location.
549 */
550void wake_q_add(struct wake_q_head *head, struct task_struct *task)
551{
552 if (__wake_q_add(head, task))
553 get_task_struct(task);
554}
555
556/**
557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
558 * @head: the wake_q_head to add @task to
559 * @task: the task to queue for 'later' wakeup
560 *
561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
563 * instantly.
564 *
565 * This function must be used as-if it were wake_up_process(); IOW the task
566 * must be ready to be woken at this location.
567 *
568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
569 * that already hold reference to @task can call the 'safe' version and trust
570 * wake_q to do the right thing depending whether or not the @task is already
571 * queued for wakeup.
572 */
573void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
574{
575 if (!__wake_q_add(head, task))
576 put_task_struct(task);
577}
578
579void wake_up_q(struct wake_q_head *head)
580{
581 struct wake_q_node *node = head->first;
582
583 while (node != WAKE_Q_TAIL) {
584 struct task_struct *task;
585
586 task = container_of(node, struct task_struct, wake_q);
587 BUG_ON(!task);
588 /* Task can safely be re-inserted now: */
589 node = node->next;
590 task->wake_q.next = NULL;
591
592 /*
593 * wake_up_process() executes a full barrier, which pairs with
594 * the queueing in wake_q_add() so as not to miss wakeups.
595 */
596 wake_up_process(task);
597 put_task_struct(task);
598 }
599}
600
601/*
602 * resched_curr - mark rq's current task 'to be rescheduled now'.
603 *
604 * On UP this means the setting of the need_resched flag, on SMP it
605 * might also involve a cross-CPU call to trigger the scheduler on
606 * the target CPU.
607 */
608void resched_curr(struct rq *rq)
609{
610 struct task_struct *curr = rq->curr;
611 int cpu;
612
613 lockdep_assert_held(&rq->lock);
614
615 if (test_tsk_need_resched(curr))
616 return;
617
618 cpu = cpu_of(rq);
619
620 if (cpu == smp_processor_id()) {
621 set_tsk_need_resched(curr);
622 set_preempt_need_resched();
623 return;
624 }
625
626 if (set_nr_and_not_polling(curr))
627 smp_send_reschedule(cpu);
628 else
629 trace_sched_wake_idle_without_ipi(cpu);
630}
631
632void resched_cpu(int cpu)
633{
634 struct rq *rq = cpu_rq(cpu);
635 unsigned long flags;
636
637 raw_spin_lock_irqsave(&rq->lock, flags);
638 if (cpu_online(cpu) || cpu == smp_processor_id())
639 resched_curr(rq);
640 raw_spin_unlock_irqrestore(&rq->lock, flags);
641}
642
643#ifdef CONFIG_SMP
644#ifdef CONFIG_NO_HZ_COMMON
645/*
646 * In the semi idle case, use the nearest busy CPU for migrating timers
647 * from an idle CPU. This is good for power-savings.
648 *
649 * We don't do similar optimization for completely idle system, as
650 * selecting an idle CPU will add more delays to the timers than intended
651 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
652 */
653int get_nohz_timer_target(void)
654{
655 int i, cpu = smp_processor_id(), default_cpu = -1;
656 struct sched_domain *sd;
657
658 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
659 if (!idle_cpu(cpu))
660 return cpu;
661 default_cpu = cpu;
662 }
663
664 rcu_read_lock();
665 for_each_domain(cpu, sd) {
666 for_each_cpu_and(i, sched_domain_span(sd),
667 housekeeping_cpumask(HK_FLAG_TIMER)) {
668 if (cpu == i)
669 continue;
670
671 if (!idle_cpu(i)) {
672 cpu = i;
673 goto unlock;
674 }
675 }
676 }
677
678 if (default_cpu == -1)
679 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
680 cpu = default_cpu;
681unlock:
682 rcu_read_unlock();
683 return cpu;
684}
685
686/*
687 * When add_timer_on() enqueues a timer into the timer wheel of an
688 * idle CPU then this timer might expire before the next timer event
689 * which is scheduled to wake up that CPU. In case of a completely
690 * idle system the next event might even be infinite time into the
691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
692 * leaves the inner idle loop so the newly added timer is taken into
693 * account when the CPU goes back to idle and evaluates the timer
694 * wheel for the next timer event.
695 */
696static void wake_up_idle_cpu(int cpu)
697{
698 struct rq *rq = cpu_rq(cpu);
699
700 if (cpu == smp_processor_id())
701 return;
702
703 if (set_nr_and_not_polling(rq->idle))
704 smp_send_reschedule(cpu);
705 else
706 trace_sched_wake_idle_without_ipi(cpu);
707}
708
709static bool wake_up_full_nohz_cpu(int cpu)
710{
711 /*
712 * We just need the target to call irq_exit() and re-evaluate
713 * the next tick. The nohz full kick at least implies that.
714 * If needed we can still optimize that later with an
715 * empty IRQ.
716 */
717 if (cpu_is_offline(cpu))
718 return true; /* Don't try to wake offline CPUs. */
719 if (tick_nohz_full_cpu(cpu)) {
720 if (cpu != smp_processor_id() ||
721 tick_nohz_tick_stopped())
722 tick_nohz_full_kick_cpu(cpu);
723 return true;
724 }
725
726 return false;
727}
728
729/*
730 * Wake up the specified CPU. If the CPU is going offline, it is the
731 * caller's responsibility to deal with the lost wakeup, for example,
732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
733 */
734void wake_up_nohz_cpu(int cpu)
735{
736 if (!wake_up_full_nohz_cpu(cpu))
737 wake_up_idle_cpu(cpu);
738}
739
740static void nohz_csd_func(void *info)
741{
742 struct rq *rq = info;
743 int cpu = cpu_of(rq);
744 unsigned int flags;
745
746 /*
747 * Release the rq::nohz_csd.
748 */
749 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
750 WARN_ON(!(flags & NOHZ_KICK_MASK));
751
752 rq->idle_balance = idle_cpu(cpu);
753 if (rq->idle_balance && !need_resched()) {
754 rq->nohz_idle_balance = flags;
755 raise_softirq_irqoff(SCHED_SOFTIRQ);
756 }
757}
758
759#endif /* CONFIG_NO_HZ_COMMON */
760
761#ifdef CONFIG_NO_HZ_FULL
762bool sched_can_stop_tick(struct rq *rq)
763{
764 int fifo_nr_running;
765
766 /* Deadline tasks, even if single, need the tick */
767 if (rq->dl.dl_nr_running)
768 return false;
769
770 /*
771 * If there are more than one RR tasks, we need the tick to effect the
772 * actual RR behaviour.
773 */
774 if (rq->rt.rr_nr_running) {
775 if (rq->rt.rr_nr_running == 1)
776 return true;
777 else
778 return false;
779 }
780
781 /*
782 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
783 * forced preemption between FIFO tasks.
784 */
785 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
786 if (fifo_nr_running)
787 return true;
788
789 /*
790 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
791 * if there's more than one we need the tick for involuntary
792 * preemption.
793 */
794 if (rq->nr_running > 1)
795 return false;
796
797 return true;
798}
799#endif /* CONFIG_NO_HZ_FULL */
800#endif /* CONFIG_SMP */
801
802#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
803 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
804/*
805 * Iterate task_group tree rooted at *from, calling @down when first entering a
806 * node and @up when leaving it for the final time.
807 *
808 * Caller must hold rcu_lock or sufficient equivalent.
809 */
810int walk_tg_tree_from(struct task_group *from,
811 tg_visitor down, tg_visitor up, void *data)
812{
813 struct task_group *parent, *child;
814 int ret;
815
816 parent = from;
817
818down:
819 ret = (*down)(parent, data);
820 if (ret)
821 goto out;
822 list_for_each_entry_rcu(child, &parent->children, siblings) {
823 parent = child;
824 goto down;
825
826up:
827 continue;
828 }
829 ret = (*up)(parent, data);
830 if (ret || parent == from)
831 goto out;
832
833 child = parent;
834 parent = parent->parent;
835 if (parent)
836 goto up;
837out:
838 return ret;
839}
840
841int tg_nop(struct task_group *tg, void *data)
842{
843 return 0;
844}
845#endif
846
847static void set_load_weight(struct task_struct *p, bool update_load)
848{
849 int prio = p->static_prio - MAX_RT_PRIO;
850 struct load_weight *load = &p->se.load;
851
852 /*
853 * SCHED_IDLE tasks get minimal weight:
854 */
855 if (task_has_idle_policy(p)) {
856 load->weight = scale_load(WEIGHT_IDLEPRIO);
857 load->inv_weight = WMULT_IDLEPRIO;
858 return;
859 }
860
861 /*
862 * SCHED_OTHER tasks have to update their load when changing their
863 * weight
864 */
865 if (update_load && p->sched_class == &fair_sched_class) {
866 reweight_task(p, prio);
867 } else {
868 load->weight = scale_load(sched_prio_to_weight[prio]);
869 load->inv_weight = sched_prio_to_wmult[prio];
870 }
871}
872
873#ifdef CONFIG_UCLAMP_TASK
874/*
875 * Serializes updates of utilization clamp values
876 *
877 * The (slow-path) user-space triggers utilization clamp value updates which
878 * can require updates on (fast-path) scheduler's data structures used to
879 * support enqueue/dequeue operations.
880 * While the per-CPU rq lock protects fast-path update operations, user-space
881 * requests are serialized using a mutex to reduce the risk of conflicting
882 * updates or API abuses.
883 */
884static DEFINE_MUTEX(uclamp_mutex);
885
886/* Max allowed minimum utilization */
887unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
888
889/* Max allowed maximum utilization */
890unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
891
892/*
893 * By default RT tasks run at the maximum performance point/capacity of the
894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
895 * SCHED_CAPACITY_SCALE.
896 *
897 * This knob allows admins to change the default behavior when uclamp is being
898 * used. In battery powered devices, particularly, running at the maximum
899 * capacity and frequency will increase energy consumption and shorten the
900 * battery life.
901 *
902 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
903 *
904 * This knob will not override the system default sched_util_clamp_min defined
905 * above.
906 */
907unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
908
909/* All clamps are required to be less or equal than these values */
910static struct uclamp_se uclamp_default[UCLAMP_CNT];
911
912/*
913 * This static key is used to reduce the uclamp overhead in the fast path. It
914 * primarily disables the call to uclamp_rq_{inc, dec}() in
915 * enqueue/dequeue_task().
916 *
917 * This allows users to continue to enable uclamp in their kernel config with
918 * minimum uclamp overhead in the fast path.
919 *
920 * As soon as userspace modifies any of the uclamp knobs, the static key is
921 * enabled, since we have an actual users that make use of uclamp
922 * functionality.
923 *
924 * The knobs that would enable this static key are:
925 *
926 * * A task modifying its uclamp value with sched_setattr().
927 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
928 * * An admin modifying the cgroup cpu.uclamp.{min, max}
929 */
930DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
931
932/* Integer rounded range for each bucket */
933#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
934
935#define for_each_clamp_id(clamp_id) \
936 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
937
938static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
939{
940 return clamp_value / UCLAMP_BUCKET_DELTA;
941}
942
943static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
944{
945 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
946}
947
948static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
949{
950 if (clamp_id == UCLAMP_MIN)
951 return 0;
952 return SCHED_CAPACITY_SCALE;
953}
954
955static inline void uclamp_se_set(struct uclamp_se *uc_se,
956 unsigned int value, bool user_defined)
957{
958 uc_se->value = value;
959 uc_se->bucket_id = uclamp_bucket_id(value);
960 uc_se->user_defined = user_defined;
961}
962
963static inline unsigned int
964uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
965 unsigned int clamp_value)
966{
967 /*
968 * Avoid blocked utilization pushing up the frequency when we go
969 * idle (which drops the max-clamp) by retaining the last known
970 * max-clamp.
971 */
972 if (clamp_id == UCLAMP_MAX) {
973 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
974 return clamp_value;
975 }
976
977 return uclamp_none(UCLAMP_MIN);
978}
979
980static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
981 unsigned int clamp_value)
982{
983 /* Reset max-clamp retention only on idle exit */
984 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
985 return;
986
987 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
988}
989
990static inline
991unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
992 unsigned int clamp_value)
993{
994 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
995 int bucket_id = UCLAMP_BUCKETS - 1;
996
997 /*
998 * Since both min and max clamps are max aggregated, find the
999 * top most bucket with tasks in.
1000 */
1001 for ( ; bucket_id >= 0; bucket_id--) {
1002 if (!bucket[bucket_id].tasks)
1003 continue;
1004 return bucket[bucket_id].value;
1005 }
1006
1007 /* No tasks -- default clamp values */
1008 return uclamp_idle_value(rq, clamp_id, clamp_value);
1009}
1010
1011static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1012{
1013 unsigned int default_util_min;
1014 struct uclamp_se *uc_se;
1015
1016 lockdep_assert_held(&p->pi_lock);
1017
1018 uc_se = &p->uclamp_req[UCLAMP_MIN];
1019
1020 /* Only sync if user didn't override the default */
1021 if (uc_se->user_defined)
1022 return;
1023
1024 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1025 uclamp_se_set(uc_se, default_util_min, false);
1026}
1027
1028static void uclamp_update_util_min_rt_default(struct task_struct *p)
1029{
1030 struct rq_flags rf;
1031 struct rq *rq;
1032
1033 if (!rt_task(p))
1034 return;
1035
1036 /* Protect updates to p->uclamp_* */
1037 rq = task_rq_lock(p, &rf);
1038 __uclamp_update_util_min_rt_default(p);
1039 task_rq_unlock(rq, p, &rf);
1040}
1041
1042static void uclamp_sync_util_min_rt_default(void)
1043{
1044 struct task_struct *g, *p;
1045
1046 /*
1047 * copy_process() sysctl_uclamp
1048 * uclamp_min_rt = X;
1049 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1050 * // link thread smp_mb__after_spinlock()
1051 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1052 * sched_post_fork() for_each_process_thread()
1053 * __uclamp_sync_rt() __uclamp_sync_rt()
1054 *
1055 * Ensures that either sched_post_fork() will observe the new
1056 * uclamp_min_rt or for_each_process_thread() will observe the new
1057 * task.
1058 */
1059 read_lock(&tasklist_lock);
1060 smp_mb__after_spinlock();
1061 read_unlock(&tasklist_lock);
1062
1063 rcu_read_lock();
1064 for_each_process_thread(g, p)
1065 uclamp_update_util_min_rt_default(p);
1066 rcu_read_unlock();
1067}
1068
1069static inline struct uclamp_se
1070uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1071{
1072 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1073#ifdef CONFIG_UCLAMP_TASK_GROUP
1074 struct uclamp_se uc_max;
1075
1076 /*
1077 * Tasks in autogroups or root task group will be
1078 * restricted by system defaults.
1079 */
1080 if (task_group_is_autogroup(task_group(p)))
1081 return uc_req;
1082 if (task_group(p) == &root_task_group)
1083 return uc_req;
1084
1085 uc_max = task_group(p)->uclamp[clamp_id];
1086 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1087 return uc_max;
1088#endif
1089
1090 return uc_req;
1091}
1092
1093/*
1094 * The effective clamp bucket index of a task depends on, by increasing
1095 * priority:
1096 * - the task specific clamp value, when explicitly requested from userspace
1097 * - the task group effective clamp value, for tasks not either in the root
1098 * group or in an autogroup
1099 * - the system default clamp value, defined by the sysadmin
1100 */
1101static inline struct uclamp_se
1102uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1103{
1104 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1105 struct uclamp_se uc_max = uclamp_default[clamp_id];
1106
1107 /* System default restrictions always apply */
1108 if (unlikely(uc_req.value > uc_max.value))
1109 return uc_max;
1110
1111 return uc_req;
1112}
1113
1114unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1115{
1116 struct uclamp_se uc_eff;
1117
1118 /* Task currently refcounted: use back-annotated (effective) value */
1119 if (p->uclamp[clamp_id].active)
1120 return (unsigned long)p->uclamp[clamp_id].value;
1121
1122 uc_eff = uclamp_eff_get(p, clamp_id);
1123
1124 return (unsigned long)uc_eff.value;
1125}
1126
1127/*
1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130 * updates the rq's clamp value if required.
1131 *
1132 * Tasks can have a task-specific value requested from user-space, track
1133 * within each bucket the maximum value for tasks refcounted in it.
1134 * This "local max aggregation" allows to track the exact "requested" value
1135 * for each bucket when all its RUNNABLE tasks require the same clamp.
1136 */
1137static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1138 enum uclamp_id clamp_id)
1139{
1140 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1141 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1142 struct uclamp_bucket *bucket;
1143
1144 lockdep_assert_held(&rq->lock);
1145
1146 /* Update task effective clamp */
1147 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1148
1149 bucket = &uc_rq->bucket[uc_se->bucket_id];
1150 bucket->tasks++;
1151 uc_se->active = true;
1152
1153 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1154
1155 /*
1156 * Local max aggregation: rq buckets always track the max
1157 * "requested" clamp value of its RUNNABLE tasks.
1158 */
1159 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1160 bucket->value = uc_se->value;
1161
1162 if (uc_se->value > READ_ONCE(uc_rq->value))
1163 WRITE_ONCE(uc_rq->value, uc_se->value);
1164}
1165
1166/*
1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168 * is released. If this is the last task reference counting the rq's max
1169 * active clamp value, then the rq's clamp value is updated.
1170 *
1171 * Both refcounted tasks and rq's cached clamp values are expected to be
1172 * always valid. If it's detected they are not, as defensive programming,
1173 * enforce the expected state and warn.
1174 */
1175static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1176 enum uclamp_id clamp_id)
1177{
1178 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1179 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1180 struct uclamp_bucket *bucket;
1181 unsigned int bkt_clamp;
1182 unsigned int rq_clamp;
1183
1184 lockdep_assert_held(&rq->lock);
1185
1186 /*
1187 * If sched_uclamp_used was enabled after task @p was enqueued,
1188 * we could end up with unbalanced call to uclamp_rq_dec_id().
1189 *
1190 * In this case the uc_se->active flag should be false since no uclamp
1191 * accounting was performed at enqueue time and we can just return
1192 * here.
1193 *
1194 * Need to be careful of the following enqeueue/dequeue ordering
1195 * problem too
1196 *
1197 * enqueue(taskA)
1198 * // sched_uclamp_used gets enabled
1199 * enqueue(taskB)
1200 * dequeue(taskA)
1201 * // Must not decrement bukcet->tasks here
1202 * dequeue(taskB)
1203 *
1204 * where we could end up with stale data in uc_se and
1205 * bucket[uc_se->bucket_id].
1206 *
1207 * The following check here eliminates the possibility of such race.
1208 */
1209 if (unlikely(!uc_se->active))
1210 return;
1211
1212 bucket = &uc_rq->bucket[uc_se->bucket_id];
1213
1214 SCHED_WARN_ON(!bucket->tasks);
1215 if (likely(bucket->tasks))
1216 bucket->tasks--;
1217
1218 uc_se->active = false;
1219
1220 /*
1221 * Keep "local max aggregation" simple and accept to (possibly)
1222 * overboost some RUNNABLE tasks in the same bucket.
1223 * The rq clamp bucket value is reset to its base value whenever
1224 * there are no more RUNNABLE tasks refcounting it.
1225 */
1226 if (likely(bucket->tasks))
1227 return;
1228
1229 rq_clamp = READ_ONCE(uc_rq->value);
1230 /*
1231 * Defensive programming: this should never happen. If it happens,
1232 * e.g. due to future modification, warn and fixup the expected value.
1233 */
1234 SCHED_WARN_ON(bucket->value > rq_clamp);
1235 if (bucket->value >= rq_clamp) {
1236 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1237 WRITE_ONCE(uc_rq->value, bkt_clamp);
1238 }
1239}
1240
1241static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1242{
1243 enum uclamp_id clamp_id;
1244
1245 /*
1246 * Avoid any overhead until uclamp is actually used by the userspace.
1247 *
1248 * The condition is constructed such that a NOP is generated when
1249 * sched_uclamp_used is disabled.
1250 */
1251 if (!static_branch_unlikely(&sched_uclamp_used))
1252 return;
1253
1254 if (unlikely(!p->sched_class->uclamp_enabled))
1255 return;
1256
1257 for_each_clamp_id(clamp_id)
1258 uclamp_rq_inc_id(rq, p, clamp_id);
1259
1260 /* Reset clamp idle holding when there is one RUNNABLE task */
1261 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1262 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1263}
1264
1265static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1266{
1267 enum uclamp_id clamp_id;
1268
1269 /*
1270 * Avoid any overhead until uclamp is actually used by the userspace.
1271 *
1272 * The condition is constructed such that a NOP is generated when
1273 * sched_uclamp_used is disabled.
1274 */
1275 if (!static_branch_unlikely(&sched_uclamp_used))
1276 return;
1277
1278 if (unlikely(!p->sched_class->uclamp_enabled))
1279 return;
1280
1281 for_each_clamp_id(clamp_id)
1282 uclamp_rq_dec_id(rq, p, clamp_id);
1283}
1284
1285static inline void
1286uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1287{
1288 struct rq_flags rf;
1289 struct rq *rq;
1290
1291 /*
1292 * Lock the task and the rq where the task is (or was) queued.
1293 *
1294 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295 * price to pay to safely serialize util_{min,max} updates with
1296 * enqueues, dequeues and migration operations.
1297 * This is the same locking schema used by __set_cpus_allowed_ptr().
1298 */
1299 rq = task_rq_lock(p, &rf);
1300
1301 /*
1302 * Setting the clamp bucket is serialized by task_rq_lock().
1303 * If the task is not yet RUNNABLE and its task_struct is not
1304 * affecting a valid clamp bucket, the next time it's enqueued,
1305 * it will already see the updated clamp bucket value.
1306 */
1307 if (p->uclamp[clamp_id].active) {
1308 uclamp_rq_dec_id(rq, p, clamp_id);
1309 uclamp_rq_inc_id(rq, p, clamp_id);
1310 }
1311
1312 task_rq_unlock(rq, p, &rf);
1313}
1314
1315#ifdef CONFIG_UCLAMP_TASK_GROUP
1316static inline void
1317uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1318 unsigned int clamps)
1319{
1320 enum uclamp_id clamp_id;
1321 struct css_task_iter it;
1322 struct task_struct *p;
1323
1324 css_task_iter_start(css, 0, &it);
1325 while ((p = css_task_iter_next(&it))) {
1326 for_each_clamp_id(clamp_id) {
1327 if ((0x1 << clamp_id) & clamps)
1328 uclamp_update_active(p, clamp_id);
1329 }
1330 }
1331 css_task_iter_end(&it);
1332}
1333
1334static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1335static void uclamp_update_root_tg(void)
1336{
1337 struct task_group *tg = &root_task_group;
1338
1339 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1340 sysctl_sched_uclamp_util_min, false);
1341 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1342 sysctl_sched_uclamp_util_max, false);
1343
1344 rcu_read_lock();
1345 cpu_util_update_eff(&root_task_group.css);
1346 rcu_read_unlock();
1347}
1348#else
1349static void uclamp_update_root_tg(void) { }
1350#endif
1351
1352int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1353 void *buffer, size_t *lenp, loff_t *ppos)
1354{
1355 bool update_root_tg = false;
1356 int old_min, old_max, old_min_rt;
1357 int result;
1358
1359 mutex_lock(&uclamp_mutex);
1360 old_min = sysctl_sched_uclamp_util_min;
1361 old_max = sysctl_sched_uclamp_util_max;
1362 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1363
1364 result = proc_dointvec(table, write, buffer, lenp, ppos);
1365 if (result)
1366 goto undo;
1367 if (!write)
1368 goto done;
1369
1370 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1371 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1372 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1373
1374 result = -EINVAL;
1375 goto undo;
1376 }
1377
1378 if (old_min != sysctl_sched_uclamp_util_min) {
1379 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1380 sysctl_sched_uclamp_util_min, false);
1381 update_root_tg = true;
1382 }
1383 if (old_max != sysctl_sched_uclamp_util_max) {
1384 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1385 sysctl_sched_uclamp_util_max, false);
1386 update_root_tg = true;
1387 }
1388
1389 if (update_root_tg) {
1390 static_branch_enable(&sched_uclamp_used);
1391 uclamp_update_root_tg();
1392 }
1393
1394 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1395 static_branch_enable(&sched_uclamp_used);
1396 uclamp_sync_util_min_rt_default();
1397 }
1398
1399 /*
1400 * We update all RUNNABLE tasks only when task groups are in use.
1401 * Otherwise, keep it simple and do just a lazy update at each next
1402 * task enqueue time.
1403 */
1404
1405 goto done;
1406
1407undo:
1408 sysctl_sched_uclamp_util_min = old_min;
1409 sysctl_sched_uclamp_util_max = old_max;
1410 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1411done:
1412 mutex_unlock(&uclamp_mutex);
1413
1414 return result;
1415}
1416
1417static int uclamp_validate(struct task_struct *p,
1418 const struct sched_attr *attr)
1419{
1420 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1421 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1422
1423 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1424 lower_bound = attr->sched_util_min;
1425 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1426 upper_bound = attr->sched_util_max;
1427
1428 if (lower_bound > upper_bound)
1429 return -EINVAL;
1430 if (upper_bound > SCHED_CAPACITY_SCALE)
1431 return -EINVAL;
1432
1433 /*
1434 * We have valid uclamp attributes; make sure uclamp is enabled.
1435 *
1436 * We need to do that here, because enabling static branches is a
1437 * blocking operation which obviously cannot be done while holding
1438 * scheduler locks.
1439 */
1440 static_branch_enable(&sched_uclamp_used);
1441
1442 return 0;
1443}
1444
1445static void __setscheduler_uclamp(struct task_struct *p,
1446 const struct sched_attr *attr)
1447{
1448 enum uclamp_id clamp_id;
1449
1450 /*
1451 * On scheduling class change, reset to default clamps for tasks
1452 * without a task-specific value.
1453 */
1454 for_each_clamp_id(clamp_id) {
1455 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1456
1457 /* Keep using defined clamps across class changes */
1458 if (uc_se->user_defined)
1459 continue;
1460
1461 /*
1462 * RT by default have a 100% boost value that could be modified
1463 * at runtime.
1464 */
1465 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1466 __uclamp_update_util_min_rt_default(p);
1467 else
1468 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1469
1470 }
1471
1472 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1473 return;
1474
1475 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1476 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1477 attr->sched_util_min, true);
1478 }
1479
1480 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1481 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1482 attr->sched_util_max, true);
1483 }
1484}
1485
1486static void uclamp_fork(struct task_struct *p)
1487{
1488 enum uclamp_id clamp_id;
1489
1490 /*
1491 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492 * as the task is still at its early fork stages.
1493 */
1494 for_each_clamp_id(clamp_id)
1495 p->uclamp[clamp_id].active = false;
1496
1497 if (likely(!p->sched_reset_on_fork))
1498 return;
1499
1500 for_each_clamp_id(clamp_id) {
1501 uclamp_se_set(&p->uclamp_req[clamp_id],
1502 uclamp_none(clamp_id), false);
1503 }
1504}
1505
1506static void uclamp_post_fork(struct task_struct *p)
1507{
1508 uclamp_update_util_min_rt_default(p);
1509}
1510
1511static void __init init_uclamp_rq(struct rq *rq)
1512{
1513 enum uclamp_id clamp_id;
1514 struct uclamp_rq *uc_rq = rq->uclamp;
1515
1516 for_each_clamp_id(clamp_id) {
1517 uc_rq[clamp_id] = (struct uclamp_rq) {
1518 .value = uclamp_none(clamp_id)
1519 };
1520 }
1521
1522 rq->uclamp_flags = 0;
1523}
1524
1525static void __init init_uclamp(void)
1526{
1527 struct uclamp_se uc_max = {};
1528 enum uclamp_id clamp_id;
1529 int cpu;
1530
1531 for_each_possible_cpu(cpu)
1532 init_uclamp_rq(cpu_rq(cpu));
1533
1534 for_each_clamp_id(clamp_id) {
1535 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1536 uclamp_none(clamp_id), false);
1537 }
1538
1539 /* System defaults allow max clamp values for both indexes */
1540 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1541 for_each_clamp_id(clamp_id) {
1542 uclamp_default[clamp_id] = uc_max;
1543#ifdef CONFIG_UCLAMP_TASK_GROUP
1544 root_task_group.uclamp_req[clamp_id] = uc_max;
1545 root_task_group.uclamp[clamp_id] = uc_max;
1546#endif
1547 }
1548}
1549
1550#else /* CONFIG_UCLAMP_TASK */
1551static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1552static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1553static inline int uclamp_validate(struct task_struct *p,
1554 const struct sched_attr *attr)
1555{
1556 return -EOPNOTSUPP;
1557}
1558static void __setscheduler_uclamp(struct task_struct *p,
1559 const struct sched_attr *attr) { }
1560static inline void uclamp_fork(struct task_struct *p) { }
1561static inline void uclamp_post_fork(struct task_struct *p) { }
1562static inline void init_uclamp(void) { }
1563#endif /* CONFIG_UCLAMP_TASK */
1564
1565static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1566{
1567 if (!(flags & ENQUEUE_NOCLOCK))
1568 update_rq_clock(rq);
1569
1570 if (!(flags & ENQUEUE_RESTORE)) {
1571 sched_info_queued(rq, p);
1572 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1573 }
1574
1575 uclamp_rq_inc(rq, p);
1576 p->sched_class->enqueue_task(rq, p, flags);
1577}
1578
1579static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1580{
1581 if (!(flags & DEQUEUE_NOCLOCK))
1582 update_rq_clock(rq);
1583
1584 if (!(flags & DEQUEUE_SAVE)) {
1585 sched_info_dequeued(rq, p);
1586 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1587 }
1588
1589 uclamp_rq_dec(rq, p);
1590 p->sched_class->dequeue_task(rq, p, flags);
1591}
1592
1593void activate_task(struct rq *rq, struct task_struct *p, int flags)
1594{
1595 enqueue_task(rq, p, flags);
1596
1597 p->on_rq = TASK_ON_RQ_QUEUED;
1598}
1599
1600void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1601{
1602 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1603
1604 dequeue_task(rq, p, flags);
1605}
1606
1607/*
1608 * __normal_prio - return the priority that is based on the static prio
1609 */
1610static inline int __normal_prio(struct task_struct *p)
1611{
1612 return p->static_prio;
1613}
1614
1615/*
1616 * Calculate the expected normal priority: i.e. priority
1617 * without taking RT-inheritance into account. Might be
1618 * boosted by interactivity modifiers. Changes upon fork,
1619 * setprio syscalls, and whenever the interactivity
1620 * estimator recalculates.
1621 */
1622static inline int normal_prio(struct task_struct *p)
1623{
1624 int prio;
1625
1626 if (task_has_dl_policy(p))
1627 prio = MAX_DL_PRIO-1;
1628 else if (task_has_rt_policy(p))
1629 prio = MAX_RT_PRIO-1 - p->rt_priority;
1630 else
1631 prio = __normal_prio(p);
1632 return prio;
1633}
1634
1635/*
1636 * Calculate the current priority, i.e. the priority
1637 * taken into account by the scheduler. This value might
1638 * be boosted by RT tasks, or might be boosted by
1639 * interactivity modifiers. Will be RT if the task got
1640 * RT-boosted. If not then it returns p->normal_prio.
1641 */
1642static int effective_prio(struct task_struct *p)
1643{
1644 p->normal_prio = normal_prio(p);
1645 /*
1646 * If we are RT tasks or we were boosted to RT priority,
1647 * keep the priority unchanged. Otherwise, update priority
1648 * to the normal priority:
1649 */
1650 if (!rt_prio(p->prio))
1651 return p->normal_prio;
1652 return p->prio;
1653}
1654
1655/**
1656 * task_curr - is this task currently executing on a CPU?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if the task is currently executing. 0 otherwise.
1660 */
1661inline int task_curr(const struct task_struct *p)
1662{
1663 return cpu_curr(task_cpu(p)) == p;
1664}
1665
1666/*
1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668 * use the balance_callback list if you want balancing.
1669 *
1670 * this means any call to check_class_changed() must be followed by a call to
1671 * balance_callback().
1672 */
1673static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1674 const struct sched_class *prev_class,
1675 int oldprio)
1676{
1677 if (prev_class != p->sched_class) {
1678 if (prev_class->switched_from)
1679 prev_class->switched_from(rq, p);
1680
1681 p->sched_class->switched_to(rq, p);
1682 } else if (oldprio != p->prio || dl_task(p))
1683 p->sched_class->prio_changed(rq, p, oldprio);
1684}
1685
1686void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1687{
1688 if (p->sched_class == rq->curr->sched_class)
1689 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1690 else if (p->sched_class > rq->curr->sched_class)
1691 resched_curr(rq);
1692
1693 /*
1694 * A queue event has occurred, and we're going to schedule. In
1695 * this case, we can save a useless back to back clock update.
1696 */
1697 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1698 rq_clock_skip_update(rq);
1699}
1700
1701#ifdef CONFIG_SMP
1702
1703/*
1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705 * __set_cpus_allowed_ptr() and select_fallback_rq().
1706 */
1707static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1708{
1709 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1710 return false;
1711
1712 if (is_per_cpu_kthread(p))
1713 return cpu_online(cpu);
1714
1715 return cpu_active(cpu);
1716}
1717
1718/*
1719 * This is how migration works:
1720 *
1721 * 1) we invoke migration_cpu_stop() on the target CPU using
1722 * stop_one_cpu().
1723 * 2) stopper starts to run (implicitly forcing the migrated thread
1724 * off the CPU)
1725 * 3) it checks whether the migrated task is still in the wrong runqueue.
1726 * 4) if it's in the wrong runqueue then the migration thread removes
1727 * it and puts it into the right queue.
1728 * 5) stopper completes and stop_one_cpu() returns and the migration
1729 * is done.
1730 */
1731
1732/*
1733 * move_queued_task - move a queued task to new rq.
1734 *
1735 * Returns (locked) new rq. Old rq's lock is released.
1736 */
1737static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1738 struct task_struct *p, int new_cpu)
1739{
1740 lockdep_assert_held(&rq->lock);
1741
1742 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1743 set_task_cpu(p, new_cpu);
1744 rq_unlock(rq, rf);
1745
1746 rq = cpu_rq(new_cpu);
1747
1748 rq_lock(rq, rf);
1749 BUG_ON(task_cpu(p) != new_cpu);
1750 activate_task(rq, p, 0);
1751 check_preempt_curr(rq, p, 0);
1752
1753 return rq;
1754}
1755
1756struct migration_arg {
1757 struct task_struct *task;
1758 int dest_cpu;
1759};
1760
1761/*
1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763 * this because either it can't run here any more (set_cpus_allowed()
1764 * away from this CPU, or CPU going down), or because we're
1765 * attempting to rebalance this task on exec (sched_exec).
1766 *
1767 * So we race with normal scheduler movements, but that's OK, as long
1768 * as the task is no longer on this CPU.
1769 */
1770static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1771 struct task_struct *p, int dest_cpu)
1772{
1773 /* Affinity changed (again). */
1774 if (!is_cpu_allowed(p, dest_cpu))
1775 return rq;
1776
1777 update_rq_clock(rq);
1778 rq = move_queued_task(rq, rf, p, dest_cpu);
1779
1780 return rq;
1781}
1782
1783/*
1784 * migration_cpu_stop - this will be executed by a highprio stopper thread
1785 * and performs thread migration by bumping thread off CPU then
1786 * 'pushing' onto another runqueue.
1787 */
1788static int migration_cpu_stop(void *data)
1789{
1790 struct migration_arg *arg = data;
1791 struct task_struct *p = arg->task;
1792 struct rq *rq = this_rq();
1793 struct rq_flags rf;
1794
1795 /*
1796 * The original target CPU might have gone down and we might
1797 * be on another CPU but it doesn't matter.
1798 */
1799 local_irq_disable();
1800 /*
1801 * We need to explicitly wake pending tasks before running
1802 * __migrate_task() such that we will not miss enforcing cpus_ptr
1803 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1804 */
1805 flush_smp_call_function_from_idle();
1806
1807 raw_spin_lock(&p->pi_lock);
1808 rq_lock(rq, &rf);
1809 /*
1810 * If task_rq(p) != rq, it cannot be migrated here, because we're
1811 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812 * we're holding p->pi_lock.
1813 */
1814 if (task_rq(p) == rq) {
1815 if (task_on_rq_queued(p))
1816 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1817 else
1818 p->wake_cpu = arg->dest_cpu;
1819 }
1820 rq_unlock(rq, &rf);
1821 raw_spin_unlock(&p->pi_lock);
1822
1823 local_irq_enable();
1824 return 0;
1825}
1826
1827/*
1828 * sched_class::set_cpus_allowed must do the below, but is not required to
1829 * actually call this function.
1830 */
1831void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1832{
1833 cpumask_copy(&p->cpus_mask, new_mask);
1834 p->nr_cpus_allowed = cpumask_weight(new_mask);
1835}
1836
1837void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1838{
1839 struct rq *rq = task_rq(p);
1840 bool queued, running;
1841
1842 lockdep_assert_held(&p->pi_lock);
1843
1844 queued = task_on_rq_queued(p);
1845 running = task_current(rq, p);
1846
1847 if (queued) {
1848 /*
1849 * Because __kthread_bind() calls this on blocked tasks without
1850 * holding rq->lock.
1851 */
1852 lockdep_assert_held(&rq->lock);
1853 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1854 }
1855 if (running)
1856 put_prev_task(rq, p);
1857
1858 p->sched_class->set_cpus_allowed(p, new_mask);
1859
1860 if (queued)
1861 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1862 if (running)
1863 set_next_task(rq, p);
1864}
1865
1866/*
1867 * Change a given task's CPU affinity. Migrate the thread to a
1868 * proper CPU and schedule it away if the CPU it's executing on
1869 * is removed from the allowed bitmask.
1870 *
1871 * NOTE: the caller must have a valid reference to the task, the
1872 * task must not exit() & deallocate itself prematurely. The
1873 * call is not atomic; no spinlocks may be held.
1874 */
1875static int __set_cpus_allowed_ptr(struct task_struct *p,
1876 const struct cpumask *new_mask, bool check)
1877{
1878 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1879 unsigned int dest_cpu;
1880 struct rq_flags rf;
1881 struct rq *rq;
1882 int ret = 0;
1883
1884 rq = task_rq_lock(p, &rf);
1885 update_rq_clock(rq);
1886
1887 if (p->flags & PF_KTHREAD) {
1888 /*
1889 * Kernel threads are allowed on online && !active CPUs
1890 */
1891 cpu_valid_mask = cpu_online_mask;
1892 }
1893
1894 /*
1895 * Must re-check here, to close a race against __kthread_bind(),
1896 * sched_setaffinity() is not guaranteed to observe the flag.
1897 */
1898 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1899 ret = -EINVAL;
1900 goto out;
1901 }
1902
1903 if (cpumask_equal(&p->cpus_mask, new_mask))
1904 goto out;
1905
1906 /*
1907 * Picking a ~random cpu helps in cases where we are changing affinity
1908 * for groups of tasks (ie. cpuset), so that load balancing is not
1909 * immediately required to distribute the tasks within their new mask.
1910 */
1911 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1912 if (dest_cpu >= nr_cpu_ids) {
1913 ret = -EINVAL;
1914 goto out;
1915 }
1916
1917 do_set_cpus_allowed(p, new_mask);
1918
1919 if (p->flags & PF_KTHREAD) {
1920 /*
1921 * For kernel threads that do indeed end up on online &&
1922 * !active we want to ensure they are strict per-CPU threads.
1923 */
1924 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1925 !cpumask_intersects(new_mask, cpu_active_mask) &&
1926 p->nr_cpus_allowed != 1);
1927 }
1928
1929 /* Can the task run on the task's current CPU? If so, we're done */
1930 if (cpumask_test_cpu(task_cpu(p), new_mask))
1931 goto out;
1932
1933 if (task_running(rq, p) || p->state == TASK_WAKING) {
1934 struct migration_arg arg = { p, dest_cpu };
1935 /* Need help from migration thread: drop lock and wait. */
1936 task_rq_unlock(rq, p, &rf);
1937 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1938 return 0;
1939 } else if (task_on_rq_queued(p)) {
1940 /*
1941 * OK, since we're going to drop the lock immediately
1942 * afterwards anyway.
1943 */
1944 rq = move_queued_task(rq, &rf, p, dest_cpu);
1945 }
1946out:
1947 task_rq_unlock(rq, p, &rf);
1948
1949 return ret;
1950}
1951
1952int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1953{
1954 return __set_cpus_allowed_ptr(p, new_mask, false);
1955}
1956EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1957
1958void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959{
1960#ifdef CONFIG_SCHED_DEBUG
1961 /*
1962 * We should never call set_task_cpu() on a blocked task,
1963 * ttwu() will sort out the placement.
1964 */
1965 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1966 !p->on_rq);
1967
1968 /*
1969 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971 * time relying on p->on_rq.
1972 */
1973 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1974 p->sched_class == &fair_sched_class &&
1975 (p->on_rq && !task_on_rq_migrating(p)));
1976
1977#ifdef CONFIG_LOCKDEP
1978 /*
1979 * The caller should hold either p->pi_lock or rq->lock, when changing
1980 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1981 *
1982 * sched_move_task() holds both and thus holding either pins the cgroup,
1983 * see task_group().
1984 *
1985 * Furthermore, all task_rq users should acquire both locks, see
1986 * task_rq_lock().
1987 */
1988 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1989 lockdep_is_held(&task_rq(p)->lock)));
1990#endif
1991 /*
1992 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1993 */
1994 WARN_ON_ONCE(!cpu_online(new_cpu));
1995#endif
1996
1997 trace_sched_migrate_task(p, new_cpu);
1998
1999 if (task_cpu(p) != new_cpu) {
2000 if (p->sched_class->migrate_task_rq)
2001 p->sched_class->migrate_task_rq(p, new_cpu);
2002 p->se.nr_migrations++;
2003 rseq_migrate(p);
2004 perf_event_task_migrate(p);
2005 }
2006
2007 __set_task_cpu(p, new_cpu);
2008}
2009
2010#ifdef CONFIG_NUMA_BALANCING
2011static void __migrate_swap_task(struct task_struct *p, int cpu)
2012{
2013 if (task_on_rq_queued(p)) {
2014 struct rq *src_rq, *dst_rq;
2015 struct rq_flags srf, drf;
2016
2017 src_rq = task_rq(p);
2018 dst_rq = cpu_rq(cpu);
2019
2020 rq_pin_lock(src_rq, &srf);
2021 rq_pin_lock(dst_rq, &drf);
2022
2023 deactivate_task(src_rq, p, 0);
2024 set_task_cpu(p, cpu);
2025 activate_task(dst_rq, p, 0);
2026 check_preempt_curr(dst_rq, p, 0);
2027
2028 rq_unpin_lock(dst_rq, &drf);
2029 rq_unpin_lock(src_rq, &srf);
2030
2031 } else {
2032 /*
2033 * Task isn't running anymore; make it appear like we migrated
2034 * it before it went to sleep. This means on wakeup we make the
2035 * previous CPU our target instead of where it really is.
2036 */
2037 p->wake_cpu = cpu;
2038 }
2039}
2040
2041struct migration_swap_arg {
2042 struct task_struct *src_task, *dst_task;
2043 int src_cpu, dst_cpu;
2044};
2045
2046static int migrate_swap_stop(void *data)
2047{
2048 struct migration_swap_arg *arg = data;
2049 struct rq *src_rq, *dst_rq;
2050 int ret = -EAGAIN;
2051
2052 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2053 return -EAGAIN;
2054
2055 src_rq = cpu_rq(arg->src_cpu);
2056 dst_rq = cpu_rq(arg->dst_cpu);
2057
2058 double_raw_lock(&arg->src_task->pi_lock,
2059 &arg->dst_task->pi_lock);
2060 double_rq_lock(src_rq, dst_rq);
2061
2062 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2063 goto unlock;
2064
2065 if (task_cpu(arg->src_task) != arg->src_cpu)
2066 goto unlock;
2067
2068 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2069 goto unlock;
2070
2071 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2072 goto unlock;
2073
2074 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2075 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2076
2077 ret = 0;
2078
2079unlock:
2080 double_rq_unlock(src_rq, dst_rq);
2081 raw_spin_unlock(&arg->dst_task->pi_lock);
2082 raw_spin_unlock(&arg->src_task->pi_lock);
2083
2084 return ret;
2085}
2086
2087/*
2088 * Cross migrate two tasks
2089 */
2090int migrate_swap(struct task_struct *cur, struct task_struct *p,
2091 int target_cpu, int curr_cpu)
2092{
2093 struct migration_swap_arg arg;
2094 int ret = -EINVAL;
2095
2096 arg = (struct migration_swap_arg){
2097 .src_task = cur,
2098 .src_cpu = curr_cpu,
2099 .dst_task = p,
2100 .dst_cpu = target_cpu,
2101 };
2102
2103 if (arg.src_cpu == arg.dst_cpu)
2104 goto out;
2105
2106 /*
2107 * These three tests are all lockless; this is OK since all of them
2108 * will be re-checked with proper locks held further down the line.
2109 */
2110 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2111 goto out;
2112
2113 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2114 goto out;
2115
2116 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2117 goto out;
2118
2119 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2120 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2121
2122out:
2123 return ret;
2124}
2125#endif /* CONFIG_NUMA_BALANCING */
2126
2127/*
2128 * wait_task_inactive - wait for a thread to unschedule.
2129 *
2130 * If @match_state is nonzero, it's the @p->state value just checked and
2131 * not expected to change. If it changes, i.e. @p might have woken up,
2132 * then return zero. When we succeed in waiting for @p to be off its CPU,
2133 * we return a positive number (its total switch count). If a second call
2134 * a short while later returns the same number, the caller can be sure that
2135 * @p has remained unscheduled the whole time.
2136 *
2137 * The caller must ensure that the task *will* unschedule sometime soon,
2138 * else this function might spin for a *long* time. This function can't
2139 * be called with interrupts off, or it may introduce deadlock with
2140 * smp_call_function() if an IPI is sent by the same process we are
2141 * waiting to become inactive.
2142 */
2143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144{
2145 int running, queued;
2146 struct rq_flags rf;
2147 unsigned long ncsw;
2148 struct rq *rq;
2149
2150 for (;;) {
2151 /*
2152 * We do the initial early heuristics without holding
2153 * any task-queue locks at all. We'll only try to get
2154 * the runqueue lock when things look like they will
2155 * work out!
2156 */
2157 rq = task_rq(p);
2158
2159 /*
2160 * If the task is actively running on another CPU
2161 * still, just relax and busy-wait without holding
2162 * any locks.
2163 *
2164 * NOTE! Since we don't hold any locks, it's not
2165 * even sure that "rq" stays as the right runqueue!
2166 * But we don't care, since "task_running()" will
2167 * return false if the runqueue has changed and p
2168 * is actually now running somewhere else!
2169 */
2170 while (task_running(rq, p)) {
2171 if (match_state && unlikely(p->state != match_state))
2172 return 0;
2173 cpu_relax();
2174 }
2175
2176 /*
2177 * Ok, time to look more closely! We need the rq
2178 * lock now, to be *sure*. If we're wrong, we'll
2179 * just go back and repeat.
2180 */
2181 rq = task_rq_lock(p, &rf);
2182 trace_sched_wait_task(p);
2183 running = task_running(rq, p);
2184 queued = task_on_rq_queued(p);
2185 ncsw = 0;
2186 if (!match_state || p->state == match_state)
2187 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2188 task_rq_unlock(rq, p, &rf);
2189
2190 /*
2191 * If it changed from the expected state, bail out now.
2192 */
2193 if (unlikely(!ncsw))
2194 break;
2195
2196 /*
2197 * Was it really running after all now that we
2198 * checked with the proper locks actually held?
2199 *
2200 * Oops. Go back and try again..
2201 */
2202 if (unlikely(running)) {
2203 cpu_relax();
2204 continue;
2205 }
2206
2207 /*
2208 * It's not enough that it's not actively running,
2209 * it must be off the runqueue _entirely_, and not
2210 * preempted!
2211 *
2212 * So if it was still runnable (but just not actively
2213 * running right now), it's preempted, and we should
2214 * yield - it could be a while.
2215 */
2216 if (unlikely(queued)) {
2217 ktime_t to = NSEC_PER_SEC / HZ;
2218
2219 set_current_state(TASK_UNINTERRUPTIBLE);
2220 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2221 continue;
2222 }
2223
2224 /*
2225 * Ahh, all good. It wasn't running, and it wasn't
2226 * runnable, which means that it will never become
2227 * running in the future either. We're all done!
2228 */
2229 break;
2230 }
2231
2232 return ncsw;
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesn't have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
2248void kick_process(struct task_struct *p)
2249{
2250 int cpu;
2251
2252 preempt_disable();
2253 cpu = task_cpu(p);
2254 if ((cpu != smp_processor_id()) && task_curr(p))
2255 smp_send_reschedule(cpu);
2256 preempt_enable();
2257}
2258EXPORT_SYMBOL_GPL(kick_process);
2259
2260/*
2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2262 *
2263 * A few notes on cpu_active vs cpu_online:
2264 *
2265 * - cpu_active must be a subset of cpu_online
2266 *
2267 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268 * see __set_cpus_allowed_ptr(). At this point the newly online
2269 * CPU isn't yet part of the sched domains, and balancing will not
2270 * see it.
2271 *
2272 * - on CPU-down we clear cpu_active() to mask the sched domains and
2273 * avoid the load balancer to place new tasks on the to be removed
2274 * CPU. Existing tasks will remain running there and will be taken
2275 * off.
2276 *
2277 * This means that fallback selection must not select !active CPUs.
2278 * And can assume that any active CPU must be online. Conversely
2279 * select_task_rq() below may allow selection of !active CPUs in order
2280 * to satisfy the above rules.
2281 */
2282static int select_fallback_rq(int cpu, struct task_struct *p)
2283{
2284 int nid = cpu_to_node(cpu);
2285 const struct cpumask *nodemask = NULL;
2286 enum { cpuset, possible, fail } state = cpuset;
2287 int dest_cpu;
2288
2289 /*
2290 * If the node that the CPU is on has been offlined, cpu_to_node()
2291 * will return -1. There is no CPU on the node, and we should
2292 * select the CPU on the other node.
2293 */
2294 if (nid != -1) {
2295 nodemask = cpumask_of_node(nid);
2296
2297 /* Look for allowed, online CPU in same node. */
2298 for_each_cpu(dest_cpu, nodemask) {
2299 if (!cpu_active(dest_cpu))
2300 continue;
2301 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2302 return dest_cpu;
2303 }
2304 }
2305
2306 for (;;) {
2307 /* Any allowed, online CPU? */
2308 for_each_cpu(dest_cpu, p->cpus_ptr) {
2309 if (!is_cpu_allowed(p, dest_cpu))
2310 continue;
2311
2312 goto out;
2313 }
2314
2315 /* No more Mr. Nice Guy. */
2316 switch (state) {
2317 case cpuset:
2318 if (IS_ENABLED(CONFIG_CPUSETS)) {
2319 cpuset_cpus_allowed_fallback(p);
2320 state = possible;
2321 break;
2322 }
2323 fallthrough;
2324 case possible:
2325 do_set_cpus_allowed(p, cpu_possible_mask);
2326 state = fail;
2327 break;
2328
2329 case fail:
2330 BUG();
2331 break;
2332 }
2333 }
2334
2335out:
2336 if (state != cpuset) {
2337 /*
2338 * Don't tell them about moving exiting tasks or
2339 * kernel threads (both mm NULL), since they never
2340 * leave kernel.
2341 */
2342 if (p->mm && printk_ratelimit()) {
2343 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344 task_pid_nr(p), p->comm, cpu);
2345 }
2346 }
2347
2348 return dest_cpu;
2349}
2350
2351/*
2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2353 */
2354static inline
2355int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2356{
2357 lockdep_assert_held(&p->pi_lock);
2358
2359 if (p->nr_cpus_allowed > 1)
2360 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2361 else
2362 cpu = cpumask_any(p->cpus_ptr);
2363
2364 /*
2365 * In order not to call set_task_cpu() on a blocking task we need
2366 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2367 * CPU.
2368 *
2369 * Since this is common to all placement strategies, this lives here.
2370 *
2371 * [ this allows ->select_task() to simply return task_cpu(p) and
2372 * not worry about this generic constraint ]
2373 */
2374 if (unlikely(!is_cpu_allowed(p, cpu)))
2375 cpu = select_fallback_rq(task_cpu(p), p);
2376
2377 return cpu;
2378}
2379
2380void sched_set_stop_task(int cpu, struct task_struct *stop)
2381{
2382 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2383 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2384
2385 if (stop) {
2386 /*
2387 * Make it appear like a SCHED_FIFO task, its something
2388 * userspace knows about and won't get confused about.
2389 *
2390 * Also, it will make PI more or less work without too
2391 * much confusion -- but then, stop work should not
2392 * rely on PI working anyway.
2393 */
2394 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2395
2396 stop->sched_class = &stop_sched_class;
2397 }
2398
2399 cpu_rq(cpu)->stop = stop;
2400
2401 if (old_stop) {
2402 /*
2403 * Reset it back to a normal scheduling class so that
2404 * it can die in pieces.
2405 */
2406 old_stop->sched_class = &rt_sched_class;
2407 }
2408}
2409
2410#else
2411
2412static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2413 const struct cpumask *new_mask, bool check)
2414{
2415 return set_cpus_allowed_ptr(p, new_mask);
2416}
2417
2418#endif /* CONFIG_SMP */
2419
2420static void
2421ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2422{
2423 struct rq *rq;
2424
2425 if (!schedstat_enabled())
2426 return;
2427
2428 rq = this_rq();
2429
2430#ifdef CONFIG_SMP
2431 if (cpu == rq->cpu) {
2432 __schedstat_inc(rq->ttwu_local);
2433 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2434 } else {
2435 struct sched_domain *sd;
2436
2437 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2438 rcu_read_lock();
2439 for_each_domain(rq->cpu, sd) {
2440 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441 __schedstat_inc(sd->ttwu_wake_remote);
2442 break;
2443 }
2444 }
2445 rcu_read_unlock();
2446 }
2447
2448 if (wake_flags & WF_MIGRATED)
2449 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2450#endif /* CONFIG_SMP */
2451
2452 __schedstat_inc(rq->ttwu_count);
2453 __schedstat_inc(p->se.statistics.nr_wakeups);
2454
2455 if (wake_flags & WF_SYNC)
2456 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2457}
2458
2459/*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
2462static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2463 struct rq_flags *rf)
2464{
2465 check_preempt_curr(rq, p, wake_flags);
2466 p->state = TASK_RUNNING;
2467 trace_sched_wakeup(p);
2468
2469#ifdef CONFIG_SMP
2470 if (p->sched_class->task_woken) {
2471 /*
2472 * Our task @p is fully woken up and running; so its safe to
2473 * drop the rq->lock, hereafter rq is only used for statistics.
2474 */
2475 rq_unpin_lock(rq, rf);
2476 p->sched_class->task_woken(rq, p);
2477 rq_repin_lock(rq, rf);
2478 }
2479
2480 if (rq->idle_stamp) {
2481 u64 delta = rq_clock(rq) - rq->idle_stamp;
2482 u64 max = 2*rq->max_idle_balance_cost;
2483
2484 update_avg(&rq->avg_idle, delta);
2485
2486 if (rq->avg_idle > max)
2487 rq->avg_idle = max;
2488
2489 rq->idle_stamp = 0;
2490 }
2491#endif
2492}
2493
2494static void
2495ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2496 struct rq_flags *rf)
2497{
2498 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2499
2500 lockdep_assert_held(&rq->lock);
2501
2502 if (p->sched_contributes_to_load)
2503 rq->nr_uninterruptible--;
2504
2505#ifdef CONFIG_SMP
2506 if (wake_flags & WF_MIGRATED)
2507 en_flags |= ENQUEUE_MIGRATED;
2508#endif
2509
2510 activate_task(rq, p, en_flags);
2511 ttwu_do_wakeup(rq, p, wake_flags, rf);
2512}
2513
2514/*
2515 * Consider @p being inside a wait loop:
2516 *
2517 * for (;;) {
2518 * set_current_state(TASK_UNINTERRUPTIBLE);
2519 *
2520 * if (CONDITION)
2521 * break;
2522 *
2523 * schedule();
2524 * }
2525 * __set_current_state(TASK_RUNNING);
2526 *
2527 * between set_current_state() and schedule(). In this case @p is still
2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2529 * an atomic manner.
2530 *
2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532 * then schedule() must still happen and p->state can be changed to
2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534 * need to do a full wakeup with enqueue.
2535 *
2536 * Returns: %true when the wakeup is done,
2537 * %false otherwise.
2538 */
2539static int ttwu_runnable(struct task_struct *p, int wake_flags)
2540{
2541 struct rq_flags rf;
2542 struct rq *rq;
2543 int ret = 0;
2544
2545 rq = __task_rq_lock(p, &rf);
2546 if (task_on_rq_queued(p)) {
2547 /* check_preempt_curr() may use rq clock */
2548 update_rq_clock(rq);
2549 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2550 ret = 1;
2551 }
2552 __task_rq_unlock(rq, &rf);
2553
2554 return ret;
2555}
2556
2557#ifdef CONFIG_SMP
2558void sched_ttwu_pending(void *arg)
2559{
2560 struct llist_node *llist = arg;
2561 struct rq *rq = this_rq();
2562 struct task_struct *p, *t;
2563 struct rq_flags rf;
2564
2565 if (!llist)
2566 return;
2567
2568 /*
2569 * rq::ttwu_pending racy indication of out-standing wakeups.
2570 * Races such that false-negatives are possible, since they
2571 * are shorter lived that false-positives would be.
2572 */
2573 WRITE_ONCE(rq->ttwu_pending, 0);
2574
2575 rq_lock_irqsave(rq, &rf);
2576 update_rq_clock(rq);
2577
2578 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2579 if (WARN_ON_ONCE(p->on_cpu))
2580 smp_cond_load_acquire(&p->on_cpu, !VAL);
2581
2582 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2583 set_task_cpu(p, cpu_of(rq));
2584
2585 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2586 }
2587
2588 rq_unlock_irqrestore(rq, &rf);
2589}
2590
2591void send_call_function_single_ipi(int cpu)
2592{
2593 struct rq *rq = cpu_rq(cpu);
2594
2595 if (!set_nr_if_polling(rq->idle))
2596 arch_send_call_function_single_ipi(cpu);
2597 else
2598 trace_sched_wake_idle_without_ipi(cpu);
2599}
2600
2601/*
2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603 * necessary. The wakee CPU on receipt of the IPI will queue the task
2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605 * of the wakeup instead of the waker.
2606 */
2607static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2608{
2609 struct rq *rq = cpu_rq(cpu);
2610
2611 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2612
2613 WRITE_ONCE(rq->ttwu_pending, 1);
2614 __smp_call_single_queue(cpu, &p->wake_entry.llist);
2615}
2616
2617void wake_up_if_idle(int cpu)
2618{
2619 struct rq *rq = cpu_rq(cpu);
2620 struct rq_flags rf;
2621
2622 rcu_read_lock();
2623
2624 if (!is_idle_task(rcu_dereference(rq->curr)))
2625 goto out;
2626
2627 if (set_nr_if_polling(rq->idle)) {
2628 trace_sched_wake_idle_without_ipi(cpu);
2629 } else {
2630 rq_lock_irqsave(rq, &rf);
2631 if (is_idle_task(rq->curr))
2632 smp_send_reschedule(cpu);
2633 /* Else CPU is not idle, do nothing here: */
2634 rq_unlock_irqrestore(rq, &rf);
2635 }
2636
2637out:
2638 rcu_read_unlock();
2639}
2640
2641bool cpus_share_cache(int this_cpu, int that_cpu)
2642{
2643 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2644}
2645
2646static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2647{
2648 /*
2649 * If the CPU does not share cache, then queue the task on the
2650 * remote rqs wakelist to avoid accessing remote data.
2651 */
2652 if (!cpus_share_cache(smp_processor_id(), cpu))
2653 return true;
2654
2655 /*
2656 * If the task is descheduling and the only running task on the
2657 * CPU then use the wakelist to offload the task activation to
2658 * the soon-to-be-idle CPU as the current CPU is likely busy.
2659 * nr_running is checked to avoid unnecessary task stacking.
2660 */
2661 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2662 return true;
2663
2664 return false;
2665}
2666
2667static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2668{
2669 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2670 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2671 return false;
2672
2673 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2674 __ttwu_queue_wakelist(p, cpu, wake_flags);
2675 return true;
2676 }
2677
2678 return false;
2679}
2680
2681#else /* !CONFIG_SMP */
2682
2683static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2684{
2685 return false;
2686}
2687
2688#endif /* CONFIG_SMP */
2689
2690static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2691{
2692 struct rq *rq = cpu_rq(cpu);
2693 struct rq_flags rf;
2694
2695 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2696 return;
2697
2698 rq_lock(rq, &rf);
2699 update_rq_clock(rq);
2700 ttwu_do_activate(rq, p, wake_flags, &rf);
2701 rq_unlock(rq, &rf);
2702}
2703
2704/*
2705 * Notes on Program-Order guarantees on SMP systems.
2706 *
2707 * MIGRATION
2708 *
2709 * The basic program-order guarantee on SMP systems is that when a task [t]
2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711 * execution on its new CPU [c1].
2712 *
2713 * For migration (of runnable tasks) this is provided by the following means:
2714 *
2715 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2716 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2717 * rq(c1)->lock (if not at the same time, then in that order).
2718 * C) LOCK of the rq(c1)->lock scheduling in task
2719 *
2720 * Release/acquire chaining guarantees that B happens after A and C after B.
2721 * Note: the CPU doing B need not be c0 or c1
2722 *
2723 * Example:
2724 *
2725 * CPU0 CPU1 CPU2
2726 *
2727 * LOCK rq(0)->lock
2728 * sched-out X
2729 * sched-in Y
2730 * UNLOCK rq(0)->lock
2731 *
2732 * LOCK rq(0)->lock // orders against CPU0
2733 * dequeue X
2734 * UNLOCK rq(0)->lock
2735 *
2736 * LOCK rq(1)->lock
2737 * enqueue X
2738 * UNLOCK rq(1)->lock
2739 *
2740 * LOCK rq(1)->lock // orders against CPU2
2741 * sched-out Z
2742 * sched-in X
2743 * UNLOCK rq(1)->lock
2744 *
2745 *
2746 * BLOCKING -- aka. SLEEP + WAKEUP
2747 *
2748 * For blocking we (obviously) need to provide the same guarantee as for
2749 * migration. However the means are completely different as there is no lock
2750 * chain to provide order. Instead we do:
2751 *
2752 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2753 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2754 *
2755 * Example:
2756 *
2757 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2758 *
2759 * LOCK rq(0)->lock LOCK X->pi_lock
2760 * dequeue X
2761 * sched-out X
2762 * smp_store_release(X->on_cpu, 0);
2763 *
2764 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2765 * X->state = WAKING
2766 * set_task_cpu(X,2)
2767 *
2768 * LOCK rq(2)->lock
2769 * enqueue X
2770 * X->state = RUNNING
2771 * UNLOCK rq(2)->lock
2772 *
2773 * LOCK rq(2)->lock // orders against CPU1
2774 * sched-out Z
2775 * sched-in X
2776 * UNLOCK rq(2)->lock
2777 *
2778 * UNLOCK X->pi_lock
2779 * UNLOCK rq(0)->lock
2780 *
2781 *
2782 * However, for wakeups there is a second guarantee we must provide, namely we
2783 * must ensure that CONDITION=1 done by the caller can not be reordered with
2784 * accesses to the task state; see try_to_wake_up() and set_current_state().
2785 */
2786
2787/**
2788 * try_to_wake_up - wake up a thread
2789 * @p: the thread to be awakened
2790 * @state: the mask of task states that can be woken
2791 * @wake_flags: wake modifier flags (WF_*)
2792 *
2793 * Conceptually does:
2794 *
2795 * If (@state & @p->state) @p->state = TASK_RUNNING.
2796 *
2797 * If the task was not queued/runnable, also place it back on a runqueue.
2798 *
2799 * This function is atomic against schedule() which would dequeue the task.
2800 *
2801 * It issues a full memory barrier before accessing @p->state, see the comment
2802 * with set_current_state().
2803 *
2804 * Uses p->pi_lock to serialize against concurrent wake-ups.
2805 *
2806 * Relies on p->pi_lock stabilizing:
2807 * - p->sched_class
2808 * - p->cpus_ptr
2809 * - p->sched_task_group
2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2811 *
2812 * Tries really hard to only take one task_rq(p)->lock for performance.
2813 * Takes rq->lock in:
2814 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2815 * - ttwu_queue() -- new rq, for enqueue of the task;
2816 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2817 *
2818 * As a consequence we race really badly with just about everything. See the
2819 * many memory barriers and their comments for details.
2820 *
2821 * Return: %true if @p->state changes (an actual wakeup was done),
2822 * %false otherwise.
2823 */
2824static int
2825try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2826{
2827 unsigned long flags;
2828 int cpu, success = 0;
2829
2830 preempt_disable();
2831 if (p == current) {
2832 /*
2833 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834 * == smp_processor_id()'. Together this means we can special
2835 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836 * without taking any locks.
2837 *
2838 * In particular:
2839 * - we rely on Program-Order guarantees for all the ordering,
2840 * - we're serialized against set_special_state() by virtue of
2841 * it disabling IRQs (this allows not taking ->pi_lock).
2842 */
2843 if (!(p->state & state))
2844 goto out;
2845
2846 success = 1;
2847 trace_sched_waking(p);
2848 p->state = TASK_RUNNING;
2849 trace_sched_wakeup(p);
2850 goto out;
2851 }
2852
2853 /*
2854 * If we are going to wake up a thread waiting for CONDITION we
2855 * need to ensure that CONDITION=1 done by the caller can not be
2856 * reordered with p->state check below. This pairs with smp_store_mb()
2857 * in set_current_state() that the waiting thread does.
2858 */
2859 raw_spin_lock_irqsave(&p->pi_lock, flags);
2860 smp_mb__after_spinlock();
2861 if (!(p->state & state))
2862 goto unlock;
2863
2864 trace_sched_waking(p);
2865
2866 /* We're going to change ->state: */
2867 success = 1;
2868
2869 /*
2870 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872 * in smp_cond_load_acquire() below.
2873 *
2874 * sched_ttwu_pending() try_to_wake_up()
2875 * STORE p->on_rq = 1 LOAD p->state
2876 * UNLOCK rq->lock
2877 *
2878 * __schedule() (switch to task 'p')
2879 * LOCK rq->lock smp_rmb();
2880 * smp_mb__after_spinlock();
2881 * UNLOCK rq->lock
2882 *
2883 * [task p]
2884 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2885 *
2886 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887 * __schedule(). See the comment for smp_mb__after_spinlock().
2888 *
2889 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2890 */
2891 smp_rmb();
2892 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2893 goto unlock;
2894
2895 if (p->in_iowait) {
2896 delayacct_blkio_end(p);
2897 atomic_dec(&task_rq(p)->nr_iowait);
2898 }
2899
2900#ifdef CONFIG_SMP
2901 /*
2902 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903 * possible to, falsely, observe p->on_cpu == 0.
2904 *
2905 * One must be running (->on_cpu == 1) in order to remove oneself
2906 * from the runqueue.
2907 *
2908 * __schedule() (switch to task 'p') try_to_wake_up()
2909 * STORE p->on_cpu = 1 LOAD p->on_rq
2910 * UNLOCK rq->lock
2911 *
2912 * __schedule() (put 'p' to sleep)
2913 * LOCK rq->lock smp_rmb();
2914 * smp_mb__after_spinlock();
2915 * STORE p->on_rq = 0 LOAD p->on_cpu
2916 *
2917 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918 * __schedule(). See the comment for smp_mb__after_spinlock().
2919 *
2920 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921 * schedule()'s deactivate_task() has 'happened' and p will no longer
2922 * care about it's own p->state. See the comment in __schedule().
2923 */
2924 smp_acquire__after_ctrl_dep();
2925
2926 /*
2927 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928 * == 0), which means we need to do an enqueue, change p->state to
2929 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930 * enqueue, such as ttwu_queue_wakelist().
2931 */
2932 p->state = TASK_WAKING;
2933
2934 /*
2935 * If the owning (remote) CPU is still in the middle of schedule() with
2936 * this task as prev, considering queueing p on the remote CPUs wake_list
2937 * which potentially sends an IPI instead of spinning on p->on_cpu to
2938 * let the waker make forward progress. This is safe because IRQs are
2939 * disabled and the IPI will deliver after on_cpu is cleared.
2940 *
2941 * Ensure we load task_cpu(p) after p->on_cpu:
2942 *
2943 * set_task_cpu(p, cpu);
2944 * STORE p->cpu = @cpu
2945 * __schedule() (switch to task 'p')
2946 * LOCK rq->lock
2947 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
2948 * STORE p->on_cpu = 1 LOAD p->cpu
2949 *
2950 * to ensure we observe the correct CPU on which the task is currently
2951 * scheduling.
2952 */
2953 if (smp_load_acquire(&p->on_cpu) &&
2954 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2955 goto unlock;
2956
2957 /*
2958 * If the owning (remote) CPU is still in the middle of schedule() with
2959 * this task as prev, wait until its done referencing the task.
2960 *
2961 * Pairs with the smp_store_release() in finish_task().
2962 *
2963 * This ensures that tasks getting woken will be fully ordered against
2964 * their previous state and preserve Program Order.
2965 */
2966 smp_cond_load_acquire(&p->on_cpu, !VAL);
2967
2968 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2969 if (task_cpu(p) != cpu) {
2970 wake_flags |= WF_MIGRATED;
2971 psi_ttwu_dequeue(p);
2972 set_task_cpu(p, cpu);
2973 }
2974#else
2975 cpu = task_cpu(p);
2976#endif /* CONFIG_SMP */
2977
2978 ttwu_queue(p, cpu, wake_flags);
2979unlock:
2980 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981out:
2982 if (success)
2983 ttwu_stat(p, task_cpu(p), wake_flags);
2984 preempt_enable();
2985
2986 return success;
2987}
2988
2989/**
2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991 * @p: Process for which the function is to be invoked.
2992 * @func: Function to invoke.
2993 * @arg: Argument to function.
2994 *
2995 * If the specified task can be quickly locked into a definite state
2996 * (either sleeping or on a given runqueue), arrange to keep it in that
2997 * state while invoking @func(@arg). This function can use ->on_rq and
2998 * task_curr() to work out what the state is, if required. Given that
2999 * @func can be invoked with a runqueue lock held, it had better be quite
3000 * lightweight.
3001 *
3002 * Returns:
3003 * @false if the task slipped out from under the locks.
3004 * @true if the task was locked onto a runqueue or is sleeping.
3005 * However, @func can override this by returning @false.
3006 */
3007bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3008{
3009 bool ret = false;
3010 struct rq_flags rf;
3011 struct rq *rq;
3012
3013 lockdep_assert_irqs_enabled();
3014 raw_spin_lock_irq(&p->pi_lock);
3015 if (p->on_rq) {
3016 rq = __task_rq_lock(p, &rf);
3017 if (task_rq(p) == rq)
3018 ret = func(p, arg);
3019 rq_unlock(rq, &rf);
3020 } else {
3021 switch (p->state) {
3022 case TASK_RUNNING:
3023 case TASK_WAKING:
3024 break;
3025 default:
3026 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3027 if (!p->on_rq)
3028 ret = func(p, arg);
3029 }
3030 }
3031 raw_spin_unlock_irq(&p->pi_lock);
3032 return ret;
3033}
3034
3035/**
3036 * wake_up_process - Wake up a specific process
3037 * @p: The process to be woken up.
3038 *
3039 * Attempt to wake up the nominated process and move it to the set of runnable
3040 * processes.
3041 *
3042 * Return: 1 if the process was woken up, 0 if it was already running.
3043 *
3044 * This function executes a full memory barrier before accessing the task state.
3045 */
3046int wake_up_process(struct task_struct *p)
3047{
3048 return try_to_wake_up(p, TASK_NORMAL, 0);
3049}
3050EXPORT_SYMBOL(wake_up_process);
3051
3052int wake_up_state(struct task_struct *p, unsigned int state)
3053{
3054 return try_to_wake_up(p, state, 0);
3055}
3056
3057/*
3058 * Perform scheduler related setup for a newly forked process p.
3059 * p is forked by current.
3060 *
3061 * __sched_fork() is basic setup used by init_idle() too:
3062 */
3063static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3064{
3065 p->on_rq = 0;
3066
3067 p->se.on_rq = 0;
3068 p->se.exec_start = 0;
3069 p->se.sum_exec_runtime = 0;
3070 p->se.prev_sum_exec_runtime = 0;
3071 p->se.nr_migrations = 0;
3072 p->se.vruntime = 0;
3073 INIT_LIST_HEAD(&p->se.group_node);
3074
3075#ifdef CONFIG_FAIR_GROUP_SCHED
3076 p->se.cfs_rq = NULL;
3077#endif
3078
3079#ifdef CONFIG_SCHEDSTATS
3080 /* Even if schedstat is disabled, there should not be garbage */
3081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3082#endif
3083
3084 RB_CLEAR_NODE(&p->dl.rb_node);
3085 init_dl_task_timer(&p->dl);
3086 init_dl_inactive_task_timer(&p->dl);
3087 __dl_clear_params(p);
3088
3089 INIT_LIST_HEAD(&p->rt.run_list);
3090 p->rt.timeout = 0;
3091 p->rt.time_slice = sched_rr_timeslice;
3092 p->rt.on_rq = 0;
3093 p->rt.on_list = 0;
3094
3095#ifdef CONFIG_PREEMPT_NOTIFIERS
3096 INIT_HLIST_HEAD(&p->preempt_notifiers);
3097#endif
3098
3099#ifdef CONFIG_COMPACTION
3100 p->capture_control = NULL;
3101#endif
3102 init_numa_balancing(clone_flags, p);
3103#ifdef CONFIG_SMP
3104 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3105#endif
3106}
3107
3108DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3109
3110#ifdef CONFIG_NUMA_BALANCING
3111
3112void set_numabalancing_state(bool enabled)
3113{
3114 if (enabled)
3115 static_branch_enable(&sched_numa_balancing);
3116 else
3117 static_branch_disable(&sched_numa_balancing);
3118}
3119
3120#ifdef CONFIG_PROC_SYSCTL
3121int sysctl_numa_balancing(struct ctl_table *table, int write,
3122 void *buffer, size_t *lenp, loff_t *ppos)
3123{
3124 struct ctl_table t;
3125 int err;
3126 int state = static_branch_likely(&sched_numa_balancing);
3127
3128 if (write && !capable(CAP_SYS_ADMIN))
3129 return -EPERM;
3130
3131 t = *table;
3132 t.data = &state;
3133 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3134 if (err < 0)
3135 return err;
3136 if (write)
3137 set_numabalancing_state(state);
3138 return err;
3139}
3140#endif
3141#endif
3142
3143#ifdef CONFIG_SCHEDSTATS
3144
3145DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3146static bool __initdata __sched_schedstats = false;
3147
3148static void set_schedstats(bool enabled)
3149{
3150 if (enabled)
3151 static_branch_enable(&sched_schedstats);
3152 else
3153 static_branch_disable(&sched_schedstats);
3154}
3155
3156void force_schedstat_enabled(void)
3157{
3158 if (!schedstat_enabled()) {
3159 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160 static_branch_enable(&sched_schedstats);
3161 }
3162}
3163
3164static int __init setup_schedstats(char *str)
3165{
3166 int ret = 0;
3167 if (!str)
3168 goto out;
3169
3170 /*
3171 * This code is called before jump labels have been set up, so we can't
3172 * change the static branch directly just yet. Instead set a temporary
3173 * variable so init_schedstats() can do it later.
3174 */
3175 if (!strcmp(str, "enable")) {
3176 __sched_schedstats = true;
3177 ret = 1;
3178 } else if (!strcmp(str, "disable")) {
3179 __sched_schedstats = false;
3180 ret = 1;
3181 }
3182out:
3183 if (!ret)
3184 pr_warn("Unable to parse schedstats=\n");
3185
3186 return ret;
3187}
3188__setup("schedstats=", setup_schedstats);
3189
3190static void __init init_schedstats(void)
3191{
3192 set_schedstats(__sched_schedstats);
3193}
3194
3195#ifdef CONFIG_PROC_SYSCTL
3196int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3197 size_t *lenp, loff_t *ppos)
3198{
3199 struct ctl_table t;
3200 int err;
3201 int state = static_branch_likely(&sched_schedstats);
3202
3203 if (write && !capable(CAP_SYS_ADMIN))
3204 return -EPERM;
3205
3206 t = *table;
3207 t.data = &state;
3208 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3209 if (err < 0)
3210 return err;
3211 if (write)
3212 set_schedstats(state);
3213 return err;
3214}
3215#endif /* CONFIG_PROC_SYSCTL */
3216#else /* !CONFIG_SCHEDSTATS */
3217static inline void init_schedstats(void) {}
3218#endif /* CONFIG_SCHEDSTATS */
3219
3220/*
3221 * fork()/clone()-time setup:
3222 */
3223int sched_fork(unsigned long clone_flags, struct task_struct *p)
3224{
3225 unsigned long flags;
3226
3227 __sched_fork(clone_flags, p);
3228 /*
3229 * We mark the process as NEW here. This guarantees that
3230 * nobody will actually run it, and a signal or other external
3231 * event cannot wake it up and insert it on the runqueue either.
3232 */
3233 p->state = TASK_NEW;
3234
3235 /*
3236 * Make sure we do not leak PI boosting priority to the child.
3237 */
3238 p->prio = current->normal_prio;
3239
3240 uclamp_fork(p);
3241
3242 /*
3243 * Revert to default priority/policy on fork if requested.
3244 */
3245 if (unlikely(p->sched_reset_on_fork)) {
3246 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3247 p->policy = SCHED_NORMAL;
3248 p->static_prio = NICE_TO_PRIO(0);
3249 p->rt_priority = 0;
3250 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3251 p->static_prio = NICE_TO_PRIO(0);
3252
3253 p->prio = p->normal_prio = __normal_prio(p);
3254 set_load_weight(p, false);
3255
3256 /*
3257 * We don't need the reset flag anymore after the fork. It has
3258 * fulfilled its duty:
3259 */
3260 p->sched_reset_on_fork = 0;
3261 }
3262
3263 if (dl_prio(p->prio))
3264 return -EAGAIN;
3265 else if (rt_prio(p->prio))
3266 p->sched_class = &rt_sched_class;
3267 else
3268 p->sched_class = &fair_sched_class;
3269
3270 init_entity_runnable_average(&p->se);
3271
3272 /*
3273 * The child is not yet in the pid-hash so no cgroup attach races,
3274 * and the cgroup is pinned to this child due to cgroup_fork()
3275 * is ran before sched_fork().
3276 *
3277 * Silence PROVE_RCU.
3278 */
3279 raw_spin_lock_irqsave(&p->pi_lock, flags);
3280 rseq_migrate(p);
3281 /*
3282 * We're setting the CPU for the first time, we don't migrate,
3283 * so use __set_task_cpu().
3284 */
3285 __set_task_cpu(p, smp_processor_id());
3286 if (p->sched_class->task_fork)
3287 p->sched_class->task_fork(p);
3288 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3289
3290#ifdef CONFIG_SCHED_INFO
3291 if (likely(sched_info_on()))
3292 memset(&p->sched_info, 0, sizeof(p->sched_info));
3293#endif
3294#if defined(CONFIG_SMP)
3295 p->on_cpu = 0;
3296#endif
3297 init_task_preempt_count(p);
3298#ifdef CONFIG_SMP
3299 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3300 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3301#endif
3302 return 0;
3303}
3304
3305void sched_post_fork(struct task_struct *p)
3306{
3307 uclamp_post_fork(p);
3308}
3309
3310unsigned long to_ratio(u64 period, u64 runtime)
3311{
3312 if (runtime == RUNTIME_INF)
3313 return BW_UNIT;
3314
3315 /*
3316 * Doing this here saves a lot of checks in all
3317 * the calling paths, and returning zero seems
3318 * safe for them anyway.
3319 */
3320 if (period == 0)
3321 return 0;
3322
3323 return div64_u64(runtime << BW_SHIFT, period);
3324}
3325
3326/*
3327 * wake_up_new_task - wake up a newly created task for the first time.
3328 *
3329 * This function will do some initial scheduler statistics housekeeping
3330 * that must be done for every newly created context, then puts the task
3331 * on the runqueue and wakes it.
3332 */
3333void wake_up_new_task(struct task_struct *p)
3334{
3335 struct rq_flags rf;
3336 struct rq *rq;
3337
3338 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3339 p->state = TASK_RUNNING;
3340#ifdef CONFIG_SMP
3341 /*
3342 * Fork balancing, do it here and not earlier because:
3343 * - cpus_ptr can change in the fork path
3344 * - any previously selected CPU might disappear through hotplug
3345 *
3346 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347 * as we're not fully set-up yet.
3348 */
3349 p->recent_used_cpu = task_cpu(p);
3350 rseq_migrate(p);
3351 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3352#endif
3353 rq = __task_rq_lock(p, &rf);
3354 update_rq_clock(rq);
3355 post_init_entity_util_avg(p);
3356
3357 activate_task(rq, p, ENQUEUE_NOCLOCK);
3358 trace_sched_wakeup_new(p);
3359 check_preempt_curr(rq, p, WF_FORK);
3360#ifdef CONFIG_SMP
3361 if (p->sched_class->task_woken) {
3362 /*
3363 * Nothing relies on rq->lock after this, so its fine to
3364 * drop it.
3365 */
3366 rq_unpin_lock(rq, &rf);
3367 p->sched_class->task_woken(rq, p);
3368 rq_repin_lock(rq, &rf);
3369 }
3370#endif
3371 task_rq_unlock(rq, p, &rf);
3372}
3373
3374#ifdef CONFIG_PREEMPT_NOTIFIERS
3375
3376static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3377
3378void preempt_notifier_inc(void)
3379{
3380 static_branch_inc(&preempt_notifier_key);
3381}
3382EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3383
3384void preempt_notifier_dec(void)
3385{
3386 static_branch_dec(&preempt_notifier_key);
3387}
3388EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3389
3390/**
3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392 * @notifier: notifier struct to register
3393 */
3394void preempt_notifier_register(struct preempt_notifier *notifier)
3395{
3396 if (!static_branch_unlikely(&preempt_notifier_key))
3397 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3398
3399 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3400}
3401EXPORT_SYMBOL_GPL(preempt_notifier_register);
3402
3403/**
3404 * preempt_notifier_unregister - no longer interested in preemption notifications
3405 * @notifier: notifier struct to unregister
3406 *
3407 * This is *not* safe to call from within a preemption notifier.
3408 */
3409void preempt_notifier_unregister(struct preempt_notifier *notifier)
3410{
3411 hlist_del(¬ifier->link);
3412}
3413EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3414
3415static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3416{
3417 struct preempt_notifier *notifier;
3418
3419 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3420 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3421}
3422
3423static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3424{
3425 if (static_branch_unlikely(&preempt_notifier_key))
3426 __fire_sched_in_preempt_notifiers(curr);
3427}
3428
3429static void
3430__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3431 struct task_struct *next)
3432{
3433 struct preempt_notifier *notifier;
3434
3435 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3436 notifier->ops->sched_out(notifier, next);
3437}
3438
3439static __always_inline void
3440fire_sched_out_preempt_notifiers(struct task_struct *curr,
3441 struct task_struct *next)
3442{
3443 if (static_branch_unlikely(&preempt_notifier_key))
3444 __fire_sched_out_preempt_notifiers(curr, next);
3445}
3446
3447#else /* !CONFIG_PREEMPT_NOTIFIERS */
3448
3449static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3450{
3451}
3452
3453static inline void
3454fire_sched_out_preempt_notifiers(struct task_struct *curr,
3455 struct task_struct *next)
3456{
3457}
3458
3459#endif /* CONFIG_PREEMPT_NOTIFIERS */
3460
3461static inline void prepare_task(struct task_struct *next)
3462{
3463#ifdef CONFIG_SMP
3464 /*
3465 * Claim the task as running, we do this before switching to it
3466 * such that any running task will have this set.
3467 *
3468 * See the ttwu() WF_ON_CPU case and its ordering comment.
3469 */
3470 WRITE_ONCE(next->on_cpu, 1);
3471#endif
3472}
3473
3474static inline void finish_task(struct task_struct *prev)
3475{
3476#ifdef CONFIG_SMP
3477 /*
3478 * This must be the very last reference to @prev from this CPU. After
3479 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480 * must ensure this doesn't happen until the switch is completely
3481 * finished.
3482 *
3483 * In particular, the load of prev->state in finish_task_switch() must
3484 * happen before this.
3485 *
3486 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3487 */
3488 smp_store_release(&prev->on_cpu, 0);
3489#endif
3490}
3491
3492static inline void
3493prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494{
3495 /*
3496 * Since the runqueue lock will be released by the next
3497 * task (which is an invalid locking op but in the case
3498 * of the scheduler it's an obvious special-case), so we
3499 * do an early lockdep release here:
3500 */
3501 rq_unpin_lock(rq, rf);
3502 spin_release(&rq->lock.dep_map, _THIS_IP_);
3503#ifdef CONFIG_DEBUG_SPINLOCK
3504 /* this is a valid case when another task releases the spinlock */
3505 rq->lock.owner = next;
3506#endif
3507}
3508
3509static inline void finish_lock_switch(struct rq *rq)
3510{
3511 /*
3512 * If we are tracking spinlock dependencies then we have to
3513 * fix up the runqueue lock - which gets 'carried over' from
3514 * prev into current:
3515 */
3516 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3517 raw_spin_unlock_irq(&rq->lock);
3518}
3519
3520/*
3521 * NOP if the arch has not defined these:
3522 */
3523
3524#ifndef prepare_arch_switch
3525# define prepare_arch_switch(next) do { } while (0)
3526#endif
3527
3528#ifndef finish_arch_post_lock_switch
3529# define finish_arch_post_lock_switch() do { } while (0)
3530#endif
3531
3532/**
3533 * prepare_task_switch - prepare to switch tasks
3534 * @rq: the runqueue preparing to switch
3535 * @prev: the current task that is being switched out
3536 * @next: the task we are going to switch to.
3537 *
3538 * This is called with the rq lock held and interrupts off. It must
3539 * be paired with a subsequent finish_task_switch after the context
3540 * switch.
3541 *
3542 * prepare_task_switch sets up locking and calls architecture specific
3543 * hooks.
3544 */
3545static inline void
3546prepare_task_switch(struct rq *rq, struct task_struct *prev,
3547 struct task_struct *next)
3548{
3549 kcov_prepare_switch(prev);
3550 sched_info_switch(rq, prev, next);
3551 perf_event_task_sched_out(prev, next);
3552 rseq_preempt(prev);
3553 fire_sched_out_preempt_notifiers(prev, next);
3554 prepare_task(next);
3555 prepare_arch_switch(next);
3556}
3557
3558/**
3559 * finish_task_switch - clean up after a task-switch
3560 * @prev: the thread we just switched away from.
3561 *
3562 * finish_task_switch must be called after the context switch, paired
3563 * with a prepare_task_switch call before the context switch.
3564 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565 * and do any other architecture-specific cleanup actions.
3566 *
3567 * Note that we may have delayed dropping an mm in context_switch(). If
3568 * so, we finish that here outside of the runqueue lock. (Doing it
3569 * with the lock held can cause deadlocks; see schedule() for
3570 * details.)
3571 *
3572 * The context switch have flipped the stack from under us and restored the
3573 * local variables which were saved when this task called schedule() in the
3574 * past. prev == current is still correct but we need to recalculate this_rq
3575 * because prev may have moved to another CPU.
3576 */
3577static struct rq *finish_task_switch(struct task_struct *prev)
3578 __releases(rq->lock)
3579{
3580 struct rq *rq = this_rq();
3581 struct mm_struct *mm = rq->prev_mm;
3582 long prev_state;
3583
3584 /*
3585 * The previous task will have left us with a preempt_count of 2
3586 * because it left us after:
3587 *
3588 * schedule()
3589 * preempt_disable(); // 1
3590 * __schedule()
3591 * raw_spin_lock_irq(&rq->lock) // 2
3592 *
3593 * Also, see FORK_PREEMPT_COUNT.
3594 */
3595 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3596 "corrupted preempt_count: %s/%d/0x%x\n",
3597 current->comm, current->pid, preempt_count()))
3598 preempt_count_set(FORK_PREEMPT_COUNT);
3599
3600 rq->prev_mm = NULL;
3601
3602 /*
3603 * A task struct has one reference for the use as "current".
3604 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605 * schedule one last time. The schedule call will never return, and
3606 * the scheduled task must drop that reference.
3607 *
3608 * We must observe prev->state before clearing prev->on_cpu (in
3609 * finish_task), otherwise a concurrent wakeup can get prev
3610 * running on another CPU and we could rave with its RUNNING -> DEAD
3611 * transition, resulting in a double drop.
3612 */
3613 prev_state = prev->state;
3614 vtime_task_switch(prev);
3615 perf_event_task_sched_in(prev, current);
3616 finish_task(prev);
3617 finish_lock_switch(rq);
3618 finish_arch_post_lock_switch();
3619 kcov_finish_switch(current);
3620
3621 fire_sched_in_preempt_notifiers(current);
3622 /*
3623 * When switching through a kernel thread, the loop in
3624 * membarrier_{private,global}_expedited() may have observed that
3625 * kernel thread and not issued an IPI. It is therefore possible to
3626 * schedule between user->kernel->user threads without passing though
3627 * switch_mm(). Membarrier requires a barrier after storing to
3628 * rq->curr, before returning to userspace, so provide them here:
3629 *
3630 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631 * provided by mmdrop(),
3632 * - a sync_core for SYNC_CORE.
3633 */
3634 if (mm) {
3635 membarrier_mm_sync_core_before_usermode(mm);
3636 mmdrop(mm);
3637 }
3638 if (unlikely(prev_state == TASK_DEAD)) {
3639 if (prev->sched_class->task_dead)
3640 prev->sched_class->task_dead(prev);
3641
3642 /*
3643 * Remove function-return probe instances associated with this
3644 * task and put them back on the free list.
3645 */
3646 kprobe_flush_task(prev);
3647
3648 /* Task is done with its stack. */
3649 put_task_stack(prev);
3650
3651 put_task_struct_rcu_user(prev);
3652 }
3653
3654 tick_nohz_task_switch();
3655 return rq;
3656}
3657
3658#ifdef CONFIG_SMP
3659
3660/* rq->lock is NOT held, but preemption is disabled */
3661static void __balance_callback(struct rq *rq)
3662{
3663 struct callback_head *head, *next;
3664 void (*func)(struct rq *rq);
3665 unsigned long flags;
3666
3667 raw_spin_lock_irqsave(&rq->lock, flags);
3668 head = rq->balance_callback;
3669 rq->balance_callback = NULL;
3670 while (head) {
3671 func = (void (*)(struct rq *))head->func;
3672 next = head->next;
3673 head->next = NULL;
3674 head = next;
3675
3676 func(rq);
3677 }
3678 raw_spin_unlock_irqrestore(&rq->lock, flags);
3679}
3680
3681static inline void balance_callback(struct rq *rq)
3682{
3683 if (unlikely(rq->balance_callback))
3684 __balance_callback(rq);
3685}
3686
3687#else
3688
3689static inline void balance_callback(struct rq *rq)
3690{
3691}
3692
3693#endif
3694
3695/**
3696 * schedule_tail - first thing a freshly forked thread must call.
3697 * @prev: the thread we just switched away from.
3698 */
3699asmlinkage __visible void schedule_tail(struct task_struct *prev)
3700 __releases(rq->lock)
3701{
3702 struct rq *rq;
3703
3704 /*
3705 * New tasks start with FORK_PREEMPT_COUNT, see there and
3706 * finish_task_switch() for details.
3707 *
3708 * finish_task_switch() will drop rq->lock() and lower preempt_count
3709 * and the preempt_enable() will end up enabling preemption (on
3710 * PREEMPT_COUNT kernels).
3711 */
3712
3713 rq = finish_task_switch(prev);
3714 balance_callback(rq);
3715 preempt_enable();
3716
3717 if (current->set_child_tid)
3718 put_user(task_pid_vnr(current), current->set_child_tid);
3719
3720 calculate_sigpending();
3721}
3722
3723/*
3724 * context_switch - switch to the new MM and the new thread's register state.
3725 */
3726static __always_inline struct rq *
3727context_switch(struct rq *rq, struct task_struct *prev,
3728 struct task_struct *next, struct rq_flags *rf)
3729{
3730 prepare_task_switch(rq, prev, next);
3731
3732 /*
3733 * For paravirt, this is coupled with an exit in switch_to to
3734 * combine the page table reload and the switch backend into
3735 * one hypercall.
3736 */
3737 arch_start_context_switch(prev);
3738
3739 /*
3740 * kernel -> kernel lazy + transfer active
3741 * user -> kernel lazy + mmgrab() active
3742 *
3743 * kernel -> user switch + mmdrop() active
3744 * user -> user switch
3745 */
3746 if (!next->mm) { // to kernel
3747 enter_lazy_tlb(prev->active_mm, next);
3748
3749 next->active_mm = prev->active_mm;
3750 if (prev->mm) // from user
3751 mmgrab(prev->active_mm);
3752 else
3753 prev->active_mm = NULL;
3754 } else { // to user
3755 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3756 /*
3757 * sys_membarrier() requires an smp_mb() between setting
3758 * rq->curr / membarrier_switch_mm() and returning to userspace.
3759 *
3760 * The below provides this either through switch_mm(), or in
3761 * case 'prev->active_mm == next->mm' through
3762 * finish_task_switch()'s mmdrop().
3763 */
3764 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3765
3766 if (!prev->mm) { // from kernel
3767 /* will mmdrop() in finish_task_switch(). */
3768 rq->prev_mm = prev->active_mm;
3769 prev->active_mm = NULL;
3770 }
3771 }
3772
3773 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3774
3775 prepare_lock_switch(rq, next, rf);
3776
3777 /* Here we just switch the register state and the stack. */
3778 switch_to(prev, next, prev);
3779 barrier();
3780
3781 return finish_task_switch(prev);
3782}
3783
3784/*
3785 * nr_running and nr_context_switches:
3786 *
3787 * externally visible scheduler statistics: current number of runnable
3788 * threads, total number of context switches performed since bootup.
3789 */
3790unsigned long nr_running(void)
3791{
3792 unsigned long i, sum = 0;
3793
3794 for_each_online_cpu(i)
3795 sum += cpu_rq(i)->nr_running;
3796
3797 return sum;
3798}
3799
3800/*
3801 * Check if only the current task is running on the CPU.
3802 *
3803 * Caution: this function does not check that the caller has disabled
3804 * preemption, thus the result might have a time-of-check-to-time-of-use
3805 * race. The caller is responsible to use it correctly, for example:
3806 *
3807 * - from a non-preemptible section (of course)
3808 *
3809 * - from a thread that is bound to a single CPU
3810 *
3811 * - in a loop with very short iterations (e.g. a polling loop)
3812 */
3813bool single_task_running(void)
3814{
3815 return raw_rq()->nr_running == 1;
3816}
3817EXPORT_SYMBOL(single_task_running);
3818
3819unsigned long long nr_context_switches(void)
3820{
3821 int i;
3822 unsigned long long sum = 0;
3823
3824 for_each_possible_cpu(i)
3825 sum += cpu_rq(i)->nr_switches;
3826
3827 return sum;
3828}
3829
3830/*
3831 * Consumers of these two interfaces, like for example the cpuidle menu
3832 * governor, are using nonsensical data. Preferring shallow idle state selection
3833 * for a CPU that has IO-wait which might not even end up running the task when
3834 * it does become runnable.
3835 */
3836
3837unsigned long nr_iowait_cpu(int cpu)
3838{
3839 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3840}
3841
3842/*
3843 * IO-wait accounting, and how its mostly bollocks (on SMP).
3844 *
3845 * The idea behind IO-wait account is to account the idle time that we could
3846 * have spend running if it were not for IO. That is, if we were to improve the
3847 * storage performance, we'd have a proportional reduction in IO-wait time.
3848 *
3849 * This all works nicely on UP, where, when a task blocks on IO, we account
3850 * idle time as IO-wait, because if the storage were faster, it could've been
3851 * running and we'd not be idle.
3852 *
3853 * This has been extended to SMP, by doing the same for each CPU. This however
3854 * is broken.
3855 *
3856 * Imagine for instance the case where two tasks block on one CPU, only the one
3857 * CPU will have IO-wait accounted, while the other has regular idle. Even
3858 * though, if the storage were faster, both could've ran at the same time,
3859 * utilising both CPUs.
3860 *
3861 * This means, that when looking globally, the current IO-wait accounting on
3862 * SMP is a lower bound, by reason of under accounting.
3863 *
3864 * Worse, since the numbers are provided per CPU, they are sometimes
3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866 * associated with any one particular CPU, it can wake to another CPU than it
3867 * blocked on. This means the per CPU IO-wait number is meaningless.
3868 *
3869 * Task CPU affinities can make all that even more 'interesting'.
3870 */
3871
3872unsigned long nr_iowait(void)
3873{
3874 unsigned long i, sum = 0;
3875
3876 for_each_possible_cpu(i)
3877 sum += nr_iowait_cpu(i);
3878
3879 return sum;
3880}
3881
3882#ifdef CONFIG_SMP
3883
3884/*
3885 * sched_exec - execve() is a valuable balancing opportunity, because at
3886 * this point the task has the smallest effective memory and cache footprint.
3887 */
3888void sched_exec(void)
3889{
3890 struct task_struct *p = current;
3891 unsigned long flags;
3892 int dest_cpu;
3893
3894 raw_spin_lock_irqsave(&p->pi_lock, flags);
3895 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3896 if (dest_cpu == smp_processor_id())
3897 goto unlock;
3898
3899 if (likely(cpu_active(dest_cpu))) {
3900 struct migration_arg arg = { p, dest_cpu };
3901
3902 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3903 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3904 return;
3905 }
3906unlock:
3907 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3908}
3909
3910#endif
3911
3912DEFINE_PER_CPU(struct kernel_stat, kstat);
3913DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3914
3915EXPORT_PER_CPU_SYMBOL(kstat);
3916EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3917
3918/*
3919 * The function fair_sched_class.update_curr accesses the struct curr
3920 * and its field curr->exec_start; when called from task_sched_runtime(),
3921 * we observe a high rate of cache misses in practice.
3922 * Prefetching this data results in improved performance.
3923 */
3924static inline void prefetch_curr_exec_start(struct task_struct *p)
3925{
3926#ifdef CONFIG_FAIR_GROUP_SCHED
3927 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3928#else
3929 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3930#endif
3931 prefetch(curr);
3932 prefetch(&curr->exec_start);
3933}
3934
3935/*
3936 * Return accounted runtime for the task.
3937 * In case the task is currently running, return the runtime plus current's
3938 * pending runtime that have not been accounted yet.
3939 */
3940unsigned long long task_sched_runtime(struct task_struct *p)
3941{
3942 struct rq_flags rf;
3943 struct rq *rq;
3944 u64 ns;
3945
3946#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3947 /*
3948 * 64-bit doesn't need locks to atomically read a 64-bit value.
3949 * So we have a optimization chance when the task's delta_exec is 0.
3950 * Reading ->on_cpu is racy, but this is ok.
3951 *
3952 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953 * If we race with it entering CPU, unaccounted time is 0. This is
3954 * indistinguishable from the read occurring a few cycles earlier.
3955 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956 * been accounted, so we're correct here as well.
3957 */
3958 if (!p->on_cpu || !task_on_rq_queued(p))
3959 return p->se.sum_exec_runtime;
3960#endif
3961
3962 rq = task_rq_lock(p, &rf);
3963 /*
3964 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3965 * project cycles that may never be accounted to this
3966 * thread, breaking clock_gettime().
3967 */
3968 if (task_current(rq, p) && task_on_rq_queued(p)) {
3969 prefetch_curr_exec_start(p);
3970 update_rq_clock(rq);
3971 p->sched_class->update_curr(rq);
3972 }
3973 ns = p->se.sum_exec_runtime;
3974 task_rq_unlock(rq, p, &rf);
3975
3976 return ns;
3977}
3978
3979/*
3980 * This function gets called by the timer code, with HZ frequency.
3981 * We call it with interrupts disabled.
3982 */
3983void scheduler_tick(void)
3984{
3985 int cpu = smp_processor_id();
3986 struct rq *rq = cpu_rq(cpu);
3987 struct task_struct *curr = rq->curr;
3988 struct rq_flags rf;
3989 unsigned long thermal_pressure;
3990
3991 arch_scale_freq_tick();
3992 sched_clock_tick();
3993
3994 rq_lock(rq, &rf);
3995
3996 update_rq_clock(rq);
3997 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3998 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3999 curr->sched_class->task_tick(rq, curr, 0);
4000 calc_global_load_tick(rq);
4001 psi_task_tick(rq);
4002
4003 rq_unlock(rq, &rf);
4004
4005 perf_event_task_tick();
4006
4007#ifdef CONFIG_SMP
4008 rq->idle_balance = idle_cpu(cpu);
4009 trigger_load_balance(rq);
4010#endif
4011}
4012
4013#ifdef CONFIG_NO_HZ_FULL
4014
4015struct tick_work {
4016 int cpu;
4017 atomic_t state;
4018 struct delayed_work work;
4019};
4020/* Values for ->state, see diagram below. */
4021#define TICK_SCHED_REMOTE_OFFLINE 0
4022#define TICK_SCHED_REMOTE_OFFLINING 1
4023#define TICK_SCHED_REMOTE_RUNNING 2
4024
4025/*
4026 * State diagram for ->state:
4027 *
4028 *
4029 * TICK_SCHED_REMOTE_OFFLINE
4030 * | ^
4031 * | |
4032 * | | sched_tick_remote()
4033 * | |
4034 * | |
4035 * +--TICK_SCHED_REMOTE_OFFLINING
4036 * | ^
4037 * | |
4038 * sched_tick_start() | | sched_tick_stop()
4039 * | |
4040 * V |
4041 * TICK_SCHED_REMOTE_RUNNING
4042 *
4043 *
4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045 * and sched_tick_start() are happy to leave the state in RUNNING.
4046 */
4047
4048static struct tick_work __percpu *tick_work_cpu;
4049
4050static void sched_tick_remote(struct work_struct *work)
4051{
4052 struct delayed_work *dwork = to_delayed_work(work);
4053 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4054 int cpu = twork->cpu;
4055 struct rq *rq = cpu_rq(cpu);
4056 struct task_struct *curr;
4057 struct rq_flags rf;
4058 u64 delta;
4059 int os;
4060
4061 /*
4062 * Handle the tick only if it appears the remote CPU is running in full
4063 * dynticks mode. The check is racy by nature, but missing a tick or
4064 * having one too much is no big deal because the scheduler tick updates
4065 * statistics and checks timeslices in a time-independent way, regardless
4066 * of when exactly it is running.
4067 */
4068 if (!tick_nohz_tick_stopped_cpu(cpu))
4069 goto out_requeue;
4070
4071 rq_lock_irq(rq, &rf);
4072 curr = rq->curr;
4073 if (cpu_is_offline(cpu))
4074 goto out_unlock;
4075
4076 update_rq_clock(rq);
4077
4078 if (!is_idle_task(curr)) {
4079 /*
4080 * Make sure the next tick runs within a reasonable
4081 * amount of time.
4082 */
4083 delta = rq_clock_task(rq) - curr->se.exec_start;
4084 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4085 }
4086 curr->sched_class->task_tick(rq, curr, 0);
4087
4088 calc_load_nohz_remote(rq);
4089out_unlock:
4090 rq_unlock_irq(rq, &rf);
4091out_requeue:
4092
4093 /*
4094 * Run the remote tick once per second (1Hz). This arbitrary
4095 * frequency is large enough to avoid overload but short enough
4096 * to keep scheduler internal stats reasonably up to date. But
4097 * first update state to reflect hotplug activity if required.
4098 */
4099 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4100 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4101 if (os == TICK_SCHED_REMOTE_RUNNING)
4102 queue_delayed_work(system_unbound_wq, dwork, HZ);
4103}
4104
4105static void sched_tick_start(int cpu)
4106{
4107 int os;
4108 struct tick_work *twork;
4109
4110 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4111 return;
4112
4113 WARN_ON_ONCE(!tick_work_cpu);
4114
4115 twork = per_cpu_ptr(tick_work_cpu, cpu);
4116 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4117 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4118 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4119 twork->cpu = cpu;
4120 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4121 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4122 }
4123}
4124
4125#ifdef CONFIG_HOTPLUG_CPU
4126static void sched_tick_stop(int cpu)
4127{
4128 struct tick_work *twork;
4129 int os;
4130
4131 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4132 return;
4133
4134 WARN_ON_ONCE(!tick_work_cpu);
4135
4136 twork = per_cpu_ptr(tick_work_cpu, cpu);
4137 /* There cannot be competing actions, but don't rely on stop-machine. */
4138 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4139 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4140 /* Don't cancel, as this would mess up the state machine. */
4141}
4142#endif /* CONFIG_HOTPLUG_CPU */
4143
4144int __init sched_tick_offload_init(void)
4145{
4146 tick_work_cpu = alloc_percpu(struct tick_work);
4147 BUG_ON(!tick_work_cpu);
4148 return 0;
4149}
4150
4151#else /* !CONFIG_NO_HZ_FULL */
4152static inline void sched_tick_start(int cpu) { }
4153static inline void sched_tick_stop(int cpu) { }
4154#endif
4155
4156#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4158/*
4159 * If the value passed in is equal to the current preempt count
4160 * then we just disabled preemption. Start timing the latency.
4161 */
4162static inline void preempt_latency_start(int val)
4163{
4164 if (preempt_count() == val) {
4165 unsigned long ip = get_lock_parent_ip();
4166#ifdef CONFIG_DEBUG_PREEMPT
4167 current->preempt_disable_ip = ip;
4168#endif
4169 trace_preempt_off(CALLER_ADDR0, ip);
4170 }
4171}
4172
4173void preempt_count_add(int val)
4174{
4175#ifdef CONFIG_DEBUG_PREEMPT
4176 /*
4177 * Underflow?
4178 */
4179 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4180 return;
4181#endif
4182 __preempt_count_add(val);
4183#ifdef CONFIG_DEBUG_PREEMPT
4184 /*
4185 * Spinlock count overflowing soon?
4186 */
4187 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4188 PREEMPT_MASK - 10);
4189#endif
4190 preempt_latency_start(val);
4191}
4192EXPORT_SYMBOL(preempt_count_add);
4193NOKPROBE_SYMBOL(preempt_count_add);
4194
4195/*
4196 * If the value passed in equals to the current preempt count
4197 * then we just enabled preemption. Stop timing the latency.
4198 */
4199static inline void preempt_latency_stop(int val)
4200{
4201 if (preempt_count() == val)
4202 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4203}
4204
4205void preempt_count_sub(int val)
4206{
4207#ifdef CONFIG_DEBUG_PREEMPT
4208 /*
4209 * Underflow?
4210 */
4211 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4212 return;
4213 /*
4214 * Is the spinlock portion underflowing?
4215 */
4216 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4217 !(preempt_count() & PREEMPT_MASK)))
4218 return;
4219#endif
4220
4221 preempt_latency_stop(val);
4222 __preempt_count_sub(val);
4223}
4224EXPORT_SYMBOL(preempt_count_sub);
4225NOKPROBE_SYMBOL(preempt_count_sub);
4226
4227#else
4228static inline void preempt_latency_start(int val) { }
4229static inline void preempt_latency_stop(int val) { }
4230#endif
4231
4232static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4233{
4234#ifdef CONFIG_DEBUG_PREEMPT
4235 return p->preempt_disable_ip;
4236#else
4237 return 0;
4238#endif
4239}
4240
4241/*
4242 * Print scheduling while atomic bug:
4243 */
4244static noinline void __schedule_bug(struct task_struct *prev)
4245{
4246 /* Save this before calling printk(), since that will clobber it */
4247 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4248
4249 if (oops_in_progress)
4250 return;
4251
4252 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253 prev->comm, prev->pid, preempt_count());
4254
4255 debug_show_held_locks(prev);
4256 print_modules();
4257 if (irqs_disabled())
4258 print_irqtrace_events(prev);
4259 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4260 && in_atomic_preempt_off()) {
4261 pr_err("Preemption disabled at:");
4262 print_ip_sym(KERN_ERR, preempt_disable_ip);
4263 }
4264 if (panic_on_warn)
4265 panic("scheduling while atomic\n");
4266
4267 dump_stack();
4268 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4269}
4270
4271/*
4272 * Various schedule()-time debugging checks and statistics:
4273 */
4274static inline void schedule_debug(struct task_struct *prev, bool preempt)
4275{
4276#ifdef CONFIG_SCHED_STACK_END_CHECK
4277 if (task_stack_end_corrupted(prev))
4278 panic("corrupted stack end detected inside scheduler\n");
4279
4280 if (task_scs_end_corrupted(prev))
4281 panic("corrupted shadow stack detected inside scheduler\n");
4282#endif
4283
4284#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285 if (!preempt && prev->state && prev->non_block_count) {
4286 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287 prev->comm, prev->pid, prev->non_block_count);
4288 dump_stack();
4289 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4290 }
4291#endif
4292
4293 if (unlikely(in_atomic_preempt_off())) {
4294 __schedule_bug(prev);
4295 preempt_count_set(PREEMPT_DISABLED);
4296 }
4297 rcu_sleep_check();
4298
4299 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4300
4301 schedstat_inc(this_rq()->sched_count);
4302}
4303
4304static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4305 struct rq_flags *rf)
4306{
4307#ifdef CONFIG_SMP
4308 const struct sched_class *class;
4309 /*
4310 * We must do the balancing pass before put_prev_task(), such
4311 * that when we release the rq->lock the task is in the same
4312 * state as before we took rq->lock.
4313 *
4314 * We can terminate the balance pass as soon as we know there is
4315 * a runnable task of @class priority or higher.
4316 */
4317 for_class_range(class, prev->sched_class, &idle_sched_class) {
4318 if (class->balance(rq, prev, rf))
4319 break;
4320 }
4321#endif
4322
4323 put_prev_task(rq, prev);
4324}
4325
4326/*
4327 * Pick up the highest-prio task:
4328 */
4329static inline struct task_struct *
4330pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4331{
4332 const struct sched_class *class;
4333 struct task_struct *p;
4334
4335 /*
4336 * Optimization: we know that if all tasks are in the fair class we can
4337 * call that function directly, but only if the @prev task wasn't of a
4338 * higher scheduling class, because otherwise those loose the
4339 * opportunity to pull in more work from other CPUs.
4340 */
4341 if (likely(prev->sched_class <= &fair_sched_class &&
4342 rq->nr_running == rq->cfs.h_nr_running)) {
4343
4344 p = pick_next_task_fair(rq, prev, rf);
4345 if (unlikely(p == RETRY_TASK))
4346 goto restart;
4347
4348 /* Assumes fair_sched_class->next == idle_sched_class */
4349 if (!p) {
4350 put_prev_task(rq, prev);
4351 p = pick_next_task_idle(rq);
4352 }
4353
4354 return p;
4355 }
4356
4357restart:
4358 put_prev_task_balance(rq, prev, rf);
4359
4360 for_each_class(class) {
4361 p = class->pick_next_task(rq);
4362 if (p)
4363 return p;
4364 }
4365
4366 /* The idle class should always have a runnable task: */
4367 BUG();
4368}
4369
4370/*
4371 * __schedule() is the main scheduler function.
4372 *
4373 * The main means of driving the scheduler and thus entering this function are:
4374 *
4375 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4376 *
4377 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378 * paths. For example, see arch/x86/entry_64.S.
4379 *
4380 * To drive preemption between tasks, the scheduler sets the flag in timer
4381 * interrupt handler scheduler_tick().
4382 *
4383 * 3. Wakeups don't really cause entry into schedule(). They add a
4384 * task to the run-queue and that's it.
4385 *
4386 * Now, if the new task added to the run-queue preempts the current
4387 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388 * called on the nearest possible occasion:
4389 *
4390 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4391 *
4392 * - in syscall or exception context, at the next outmost
4393 * preempt_enable(). (this might be as soon as the wake_up()'s
4394 * spin_unlock()!)
4395 *
4396 * - in IRQ context, return from interrupt-handler to
4397 * preemptible context
4398 *
4399 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4400 * then at the next:
4401 *
4402 * - cond_resched() call
4403 * - explicit schedule() call
4404 * - return from syscall or exception to user-space
4405 * - return from interrupt-handler to user-space
4406 *
4407 * WARNING: must be called with preemption disabled!
4408 */
4409static void __sched notrace __schedule(bool preempt)
4410{
4411 struct task_struct *prev, *next;
4412 unsigned long *switch_count;
4413 unsigned long prev_state;
4414 struct rq_flags rf;
4415 struct rq *rq;
4416 int cpu;
4417
4418 cpu = smp_processor_id();
4419 rq = cpu_rq(cpu);
4420 prev = rq->curr;
4421
4422 schedule_debug(prev, preempt);
4423
4424 if (sched_feat(HRTICK))
4425 hrtick_clear(rq);
4426
4427 local_irq_disable();
4428 rcu_note_context_switch(preempt);
4429
4430 /*
4431 * Make sure that signal_pending_state()->signal_pending() below
4432 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433 * done by the caller to avoid the race with signal_wake_up():
4434 *
4435 * __set_current_state(@state) signal_wake_up()
4436 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4437 * wake_up_state(p, state)
4438 * LOCK rq->lock LOCK p->pi_state
4439 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4440 * if (signal_pending_state()) if (p->state & @state)
4441 *
4442 * Also, the membarrier system call requires a full memory barrier
4443 * after coming from user-space, before storing to rq->curr.
4444 */
4445 rq_lock(rq, &rf);
4446 smp_mb__after_spinlock();
4447
4448 /* Promote REQ to ACT */
4449 rq->clock_update_flags <<= 1;
4450 update_rq_clock(rq);
4451
4452 switch_count = &prev->nivcsw;
4453
4454 /*
4455 * We must load prev->state once (task_struct::state is volatile), such
4456 * that:
4457 *
4458 * - we form a control dependency vs deactivate_task() below.
4459 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4460 */
4461 prev_state = prev->state;
4462 if (!preempt && prev_state) {
4463 if (signal_pending_state(prev_state, prev)) {
4464 prev->state = TASK_RUNNING;
4465 } else {
4466 prev->sched_contributes_to_load =
4467 (prev_state & TASK_UNINTERRUPTIBLE) &&
4468 !(prev_state & TASK_NOLOAD) &&
4469 !(prev->flags & PF_FROZEN);
4470
4471 if (prev->sched_contributes_to_load)
4472 rq->nr_uninterruptible++;
4473
4474 /*
4475 * __schedule() ttwu()
4476 * prev_state = prev->state; if (p->on_rq && ...)
4477 * if (prev_state) goto out;
4478 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4479 * p->state = TASK_WAKING
4480 *
4481 * Where __schedule() and ttwu() have matching control dependencies.
4482 *
4483 * After this, schedule() must not care about p->state any more.
4484 */
4485 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4486
4487 if (prev->in_iowait) {
4488 atomic_inc(&rq->nr_iowait);
4489 delayacct_blkio_start();
4490 }
4491 }
4492 switch_count = &prev->nvcsw;
4493 }
4494
4495 next = pick_next_task(rq, prev, &rf);
4496 clear_tsk_need_resched(prev);
4497 clear_preempt_need_resched();
4498
4499 if (likely(prev != next)) {
4500 rq->nr_switches++;
4501 /*
4502 * RCU users of rcu_dereference(rq->curr) may not see
4503 * changes to task_struct made by pick_next_task().
4504 */
4505 RCU_INIT_POINTER(rq->curr, next);
4506 /*
4507 * The membarrier system call requires each architecture
4508 * to have a full memory barrier after updating
4509 * rq->curr, before returning to user-space.
4510 *
4511 * Here are the schemes providing that barrier on the
4512 * various architectures:
4513 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515 * - finish_lock_switch() for weakly-ordered
4516 * architectures where spin_unlock is a full barrier,
4517 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518 * is a RELEASE barrier),
4519 */
4520 ++*switch_count;
4521
4522 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4523
4524 trace_sched_switch(preempt, prev, next);
4525
4526 /* Also unlocks the rq: */
4527 rq = context_switch(rq, prev, next, &rf);
4528 } else {
4529 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4530 rq_unlock_irq(rq, &rf);
4531 }
4532
4533 balance_callback(rq);
4534}
4535
4536void __noreturn do_task_dead(void)
4537{
4538 /* Causes final put_task_struct in finish_task_switch(): */
4539 set_special_state(TASK_DEAD);
4540
4541 /* Tell freezer to ignore us: */
4542 current->flags |= PF_NOFREEZE;
4543
4544 __schedule(false);
4545 BUG();
4546
4547 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4548 for (;;)
4549 cpu_relax();
4550}
4551
4552static inline void sched_submit_work(struct task_struct *tsk)
4553{
4554 if (!tsk->state)
4555 return;
4556
4557 /*
4558 * If a worker went to sleep, notify and ask workqueue whether
4559 * it wants to wake up a task to maintain concurrency.
4560 * As this function is called inside the schedule() context,
4561 * we disable preemption to avoid it calling schedule() again
4562 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4563 * requires it.
4564 */
4565 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4566 preempt_disable();
4567 if (tsk->flags & PF_WQ_WORKER)
4568 wq_worker_sleeping(tsk);
4569 else
4570 io_wq_worker_sleeping(tsk);
4571 preempt_enable_no_resched();
4572 }
4573
4574 if (tsk_is_pi_blocked(tsk))
4575 return;
4576
4577 /*
4578 * If we are going to sleep and we have plugged IO queued,
4579 * make sure to submit it to avoid deadlocks.
4580 */
4581 if (blk_needs_flush_plug(tsk))
4582 blk_schedule_flush_plug(tsk);
4583}
4584
4585static void sched_update_worker(struct task_struct *tsk)
4586{
4587 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4588 if (tsk->flags & PF_WQ_WORKER)
4589 wq_worker_running(tsk);
4590 else
4591 io_wq_worker_running(tsk);
4592 }
4593}
4594
4595asmlinkage __visible void __sched schedule(void)
4596{
4597 struct task_struct *tsk = current;
4598
4599 sched_submit_work(tsk);
4600 do {
4601 preempt_disable();
4602 __schedule(false);
4603 sched_preempt_enable_no_resched();
4604 } while (need_resched());
4605 sched_update_worker(tsk);
4606}
4607EXPORT_SYMBOL(schedule);
4608
4609/*
4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611 * state (have scheduled out non-voluntarily) by making sure that all
4612 * tasks have either left the run queue or have gone into user space.
4613 * As idle tasks do not do either, they must not ever be preempted
4614 * (schedule out non-voluntarily).
4615 *
4616 * schedule_idle() is similar to schedule_preempt_disable() except that it
4617 * never enables preemption because it does not call sched_submit_work().
4618 */
4619void __sched schedule_idle(void)
4620{
4621 /*
4622 * As this skips calling sched_submit_work(), which the idle task does
4623 * regardless because that function is a nop when the task is in a
4624 * TASK_RUNNING state, make sure this isn't used someplace that the
4625 * current task can be in any other state. Note, idle is always in the
4626 * TASK_RUNNING state.
4627 */
4628 WARN_ON_ONCE(current->state);
4629 do {
4630 __schedule(false);
4631 } while (need_resched());
4632}
4633
4634#ifdef CONFIG_CONTEXT_TRACKING
4635asmlinkage __visible void __sched schedule_user(void)
4636{
4637 /*
4638 * If we come here after a random call to set_need_resched(),
4639 * or we have been woken up remotely but the IPI has not yet arrived,
4640 * we haven't yet exited the RCU idle mode. Do it here manually until
4641 * we find a better solution.
4642 *
4643 * NB: There are buggy callers of this function. Ideally we
4644 * should warn if prev_state != CONTEXT_USER, but that will trigger
4645 * too frequently to make sense yet.
4646 */
4647 enum ctx_state prev_state = exception_enter();
4648 schedule();
4649 exception_exit(prev_state);
4650}
4651#endif
4652
4653/**
4654 * schedule_preempt_disabled - called with preemption disabled
4655 *
4656 * Returns with preemption disabled. Note: preempt_count must be 1
4657 */
4658void __sched schedule_preempt_disabled(void)
4659{
4660 sched_preempt_enable_no_resched();
4661 schedule();
4662 preempt_disable();
4663}
4664
4665static void __sched notrace preempt_schedule_common(void)
4666{
4667 do {
4668 /*
4669 * Because the function tracer can trace preempt_count_sub()
4670 * and it also uses preempt_enable/disable_notrace(), if
4671 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672 * by the function tracer will call this function again and
4673 * cause infinite recursion.
4674 *
4675 * Preemption must be disabled here before the function
4676 * tracer can trace. Break up preempt_disable() into two
4677 * calls. One to disable preemption without fear of being
4678 * traced. The other to still record the preemption latency,
4679 * which can also be traced by the function tracer.
4680 */
4681 preempt_disable_notrace();
4682 preempt_latency_start(1);
4683 __schedule(true);
4684 preempt_latency_stop(1);
4685 preempt_enable_no_resched_notrace();
4686
4687 /*
4688 * Check again in case we missed a preemption opportunity
4689 * between schedule and now.
4690 */
4691 } while (need_resched());
4692}
4693
4694#ifdef CONFIG_PREEMPTION
4695/*
4696 * This is the entry point to schedule() from in-kernel preemption
4697 * off of preempt_enable.
4698 */
4699asmlinkage __visible void __sched notrace preempt_schedule(void)
4700{
4701 /*
4702 * If there is a non-zero preempt_count or interrupts are disabled,
4703 * we do not want to preempt the current task. Just return..
4704 */
4705 if (likely(!preemptible()))
4706 return;
4707
4708 preempt_schedule_common();
4709}
4710NOKPROBE_SYMBOL(preempt_schedule);
4711EXPORT_SYMBOL(preempt_schedule);
4712
4713/**
4714 * preempt_schedule_notrace - preempt_schedule called by tracing
4715 *
4716 * The tracing infrastructure uses preempt_enable_notrace to prevent
4717 * recursion and tracing preempt enabling caused by the tracing
4718 * infrastructure itself. But as tracing can happen in areas coming
4719 * from userspace or just about to enter userspace, a preempt enable
4720 * can occur before user_exit() is called. This will cause the scheduler
4721 * to be called when the system is still in usermode.
4722 *
4723 * To prevent this, the preempt_enable_notrace will use this function
4724 * instead of preempt_schedule() to exit user context if needed before
4725 * calling the scheduler.
4726 */
4727asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4728{
4729 enum ctx_state prev_ctx;
4730
4731 if (likely(!preemptible()))
4732 return;
4733
4734 do {
4735 /*
4736 * Because the function tracer can trace preempt_count_sub()
4737 * and it also uses preempt_enable/disable_notrace(), if
4738 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739 * by the function tracer will call this function again and
4740 * cause infinite recursion.
4741 *
4742 * Preemption must be disabled here before the function
4743 * tracer can trace. Break up preempt_disable() into two
4744 * calls. One to disable preemption without fear of being
4745 * traced. The other to still record the preemption latency,
4746 * which can also be traced by the function tracer.
4747 */
4748 preempt_disable_notrace();
4749 preempt_latency_start(1);
4750 /*
4751 * Needs preempt disabled in case user_exit() is traced
4752 * and the tracer calls preempt_enable_notrace() causing
4753 * an infinite recursion.
4754 */
4755 prev_ctx = exception_enter();
4756 __schedule(true);
4757 exception_exit(prev_ctx);
4758
4759 preempt_latency_stop(1);
4760 preempt_enable_no_resched_notrace();
4761 } while (need_resched());
4762}
4763EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4764
4765#endif /* CONFIG_PREEMPTION */
4766
4767/*
4768 * This is the entry point to schedule() from kernel preemption
4769 * off of irq context.
4770 * Note, that this is called and return with irqs disabled. This will
4771 * protect us against recursive calling from irq.
4772 */
4773asmlinkage __visible void __sched preempt_schedule_irq(void)
4774{
4775 enum ctx_state prev_state;
4776
4777 /* Catch callers which need to be fixed */
4778 BUG_ON(preempt_count() || !irqs_disabled());
4779
4780 prev_state = exception_enter();
4781
4782 do {
4783 preempt_disable();
4784 local_irq_enable();
4785 __schedule(true);
4786 local_irq_disable();
4787 sched_preempt_enable_no_resched();
4788 } while (need_resched());
4789
4790 exception_exit(prev_state);
4791}
4792
4793int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4794 void *key)
4795{
4796 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4797 return try_to_wake_up(curr->private, mode, wake_flags);
4798}
4799EXPORT_SYMBOL(default_wake_function);
4800
4801#ifdef CONFIG_RT_MUTEXES
4802
4803static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4804{
4805 if (pi_task)
4806 prio = min(prio, pi_task->prio);
4807
4808 return prio;
4809}
4810
4811static inline int rt_effective_prio(struct task_struct *p, int prio)
4812{
4813 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4814
4815 return __rt_effective_prio(pi_task, prio);
4816}
4817
4818/*
4819 * rt_mutex_setprio - set the current priority of a task
4820 * @p: task to boost
4821 * @pi_task: donor task
4822 *
4823 * This function changes the 'effective' priority of a task. It does
4824 * not touch ->normal_prio like __setscheduler().
4825 *
4826 * Used by the rt_mutex code to implement priority inheritance
4827 * logic. Call site only calls if the priority of the task changed.
4828 */
4829void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4830{
4831 int prio, oldprio, queued, running, queue_flag =
4832 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4833 const struct sched_class *prev_class;
4834 struct rq_flags rf;
4835 struct rq *rq;
4836
4837 /* XXX used to be waiter->prio, not waiter->task->prio */
4838 prio = __rt_effective_prio(pi_task, p->normal_prio);
4839
4840 /*
4841 * If nothing changed; bail early.
4842 */
4843 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4844 return;
4845
4846 rq = __task_rq_lock(p, &rf);
4847 update_rq_clock(rq);
4848 /*
4849 * Set under pi_lock && rq->lock, such that the value can be used under
4850 * either lock.
4851 *
4852 * Note that there is loads of tricky to make this pointer cache work
4853 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854 * ensure a task is de-boosted (pi_task is set to NULL) before the
4855 * task is allowed to run again (and can exit). This ensures the pointer
4856 * points to a blocked task -- which guaratees the task is present.
4857 */
4858 p->pi_top_task = pi_task;
4859
4860 /*
4861 * For FIFO/RR we only need to set prio, if that matches we're done.
4862 */
4863 if (prio == p->prio && !dl_prio(prio))
4864 goto out_unlock;
4865
4866 /*
4867 * Idle task boosting is a nono in general. There is one
4868 * exception, when PREEMPT_RT and NOHZ is active:
4869 *
4870 * The idle task calls get_next_timer_interrupt() and holds
4871 * the timer wheel base->lock on the CPU and another CPU wants
4872 * to access the timer (probably to cancel it). We can safely
4873 * ignore the boosting request, as the idle CPU runs this code
4874 * with interrupts disabled and will complete the lock
4875 * protected section without being interrupted. So there is no
4876 * real need to boost.
4877 */
4878 if (unlikely(p == rq->idle)) {
4879 WARN_ON(p != rq->curr);
4880 WARN_ON(p->pi_blocked_on);
4881 goto out_unlock;
4882 }
4883
4884 trace_sched_pi_setprio(p, pi_task);
4885 oldprio = p->prio;
4886
4887 if (oldprio == prio)
4888 queue_flag &= ~DEQUEUE_MOVE;
4889
4890 prev_class = p->sched_class;
4891 queued = task_on_rq_queued(p);
4892 running = task_current(rq, p);
4893 if (queued)
4894 dequeue_task(rq, p, queue_flag);
4895 if (running)
4896 put_prev_task(rq, p);
4897
4898 /*
4899 * Boosting condition are:
4900 * 1. -rt task is running and holds mutex A
4901 * --> -dl task blocks on mutex A
4902 *
4903 * 2. -dl task is running and holds mutex A
4904 * --> -dl task blocks on mutex A and could preempt the
4905 * running task
4906 */
4907 if (dl_prio(prio)) {
4908 if (!dl_prio(p->normal_prio) ||
4909 (pi_task && dl_prio(pi_task->prio) &&
4910 dl_entity_preempt(&pi_task->dl, &p->dl))) {
4911 p->dl.dl_boosted = 1;
4912 queue_flag |= ENQUEUE_REPLENISH;
4913 } else
4914 p->dl.dl_boosted = 0;
4915 p->sched_class = &dl_sched_class;
4916 } else if (rt_prio(prio)) {
4917 if (dl_prio(oldprio))
4918 p->dl.dl_boosted = 0;
4919 if (oldprio < prio)
4920 queue_flag |= ENQUEUE_HEAD;
4921 p->sched_class = &rt_sched_class;
4922 } else {
4923 if (dl_prio(oldprio))
4924 p->dl.dl_boosted = 0;
4925 if (rt_prio(oldprio))
4926 p->rt.timeout = 0;
4927 p->sched_class = &fair_sched_class;
4928 }
4929
4930 p->prio = prio;
4931
4932 if (queued)
4933 enqueue_task(rq, p, queue_flag);
4934 if (running)
4935 set_next_task(rq, p);
4936
4937 check_class_changed(rq, p, prev_class, oldprio);
4938out_unlock:
4939 /* Avoid rq from going away on us: */
4940 preempt_disable();
4941 __task_rq_unlock(rq, &rf);
4942
4943 balance_callback(rq);
4944 preempt_enable();
4945}
4946#else
4947static inline int rt_effective_prio(struct task_struct *p, int prio)
4948{
4949 return prio;
4950}
4951#endif
4952
4953void set_user_nice(struct task_struct *p, long nice)
4954{
4955 bool queued, running;
4956 int old_prio;
4957 struct rq_flags rf;
4958 struct rq *rq;
4959
4960 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4961 return;
4962 /*
4963 * We have to be careful, if called from sys_setpriority(),
4964 * the task might be in the middle of scheduling on another CPU.
4965 */
4966 rq = task_rq_lock(p, &rf);
4967 update_rq_clock(rq);
4968
4969 /*
4970 * The RT priorities are set via sched_setscheduler(), but we still
4971 * allow the 'normal' nice value to be set - but as expected
4972 * it wont have any effect on scheduling until the task is
4973 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4974 */
4975 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4976 p->static_prio = NICE_TO_PRIO(nice);
4977 goto out_unlock;
4978 }
4979 queued = task_on_rq_queued(p);
4980 running = task_current(rq, p);
4981 if (queued)
4982 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4983 if (running)
4984 put_prev_task(rq, p);
4985
4986 p->static_prio = NICE_TO_PRIO(nice);
4987 set_load_weight(p, true);
4988 old_prio = p->prio;
4989 p->prio = effective_prio(p);
4990
4991 if (queued)
4992 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4993 if (running)
4994 set_next_task(rq, p);
4995
4996 /*
4997 * If the task increased its priority or is running and
4998 * lowered its priority, then reschedule its CPU:
4999 */
5000 p->sched_class->prio_changed(rq, p, old_prio);
5001
5002out_unlock:
5003 task_rq_unlock(rq, p, &rf);
5004}
5005EXPORT_SYMBOL(set_user_nice);
5006
5007/*
5008 * can_nice - check if a task can reduce its nice value
5009 * @p: task
5010 * @nice: nice value
5011 */
5012int can_nice(const struct task_struct *p, const int nice)
5013{
5014 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015 int nice_rlim = nice_to_rlimit(nice);
5016
5017 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5018 capable(CAP_SYS_NICE));
5019}
5020
5021#ifdef __ARCH_WANT_SYS_NICE
5022
5023/*
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5026 *
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5029 */
5030SYSCALL_DEFINE1(nice, int, increment)
5031{
5032 long nice, retval;
5033
5034 /*
5035 * Setpriority might change our priority at the same moment.
5036 * We don't have to worry. Conceptually one call occurs first
5037 * and we have a single winner.
5038 */
5039 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5040 nice = task_nice(current) + increment;
5041
5042 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5043 if (increment < 0 && !can_nice(current, nice))
5044 return -EPERM;
5045
5046 retval = security_task_setnice(current, nice);
5047 if (retval)
5048 return retval;
5049
5050 set_user_nice(current, nice);
5051 return 0;
5052}
5053
5054#endif
5055
5056/**
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5059 *
5060 * Return: The priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
5063 */
5064int task_prio(const struct task_struct *p)
5065{
5066 return p->prio - MAX_RT_PRIO;
5067}
5068
5069/**
5070 * idle_cpu - is a given CPU idle currently?
5071 * @cpu: the processor in question.
5072 *
5073 * Return: 1 if the CPU is currently idle. 0 otherwise.
5074 */
5075int idle_cpu(int cpu)
5076{
5077 struct rq *rq = cpu_rq(cpu);
5078
5079 if (rq->curr != rq->idle)
5080 return 0;
5081
5082 if (rq->nr_running)
5083 return 0;
5084
5085#ifdef CONFIG_SMP
5086 if (rq->ttwu_pending)
5087 return 0;
5088#endif
5089
5090 return 1;
5091}
5092
5093/**
5094 * available_idle_cpu - is a given CPU idle for enqueuing work.
5095 * @cpu: the CPU in question.
5096 *
5097 * Return: 1 if the CPU is currently idle. 0 otherwise.
5098 */
5099int available_idle_cpu(int cpu)
5100{
5101 if (!idle_cpu(cpu))
5102 return 0;
5103
5104 if (vcpu_is_preempted(cpu))
5105 return 0;
5106
5107 return 1;
5108}
5109
5110/**
5111 * idle_task - return the idle task for a given CPU.
5112 * @cpu: the processor in question.
5113 *
5114 * Return: The idle task for the CPU @cpu.
5115 */
5116struct task_struct *idle_task(int cpu)
5117{
5118 return cpu_rq(cpu)->idle;
5119}
5120
5121/**
5122 * find_process_by_pid - find a process with a matching PID value.
5123 * @pid: the pid in question.
5124 *
5125 * The task of @pid, if found. %NULL otherwise.
5126 */
5127static struct task_struct *find_process_by_pid(pid_t pid)
5128{
5129 return pid ? find_task_by_vpid(pid) : current;
5130}
5131
5132/*
5133 * sched_setparam() passes in -1 for its policy, to let the functions
5134 * it calls know not to change it.
5135 */
5136#define SETPARAM_POLICY -1
5137
5138static void __setscheduler_params(struct task_struct *p,
5139 const struct sched_attr *attr)
5140{
5141 int policy = attr->sched_policy;
5142
5143 if (policy == SETPARAM_POLICY)
5144 policy = p->policy;
5145
5146 p->policy = policy;
5147
5148 if (dl_policy(policy))
5149 __setparam_dl(p, attr);
5150 else if (fair_policy(policy))
5151 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5152
5153 /*
5154 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155 * !rt_policy. Always setting this ensures that things like
5156 * getparam()/getattr() don't report silly values for !rt tasks.
5157 */
5158 p->rt_priority = attr->sched_priority;
5159 p->normal_prio = normal_prio(p);
5160 set_load_weight(p, true);
5161}
5162
5163/* Actually do priority change: must hold pi & rq lock. */
5164static void __setscheduler(struct rq *rq, struct task_struct *p,
5165 const struct sched_attr *attr, bool keep_boost)
5166{
5167 /*
5168 * If params can't change scheduling class changes aren't allowed
5169 * either.
5170 */
5171 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5172 return;
5173
5174 __setscheduler_params(p, attr);
5175
5176 /*
5177 * Keep a potential priority boosting if called from
5178 * sched_setscheduler().
5179 */
5180 p->prio = normal_prio(p);
5181 if (keep_boost)
5182 p->prio = rt_effective_prio(p, p->prio);
5183
5184 if (dl_prio(p->prio))
5185 p->sched_class = &dl_sched_class;
5186 else if (rt_prio(p->prio))
5187 p->sched_class = &rt_sched_class;
5188 else
5189 p->sched_class = &fair_sched_class;
5190}
5191
5192/*
5193 * Check the target process has a UID that matches the current process's:
5194 */
5195static bool check_same_owner(struct task_struct *p)
5196{
5197 const struct cred *cred = current_cred(), *pcred;
5198 bool match;
5199
5200 rcu_read_lock();
5201 pcred = __task_cred(p);
5202 match = (uid_eq(cred->euid, pcred->euid) ||
5203 uid_eq(cred->euid, pcred->uid));
5204 rcu_read_unlock();
5205 return match;
5206}
5207
5208static int __sched_setscheduler(struct task_struct *p,
5209 const struct sched_attr *attr,
5210 bool user, bool pi)
5211{
5212 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5213 MAX_RT_PRIO - 1 - attr->sched_priority;
5214 int retval, oldprio, oldpolicy = -1, queued, running;
5215 int new_effective_prio, policy = attr->sched_policy;
5216 const struct sched_class *prev_class;
5217 struct rq_flags rf;
5218 int reset_on_fork;
5219 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5220 struct rq *rq;
5221
5222 /* The pi code expects interrupts enabled */
5223 BUG_ON(pi && in_interrupt());
5224recheck:
5225 /* Double check policy once rq lock held: */
5226 if (policy < 0) {
5227 reset_on_fork = p->sched_reset_on_fork;
5228 policy = oldpolicy = p->policy;
5229 } else {
5230 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5231
5232 if (!valid_policy(policy))
5233 return -EINVAL;
5234 }
5235
5236 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5237 return -EINVAL;
5238
5239 /*
5240 * Valid priorities for SCHED_FIFO and SCHED_RR are
5241 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242 * SCHED_BATCH and SCHED_IDLE is 0.
5243 */
5244 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5245 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5246 return -EINVAL;
5247 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5248 (rt_policy(policy) != (attr->sched_priority != 0)))
5249 return -EINVAL;
5250
5251 /*
5252 * Allow unprivileged RT tasks to decrease priority:
5253 */
5254 if (user && !capable(CAP_SYS_NICE)) {
5255 if (fair_policy(policy)) {
5256 if (attr->sched_nice < task_nice(p) &&
5257 !can_nice(p, attr->sched_nice))
5258 return -EPERM;
5259 }
5260
5261 if (rt_policy(policy)) {
5262 unsigned long rlim_rtprio =
5263 task_rlimit(p, RLIMIT_RTPRIO);
5264
5265 /* Can't set/change the rt policy: */
5266 if (policy != p->policy && !rlim_rtprio)
5267 return -EPERM;
5268
5269 /* Can't increase priority: */
5270 if (attr->sched_priority > p->rt_priority &&
5271 attr->sched_priority > rlim_rtprio)
5272 return -EPERM;
5273 }
5274
5275 /*
5276 * Can't set/change SCHED_DEADLINE policy at all for now
5277 * (safest behavior); in the future we would like to allow
5278 * unprivileged DL tasks to increase their relative deadline
5279 * or reduce their runtime (both ways reducing utilization)
5280 */
5281 if (dl_policy(policy))
5282 return -EPERM;
5283
5284 /*
5285 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287 */
5288 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5289 if (!can_nice(p, task_nice(p)))
5290 return -EPERM;
5291 }
5292
5293 /* Can't change other user's priorities: */
5294 if (!check_same_owner(p))
5295 return -EPERM;
5296
5297 /* Normal users shall not reset the sched_reset_on_fork flag: */
5298 if (p->sched_reset_on_fork && !reset_on_fork)
5299 return -EPERM;
5300 }
5301
5302 if (user) {
5303 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5304 return -EINVAL;
5305
5306 retval = security_task_setscheduler(p);
5307 if (retval)
5308 return retval;
5309 }
5310
5311 /* Update task specific "requested" clamps */
5312 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5313 retval = uclamp_validate(p, attr);
5314 if (retval)
5315 return retval;
5316 }
5317
5318 if (pi)
5319 cpuset_read_lock();
5320
5321 /*
5322 * Make sure no PI-waiters arrive (or leave) while we are
5323 * changing the priority of the task:
5324 *
5325 * To be able to change p->policy safely, the appropriate
5326 * runqueue lock must be held.
5327 */
5328 rq = task_rq_lock(p, &rf);
5329 update_rq_clock(rq);
5330
5331 /*
5332 * Changing the policy of the stop threads its a very bad idea:
5333 */
5334 if (p == rq->stop) {
5335 retval = -EINVAL;
5336 goto unlock;
5337 }
5338
5339 /*
5340 * If not changing anything there's no need to proceed further,
5341 * but store a possible modification of reset_on_fork.
5342 */
5343 if (unlikely(policy == p->policy)) {
5344 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5345 goto change;
5346 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5347 goto change;
5348 if (dl_policy(policy) && dl_param_changed(p, attr))
5349 goto change;
5350 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5351 goto change;
5352
5353 p->sched_reset_on_fork = reset_on_fork;
5354 retval = 0;
5355 goto unlock;
5356 }
5357change:
5358
5359 if (user) {
5360#ifdef CONFIG_RT_GROUP_SCHED
5361 /*
5362 * Do not allow realtime tasks into groups that have no runtime
5363 * assigned.
5364 */
5365 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5366 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5367 !task_group_is_autogroup(task_group(p))) {
5368 retval = -EPERM;
5369 goto unlock;
5370 }
5371#endif
5372#ifdef CONFIG_SMP
5373 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5374 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5375 cpumask_t *span = rq->rd->span;
5376
5377 /*
5378 * Don't allow tasks with an affinity mask smaller than
5379 * the entire root_domain to become SCHED_DEADLINE. We
5380 * will also fail if there's no bandwidth available.
5381 */
5382 if (!cpumask_subset(span, p->cpus_ptr) ||
5383 rq->rd->dl_bw.bw == 0) {
5384 retval = -EPERM;
5385 goto unlock;
5386 }
5387 }
5388#endif
5389 }
5390
5391 /* Re-check policy now with rq lock held: */
5392 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5393 policy = oldpolicy = -1;
5394 task_rq_unlock(rq, p, &rf);
5395 if (pi)
5396 cpuset_read_unlock();
5397 goto recheck;
5398 }
5399
5400 /*
5401 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5403 * is available.
5404 */
5405 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5406 retval = -EBUSY;
5407 goto unlock;
5408 }
5409
5410 p->sched_reset_on_fork = reset_on_fork;
5411 oldprio = p->prio;
5412
5413 if (pi) {
5414 /*
5415 * Take priority boosted tasks into account. If the new
5416 * effective priority is unchanged, we just store the new
5417 * normal parameters and do not touch the scheduler class and
5418 * the runqueue. This will be done when the task deboost
5419 * itself.
5420 */
5421 new_effective_prio = rt_effective_prio(p, newprio);
5422 if (new_effective_prio == oldprio)
5423 queue_flags &= ~DEQUEUE_MOVE;
5424 }
5425
5426 queued = task_on_rq_queued(p);
5427 running = task_current(rq, p);
5428 if (queued)
5429 dequeue_task(rq, p, queue_flags);
5430 if (running)
5431 put_prev_task(rq, p);
5432
5433 prev_class = p->sched_class;
5434
5435 __setscheduler(rq, p, attr, pi);
5436 __setscheduler_uclamp(p, attr);
5437
5438 if (queued) {
5439 /*
5440 * We enqueue to tail when the priority of a task is
5441 * increased (user space view).
5442 */
5443 if (oldprio < p->prio)
5444 queue_flags |= ENQUEUE_HEAD;
5445
5446 enqueue_task(rq, p, queue_flags);
5447 }
5448 if (running)
5449 set_next_task(rq, p);
5450
5451 check_class_changed(rq, p, prev_class, oldprio);
5452
5453 /* Avoid rq from going away on us: */
5454 preempt_disable();
5455 task_rq_unlock(rq, p, &rf);
5456
5457 if (pi) {
5458 cpuset_read_unlock();
5459 rt_mutex_adjust_pi(p);
5460 }
5461
5462 /* Run balance callbacks after we've adjusted the PI chain: */
5463 balance_callback(rq);
5464 preempt_enable();
5465
5466 return 0;
5467
5468unlock:
5469 task_rq_unlock(rq, p, &rf);
5470 if (pi)
5471 cpuset_read_unlock();
5472 return retval;
5473}
5474
5475static int _sched_setscheduler(struct task_struct *p, int policy,
5476 const struct sched_param *param, bool check)
5477{
5478 struct sched_attr attr = {
5479 .sched_policy = policy,
5480 .sched_priority = param->sched_priority,
5481 .sched_nice = PRIO_TO_NICE(p->static_prio),
5482 };
5483
5484 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5486 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5487 policy &= ~SCHED_RESET_ON_FORK;
5488 attr.sched_policy = policy;
5489 }
5490
5491 return __sched_setscheduler(p, &attr, check, true);
5492}
5493/**
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5498 *
5499 * Use sched_set_fifo(), read its comment.
5500 *
5501 * Return: 0 on success. An error code otherwise.
5502 *
5503 * NOTE that the task may be already dead.
5504 */
5505int sched_setscheduler(struct task_struct *p, int policy,
5506 const struct sched_param *param)
5507{
5508 return _sched_setscheduler(p, policy, param, true);
5509}
5510
5511int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5512{
5513 return __sched_setscheduler(p, attr, true, true);
5514}
5515
5516int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5517{
5518 return __sched_setscheduler(p, attr, false, true);
5519}
5520
5521/**
5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523 * @p: the task in question.
5524 * @policy: new policy.
5525 * @param: structure containing the new RT priority.
5526 *
5527 * Just like sched_setscheduler, only don't bother checking if the
5528 * current context has permission. For example, this is needed in
5529 * stop_machine(): we create temporary high priority worker threads,
5530 * but our caller might not have that capability.
5531 *
5532 * Return: 0 on success. An error code otherwise.
5533 */
5534int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5535 const struct sched_param *param)
5536{
5537 return _sched_setscheduler(p, policy, param, false);
5538}
5539
5540/*
5541 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542 * incapable of resource management, which is the one thing an OS really should
5543 * be doing.
5544 *
5545 * This is of course the reason it is limited to privileged users only.
5546 *
5547 * Worse still; it is fundamentally impossible to compose static priority
5548 * workloads. You cannot take two correctly working static prio workloads
5549 * and smash them together and still expect them to work.
5550 *
5551 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5552 *
5553 * MAX_RT_PRIO / 2
5554 *
5555 * The administrator _MUST_ configure the system, the kernel simply doesn't
5556 * know enough information to make a sensible choice.
5557 */
5558void sched_set_fifo(struct task_struct *p)
5559{
5560 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5561 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5562}
5563EXPORT_SYMBOL_GPL(sched_set_fifo);
5564
5565/*
5566 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5567 */
5568void sched_set_fifo_low(struct task_struct *p)
5569{
5570 struct sched_param sp = { .sched_priority = 1 };
5571 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5572}
5573EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5574
5575void sched_set_normal(struct task_struct *p, int nice)
5576{
5577 struct sched_attr attr = {
5578 .sched_policy = SCHED_NORMAL,
5579 .sched_nice = nice,
5580 };
5581 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5582}
5583EXPORT_SYMBOL_GPL(sched_set_normal);
5584
5585static int
5586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5587{
5588 struct sched_param lparam;
5589 struct task_struct *p;
5590 int retval;
5591
5592 if (!param || pid < 0)
5593 return -EINVAL;
5594 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5595 return -EFAULT;
5596
5597 rcu_read_lock();
5598 retval = -ESRCH;
5599 p = find_process_by_pid(pid);
5600 if (likely(p))
5601 get_task_struct(p);
5602 rcu_read_unlock();
5603
5604 if (likely(p)) {
5605 retval = sched_setscheduler(p, policy, &lparam);
5606 put_task_struct(p);
5607 }
5608
5609 return retval;
5610}
5611
5612/*
5613 * Mimics kernel/events/core.c perf_copy_attr().
5614 */
5615static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5616{
5617 u32 size;
5618 int ret;
5619
5620 /* Zero the full structure, so that a short copy will be nice: */
5621 memset(attr, 0, sizeof(*attr));
5622
5623 ret = get_user(size, &uattr->size);
5624 if (ret)
5625 return ret;
5626
5627 /* ABI compatibility quirk: */
5628 if (!size)
5629 size = SCHED_ATTR_SIZE_VER0;
5630 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5631 goto err_size;
5632
5633 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5634 if (ret) {
5635 if (ret == -E2BIG)
5636 goto err_size;
5637 return ret;
5638 }
5639
5640 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5641 size < SCHED_ATTR_SIZE_VER1)
5642 return -EINVAL;
5643
5644 /*
5645 * XXX: Do we want to be lenient like existing syscalls; or do we want
5646 * to be strict and return an error on out-of-bounds values?
5647 */
5648 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5649
5650 return 0;
5651
5652err_size:
5653 put_user(sizeof(*attr), &uattr->size);
5654 return -E2BIG;
5655}
5656
5657/**
5658 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659 * @pid: the pid in question.
5660 * @policy: new policy.
5661 * @param: structure containing the new RT priority.
5662 *
5663 * Return: 0 on success. An error code otherwise.
5664 */
5665SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5666{
5667 if (policy < 0)
5668 return -EINVAL;
5669
5670 return do_sched_setscheduler(pid, policy, param);
5671}
5672
5673/**
5674 * sys_sched_setparam - set/change the RT priority of a thread
5675 * @pid: the pid in question.
5676 * @param: structure containing the new RT priority.
5677 *
5678 * Return: 0 on success. An error code otherwise.
5679 */
5680SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5681{
5682 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5683}
5684
5685/**
5686 * sys_sched_setattr - same as above, but with extended sched_attr
5687 * @pid: the pid in question.
5688 * @uattr: structure containing the extended parameters.
5689 * @flags: for future extension.
5690 */
5691SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5692 unsigned int, flags)
5693{
5694 struct sched_attr attr;
5695 struct task_struct *p;
5696 int retval;
5697
5698 if (!uattr || pid < 0 || flags)
5699 return -EINVAL;
5700
5701 retval = sched_copy_attr(uattr, &attr);
5702 if (retval)
5703 return retval;
5704
5705 if ((int)attr.sched_policy < 0)
5706 return -EINVAL;
5707 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5708 attr.sched_policy = SETPARAM_POLICY;
5709
5710 rcu_read_lock();
5711 retval = -ESRCH;
5712 p = find_process_by_pid(pid);
5713 if (likely(p))
5714 get_task_struct(p);
5715 rcu_read_unlock();
5716
5717 if (likely(p)) {
5718 retval = sched_setattr(p, &attr);
5719 put_task_struct(p);
5720 }
5721
5722 return retval;
5723}
5724
5725/**
5726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727 * @pid: the pid in question.
5728 *
5729 * Return: On success, the policy of the thread. Otherwise, a negative error
5730 * code.
5731 */
5732SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5733{
5734 struct task_struct *p;
5735 int retval;
5736
5737 if (pid < 0)
5738 return -EINVAL;
5739
5740 retval = -ESRCH;
5741 rcu_read_lock();
5742 p = find_process_by_pid(pid);
5743 if (p) {
5744 retval = security_task_getscheduler(p);
5745 if (!retval)
5746 retval = p->policy
5747 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5748 }
5749 rcu_read_unlock();
5750 return retval;
5751}
5752
5753/**
5754 * sys_sched_getparam - get the RT priority of a thread
5755 * @pid: the pid in question.
5756 * @param: structure containing the RT priority.
5757 *
5758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5759 * code.
5760 */
5761SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5762{
5763 struct sched_param lp = { .sched_priority = 0 };
5764 struct task_struct *p;
5765 int retval;
5766
5767 if (!param || pid < 0)
5768 return -EINVAL;
5769
5770 rcu_read_lock();
5771 p = find_process_by_pid(pid);
5772 retval = -ESRCH;
5773 if (!p)
5774 goto out_unlock;
5775
5776 retval = security_task_getscheduler(p);
5777 if (retval)
5778 goto out_unlock;
5779
5780 if (task_has_rt_policy(p))
5781 lp.sched_priority = p->rt_priority;
5782 rcu_read_unlock();
5783
5784 /*
5785 * This one might sleep, we cannot do it with a spinlock held ...
5786 */
5787 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5788
5789 return retval;
5790
5791out_unlock:
5792 rcu_read_unlock();
5793 return retval;
5794}
5795
5796/*
5797 * Copy the kernel size attribute structure (which might be larger
5798 * than what user-space knows about) to user-space.
5799 *
5800 * Note that all cases are valid: user-space buffer can be larger or
5801 * smaller than the kernel-space buffer. The usual case is that both
5802 * have the same size.
5803 */
5804static int
5805sched_attr_copy_to_user(struct sched_attr __user *uattr,
5806 struct sched_attr *kattr,
5807 unsigned int usize)
5808{
5809 unsigned int ksize = sizeof(*kattr);
5810
5811 if (!access_ok(uattr, usize))
5812 return -EFAULT;
5813
5814 /*
5815 * sched_getattr() ABI forwards and backwards compatibility:
5816 *
5817 * If usize == ksize then we just copy everything to user-space and all is good.
5818 *
5819 * If usize < ksize then we only copy as much as user-space has space for,
5820 * this keeps ABI compatibility as well. We skip the rest.
5821 *
5822 * If usize > ksize then user-space is using a newer version of the ABI,
5823 * which part the kernel doesn't know about. Just ignore it - tooling can
5824 * detect the kernel's knowledge of attributes from the attr->size value
5825 * which is set to ksize in this case.
5826 */
5827 kattr->size = min(usize, ksize);
5828
5829 if (copy_to_user(uattr, kattr, kattr->size))
5830 return -EFAULT;
5831
5832 return 0;
5833}
5834
5835/**
5836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837 * @pid: the pid in question.
5838 * @uattr: structure containing the extended parameters.
5839 * @usize: sizeof(attr) for fwd/bwd comp.
5840 * @flags: for future extension.
5841 */
5842SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5843 unsigned int, usize, unsigned int, flags)
5844{
5845 struct sched_attr kattr = { };
5846 struct task_struct *p;
5847 int retval;
5848
5849 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5850 usize < SCHED_ATTR_SIZE_VER0 || flags)
5851 return -EINVAL;
5852
5853 rcu_read_lock();
5854 p = find_process_by_pid(pid);
5855 retval = -ESRCH;
5856 if (!p)
5857 goto out_unlock;
5858
5859 retval = security_task_getscheduler(p);
5860 if (retval)
5861 goto out_unlock;
5862
5863 kattr.sched_policy = p->policy;
5864 if (p->sched_reset_on_fork)
5865 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5866 if (task_has_dl_policy(p))
5867 __getparam_dl(p, &kattr);
5868 else if (task_has_rt_policy(p))
5869 kattr.sched_priority = p->rt_priority;
5870 else
5871 kattr.sched_nice = task_nice(p);
5872
5873#ifdef CONFIG_UCLAMP_TASK
5874 /*
5875 * This could race with another potential updater, but this is fine
5876 * because it'll correctly read the old or the new value. We don't need
5877 * to guarantee who wins the race as long as it doesn't return garbage.
5878 */
5879 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5880 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5881#endif
5882
5883 rcu_read_unlock();
5884
5885 return sched_attr_copy_to_user(uattr, &kattr, usize);
5886
5887out_unlock:
5888 rcu_read_unlock();
5889 return retval;
5890}
5891
5892long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5893{
5894 cpumask_var_t cpus_allowed, new_mask;
5895 struct task_struct *p;
5896 int retval;
5897
5898 rcu_read_lock();
5899
5900 p = find_process_by_pid(pid);
5901 if (!p) {
5902 rcu_read_unlock();
5903 return -ESRCH;
5904 }
5905
5906 /* Prevent p going away */
5907 get_task_struct(p);
5908 rcu_read_unlock();
5909
5910 if (p->flags & PF_NO_SETAFFINITY) {
5911 retval = -EINVAL;
5912 goto out_put_task;
5913 }
5914 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5915 retval = -ENOMEM;
5916 goto out_put_task;
5917 }
5918 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5919 retval = -ENOMEM;
5920 goto out_free_cpus_allowed;
5921 }
5922 retval = -EPERM;
5923 if (!check_same_owner(p)) {
5924 rcu_read_lock();
5925 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5926 rcu_read_unlock();
5927 goto out_free_new_mask;
5928 }
5929 rcu_read_unlock();
5930 }
5931
5932 retval = security_task_setscheduler(p);
5933 if (retval)
5934 goto out_free_new_mask;
5935
5936
5937 cpuset_cpus_allowed(p, cpus_allowed);
5938 cpumask_and(new_mask, in_mask, cpus_allowed);
5939
5940 /*
5941 * Since bandwidth control happens on root_domain basis,
5942 * if admission test is enabled, we only admit -deadline
5943 * tasks allowed to run on all the CPUs in the task's
5944 * root_domain.
5945 */
5946#ifdef CONFIG_SMP
5947 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5948 rcu_read_lock();
5949 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5950 retval = -EBUSY;
5951 rcu_read_unlock();
5952 goto out_free_new_mask;
5953 }
5954 rcu_read_unlock();
5955 }
5956#endif
5957again:
5958 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5959
5960 if (!retval) {
5961 cpuset_cpus_allowed(p, cpus_allowed);
5962 if (!cpumask_subset(new_mask, cpus_allowed)) {
5963 /*
5964 * We must have raced with a concurrent cpuset
5965 * update. Just reset the cpus_allowed to the
5966 * cpuset's cpus_allowed
5967 */
5968 cpumask_copy(new_mask, cpus_allowed);
5969 goto again;
5970 }
5971 }
5972out_free_new_mask:
5973 free_cpumask_var(new_mask);
5974out_free_cpus_allowed:
5975 free_cpumask_var(cpus_allowed);
5976out_put_task:
5977 put_task_struct(p);
5978 return retval;
5979}
5980
5981static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5982 struct cpumask *new_mask)
5983{
5984 if (len < cpumask_size())
5985 cpumask_clear(new_mask);
5986 else if (len > cpumask_size())
5987 len = cpumask_size();
5988
5989 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5990}
5991
5992/**
5993 * sys_sched_setaffinity - set the CPU affinity of a process
5994 * @pid: pid of the process
5995 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996 * @user_mask_ptr: user-space pointer to the new CPU mask
5997 *
5998 * Return: 0 on success. An error code otherwise.
5999 */
6000SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6001 unsigned long __user *, user_mask_ptr)
6002{
6003 cpumask_var_t new_mask;
6004 int retval;
6005
6006 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6007 return -ENOMEM;
6008
6009 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6010 if (retval == 0)
6011 retval = sched_setaffinity(pid, new_mask);
6012 free_cpumask_var(new_mask);
6013 return retval;
6014}
6015
6016long sched_getaffinity(pid_t pid, struct cpumask *mask)
6017{
6018 struct task_struct *p;
6019 unsigned long flags;
6020 int retval;
6021
6022 rcu_read_lock();
6023
6024 retval = -ESRCH;
6025 p = find_process_by_pid(pid);
6026 if (!p)
6027 goto out_unlock;
6028
6029 retval = security_task_getscheduler(p);
6030 if (retval)
6031 goto out_unlock;
6032
6033 raw_spin_lock_irqsave(&p->pi_lock, flags);
6034 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6035 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6036
6037out_unlock:
6038 rcu_read_unlock();
6039
6040 return retval;
6041}
6042
6043/**
6044 * sys_sched_getaffinity - get the CPU affinity of a process
6045 * @pid: pid of the process
6046 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6048 *
6049 * Return: size of CPU mask copied to user_mask_ptr on success. An
6050 * error code otherwise.
6051 */
6052SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6053 unsigned long __user *, user_mask_ptr)
6054{
6055 int ret;
6056 cpumask_var_t mask;
6057
6058 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6059 return -EINVAL;
6060 if (len & (sizeof(unsigned long)-1))
6061 return -EINVAL;
6062
6063 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064 return -ENOMEM;
6065
6066 ret = sched_getaffinity(pid, mask);
6067 if (ret == 0) {
6068 unsigned int retlen = min(len, cpumask_size());
6069
6070 if (copy_to_user(user_mask_ptr, mask, retlen))
6071 ret = -EFAULT;
6072 else
6073 ret = retlen;
6074 }
6075 free_cpumask_var(mask);
6076
6077 return ret;
6078}
6079
6080/**
6081 * sys_sched_yield - yield the current processor to other threads.
6082 *
6083 * This function yields the current CPU to other tasks. If there are no
6084 * other threads running on this CPU then this function will return.
6085 *
6086 * Return: 0.
6087 */
6088static void do_sched_yield(void)
6089{
6090 struct rq_flags rf;
6091 struct rq *rq;
6092
6093 rq = this_rq_lock_irq(&rf);
6094
6095 schedstat_inc(rq->yld_count);
6096 current->sched_class->yield_task(rq);
6097
6098 /*
6099 * Since we are going to call schedule() anyway, there's
6100 * no need to preempt or enable interrupts:
6101 */
6102 preempt_disable();
6103 rq_unlock(rq, &rf);
6104 sched_preempt_enable_no_resched();
6105
6106 schedule();
6107}
6108
6109SYSCALL_DEFINE0(sched_yield)
6110{
6111 do_sched_yield();
6112 return 0;
6113}
6114
6115#ifndef CONFIG_PREEMPTION
6116int __sched _cond_resched(void)
6117{
6118 if (should_resched(0)) {
6119 preempt_schedule_common();
6120 return 1;
6121 }
6122 rcu_all_qs();
6123 return 0;
6124}
6125EXPORT_SYMBOL(_cond_resched);
6126#endif
6127
6128/*
6129 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130 * call schedule, and on return reacquire the lock.
6131 *
6132 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133 * operations here to prevent schedule() from being called twice (once via
6134 * spin_unlock(), once by hand).
6135 */
6136int __cond_resched_lock(spinlock_t *lock)
6137{
6138 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6139 int ret = 0;
6140
6141 lockdep_assert_held(lock);
6142
6143 if (spin_needbreak(lock) || resched) {
6144 spin_unlock(lock);
6145 if (resched)
6146 preempt_schedule_common();
6147 else
6148 cpu_relax();
6149 ret = 1;
6150 spin_lock(lock);
6151 }
6152 return ret;
6153}
6154EXPORT_SYMBOL(__cond_resched_lock);
6155
6156/**
6157 * yield - yield the current processor to other threads.
6158 *
6159 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6160 *
6161 * The scheduler is at all times free to pick the calling task as the most
6162 * eligible task to run, if removing the yield() call from your code breaks
6163 * it, its already broken.
6164 *
6165 * Typical broken usage is:
6166 *
6167 * while (!event)
6168 * yield();
6169 *
6170 * where one assumes that yield() will let 'the other' process run that will
6171 * make event true. If the current task is a SCHED_FIFO task that will never
6172 * happen. Never use yield() as a progress guarantee!!
6173 *
6174 * If you want to use yield() to wait for something, use wait_event().
6175 * If you want to use yield() to be 'nice' for others, use cond_resched().
6176 * If you still want to use yield(), do not!
6177 */
6178void __sched yield(void)
6179{
6180 set_current_state(TASK_RUNNING);
6181 do_sched_yield();
6182}
6183EXPORT_SYMBOL(yield);
6184
6185/**
6186 * yield_to - yield the current processor to another thread in
6187 * your thread group, or accelerate that thread toward the
6188 * processor it's on.
6189 * @p: target task
6190 * @preempt: whether task preemption is allowed or not
6191 *
6192 * It's the caller's job to ensure that the target task struct
6193 * can't go away on us before we can do any checks.
6194 *
6195 * Return:
6196 * true (>0) if we indeed boosted the target task.
6197 * false (0) if we failed to boost the target.
6198 * -ESRCH if there's no task to yield to.
6199 */
6200int __sched yield_to(struct task_struct *p, bool preempt)
6201{
6202 struct task_struct *curr = current;
6203 struct rq *rq, *p_rq;
6204 unsigned long flags;
6205 int yielded = 0;
6206
6207 local_irq_save(flags);
6208 rq = this_rq();
6209
6210again:
6211 p_rq = task_rq(p);
6212 /*
6213 * If we're the only runnable task on the rq and target rq also
6214 * has only one task, there's absolutely no point in yielding.
6215 */
6216 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6217 yielded = -ESRCH;
6218 goto out_irq;
6219 }
6220
6221 double_rq_lock(rq, p_rq);
6222 if (task_rq(p) != p_rq) {
6223 double_rq_unlock(rq, p_rq);
6224 goto again;
6225 }
6226
6227 if (!curr->sched_class->yield_to_task)
6228 goto out_unlock;
6229
6230 if (curr->sched_class != p->sched_class)
6231 goto out_unlock;
6232
6233 if (task_running(p_rq, p) || p->state)
6234 goto out_unlock;
6235
6236 yielded = curr->sched_class->yield_to_task(rq, p);
6237 if (yielded) {
6238 schedstat_inc(rq->yld_count);
6239 /*
6240 * Make p's CPU reschedule; pick_next_entity takes care of
6241 * fairness.
6242 */
6243 if (preempt && rq != p_rq)
6244 resched_curr(p_rq);
6245 }
6246
6247out_unlock:
6248 double_rq_unlock(rq, p_rq);
6249out_irq:
6250 local_irq_restore(flags);
6251
6252 if (yielded > 0)
6253 schedule();
6254
6255 return yielded;
6256}
6257EXPORT_SYMBOL_GPL(yield_to);
6258
6259int io_schedule_prepare(void)
6260{
6261 int old_iowait = current->in_iowait;
6262
6263 current->in_iowait = 1;
6264 blk_schedule_flush_plug(current);
6265
6266 return old_iowait;
6267}
6268
6269void io_schedule_finish(int token)
6270{
6271 current->in_iowait = token;
6272}
6273
6274/*
6275 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276 * that process accounting knows that this is a task in IO wait state.
6277 */
6278long __sched io_schedule_timeout(long timeout)
6279{
6280 int token;
6281 long ret;
6282
6283 token = io_schedule_prepare();
6284 ret = schedule_timeout(timeout);
6285 io_schedule_finish(token);
6286
6287 return ret;
6288}
6289EXPORT_SYMBOL(io_schedule_timeout);
6290
6291void __sched io_schedule(void)
6292{
6293 int token;
6294
6295 token = io_schedule_prepare();
6296 schedule();
6297 io_schedule_finish(token);
6298}
6299EXPORT_SYMBOL(io_schedule);
6300
6301/**
6302 * sys_sched_get_priority_max - return maximum RT priority.
6303 * @policy: scheduling class.
6304 *
6305 * Return: On success, this syscall returns the maximum
6306 * rt_priority that can be used by a given scheduling class.
6307 * On failure, a negative error code is returned.
6308 */
6309SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6310{
6311 int ret = -EINVAL;
6312
6313 switch (policy) {
6314 case SCHED_FIFO:
6315 case SCHED_RR:
6316 ret = MAX_USER_RT_PRIO-1;
6317 break;
6318 case SCHED_DEADLINE:
6319 case SCHED_NORMAL:
6320 case SCHED_BATCH:
6321 case SCHED_IDLE:
6322 ret = 0;
6323 break;
6324 }
6325 return ret;
6326}
6327
6328/**
6329 * sys_sched_get_priority_min - return minimum RT priority.
6330 * @policy: scheduling class.
6331 *
6332 * Return: On success, this syscall returns the minimum
6333 * rt_priority that can be used by a given scheduling class.
6334 * On failure, a negative error code is returned.
6335 */
6336SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6337{
6338 int ret = -EINVAL;
6339
6340 switch (policy) {
6341 case SCHED_FIFO:
6342 case SCHED_RR:
6343 ret = 1;
6344 break;
6345 case SCHED_DEADLINE:
6346 case SCHED_NORMAL:
6347 case SCHED_BATCH:
6348 case SCHED_IDLE:
6349 ret = 0;
6350 }
6351 return ret;
6352}
6353
6354static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6355{
6356 struct task_struct *p;
6357 unsigned int time_slice;
6358 struct rq_flags rf;
6359 struct rq *rq;
6360 int retval;
6361
6362 if (pid < 0)
6363 return -EINVAL;
6364
6365 retval = -ESRCH;
6366 rcu_read_lock();
6367 p = find_process_by_pid(pid);
6368 if (!p)
6369 goto out_unlock;
6370
6371 retval = security_task_getscheduler(p);
6372 if (retval)
6373 goto out_unlock;
6374
6375 rq = task_rq_lock(p, &rf);
6376 time_slice = 0;
6377 if (p->sched_class->get_rr_interval)
6378 time_slice = p->sched_class->get_rr_interval(rq, p);
6379 task_rq_unlock(rq, p, &rf);
6380
6381 rcu_read_unlock();
6382 jiffies_to_timespec64(time_slice, t);
6383 return 0;
6384
6385out_unlock:
6386 rcu_read_unlock();
6387 return retval;
6388}
6389
6390/**
6391 * sys_sched_rr_get_interval - return the default timeslice of a process.
6392 * @pid: pid of the process.
6393 * @interval: userspace pointer to the timeslice value.
6394 *
6395 * this syscall writes the default timeslice value of a given process
6396 * into the user-space timespec buffer. A value of '0' means infinity.
6397 *
6398 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6399 * an error code.
6400 */
6401SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6402 struct __kernel_timespec __user *, interval)
6403{
6404 struct timespec64 t;
6405 int retval = sched_rr_get_interval(pid, &t);
6406
6407 if (retval == 0)
6408 retval = put_timespec64(&t, interval);
6409
6410 return retval;
6411}
6412
6413#ifdef CONFIG_COMPAT_32BIT_TIME
6414SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6415 struct old_timespec32 __user *, interval)
6416{
6417 struct timespec64 t;
6418 int retval = sched_rr_get_interval(pid, &t);
6419
6420 if (retval == 0)
6421 retval = put_old_timespec32(&t, interval);
6422 return retval;
6423}
6424#endif
6425
6426void sched_show_task(struct task_struct *p)
6427{
6428 unsigned long free = 0;
6429 int ppid;
6430
6431 if (!try_get_task_stack(p))
6432 return;
6433
6434 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6435
6436 if (p->state == TASK_RUNNING)
6437 pr_cont(" running task ");
6438#ifdef CONFIG_DEBUG_STACK_USAGE
6439 free = stack_not_used(p);
6440#endif
6441 ppid = 0;
6442 rcu_read_lock();
6443 if (pid_alive(p))
6444 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6445 rcu_read_unlock();
6446 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447 free, task_pid_nr(p), ppid,
6448 (unsigned long)task_thread_info(p)->flags);
6449
6450 print_worker_info(KERN_INFO, p);
6451 show_stack(p, NULL, KERN_INFO);
6452 put_task_stack(p);
6453}
6454EXPORT_SYMBOL_GPL(sched_show_task);
6455
6456static inline bool
6457state_filter_match(unsigned long state_filter, struct task_struct *p)
6458{
6459 /* no filter, everything matches */
6460 if (!state_filter)
6461 return true;
6462
6463 /* filter, but doesn't match */
6464 if (!(p->state & state_filter))
6465 return false;
6466
6467 /*
6468 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6469 * TASK_KILLABLE).
6470 */
6471 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6472 return false;
6473
6474 return true;
6475}
6476
6477
6478void show_state_filter(unsigned long state_filter)
6479{
6480 struct task_struct *g, *p;
6481
6482 rcu_read_lock();
6483 for_each_process_thread(g, p) {
6484 /*
6485 * reset the NMI-timeout, listing all files on a slow
6486 * console might take a lot of time:
6487 * Also, reset softlockup watchdogs on all CPUs, because
6488 * another CPU might be blocked waiting for us to process
6489 * an IPI.
6490 */
6491 touch_nmi_watchdog();
6492 touch_all_softlockup_watchdogs();
6493 if (state_filter_match(state_filter, p))
6494 sched_show_task(p);
6495 }
6496
6497#ifdef CONFIG_SCHED_DEBUG
6498 if (!state_filter)
6499 sysrq_sched_debug_show();
6500#endif
6501 rcu_read_unlock();
6502 /*
6503 * Only show locks if all tasks are dumped:
6504 */
6505 if (!state_filter)
6506 debug_show_all_locks();
6507}
6508
6509/**
6510 * init_idle - set up an idle thread for a given CPU
6511 * @idle: task in question
6512 * @cpu: CPU the idle task belongs to
6513 *
6514 * NOTE: this function does not set the idle thread's NEED_RESCHED
6515 * flag, to make booting more robust.
6516 */
6517void init_idle(struct task_struct *idle, int cpu)
6518{
6519 struct rq *rq = cpu_rq(cpu);
6520 unsigned long flags;
6521
6522 __sched_fork(0, idle);
6523
6524 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6525 raw_spin_lock(&rq->lock);
6526
6527 idle->state = TASK_RUNNING;
6528 idle->se.exec_start = sched_clock();
6529 idle->flags |= PF_IDLE;
6530
6531 scs_task_reset(idle);
6532 kasan_unpoison_task_stack(idle);
6533
6534#ifdef CONFIG_SMP
6535 /*
6536 * Its possible that init_idle() gets called multiple times on a task,
6537 * in that case do_set_cpus_allowed() will not do the right thing.
6538 *
6539 * And since this is boot we can forgo the serialization.
6540 */
6541 set_cpus_allowed_common(idle, cpumask_of(cpu));
6542#endif
6543 /*
6544 * We're having a chicken and egg problem, even though we are
6545 * holding rq->lock, the CPU isn't yet set to this CPU so the
6546 * lockdep check in task_group() will fail.
6547 *
6548 * Similar case to sched_fork(). / Alternatively we could
6549 * use task_rq_lock() here and obtain the other rq->lock.
6550 *
6551 * Silence PROVE_RCU
6552 */
6553 rcu_read_lock();
6554 __set_task_cpu(idle, cpu);
6555 rcu_read_unlock();
6556
6557 rq->idle = idle;
6558 rcu_assign_pointer(rq->curr, idle);
6559 idle->on_rq = TASK_ON_RQ_QUEUED;
6560#ifdef CONFIG_SMP
6561 idle->on_cpu = 1;
6562#endif
6563 raw_spin_unlock(&rq->lock);
6564 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6565
6566 /* Set the preempt count _outside_ the spinlocks! */
6567 init_idle_preempt_count(idle, cpu);
6568
6569 /*
6570 * The idle tasks have their own, simple scheduling class:
6571 */
6572 idle->sched_class = &idle_sched_class;
6573 ftrace_graph_init_idle_task(idle, cpu);
6574 vtime_init_idle(idle, cpu);
6575#ifdef CONFIG_SMP
6576 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6577#endif
6578}
6579
6580#ifdef CONFIG_SMP
6581
6582int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6583 const struct cpumask *trial)
6584{
6585 int ret = 1;
6586
6587 if (!cpumask_weight(cur))
6588 return ret;
6589
6590 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6591
6592 return ret;
6593}
6594
6595int task_can_attach(struct task_struct *p,
6596 const struct cpumask *cs_cpus_allowed)
6597{
6598 int ret = 0;
6599
6600 /*
6601 * Kthreads which disallow setaffinity shouldn't be moved
6602 * to a new cpuset; we don't want to change their CPU
6603 * affinity and isolating such threads by their set of
6604 * allowed nodes is unnecessary. Thus, cpusets are not
6605 * applicable for such threads. This prevents checking for
6606 * success of set_cpus_allowed_ptr() on all attached tasks
6607 * before cpus_mask may be changed.
6608 */
6609 if (p->flags & PF_NO_SETAFFINITY) {
6610 ret = -EINVAL;
6611 goto out;
6612 }
6613
6614 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6615 cs_cpus_allowed))
6616 ret = dl_task_can_attach(p, cs_cpus_allowed);
6617
6618out:
6619 return ret;
6620}
6621
6622bool sched_smp_initialized __read_mostly;
6623
6624#ifdef CONFIG_NUMA_BALANCING
6625/* Migrate current task p to target_cpu */
6626int migrate_task_to(struct task_struct *p, int target_cpu)
6627{
6628 struct migration_arg arg = { p, target_cpu };
6629 int curr_cpu = task_cpu(p);
6630
6631 if (curr_cpu == target_cpu)
6632 return 0;
6633
6634 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6635 return -EINVAL;
6636
6637 /* TODO: This is not properly updating schedstats */
6638
6639 trace_sched_move_numa(p, curr_cpu, target_cpu);
6640 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6641}
6642
6643/*
6644 * Requeue a task on a given node and accurately track the number of NUMA
6645 * tasks on the runqueues
6646 */
6647void sched_setnuma(struct task_struct *p, int nid)
6648{
6649 bool queued, running;
6650 struct rq_flags rf;
6651 struct rq *rq;
6652
6653 rq = task_rq_lock(p, &rf);
6654 queued = task_on_rq_queued(p);
6655 running = task_current(rq, p);
6656
6657 if (queued)
6658 dequeue_task(rq, p, DEQUEUE_SAVE);
6659 if (running)
6660 put_prev_task(rq, p);
6661
6662 p->numa_preferred_nid = nid;
6663
6664 if (queued)
6665 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6666 if (running)
6667 set_next_task(rq, p);
6668 task_rq_unlock(rq, p, &rf);
6669}
6670#endif /* CONFIG_NUMA_BALANCING */
6671
6672#ifdef CONFIG_HOTPLUG_CPU
6673/*
6674 * Ensure that the idle task is using init_mm right before its CPU goes
6675 * offline.
6676 */
6677void idle_task_exit(void)
6678{
6679 struct mm_struct *mm = current->active_mm;
6680
6681 BUG_ON(cpu_online(smp_processor_id()));
6682 BUG_ON(current != this_rq()->idle);
6683
6684 if (mm != &init_mm) {
6685 switch_mm(mm, &init_mm, current);
6686 finish_arch_post_lock_switch();
6687 }
6688
6689 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6690}
6691
6692/*
6693 * Since this CPU is going 'away' for a while, fold any nr_active delta
6694 * we might have. Assumes we're called after migrate_tasks() so that the
6695 * nr_active count is stable. We need to take the teardown thread which
6696 * is calling this into account, so we hand in adjust = 1 to the load
6697 * calculation.
6698 *
6699 * Also see the comment "Global load-average calculations".
6700 */
6701static void calc_load_migrate(struct rq *rq)
6702{
6703 long delta = calc_load_fold_active(rq, 1);
6704 if (delta)
6705 atomic_long_add(delta, &calc_load_tasks);
6706}
6707
6708static struct task_struct *__pick_migrate_task(struct rq *rq)
6709{
6710 const struct sched_class *class;
6711 struct task_struct *next;
6712
6713 for_each_class(class) {
6714 next = class->pick_next_task(rq);
6715 if (next) {
6716 next->sched_class->put_prev_task(rq, next);
6717 return next;
6718 }
6719 }
6720
6721 /* The idle class should always have a runnable task */
6722 BUG();
6723}
6724
6725/*
6726 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727 * try_to_wake_up()->select_task_rq().
6728 *
6729 * Called with rq->lock held even though we'er in stop_machine() and
6730 * there's no concurrency possible, we hold the required locks anyway
6731 * because of lock validation efforts.
6732 */
6733static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6734{
6735 struct rq *rq = dead_rq;
6736 struct task_struct *next, *stop = rq->stop;
6737 struct rq_flags orf = *rf;
6738 int dest_cpu;
6739
6740 /*
6741 * Fudge the rq selection such that the below task selection loop
6742 * doesn't get stuck on the currently eligible stop task.
6743 *
6744 * We're currently inside stop_machine() and the rq is either stuck
6745 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746 * either way we should never end up calling schedule() until we're
6747 * done here.
6748 */
6749 rq->stop = NULL;
6750
6751 /*
6752 * put_prev_task() and pick_next_task() sched
6753 * class method both need to have an up-to-date
6754 * value of rq->clock[_task]
6755 */
6756 update_rq_clock(rq);
6757
6758 for (;;) {
6759 /*
6760 * There's this thread running, bail when that's the only
6761 * remaining thread:
6762 */
6763 if (rq->nr_running == 1)
6764 break;
6765
6766 next = __pick_migrate_task(rq);
6767
6768 /*
6769 * Rules for changing task_struct::cpus_mask are holding
6770 * both pi_lock and rq->lock, such that holding either
6771 * stabilizes the mask.
6772 *
6773 * Drop rq->lock is not quite as disastrous as it usually is
6774 * because !cpu_active at this point, which means load-balance
6775 * will not interfere. Also, stop-machine.
6776 */
6777 rq_unlock(rq, rf);
6778 raw_spin_lock(&next->pi_lock);
6779 rq_relock(rq, rf);
6780
6781 /*
6782 * Since we're inside stop-machine, _nothing_ should have
6783 * changed the task, WARN if weird stuff happened, because in
6784 * that case the above rq->lock drop is a fail too.
6785 */
6786 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6787 raw_spin_unlock(&next->pi_lock);
6788 continue;
6789 }
6790
6791 /* Find suitable destination for @next, with force if needed. */
6792 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6793 rq = __migrate_task(rq, rf, next, dest_cpu);
6794 if (rq != dead_rq) {
6795 rq_unlock(rq, rf);
6796 rq = dead_rq;
6797 *rf = orf;
6798 rq_relock(rq, rf);
6799 }
6800 raw_spin_unlock(&next->pi_lock);
6801 }
6802
6803 rq->stop = stop;
6804}
6805#endif /* CONFIG_HOTPLUG_CPU */
6806
6807void set_rq_online(struct rq *rq)
6808{
6809 if (!rq->online) {
6810 const struct sched_class *class;
6811
6812 cpumask_set_cpu(rq->cpu, rq->rd->online);
6813 rq->online = 1;
6814
6815 for_each_class(class) {
6816 if (class->rq_online)
6817 class->rq_online(rq);
6818 }
6819 }
6820}
6821
6822void set_rq_offline(struct rq *rq)
6823{
6824 if (rq->online) {
6825 const struct sched_class *class;
6826
6827 for_each_class(class) {
6828 if (class->rq_offline)
6829 class->rq_offline(rq);
6830 }
6831
6832 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6833 rq->online = 0;
6834 }
6835}
6836
6837/*
6838 * used to mark begin/end of suspend/resume:
6839 */
6840static int num_cpus_frozen;
6841
6842/*
6843 * Update cpusets according to cpu_active mask. If cpusets are
6844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845 * around partition_sched_domains().
6846 *
6847 * If we come here as part of a suspend/resume, don't touch cpusets because we
6848 * want to restore it back to its original state upon resume anyway.
6849 */
6850static void cpuset_cpu_active(void)
6851{
6852 if (cpuhp_tasks_frozen) {
6853 /*
6854 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855 * resume sequence. As long as this is not the last online
6856 * operation in the resume sequence, just build a single sched
6857 * domain, ignoring cpusets.
6858 */
6859 partition_sched_domains(1, NULL, NULL);
6860 if (--num_cpus_frozen)
6861 return;
6862 /*
6863 * This is the last CPU online operation. So fall through and
6864 * restore the original sched domains by considering the
6865 * cpuset configurations.
6866 */
6867 cpuset_force_rebuild();
6868 }
6869 cpuset_update_active_cpus();
6870}
6871
6872static int cpuset_cpu_inactive(unsigned int cpu)
6873{
6874 if (!cpuhp_tasks_frozen) {
6875 if (dl_cpu_busy(cpu))
6876 return -EBUSY;
6877 cpuset_update_active_cpus();
6878 } else {
6879 num_cpus_frozen++;
6880 partition_sched_domains(1, NULL, NULL);
6881 }
6882 return 0;
6883}
6884
6885int sched_cpu_activate(unsigned int cpu)
6886{
6887 struct rq *rq = cpu_rq(cpu);
6888 struct rq_flags rf;
6889
6890#ifdef CONFIG_SCHED_SMT
6891 /*
6892 * When going up, increment the number of cores with SMT present.
6893 */
6894 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6895 static_branch_inc_cpuslocked(&sched_smt_present);
6896#endif
6897 set_cpu_active(cpu, true);
6898
6899 if (sched_smp_initialized) {
6900 sched_domains_numa_masks_set(cpu);
6901 cpuset_cpu_active();
6902 }
6903
6904 /*
6905 * Put the rq online, if not already. This happens:
6906 *
6907 * 1) In the early boot process, because we build the real domains
6908 * after all CPUs have been brought up.
6909 *
6910 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6911 * domains.
6912 */
6913 rq_lock_irqsave(rq, &rf);
6914 if (rq->rd) {
6915 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6916 set_rq_online(rq);
6917 }
6918 rq_unlock_irqrestore(rq, &rf);
6919
6920 return 0;
6921}
6922
6923int sched_cpu_deactivate(unsigned int cpu)
6924{
6925 int ret;
6926
6927 set_cpu_active(cpu, false);
6928 /*
6929 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930 * users of this state to go away such that all new such users will
6931 * observe it.
6932 *
6933 * Do sync before park smpboot threads to take care the rcu boost case.
6934 */
6935 synchronize_rcu();
6936
6937#ifdef CONFIG_SCHED_SMT
6938 /*
6939 * When going down, decrement the number of cores with SMT present.
6940 */
6941 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6942 static_branch_dec_cpuslocked(&sched_smt_present);
6943#endif
6944
6945 if (!sched_smp_initialized)
6946 return 0;
6947
6948 ret = cpuset_cpu_inactive(cpu);
6949 if (ret) {
6950 set_cpu_active(cpu, true);
6951 return ret;
6952 }
6953 sched_domains_numa_masks_clear(cpu);
6954 return 0;
6955}
6956
6957static void sched_rq_cpu_starting(unsigned int cpu)
6958{
6959 struct rq *rq = cpu_rq(cpu);
6960
6961 rq->calc_load_update = calc_load_update;
6962 update_max_interval();
6963}
6964
6965int sched_cpu_starting(unsigned int cpu)
6966{
6967 sched_rq_cpu_starting(cpu);
6968 sched_tick_start(cpu);
6969 return 0;
6970}
6971
6972#ifdef CONFIG_HOTPLUG_CPU
6973int sched_cpu_dying(unsigned int cpu)
6974{
6975 struct rq *rq = cpu_rq(cpu);
6976 struct rq_flags rf;
6977
6978 /* Handle pending wakeups and then migrate everything off */
6979 sched_tick_stop(cpu);
6980
6981 rq_lock_irqsave(rq, &rf);
6982 if (rq->rd) {
6983 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6984 set_rq_offline(rq);
6985 }
6986 migrate_tasks(rq, &rf);
6987 BUG_ON(rq->nr_running != 1);
6988 rq_unlock_irqrestore(rq, &rf);
6989
6990 calc_load_migrate(rq);
6991 update_max_interval();
6992 nohz_balance_exit_idle(rq);
6993 hrtick_clear(rq);
6994 return 0;
6995}
6996#endif
6997
6998void __init sched_init_smp(void)
6999{
7000 sched_init_numa();
7001
7002 /*
7003 * There's no userspace yet to cause hotplug operations; hence all the
7004 * CPU masks are stable and all blatant races in the below code cannot
7005 * happen.
7006 */
7007 mutex_lock(&sched_domains_mutex);
7008 sched_init_domains(cpu_active_mask);
7009 mutex_unlock(&sched_domains_mutex);
7010
7011 /* Move init over to a non-isolated CPU */
7012 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7013 BUG();
7014 sched_init_granularity();
7015
7016 init_sched_rt_class();
7017 init_sched_dl_class();
7018
7019 sched_smp_initialized = true;
7020}
7021
7022static int __init migration_init(void)
7023{
7024 sched_cpu_starting(smp_processor_id());
7025 return 0;
7026}
7027early_initcall(migration_init);
7028
7029#else
7030void __init sched_init_smp(void)
7031{
7032 sched_init_granularity();
7033}
7034#endif /* CONFIG_SMP */
7035
7036int in_sched_functions(unsigned long addr)
7037{
7038 return in_lock_functions(addr) ||
7039 (addr >= (unsigned long)__sched_text_start
7040 && addr < (unsigned long)__sched_text_end);
7041}
7042
7043#ifdef CONFIG_CGROUP_SCHED
7044/*
7045 * Default task group.
7046 * Every task in system belongs to this group at bootup.
7047 */
7048struct task_group root_task_group;
7049LIST_HEAD(task_groups);
7050
7051/* Cacheline aligned slab cache for task_group */
7052static struct kmem_cache *task_group_cache __read_mostly;
7053#endif
7054
7055DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7056DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7057
7058void __init sched_init(void)
7059{
7060 unsigned long ptr = 0;
7061 int i;
7062
7063 /* Make sure the linker didn't screw up */
7064 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7065 &fair_sched_class + 1 != &rt_sched_class ||
7066 &rt_sched_class + 1 != &dl_sched_class);
7067#ifdef CONFIG_SMP
7068 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7069#endif
7070
7071 wait_bit_init();
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074 ptr += 2 * nr_cpu_ids * sizeof(void **);
7075#endif
7076#ifdef CONFIG_RT_GROUP_SCHED
7077 ptr += 2 * nr_cpu_ids * sizeof(void **);
7078#endif
7079 if (ptr) {
7080 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7081
7082#ifdef CONFIG_FAIR_GROUP_SCHED
7083 root_task_group.se = (struct sched_entity **)ptr;
7084 ptr += nr_cpu_ids * sizeof(void **);
7085
7086 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7087 ptr += nr_cpu_ids * sizeof(void **);
7088
7089 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7091#endif /* CONFIG_FAIR_GROUP_SCHED */
7092#ifdef CONFIG_RT_GROUP_SCHED
7093 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7094 ptr += nr_cpu_ids * sizeof(void **);
7095
7096 root_task_group.rt_rq = (struct rt_rq **)ptr;
7097 ptr += nr_cpu_ids * sizeof(void **);
7098
7099#endif /* CONFIG_RT_GROUP_SCHED */
7100 }
7101#ifdef CONFIG_CPUMASK_OFFSTACK
7102 for_each_possible_cpu(i) {
7103 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7104 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7105 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7106 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7107 }
7108#endif /* CONFIG_CPUMASK_OFFSTACK */
7109
7110 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7111 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7112
7113#ifdef CONFIG_SMP
7114 init_defrootdomain();
7115#endif
7116
7117#ifdef CONFIG_RT_GROUP_SCHED
7118 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7119 global_rt_period(), global_rt_runtime());
7120#endif /* CONFIG_RT_GROUP_SCHED */
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123 task_group_cache = KMEM_CACHE(task_group, 0);
7124
7125 list_add(&root_task_group.list, &task_groups);
7126 INIT_LIST_HEAD(&root_task_group.children);
7127 INIT_LIST_HEAD(&root_task_group.siblings);
7128 autogroup_init(&init_task);
7129#endif /* CONFIG_CGROUP_SCHED */
7130
7131 for_each_possible_cpu(i) {
7132 struct rq *rq;
7133
7134 rq = cpu_rq(i);
7135 raw_spin_lock_init(&rq->lock);
7136 rq->nr_running = 0;
7137 rq->calc_load_active = 0;
7138 rq->calc_load_update = jiffies + LOAD_FREQ;
7139 init_cfs_rq(&rq->cfs);
7140 init_rt_rq(&rq->rt);
7141 init_dl_rq(&rq->dl);
7142#ifdef CONFIG_FAIR_GROUP_SCHED
7143 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7144 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7145 /*
7146 * How much CPU bandwidth does root_task_group get?
7147 *
7148 * In case of task-groups formed thr' the cgroup filesystem, it
7149 * gets 100% of the CPU resources in the system. This overall
7150 * system CPU resource is divided among the tasks of
7151 * root_task_group and its child task-groups in a fair manner,
7152 * based on each entity's (task or task-group's) weight
7153 * (se->load.weight).
7154 *
7155 * In other words, if root_task_group has 10 tasks of weight
7156 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157 * then A0's share of the CPU resource is:
7158 *
7159 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7160 *
7161 * We achieve this by letting root_task_group's tasks sit
7162 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7163 */
7164 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7165#endif /* CONFIG_FAIR_GROUP_SCHED */
7166
7167 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7168#ifdef CONFIG_RT_GROUP_SCHED
7169 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7170#endif
7171#ifdef CONFIG_SMP
7172 rq->sd = NULL;
7173 rq->rd = NULL;
7174 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7175 rq->balance_callback = NULL;
7176 rq->active_balance = 0;
7177 rq->next_balance = jiffies;
7178 rq->push_cpu = 0;
7179 rq->cpu = i;
7180 rq->online = 0;
7181 rq->idle_stamp = 0;
7182 rq->avg_idle = 2*sysctl_sched_migration_cost;
7183 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7184
7185 INIT_LIST_HEAD(&rq->cfs_tasks);
7186
7187 rq_attach_root(rq, &def_root_domain);
7188#ifdef CONFIG_NO_HZ_COMMON
7189 rq->last_blocked_load_update_tick = jiffies;
7190 atomic_set(&rq->nohz_flags, 0);
7191
7192 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7193#endif
7194#endif /* CONFIG_SMP */
7195 hrtick_rq_init(rq);
7196 atomic_set(&rq->nr_iowait, 0);
7197 }
7198
7199 set_load_weight(&init_task, false);
7200
7201 /*
7202 * The boot idle thread does lazy MMU switching as well:
7203 */
7204 mmgrab(&init_mm);
7205 enter_lazy_tlb(&init_mm, current);
7206
7207 /*
7208 * Make us the idle thread. Technically, schedule() should not be
7209 * called from this thread, however somewhere below it might be,
7210 * but because we are the idle thread, we just pick up running again
7211 * when this runqueue becomes "idle".
7212 */
7213 init_idle(current, smp_processor_id());
7214
7215 calc_load_update = jiffies + LOAD_FREQ;
7216
7217#ifdef CONFIG_SMP
7218 idle_thread_set_boot_cpu();
7219#endif
7220 init_sched_fair_class();
7221
7222 init_schedstats();
7223
7224 psi_init();
7225
7226 init_uclamp();
7227
7228 scheduler_running = 1;
7229}
7230
7231#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232static inline int preempt_count_equals(int preempt_offset)
7233{
7234 int nested = preempt_count() + rcu_preempt_depth();
7235
7236 return (nested == preempt_offset);
7237}
7238
7239void __might_sleep(const char *file, int line, int preempt_offset)
7240{
7241 /*
7242 * Blocking primitives will set (and therefore destroy) current->state,
7243 * since we will exit with TASK_RUNNING make sure we enter with it,
7244 * otherwise we will destroy state.
7245 */
7246 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7247 "do not call blocking ops when !TASK_RUNNING; "
7248 "state=%lx set at [<%p>] %pS\n",
7249 current->state,
7250 (void *)current->task_state_change,
7251 (void *)current->task_state_change);
7252
7253 ___might_sleep(file, line, preempt_offset);
7254}
7255EXPORT_SYMBOL(__might_sleep);
7256
7257void ___might_sleep(const char *file, int line, int preempt_offset)
7258{
7259 /* Ratelimiting timestamp: */
7260 static unsigned long prev_jiffy;
7261
7262 unsigned long preempt_disable_ip;
7263
7264 /* WARN_ON_ONCE() by default, no rate limit required: */
7265 rcu_sleep_check();
7266
7267 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7268 !is_idle_task(current) && !current->non_block_count) ||
7269 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7270 oops_in_progress)
7271 return;
7272
7273 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7274 return;
7275 prev_jiffy = jiffies;
7276
7277 /* Save this before calling printk(), since that will clobber it: */
7278 preempt_disable_ip = get_preempt_disable_ip(current);
7279
7280 printk(KERN_ERR
7281 "BUG: sleeping function called from invalid context at %s:%d\n",
7282 file, line);
7283 printk(KERN_ERR
7284 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285 in_atomic(), irqs_disabled(), current->non_block_count,
7286 current->pid, current->comm);
7287
7288 if (task_stack_end_corrupted(current))
7289 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7290
7291 debug_show_held_locks(current);
7292 if (irqs_disabled())
7293 print_irqtrace_events(current);
7294 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7295 && !preempt_count_equals(preempt_offset)) {
7296 pr_err("Preemption disabled at:");
7297 print_ip_sym(KERN_ERR, preempt_disable_ip);
7298 }
7299 dump_stack();
7300 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7301}
7302EXPORT_SYMBOL(___might_sleep);
7303
7304void __cant_sleep(const char *file, int line, int preempt_offset)
7305{
7306 static unsigned long prev_jiffy;
7307
7308 if (irqs_disabled())
7309 return;
7310
7311 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7312 return;
7313
7314 if (preempt_count() > preempt_offset)
7315 return;
7316
7317 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7318 return;
7319 prev_jiffy = jiffies;
7320
7321 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7322 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323 in_atomic(), irqs_disabled(),
7324 current->pid, current->comm);
7325
7326 debug_show_held_locks(current);
7327 dump_stack();
7328 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7329}
7330EXPORT_SYMBOL_GPL(__cant_sleep);
7331#endif
7332
7333#ifdef CONFIG_MAGIC_SYSRQ
7334void normalize_rt_tasks(void)
7335{
7336 struct task_struct *g, *p;
7337 struct sched_attr attr = {
7338 .sched_policy = SCHED_NORMAL,
7339 };
7340
7341 read_lock(&tasklist_lock);
7342 for_each_process_thread(g, p) {
7343 /*
7344 * Only normalize user tasks:
7345 */
7346 if (p->flags & PF_KTHREAD)
7347 continue;
7348
7349 p->se.exec_start = 0;
7350 schedstat_set(p->se.statistics.wait_start, 0);
7351 schedstat_set(p->se.statistics.sleep_start, 0);
7352 schedstat_set(p->se.statistics.block_start, 0);
7353
7354 if (!dl_task(p) && !rt_task(p)) {
7355 /*
7356 * Renice negative nice level userspace
7357 * tasks back to 0:
7358 */
7359 if (task_nice(p) < 0)
7360 set_user_nice(p, 0);
7361 continue;
7362 }
7363
7364 __sched_setscheduler(p, &attr, false, false);
7365 }
7366 read_unlock(&tasklist_lock);
7367}
7368
7369#endif /* CONFIG_MAGIC_SYSRQ */
7370
7371#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7372/*
7373 * These functions are only useful for the IA64 MCA handling, or kdb.
7374 *
7375 * They can only be called when the whole system has been
7376 * stopped - every CPU needs to be quiescent, and no scheduling
7377 * activity can take place. Using them for anything else would
7378 * be a serious bug, and as a result, they aren't even visible
7379 * under any other configuration.
7380 */
7381
7382/**
7383 * curr_task - return the current task for a given CPU.
7384 * @cpu: the processor in question.
7385 *
7386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7387 *
7388 * Return: The current task for @cpu.
7389 */
7390struct task_struct *curr_task(int cpu)
7391{
7392 return cpu_curr(cpu);
7393}
7394
7395#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7396
7397#ifdef CONFIG_IA64
7398/**
7399 * ia64_set_curr_task - set the current task for a given CPU.
7400 * @cpu: the processor in question.
7401 * @p: the task pointer to set.
7402 *
7403 * Description: This function must only be used when non-maskable interrupts
7404 * are serviced on a separate stack. It allows the architecture to switch the
7405 * notion of the current task on a CPU in a non-blocking manner. This function
7406 * must be called with all CPU's synchronized, and interrupts disabled, the
7407 * and caller must save the original value of the current task (see
7408 * curr_task() above) and restore that value before reenabling interrupts and
7409 * re-starting the system.
7410 *
7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412 */
7413void ia64_set_curr_task(int cpu, struct task_struct *p)
7414{
7415 cpu_curr(cpu) = p;
7416}
7417
7418#endif
7419
7420#ifdef CONFIG_CGROUP_SCHED
7421/* task_group_lock serializes the addition/removal of task groups */
7422static DEFINE_SPINLOCK(task_group_lock);
7423
7424static inline void alloc_uclamp_sched_group(struct task_group *tg,
7425 struct task_group *parent)
7426{
7427#ifdef CONFIG_UCLAMP_TASK_GROUP
7428 enum uclamp_id clamp_id;
7429
7430 for_each_clamp_id(clamp_id) {
7431 uclamp_se_set(&tg->uclamp_req[clamp_id],
7432 uclamp_none(clamp_id), false);
7433 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7434 }
7435#endif
7436}
7437
7438static void sched_free_group(struct task_group *tg)
7439{
7440 free_fair_sched_group(tg);
7441 free_rt_sched_group(tg);
7442 autogroup_free(tg);
7443 kmem_cache_free(task_group_cache, tg);
7444}
7445
7446/* allocate runqueue etc for a new task group */
7447struct task_group *sched_create_group(struct task_group *parent)
7448{
7449 struct task_group *tg;
7450
7451 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7452 if (!tg)
7453 return ERR_PTR(-ENOMEM);
7454
7455 if (!alloc_fair_sched_group(tg, parent))
7456 goto err;
7457
7458 if (!alloc_rt_sched_group(tg, parent))
7459 goto err;
7460
7461 alloc_uclamp_sched_group(tg, parent);
7462
7463 return tg;
7464
7465err:
7466 sched_free_group(tg);
7467 return ERR_PTR(-ENOMEM);
7468}
7469
7470void sched_online_group(struct task_group *tg, struct task_group *parent)
7471{
7472 unsigned long flags;
7473
7474 spin_lock_irqsave(&task_group_lock, flags);
7475 list_add_rcu(&tg->list, &task_groups);
7476
7477 /* Root should already exist: */
7478 WARN_ON(!parent);
7479
7480 tg->parent = parent;
7481 INIT_LIST_HEAD(&tg->children);
7482 list_add_rcu(&tg->siblings, &parent->children);
7483 spin_unlock_irqrestore(&task_group_lock, flags);
7484
7485 online_fair_sched_group(tg);
7486}
7487
7488/* rcu callback to free various structures associated with a task group */
7489static void sched_free_group_rcu(struct rcu_head *rhp)
7490{
7491 /* Now it should be safe to free those cfs_rqs: */
7492 sched_free_group(container_of(rhp, struct task_group, rcu));
7493}
7494
7495void sched_destroy_group(struct task_group *tg)
7496{
7497 /* Wait for possible concurrent references to cfs_rqs complete: */
7498 call_rcu(&tg->rcu, sched_free_group_rcu);
7499}
7500
7501void sched_offline_group(struct task_group *tg)
7502{
7503 unsigned long flags;
7504
7505 /* End participation in shares distribution: */
7506 unregister_fair_sched_group(tg);
7507
7508 spin_lock_irqsave(&task_group_lock, flags);
7509 list_del_rcu(&tg->list);
7510 list_del_rcu(&tg->siblings);
7511 spin_unlock_irqrestore(&task_group_lock, flags);
7512}
7513
7514static void sched_change_group(struct task_struct *tsk, int type)
7515{
7516 struct task_group *tg;
7517
7518 /*
7519 * All callers are synchronized by task_rq_lock(); we do not use RCU
7520 * which is pointless here. Thus, we pass "true" to task_css_check()
7521 * to prevent lockdep warnings.
7522 */
7523 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7524 struct task_group, css);
7525 tg = autogroup_task_group(tsk, tg);
7526 tsk->sched_task_group = tg;
7527
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529 if (tsk->sched_class->task_change_group)
7530 tsk->sched_class->task_change_group(tsk, type);
7531 else
7532#endif
7533 set_task_rq(tsk, task_cpu(tsk));
7534}
7535
7536/*
7537 * Change task's runqueue when it moves between groups.
7538 *
7539 * The caller of this function should have put the task in its new group by
7540 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7541 * its new group.
7542 */
7543void sched_move_task(struct task_struct *tsk)
7544{
7545 int queued, running, queue_flags =
7546 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7547 struct rq_flags rf;
7548 struct rq *rq;
7549
7550 rq = task_rq_lock(tsk, &rf);
7551 update_rq_clock(rq);
7552
7553 running = task_current(rq, tsk);
7554 queued = task_on_rq_queued(tsk);
7555
7556 if (queued)
7557 dequeue_task(rq, tsk, queue_flags);
7558 if (running)
7559 put_prev_task(rq, tsk);
7560
7561 sched_change_group(tsk, TASK_MOVE_GROUP);
7562
7563 if (queued)
7564 enqueue_task(rq, tsk, queue_flags);
7565 if (running) {
7566 set_next_task(rq, tsk);
7567 /*
7568 * After changing group, the running task may have joined a
7569 * throttled one but it's still the running task. Trigger a
7570 * resched to make sure that task can still run.
7571 */
7572 resched_curr(rq);
7573 }
7574
7575 task_rq_unlock(rq, tsk, &rf);
7576}
7577
7578static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7579{
7580 return css ? container_of(css, struct task_group, css) : NULL;
7581}
7582
7583static struct cgroup_subsys_state *
7584cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7585{
7586 struct task_group *parent = css_tg(parent_css);
7587 struct task_group *tg;
7588
7589 if (!parent) {
7590 /* This is early initialization for the top cgroup */
7591 return &root_task_group.css;
7592 }
7593
7594 tg = sched_create_group(parent);
7595 if (IS_ERR(tg))
7596 return ERR_PTR(-ENOMEM);
7597
7598 return &tg->css;
7599}
7600
7601/* Expose task group only after completing cgroup initialization */
7602static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603{
7604 struct task_group *tg = css_tg(css);
7605 struct task_group *parent = css_tg(css->parent);
7606
7607 if (parent)
7608 sched_online_group(tg, parent);
7609
7610#ifdef CONFIG_UCLAMP_TASK_GROUP
7611 /* Propagate the effective uclamp value for the new group */
7612 cpu_util_update_eff(css);
7613#endif
7614
7615 return 0;
7616}
7617
7618static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7619{
7620 struct task_group *tg = css_tg(css);
7621
7622 sched_offline_group(tg);
7623}
7624
7625static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7626{
7627 struct task_group *tg = css_tg(css);
7628
7629 /*
7630 * Relies on the RCU grace period between css_released() and this.
7631 */
7632 sched_free_group(tg);
7633}
7634
7635/*
7636 * This is called before wake_up_new_task(), therefore we really only
7637 * have to set its group bits, all the other stuff does not apply.
7638 */
7639static void cpu_cgroup_fork(struct task_struct *task)
7640{
7641 struct rq_flags rf;
7642 struct rq *rq;
7643
7644 rq = task_rq_lock(task, &rf);
7645
7646 update_rq_clock(rq);
7647 sched_change_group(task, TASK_SET_GROUP);
7648
7649 task_rq_unlock(rq, task, &rf);
7650}
7651
7652static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7653{
7654 struct task_struct *task;
7655 struct cgroup_subsys_state *css;
7656 int ret = 0;
7657
7658 cgroup_taskset_for_each(task, css, tset) {
7659#ifdef CONFIG_RT_GROUP_SCHED
7660 if (!sched_rt_can_attach(css_tg(css), task))
7661 return -EINVAL;
7662#endif
7663 /*
7664 * Serialize against wake_up_new_task() such that if its
7665 * running, we're sure to observe its full state.
7666 */
7667 raw_spin_lock_irq(&task->pi_lock);
7668 /*
7669 * Avoid calling sched_move_task() before wake_up_new_task()
7670 * has happened. This would lead to problems with PELT, due to
7671 * move wanting to detach+attach while we're not attached yet.
7672 */
7673 if (task->state == TASK_NEW)
7674 ret = -EINVAL;
7675 raw_spin_unlock_irq(&task->pi_lock);
7676
7677 if (ret)
7678 break;
7679 }
7680 return ret;
7681}
7682
7683static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7684{
7685 struct task_struct *task;
7686 struct cgroup_subsys_state *css;
7687
7688 cgroup_taskset_for_each(task, css, tset)
7689 sched_move_task(task);
7690}
7691
7692#ifdef CONFIG_UCLAMP_TASK_GROUP
7693static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7694{
7695 struct cgroup_subsys_state *top_css = css;
7696 struct uclamp_se *uc_parent = NULL;
7697 struct uclamp_se *uc_se = NULL;
7698 unsigned int eff[UCLAMP_CNT];
7699 enum uclamp_id clamp_id;
7700 unsigned int clamps;
7701
7702 css_for_each_descendant_pre(css, top_css) {
7703 uc_parent = css_tg(css)->parent
7704 ? css_tg(css)->parent->uclamp : NULL;
7705
7706 for_each_clamp_id(clamp_id) {
7707 /* Assume effective clamps matches requested clamps */
7708 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7709 /* Cap effective clamps with parent's effective clamps */
7710 if (uc_parent &&
7711 eff[clamp_id] > uc_parent[clamp_id].value) {
7712 eff[clamp_id] = uc_parent[clamp_id].value;
7713 }
7714 }
7715 /* Ensure protection is always capped by limit */
7716 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7717
7718 /* Propagate most restrictive effective clamps */
7719 clamps = 0x0;
7720 uc_se = css_tg(css)->uclamp;
7721 for_each_clamp_id(clamp_id) {
7722 if (eff[clamp_id] == uc_se[clamp_id].value)
7723 continue;
7724 uc_se[clamp_id].value = eff[clamp_id];
7725 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7726 clamps |= (0x1 << clamp_id);
7727 }
7728 if (!clamps) {
7729 css = css_rightmost_descendant(css);
7730 continue;
7731 }
7732
7733 /* Immediately update descendants RUNNABLE tasks */
7734 uclamp_update_active_tasks(css, clamps);
7735 }
7736}
7737
7738/*
7739 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740 * C expression. Since there is no way to convert a macro argument (N) into a
7741 * character constant, use two levels of macros.
7742 */
7743#define _POW10(exp) ((unsigned int)1e##exp)
7744#define POW10(exp) _POW10(exp)
7745
7746struct uclamp_request {
7747#define UCLAMP_PERCENT_SHIFT 2
7748#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7749 s64 percent;
7750 u64 util;
7751 int ret;
7752};
7753
7754static inline struct uclamp_request
7755capacity_from_percent(char *buf)
7756{
7757 struct uclamp_request req = {
7758 .percent = UCLAMP_PERCENT_SCALE,
7759 .util = SCHED_CAPACITY_SCALE,
7760 .ret = 0,
7761 };
7762
7763 buf = strim(buf);
7764 if (strcmp(buf, "max")) {
7765 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7766 &req.percent);
7767 if (req.ret)
7768 return req;
7769 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7770 req.ret = -ERANGE;
7771 return req;
7772 }
7773
7774 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7775 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7776 }
7777
7778 return req;
7779}
7780
7781static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7782 size_t nbytes, loff_t off,
7783 enum uclamp_id clamp_id)
7784{
7785 struct uclamp_request req;
7786 struct task_group *tg;
7787
7788 req = capacity_from_percent(buf);
7789 if (req.ret)
7790 return req.ret;
7791
7792 static_branch_enable(&sched_uclamp_used);
7793
7794 mutex_lock(&uclamp_mutex);
7795 rcu_read_lock();
7796
7797 tg = css_tg(of_css(of));
7798 if (tg->uclamp_req[clamp_id].value != req.util)
7799 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7800
7801 /*
7802 * Because of not recoverable conversion rounding we keep track of the
7803 * exact requested value
7804 */
7805 tg->uclamp_pct[clamp_id] = req.percent;
7806
7807 /* Update effective clamps to track the most restrictive value */
7808 cpu_util_update_eff(of_css(of));
7809
7810 rcu_read_unlock();
7811 mutex_unlock(&uclamp_mutex);
7812
7813 return nbytes;
7814}
7815
7816static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7817 char *buf, size_t nbytes,
7818 loff_t off)
7819{
7820 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7821}
7822
7823static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7824 char *buf, size_t nbytes,
7825 loff_t off)
7826{
7827 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7828}
7829
7830static inline void cpu_uclamp_print(struct seq_file *sf,
7831 enum uclamp_id clamp_id)
7832{
7833 struct task_group *tg;
7834 u64 util_clamp;
7835 u64 percent;
7836 u32 rem;
7837
7838 rcu_read_lock();
7839 tg = css_tg(seq_css(sf));
7840 util_clamp = tg->uclamp_req[clamp_id].value;
7841 rcu_read_unlock();
7842
7843 if (util_clamp == SCHED_CAPACITY_SCALE) {
7844 seq_puts(sf, "max\n");
7845 return;
7846 }
7847
7848 percent = tg->uclamp_pct[clamp_id];
7849 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7850 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7851}
7852
7853static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7854{
7855 cpu_uclamp_print(sf, UCLAMP_MIN);
7856 return 0;
7857}
7858
7859static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7860{
7861 cpu_uclamp_print(sf, UCLAMP_MAX);
7862 return 0;
7863}
7864#endif /* CONFIG_UCLAMP_TASK_GROUP */
7865
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7868 struct cftype *cftype, u64 shareval)
7869{
7870 if (shareval > scale_load_down(ULONG_MAX))
7871 shareval = MAX_SHARES;
7872 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7873}
7874
7875static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7876 struct cftype *cft)
7877{
7878 struct task_group *tg = css_tg(css);
7879
7880 return (u64) scale_load_down(tg->shares);
7881}
7882
7883#ifdef CONFIG_CFS_BANDWIDTH
7884static DEFINE_MUTEX(cfs_constraints_mutex);
7885
7886const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7887static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7888/* More than 203 days if BW_SHIFT equals 20. */
7889static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7890
7891static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892
7893static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7894{
7895 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898 if (tg == &root_task_group)
7899 return -EINVAL;
7900
7901 /*
7902 * Ensure we have at some amount of bandwidth every period. This is
7903 * to prevent reaching a state of large arrears when throttled via
7904 * entity_tick() resulting in prolonged exit starvation.
7905 */
7906 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907 return -EINVAL;
7908
7909 /*
7910 * Likewise, bound things on the otherside by preventing insane quota
7911 * periods. This also allows us to normalize in computing quota
7912 * feasibility.
7913 */
7914 if (period > max_cfs_quota_period)
7915 return -EINVAL;
7916
7917 /*
7918 * Bound quota to defend quota against overflow during bandwidth shift.
7919 */
7920 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7921 return -EINVAL;
7922
7923 /*
7924 * Prevent race between setting of cfs_rq->runtime_enabled and
7925 * unthrottle_offline_cfs_rqs().
7926 */
7927 get_online_cpus();
7928 mutex_lock(&cfs_constraints_mutex);
7929 ret = __cfs_schedulable(tg, period, quota);
7930 if (ret)
7931 goto out_unlock;
7932
7933 runtime_enabled = quota != RUNTIME_INF;
7934 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7935 /*
7936 * If we need to toggle cfs_bandwidth_used, off->on must occur
7937 * before making related changes, and on->off must occur afterwards
7938 */
7939 if (runtime_enabled && !runtime_was_enabled)
7940 cfs_bandwidth_usage_inc();
7941 raw_spin_lock_irq(&cfs_b->lock);
7942 cfs_b->period = ns_to_ktime(period);
7943 cfs_b->quota = quota;
7944
7945 __refill_cfs_bandwidth_runtime(cfs_b);
7946
7947 /* Restart the period timer (if active) to handle new period expiry: */
7948 if (runtime_enabled)
7949 start_cfs_bandwidth(cfs_b);
7950
7951 raw_spin_unlock_irq(&cfs_b->lock);
7952
7953 for_each_online_cpu(i) {
7954 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7955 struct rq *rq = cfs_rq->rq;
7956 struct rq_flags rf;
7957
7958 rq_lock_irq(rq, &rf);
7959 cfs_rq->runtime_enabled = runtime_enabled;
7960 cfs_rq->runtime_remaining = 0;
7961
7962 if (cfs_rq->throttled)
7963 unthrottle_cfs_rq(cfs_rq);
7964 rq_unlock_irq(rq, &rf);
7965 }
7966 if (runtime_was_enabled && !runtime_enabled)
7967 cfs_bandwidth_usage_dec();
7968out_unlock:
7969 mutex_unlock(&cfs_constraints_mutex);
7970 put_online_cpus();
7971
7972 return ret;
7973}
7974
7975static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7976{
7977 u64 quota, period;
7978
7979 period = ktime_to_ns(tg->cfs_bandwidth.period);
7980 if (cfs_quota_us < 0)
7981 quota = RUNTIME_INF;
7982 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7983 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7984 else
7985 return -EINVAL;
7986
7987 return tg_set_cfs_bandwidth(tg, period, quota);
7988}
7989
7990static long tg_get_cfs_quota(struct task_group *tg)
7991{
7992 u64 quota_us;
7993
7994 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7995 return -1;
7996
7997 quota_us = tg->cfs_bandwidth.quota;
7998 do_div(quota_us, NSEC_PER_USEC);
7999
8000 return quota_us;
8001}
8002
8003static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8004{
8005 u64 quota, period;
8006
8007 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8008 return -EINVAL;
8009
8010 period = (u64)cfs_period_us * NSEC_PER_USEC;
8011 quota = tg->cfs_bandwidth.quota;
8012
8013 return tg_set_cfs_bandwidth(tg, period, quota);
8014}
8015
8016static long tg_get_cfs_period(struct task_group *tg)
8017{
8018 u64 cfs_period_us;
8019
8020 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021 do_div(cfs_period_us, NSEC_PER_USEC);
8022
8023 return cfs_period_us;
8024}
8025
8026static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027 struct cftype *cft)
8028{
8029 return tg_get_cfs_quota(css_tg(css));
8030}
8031
8032static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033 struct cftype *cftype, s64 cfs_quota_us)
8034{
8035 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036}
8037
8038static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039 struct cftype *cft)
8040{
8041 return tg_get_cfs_period(css_tg(css));
8042}
8043
8044static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045 struct cftype *cftype, u64 cfs_period_us)
8046{
8047 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048}
8049
8050struct cfs_schedulable_data {
8051 struct task_group *tg;
8052 u64 period, quota;
8053};
8054
8055/*
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8058 */
8059static u64 normalize_cfs_quota(struct task_group *tg,
8060 struct cfs_schedulable_data *d)
8061{
8062 u64 quota, period;
8063
8064 if (tg == d->tg) {
8065 period = d->period;
8066 quota = d->quota;
8067 } else {
8068 period = tg_get_cfs_period(tg);
8069 quota = tg_get_cfs_quota(tg);
8070 }
8071
8072 /* note: these should typically be equivalent */
8073 if (quota == RUNTIME_INF || quota == -1)
8074 return RUNTIME_INF;
8075
8076 return to_ratio(period, quota);
8077}
8078
8079static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080{
8081 struct cfs_schedulable_data *d = data;
8082 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083 s64 quota = 0, parent_quota = -1;
8084
8085 if (!tg->parent) {
8086 quota = RUNTIME_INF;
8087 } else {
8088 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089
8090 quota = normalize_cfs_quota(tg, d);
8091 parent_quota = parent_b->hierarchical_quota;
8092
8093 /*
8094 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8095 * always take the min. On cgroup1, only inherit when no
8096 * limit is set:
8097 */
8098 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8099 quota = min(quota, parent_quota);
8100 } else {
8101 if (quota == RUNTIME_INF)
8102 quota = parent_quota;
8103 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8104 return -EINVAL;
8105 }
8106 }
8107 cfs_b->hierarchical_quota = quota;
8108
8109 return 0;
8110}
8111
8112static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8113{
8114 int ret;
8115 struct cfs_schedulable_data data = {
8116 .tg = tg,
8117 .period = period,
8118 .quota = quota,
8119 };
8120
8121 if (quota != RUNTIME_INF) {
8122 do_div(data.period, NSEC_PER_USEC);
8123 do_div(data.quota, NSEC_PER_USEC);
8124 }
8125
8126 rcu_read_lock();
8127 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8128 rcu_read_unlock();
8129
8130 return ret;
8131}
8132
8133static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8134{
8135 struct task_group *tg = css_tg(seq_css(sf));
8136 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8137
8138 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8139 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8140 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8141
8142 if (schedstat_enabled() && tg != &root_task_group) {
8143 u64 ws = 0;
8144 int i;
8145
8146 for_each_possible_cpu(i)
8147 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8148
8149 seq_printf(sf, "wait_sum %llu\n", ws);
8150 }
8151
8152 return 0;
8153}
8154#endif /* CONFIG_CFS_BANDWIDTH */
8155#endif /* CONFIG_FAIR_GROUP_SCHED */
8156
8157#ifdef CONFIG_RT_GROUP_SCHED
8158static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8159 struct cftype *cft, s64 val)
8160{
8161 return sched_group_set_rt_runtime(css_tg(css), val);
8162}
8163
8164static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8165 struct cftype *cft)
8166{
8167 return sched_group_rt_runtime(css_tg(css));
8168}
8169
8170static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8171 struct cftype *cftype, u64 rt_period_us)
8172{
8173 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8174}
8175
8176static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8177 struct cftype *cft)
8178{
8179 return sched_group_rt_period(css_tg(css));
8180}
8181#endif /* CONFIG_RT_GROUP_SCHED */
8182
8183static struct cftype cpu_legacy_files[] = {
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185 {
8186 .name = "shares",
8187 .read_u64 = cpu_shares_read_u64,
8188 .write_u64 = cpu_shares_write_u64,
8189 },
8190#endif
8191#ifdef CONFIG_CFS_BANDWIDTH
8192 {
8193 .name = "cfs_quota_us",
8194 .read_s64 = cpu_cfs_quota_read_s64,
8195 .write_s64 = cpu_cfs_quota_write_s64,
8196 },
8197 {
8198 .name = "cfs_period_us",
8199 .read_u64 = cpu_cfs_period_read_u64,
8200 .write_u64 = cpu_cfs_period_write_u64,
8201 },
8202 {
8203 .name = "stat",
8204 .seq_show = cpu_cfs_stat_show,
8205 },
8206#endif
8207#ifdef CONFIG_RT_GROUP_SCHED
8208 {
8209 .name = "rt_runtime_us",
8210 .read_s64 = cpu_rt_runtime_read,
8211 .write_s64 = cpu_rt_runtime_write,
8212 },
8213 {
8214 .name = "rt_period_us",
8215 .read_u64 = cpu_rt_period_read_uint,
8216 .write_u64 = cpu_rt_period_write_uint,
8217 },
8218#endif
8219#ifdef CONFIG_UCLAMP_TASK_GROUP
8220 {
8221 .name = "uclamp.min",
8222 .flags = CFTYPE_NOT_ON_ROOT,
8223 .seq_show = cpu_uclamp_min_show,
8224 .write = cpu_uclamp_min_write,
8225 },
8226 {
8227 .name = "uclamp.max",
8228 .flags = CFTYPE_NOT_ON_ROOT,
8229 .seq_show = cpu_uclamp_max_show,
8230 .write = cpu_uclamp_max_write,
8231 },
8232#endif
8233 { } /* Terminate */
8234};
8235
8236static int cpu_extra_stat_show(struct seq_file *sf,
8237 struct cgroup_subsys_state *css)
8238{
8239#ifdef CONFIG_CFS_BANDWIDTH
8240 {
8241 struct task_group *tg = css_tg(css);
8242 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243 u64 throttled_usec;
8244
8245 throttled_usec = cfs_b->throttled_time;
8246 do_div(throttled_usec, NSEC_PER_USEC);
8247
8248 seq_printf(sf, "nr_periods %d\n"
8249 "nr_throttled %d\n"
8250 "throttled_usec %llu\n",
8251 cfs_b->nr_periods, cfs_b->nr_throttled,
8252 throttled_usec);
8253 }
8254#endif
8255 return 0;
8256}
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
8259static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8260 struct cftype *cft)
8261{
8262 struct task_group *tg = css_tg(css);
8263 u64 weight = scale_load_down(tg->shares);
8264
8265 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8266}
8267
8268static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8269 struct cftype *cft, u64 weight)
8270{
8271 /*
8272 * cgroup weight knobs should use the common MIN, DFL and MAX
8273 * values which are 1, 100 and 10000 respectively. While it loses
8274 * a bit of range on both ends, it maps pretty well onto the shares
8275 * value used by scheduler and the round-trip conversions preserve
8276 * the original value over the entire range.
8277 */
8278 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8279 return -ERANGE;
8280
8281 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8282
8283 return sched_group_set_shares(css_tg(css), scale_load(weight));
8284}
8285
8286static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8287 struct cftype *cft)
8288{
8289 unsigned long weight = scale_load_down(css_tg(css)->shares);
8290 int last_delta = INT_MAX;
8291 int prio, delta;
8292
8293 /* find the closest nice value to the current weight */
8294 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8295 delta = abs(sched_prio_to_weight[prio] - weight);
8296 if (delta >= last_delta)
8297 break;
8298 last_delta = delta;
8299 }
8300
8301 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8302}
8303
8304static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8305 struct cftype *cft, s64 nice)
8306{
8307 unsigned long weight;
8308 int idx;
8309
8310 if (nice < MIN_NICE || nice > MAX_NICE)
8311 return -ERANGE;
8312
8313 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8314 idx = array_index_nospec(idx, 40);
8315 weight = sched_prio_to_weight[idx];
8316
8317 return sched_group_set_shares(css_tg(css), scale_load(weight));
8318}
8319#endif
8320
8321static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8322 long period, long quota)
8323{
8324 if (quota < 0)
8325 seq_puts(sf, "max");
8326 else
8327 seq_printf(sf, "%ld", quota);
8328
8329 seq_printf(sf, " %ld\n", period);
8330}
8331
8332/* caller should put the current value in *@periodp before calling */
8333static int __maybe_unused cpu_period_quota_parse(char *buf,
8334 u64 *periodp, u64 *quotap)
8335{
8336 char tok[21]; /* U64_MAX */
8337
8338 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8339 return -EINVAL;
8340
8341 *periodp *= NSEC_PER_USEC;
8342
8343 if (sscanf(tok, "%llu", quotap))
8344 *quotap *= NSEC_PER_USEC;
8345 else if (!strcmp(tok, "max"))
8346 *quotap = RUNTIME_INF;
8347 else
8348 return -EINVAL;
8349
8350 return 0;
8351}
8352
8353#ifdef CONFIG_CFS_BANDWIDTH
8354static int cpu_max_show(struct seq_file *sf, void *v)
8355{
8356 struct task_group *tg = css_tg(seq_css(sf));
8357
8358 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8359 return 0;
8360}
8361
8362static ssize_t cpu_max_write(struct kernfs_open_file *of,
8363 char *buf, size_t nbytes, loff_t off)
8364{
8365 struct task_group *tg = css_tg(of_css(of));
8366 u64 period = tg_get_cfs_period(tg);
8367 u64 quota;
8368 int ret;
8369
8370 ret = cpu_period_quota_parse(buf, &period, "a);
8371 if (!ret)
8372 ret = tg_set_cfs_bandwidth(tg, period, quota);
8373 return ret ?: nbytes;
8374}
8375#endif
8376
8377static struct cftype cpu_files[] = {
8378#ifdef CONFIG_FAIR_GROUP_SCHED
8379 {
8380 .name = "weight",
8381 .flags = CFTYPE_NOT_ON_ROOT,
8382 .read_u64 = cpu_weight_read_u64,
8383 .write_u64 = cpu_weight_write_u64,
8384 },
8385 {
8386 .name = "weight.nice",
8387 .flags = CFTYPE_NOT_ON_ROOT,
8388 .read_s64 = cpu_weight_nice_read_s64,
8389 .write_s64 = cpu_weight_nice_write_s64,
8390 },
8391#endif
8392#ifdef CONFIG_CFS_BANDWIDTH
8393 {
8394 .name = "max",
8395 .flags = CFTYPE_NOT_ON_ROOT,
8396 .seq_show = cpu_max_show,
8397 .write = cpu_max_write,
8398 },
8399#endif
8400#ifdef CONFIG_UCLAMP_TASK_GROUP
8401 {
8402 .name = "uclamp.min",
8403 .flags = CFTYPE_NOT_ON_ROOT,
8404 .seq_show = cpu_uclamp_min_show,
8405 .write = cpu_uclamp_min_write,
8406 },
8407 {
8408 .name = "uclamp.max",
8409 .flags = CFTYPE_NOT_ON_ROOT,
8410 .seq_show = cpu_uclamp_max_show,
8411 .write = cpu_uclamp_max_write,
8412 },
8413#endif
8414 { } /* terminate */
8415};
8416
8417struct cgroup_subsys cpu_cgrp_subsys = {
8418 .css_alloc = cpu_cgroup_css_alloc,
8419 .css_online = cpu_cgroup_css_online,
8420 .css_released = cpu_cgroup_css_released,
8421 .css_free = cpu_cgroup_css_free,
8422 .css_extra_stat_show = cpu_extra_stat_show,
8423 .fork = cpu_cgroup_fork,
8424 .can_attach = cpu_cgroup_can_attach,
8425 .attach = cpu_cgroup_attach,
8426 .legacy_cftypes = cpu_legacy_files,
8427 .dfl_cftypes = cpu_files,
8428 .early_init = true,
8429 .threaded = true,
8430};
8431
8432#endif /* CONFIG_CGROUP_SCHED */
8433
8434void dump_cpu_task(int cpu)
8435{
8436 pr_info("Task dump for CPU %d:\n", cpu);
8437 sched_show_task(cpu_curr(cpu));
8438}
8439
8440/*
8441 * Nice levels are multiplicative, with a gentle 10% change for every
8442 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444 * that remained on nice 0.
8445 *
8446 * The "10% effect" is relative and cumulative: from _any_ nice level,
8447 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449 * If a task goes up by ~10% and another task goes down by ~10% then
8450 * the relative distance between them is ~25%.)
8451 */
8452const int sched_prio_to_weight[40] = {
8453 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8454 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8455 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8456 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8457 /* 0 */ 1024, 820, 655, 526, 423,
8458 /* 5 */ 335, 272, 215, 172, 137,
8459 /* 10 */ 110, 87, 70, 56, 45,
8460 /* 15 */ 36, 29, 23, 18, 15,
8461};
8462
8463/*
8464 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8465 *
8466 * In cases where the weight does not change often, we can use the
8467 * precalculated inverse to speed up arithmetics by turning divisions
8468 * into multiplications:
8469 */
8470const u32 sched_prio_to_wmult[40] = {
8471 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8472 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8473 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8474 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8475 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8476 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8477 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8478 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8479};
8480
8481void call_trace_sched_update_nr_running(struct rq *rq, int count)
8482{
8483 trace_sched_update_nr_running_tp(rq, count);
8484}