Loading...
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/kasan.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
34#include <linux/uaccess.h>
35#include <linux/highmem.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
38#include <linux/capability.h>
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
41#include <linux/debug_locks.h>
42#include <linux/perf_event.h>
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
46#include <linux/freezer.h>
47#include <linux/vmalloc.h>
48#include <linux/blkdev.h>
49#include <linux/delay.h>
50#include <linux/pid_namespace.h>
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/sysctl.h>
61#include <linux/syscalls.h>
62#include <linux/times.h>
63#include <linux/tsacct_kern.h>
64#include <linux/kprobes.h>
65#include <linux/delayacct.h>
66#include <linux/unistd.h>
67#include <linux/pagemap.h>
68#include <linux/hrtimer.h>
69#include <linux/tick.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/context_tracking.h>
75#include <linux/compiler.h>
76#include <linux/frame.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98void update_rq_clock(struct rq *rq)
99{
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112}
113
114/*
115 * Debugging: various feature bits
116 */
117
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121const_debug unsigned int sysctl_sched_features =
122#include "features.h"
123 0;
124
125#undef SCHED_FEAT
126
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141/*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145unsigned int sysctl_sched_rt_period = 1000000;
146
147__read_mostly int scheduler_running;
148
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
154
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
158/*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163{
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171}
172
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
176 */
177
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
194 raw_spin_lock(&rq->lock);
195 update_rq_clock(rq);
196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 raw_spin_unlock(&rq->lock);
198
199 return HRTIMER_NORESTART;
200}
201
202#ifdef CONFIG_SMP
203
204static void __hrtick_restart(struct rq *rq)
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
207
208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209}
210
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
215{
216 struct rq *rq = arg;
217
218 raw_spin_lock(&rq->lock);
219 __hrtick_restart(rq);
220 rq->hrtick_csd_pending = 0;
221 raw_spin_unlock(&rq->lock);
222}
223
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
229void hrtick_start(struct rq *rq, u64 delay)
230{
231 struct hrtimer *timer = &rq->hrtick_timer;
232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
241
242 hrtimer_set_expires(timer, time);
243
244 if (rq == this_rq()) {
245 __hrtick_restart(rq);
246 } else if (!rq->hrtick_csd_pending) {
247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 rq->hrtick_csd_pending = 1;
249 }
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
264 hrtick_clear(cpu_rq(cpu));
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
271static __init void init_hrtick(void)
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
281void hrtick_start(struct rq *rq, u64 delay)
282{
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
290}
291
292static inline void init_hrtick(void)
293{
294}
295#endif /* CONFIG_SMP */
296
297static void init_rq_hrtick(struct rq *rq)
298{
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
301
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
306
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
309}
310#else /* CONFIG_SCHED_HRTICK */
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
319static inline void init_hrtick(void)
320{
321}
322#endif /* CONFIG_SCHED_HRTICK */
323
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
391#endif
392
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
439/*
440 * resched_curr - mark rq's current task 'to be rescheduled now'.
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
446void resched_curr(struct rq *rq)
447{
448 struct task_struct *curr = rq->curr;
449 int cpu;
450
451 lockdep_assert_held(&rq->lock);
452
453 if (test_tsk_need_resched(curr))
454 return;
455
456 cpu = cpu_of(rq);
457
458 if (cpu == smp_processor_id()) {
459 set_tsk_need_resched(curr);
460 set_preempt_need_resched();
461 return;
462 }
463
464 if (set_nr_and_not_polling(curr))
465 smp_send_reschedule(cpu);
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
468}
469
470void resched_cpu(int cpu)
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
476 return;
477 resched_curr(rq);
478 raw_spin_unlock_irqrestore(&rq->lock, flags);
479}
480
481#ifdef CONFIG_SMP
482#ifdef CONFIG_NO_HZ_COMMON
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
491int get_nohz_timer_target(void)
492{
493 int i, cpu = smp_processor_id();
494 struct sched_domain *sd;
495
496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 return cpu;
498
499 rcu_read_lock();
500 for_each_domain(cpu, sd) {
501 for_each_cpu(i, sched_domain_span(sd)) {
502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 cpu = i;
504 goto unlock;
505 }
506 }
507 }
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
511unlock:
512 rcu_read_unlock();
513 return cpu;
514}
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
525static void wake_up_idle_cpu(int cpu)
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
532 if (set_nr_and_not_polling(rq->idle))
533 smp_send_reschedule(cpu);
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
536}
537
538static bool wake_up_full_nohz_cpu(int cpu)
539{
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
546 if (tick_nohz_full_cpu(cpu)) {
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
549 tick_nohz_full_kick_cpu(cpu);
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
558 if (!wake_up_full_nohz_cpu(cpu))
559 wake_up_idle_cpu(cpu);
560}
561
562static inline bool got_nohz_idle_kick(void)
563{
564 int cpu = smp_processor_id();
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
578}
579
580#else /* CONFIG_NO_HZ_COMMON */
581
582static inline bool got_nohz_idle_kick(void)
583{
584 return false;
585}
586
587#endif /* CONFIG_NO_HZ_COMMON */
588
589#ifdef CONFIG_NO_HZ_FULL
590bool sched_can_stop_tick(struct rq *rq)
591{
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
598 /*
599 * If there are more than one RR tasks, we need the tick to effect the
600 * actual RR behaviour.
601 */
602 if (rq->rt.rr_nr_running) {
603 if (rq->rt.rr_nr_running == 1)
604 return true;
605 else
606 return false;
607 }
608
609 /*
610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 * forced preemption between FIFO tasks.
612 */
613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 if (fifo_nr_running)
615 return true;
616
617 /*
618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 * if there's more than one we need the tick for involuntary
620 * preemption.
621 */
622 if (rq->nr_running > 1)
623 return false;
624
625 return true;
626}
627#endif /* CONFIG_NO_HZ_FULL */
628
629void sched_avg_update(struct rq *rq)
630{
631 s64 period = sched_avg_period();
632
633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
634 /*
635 * Inline assembly required to prevent the compiler
636 * optimising this loop into a divmod call.
637 * See __iter_div_u64_rem() for another example of this.
638 */
639 asm("" : "+rm" (rq->age_stamp));
640 rq->age_stamp += period;
641 rq->rt_avg /= 2;
642 }
643}
644
645#endif /* CONFIG_SMP */
646
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649/*
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
654 */
655int walk_tg_tree_from(struct task_group *from,
656 tg_visitor down, tg_visitor up, void *data)
657{
658 struct task_group *parent, *child;
659 int ret;
660
661 parent = from;
662
663down:
664 ret = (*down)(parent, data);
665 if (ret)
666 goto out;
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
674 ret = (*up)(parent, data);
675 if (ret || parent == from)
676 goto out;
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
682out:
683 return ret;
684}
685
686int tg_nop(struct task_group *tg, void *data)
687{
688 return 0;
689}
690#endif
691
692static void set_load_weight(struct task_struct *p)
693{
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
700 if (idle_policy(p->policy)) {
701 load->weight = scale_load(WEIGHT_IDLEPRIO);
702 load->inv_weight = WMULT_IDLEPRIO;
703 return;
704 }
705
706 load->weight = scale_load(sched_prio_to_weight[prio]);
707 load->inv_weight = sched_prio_to_wmult[prio];
708}
709
710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
711{
712 update_rq_clock(rq);
713 if (!(flags & ENQUEUE_RESTORE))
714 sched_info_queued(rq, p);
715 p->sched_class->enqueue_task(rq, p, flags);
716}
717
718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
719{
720 update_rq_clock(rq);
721 if (!(flags & DEQUEUE_SAVE))
722 sched_info_dequeued(rq, p);
723 p->sched_class->dequeue_task(rq, p, flags);
724}
725
726void activate_task(struct rq *rq, struct task_struct *p, int flags)
727{
728 if (task_contributes_to_load(p))
729 rq->nr_uninterruptible--;
730
731 enqueue_task(rq, p, flags);
732}
733
734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
735{
736 if (task_contributes_to_load(p))
737 rq->nr_uninterruptible++;
738
739 dequeue_task(rq, p, flags);
740}
741
742static void update_rq_clock_task(struct rq *rq, s64 delta)
743{
744/*
745 * In theory, the compile should just see 0 here, and optimize out the call
746 * to sched_rt_avg_update. But I don't trust it...
747 */
748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 s64 steal = 0, irq_delta = 0;
750#endif
751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753
754 /*
755 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 * this case when a previous update_rq_clock() happened inside a
757 * {soft,}irq region.
758 *
759 * When this happens, we stop ->clock_task and only update the
760 * prev_irq_time stamp to account for the part that fit, so that a next
761 * update will consume the rest. This ensures ->clock_task is
762 * monotonic.
763 *
764 * It does however cause some slight miss-attribution of {soft,}irq
765 * time, a more accurate solution would be to update the irq_time using
766 * the current rq->clock timestamp, except that would require using
767 * atomic ops.
768 */
769 if (irq_delta > delta)
770 irq_delta = delta;
771
772 rq->prev_irq_time += irq_delta;
773 delta -= irq_delta;
774#endif
775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
776 if (static_key_false((¶virt_steal_rq_enabled))) {
777 steal = paravirt_steal_clock(cpu_of(rq));
778 steal -= rq->prev_steal_time_rq;
779
780 if (unlikely(steal > delta))
781 steal = delta;
782
783 rq->prev_steal_time_rq += steal;
784 delta -= steal;
785 }
786#endif
787
788 rq->clock_task += delta;
789
790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
792 sched_rt_avg_update(rq, irq_delta + steal);
793#endif
794}
795
796void sched_set_stop_task(int cpu, struct task_struct *stop)
797{
798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 struct task_struct *old_stop = cpu_rq(cpu)->stop;
800
801 if (stop) {
802 /*
803 * Make it appear like a SCHED_FIFO task, its something
804 * userspace knows about and won't get confused about.
805 *
806 * Also, it will make PI more or less work without too
807 * much confusion -- but then, stop work should not
808 * rely on PI working anyway.
809 */
810 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
811
812 stop->sched_class = &stop_sched_class;
813 }
814
815 cpu_rq(cpu)->stop = stop;
816
817 if (old_stop) {
818 /*
819 * Reset it back to a normal scheduling class so that
820 * it can die in pieces.
821 */
822 old_stop->sched_class = &rt_sched_class;
823 }
824}
825
826/*
827 * __normal_prio - return the priority that is based on the static prio
828 */
829static inline int __normal_prio(struct task_struct *p)
830{
831 return p->static_prio;
832}
833
834/*
835 * Calculate the expected normal priority: i.e. priority
836 * without taking RT-inheritance into account. Might be
837 * boosted by interactivity modifiers. Changes upon fork,
838 * setprio syscalls, and whenever the interactivity
839 * estimator recalculates.
840 */
841static inline int normal_prio(struct task_struct *p)
842{
843 int prio;
844
845 if (task_has_dl_policy(p))
846 prio = MAX_DL_PRIO-1;
847 else if (task_has_rt_policy(p))
848 prio = MAX_RT_PRIO-1 - p->rt_priority;
849 else
850 prio = __normal_prio(p);
851 return prio;
852}
853
854/*
855 * Calculate the current priority, i.e. the priority
856 * taken into account by the scheduler. This value might
857 * be boosted by RT tasks, or might be boosted by
858 * interactivity modifiers. Will be RT if the task got
859 * RT-boosted. If not then it returns p->normal_prio.
860 */
861static int effective_prio(struct task_struct *p)
862{
863 p->normal_prio = normal_prio(p);
864 /*
865 * If we are RT tasks or we were boosted to RT priority,
866 * keep the priority unchanged. Otherwise, update priority
867 * to the normal priority:
868 */
869 if (!rt_prio(p->prio))
870 return p->normal_prio;
871 return p->prio;
872}
873
874/**
875 * task_curr - is this task currently executing on a CPU?
876 * @p: the task in question.
877 *
878 * Return: 1 if the task is currently executing. 0 otherwise.
879 */
880inline int task_curr(const struct task_struct *p)
881{
882 return cpu_curr(task_cpu(p)) == p;
883}
884
885/*
886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887 * use the balance_callback list if you want balancing.
888 *
889 * this means any call to check_class_changed() must be followed by a call to
890 * balance_callback().
891 */
892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 const struct sched_class *prev_class,
894 int oldprio)
895{
896 if (prev_class != p->sched_class) {
897 if (prev_class->switched_from)
898 prev_class->switched_from(rq, p);
899
900 p->sched_class->switched_to(rq, p);
901 } else if (oldprio != p->prio || dl_task(p))
902 p->sched_class->prio_changed(rq, p, oldprio);
903}
904
905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
906{
907 const struct sched_class *class;
908
909 if (p->sched_class == rq->curr->sched_class) {
910 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 } else {
912 for_each_class(class) {
913 if (class == rq->curr->sched_class)
914 break;
915 if (class == p->sched_class) {
916 resched_curr(rq);
917 break;
918 }
919 }
920 }
921
922 /*
923 * A queue event has occurred, and we're going to schedule. In
924 * this case, we can save a useless back to back clock update.
925 */
926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
927 rq_clock_skip_update(rq, true);
928}
929
930#ifdef CONFIG_SMP
931/*
932 * This is how migration works:
933 *
934 * 1) we invoke migration_cpu_stop() on the target CPU using
935 * stop_one_cpu().
936 * 2) stopper starts to run (implicitly forcing the migrated thread
937 * off the CPU)
938 * 3) it checks whether the migrated task is still in the wrong runqueue.
939 * 4) if it's in the wrong runqueue then the migration thread removes
940 * it and puts it into the right queue.
941 * 5) stopper completes and stop_one_cpu() returns and the migration
942 * is done.
943 */
944
945/*
946 * move_queued_task - move a queued task to new rq.
947 *
948 * Returns (locked) new rq. Old rq's lock is released.
949 */
950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
951{
952 lockdep_assert_held(&rq->lock);
953
954 p->on_rq = TASK_ON_RQ_MIGRATING;
955 dequeue_task(rq, p, 0);
956 set_task_cpu(p, new_cpu);
957 raw_spin_unlock(&rq->lock);
958
959 rq = cpu_rq(new_cpu);
960
961 raw_spin_lock(&rq->lock);
962 BUG_ON(task_cpu(p) != new_cpu);
963 enqueue_task(rq, p, 0);
964 p->on_rq = TASK_ON_RQ_QUEUED;
965 check_preempt_curr(rq, p, 0);
966
967 return rq;
968}
969
970struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973};
974
975/*
976 * Move (not current) task off this cpu, onto dest cpu. We're doing
977 * this because either it can't run here any more (set_cpus_allowed()
978 * away from this CPU, or CPU going down), or because we're
979 * attempting to rebalance this task on exec (sched_exec).
980 *
981 * So we race with normal scheduler movements, but that's OK, as long
982 * as the task is no longer on this CPU.
983 */
984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
985{
986 if (unlikely(!cpu_active(dest_cpu)))
987 return rq;
988
989 /* Affinity changed (again). */
990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
991 return rq;
992
993 rq = move_queued_task(rq, p, dest_cpu);
994
995 return rq;
996}
997
998/*
999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005 struct migration_arg *arg = data;
1006 struct task_struct *p = arg->task;
1007 struct rq *rq = this_rq();
1008
1009 /*
1010 * The original target cpu might have gone down and we might
1011 * be on another cpu but it doesn't matter.
1012 */
1013 local_irq_disable();
1014 /*
1015 * We need to explicitly wake pending tasks before running
1016 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 */
1019 sched_ttwu_pending();
1020
1021 raw_spin_lock(&p->pi_lock);
1022 raw_spin_lock(&rq->lock);
1023 /*
1024 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 * we're holding p->pi_lock.
1027 */
1028 if (task_rq(p) == rq && task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 raw_spin_unlock(&rq->lock);
1031 raw_spin_unlock(&p->pi_lock);
1032
1033 local_irq_enable();
1034 return 0;
1035}
1036
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1042{
1043 cpumask_copy(&p->cpus_allowed, new_mask);
1044 p->nr_cpus_allowed = cpumask_weight(new_mask);
1045}
1046
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048{
1049 struct rq *rq = task_rq(p);
1050 bool queued, running;
1051
1052 lockdep_assert_held(&p->pi_lock);
1053
1054 queued = task_on_rq_queued(p);
1055 running = task_current(rq, p);
1056
1057 if (queued) {
1058 /*
1059 * Because __kthread_bind() calls this on blocked tasks without
1060 * holding rq->lock.
1061 */
1062 lockdep_assert_held(&rq->lock);
1063 dequeue_task(rq, p, DEQUEUE_SAVE);
1064 }
1065 if (running)
1066 put_prev_task(rq, p);
1067
1068 p->sched_class->set_cpus_allowed(p, new_mask);
1069
1070 if (running)
1071 p->sched_class->set_curr_task(rq);
1072 if (queued)
1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
1074}
1075
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 const struct cpumask *new_mask, bool check)
1087{
1088 unsigned long flags;
1089 struct rq *rq;
1090 unsigned int dest_cpu;
1091 int ret = 0;
1092
1093 rq = task_rq_lock(p, &flags);
1094
1095 /*
1096 * Must re-check here, to close a race against __kthread_bind(),
1097 * sched_setaffinity() is not guaranteed to observe the flag.
1098 */
1099 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 ret = -EINVAL;
1101 goto out;
1102 }
1103
1104 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 goto out;
1106
1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
1112 do_set_cpus_allowed(p, new_mask);
1113
1114 /* Can the task run on the task's current CPU? If so, we're done */
1115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 goto out;
1117
1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 struct migration_arg arg = { p, dest_cpu };
1121 /* Need help from migration thread: drop lock and wait. */
1122 task_rq_unlock(rq, p, &flags);
1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 tlb_migrate_finish(p->mm);
1125 return 0;
1126 } else if (task_on_rq_queued(p)) {
1127 /*
1128 * OK, since we're going to drop the lock immediately
1129 * afterwards anyway.
1130 */
1131 lockdep_unpin_lock(&rq->lock);
1132 rq = move_queued_task(rq, p, dest_cpu);
1133 lockdep_pin_lock(&rq->lock);
1134 }
1135out:
1136 task_rq_unlock(rq, p, &flags);
1137
1138 return ret;
1139}
1140
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143 return __set_cpus_allowed_ptr(p, new_mask, false);
1144}
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1148{
1149#ifdef CONFIG_SCHED_DEBUG
1150 /*
1151 * We should never call set_task_cpu() on a blocked task,
1152 * ttwu() will sort out the placement.
1153 */
1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1155 !p->on_rq);
1156
1157 /*
1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 * time relying on p->on_rq.
1161 */
1162 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 p->sched_class == &fair_sched_class &&
1164 (p->on_rq && !task_on_rq_migrating(p)));
1165
1166#ifdef CONFIG_LOCKDEP
1167 /*
1168 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 *
1171 * sched_move_task() holds both and thus holding either pins the cgroup,
1172 * see task_group().
1173 *
1174 * Furthermore, all task_rq users should acquire both locks, see
1175 * task_rq_lock().
1176 */
1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 lockdep_is_held(&task_rq(p)->lock)));
1179#endif
1180#endif
1181
1182 trace_sched_migrate_task(p, new_cpu);
1183
1184 if (task_cpu(p) != new_cpu) {
1185 if (p->sched_class->migrate_task_rq)
1186 p->sched_class->migrate_task_rq(p);
1187 p->se.nr_migrations++;
1188 perf_event_task_migrate(p);
1189 }
1190
1191 __set_task_cpu(p, new_cpu);
1192}
1193
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
1196 if (task_on_rq_queued(p)) {
1197 struct rq *src_rq, *dst_rq;
1198
1199 src_rq = task_rq(p);
1200 dst_rq = cpu_rq(cpu);
1201
1202 p->on_rq = TASK_ON_RQ_MIGRATING;
1203 deactivate_task(src_rq, p, 0);
1204 set_task_cpu(p, cpu);
1205 activate_task(dst_rq, p, 0);
1206 p->on_rq = TASK_ON_RQ_QUEUED;
1207 check_preempt_curr(dst_rq, p, 0);
1208 } else {
1209 /*
1210 * Task isn't running anymore; make it appear like we migrated
1211 * it before it went to sleep. This means on wakeup we make the
1212 * previous cpu our targer instead of where it really is.
1213 */
1214 p->wake_cpu = cpu;
1215 }
1216}
1217
1218struct migration_swap_arg {
1219 struct task_struct *src_task, *dst_task;
1220 int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225 struct migration_swap_arg *arg = data;
1226 struct rq *src_rq, *dst_rq;
1227 int ret = -EAGAIN;
1228
1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 return -EAGAIN;
1231
1232 src_rq = cpu_rq(arg->src_cpu);
1233 dst_rq = cpu_rq(arg->dst_cpu);
1234
1235 double_raw_lock(&arg->src_task->pi_lock,
1236 &arg->dst_task->pi_lock);
1237 double_rq_lock(src_rq, dst_rq);
1238
1239 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 goto unlock;
1241
1242 if (task_cpu(arg->src_task) != arg->src_cpu)
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 goto unlock;
1247
1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 goto unlock;
1250
1251 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254 ret = 0;
1255
1256unlock:
1257 double_rq_unlock(src_rq, dst_rq);
1258 raw_spin_unlock(&arg->dst_task->pi_lock);
1259 raw_spin_unlock(&arg->src_task->pi_lock);
1260
1261 return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268{
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = task_cpu(cur),
1275 .dst_task = p,
1276 .dst_cpu = task_cpu(p),
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 goto out;
1291
1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 goto out;
1294
1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
1299 return ret;
1300}
1301
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change. If it changes, i.e. @p might have woken up,
1307 * then return zero. When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count). If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1319{
1320 unsigned long flags;
1321 int running, queued;
1322 unsigned long ncsw;
1323 struct rq *rq;
1324
1325 for (;;) {
1326 /*
1327 * We do the initial early heuristics without holding
1328 * any task-queue locks at all. We'll only try to get
1329 * the runqueue lock when things look like they will
1330 * work out!
1331 */
1332 rq = task_rq(p);
1333
1334 /*
1335 * If the task is actively running on another CPU
1336 * still, just relax and busy-wait without holding
1337 * any locks.
1338 *
1339 * NOTE! Since we don't hold any locks, it's not
1340 * even sure that "rq" stays as the right runqueue!
1341 * But we don't care, since "task_running()" will
1342 * return false if the runqueue has changed and p
1343 * is actually now running somewhere else!
1344 */
1345 while (task_running(rq, p)) {
1346 if (match_state && unlikely(p->state != match_state))
1347 return 0;
1348 cpu_relax();
1349 }
1350
1351 /*
1352 * Ok, time to look more closely! We need the rq
1353 * lock now, to be *sure*. If we're wrong, we'll
1354 * just go back and repeat.
1355 */
1356 rq = task_rq_lock(p, &flags);
1357 trace_sched_wait_task(p);
1358 running = task_running(rq, p);
1359 queued = task_on_rq_queued(p);
1360 ncsw = 0;
1361 if (!match_state || p->state == match_state)
1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1363 task_rq_unlock(rq, p, &flags);
1364
1365 /*
1366 * If it changed from the expected state, bail out now.
1367 */
1368 if (unlikely(!ncsw))
1369 break;
1370
1371 /*
1372 * Was it really running after all now that we
1373 * checked with the proper locks actually held?
1374 *
1375 * Oops. Go back and try again..
1376 */
1377 if (unlikely(running)) {
1378 cpu_relax();
1379 continue;
1380 }
1381
1382 /*
1383 * It's not enough that it's not actively running,
1384 * it must be off the runqueue _entirely_, and not
1385 * preempted!
1386 *
1387 * So if it was still runnable (but just not actively
1388 * running right now), it's preempted, and we should
1389 * yield - it could be a while.
1390 */
1391 if (unlikely(queued)) {
1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396 continue;
1397 }
1398
1399 /*
1400 * Ahh, all good. It wasn't running, and it wasn't
1401 * runnable, which means that it will never become
1402 * running in the future either. We're all done!
1403 */
1404 break;
1405 }
1406
1407 return ncsw;
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
1417 * NOTE: this function doesn't have to take the runqueue lock,
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
1423void kick_process(struct task_struct *p)
1424{
1425 int cpu;
1426
1427 preempt_disable();
1428 cpu = task_cpu(p);
1429 if ((cpu != smp_processor_id()) && task_curr(p))
1430 smp_send_reschedule(cpu);
1431 preempt_enable();
1432}
1433EXPORT_SYMBOL_GPL(kick_process);
1434
1435/*
1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1437 */
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
1440 int nid = cpu_to_node(cpu);
1441 const struct cpumask *nodemask = NULL;
1442 enum { cpuset, possible, fail } state = cpuset;
1443 int dest_cpu;
1444
1445 /*
1446 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 * will return -1. There is no cpu on the node, and we should
1448 * select the cpu on the other node.
1449 */
1450 if (nid != -1) {
1451 nodemask = cpumask_of_node(nid);
1452
1453 /* Look for allowed, online CPU in same node. */
1454 for_each_cpu(dest_cpu, nodemask) {
1455 if (!cpu_online(dest_cpu))
1456 continue;
1457 if (!cpu_active(dest_cpu))
1458 continue;
1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 return dest_cpu;
1461 }
1462 }
1463
1464 for (;;) {
1465 /* Any allowed, online CPU? */
1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1467 if (!cpu_online(dest_cpu))
1468 continue;
1469 if (!cpu_active(dest_cpu))
1470 continue;
1471 goto out;
1472 }
1473
1474 /* No more Mr. Nice Guy. */
1475 switch (state) {
1476 case cpuset:
1477 if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 cpuset_cpus_allowed_fallback(p);
1479 state = possible;
1480 break;
1481 }
1482 /* fall-through */
1483 case possible:
1484 do_set_cpus_allowed(p, cpu_possible_mask);
1485 state = fail;
1486 break;
1487
1488 case fail:
1489 BUG();
1490 break;
1491 }
1492 }
1493
1494out:
1495 if (state != cpuset) {
1496 /*
1497 * Don't tell them about moving exiting tasks or
1498 * kernel threads (both mm NULL), since they never
1499 * leave kernel.
1500 */
1501 if (p->mm && printk_ratelimit()) {
1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1503 task_pid_nr(p), p->comm, cpu);
1504 }
1505 }
1506
1507 return dest_cpu;
1508}
1509
1510/*
1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1512 */
1513static inline
1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1515{
1516 lockdep_assert_held(&p->pi_lock);
1517
1518 if (p->nr_cpus_allowed > 1)
1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1520
1521 /*
1522 * In order not to call set_task_cpu() on a blocking task we need
1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 * cpu.
1525 *
1526 * Since this is common to all placement strategies, this lives here.
1527 *
1528 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 * not worry about this generic constraint ]
1530 */
1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1532 !cpu_online(cpu)))
1533 cpu = select_fallback_rq(task_cpu(p), p);
1534
1535 return cpu;
1536}
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540 s64 diff = sample - *avg;
1541 *avg += diff >> 3;
1542}
1543
1544#else
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 const struct cpumask *new_mask, bool check)
1548{
1549 return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
1552#endif /* CONFIG_SMP */
1553
1554static void
1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1556{
1557#ifdef CONFIG_SCHEDSTATS
1558 struct rq *rq = this_rq();
1559
1560#ifdef CONFIG_SMP
1561 int this_cpu = smp_processor_id();
1562
1563 if (cpu == this_cpu) {
1564 schedstat_inc(rq, ttwu_local);
1565 schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 } else {
1567 struct sched_domain *sd;
1568
1569 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1570 rcu_read_lock();
1571 for_each_domain(this_cpu, sd) {
1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 schedstat_inc(sd, ttwu_wake_remote);
1574 break;
1575 }
1576 }
1577 rcu_read_unlock();
1578 }
1579
1580 if (wake_flags & WF_MIGRATED)
1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
1583#endif /* CONFIG_SMP */
1584
1585 schedstat_inc(rq, ttwu_count);
1586 schedstat_inc(p, se.statistics.nr_wakeups);
1587
1588 if (wake_flags & WF_SYNC)
1589 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1590
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1595{
1596 activate_task(rq, p, en_flags);
1597 p->on_rq = TASK_ON_RQ_QUEUED;
1598
1599 /* if a worker is waking up, notify workqueue */
1600 if (p->flags & PF_WQ_WORKER)
1601 wq_worker_waking_up(p, cpu_of(rq));
1602}
1603
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
1607static void
1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1609{
1610 check_preempt_curr(rq, p, wake_flags);
1611 p->state = TASK_RUNNING;
1612 trace_sched_wakeup(p);
1613
1614#ifdef CONFIG_SMP
1615 if (p->sched_class->task_woken) {
1616 /*
1617 * Our task @p is fully woken up and running; so its safe to
1618 * drop the rq->lock, hereafter rq is only used for statistics.
1619 */
1620 lockdep_unpin_lock(&rq->lock);
1621 p->sched_class->task_woken(rq, p);
1622 lockdep_pin_lock(&rq->lock);
1623 }
1624
1625 if (rq->idle_stamp) {
1626 u64 delta = rq_clock(rq) - rq->idle_stamp;
1627 u64 max = 2*rq->max_idle_balance_cost;
1628
1629 update_avg(&rq->avg_idle, delta);
1630
1631 if (rq->avg_idle > max)
1632 rq->avg_idle = max;
1633
1634 rq->idle_stamp = 0;
1635 }
1636#endif
1637}
1638
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641{
1642 lockdep_assert_held(&rq->lock);
1643
1644#ifdef CONFIG_SMP
1645 if (p->sched_contributes_to_load)
1646 rq->nr_uninterruptible--;
1647#endif
1648
1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
1661 struct rq *rq;
1662 int ret = 0;
1663
1664 rq = __task_rq_lock(p);
1665 if (task_on_rq_queued(p)) {
1666 /* check_preempt_curr() may use rq clock */
1667 update_rq_clock(rq);
1668 ttwu_do_wakeup(rq, p, wake_flags);
1669 ret = 1;
1670 }
1671 __task_rq_unlock(rq);
1672
1673 return ret;
1674}
1675
1676#ifdef CONFIG_SMP
1677void sched_ttwu_pending(void)
1678{
1679 struct rq *rq = this_rq();
1680 struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 struct task_struct *p;
1682 unsigned long flags;
1683
1684 if (!llist)
1685 return;
1686
1687 raw_spin_lock_irqsave(&rq->lock, flags);
1688 lockdep_pin_lock(&rq->lock);
1689
1690 while (llist) {
1691 p = llist_entry(llist, struct task_struct, wake_entry);
1692 llist = llist_next(llist);
1693 ttwu_do_activate(rq, p, 0);
1694 }
1695
1696 lockdep_unpin_lock(&rq->lock);
1697 raw_spin_unlock_irqrestore(&rq->lock, flags);
1698}
1699
1700void scheduler_ipi(void)
1701{
1702 /*
1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 * this IPI.
1706 */
1707 preempt_fold_need_resched();
1708
1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1710 return;
1711
1712 /*
1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 * traditionally all their work was done from the interrupt return
1715 * path. Now that we actually do some work, we need to make sure
1716 * we do call them.
1717 *
1718 * Some archs already do call them, luckily irq_enter/exit nest
1719 * properly.
1720 *
1721 * Arguably we should visit all archs and update all handlers,
1722 * however a fair share of IPIs are still resched only so this would
1723 * somewhat pessimize the simple resched case.
1724 */
1725 irq_enter();
1726 sched_ttwu_pending();
1727
1728 /*
1729 * Check if someone kicked us for doing the nohz idle load balance.
1730 */
1731 if (unlikely(got_nohz_idle_kick())) {
1732 this_rq()->idle_balance = 1;
1733 raise_softirq_irqoff(SCHED_SOFTIRQ);
1734 }
1735 irq_exit();
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739{
1740 struct rq *rq = cpu_rq(cpu);
1741
1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 if (!set_nr_if_polling(rq->idle))
1744 smp_send_reschedule(cpu);
1745 else
1746 trace_sched_wake_idle_without_ipi(cpu);
1747 }
1748}
1749
1750void wake_up_if_idle(int cpu)
1751{
1752 struct rq *rq = cpu_rq(cpu);
1753 unsigned long flags;
1754
1755 rcu_read_lock();
1756
1757 if (!is_idle_task(rcu_dereference(rq->curr)))
1758 goto out;
1759
1760 if (set_nr_if_polling(rq->idle)) {
1761 trace_sched_wake_idle_without_ipi(cpu);
1762 } else {
1763 raw_spin_lock_irqsave(&rq->lock, flags);
1764 if (is_idle_task(rq->curr))
1765 smp_send_reschedule(cpu);
1766 /* Else cpu is not in idle, do nothing here */
1767 raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 }
1769
1770out:
1771 rcu_read_unlock();
1772}
1773
1774bool cpus_share_cache(int this_cpu, int that_cpu)
1775{
1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
1778#endif /* CONFIG_SMP */
1779
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782 struct rq *rq = cpu_rq(cpu);
1783
1784#if defined(CONFIG_SMP)
1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1787 ttwu_queue_remote(p, cpu);
1788 return;
1789 }
1790#endif
1791
1792 raw_spin_lock(&rq->lock);
1793 lockdep_pin_lock(&rq->lock);
1794 ttwu_do_activate(rq, p, 0);
1795 lockdep_unpin_lock(&rq->lock);
1796 raw_spin_unlock(&rq->lock);
1797}
1798
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 * MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 * rq(c1)->lock (if not at the same time, then in that order).
1813 * C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 * CPU0 CPU1 CPU2
1822 *
1823 * LOCK rq(0)->lock
1824 * sched-out X
1825 * sched-in Y
1826 * UNLOCK rq(0)->lock
1827 *
1828 * LOCK rq(0)->lock // orders against CPU0
1829 * dequeue X
1830 * UNLOCK rq(0)->lock
1831 *
1832 * LOCK rq(1)->lock
1833 * enqueue X
1834 * UNLOCK rq(1)->lock
1835 *
1836 * LOCK rq(1)->lock // orders against CPU2
1837 * sched-out Z
1838 * sched-in X
1839 * UNLOCK rq(1)->lock
1840 *
1841 *
1842 * BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 * 1) smp_store_release(X->on_cpu, 0)
1849 * 2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 * LOCK rq(0)->lock LOCK X->pi_lock
1856 * dequeue X
1857 * sched-out X
1858 * smp_store_release(X->on_cpu, 0);
1859 *
1860 * smp_cond_acquire(!X->on_cpu);
1861 * X->state = WAKING
1862 * set_task_cpu(X,2)
1863 *
1864 * LOCK rq(2)->lock
1865 * enqueue X
1866 * X->state = RUNNING
1867 * UNLOCK rq(2)->lock
1868 *
1869 * LOCK rq(2)->lock // orders against CPU1
1870 * sched-out Z
1871 * sched-in X
1872 * UNLOCK rq(2)->lock
1873 *
1874 * UNLOCK X->pi_lock
1875 * UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
1890/**
1891 * try_to_wake_up - wake up a thread
1892 * @p: the thread to be awakened
1893 * @state: the mask of task states that can be woken
1894 * @wake_flags: wake modifier flags (WF_*)
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
1902 * Return: %true if @p was woken up, %false if it was already running.
1903 * or @state didn't match @p's state.
1904 */
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1907{
1908 unsigned long flags;
1909 int cpu, success = 0;
1910
1911 /*
1912 * If we are going to wake up a thread waiting for CONDITION we
1913 * need to ensure that CONDITION=1 done by the caller can not be
1914 * reordered with p->state check below. This pairs with mb() in
1915 * set_current_state() the waiting thread does.
1916 */
1917 smp_mb__before_spinlock();
1918 raw_spin_lock_irqsave(&p->pi_lock, flags);
1919 if (!(p->state & state))
1920 goto out;
1921
1922 trace_sched_waking(p);
1923
1924 success = 1; /* we're going to change ->state */
1925 cpu = task_cpu(p);
1926
1927 if (p->on_rq && ttwu_remote(p, wake_flags))
1928 goto stat;
1929
1930#ifdef CONFIG_SMP
1931 /*
1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 * possible to, falsely, observe p->on_cpu == 0.
1934 *
1935 * One must be running (->on_cpu == 1) in order to remove oneself
1936 * from the runqueue.
1937 *
1938 * [S] ->on_cpu = 1; [L] ->on_rq
1939 * UNLOCK rq->lock
1940 * RMB
1941 * LOCK rq->lock
1942 * [S] ->on_rq = 0; [L] ->on_cpu
1943 *
1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 * from the consecutive calls to schedule(); the first switching to our
1946 * task, the second putting it to sleep.
1947 */
1948 smp_rmb();
1949
1950 /*
1951 * If the owning (remote) cpu is still in the middle of schedule() with
1952 * this task as prev, wait until its done referencing the task.
1953 *
1954 * Pairs with the smp_store_release() in finish_lock_switch().
1955 *
1956 * This ensures that tasks getting woken will be fully ordered against
1957 * their previous state and preserve Program Order.
1958 */
1959 smp_cond_acquire(!p->on_cpu);
1960
1961 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1962 p->state = TASK_WAKING;
1963
1964 if (p->sched_class->task_waking)
1965 p->sched_class->task_waking(p);
1966
1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1968 if (task_cpu(p) != cpu) {
1969 wake_flags |= WF_MIGRATED;
1970 set_task_cpu(p, cpu);
1971 }
1972#endif /* CONFIG_SMP */
1973
1974 ttwu_queue(p, cpu);
1975stat:
1976 if (schedstat_enabled())
1977 ttwu_stat(p, cpu, wake_flags);
1978out:
1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1980
1981 return success;
1982}
1983
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
1988 * Put @p on the run-queue if it's not already there. The caller must
1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1990 * the current task.
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994 struct rq *rq = task_rq(p);
1995
1996 if (WARN_ON_ONCE(rq != this_rq()) ||
1997 WARN_ON_ONCE(p == current))
1998 return;
1999
2000 lockdep_assert_held(&rq->lock);
2001
2002 if (!raw_spin_trylock(&p->pi_lock)) {
2003 /*
2004 * This is OK, because current is on_cpu, which avoids it being
2005 * picked for load-balance and preemption/IRQs are still
2006 * disabled avoiding further scheduler activity on it and we've
2007 * not yet picked a replacement task.
2008 */
2009 lockdep_unpin_lock(&rq->lock);
2010 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&p->pi_lock);
2012 raw_spin_lock(&rq->lock);
2013 lockdep_pin_lock(&rq->lock);
2014 }
2015
2016 if (!(p->state & TASK_NORMAL))
2017 goto out;
2018
2019 trace_sched_waking(p);
2020
2021 if (!task_on_rq_queued(p))
2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
2024 ttwu_do_wakeup(rq, p, 0);
2025 if (schedstat_enabled())
2026 ttwu_stat(p, smp_processor_id(), 0);
2027out:
2028 raw_spin_unlock(&p->pi_lock);
2029}
2030
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
2043int wake_up_process(struct task_struct *p)
2044{
2045 return try_to_wake_up(p, TASK_NORMAL, 0);
2046}
2047EXPORT_SYMBOL(wake_up_process);
2048
2049int wake_up_state(struct task_struct *p, unsigned int state)
2050{
2051 return try_to_wake_up(p, state, 0);
2052}
2053
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059 struct sched_dl_entity *dl_se = &p->dl;
2060
2061 dl_se->dl_runtime = 0;
2062 dl_se->dl_deadline = 0;
2063 dl_se->dl_period = 0;
2064 dl_se->flags = 0;
2065 dl_se->dl_bw = 0;
2066
2067 dl_se->dl_throttled = 0;
2068 dl_se->dl_yielded = 0;
2069}
2070
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2078{
2079 p->on_rq = 0;
2080
2081 p->se.on_rq = 0;
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
2084 p->se.prev_sum_exec_runtime = 0;
2085 p->se.nr_migrations = 0;
2086 p->se.vruntime = 0;
2087 INIT_LIST_HEAD(&p->se.group_node);
2088
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090 p->se.cfs_rq = NULL;
2091#endif
2092
2093#ifdef CONFIG_SCHEDSTATS
2094 /* Even if schedstat is disabled, there should not be garbage */
2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2096#endif
2097
2098 RB_CLEAR_NODE(&p->dl.rb_node);
2099 init_dl_task_timer(&p->dl);
2100 __dl_clear_params(p);
2101
2102 INIT_LIST_HEAD(&p->rt.run_list);
2103 p->rt.timeout = 0;
2104 p->rt.time_slice = sched_rr_timeslice;
2105 p->rt.on_rq = 0;
2106 p->rt.on_list = 0;
2107
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109 INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2115 p->mm->numa_scan_seq = 0;
2116 }
2117
2118 if (clone_flags & CLONE_VM)
2119 p->numa_preferred_nid = current->numa_preferred_nid;
2120 else
2121 p->numa_preferred_nid = -1;
2122
2123 p->node_stamp = 0ULL;
2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2126 p->numa_work.next = &p->numa_work;
2127 p->numa_faults = NULL;
2128 p->last_task_numa_placement = 0;
2129 p->last_sum_exec_runtime = 0;
2130
2131 p->numa_group = NULL;
2132#endif /* CONFIG_NUMA_BALANCING */
2133}
2134
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
2137#ifdef CONFIG_NUMA_BALANCING
2138
2139void set_numabalancing_state(bool enabled)
2140{
2141 if (enabled)
2142 static_branch_enable(&sched_numa_balancing);
2143 else
2144 static_branch_disable(&sched_numa_balancing);
2145}
2146
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *lenp, loff_t *ppos)
2150{
2151 struct ctl_table t;
2152 int err;
2153 int state = static_branch_likely(&sched_numa_balancing);
2154
2155 if (write && !capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 t = *table;
2159 t.data = &state;
2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 if (err < 0)
2162 return err;
2163 if (write)
2164 set_numabalancing_state(state);
2165 return err;
2166}
2167#endif
2168#endif
2169
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175 if (enabled)
2176 static_branch_enable(&sched_schedstats);
2177 else
2178 static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183 if (!schedstat_enabled()) {
2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 static_branch_enable(&sched_schedstats);
2186 }
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191 int ret = 0;
2192 if (!str)
2193 goto out;
2194
2195 if (!strcmp(str, "enable")) {
2196 set_schedstats(true);
2197 ret = 1;
2198 } else if (!strcmp(str, "disable")) {
2199 set_schedstats(false);
2200 ret = 1;
2201 }
2202out:
2203 if (!ret)
2204 pr_warn("Unable to parse schedstats=\n");
2205
2206 return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214 struct ctl_table t;
2215 int err;
2216 int state = static_branch_likely(&sched_schedstats);
2217
2218 if (write && !capable(CAP_SYS_ADMIN))
2219 return -EPERM;
2220
2221 t = *table;
2222 t.data = &state;
2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 if (err < 0)
2225 return err;
2226 if (write)
2227 set_schedstats(state);
2228 return err;
2229}
2230#endif
2231#endif
2232
2233/*
2234 * fork()/clone()-time setup:
2235 */
2236int sched_fork(unsigned long clone_flags, struct task_struct *p)
2237{
2238 unsigned long flags;
2239 int cpu = get_cpu();
2240
2241 __sched_fork(clone_flags, p);
2242 /*
2243 * We mark the process as running here. This guarantees that
2244 * nobody will actually run it, and a signal or other external
2245 * event cannot wake it up and insert it on the runqueue either.
2246 */
2247 p->state = TASK_RUNNING;
2248
2249 /*
2250 * Make sure we do not leak PI boosting priority to the child.
2251 */
2252 p->prio = current->normal_prio;
2253
2254 /*
2255 * Revert to default priority/policy on fork if requested.
2256 */
2257 if (unlikely(p->sched_reset_on_fork)) {
2258 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2259 p->policy = SCHED_NORMAL;
2260 p->static_prio = NICE_TO_PRIO(0);
2261 p->rt_priority = 0;
2262 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2263 p->static_prio = NICE_TO_PRIO(0);
2264
2265 p->prio = p->normal_prio = __normal_prio(p);
2266 set_load_weight(p);
2267
2268 /*
2269 * We don't need the reset flag anymore after the fork. It has
2270 * fulfilled its duty:
2271 */
2272 p->sched_reset_on_fork = 0;
2273 }
2274
2275 if (dl_prio(p->prio)) {
2276 put_cpu();
2277 return -EAGAIN;
2278 } else if (rt_prio(p->prio)) {
2279 p->sched_class = &rt_sched_class;
2280 } else {
2281 p->sched_class = &fair_sched_class;
2282 }
2283
2284 if (p->sched_class->task_fork)
2285 p->sched_class->task_fork(p);
2286
2287 /*
2288 * The child is not yet in the pid-hash so no cgroup attach races,
2289 * and the cgroup is pinned to this child due to cgroup_fork()
2290 * is ran before sched_fork().
2291 *
2292 * Silence PROVE_RCU.
2293 */
2294 raw_spin_lock_irqsave(&p->pi_lock, flags);
2295 set_task_cpu(p, cpu);
2296 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2297
2298#ifdef CONFIG_SCHED_INFO
2299 if (likely(sched_info_on()))
2300 memset(&p->sched_info, 0, sizeof(p->sched_info));
2301#endif
2302#if defined(CONFIG_SMP)
2303 p->on_cpu = 0;
2304#endif
2305 init_task_preempt_count(p);
2306#ifdef CONFIG_SMP
2307 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2308 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2309#endif
2310
2311 put_cpu();
2312 return 0;
2313}
2314
2315unsigned long to_ratio(u64 period, u64 runtime)
2316{
2317 if (runtime == RUNTIME_INF)
2318 return 1ULL << 20;
2319
2320 /*
2321 * Doing this here saves a lot of checks in all
2322 * the calling paths, and returning zero seems
2323 * safe for them anyway.
2324 */
2325 if (period == 0)
2326 return 0;
2327
2328 return div64_u64(runtime << 20, period);
2329}
2330
2331#ifdef CONFIG_SMP
2332inline struct dl_bw *dl_bw_of(int i)
2333{
2334 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2335 "sched RCU must be held");
2336 return &cpu_rq(i)->rd->dl_bw;
2337}
2338
2339static inline int dl_bw_cpus(int i)
2340{
2341 struct root_domain *rd = cpu_rq(i)->rd;
2342 int cpus = 0;
2343
2344 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2345 "sched RCU must be held");
2346 for_each_cpu_and(i, rd->span, cpu_active_mask)
2347 cpus++;
2348
2349 return cpus;
2350}
2351#else
2352inline struct dl_bw *dl_bw_of(int i)
2353{
2354 return &cpu_rq(i)->dl.dl_bw;
2355}
2356
2357static inline int dl_bw_cpus(int i)
2358{
2359 return 1;
2360}
2361#endif
2362
2363/*
2364 * We must be sure that accepting a new task (or allowing changing the
2365 * parameters of an existing one) is consistent with the bandwidth
2366 * constraints. If yes, this function also accordingly updates the currently
2367 * allocated bandwidth to reflect the new situation.
2368 *
2369 * This function is called while holding p's rq->lock.
2370 *
2371 * XXX we should delay bw change until the task's 0-lag point, see
2372 * __setparam_dl().
2373 */
2374static int dl_overflow(struct task_struct *p, int policy,
2375 const struct sched_attr *attr)
2376{
2377
2378 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2379 u64 period = attr->sched_period ?: attr->sched_deadline;
2380 u64 runtime = attr->sched_runtime;
2381 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2382 int cpus, err = -1;
2383
2384 if (new_bw == p->dl.dl_bw)
2385 return 0;
2386
2387 /*
2388 * Either if a task, enters, leave, or stays -deadline but changes
2389 * its parameters, we may need to update accordingly the total
2390 * allocated bandwidth of the container.
2391 */
2392 raw_spin_lock(&dl_b->lock);
2393 cpus = dl_bw_cpus(task_cpu(p));
2394 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2395 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2396 __dl_add(dl_b, new_bw);
2397 err = 0;
2398 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2399 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2400 __dl_clear(dl_b, p->dl.dl_bw);
2401 __dl_add(dl_b, new_bw);
2402 err = 0;
2403 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2404 __dl_clear(dl_b, p->dl.dl_bw);
2405 err = 0;
2406 }
2407 raw_spin_unlock(&dl_b->lock);
2408
2409 return err;
2410}
2411
2412extern void init_dl_bw(struct dl_bw *dl_b);
2413
2414/*
2415 * wake_up_new_task - wake up a newly created task for the first time.
2416 *
2417 * This function will do some initial scheduler statistics housekeeping
2418 * that must be done for every newly created context, then puts the task
2419 * on the runqueue and wakes it.
2420 */
2421void wake_up_new_task(struct task_struct *p)
2422{
2423 unsigned long flags;
2424 struct rq *rq;
2425
2426 raw_spin_lock_irqsave(&p->pi_lock, flags);
2427 /* Initialize new task's runnable average */
2428 init_entity_runnable_average(&p->se);
2429#ifdef CONFIG_SMP
2430 /*
2431 * Fork balancing, do it here and not earlier because:
2432 * - cpus_allowed can change in the fork path
2433 * - any previously selected cpu might disappear through hotplug
2434 */
2435 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2436#endif
2437
2438 rq = __task_rq_lock(p);
2439 activate_task(rq, p, 0);
2440 p->on_rq = TASK_ON_RQ_QUEUED;
2441 trace_sched_wakeup_new(p);
2442 check_preempt_curr(rq, p, WF_FORK);
2443#ifdef CONFIG_SMP
2444 if (p->sched_class->task_woken) {
2445 /*
2446 * Nothing relies on rq->lock after this, so its fine to
2447 * drop it.
2448 */
2449 lockdep_unpin_lock(&rq->lock);
2450 p->sched_class->task_woken(rq, p);
2451 lockdep_pin_lock(&rq->lock);
2452 }
2453#endif
2454 task_rq_unlock(rq, p, &flags);
2455}
2456
2457#ifdef CONFIG_PREEMPT_NOTIFIERS
2458
2459static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2460
2461void preempt_notifier_inc(void)
2462{
2463 static_key_slow_inc(&preempt_notifier_key);
2464}
2465EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2466
2467void preempt_notifier_dec(void)
2468{
2469 static_key_slow_dec(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2472
2473/**
2474 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2475 * @notifier: notifier struct to register
2476 */
2477void preempt_notifier_register(struct preempt_notifier *notifier)
2478{
2479 if (!static_key_false(&preempt_notifier_key))
2480 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2481
2482 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2483}
2484EXPORT_SYMBOL_GPL(preempt_notifier_register);
2485
2486/**
2487 * preempt_notifier_unregister - no longer interested in preemption notifications
2488 * @notifier: notifier struct to unregister
2489 *
2490 * This is *not* safe to call from within a preemption notifier.
2491 */
2492void preempt_notifier_unregister(struct preempt_notifier *notifier)
2493{
2494 hlist_del(¬ifier->link);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2497
2498static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2499{
2500 struct preempt_notifier *notifier;
2501
2502 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2503 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2504}
2505
2506static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508 if (static_key_false(&preempt_notifier_key))
2509 __fire_sched_in_preempt_notifiers(curr);
2510}
2511
2512static void
2513__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2514 struct task_struct *next)
2515{
2516 struct preempt_notifier *notifier;
2517
2518 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2519 notifier->ops->sched_out(notifier, next);
2520}
2521
2522static __always_inline void
2523fire_sched_out_preempt_notifiers(struct task_struct *curr,
2524 struct task_struct *next)
2525{
2526 if (static_key_false(&preempt_notifier_key))
2527 __fire_sched_out_preempt_notifiers(curr, next);
2528}
2529
2530#else /* !CONFIG_PREEMPT_NOTIFIERS */
2531
2532static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534}
2535
2536static inline void
2537fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538 struct task_struct *next)
2539{
2540}
2541
2542#endif /* CONFIG_PREEMPT_NOTIFIERS */
2543
2544/**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
2547 * @prev: the current task that is being switched out
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
2557static inline void
2558prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559 struct task_struct *next)
2560{
2561 sched_info_switch(rq, prev, next);
2562 perf_event_task_sched_out(prev, next);
2563 fire_sched_out_preempt_notifiers(prev, next);
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566}
2567
2568/**
2569 * finish_task_switch - clean up after a task-switch
2570 * @prev: the thread we just switched away from.
2571 *
2572 * finish_task_switch must be called after the context switch, paired
2573 * with a prepare_task_switch call before the context switch.
2574 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2575 * and do any other architecture-specific cleanup actions.
2576 *
2577 * Note that we may have delayed dropping an mm in context_switch(). If
2578 * so, we finish that here outside of the runqueue lock. (Doing it
2579 * with the lock held can cause deadlocks; see schedule() for
2580 * details.)
2581 *
2582 * The context switch have flipped the stack from under us and restored the
2583 * local variables which were saved when this task called schedule() in the
2584 * past. prev == current is still correct but we need to recalculate this_rq
2585 * because prev may have moved to another CPU.
2586 */
2587static struct rq *finish_task_switch(struct task_struct *prev)
2588 __releases(rq->lock)
2589{
2590 struct rq *rq = this_rq();
2591 struct mm_struct *mm = rq->prev_mm;
2592 long prev_state;
2593
2594 /*
2595 * The previous task will have left us with a preempt_count of 2
2596 * because it left us after:
2597 *
2598 * schedule()
2599 * preempt_disable(); // 1
2600 * __schedule()
2601 * raw_spin_lock_irq(&rq->lock) // 2
2602 *
2603 * Also, see FORK_PREEMPT_COUNT.
2604 */
2605 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2606 "corrupted preempt_count: %s/%d/0x%x\n",
2607 current->comm, current->pid, preempt_count()))
2608 preempt_count_set(FORK_PREEMPT_COUNT);
2609
2610 rq->prev_mm = NULL;
2611
2612 /*
2613 * A task struct has one reference for the use as "current".
2614 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2615 * schedule one last time. The schedule call will never return, and
2616 * the scheduled task must drop that reference.
2617 *
2618 * We must observe prev->state before clearing prev->on_cpu (in
2619 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2620 * running on another CPU and we could rave with its RUNNING -> DEAD
2621 * transition, resulting in a double drop.
2622 */
2623 prev_state = prev->state;
2624 vtime_task_switch(prev);
2625 perf_event_task_sched_in(prev, current);
2626 finish_lock_switch(rq, prev);
2627 finish_arch_post_lock_switch();
2628
2629 fire_sched_in_preempt_notifiers(current);
2630 if (mm)
2631 mmdrop(mm);
2632 if (unlikely(prev_state == TASK_DEAD)) {
2633 if (prev->sched_class->task_dead)
2634 prev->sched_class->task_dead(prev);
2635
2636 /*
2637 * Remove function-return probe instances associated with this
2638 * task and put them back on the free list.
2639 */
2640 kprobe_flush_task(prev);
2641 put_task_struct(prev);
2642 }
2643
2644 tick_nohz_task_switch();
2645 return rq;
2646}
2647
2648#ifdef CONFIG_SMP
2649
2650/* rq->lock is NOT held, but preemption is disabled */
2651static void __balance_callback(struct rq *rq)
2652{
2653 struct callback_head *head, *next;
2654 void (*func)(struct rq *rq);
2655 unsigned long flags;
2656
2657 raw_spin_lock_irqsave(&rq->lock, flags);
2658 head = rq->balance_callback;
2659 rq->balance_callback = NULL;
2660 while (head) {
2661 func = (void (*)(struct rq *))head->func;
2662 next = head->next;
2663 head->next = NULL;
2664 head = next;
2665
2666 func(rq);
2667 }
2668 raw_spin_unlock_irqrestore(&rq->lock, flags);
2669}
2670
2671static inline void balance_callback(struct rq *rq)
2672{
2673 if (unlikely(rq->balance_callback))
2674 __balance_callback(rq);
2675}
2676
2677#else
2678
2679static inline void balance_callback(struct rq *rq)
2680{
2681}
2682
2683#endif
2684
2685/**
2686 * schedule_tail - first thing a freshly forked thread must call.
2687 * @prev: the thread we just switched away from.
2688 */
2689asmlinkage __visible void schedule_tail(struct task_struct *prev)
2690 __releases(rq->lock)
2691{
2692 struct rq *rq;
2693
2694 /*
2695 * New tasks start with FORK_PREEMPT_COUNT, see there and
2696 * finish_task_switch() for details.
2697 *
2698 * finish_task_switch() will drop rq->lock() and lower preempt_count
2699 * and the preempt_enable() will end up enabling preemption (on
2700 * PREEMPT_COUNT kernels).
2701 */
2702
2703 rq = finish_task_switch(prev);
2704 balance_callback(rq);
2705 preempt_enable();
2706
2707 if (current->set_child_tid)
2708 put_user(task_pid_vnr(current), current->set_child_tid);
2709}
2710
2711/*
2712 * context_switch - switch to the new MM and the new thread's register state.
2713 */
2714static __always_inline struct rq *
2715context_switch(struct rq *rq, struct task_struct *prev,
2716 struct task_struct *next)
2717{
2718 struct mm_struct *mm, *oldmm;
2719
2720 prepare_task_switch(rq, prev, next);
2721
2722 mm = next->mm;
2723 oldmm = prev->active_mm;
2724 /*
2725 * For paravirt, this is coupled with an exit in switch_to to
2726 * combine the page table reload and the switch backend into
2727 * one hypercall.
2728 */
2729 arch_start_context_switch(prev);
2730
2731 if (!mm) {
2732 next->active_mm = oldmm;
2733 atomic_inc(&oldmm->mm_count);
2734 enter_lazy_tlb(oldmm, next);
2735 } else
2736 switch_mm(oldmm, mm, next);
2737
2738 if (!prev->mm) {
2739 prev->active_mm = NULL;
2740 rq->prev_mm = oldmm;
2741 }
2742 /*
2743 * Since the runqueue lock will be released by the next
2744 * task (which is an invalid locking op but in the case
2745 * of the scheduler it's an obvious special-case), so we
2746 * do an early lockdep release here:
2747 */
2748 lockdep_unpin_lock(&rq->lock);
2749 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2750
2751 /* Here we just switch the register state and the stack. */
2752 switch_to(prev, next, prev);
2753 barrier();
2754
2755 return finish_task_switch(prev);
2756}
2757
2758/*
2759 * nr_running and nr_context_switches:
2760 *
2761 * externally visible scheduler statistics: current number of runnable
2762 * threads, total number of context switches performed since bootup.
2763 */
2764unsigned long nr_running(void)
2765{
2766 unsigned long i, sum = 0;
2767
2768 for_each_online_cpu(i)
2769 sum += cpu_rq(i)->nr_running;
2770
2771 return sum;
2772}
2773
2774/*
2775 * Check if only the current task is running on the cpu.
2776 *
2777 * Caution: this function does not check that the caller has disabled
2778 * preemption, thus the result might have a time-of-check-to-time-of-use
2779 * race. The caller is responsible to use it correctly, for example:
2780 *
2781 * - from a non-preemptable section (of course)
2782 *
2783 * - from a thread that is bound to a single CPU
2784 *
2785 * - in a loop with very short iterations (e.g. a polling loop)
2786 */
2787bool single_task_running(void)
2788{
2789 return raw_rq()->nr_running == 1;
2790}
2791EXPORT_SYMBOL(single_task_running);
2792
2793unsigned long long nr_context_switches(void)
2794{
2795 int i;
2796 unsigned long long sum = 0;
2797
2798 for_each_possible_cpu(i)
2799 sum += cpu_rq(i)->nr_switches;
2800
2801 return sum;
2802}
2803
2804unsigned long nr_iowait(void)
2805{
2806 unsigned long i, sum = 0;
2807
2808 for_each_possible_cpu(i)
2809 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2810
2811 return sum;
2812}
2813
2814unsigned long nr_iowait_cpu(int cpu)
2815{
2816 struct rq *this = cpu_rq(cpu);
2817 return atomic_read(&this->nr_iowait);
2818}
2819
2820void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2821{
2822 struct rq *rq = this_rq();
2823 *nr_waiters = atomic_read(&rq->nr_iowait);
2824 *load = rq->load.weight;
2825}
2826
2827#ifdef CONFIG_SMP
2828
2829/*
2830 * sched_exec - execve() is a valuable balancing opportunity, because at
2831 * this point the task has the smallest effective memory and cache footprint.
2832 */
2833void sched_exec(void)
2834{
2835 struct task_struct *p = current;
2836 unsigned long flags;
2837 int dest_cpu;
2838
2839 raw_spin_lock_irqsave(&p->pi_lock, flags);
2840 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2841 if (dest_cpu == smp_processor_id())
2842 goto unlock;
2843
2844 if (likely(cpu_active(dest_cpu))) {
2845 struct migration_arg arg = { p, dest_cpu };
2846
2847 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2848 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2849 return;
2850 }
2851unlock:
2852 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2853}
2854
2855#endif
2856
2857DEFINE_PER_CPU(struct kernel_stat, kstat);
2858DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2859
2860EXPORT_PER_CPU_SYMBOL(kstat);
2861EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2862
2863/*
2864 * Return accounted runtime for the task.
2865 * In case the task is currently running, return the runtime plus current's
2866 * pending runtime that have not been accounted yet.
2867 */
2868unsigned long long task_sched_runtime(struct task_struct *p)
2869{
2870 unsigned long flags;
2871 struct rq *rq;
2872 u64 ns;
2873
2874#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2875 /*
2876 * 64-bit doesn't need locks to atomically read a 64bit value.
2877 * So we have a optimization chance when the task's delta_exec is 0.
2878 * Reading ->on_cpu is racy, but this is ok.
2879 *
2880 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2881 * If we race with it entering cpu, unaccounted time is 0. This is
2882 * indistinguishable from the read occurring a few cycles earlier.
2883 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2884 * been accounted, so we're correct here as well.
2885 */
2886 if (!p->on_cpu || !task_on_rq_queued(p))
2887 return p->se.sum_exec_runtime;
2888#endif
2889
2890 rq = task_rq_lock(p, &flags);
2891 /*
2892 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2893 * project cycles that may never be accounted to this
2894 * thread, breaking clock_gettime().
2895 */
2896 if (task_current(rq, p) && task_on_rq_queued(p)) {
2897 update_rq_clock(rq);
2898 p->sched_class->update_curr(rq);
2899 }
2900 ns = p->se.sum_exec_runtime;
2901 task_rq_unlock(rq, p, &flags);
2902
2903 return ns;
2904}
2905
2906/*
2907 * This function gets called by the timer code, with HZ frequency.
2908 * We call it with interrupts disabled.
2909 */
2910void scheduler_tick(void)
2911{
2912 int cpu = smp_processor_id();
2913 struct rq *rq = cpu_rq(cpu);
2914 struct task_struct *curr = rq->curr;
2915
2916 sched_clock_tick();
2917
2918 raw_spin_lock(&rq->lock);
2919 update_rq_clock(rq);
2920 curr->sched_class->task_tick(rq, curr, 0);
2921 update_cpu_load_active(rq);
2922 calc_global_load_tick(rq);
2923 raw_spin_unlock(&rq->lock);
2924
2925 perf_event_task_tick();
2926
2927#ifdef CONFIG_SMP
2928 rq->idle_balance = idle_cpu(cpu);
2929 trigger_load_balance(rq);
2930#endif
2931 rq_last_tick_reset(rq);
2932}
2933
2934#ifdef CONFIG_NO_HZ_FULL
2935/**
2936 * scheduler_tick_max_deferment
2937 *
2938 * Keep at least one tick per second when a single
2939 * active task is running because the scheduler doesn't
2940 * yet completely support full dynticks environment.
2941 *
2942 * This makes sure that uptime, CFS vruntime, load
2943 * balancing, etc... continue to move forward, even
2944 * with a very low granularity.
2945 *
2946 * Return: Maximum deferment in nanoseconds.
2947 */
2948u64 scheduler_tick_max_deferment(void)
2949{
2950 struct rq *rq = this_rq();
2951 unsigned long next, now = READ_ONCE(jiffies);
2952
2953 next = rq->last_sched_tick + HZ;
2954
2955 if (time_before_eq(next, now))
2956 return 0;
2957
2958 return jiffies_to_nsecs(next - now);
2959}
2960#endif
2961
2962#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2963 defined(CONFIG_PREEMPT_TRACER))
2964
2965void preempt_count_add(int val)
2966{
2967#ifdef CONFIG_DEBUG_PREEMPT
2968 /*
2969 * Underflow?
2970 */
2971 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2972 return;
2973#endif
2974 __preempt_count_add(val);
2975#ifdef CONFIG_DEBUG_PREEMPT
2976 /*
2977 * Spinlock count overflowing soon?
2978 */
2979 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2980 PREEMPT_MASK - 10);
2981#endif
2982 if (preempt_count() == val) {
2983 unsigned long ip = get_lock_parent_ip();
2984#ifdef CONFIG_DEBUG_PREEMPT
2985 current->preempt_disable_ip = ip;
2986#endif
2987 trace_preempt_off(CALLER_ADDR0, ip);
2988 }
2989}
2990EXPORT_SYMBOL(preempt_count_add);
2991NOKPROBE_SYMBOL(preempt_count_add);
2992
2993void preempt_count_sub(int val)
2994{
2995#ifdef CONFIG_DEBUG_PREEMPT
2996 /*
2997 * Underflow?
2998 */
2999 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3000 return;
3001 /*
3002 * Is the spinlock portion underflowing?
3003 */
3004 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3005 !(preempt_count() & PREEMPT_MASK)))
3006 return;
3007#endif
3008
3009 if (preempt_count() == val)
3010 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3011 __preempt_count_sub(val);
3012}
3013EXPORT_SYMBOL(preempt_count_sub);
3014NOKPROBE_SYMBOL(preempt_count_sub);
3015
3016#endif
3017
3018/*
3019 * Print scheduling while atomic bug:
3020 */
3021static noinline void __schedule_bug(struct task_struct *prev)
3022{
3023 if (oops_in_progress)
3024 return;
3025
3026 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3027 prev->comm, prev->pid, preempt_count());
3028
3029 debug_show_held_locks(prev);
3030 print_modules();
3031 if (irqs_disabled())
3032 print_irqtrace_events(prev);
3033#ifdef CONFIG_DEBUG_PREEMPT
3034 if (in_atomic_preempt_off()) {
3035 pr_err("Preemption disabled at:");
3036 print_ip_sym(current->preempt_disable_ip);
3037 pr_cont("\n");
3038 }
3039#endif
3040 dump_stack();
3041 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3042}
3043
3044/*
3045 * Various schedule()-time debugging checks and statistics:
3046 */
3047static inline void schedule_debug(struct task_struct *prev)
3048{
3049#ifdef CONFIG_SCHED_STACK_END_CHECK
3050 BUG_ON(task_stack_end_corrupted(prev));
3051#endif
3052
3053 if (unlikely(in_atomic_preempt_off())) {
3054 __schedule_bug(prev);
3055 preempt_count_set(PREEMPT_DISABLED);
3056 }
3057 rcu_sleep_check();
3058
3059 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3060
3061 schedstat_inc(this_rq(), sched_count);
3062}
3063
3064/*
3065 * Pick up the highest-prio task:
3066 */
3067static inline struct task_struct *
3068pick_next_task(struct rq *rq, struct task_struct *prev)
3069{
3070 const struct sched_class *class = &fair_sched_class;
3071 struct task_struct *p;
3072
3073 /*
3074 * Optimization: we know that if all tasks are in
3075 * the fair class we can call that function directly:
3076 */
3077 if (likely(prev->sched_class == class &&
3078 rq->nr_running == rq->cfs.h_nr_running)) {
3079 p = fair_sched_class.pick_next_task(rq, prev);
3080 if (unlikely(p == RETRY_TASK))
3081 goto again;
3082
3083 /* assumes fair_sched_class->next == idle_sched_class */
3084 if (unlikely(!p))
3085 p = idle_sched_class.pick_next_task(rq, prev);
3086
3087 return p;
3088 }
3089
3090again:
3091 for_each_class(class) {
3092 p = class->pick_next_task(rq, prev);
3093 if (p) {
3094 if (unlikely(p == RETRY_TASK))
3095 goto again;
3096 return p;
3097 }
3098 }
3099
3100 BUG(); /* the idle class will always have a runnable task */
3101}
3102
3103/*
3104 * __schedule() is the main scheduler function.
3105 *
3106 * The main means of driving the scheduler and thus entering this function are:
3107 *
3108 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3109 *
3110 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3111 * paths. For example, see arch/x86/entry_64.S.
3112 *
3113 * To drive preemption between tasks, the scheduler sets the flag in timer
3114 * interrupt handler scheduler_tick().
3115 *
3116 * 3. Wakeups don't really cause entry into schedule(). They add a
3117 * task to the run-queue and that's it.
3118 *
3119 * Now, if the new task added to the run-queue preempts the current
3120 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3121 * called on the nearest possible occasion:
3122 *
3123 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3124 *
3125 * - in syscall or exception context, at the next outmost
3126 * preempt_enable(). (this might be as soon as the wake_up()'s
3127 * spin_unlock()!)
3128 *
3129 * - in IRQ context, return from interrupt-handler to
3130 * preemptible context
3131 *
3132 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3133 * then at the next:
3134 *
3135 * - cond_resched() call
3136 * - explicit schedule() call
3137 * - return from syscall or exception to user-space
3138 * - return from interrupt-handler to user-space
3139 *
3140 * WARNING: must be called with preemption disabled!
3141 */
3142static void __sched notrace __schedule(bool preempt)
3143{
3144 struct task_struct *prev, *next;
3145 unsigned long *switch_count;
3146 struct rq *rq;
3147 int cpu;
3148
3149 cpu = smp_processor_id();
3150 rq = cpu_rq(cpu);
3151 prev = rq->curr;
3152
3153 /*
3154 * do_exit() calls schedule() with preemption disabled as an exception;
3155 * however we must fix that up, otherwise the next task will see an
3156 * inconsistent (higher) preempt count.
3157 *
3158 * It also avoids the below schedule_debug() test from complaining
3159 * about this.
3160 */
3161 if (unlikely(prev->state == TASK_DEAD))
3162 preempt_enable_no_resched_notrace();
3163
3164 schedule_debug(prev);
3165
3166 if (sched_feat(HRTICK))
3167 hrtick_clear(rq);
3168
3169 local_irq_disable();
3170 rcu_note_context_switch();
3171
3172 /*
3173 * Make sure that signal_pending_state()->signal_pending() below
3174 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3175 * done by the caller to avoid the race with signal_wake_up().
3176 */
3177 smp_mb__before_spinlock();
3178 raw_spin_lock(&rq->lock);
3179 lockdep_pin_lock(&rq->lock);
3180
3181 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3182
3183 switch_count = &prev->nivcsw;
3184 if (!preempt && prev->state) {
3185 if (unlikely(signal_pending_state(prev->state, prev))) {
3186 prev->state = TASK_RUNNING;
3187 } else {
3188 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3189 prev->on_rq = 0;
3190
3191 /*
3192 * If a worker went to sleep, notify and ask workqueue
3193 * whether it wants to wake up a task to maintain
3194 * concurrency.
3195 */
3196 if (prev->flags & PF_WQ_WORKER) {
3197 struct task_struct *to_wakeup;
3198
3199 to_wakeup = wq_worker_sleeping(prev);
3200 if (to_wakeup)
3201 try_to_wake_up_local(to_wakeup);
3202 }
3203 }
3204 switch_count = &prev->nvcsw;
3205 }
3206
3207 if (task_on_rq_queued(prev))
3208 update_rq_clock(rq);
3209
3210 next = pick_next_task(rq, prev);
3211 clear_tsk_need_resched(prev);
3212 clear_preempt_need_resched();
3213 rq->clock_skip_update = 0;
3214
3215 if (likely(prev != next)) {
3216 rq->nr_switches++;
3217 rq->curr = next;
3218 ++*switch_count;
3219
3220 trace_sched_switch(preempt, prev, next);
3221 rq = context_switch(rq, prev, next); /* unlocks the rq */
3222 } else {
3223 lockdep_unpin_lock(&rq->lock);
3224 raw_spin_unlock_irq(&rq->lock);
3225 }
3226
3227 balance_callback(rq);
3228}
3229STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3230
3231static inline void sched_submit_work(struct task_struct *tsk)
3232{
3233 if (!tsk->state || tsk_is_pi_blocked(tsk))
3234 return;
3235 /*
3236 * If we are going to sleep and we have plugged IO queued,
3237 * make sure to submit it to avoid deadlocks.
3238 */
3239 if (blk_needs_flush_plug(tsk))
3240 blk_schedule_flush_plug(tsk);
3241}
3242
3243asmlinkage __visible void __sched schedule(void)
3244{
3245 struct task_struct *tsk = current;
3246
3247 sched_submit_work(tsk);
3248 do {
3249 preempt_disable();
3250 __schedule(false);
3251 sched_preempt_enable_no_resched();
3252 } while (need_resched());
3253}
3254EXPORT_SYMBOL(schedule);
3255
3256#ifdef CONFIG_CONTEXT_TRACKING
3257asmlinkage __visible void __sched schedule_user(void)
3258{
3259 /*
3260 * If we come here after a random call to set_need_resched(),
3261 * or we have been woken up remotely but the IPI has not yet arrived,
3262 * we haven't yet exited the RCU idle mode. Do it here manually until
3263 * we find a better solution.
3264 *
3265 * NB: There are buggy callers of this function. Ideally we
3266 * should warn if prev_state != CONTEXT_USER, but that will trigger
3267 * too frequently to make sense yet.
3268 */
3269 enum ctx_state prev_state = exception_enter();
3270 schedule();
3271 exception_exit(prev_state);
3272}
3273#endif
3274
3275/**
3276 * schedule_preempt_disabled - called with preemption disabled
3277 *
3278 * Returns with preemption disabled. Note: preempt_count must be 1
3279 */
3280void __sched schedule_preempt_disabled(void)
3281{
3282 sched_preempt_enable_no_resched();
3283 schedule();
3284 preempt_disable();
3285}
3286
3287static void __sched notrace preempt_schedule_common(void)
3288{
3289 do {
3290 preempt_disable_notrace();
3291 __schedule(true);
3292 preempt_enable_no_resched_notrace();
3293
3294 /*
3295 * Check again in case we missed a preemption opportunity
3296 * between schedule and now.
3297 */
3298 } while (need_resched());
3299}
3300
3301#ifdef CONFIG_PREEMPT
3302/*
3303 * this is the entry point to schedule() from in-kernel preemption
3304 * off of preempt_enable. Kernel preemptions off return from interrupt
3305 * occur there and call schedule directly.
3306 */
3307asmlinkage __visible void __sched notrace preempt_schedule(void)
3308{
3309 /*
3310 * If there is a non-zero preempt_count or interrupts are disabled,
3311 * we do not want to preempt the current task. Just return..
3312 */
3313 if (likely(!preemptible()))
3314 return;
3315
3316 preempt_schedule_common();
3317}
3318NOKPROBE_SYMBOL(preempt_schedule);
3319EXPORT_SYMBOL(preempt_schedule);
3320
3321/**
3322 * preempt_schedule_notrace - preempt_schedule called by tracing
3323 *
3324 * The tracing infrastructure uses preempt_enable_notrace to prevent
3325 * recursion and tracing preempt enabling caused by the tracing
3326 * infrastructure itself. But as tracing can happen in areas coming
3327 * from userspace or just about to enter userspace, a preempt enable
3328 * can occur before user_exit() is called. This will cause the scheduler
3329 * to be called when the system is still in usermode.
3330 *
3331 * To prevent this, the preempt_enable_notrace will use this function
3332 * instead of preempt_schedule() to exit user context if needed before
3333 * calling the scheduler.
3334 */
3335asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3336{
3337 enum ctx_state prev_ctx;
3338
3339 if (likely(!preemptible()))
3340 return;
3341
3342 do {
3343 preempt_disable_notrace();
3344 /*
3345 * Needs preempt disabled in case user_exit() is traced
3346 * and the tracer calls preempt_enable_notrace() causing
3347 * an infinite recursion.
3348 */
3349 prev_ctx = exception_enter();
3350 __schedule(true);
3351 exception_exit(prev_ctx);
3352
3353 preempt_enable_no_resched_notrace();
3354 } while (need_resched());
3355}
3356EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3357
3358#endif /* CONFIG_PREEMPT */
3359
3360/*
3361 * this is the entry point to schedule() from kernel preemption
3362 * off of irq context.
3363 * Note, that this is called and return with irqs disabled. This will
3364 * protect us against recursive calling from irq.
3365 */
3366asmlinkage __visible void __sched preempt_schedule_irq(void)
3367{
3368 enum ctx_state prev_state;
3369
3370 /* Catch callers which need to be fixed */
3371 BUG_ON(preempt_count() || !irqs_disabled());
3372
3373 prev_state = exception_enter();
3374
3375 do {
3376 preempt_disable();
3377 local_irq_enable();
3378 __schedule(true);
3379 local_irq_disable();
3380 sched_preempt_enable_no_resched();
3381 } while (need_resched());
3382
3383 exception_exit(prev_state);
3384}
3385
3386int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3387 void *key)
3388{
3389 return try_to_wake_up(curr->private, mode, wake_flags);
3390}
3391EXPORT_SYMBOL(default_wake_function);
3392
3393#ifdef CONFIG_RT_MUTEXES
3394
3395/*
3396 * rt_mutex_setprio - set the current priority of a task
3397 * @p: task
3398 * @prio: prio value (kernel-internal form)
3399 *
3400 * This function changes the 'effective' priority of a task. It does
3401 * not touch ->normal_prio like __setscheduler().
3402 *
3403 * Used by the rt_mutex code to implement priority inheritance
3404 * logic. Call site only calls if the priority of the task changed.
3405 */
3406void rt_mutex_setprio(struct task_struct *p, int prio)
3407{
3408 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3409 struct rq *rq;
3410 const struct sched_class *prev_class;
3411
3412 BUG_ON(prio > MAX_PRIO);
3413
3414 rq = __task_rq_lock(p);
3415
3416 /*
3417 * Idle task boosting is a nono in general. There is one
3418 * exception, when PREEMPT_RT and NOHZ is active:
3419 *
3420 * The idle task calls get_next_timer_interrupt() and holds
3421 * the timer wheel base->lock on the CPU and another CPU wants
3422 * to access the timer (probably to cancel it). We can safely
3423 * ignore the boosting request, as the idle CPU runs this code
3424 * with interrupts disabled and will complete the lock
3425 * protected section without being interrupted. So there is no
3426 * real need to boost.
3427 */
3428 if (unlikely(p == rq->idle)) {
3429 WARN_ON(p != rq->curr);
3430 WARN_ON(p->pi_blocked_on);
3431 goto out_unlock;
3432 }
3433
3434 trace_sched_pi_setprio(p, prio);
3435 oldprio = p->prio;
3436
3437 if (oldprio == prio)
3438 queue_flag &= ~DEQUEUE_MOVE;
3439
3440 prev_class = p->sched_class;
3441 queued = task_on_rq_queued(p);
3442 running = task_current(rq, p);
3443 if (queued)
3444 dequeue_task(rq, p, queue_flag);
3445 if (running)
3446 put_prev_task(rq, p);
3447
3448 /*
3449 * Boosting condition are:
3450 * 1. -rt task is running and holds mutex A
3451 * --> -dl task blocks on mutex A
3452 *
3453 * 2. -dl task is running and holds mutex A
3454 * --> -dl task blocks on mutex A and could preempt the
3455 * running task
3456 */
3457 if (dl_prio(prio)) {
3458 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3459 if (!dl_prio(p->normal_prio) ||
3460 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3461 p->dl.dl_boosted = 1;
3462 queue_flag |= ENQUEUE_REPLENISH;
3463 } else
3464 p->dl.dl_boosted = 0;
3465 p->sched_class = &dl_sched_class;
3466 } else if (rt_prio(prio)) {
3467 if (dl_prio(oldprio))
3468 p->dl.dl_boosted = 0;
3469 if (oldprio < prio)
3470 queue_flag |= ENQUEUE_HEAD;
3471 p->sched_class = &rt_sched_class;
3472 } else {
3473 if (dl_prio(oldprio))
3474 p->dl.dl_boosted = 0;
3475 if (rt_prio(oldprio))
3476 p->rt.timeout = 0;
3477 p->sched_class = &fair_sched_class;
3478 }
3479
3480 p->prio = prio;
3481
3482 if (running)
3483 p->sched_class->set_curr_task(rq);
3484 if (queued)
3485 enqueue_task(rq, p, queue_flag);
3486
3487 check_class_changed(rq, p, prev_class, oldprio);
3488out_unlock:
3489 preempt_disable(); /* avoid rq from going away on us */
3490 __task_rq_unlock(rq);
3491
3492 balance_callback(rq);
3493 preempt_enable();
3494}
3495#endif
3496
3497void set_user_nice(struct task_struct *p, long nice)
3498{
3499 int old_prio, delta, queued;
3500 unsigned long flags;
3501 struct rq *rq;
3502
3503 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3504 return;
3505 /*
3506 * We have to be careful, if called from sys_setpriority(),
3507 * the task might be in the middle of scheduling on another CPU.
3508 */
3509 rq = task_rq_lock(p, &flags);
3510 /*
3511 * The RT priorities are set via sched_setscheduler(), but we still
3512 * allow the 'normal' nice value to be set - but as expected
3513 * it wont have any effect on scheduling until the task is
3514 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3515 */
3516 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3517 p->static_prio = NICE_TO_PRIO(nice);
3518 goto out_unlock;
3519 }
3520 queued = task_on_rq_queued(p);
3521 if (queued)
3522 dequeue_task(rq, p, DEQUEUE_SAVE);
3523
3524 p->static_prio = NICE_TO_PRIO(nice);
3525 set_load_weight(p);
3526 old_prio = p->prio;
3527 p->prio = effective_prio(p);
3528 delta = p->prio - old_prio;
3529
3530 if (queued) {
3531 enqueue_task(rq, p, ENQUEUE_RESTORE);
3532 /*
3533 * If the task increased its priority or is running and
3534 * lowered its priority, then reschedule its CPU:
3535 */
3536 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3537 resched_curr(rq);
3538 }
3539out_unlock:
3540 task_rq_unlock(rq, p, &flags);
3541}
3542EXPORT_SYMBOL(set_user_nice);
3543
3544/*
3545 * can_nice - check if a task can reduce its nice value
3546 * @p: task
3547 * @nice: nice value
3548 */
3549int can_nice(const struct task_struct *p, const int nice)
3550{
3551 /* convert nice value [19,-20] to rlimit style value [1,40] */
3552 int nice_rlim = nice_to_rlimit(nice);
3553
3554 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3555 capable(CAP_SYS_NICE));
3556}
3557
3558#ifdef __ARCH_WANT_SYS_NICE
3559
3560/*
3561 * sys_nice - change the priority of the current process.
3562 * @increment: priority increment
3563 *
3564 * sys_setpriority is a more generic, but much slower function that
3565 * does similar things.
3566 */
3567SYSCALL_DEFINE1(nice, int, increment)
3568{
3569 long nice, retval;
3570
3571 /*
3572 * Setpriority might change our priority at the same moment.
3573 * We don't have to worry. Conceptually one call occurs first
3574 * and we have a single winner.
3575 */
3576 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3577 nice = task_nice(current) + increment;
3578
3579 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3580 if (increment < 0 && !can_nice(current, nice))
3581 return -EPERM;
3582
3583 retval = security_task_setnice(current, nice);
3584 if (retval)
3585 return retval;
3586
3587 set_user_nice(current, nice);
3588 return 0;
3589}
3590
3591#endif
3592
3593/**
3594 * task_prio - return the priority value of a given task.
3595 * @p: the task in question.
3596 *
3597 * Return: The priority value as seen by users in /proc.
3598 * RT tasks are offset by -200. Normal tasks are centered
3599 * around 0, value goes from -16 to +15.
3600 */
3601int task_prio(const struct task_struct *p)
3602{
3603 return p->prio - MAX_RT_PRIO;
3604}
3605
3606/**
3607 * idle_cpu - is a given cpu idle currently?
3608 * @cpu: the processor in question.
3609 *
3610 * Return: 1 if the CPU is currently idle. 0 otherwise.
3611 */
3612int idle_cpu(int cpu)
3613{
3614 struct rq *rq = cpu_rq(cpu);
3615
3616 if (rq->curr != rq->idle)
3617 return 0;
3618
3619 if (rq->nr_running)
3620 return 0;
3621
3622#ifdef CONFIG_SMP
3623 if (!llist_empty(&rq->wake_list))
3624 return 0;
3625#endif
3626
3627 return 1;
3628}
3629
3630/**
3631 * idle_task - return the idle task for a given cpu.
3632 * @cpu: the processor in question.
3633 *
3634 * Return: The idle task for the cpu @cpu.
3635 */
3636struct task_struct *idle_task(int cpu)
3637{
3638 return cpu_rq(cpu)->idle;
3639}
3640
3641/**
3642 * find_process_by_pid - find a process with a matching PID value.
3643 * @pid: the pid in question.
3644 *
3645 * The task of @pid, if found. %NULL otherwise.
3646 */
3647static struct task_struct *find_process_by_pid(pid_t pid)
3648{
3649 return pid ? find_task_by_vpid(pid) : current;
3650}
3651
3652/*
3653 * This function initializes the sched_dl_entity of a newly becoming
3654 * SCHED_DEADLINE task.
3655 *
3656 * Only the static values are considered here, the actual runtime and the
3657 * absolute deadline will be properly calculated when the task is enqueued
3658 * for the first time with its new policy.
3659 */
3660static void
3661__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3662{
3663 struct sched_dl_entity *dl_se = &p->dl;
3664
3665 dl_se->dl_runtime = attr->sched_runtime;
3666 dl_se->dl_deadline = attr->sched_deadline;
3667 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3668 dl_se->flags = attr->sched_flags;
3669 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3670
3671 /*
3672 * Changing the parameters of a task is 'tricky' and we're not doing
3673 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3674 *
3675 * What we SHOULD do is delay the bandwidth release until the 0-lag
3676 * point. This would include retaining the task_struct until that time
3677 * and change dl_overflow() to not immediately decrement the current
3678 * amount.
3679 *
3680 * Instead we retain the current runtime/deadline and let the new
3681 * parameters take effect after the current reservation period lapses.
3682 * This is safe (albeit pessimistic) because the 0-lag point is always
3683 * before the current scheduling deadline.
3684 *
3685 * We can still have temporary overloads because we do not delay the
3686 * change in bandwidth until that time; so admission control is
3687 * not on the safe side. It does however guarantee tasks will never
3688 * consume more than promised.
3689 */
3690}
3691
3692/*
3693 * sched_setparam() passes in -1 for its policy, to let the functions
3694 * it calls know not to change it.
3695 */
3696#define SETPARAM_POLICY -1
3697
3698static void __setscheduler_params(struct task_struct *p,
3699 const struct sched_attr *attr)
3700{
3701 int policy = attr->sched_policy;
3702
3703 if (policy == SETPARAM_POLICY)
3704 policy = p->policy;
3705
3706 p->policy = policy;
3707
3708 if (dl_policy(policy))
3709 __setparam_dl(p, attr);
3710 else if (fair_policy(policy))
3711 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3712
3713 /*
3714 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3715 * !rt_policy. Always setting this ensures that things like
3716 * getparam()/getattr() don't report silly values for !rt tasks.
3717 */
3718 p->rt_priority = attr->sched_priority;
3719 p->normal_prio = normal_prio(p);
3720 set_load_weight(p);
3721}
3722
3723/* Actually do priority change: must hold pi & rq lock. */
3724static void __setscheduler(struct rq *rq, struct task_struct *p,
3725 const struct sched_attr *attr, bool keep_boost)
3726{
3727 __setscheduler_params(p, attr);
3728
3729 /*
3730 * Keep a potential priority boosting if called from
3731 * sched_setscheduler().
3732 */
3733 if (keep_boost)
3734 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3735 else
3736 p->prio = normal_prio(p);
3737
3738 if (dl_prio(p->prio))
3739 p->sched_class = &dl_sched_class;
3740 else if (rt_prio(p->prio))
3741 p->sched_class = &rt_sched_class;
3742 else
3743 p->sched_class = &fair_sched_class;
3744}
3745
3746static void
3747__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3748{
3749 struct sched_dl_entity *dl_se = &p->dl;
3750
3751 attr->sched_priority = p->rt_priority;
3752 attr->sched_runtime = dl_se->dl_runtime;
3753 attr->sched_deadline = dl_se->dl_deadline;
3754 attr->sched_period = dl_se->dl_period;
3755 attr->sched_flags = dl_se->flags;
3756}
3757
3758/*
3759 * This function validates the new parameters of a -deadline task.
3760 * We ask for the deadline not being zero, and greater or equal
3761 * than the runtime, as well as the period of being zero or
3762 * greater than deadline. Furthermore, we have to be sure that
3763 * user parameters are above the internal resolution of 1us (we
3764 * check sched_runtime only since it is always the smaller one) and
3765 * below 2^63 ns (we have to check both sched_deadline and
3766 * sched_period, as the latter can be zero).
3767 */
3768static bool
3769__checkparam_dl(const struct sched_attr *attr)
3770{
3771 /* deadline != 0 */
3772 if (attr->sched_deadline == 0)
3773 return false;
3774
3775 /*
3776 * Since we truncate DL_SCALE bits, make sure we're at least
3777 * that big.
3778 */
3779 if (attr->sched_runtime < (1ULL << DL_SCALE))
3780 return false;
3781
3782 /*
3783 * Since we use the MSB for wrap-around and sign issues, make
3784 * sure it's not set (mind that period can be equal to zero).
3785 */
3786 if (attr->sched_deadline & (1ULL << 63) ||
3787 attr->sched_period & (1ULL << 63))
3788 return false;
3789
3790 /* runtime <= deadline <= period (if period != 0) */
3791 if ((attr->sched_period != 0 &&
3792 attr->sched_period < attr->sched_deadline) ||
3793 attr->sched_deadline < attr->sched_runtime)
3794 return false;
3795
3796 return true;
3797}
3798
3799/*
3800 * check the target process has a UID that matches the current process's
3801 */
3802static bool check_same_owner(struct task_struct *p)
3803{
3804 const struct cred *cred = current_cred(), *pcred;
3805 bool match;
3806
3807 rcu_read_lock();
3808 pcred = __task_cred(p);
3809 match = (uid_eq(cred->euid, pcred->euid) ||
3810 uid_eq(cred->euid, pcred->uid));
3811 rcu_read_unlock();
3812 return match;
3813}
3814
3815static bool dl_param_changed(struct task_struct *p,
3816 const struct sched_attr *attr)
3817{
3818 struct sched_dl_entity *dl_se = &p->dl;
3819
3820 if (dl_se->dl_runtime != attr->sched_runtime ||
3821 dl_se->dl_deadline != attr->sched_deadline ||
3822 dl_se->dl_period != attr->sched_period ||
3823 dl_se->flags != attr->sched_flags)
3824 return true;
3825
3826 return false;
3827}
3828
3829static int __sched_setscheduler(struct task_struct *p,
3830 const struct sched_attr *attr,
3831 bool user, bool pi)
3832{
3833 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3834 MAX_RT_PRIO - 1 - attr->sched_priority;
3835 int retval, oldprio, oldpolicy = -1, queued, running;
3836 int new_effective_prio, policy = attr->sched_policy;
3837 unsigned long flags;
3838 const struct sched_class *prev_class;
3839 struct rq *rq;
3840 int reset_on_fork;
3841 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3842
3843 /* may grab non-irq protected spin_locks */
3844 BUG_ON(in_interrupt());
3845recheck:
3846 /* double check policy once rq lock held */
3847 if (policy < 0) {
3848 reset_on_fork = p->sched_reset_on_fork;
3849 policy = oldpolicy = p->policy;
3850 } else {
3851 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3852
3853 if (!valid_policy(policy))
3854 return -EINVAL;
3855 }
3856
3857 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3858 return -EINVAL;
3859
3860 /*
3861 * Valid priorities for SCHED_FIFO and SCHED_RR are
3862 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3863 * SCHED_BATCH and SCHED_IDLE is 0.
3864 */
3865 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3866 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3867 return -EINVAL;
3868 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3869 (rt_policy(policy) != (attr->sched_priority != 0)))
3870 return -EINVAL;
3871
3872 /*
3873 * Allow unprivileged RT tasks to decrease priority:
3874 */
3875 if (user && !capable(CAP_SYS_NICE)) {
3876 if (fair_policy(policy)) {
3877 if (attr->sched_nice < task_nice(p) &&
3878 !can_nice(p, attr->sched_nice))
3879 return -EPERM;
3880 }
3881
3882 if (rt_policy(policy)) {
3883 unsigned long rlim_rtprio =
3884 task_rlimit(p, RLIMIT_RTPRIO);
3885
3886 /* can't set/change the rt policy */
3887 if (policy != p->policy && !rlim_rtprio)
3888 return -EPERM;
3889
3890 /* can't increase priority */
3891 if (attr->sched_priority > p->rt_priority &&
3892 attr->sched_priority > rlim_rtprio)
3893 return -EPERM;
3894 }
3895
3896 /*
3897 * Can't set/change SCHED_DEADLINE policy at all for now
3898 * (safest behavior); in the future we would like to allow
3899 * unprivileged DL tasks to increase their relative deadline
3900 * or reduce their runtime (both ways reducing utilization)
3901 */
3902 if (dl_policy(policy))
3903 return -EPERM;
3904
3905 /*
3906 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3907 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3908 */
3909 if (idle_policy(p->policy) && !idle_policy(policy)) {
3910 if (!can_nice(p, task_nice(p)))
3911 return -EPERM;
3912 }
3913
3914 /* can't change other user's priorities */
3915 if (!check_same_owner(p))
3916 return -EPERM;
3917
3918 /* Normal users shall not reset the sched_reset_on_fork flag */
3919 if (p->sched_reset_on_fork && !reset_on_fork)
3920 return -EPERM;
3921 }
3922
3923 if (user) {
3924 retval = security_task_setscheduler(p);
3925 if (retval)
3926 return retval;
3927 }
3928
3929 /*
3930 * make sure no PI-waiters arrive (or leave) while we are
3931 * changing the priority of the task:
3932 *
3933 * To be able to change p->policy safely, the appropriate
3934 * runqueue lock must be held.
3935 */
3936 rq = task_rq_lock(p, &flags);
3937
3938 /*
3939 * Changing the policy of the stop threads its a very bad idea
3940 */
3941 if (p == rq->stop) {
3942 task_rq_unlock(rq, p, &flags);
3943 return -EINVAL;
3944 }
3945
3946 /*
3947 * If not changing anything there's no need to proceed further,
3948 * but store a possible modification of reset_on_fork.
3949 */
3950 if (unlikely(policy == p->policy)) {
3951 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3952 goto change;
3953 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3954 goto change;
3955 if (dl_policy(policy) && dl_param_changed(p, attr))
3956 goto change;
3957
3958 p->sched_reset_on_fork = reset_on_fork;
3959 task_rq_unlock(rq, p, &flags);
3960 return 0;
3961 }
3962change:
3963
3964 if (user) {
3965#ifdef CONFIG_RT_GROUP_SCHED
3966 /*
3967 * Do not allow realtime tasks into groups that have no runtime
3968 * assigned.
3969 */
3970 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3971 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3972 !task_group_is_autogroup(task_group(p))) {
3973 task_rq_unlock(rq, p, &flags);
3974 return -EPERM;
3975 }
3976#endif
3977#ifdef CONFIG_SMP
3978 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3979 cpumask_t *span = rq->rd->span;
3980
3981 /*
3982 * Don't allow tasks with an affinity mask smaller than
3983 * the entire root_domain to become SCHED_DEADLINE. We
3984 * will also fail if there's no bandwidth available.
3985 */
3986 if (!cpumask_subset(span, &p->cpus_allowed) ||
3987 rq->rd->dl_bw.bw == 0) {
3988 task_rq_unlock(rq, p, &flags);
3989 return -EPERM;
3990 }
3991 }
3992#endif
3993 }
3994
3995 /* recheck policy now with rq lock held */
3996 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3997 policy = oldpolicy = -1;
3998 task_rq_unlock(rq, p, &flags);
3999 goto recheck;
4000 }
4001
4002 /*
4003 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4004 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4005 * is available.
4006 */
4007 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4008 task_rq_unlock(rq, p, &flags);
4009 return -EBUSY;
4010 }
4011
4012 p->sched_reset_on_fork = reset_on_fork;
4013 oldprio = p->prio;
4014
4015 if (pi) {
4016 /*
4017 * Take priority boosted tasks into account. If the new
4018 * effective priority is unchanged, we just store the new
4019 * normal parameters and do not touch the scheduler class and
4020 * the runqueue. This will be done when the task deboost
4021 * itself.
4022 */
4023 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4024 if (new_effective_prio == oldprio)
4025 queue_flags &= ~DEQUEUE_MOVE;
4026 }
4027
4028 queued = task_on_rq_queued(p);
4029 running = task_current(rq, p);
4030 if (queued)
4031 dequeue_task(rq, p, queue_flags);
4032 if (running)
4033 put_prev_task(rq, p);
4034
4035 prev_class = p->sched_class;
4036 __setscheduler(rq, p, attr, pi);
4037
4038 if (running)
4039 p->sched_class->set_curr_task(rq);
4040 if (queued) {
4041 /*
4042 * We enqueue to tail when the priority of a task is
4043 * increased (user space view).
4044 */
4045 if (oldprio < p->prio)
4046 queue_flags |= ENQUEUE_HEAD;
4047
4048 enqueue_task(rq, p, queue_flags);
4049 }
4050
4051 check_class_changed(rq, p, prev_class, oldprio);
4052 preempt_disable(); /* avoid rq from going away on us */
4053 task_rq_unlock(rq, p, &flags);
4054
4055 if (pi)
4056 rt_mutex_adjust_pi(p);
4057
4058 /*
4059 * Run balance callbacks after we've adjusted the PI chain.
4060 */
4061 balance_callback(rq);
4062 preempt_enable();
4063
4064 return 0;
4065}
4066
4067static int _sched_setscheduler(struct task_struct *p, int policy,
4068 const struct sched_param *param, bool check)
4069{
4070 struct sched_attr attr = {
4071 .sched_policy = policy,
4072 .sched_priority = param->sched_priority,
4073 .sched_nice = PRIO_TO_NICE(p->static_prio),
4074 };
4075
4076 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4077 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4078 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4079 policy &= ~SCHED_RESET_ON_FORK;
4080 attr.sched_policy = policy;
4081 }
4082
4083 return __sched_setscheduler(p, &attr, check, true);
4084}
4085/**
4086 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4087 * @p: the task in question.
4088 * @policy: new policy.
4089 * @param: structure containing the new RT priority.
4090 *
4091 * Return: 0 on success. An error code otherwise.
4092 *
4093 * NOTE that the task may be already dead.
4094 */
4095int sched_setscheduler(struct task_struct *p, int policy,
4096 const struct sched_param *param)
4097{
4098 return _sched_setscheduler(p, policy, param, true);
4099}
4100EXPORT_SYMBOL_GPL(sched_setscheduler);
4101
4102int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4103{
4104 return __sched_setscheduler(p, attr, true, true);
4105}
4106EXPORT_SYMBOL_GPL(sched_setattr);
4107
4108/**
4109 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4110 * @p: the task in question.
4111 * @policy: new policy.
4112 * @param: structure containing the new RT priority.
4113 *
4114 * Just like sched_setscheduler, only don't bother checking if the
4115 * current context has permission. For example, this is needed in
4116 * stop_machine(): we create temporary high priority worker threads,
4117 * but our caller might not have that capability.
4118 *
4119 * Return: 0 on success. An error code otherwise.
4120 */
4121int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4122 const struct sched_param *param)
4123{
4124 return _sched_setscheduler(p, policy, param, false);
4125}
4126EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4127
4128static int
4129do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4130{
4131 struct sched_param lparam;
4132 struct task_struct *p;
4133 int retval;
4134
4135 if (!param || pid < 0)
4136 return -EINVAL;
4137 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4138 return -EFAULT;
4139
4140 rcu_read_lock();
4141 retval = -ESRCH;
4142 p = find_process_by_pid(pid);
4143 if (p != NULL)
4144 retval = sched_setscheduler(p, policy, &lparam);
4145 rcu_read_unlock();
4146
4147 return retval;
4148}
4149
4150/*
4151 * Mimics kernel/events/core.c perf_copy_attr().
4152 */
4153static int sched_copy_attr(struct sched_attr __user *uattr,
4154 struct sched_attr *attr)
4155{
4156 u32 size;
4157 int ret;
4158
4159 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4160 return -EFAULT;
4161
4162 /*
4163 * zero the full structure, so that a short copy will be nice.
4164 */
4165 memset(attr, 0, sizeof(*attr));
4166
4167 ret = get_user(size, &uattr->size);
4168 if (ret)
4169 return ret;
4170
4171 if (size > PAGE_SIZE) /* silly large */
4172 goto err_size;
4173
4174 if (!size) /* abi compat */
4175 size = SCHED_ATTR_SIZE_VER0;
4176
4177 if (size < SCHED_ATTR_SIZE_VER0)
4178 goto err_size;
4179
4180 /*
4181 * If we're handed a bigger struct than we know of,
4182 * ensure all the unknown bits are 0 - i.e. new
4183 * user-space does not rely on any kernel feature
4184 * extensions we dont know about yet.
4185 */
4186 if (size > sizeof(*attr)) {
4187 unsigned char __user *addr;
4188 unsigned char __user *end;
4189 unsigned char val;
4190
4191 addr = (void __user *)uattr + sizeof(*attr);
4192 end = (void __user *)uattr + size;
4193
4194 for (; addr < end; addr++) {
4195 ret = get_user(val, addr);
4196 if (ret)
4197 return ret;
4198 if (val)
4199 goto err_size;
4200 }
4201 size = sizeof(*attr);
4202 }
4203
4204 ret = copy_from_user(attr, uattr, size);
4205 if (ret)
4206 return -EFAULT;
4207
4208 /*
4209 * XXX: do we want to be lenient like existing syscalls; or do we want
4210 * to be strict and return an error on out-of-bounds values?
4211 */
4212 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4213
4214 return 0;
4215
4216err_size:
4217 put_user(sizeof(*attr), &uattr->size);
4218 return -E2BIG;
4219}
4220
4221/**
4222 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4223 * @pid: the pid in question.
4224 * @policy: new policy.
4225 * @param: structure containing the new RT priority.
4226 *
4227 * Return: 0 on success. An error code otherwise.
4228 */
4229SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4230 struct sched_param __user *, param)
4231{
4232 /* negative values for policy are not valid */
4233 if (policy < 0)
4234 return -EINVAL;
4235
4236 return do_sched_setscheduler(pid, policy, param);
4237}
4238
4239/**
4240 * sys_sched_setparam - set/change the RT priority of a thread
4241 * @pid: the pid in question.
4242 * @param: structure containing the new RT priority.
4243 *
4244 * Return: 0 on success. An error code otherwise.
4245 */
4246SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4247{
4248 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4249}
4250
4251/**
4252 * sys_sched_setattr - same as above, but with extended sched_attr
4253 * @pid: the pid in question.
4254 * @uattr: structure containing the extended parameters.
4255 * @flags: for future extension.
4256 */
4257SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4258 unsigned int, flags)
4259{
4260 struct sched_attr attr;
4261 struct task_struct *p;
4262 int retval;
4263
4264 if (!uattr || pid < 0 || flags)
4265 return -EINVAL;
4266
4267 retval = sched_copy_attr(uattr, &attr);
4268 if (retval)
4269 return retval;
4270
4271 if ((int)attr.sched_policy < 0)
4272 return -EINVAL;
4273
4274 rcu_read_lock();
4275 retval = -ESRCH;
4276 p = find_process_by_pid(pid);
4277 if (p != NULL)
4278 retval = sched_setattr(p, &attr);
4279 rcu_read_unlock();
4280
4281 return retval;
4282}
4283
4284/**
4285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4286 * @pid: the pid in question.
4287 *
4288 * Return: On success, the policy of the thread. Otherwise, a negative error
4289 * code.
4290 */
4291SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4292{
4293 struct task_struct *p;
4294 int retval;
4295
4296 if (pid < 0)
4297 return -EINVAL;
4298
4299 retval = -ESRCH;
4300 rcu_read_lock();
4301 p = find_process_by_pid(pid);
4302 if (p) {
4303 retval = security_task_getscheduler(p);
4304 if (!retval)
4305 retval = p->policy
4306 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4307 }
4308 rcu_read_unlock();
4309 return retval;
4310}
4311
4312/**
4313 * sys_sched_getparam - get the RT priority of a thread
4314 * @pid: the pid in question.
4315 * @param: structure containing the RT priority.
4316 *
4317 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4318 * code.
4319 */
4320SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4321{
4322 struct sched_param lp = { .sched_priority = 0 };
4323 struct task_struct *p;
4324 int retval;
4325
4326 if (!param || pid < 0)
4327 return -EINVAL;
4328
4329 rcu_read_lock();
4330 p = find_process_by_pid(pid);
4331 retval = -ESRCH;
4332 if (!p)
4333 goto out_unlock;
4334
4335 retval = security_task_getscheduler(p);
4336 if (retval)
4337 goto out_unlock;
4338
4339 if (task_has_rt_policy(p))
4340 lp.sched_priority = p->rt_priority;
4341 rcu_read_unlock();
4342
4343 /*
4344 * This one might sleep, we cannot do it with a spinlock held ...
4345 */
4346 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4347
4348 return retval;
4349
4350out_unlock:
4351 rcu_read_unlock();
4352 return retval;
4353}
4354
4355static int sched_read_attr(struct sched_attr __user *uattr,
4356 struct sched_attr *attr,
4357 unsigned int usize)
4358{
4359 int ret;
4360
4361 if (!access_ok(VERIFY_WRITE, uattr, usize))
4362 return -EFAULT;
4363
4364 /*
4365 * If we're handed a smaller struct than we know of,
4366 * ensure all the unknown bits are 0 - i.e. old
4367 * user-space does not get uncomplete information.
4368 */
4369 if (usize < sizeof(*attr)) {
4370 unsigned char *addr;
4371 unsigned char *end;
4372
4373 addr = (void *)attr + usize;
4374 end = (void *)attr + sizeof(*attr);
4375
4376 for (; addr < end; addr++) {
4377 if (*addr)
4378 return -EFBIG;
4379 }
4380
4381 attr->size = usize;
4382 }
4383
4384 ret = copy_to_user(uattr, attr, attr->size);
4385 if (ret)
4386 return -EFAULT;
4387
4388 return 0;
4389}
4390
4391/**
4392 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4393 * @pid: the pid in question.
4394 * @uattr: structure containing the extended parameters.
4395 * @size: sizeof(attr) for fwd/bwd comp.
4396 * @flags: for future extension.
4397 */
4398SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4399 unsigned int, size, unsigned int, flags)
4400{
4401 struct sched_attr attr = {
4402 .size = sizeof(struct sched_attr),
4403 };
4404 struct task_struct *p;
4405 int retval;
4406
4407 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4408 size < SCHED_ATTR_SIZE_VER0 || flags)
4409 return -EINVAL;
4410
4411 rcu_read_lock();
4412 p = find_process_by_pid(pid);
4413 retval = -ESRCH;
4414 if (!p)
4415 goto out_unlock;
4416
4417 retval = security_task_getscheduler(p);
4418 if (retval)
4419 goto out_unlock;
4420
4421 attr.sched_policy = p->policy;
4422 if (p->sched_reset_on_fork)
4423 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4424 if (task_has_dl_policy(p))
4425 __getparam_dl(p, &attr);
4426 else if (task_has_rt_policy(p))
4427 attr.sched_priority = p->rt_priority;
4428 else
4429 attr.sched_nice = task_nice(p);
4430
4431 rcu_read_unlock();
4432
4433 retval = sched_read_attr(uattr, &attr, size);
4434 return retval;
4435
4436out_unlock:
4437 rcu_read_unlock();
4438 return retval;
4439}
4440
4441long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4442{
4443 cpumask_var_t cpus_allowed, new_mask;
4444 struct task_struct *p;
4445 int retval;
4446
4447 rcu_read_lock();
4448
4449 p = find_process_by_pid(pid);
4450 if (!p) {
4451 rcu_read_unlock();
4452 return -ESRCH;
4453 }
4454
4455 /* Prevent p going away */
4456 get_task_struct(p);
4457 rcu_read_unlock();
4458
4459 if (p->flags & PF_NO_SETAFFINITY) {
4460 retval = -EINVAL;
4461 goto out_put_task;
4462 }
4463 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4464 retval = -ENOMEM;
4465 goto out_put_task;
4466 }
4467 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4468 retval = -ENOMEM;
4469 goto out_free_cpus_allowed;
4470 }
4471 retval = -EPERM;
4472 if (!check_same_owner(p)) {
4473 rcu_read_lock();
4474 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4475 rcu_read_unlock();
4476 goto out_free_new_mask;
4477 }
4478 rcu_read_unlock();
4479 }
4480
4481 retval = security_task_setscheduler(p);
4482 if (retval)
4483 goto out_free_new_mask;
4484
4485
4486 cpuset_cpus_allowed(p, cpus_allowed);
4487 cpumask_and(new_mask, in_mask, cpus_allowed);
4488
4489 /*
4490 * Since bandwidth control happens on root_domain basis,
4491 * if admission test is enabled, we only admit -deadline
4492 * tasks allowed to run on all the CPUs in the task's
4493 * root_domain.
4494 */
4495#ifdef CONFIG_SMP
4496 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4497 rcu_read_lock();
4498 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4499 retval = -EBUSY;
4500 rcu_read_unlock();
4501 goto out_free_new_mask;
4502 }
4503 rcu_read_unlock();
4504 }
4505#endif
4506again:
4507 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4508
4509 if (!retval) {
4510 cpuset_cpus_allowed(p, cpus_allowed);
4511 if (!cpumask_subset(new_mask, cpus_allowed)) {
4512 /*
4513 * We must have raced with a concurrent cpuset
4514 * update. Just reset the cpus_allowed to the
4515 * cpuset's cpus_allowed
4516 */
4517 cpumask_copy(new_mask, cpus_allowed);
4518 goto again;
4519 }
4520 }
4521out_free_new_mask:
4522 free_cpumask_var(new_mask);
4523out_free_cpus_allowed:
4524 free_cpumask_var(cpus_allowed);
4525out_put_task:
4526 put_task_struct(p);
4527 return retval;
4528}
4529
4530static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4531 struct cpumask *new_mask)
4532{
4533 if (len < cpumask_size())
4534 cpumask_clear(new_mask);
4535 else if (len > cpumask_size())
4536 len = cpumask_size();
4537
4538 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4539}
4540
4541/**
4542 * sys_sched_setaffinity - set the cpu affinity of a process
4543 * @pid: pid of the process
4544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4545 * @user_mask_ptr: user-space pointer to the new cpu mask
4546 *
4547 * Return: 0 on success. An error code otherwise.
4548 */
4549SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4550 unsigned long __user *, user_mask_ptr)
4551{
4552 cpumask_var_t new_mask;
4553 int retval;
4554
4555 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4556 return -ENOMEM;
4557
4558 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4559 if (retval == 0)
4560 retval = sched_setaffinity(pid, new_mask);
4561 free_cpumask_var(new_mask);
4562 return retval;
4563}
4564
4565long sched_getaffinity(pid_t pid, struct cpumask *mask)
4566{
4567 struct task_struct *p;
4568 unsigned long flags;
4569 int retval;
4570
4571 rcu_read_lock();
4572
4573 retval = -ESRCH;
4574 p = find_process_by_pid(pid);
4575 if (!p)
4576 goto out_unlock;
4577
4578 retval = security_task_getscheduler(p);
4579 if (retval)
4580 goto out_unlock;
4581
4582 raw_spin_lock_irqsave(&p->pi_lock, flags);
4583 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4584 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4585
4586out_unlock:
4587 rcu_read_unlock();
4588
4589 return retval;
4590}
4591
4592/**
4593 * sys_sched_getaffinity - get the cpu affinity of a process
4594 * @pid: pid of the process
4595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4596 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4597 *
4598 * Return: 0 on success. An error code otherwise.
4599 */
4600SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4601 unsigned long __user *, user_mask_ptr)
4602{
4603 int ret;
4604 cpumask_var_t mask;
4605
4606 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4607 return -EINVAL;
4608 if (len & (sizeof(unsigned long)-1))
4609 return -EINVAL;
4610
4611 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4612 return -ENOMEM;
4613
4614 ret = sched_getaffinity(pid, mask);
4615 if (ret == 0) {
4616 size_t retlen = min_t(size_t, len, cpumask_size());
4617
4618 if (copy_to_user(user_mask_ptr, mask, retlen))
4619 ret = -EFAULT;
4620 else
4621 ret = retlen;
4622 }
4623 free_cpumask_var(mask);
4624
4625 return ret;
4626}
4627
4628/**
4629 * sys_sched_yield - yield the current processor to other threads.
4630 *
4631 * This function yields the current CPU to other tasks. If there are no
4632 * other threads running on this CPU then this function will return.
4633 *
4634 * Return: 0.
4635 */
4636SYSCALL_DEFINE0(sched_yield)
4637{
4638 struct rq *rq = this_rq_lock();
4639
4640 schedstat_inc(rq, yld_count);
4641 current->sched_class->yield_task(rq);
4642
4643 /*
4644 * Since we are going to call schedule() anyway, there's
4645 * no need to preempt or enable interrupts:
4646 */
4647 __release(rq->lock);
4648 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4649 do_raw_spin_unlock(&rq->lock);
4650 sched_preempt_enable_no_resched();
4651
4652 schedule();
4653
4654 return 0;
4655}
4656
4657int __sched _cond_resched(void)
4658{
4659 if (should_resched(0)) {
4660 preempt_schedule_common();
4661 return 1;
4662 }
4663 return 0;
4664}
4665EXPORT_SYMBOL(_cond_resched);
4666
4667/*
4668 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4669 * call schedule, and on return reacquire the lock.
4670 *
4671 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4672 * operations here to prevent schedule() from being called twice (once via
4673 * spin_unlock(), once by hand).
4674 */
4675int __cond_resched_lock(spinlock_t *lock)
4676{
4677 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4678 int ret = 0;
4679
4680 lockdep_assert_held(lock);
4681
4682 if (spin_needbreak(lock) || resched) {
4683 spin_unlock(lock);
4684 if (resched)
4685 preempt_schedule_common();
4686 else
4687 cpu_relax();
4688 ret = 1;
4689 spin_lock(lock);
4690 }
4691 return ret;
4692}
4693EXPORT_SYMBOL(__cond_resched_lock);
4694
4695int __sched __cond_resched_softirq(void)
4696{
4697 BUG_ON(!in_softirq());
4698
4699 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4700 local_bh_enable();
4701 preempt_schedule_common();
4702 local_bh_disable();
4703 return 1;
4704 }
4705 return 0;
4706}
4707EXPORT_SYMBOL(__cond_resched_softirq);
4708
4709/**
4710 * yield - yield the current processor to other threads.
4711 *
4712 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4713 *
4714 * The scheduler is at all times free to pick the calling task as the most
4715 * eligible task to run, if removing the yield() call from your code breaks
4716 * it, its already broken.
4717 *
4718 * Typical broken usage is:
4719 *
4720 * while (!event)
4721 * yield();
4722 *
4723 * where one assumes that yield() will let 'the other' process run that will
4724 * make event true. If the current task is a SCHED_FIFO task that will never
4725 * happen. Never use yield() as a progress guarantee!!
4726 *
4727 * If you want to use yield() to wait for something, use wait_event().
4728 * If you want to use yield() to be 'nice' for others, use cond_resched().
4729 * If you still want to use yield(), do not!
4730 */
4731void __sched yield(void)
4732{
4733 set_current_state(TASK_RUNNING);
4734 sys_sched_yield();
4735}
4736EXPORT_SYMBOL(yield);
4737
4738/**
4739 * yield_to - yield the current processor to another thread in
4740 * your thread group, or accelerate that thread toward the
4741 * processor it's on.
4742 * @p: target task
4743 * @preempt: whether task preemption is allowed or not
4744 *
4745 * It's the caller's job to ensure that the target task struct
4746 * can't go away on us before we can do any checks.
4747 *
4748 * Return:
4749 * true (>0) if we indeed boosted the target task.
4750 * false (0) if we failed to boost the target.
4751 * -ESRCH if there's no task to yield to.
4752 */
4753int __sched yield_to(struct task_struct *p, bool preempt)
4754{
4755 struct task_struct *curr = current;
4756 struct rq *rq, *p_rq;
4757 unsigned long flags;
4758 int yielded = 0;
4759
4760 local_irq_save(flags);
4761 rq = this_rq();
4762
4763again:
4764 p_rq = task_rq(p);
4765 /*
4766 * If we're the only runnable task on the rq and target rq also
4767 * has only one task, there's absolutely no point in yielding.
4768 */
4769 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4770 yielded = -ESRCH;
4771 goto out_irq;
4772 }
4773
4774 double_rq_lock(rq, p_rq);
4775 if (task_rq(p) != p_rq) {
4776 double_rq_unlock(rq, p_rq);
4777 goto again;
4778 }
4779
4780 if (!curr->sched_class->yield_to_task)
4781 goto out_unlock;
4782
4783 if (curr->sched_class != p->sched_class)
4784 goto out_unlock;
4785
4786 if (task_running(p_rq, p) || p->state)
4787 goto out_unlock;
4788
4789 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4790 if (yielded) {
4791 schedstat_inc(rq, yld_count);
4792 /*
4793 * Make p's CPU reschedule; pick_next_entity takes care of
4794 * fairness.
4795 */
4796 if (preempt && rq != p_rq)
4797 resched_curr(p_rq);
4798 }
4799
4800out_unlock:
4801 double_rq_unlock(rq, p_rq);
4802out_irq:
4803 local_irq_restore(flags);
4804
4805 if (yielded > 0)
4806 schedule();
4807
4808 return yielded;
4809}
4810EXPORT_SYMBOL_GPL(yield_to);
4811
4812/*
4813 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4814 * that process accounting knows that this is a task in IO wait state.
4815 */
4816long __sched io_schedule_timeout(long timeout)
4817{
4818 int old_iowait = current->in_iowait;
4819 struct rq *rq;
4820 long ret;
4821
4822 current->in_iowait = 1;
4823 blk_schedule_flush_plug(current);
4824
4825 delayacct_blkio_start();
4826 rq = raw_rq();
4827 atomic_inc(&rq->nr_iowait);
4828 ret = schedule_timeout(timeout);
4829 current->in_iowait = old_iowait;
4830 atomic_dec(&rq->nr_iowait);
4831 delayacct_blkio_end();
4832
4833 return ret;
4834}
4835EXPORT_SYMBOL(io_schedule_timeout);
4836
4837/**
4838 * sys_sched_get_priority_max - return maximum RT priority.
4839 * @policy: scheduling class.
4840 *
4841 * Return: On success, this syscall returns the maximum
4842 * rt_priority that can be used by a given scheduling class.
4843 * On failure, a negative error code is returned.
4844 */
4845SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4846{
4847 int ret = -EINVAL;
4848
4849 switch (policy) {
4850 case SCHED_FIFO:
4851 case SCHED_RR:
4852 ret = MAX_USER_RT_PRIO-1;
4853 break;
4854 case SCHED_DEADLINE:
4855 case SCHED_NORMAL:
4856 case SCHED_BATCH:
4857 case SCHED_IDLE:
4858 ret = 0;
4859 break;
4860 }
4861 return ret;
4862}
4863
4864/**
4865 * sys_sched_get_priority_min - return minimum RT priority.
4866 * @policy: scheduling class.
4867 *
4868 * Return: On success, this syscall returns the minimum
4869 * rt_priority that can be used by a given scheduling class.
4870 * On failure, a negative error code is returned.
4871 */
4872SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4873{
4874 int ret = -EINVAL;
4875
4876 switch (policy) {
4877 case SCHED_FIFO:
4878 case SCHED_RR:
4879 ret = 1;
4880 break;
4881 case SCHED_DEADLINE:
4882 case SCHED_NORMAL:
4883 case SCHED_BATCH:
4884 case SCHED_IDLE:
4885 ret = 0;
4886 }
4887 return ret;
4888}
4889
4890/**
4891 * sys_sched_rr_get_interval - return the default timeslice of a process.
4892 * @pid: pid of the process.
4893 * @interval: userspace pointer to the timeslice value.
4894 *
4895 * this syscall writes the default timeslice value of a given process
4896 * into the user-space timespec buffer. A value of '0' means infinity.
4897 *
4898 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4899 * an error code.
4900 */
4901SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4902 struct timespec __user *, interval)
4903{
4904 struct task_struct *p;
4905 unsigned int time_slice;
4906 unsigned long flags;
4907 struct rq *rq;
4908 int retval;
4909 struct timespec t;
4910
4911 if (pid < 0)
4912 return -EINVAL;
4913
4914 retval = -ESRCH;
4915 rcu_read_lock();
4916 p = find_process_by_pid(pid);
4917 if (!p)
4918 goto out_unlock;
4919
4920 retval = security_task_getscheduler(p);
4921 if (retval)
4922 goto out_unlock;
4923
4924 rq = task_rq_lock(p, &flags);
4925 time_slice = 0;
4926 if (p->sched_class->get_rr_interval)
4927 time_slice = p->sched_class->get_rr_interval(rq, p);
4928 task_rq_unlock(rq, p, &flags);
4929
4930 rcu_read_unlock();
4931 jiffies_to_timespec(time_slice, &t);
4932 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4933 return retval;
4934
4935out_unlock:
4936 rcu_read_unlock();
4937 return retval;
4938}
4939
4940static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4941
4942void sched_show_task(struct task_struct *p)
4943{
4944 unsigned long free = 0;
4945 int ppid;
4946 unsigned long state = p->state;
4947
4948 if (state)
4949 state = __ffs(state) + 1;
4950 printk(KERN_INFO "%-15.15s %c", p->comm,
4951 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4952#if BITS_PER_LONG == 32
4953 if (state == TASK_RUNNING)
4954 printk(KERN_CONT " running ");
4955 else
4956 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4957#else
4958 if (state == TASK_RUNNING)
4959 printk(KERN_CONT " running task ");
4960 else
4961 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4962#endif
4963#ifdef CONFIG_DEBUG_STACK_USAGE
4964 free = stack_not_used(p);
4965#endif
4966 ppid = 0;
4967 rcu_read_lock();
4968 if (pid_alive(p))
4969 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4970 rcu_read_unlock();
4971 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4972 task_pid_nr(p), ppid,
4973 (unsigned long)task_thread_info(p)->flags);
4974
4975 print_worker_info(KERN_INFO, p);
4976 show_stack(p, NULL);
4977}
4978
4979void show_state_filter(unsigned long state_filter)
4980{
4981 struct task_struct *g, *p;
4982
4983#if BITS_PER_LONG == 32
4984 printk(KERN_INFO
4985 " task PC stack pid father\n");
4986#else
4987 printk(KERN_INFO
4988 " task PC stack pid father\n");
4989#endif
4990 rcu_read_lock();
4991 for_each_process_thread(g, p) {
4992 /*
4993 * reset the NMI-timeout, listing all files on a slow
4994 * console might take a lot of time:
4995 */
4996 touch_nmi_watchdog();
4997 if (!state_filter || (p->state & state_filter))
4998 sched_show_task(p);
4999 }
5000
5001 touch_all_softlockup_watchdogs();
5002
5003#ifdef CONFIG_SCHED_DEBUG
5004 sysrq_sched_debug_show();
5005#endif
5006 rcu_read_unlock();
5007 /*
5008 * Only show locks if all tasks are dumped:
5009 */
5010 if (!state_filter)
5011 debug_show_all_locks();
5012}
5013
5014void init_idle_bootup_task(struct task_struct *idle)
5015{
5016 idle->sched_class = &idle_sched_class;
5017}
5018
5019/**
5020 * init_idle - set up an idle thread for a given CPU
5021 * @idle: task in question
5022 * @cpu: cpu the idle task belongs to
5023 *
5024 * NOTE: this function does not set the idle thread's NEED_RESCHED
5025 * flag, to make booting more robust.
5026 */
5027void init_idle(struct task_struct *idle, int cpu)
5028{
5029 struct rq *rq = cpu_rq(cpu);
5030 unsigned long flags;
5031
5032 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5033 raw_spin_lock(&rq->lock);
5034
5035 __sched_fork(0, idle);
5036 idle->state = TASK_RUNNING;
5037 idle->se.exec_start = sched_clock();
5038
5039 kasan_unpoison_task_stack(idle);
5040
5041#ifdef CONFIG_SMP
5042 /*
5043 * Its possible that init_idle() gets called multiple times on a task,
5044 * in that case do_set_cpus_allowed() will not do the right thing.
5045 *
5046 * And since this is boot we can forgo the serialization.
5047 */
5048 set_cpus_allowed_common(idle, cpumask_of(cpu));
5049#endif
5050 /*
5051 * We're having a chicken and egg problem, even though we are
5052 * holding rq->lock, the cpu isn't yet set to this cpu so the
5053 * lockdep check in task_group() will fail.
5054 *
5055 * Similar case to sched_fork(). / Alternatively we could
5056 * use task_rq_lock() here and obtain the other rq->lock.
5057 *
5058 * Silence PROVE_RCU
5059 */
5060 rcu_read_lock();
5061 __set_task_cpu(idle, cpu);
5062 rcu_read_unlock();
5063
5064 rq->curr = rq->idle = idle;
5065 idle->on_rq = TASK_ON_RQ_QUEUED;
5066#ifdef CONFIG_SMP
5067 idle->on_cpu = 1;
5068#endif
5069 raw_spin_unlock(&rq->lock);
5070 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5071
5072 /* Set the preempt count _outside_ the spinlocks! */
5073 init_idle_preempt_count(idle, cpu);
5074
5075 /*
5076 * The idle tasks have their own, simple scheduling class:
5077 */
5078 idle->sched_class = &idle_sched_class;
5079 ftrace_graph_init_idle_task(idle, cpu);
5080 vtime_init_idle(idle, cpu);
5081#ifdef CONFIG_SMP
5082 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5083#endif
5084}
5085
5086int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5087 const struct cpumask *trial)
5088{
5089 int ret = 1, trial_cpus;
5090 struct dl_bw *cur_dl_b;
5091 unsigned long flags;
5092
5093 if (!cpumask_weight(cur))
5094 return ret;
5095
5096 rcu_read_lock_sched();
5097 cur_dl_b = dl_bw_of(cpumask_any(cur));
5098 trial_cpus = cpumask_weight(trial);
5099
5100 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5101 if (cur_dl_b->bw != -1 &&
5102 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5103 ret = 0;
5104 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5105 rcu_read_unlock_sched();
5106
5107 return ret;
5108}
5109
5110int task_can_attach(struct task_struct *p,
5111 const struct cpumask *cs_cpus_allowed)
5112{
5113 int ret = 0;
5114
5115 /*
5116 * Kthreads which disallow setaffinity shouldn't be moved
5117 * to a new cpuset; we don't want to change their cpu
5118 * affinity and isolating such threads by their set of
5119 * allowed nodes is unnecessary. Thus, cpusets are not
5120 * applicable for such threads. This prevents checking for
5121 * success of set_cpus_allowed_ptr() on all attached tasks
5122 * before cpus_allowed may be changed.
5123 */
5124 if (p->flags & PF_NO_SETAFFINITY) {
5125 ret = -EINVAL;
5126 goto out;
5127 }
5128
5129#ifdef CONFIG_SMP
5130 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5131 cs_cpus_allowed)) {
5132 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5133 cs_cpus_allowed);
5134 struct dl_bw *dl_b;
5135 bool overflow;
5136 int cpus;
5137 unsigned long flags;
5138
5139 rcu_read_lock_sched();
5140 dl_b = dl_bw_of(dest_cpu);
5141 raw_spin_lock_irqsave(&dl_b->lock, flags);
5142 cpus = dl_bw_cpus(dest_cpu);
5143 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5144 if (overflow)
5145 ret = -EBUSY;
5146 else {
5147 /*
5148 * We reserve space for this task in the destination
5149 * root_domain, as we can't fail after this point.
5150 * We will free resources in the source root_domain
5151 * later on (see set_cpus_allowed_dl()).
5152 */
5153 __dl_add(dl_b, p->dl.dl_bw);
5154 }
5155 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5156 rcu_read_unlock_sched();
5157
5158 }
5159#endif
5160out:
5161 return ret;
5162}
5163
5164#ifdef CONFIG_SMP
5165
5166#ifdef CONFIG_NUMA_BALANCING
5167/* Migrate current task p to target_cpu */
5168int migrate_task_to(struct task_struct *p, int target_cpu)
5169{
5170 struct migration_arg arg = { p, target_cpu };
5171 int curr_cpu = task_cpu(p);
5172
5173 if (curr_cpu == target_cpu)
5174 return 0;
5175
5176 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5177 return -EINVAL;
5178
5179 /* TODO: This is not properly updating schedstats */
5180
5181 trace_sched_move_numa(p, curr_cpu, target_cpu);
5182 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5183}
5184
5185/*
5186 * Requeue a task on a given node and accurately track the number of NUMA
5187 * tasks on the runqueues
5188 */
5189void sched_setnuma(struct task_struct *p, int nid)
5190{
5191 struct rq *rq;
5192 unsigned long flags;
5193 bool queued, running;
5194
5195 rq = task_rq_lock(p, &flags);
5196 queued = task_on_rq_queued(p);
5197 running = task_current(rq, p);
5198
5199 if (queued)
5200 dequeue_task(rq, p, DEQUEUE_SAVE);
5201 if (running)
5202 put_prev_task(rq, p);
5203
5204 p->numa_preferred_nid = nid;
5205
5206 if (running)
5207 p->sched_class->set_curr_task(rq);
5208 if (queued)
5209 enqueue_task(rq, p, ENQUEUE_RESTORE);
5210 task_rq_unlock(rq, p, &flags);
5211}
5212#endif /* CONFIG_NUMA_BALANCING */
5213
5214#ifdef CONFIG_HOTPLUG_CPU
5215/*
5216 * Ensures that the idle task is using init_mm right before its cpu goes
5217 * offline.
5218 */
5219void idle_task_exit(void)
5220{
5221 struct mm_struct *mm = current->active_mm;
5222
5223 BUG_ON(cpu_online(smp_processor_id()));
5224
5225 if (mm != &init_mm) {
5226 switch_mm(mm, &init_mm, current);
5227 finish_arch_post_lock_switch();
5228 }
5229 mmdrop(mm);
5230}
5231
5232/*
5233 * Since this CPU is going 'away' for a while, fold any nr_active delta
5234 * we might have. Assumes we're called after migrate_tasks() so that the
5235 * nr_active count is stable.
5236 *
5237 * Also see the comment "Global load-average calculations".
5238 */
5239static void calc_load_migrate(struct rq *rq)
5240{
5241 long delta = calc_load_fold_active(rq);
5242 if (delta)
5243 atomic_long_add(delta, &calc_load_tasks);
5244}
5245
5246static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5247{
5248}
5249
5250static const struct sched_class fake_sched_class = {
5251 .put_prev_task = put_prev_task_fake,
5252};
5253
5254static struct task_struct fake_task = {
5255 /*
5256 * Avoid pull_{rt,dl}_task()
5257 */
5258 .prio = MAX_PRIO + 1,
5259 .sched_class = &fake_sched_class,
5260};
5261
5262/*
5263 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5264 * try_to_wake_up()->select_task_rq().
5265 *
5266 * Called with rq->lock held even though we'er in stop_machine() and
5267 * there's no concurrency possible, we hold the required locks anyway
5268 * because of lock validation efforts.
5269 */
5270static void migrate_tasks(struct rq *dead_rq)
5271{
5272 struct rq *rq = dead_rq;
5273 struct task_struct *next, *stop = rq->stop;
5274 int dest_cpu;
5275
5276 /*
5277 * Fudge the rq selection such that the below task selection loop
5278 * doesn't get stuck on the currently eligible stop task.
5279 *
5280 * We're currently inside stop_machine() and the rq is either stuck
5281 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5282 * either way we should never end up calling schedule() until we're
5283 * done here.
5284 */
5285 rq->stop = NULL;
5286
5287 /*
5288 * put_prev_task() and pick_next_task() sched
5289 * class method both need to have an up-to-date
5290 * value of rq->clock[_task]
5291 */
5292 update_rq_clock(rq);
5293
5294 for (;;) {
5295 /*
5296 * There's this thread running, bail when that's the only
5297 * remaining thread.
5298 */
5299 if (rq->nr_running == 1)
5300 break;
5301
5302 /*
5303 * pick_next_task assumes pinned rq->lock.
5304 */
5305 lockdep_pin_lock(&rq->lock);
5306 next = pick_next_task(rq, &fake_task);
5307 BUG_ON(!next);
5308 next->sched_class->put_prev_task(rq, next);
5309
5310 /*
5311 * Rules for changing task_struct::cpus_allowed are holding
5312 * both pi_lock and rq->lock, such that holding either
5313 * stabilizes the mask.
5314 *
5315 * Drop rq->lock is not quite as disastrous as it usually is
5316 * because !cpu_active at this point, which means load-balance
5317 * will not interfere. Also, stop-machine.
5318 */
5319 lockdep_unpin_lock(&rq->lock);
5320 raw_spin_unlock(&rq->lock);
5321 raw_spin_lock(&next->pi_lock);
5322 raw_spin_lock(&rq->lock);
5323
5324 /*
5325 * Since we're inside stop-machine, _nothing_ should have
5326 * changed the task, WARN if weird stuff happened, because in
5327 * that case the above rq->lock drop is a fail too.
5328 */
5329 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5330 raw_spin_unlock(&next->pi_lock);
5331 continue;
5332 }
5333
5334 /* Find suitable destination for @next, with force if needed. */
5335 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5336
5337 rq = __migrate_task(rq, next, dest_cpu);
5338 if (rq != dead_rq) {
5339 raw_spin_unlock(&rq->lock);
5340 rq = dead_rq;
5341 raw_spin_lock(&rq->lock);
5342 }
5343 raw_spin_unlock(&next->pi_lock);
5344 }
5345
5346 rq->stop = stop;
5347}
5348#endif /* CONFIG_HOTPLUG_CPU */
5349
5350static void set_rq_online(struct rq *rq)
5351{
5352 if (!rq->online) {
5353 const struct sched_class *class;
5354
5355 cpumask_set_cpu(rq->cpu, rq->rd->online);
5356 rq->online = 1;
5357
5358 for_each_class(class) {
5359 if (class->rq_online)
5360 class->rq_online(rq);
5361 }
5362 }
5363}
5364
5365static void set_rq_offline(struct rq *rq)
5366{
5367 if (rq->online) {
5368 const struct sched_class *class;
5369
5370 for_each_class(class) {
5371 if (class->rq_offline)
5372 class->rq_offline(rq);
5373 }
5374
5375 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5376 rq->online = 0;
5377 }
5378}
5379
5380/*
5381 * migration_call - callback that gets triggered when a CPU is added.
5382 * Here we can start up the necessary migration thread for the new CPU.
5383 */
5384static int
5385migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5386{
5387 int cpu = (long)hcpu;
5388 unsigned long flags;
5389 struct rq *rq = cpu_rq(cpu);
5390
5391 switch (action & ~CPU_TASKS_FROZEN) {
5392
5393 case CPU_UP_PREPARE:
5394 rq->calc_load_update = calc_load_update;
5395 account_reset_rq(rq);
5396 break;
5397
5398 case CPU_ONLINE:
5399 /* Update our root-domain */
5400 raw_spin_lock_irqsave(&rq->lock, flags);
5401 if (rq->rd) {
5402 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5403
5404 set_rq_online(rq);
5405 }
5406 raw_spin_unlock_irqrestore(&rq->lock, flags);
5407 break;
5408
5409#ifdef CONFIG_HOTPLUG_CPU
5410 case CPU_DYING:
5411 sched_ttwu_pending();
5412 /* Update our root-domain */
5413 raw_spin_lock_irqsave(&rq->lock, flags);
5414 if (rq->rd) {
5415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5416 set_rq_offline(rq);
5417 }
5418 migrate_tasks(rq);
5419 BUG_ON(rq->nr_running != 1); /* the migration thread */
5420 raw_spin_unlock_irqrestore(&rq->lock, flags);
5421 break;
5422
5423 case CPU_DEAD:
5424 calc_load_migrate(rq);
5425 break;
5426#endif
5427 }
5428
5429 update_max_interval();
5430
5431 return NOTIFY_OK;
5432}
5433
5434/*
5435 * Register at high priority so that task migration (migrate_all_tasks)
5436 * happens before everything else. This has to be lower priority than
5437 * the notifier in the perf_event subsystem, though.
5438 */
5439static struct notifier_block migration_notifier = {
5440 .notifier_call = migration_call,
5441 .priority = CPU_PRI_MIGRATION,
5442};
5443
5444static void set_cpu_rq_start_time(void)
5445{
5446 int cpu = smp_processor_id();
5447 struct rq *rq = cpu_rq(cpu);
5448 rq->age_stamp = sched_clock_cpu(cpu);
5449}
5450
5451static int sched_cpu_active(struct notifier_block *nfb,
5452 unsigned long action, void *hcpu)
5453{
5454 int cpu = (long)hcpu;
5455
5456 switch (action & ~CPU_TASKS_FROZEN) {
5457 case CPU_STARTING:
5458 set_cpu_rq_start_time();
5459 return NOTIFY_OK;
5460
5461 case CPU_DOWN_FAILED:
5462 set_cpu_active(cpu, true);
5463 return NOTIFY_OK;
5464
5465 default:
5466 return NOTIFY_DONE;
5467 }
5468}
5469
5470static int sched_cpu_inactive(struct notifier_block *nfb,
5471 unsigned long action, void *hcpu)
5472{
5473 switch (action & ~CPU_TASKS_FROZEN) {
5474 case CPU_DOWN_PREPARE:
5475 set_cpu_active((long)hcpu, false);
5476 return NOTIFY_OK;
5477 default:
5478 return NOTIFY_DONE;
5479 }
5480}
5481
5482static int __init migration_init(void)
5483{
5484 void *cpu = (void *)(long)smp_processor_id();
5485 int err;
5486
5487 /* Initialize migration for the boot CPU */
5488 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5489 BUG_ON(err == NOTIFY_BAD);
5490 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5491 register_cpu_notifier(&migration_notifier);
5492
5493 /* Register cpu active notifiers */
5494 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5495 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5496
5497 return 0;
5498}
5499early_initcall(migration_init);
5500
5501static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5502
5503#ifdef CONFIG_SCHED_DEBUG
5504
5505static __read_mostly int sched_debug_enabled;
5506
5507static int __init sched_debug_setup(char *str)
5508{
5509 sched_debug_enabled = 1;
5510
5511 return 0;
5512}
5513early_param("sched_debug", sched_debug_setup);
5514
5515static inline bool sched_debug(void)
5516{
5517 return sched_debug_enabled;
5518}
5519
5520static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5521 struct cpumask *groupmask)
5522{
5523 struct sched_group *group = sd->groups;
5524
5525 cpumask_clear(groupmask);
5526
5527 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5528
5529 if (!(sd->flags & SD_LOAD_BALANCE)) {
5530 printk("does not load-balance\n");
5531 if (sd->parent)
5532 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5533 " has parent");
5534 return -1;
5535 }
5536
5537 printk(KERN_CONT "span %*pbl level %s\n",
5538 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5539
5540 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5541 printk(KERN_ERR "ERROR: domain->span does not contain "
5542 "CPU%d\n", cpu);
5543 }
5544 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5545 printk(KERN_ERR "ERROR: domain->groups does not contain"
5546 " CPU%d\n", cpu);
5547 }
5548
5549 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5550 do {
5551 if (!group) {
5552 printk("\n");
5553 printk(KERN_ERR "ERROR: group is NULL\n");
5554 break;
5555 }
5556
5557 if (!cpumask_weight(sched_group_cpus(group))) {
5558 printk(KERN_CONT "\n");
5559 printk(KERN_ERR "ERROR: empty group\n");
5560 break;
5561 }
5562
5563 if (!(sd->flags & SD_OVERLAP) &&
5564 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5565 printk(KERN_CONT "\n");
5566 printk(KERN_ERR "ERROR: repeated CPUs\n");
5567 break;
5568 }
5569
5570 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5571
5572 printk(KERN_CONT " %*pbl",
5573 cpumask_pr_args(sched_group_cpus(group)));
5574 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5575 printk(KERN_CONT " (cpu_capacity = %d)",
5576 group->sgc->capacity);
5577 }
5578
5579 group = group->next;
5580 } while (group != sd->groups);
5581 printk(KERN_CONT "\n");
5582
5583 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5584 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5585
5586 if (sd->parent &&
5587 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5588 printk(KERN_ERR "ERROR: parent span is not a superset "
5589 "of domain->span\n");
5590 return 0;
5591}
5592
5593static void sched_domain_debug(struct sched_domain *sd, int cpu)
5594{
5595 int level = 0;
5596
5597 if (!sched_debug_enabled)
5598 return;
5599
5600 if (!sd) {
5601 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5602 return;
5603 }
5604
5605 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5606
5607 for (;;) {
5608 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5609 break;
5610 level++;
5611 sd = sd->parent;
5612 if (!sd)
5613 break;
5614 }
5615}
5616#else /* !CONFIG_SCHED_DEBUG */
5617# define sched_domain_debug(sd, cpu) do { } while (0)
5618static inline bool sched_debug(void)
5619{
5620 return false;
5621}
5622#endif /* CONFIG_SCHED_DEBUG */
5623
5624static int sd_degenerate(struct sched_domain *sd)
5625{
5626 if (cpumask_weight(sched_domain_span(sd)) == 1)
5627 return 1;
5628
5629 /* Following flags need at least 2 groups */
5630 if (sd->flags & (SD_LOAD_BALANCE |
5631 SD_BALANCE_NEWIDLE |
5632 SD_BALANCE_FORK |
5633 SD_BALANCE_EXEC |
5634 SD_SHARE_CPUCAPACITY |
5635 SD_SHARE_PKG_RESOURCES |
5636 SD_SHARE_POWERDOMAIN)) {
5637 if (sd->groups != sd->groups->next)
5638 return 0;
5639 }
5640
5641 /* Following flags don't use groups */
5642 if (sd->flags & (SD_WAKE_AFFINE))
5643 return 0;
5644
5645 return 1;
5646}
5647
5648static int
5649sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650{
5651 unsigned long cflags = sd->flags, pflags = parent->flags;
5652
5653 if (sd_degenerate(parent))
5654 return 1;
5655
5656 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5657 return 0;
5658
5659 /* Flags needing groups don't count if only 1 group in parent */
5660 if (parent->groups == parent->groups->next) {
5661 pflags &= ~(SD_LOAD_BALANCE |
5662 SD_BALANCE_NEWIDLE |
5663 SD_BALANCE_FORK |
5664 SD_BALANCE_EXEC |
5665 SD_SHARE_CPUCAPACITY |
5666 SD_SHARE_PKG_RESOURCES |
5667 SD_PREFER_SIBLING |
5668 SD_SHARE_POWERDOMAIN);
5669 if (nr_node_ids == 1)
5670 pflags &= ~SD_SERIALIZE;
5671 }
5672 if (~cflags & pflags)
5673 return 0;
5674
5675 return 1;
5676}
5677
5678static void free_rootdomain(struct rcu_head *rcu)
5679{
5680 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5681
5682 cpupri_cleanup(&rd->cpupri);
5683 cpudl_cleanup(&rd->cpudl);
5684 free_cpumask_var(rd->dlo_mask);
5685 free_cpumask_var(rd->rto_mask);
5686 free_cpumask_var(rd->online);
5687 free_cpumask_var(rd->span);
5688 kfree(rd);
5689}
5690
5691static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5692{
5693 struct root_domain *old_rd = NULL;
5694 unsigned long flags;
5695
5696 raw_spin_lock_irqsave(&rq->lock, flags);
5697
5698 if (rq->rd) {
5699 old_rd = rq->rd;
5700
5701 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5702 set_rq_offline(rq);
5703
5704 cpumask_clear_cpu(rq->cpu, old_rd->span);
5705
5706 /*
5707 * If we dont want to free the old_rd yet then
5708 * set old_rd to NULL to skip the freeing later
5709 * in this function:
5710 */
5711 if (!atomic_dec_and_test(&old_rd->refcount))
5712 old_rd = NULL;
5713 }
5714
5715 atomic_inc(&rd->refcount);
5716 rq->rd = rd;
5717
5718 cpumask_set_cpu(rq->cpu, rd->span);
5719 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5720 set_rq_online(rq);
5721
5722 raw_spin_unlock_irqrestore(&rq->lock, flags);
5723
5724 if (old_rd)
5725 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5726}
5727
5728static int init_rootdomain(struct root_domain *rd)
5729{
5730 memset(rd, 0, sizeof(*rd));
5731
5732 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5733 goto out;
5734 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5735 goto free_span;
5736 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5737 goto free_online;
5738 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5739 goto free_dlo_mask;
5740
5741 init_dl_bw(&rd->dl_bw);
5742 if (cpudl_init(&rd->cpudl) != 0)
5743 goto free_dlo_mask;
5744
5745 if (cpupri_init(&rd->cpupri) != 0)
5746 goto free_rto_mask;
5747 return 0;
5748
5749free_rto_mask:
5750 free_cpumask_var(rd->rto_mask);
5751free_dlo_mask:
5752 free_cpumask_var(rd->dlo_mask);
5753free_online:
5754 free_cpumask_var(rd->online);
5755free_span:
5756 free_cpumask_var(rd->span);
5757out:
5758 return -ENOMEM;
5759}
5760
5761/*
5762 * By default the system creates a single root-domain with all cpus as
5763 * members (mimicking the global state we have today).
5764 */
5765struct root_domain def_root_domain;
5766
5767static void init_defrootdomain(void)
5768{
5769 init_rootdomain(&def_root_domain);
5770
5771 atomic_set(&def_root_domain.refcount, 1);
5772}
5773
5774static struct root_domain *alloc_rootdomain(void)
5775{
5776 struct root_domain *rd;
5777
5778 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5779 if (!rd)
5780 return NULL;
5781
5782 if (init_rootdomain(rd) != 0) {
5783 kfree(rd);
5784 return NULL;
5785 }
5786
5787 return rd;
5788}
5789
5790static void free_sched_groups(struct sched_group *sg, int free_sgc)
5791{
5792 struct sched_group *tmp, *first;
5793
5794 if (!sg)
5795 return;
5796
5797 first = sg;
5798 do {
5799 tmp = sg->next;
5800
5801 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5802 kfree(sg->sgc);
5803
5804 kfree(sg);
5805 sg = tmp;
5806 } while (sg != first);
5807}
5808
5809static void free_sched_domain(struct rcu_head *rcu)
5810{
5811 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5812
5813 /*
5814 * If its an overlapping domain it has private groups, iterate and
5815 * nuke them all.
5816 */
5817 if (sd->flags & SD_OVERLAP) {
5818 free_sched_groups(sd->groups, 1);
5819 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5820 kfree(sd->groups->sgc);
5821 kfree(sd->groups);
5822 }
5823 kfree(sd);
5824}
5825
5826static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5827{
5828 call_rcu(&sd->rcu, free_sched_domain);
5829}
5830
5831static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5832{
5833 for (; sd; sd = sd->parent)
5834 destroy_sched_domain(sd, cpu);
5835}
5836
5837/*
5838 * Keep a special pointer to the highest sched_domain that has
5839 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5840 * allows us to avoid some pointer chasing select_idle_sibling().
5841 *
5842 * Also keep a unique ID per domain (we use the first cpu number in
5843 * the cpumask of the domain), this allows us to quickly tell if
5844 * two cpus are in the same cache domain, see cpus_share_cache().
5845 */
5846DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5847DEFINE_PER_CPU(int, sd_llc_size);
5848DEFINE_PER_CPU(int, sd_llc_id);
5849DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5850DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5851DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5852
5853static void update_top_cache_domain(int cpu)
5854{
5855 struct sched_domain *sd;
5856 struct sched_domain *busy_sd = NULL;
5857 int id = cpu;
5858 int size = 1;
5859
5860 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5861 if (sd) {
5862 id = cpumask_first(sched_domain_span(sd));
5863 size = cpumask_weight(sched_domain_span(sd));
5864 busy_sd = sd->parent; /* sd_busy */
5865 }
5866 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5867
5868 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5869 per_cpu(sd_llc_size, cpu) = size;
5870 per_cpu(sd_llc_id, cpu) = id;
5871
5872 sd = lowest_flag_domain(cpu, SD_NUMA);
5873 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5874
5875 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5876 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5877}
5878
5879/*
5880 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5881 * hold the hotplug lock.
5882 */
5883static void
5884cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5885{
5886 struct rq *rq = cpu_rq(cpu);
5887 struct sched_domain *tmp;
5888
5889 /* Remove the sched domains which do not contribute to scheduling. */
5890 for (tmp = sd; tmp; ) {
5891 struct sched_domain *parent = tmp->parent;
5892 if (!parent)
5893 break;
5894
5895 if (sd_parent_degenerate(tmp, parent)) {
5896 tmp->parent = parent->parent;
5897 if (parent->parent)
5898 parent->parent->child = tmp;
5899 /*
5900 * Transfer SD_PREFER_SIBLING down in case of a
5901 * degenerate parent; the spans match for this
5902 * so the property transfers.
5903 */
5904 if (parent->flags & SD_PREFER_SIBLING)
5905 tmp->flags |= SD_PREFER_SIBLING;
5906 destroy_sched_domain(parent, cpu);
5907 } else
5908 tmp = tmp->parent;
5909 }
5910
5911 if (sd && sd_degenerate(sd)) {
5912 tmp = sd;
5913 sd = sd->parent;
5914 destroy_sched_domain(tmp, cpu);
5915 if (sd)
5916 sd->child = NULL;
5917 }
5918
5919 sched_domain_debug(sd, cpu);
5920
5921 rq_attach_root(rq, rd);
5922 tmp = rq->sd;
5923 rcu_assign_pointer(rq->sd, sd);
5924 destroy_sched_domains(tmp, cpu);
5925
5926 update_top_cache_domain(cpu);
5927}
5928
5929/* Setup the mask of cpus configured for isolated domains */
5930static int __init isolated_cpu_setup(char *str)
5931{
5932 int ret;
5933
5934 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5935 ret = cpulist_parse(str, cpu_isolated_map);
5936 if (ret) {
5937 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5938 return 0;
5939 }
5940 return 1;
5941}
5942__setup("isolcpus=", isolated_cpu_setup);
5943
5944struct s_data {
5945 struct sched_domain ** __percpu sd;
5946 struct root_domain *rd;
5947};
5948
5949enum s_alloc {
5950 sa_rootdomain,
5951 sa_sd,
5952 sa_sd_storage,
5953 sa_none,
5954};
5955
5956/*
5957 * Build an iteration mask that can exclude certain CPUs from the upwards
5958 * domain traversal.
5959 *
5960 * Asymmetric node setups can result in situations where the domain tree is of
5961 * unequal depth, make sure to skip domains that already cover the entire
5962 * range.
5963 *
5964 * In that case build_sched_domains() will have terminated the iteration early
5965 * and our sibling sd spans will be empty. Domains should always include the
5966 * cpu they're built on, so check that.
5967 *
5968 */
5969static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5970{
5971 const struct cpumask *span = sched_domain_span(sd);
5972 struct sd_data *sdd = sd->private;
5973 struct sched_domain *sibling;
5974 int i;
5975
5976 for_each_cpu(i, span) {
5977 sibling = *per_cpu_ptr(sdd->sd, i);
5978 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5979 continue;
5980
5981 cpumask_set_cpu(i, sched_group_mask(sg));
5982 }
5983}
5984
5985/*
5986 * Return the canonical balance cpu for this group, this is the first cpu
5987 * of this group that's also in the iteration mask.
5988 */
5989int group_balance_cpu(struct sched_group *sg)
5990{
5991 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5992}
5993
5994static int
5995build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5996{
5997 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5998 const struct cpumask *span = sched_domain_span(sd);
5999 struct cpumask *covered = sched_domains_tmpmask;
6000 struct sd_data *sdd = sd->private;
6001 struct sched_domain *sibling;
6002 int i;
6003
6004 cpumask_clear(covered);
6005
6006 for_each_cpu(i, span) {
6007 struct cpumask *sg_span;
6008
6009 if (cpumask_test_cpu(i, covered))
6010 continue;
6011
6012 sibling = *per_cpu_ptr(sdd->sd, i);
6013
6014 /* See the comment near build_group_mask(). */
6015 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6016 continue;
6017
6018 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6019 GFP_KERNEL, cpu_to_node(cpu));
6020
6021 if (!sg)
6022 goto fail;
6023
6024 sg_span = sched_group_cpus(sg);
6025 if (sibling->child)
6026 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6027 else
6028 cpumask_set_cpu(i, sg_span);
6029
6030 cpumask_or(covered, covered, sg_span);
6031
6032 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6033 if (atomic_inc_return(&sg->sgc->ref) == 1)
6034 build_group_mask(sd, sg);
6035
6036 /*
6037 * Initialize sgc->capacity such that even if we mess up the
6038 * domains and no possible iteration will get us here, we won't
6039 * die on a /0 trap.
6040 */
6041 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6042
6043 /*
6044 * Make sure the first group of this domain contains the
6045 * canonical balance cpu. Otherwise the sched_domain iteration
6046 * breaks. See update_sg_lb_stats().
6047 */
6048 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6049 group_balance_cpu(sg) == cpu)
6050 groups = sg;
6051
6052 if (!first)
6053 first = sg;
6054 if (last)
6055 last->next = sg;
6056 last = sg;
6057 last->next = first;
6058 }
6059 sd->groups = groups;
6060
6061 return 0;
6062
6063fail:
6064 free_sched_groups(first, 0);
6065
6066 return -ENOMEM;
6067}
6068
6069static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6070{
6071 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6072 struct sched_domain *child = sd->child;
6073
6074 if (child)
6075 cpu = cpumask_first(sched_domain_span(child));
6076
6077 if (sg) {
6078 *sg = *per_cpu_ptr(sdd->sg, cpu);
6079 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6080 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6081 }
6082
6083 return cpu;
6084}
6085
6086/*
6087 * build_sched_groups will build a circular linked list of the groups
6088 * covered by the given span, and will set each group's ->cpumask correctly,
6089 * and ->cpu_capacity to 0.
6090 *
6091 * Assumes the sched_domain tree is fully constructed
6092 */
6093static int
6094build_sched_groups(struct sched_domain *sd, int cpu)
6095{
6096 struct sched_group *first = NULL, *last = NULL;
6097 struct sd_data *sdd = sd->private;
6098 const struct cpumask *span = sched_domain_span(sd);
6099 struct cpumask *covered;
6100 int i;
6101
6102 get_group(cpu, sdd, &sd->groups);
6103 atomic_inc(&sd->groups->ref);
6104
6105 if (cpu != cpumask_first(span))
6106 return 0;
6107
6108 lockdep_assert_held(&sched_domains_mutex);
6109 covered = sched_domains_tmpmask;
6110
6111 cpumask_clear(covered);
6112
6113 for_each_cpu(i, span) {
6114 struct sched_group *sg;
6115 int group, j;
6116
6117 if (cpumask_test_cpu(i, covered))
6118 continue;
6119
6120 group = get_group(i, sdd, &sg);
6121 cpumask_setall(sched_group_mask(sg));
6122
6123 for_each_cpu(j, span) {
6124 if (get_group(j, sdd, NULL) != group)
6125 continue;
6126
6127 cpumask_set_cpu(j, covered);
6128 cpumask_set_cpu(j, sched_group_cpus(sg));
6129 }
6130
6131 if (!first)
6132 first = sg;
6133 if (last)
6134 last->next = sg;
6135 last = sg;
6136 }
6137 last->next = first;
6138
6139 return 0;
6140}
6141
6142/*
6143 * Initialize sched groups cpu_capacity.
6144 *
6145 * cpu_capacity indicates the capacity of sched group, which is used while
6146 * distributing the load between different sched groups in a sched domain.
6147 * Typically cpu_capacity for all the groups in a sched domain will be same
6148 * unless there are asymmetries in the topology. If there are asymmetries,
6149 * group having more cpu_capacity will pickup more load compared to the
6150 * group having less cpu_capacity.
6151 */
6152static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6153{
6154 struct sched_group *sg = sd->groups;
6155
6156 WARN_ON(!sg);
6157
6158 do {
6159 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6160 sg = sg->next;
6161 } while (sg != sd->groups);
6162
6163 if (cpu != group_balance_cpu(sg))
6164 return;
6165
6166 update_group_capacity(sd, cpu);
6167 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6168}
6169
6170/*
6171 * Initializers for schedule domains
6172 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6173 */
6174
6175static int default_relax_domain_level = -1;
6176int sched_domain_level_max;
6177
6178static int __init setup_relax_domain_level(char *str)
6179{
6180 if (kstrtoint(str, 0, &default_relax_domain_level))
6181 pr_warn("Unable to set relax_domain_level\n");
6182
6183 return 1;
6184}
6185__setup("relax_domain_level=", setup_relax_domain_level);
6186
6187static void set_domain_attribute(struct sched_domain *sd,
6188 struct sched_domain_attr *attr)
6189{
6190 int request;
6191
6192 if (!attr || attr->relax_domain_level < 0) {
6193 if (default_relax_domain_level < 0)
6194 return;
6195 else
6196 request = default_relax_domain_level;
6197 } else
6198 request = attr->relax_domain_level;
6199 if (request < sd->level) {
6200 /* turn off idle balance on this domain */
6201 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6202 } else {
6203 /* turn on idle balance on this domain */
6204 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6205 }
6206}
6207
6208static void __sdt_free(const struct cpumask *cpu_map);
6209static int __sdt_alloc(const struct cpumask *cpu_map);
6210
6211static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6212 const struct cpumask *cpu_map)
6213{
6214 switch (what) {
6215 case sa_rootdomain:
6216 if (!atomic_read(&d->rd->refcount))
6217 free_rootdomain(&d->rd->rcu); /* fall through */
6218 case sa_sd:
6219 free_percpu(d->sd); /* fall through */
6220 case sa_sd_storage:
6221 __sdt_free(cpu_map); /* fall through */
6222 case sa_none:
6223 break;
6224 }
6225}
6226
6227static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6228 const struct cpumask *cpu_map)
6229{
6230 memset(d, 0, sizeof(*d));
6231
6232 if (__sdt_alloc(cpu_map))
6233 return sa_sd_storage;
6234 d->sd = alloc_percpu(struct sched_domain *);
6235 if (!d->sd)
6236 return sa_sd_storage;
6237 d->rd = alloc_rootdomain();
6238 if (!d->rd)
6239 return sa_sd;
6240 return sa_rootdomain;
6241}
6242
6243/*
6244 * NULL the sd_data elements we've used to build the sched_domain and
6245 * sched_group structure so that the subsequent __free_domain_allocs()
6246 * will not free the data we're using.
6247 */
6248static void claim_allocations(int cpu, struct sched_domain *sd)
6249{
6250 struct sd_data *sdd = sd->private;
6251
6252 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6253 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6254
6255 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6256 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6257
6258 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6259 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6260}
6261
6262#ifdef CONFIG_NUMA
6263static int sched_domains_numa_levels;
6264enum numa_topology_type sched_numa_topology_type;
6265static int *sched_domains_numa_distance;
6266int sched_max_numa_distance;
6267static struct cpumask ***sched_domains_numa_masks;
6268static int sched_domains_curr_level;
6269#endif
6270
6271/*
6272 * SD_flags allowed in topology descriptions.
6273 *
6274 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6275 * SD_SHARE_PKG_RESOURCES - describes shared caches
6276 * SD_NUMA - describes NUMA topologies
6277 * SD_SHARE_POWERDOMAIN - describes shared power domain
6278 *
6279 * Odd one out:
6280 * SD_ASYM_PACKING - describes SMT quirks
6281 */
6282#define TOPOLOGY_SD_FLAGS \
6283 (SD_SHARE_CPUCAPACITY | \
6284 SD_SHARE_PKG_RESOURCES | \
6285 SD_NUMA | \
6286 SD_ASYM_PACKING | \
6287 SD_SHARE_POWERDOMAIN)
6288
6289static struct sched_domain *
6290sd_init(struct sched_domain_topology_level *tl, int cpu)
6291{
6292 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6293 int sd_weight, sd_flags = 0;
6294
6295#ifdef CONFIG_NUMA
6296 /*
6297 * Ugly hack to pass state to sd_numa_mask()...
6298 */
6299 sched_domains_curr_level = tl->numa_level;
6300#endif
6301
6302 sd_weight = cpumask_weight(tl->mask(cpu));
6303
6304 if (tl->sd_flags)
6305 sd_flags = (*tl->sd_flags)();
6306 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6307 "wrong sd_flags in topology description\n"))
6308 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6309
6310 *sd = (struct sched_domain){
6311 .min_interval = sd_weight,
6312 .max_interval = 2*sd_weight,
6313 .busy_factor = 32,
6314 .imbalance_pct = 125,
6315
6316 .cache_nice_tries = 0,
6317 .busy_idx = 0,
6318 .idle_idx = 0,
6319 .newidle_idx = 0,
6320 .wake_idx = 0,
6321 .forkexec_idx = 0,
6322
6323 .flags = 1*SD_LOAD_BALANCE
6324 | 1*SD_BALANCE_NEWIDLE
6325 | 1*SD_BALANCE_EXEC
6326 | 1*SD_BALANCE_FORK
6327 | 0*SD_BALANCE_WAKE
6328 | 1*SD_WAKE_AFFINE
6329 | 0*SD_SHARE_CPUCAPACITY
6330 | 0*SD_SHARE_PKG_RESOURCES
6331 | 0*SD_SERIALIZE
6332 | 0*SD_PREFER_SIBLING
6333 | 0*SD_NUMA
6334 | sd_flags
6335 ,
6336
6337 .last_balance = jiffies,
6338 .balance_interval = sd_weight,
6339 .smt_gain = 0,
6340 .max_newidle_lb_cost = 0,
6341 .next_decay_max_lb_cost = jiffies,
6342#ifdef CONFIG_SCHED_DEBUG
6343 .name = tl->name,
6344#endif
6345 };
6346
6347 /*
6348 * Convert topological properties into behaviour.
6349 */
6350
6351 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6352 sd->flags |= SD_PREFER_SIBLING;
6353 sd->imbalance_pct = 110;
6354 sd->smt_gain = 1178; /* ~15% */
6355
6356 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6357 sd->imbalance_pct = 117;
6358 sd->cache_nice_tries = 1;
6359 sd->busy_idx = 2;
6360
6361#ifdef CONFIG_NUMA
6362 } else if (sd->flags & SD_NUMA) {
6363 sd->cache_nice_tries = 2;
6364 sd->busy_idx = 3;
6365 sd->idle_idx = 2;
6366
6367 sd->flags |= SD_SERIALIZE;
6368 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6369 sd->flags &= ~(SD_BALANCE_EXEC |
6370 SD_BALANCE_FORK |
6371 SD_WAKE_AFFINE);
6372 }
6373
6374#endif
6375 } else {
6376 sd->flags |= SD_PREFER_SIBLING;
6377 sd->cache_nice_tries = 1;
6378 sd->busy_idx = 2;
6379 sd->idle_idx = 1;
6380 }
6381
6382 sd->private = &tl->data;
6383
6384 return sd;
6385}
6386
6387/*
6388 * Topology list, bottom-up.
6389 */
6390static struct sched_domain_topology_level default_topology[] = {
6391#ifdef CONFIG_SCHED_SMT
6392 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6393#endif
6394#ifdef CONFIG_SCHED_MC
6395 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6396#endif
6397 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6398 { NULL, },
6399};
6400
6401static struct sched_domain_topology_level *sched_domain_topology =
6402 default_topology;
6403
6404#define for_each_sd_topology(tl) \
6405 for (tl = sched_domain_topology; tl->mask; tl++)
6406
6407void set_sched_topology(struct sched_domain_topology_level *tl)
6408{
6409 sched_domain_topology = tl;
6410}
6411
6412#ifdef CONFIG_NUMA
6413
6414static const struct cpumask *sd_numa_mask(int cpu)
6415{
6416 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6417}
6418
6419static void sched_numa_warn(const char *str)
6420{
6421 static int done = false;
6422 int i,j;
6423
6424 if (done)
6425 return;
6426
6427 done = true;
6428
6429 printk(KERN_WARNING "ERROR: %s\n\n", str);
6430
6431 for (i = 0; i < nr_node_ids; i++) {
6432 printk(KERN_WARNING " ");
6433 for (j = 0; j < nr_node_ids; j++)
6434 printk(KERN_CONT "%02d ", node_distance(i,j));
6435 printk(KERN_CONT "\n");
6436 }
6437 printk(KERN_WARNING "\n");
6438}
6439
6440bool find_numa_distance(int distance)
6441{
6442 int i;
6443
6444 if (distance == node_distance(0, 0))
6445 return true;
6446
6447 for (i = 0; i < sched_domains_numa_levels; i++) {
6448 if (sched_domains_numa_distance[i] == distance)
6449 return true;
6450 }
6451
6452 return false;
6453}
6454
6455/*
6456 * A system can have three types of NUMA topology:
6457 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6458 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6459 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6460 *
6461 * The difference between a glueless mesh topology and a backplane
6462 * topology lies in whether communication between not directly
6463 * connected nodes goes through intermediary nodes (where programs
6464 * could run), or through backplane controllers. This affects
6465 * placement of programs.
6466 *
6467 * The type of topology can be discerned with the following tests:
6468 * - If the maximum distance between any nodes is 1 hop, the system
6469 * is directly connected.
6470 * - If for two nodes A and B, located N > 1 hops away from each other,
6471 * there is an intermediary node C, which is < N hops away from both
6472 * nodes A and B, the system is a glueless mesh.
6473 */
6474static void init_numa_topology_type(void)
6475{
6476 int a, b, c, n;
6477
6478 n = sched_max_numa_distance;
6479
6480 if (sched_domains_numa_levels <= 1) {
6481 sched_numa_topology_type = NUMA_DIRECT;
6482 return;
6483 }
6484
6485 for_each_online_node(a) {
6486 for_each_online_node(b) {
6487 /* Find two nodes furthest removed from each other. */
6488 if (node_distance(a, b) < n)
6489 continue;
6490
6491 /* Is there an intermediary node between a and b? */
6492 for_each_online_node(c) {
6493 if (node_distance(a, c) < n &&
6494 node_distance(b, c) < n) {
6495 sched_numa_topology_type =
6496 NUMA_GLUELESS_MESH;
6497 return;
6498 }
6499 }
6500
6501 sched_numa_topology_type = NUMA_BACKPLANE;
6502 return;
6503 }
6504 }
6505}
6506
6507static void sched_init_numa(void)
6508{
6509 int next_distance, curr_distance = node_distance(0, 0);
6510 struct sched_domain_topology_level *tl;
6511 int level = 0;
6512 int i, j, k;
6513
6514 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6515 if (!sched_domains_numa_distance)
6516 return;
6517
6518 /*
6519 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6520 * unique distances in the node_distance() table.
6521 *
6522 * Assumes node_distance(0,j) includes all distances in
6523 * node_distance(i,j) in order to avoid cubic time.
6524 */
6525 next_distance = curr_distance;
6526 for (i = 0; i < nr_node_ids; i++) {
6527 for (j = 0; j < nr_node_ids; j++) {
6528 for (k = 0; k < nr_node_ids; k++) {
6529 int distance = node_distance(i, k);
6530
6531 if (distance > curr_distance &&
6532 (distance < next_distance ||
6533 next_distance == curr_distance))
6534 next_distance = distance;
6535
6536 /*
6537 * While not a strong assumption it would be nice to know
6538 * about cases where if node A is connected to B, B is not
6539 * equally connected to A.
6540 */
6541 if (sched_debug() && node_distance(k, i) != distance)
6542 sched_numa_warn("Node-distance not symmetric");
6543
6544 if (sched_debug() && i && !find_numa_distance(distance))
6545 sched_numa_warn("Node-0 not representative");
6546 }
6547 if (next_distance != curr_distance) {
6548 sched_domains_numa_distance[level++] = next_distance;
6549 sched_domains_numa_levels = level;
6550 curr_distance = next_distance;
6551 } else break;
6552 }
6553
6554 /*
6555 * In case of sched_debug() we verify the above assumption.
6556 */
6557 if (!sched_debug())
6558 break;
6559 }
6560
6561 if (!level)
6562 return;
6563
6564 /*
6565 * 'level' contains the number of unique distances, excluding the
6566 * identity distance node_distance(i,i).
6567 *
6568 * The sched_domains_numa_distance[] array includes the actual distance
6569 * numbers.
6570 */
6571
6572 /*
6573 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6574 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6575 * the array will contain less then 'level' members. This could be
6576 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6577 * in other functions.
6578 *
6579 * We reset it to 'level' at the end of this function.
6580 */
6581 sched_domains_numa_levels = 0;
6582
6583 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6584 if (!sched_domains_numa_masks)
6585 return;
6586
6587 /*
6588 * Now for each level, construct a mask per node which contains all
6589 * cpus of nodes that are that many hops away from us.
6590 */
6591 for (i = 0; i < level; i++) {
6592 sched_domains_numa_masks[i] =
6593 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6594 if (!sched_domains_numa_masks[i])
6595 return;
6596
6597 for (j = 0; j < nr_node_ids; j++) {
6598 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6599 if (!mask)
6600 return;
6601
6602 sched_domains_numa_masks[i][j] = mask;
6603
6604 for_each_node(k) {
6605 if (node_distance(j, k) > sched_domains_numa_distance[i])
6606 continue;
6607
6608 cpumask_or(mask, mask, cpumask_of_node(k));
6609 }
6610 }
6611 }
6612
6613 /* Compute default topology size */
6614 for (i = 0; sched_domain_topology[i].mask; i++);
6615
6616 tl = kzalloc((i + level + 1) *
6617 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6618 if (!tl)
6619 return;
6620
6621 /*
6622 * Copy the default topology bits..
6623 */
6624 for (i = 0; sched_domain_topology[i].mask; i++)
6625 tl[i] = sched_domain_topology[i];
6626
6627 /*
6628 * .. and append 'j' levels of NUMA goodness.
6629 */
6630 for (j = 0; j < level; i++, j++) {
6631 tl[i] = (struct sched_domain_topology_level){
6632 .mask = sd_numa_mask,
6633 .sd_flags = cpu_numa_flags,
6634 .flags = SDTL_OVERLAP,
6635 .numa_level = j,
6636 SD_INIT_NAME(NUMA)
6637 };
6638 }
6639
6640 sched_domain_topology = tl;
6641
6642 sched_domains_numa_levels = level;
6643 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6644
6645 init_numa_topology_type();
6646}
6647
6648static void sched_domains_numa_masks_set(int cpu)
6649{
6650 int i, j;
6651 int node = cpu_to_node(cpu);
6652
6653 for (i = 0; i < sched_domains_numa_levels; i++) {
6654 for (j = 0; j < nr_node_ids; j++) {
6655 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6656 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6657 }
6658 }
6659}
6660
6661static void sched_domains_numa_masks_clear(int cpu)
6662{
6663 int i, j;
6664 for (i = 0; i < sched_domains_numa_levels; i++) {
6665 for (j = 0; j < nr_node_ids; j++)
6666 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6667 }
6668}
6669
6670/*
6671 * Update sched_domains_numa_masks[level][node] array when new cpus
6672 * are onlined.
6673 */
6674static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6675 unsigned long action,
6676 void *hcpu)
6677{
6678 int cpu = (long)hcpu;
6679
6680 switch (action & ~CPU_TASKS_FROZEN) {
6681 case CPU_ONLINE:
6682 sched_domains_numa_masks_set(cpu);
6683 break;
6684
6685 case CPU_DEAD:
6686 sched_domains_numa_masks_clear(cpu);
6687 break;
6688
6689 default:
6690 return NOTIFY_DONE;
6691 }
6692
6693 return NOTIFY_OK;
6694}
6695#else
6696static inline void sched_init_numa(void)
6697{
6698}
6699
6700static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6701 unsigned long action,
6702 void *hcpu)
6703{
6704 return 0;
6705}
6706#endif /* CONFIG_NUMA */
6707
6708static int __sdt_alloc(const struct cpumask *cpu_map)
6709{
6710 struct sched_domain_topology_level *tl;
6711 int j;
6712
6713 for_each_sd_topology(tl) {
6714 struct sd_data *sdd = &tl->data;
6715
6716 sdd->sd = alloc_percpu(struct sched_domain *);
6717 if (!sdd->sd)
6718 return -ENOMEM;
6719
6720 sdd->sg = alloc_percpu(struct sched_group *);
6721 if (!sdd->sg)
6722 return -ENOMEM;
6723
6724 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6725 if (!sdd->sgc)
6726 return -ENOMEM;
6727
6728 for_each_cpu(j, cpu_map) {
6729 struct sched_domain *sd;
6730 struct sched_group *sg;
6731 struct sched_group_capacity *sgc;
6732
6733 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6734 GFP_KERNEL, cpu_to_node(j));
6735 if (!sd)
6736 return -ENOMEM;
6737
6738 *per_cpu_ptr(sdd->sd, j) = sd;
6739
6740 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6741 GFP_KERNEL, cpu_to_node(j));
6742 if (!sg)
6743 return -ENOMEM;
6744
6745 sg->next = sg;
6746
6747 *per_cpu_ptr(sdd->sg, j) = sg;
6748
6749 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6750 GFP_KERNEL, cpu_to_node(j));
6751 if (!sgc)
6752 return -ENOMEM;
6753
6754 *per_cpu_ptr(sdd->sgc, j) = sgc;
6755 }
6756 }
6757
6758 return 0;
6759}
6760
6761static void __sdt_free(const struct cpumask *cpu_map)
6762{
6763 struct sched_domain_topology_level *tl;
6764 int j;
6765
6766 for_each_sd_topology(tl) {
6767 struct sd_data *sdd = &tl->data;
6768
6769 for_each_cpu(j, cpu_map) {
6770 struct sched_domain *sd;
6771
6772 if (sdd->sd) {
6773 sd = *per_cpu_ptr(sdd->sd, j);
6774 if (sd && (sd->flags & SD_OVERLAP))
6775 free_sched_groups(sd->groups, 0);
6776 kfree(*per_cpu_ptr(sdd->sd, j));
6777 }
6778
6779 if (sdd->sg)
6780 kfree(*per_cpu_ptr(sdd->sg, j));
6781 if (sdd->sgc)
6782 kfree(*per_cpu_ptr(sdd->sgc, j));
6783 }
6784 free_percpu(sdd->sd);
6785 sdd->sd = NULL;
6786 free_percpu(sdd->sg);
6787 sdd->sg = NULL;
6788 free_percpu(sdd->sgc);
6789 sdd->sgc = NULL;
6790 }
6791}
6792
6793struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6794 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6795 struct sched_domain *child, int cpu)
6796{
6797 struct sched_domain *sd = sd_init(tl, cpu);
6798 if (!sd)
6799 return child;
6800
6801 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6802 if (child) {
6803 sd->level = child->level + 1;
6804 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6805 child->parent = sd;
6806 sd->child = child;
6807
6808 if (!cpumask_subset(sched_domain_span(child),
6809 sched_domain_span(sd))) {
6810 pr_err("BUG: arch topology borken\n");
6811#ifdef CONFIG_SCHED_DEBUG
6812 pr_err(" the %s domain not a subset of the %s domain\n",
6813 child->name, sd->name);
6814#endif
6815 /* Fixup, ensure @sd has at least @child cpus. */
6816 cpumask_or(sched_domain_span(sd),
6817 sched_domain_span(sd),
6818 sched_domain_span(child));
6819 }
6820
6821 }
6822 set_domain_attribute(sd, attr);
6823
6824 return sd;
6825}
6826
6827/*
6828 * Build sched domains for a given set of cpus and attach the sched domains
6829 * to the individual cpus
6830 */
6831static int build_sched_domains(const struct cpumask *cpu_map,
6832 struct sched_domain_attr *attr)
6833{
6834 enum s_alloc alloc_state;
6835 struct sched_domain *sd;
6836 struct s_data d;
6837 int i, ret = -ENOMEM;
6838
6839 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6840 if (alloc_state != sa_rootdomain)
6841 goto error;
6842
6843 /* Set up domains for cpus specified by the cpu_map. */
6844 for_each_cpu(i, cpu_map) {
6845 struct sched_domain_topology_level *tl;
6846
6847 sd = NULL;
6848 for_each_sd_topology(tl) {
6849 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6850 if (tl == sched_domain_topology)
6851 *per_cpu_ptr(d.sd, i) = sd;
6852 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6853 sd->flags |= SD_OVERLAP;
6854 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6855 break;
6856 }
6857 }
6858
6859 /* Build the groups for the domains */
6860 for_each_cpu(i, cpu_map) {
6861 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6862 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6863 if (sd->flags & SD_OVERLAP) {
6864 if (build_overlap_sched_groups(sd, i))
6865 goto error;
6866 } else {
6867 if (build_sched_groups(sd, i))
6868 goto error;
6869 }
6870 }
6871 }
6872
6873 /* Calculate CPU capacity for physical packages and nodes */
6874 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6875 if (!cpumask_test_cpu(i, cpu_map))
6876 continue;
6877
6878 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6879 claim_allocations(i, sd);
6880 init_sched_groups_capacity(i, sd);
6881 }
6882 }
6883
6884 /* Attach the domains */
6885 rcu_read_lock();
6886 for_each_cpu(i, cpu_map) {
6887 sd = *per_cpu_ptr(d.sd, i);
6888 cpu_attach_domain(sd, d.rd, i);
6889 }
6890 rcu_read_unlock();
6891
6892 ret = 0;
6893error:
6894 __free_domain_allocs(&d, alloc_state, cpu_map);
6895 return ret;
6896}
6897
6898static cpumask_var_t *doms_cur; /* current sched domains */
6899static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6900static struct sched_domain_attr *dattr_cur;
6901 /* attribues of custom domains in 'doms_cur' */
6902
6903/*
6904 * Special case: If a kmalloc of a doms_cur partition (array of
6905 * cpumask) fails, then fallback to a single sched domain,
6906 * as determined by the single cpumask fallback_doms.
6907 */
6908static cpumask_var_t fallback_doms;
6909
6910/*
6911 * arch_update_cpu_topology lets virtualized architectures update the
6912 * cpu core maps. It is supposed to return 1 if the topology changed
6913 * or 0 if it stayed the same.
6914 */
6915int __weak arch_update_cpu_topology(void)
6916{
6917 return 0;
6918}
6919
6920cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6921{
6922 int i;
6923 cpumask_var_t *doms;
6924
6925 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6926 if (!doms)
6927 return NULL;
6928 for (i = 0; i < ndoms; i++) {
6929 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6930 free_sched_domains(doms, i);
6931 return NULL;
6932 }
6933 }
6934 return doms;
6935}
6936
6937void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6938{
6939 unsigned int i;
6940 for (i = 0; i < ndoms; i++)
6941 free_cpumask_var(doms[i]);
6942 kfree(doms);
6943}
6944
6945/*
6946 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6947 * For now this just excludes isolated cpus, but could be used to
6948 * exclude other special cases in the future.
6949 */
6950static int init_sched_domains(const struct cpumask *cpu_map)
6951{
6952 int err;
6953
6954 arch_update_cpu_topology();
6955 ndoms_cur = 1;
6956 doms_cur = alloc_sched_domains(ndoms_cur);
6957 if (!doms_cur)
6958 doms_cur = &fallback_doms;
6959 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6960 err = build_sched_domains(doms_cur[0], NULL);
6961 register_sched_domain_sysctl();
6962
6963 return err;
6964}
6965
6966/*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
6970static void detach_destroy_domains(const struct cpumask *cpu_map)
6971{
6972 int i;
6973
6974 rcu_read_lock();
6975 for_each_cpu(i, cpu_map)
6976 cpu_attach_domain(NULL, &def_root_domain, i);
6977 rcu_read_unlock();
6978}
6979
6980/* handle null as "default" */
6981static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6982 struct sched_domain_attr *new, int idx_new)
6983{
6984 struct sched_domain_attr tmp;
6985
6986 /* fast path */
6987 if (!new && !cur)
6988 return 1;
6989
6990 tmp = SD_ATTR_INIT;
6991 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6992 new ? (new + idx_new) : &tmp,
6993 sizeof(struct sched_domain_attr));
6994}
6995
6996/*
6997 * Partition sched domains as specified by the 'ndoms_new'
6998 * cpumasks in the array doms_new[] of cpumasks. This compares
6999 * doms_new[] to the current sched domain partitioning, doms_cur[].
7000 * It destroys each deleted domain and builds each new domain.
7001 *
7002 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7003 * The masks don't intersect (don't overlap.) We should setup one
7004 * sched domain for each mask. CPUs not in any of the cpumasks will
7005 * not be load balanced. If the same cpumask appears both in the
7006 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7007 * it as it is.
7008 *
7009 * The passed in 'doms_new' should be allocated using
7010 * alloc_sched_domains. This routine takes ownership of it and will
7011 * free_sched_domains it when done with it. If the caller failed the
7012 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7013 * and partition_sched_domains() will fallback to the single partition
7014 * 'fallback_doms', it also forces the domains to be rebuilt.
7015 *
7016 * If doms_new == NULL it will be replaced with cpu_online_mask.
7017 * ndoms_new == 0 is a special case for destroying existing domains,
7018 * and it will not create the default domain.
7019 *
7020 * Call with hotplug lock held
7021 */
7022void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7023 struct sched_domain_attr *dattr_new)
7024{
7025 int i, j, n;
7026 int new_topology;
7027
7028 mutex_lock(&sched_domains_mutex);
7029
7030 /* always unregister in case we don't destroy any domains */
7031 unregister_sched_domain_sysctl();
7032
7033 /* Let architecture update cpu core mappings. */
7034 new_topology = arch_update_cpu_topology();
7035
7036 n = doms_new ? ndoms_new : 0;
7037
7038 /* Destroy deleted domains */
7039 for (i = 0; i < ndoms_cur; i++) {
7040 for (j = 0; j < n && !new_topology; j++) {
7041 if (cpumask_equal(doms_cur[i], doms_new[j])
7042 && dattrs_equal(dattr_cur, i, dattr_new, j))
7043 goto match1;
7044 }
7045 /* no match - a current sched domain not in new doms_new[] */
7046 detach_destroy_domains(doms_cur[i]);
7047match1:
7048 ;
7049 }
7050
7051 n = ndoms_cur;
7052 if (doms_new == NULL) {
7053 n = 0;
7054 doms_new = &fallback_doms;
7055 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7056 WARN_ON_ONCE(dattr_new);
7057 }
7058
7059 /* Build new domains */
7060 for (i = 0; i < ndoms_new; i++) {
7061 for (j = 0; j < n && !new_topology; j++) {
7062 if (cpumask_equal(doms_new[i], doms_cur[j])
7063 && dattrs_equal(dattr_new, i, dattr_cur, j))
7064 goto match2;
7065 }
7066 /* no match - add a new doms_new */
7067 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7068match2:
7069 ;
7070 }
7071
7072 /* Remember the new sched domains */
7073 if (doms_cur != &fallback_doms)
7074 free_sched_domains(doms_cur, ndoms_cur);
7075 kfree(dattr_cur); /* kfree(NULL) is safe */
7076 doms_cur = doms_new;
7077 dattr_cur = dattr_new;
7078 ndoms_cur = ndoms_new;
7079
7080 register_sched_domain_sysctl();
7081
7082 mutex_unlock(&sched_domains_mutex);
7083}
7084
7085static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7086
7087/*
7088 * Update cpusets according to cpu_active mask. If cpusets are
7089 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7090 * around partition_sched_domains().
7091 *
7092 * If we come here as part of a suspend/resume, don't touch cpusets because we
7093 * want to restore it back to its original state upon resume anyway.
7094 */
7095static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7096 void *hcpu)
7097{
7098 switch (action) {
7099 case CPU_ONLINE_FROZEN:
7100 case CPU_DOWN_FAILED_FROZEN:
7101
7102 /*
7103 * num_cpus_frozen tracks how many CPUs are involved in suspend
7104 * resume sequence. As long as this is not the last online
7105 * operation in the resume sequence, just build a single sched
7106 * domain, ignoring cpusets.
7107 */
7108 num_cpus_frozen--;
7109 if (likely(num_cpus_frozen)) {
7110 partition_sched_domains(1, NULL, NULL);
7111 break;
7112 }
7113
7114 /*
7115 * This is the last CPU online operation. So fall through and
7116 * restore the original sched domains by considering the
7117 * cpuset configurations.
7118 */
7119
7120 case CPU_ONLINE:
7121 cpuset_update_active_cpus(true);
7122 break;
7123 default:
7124 return NOTIFY_DONE;
7125 }
7126 return NOTIFY_OK;
7127}
7128
7129static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7130 void *hcpu)
7131{
7132 unsigned long flags;
7133 long cpu = (long)hcpu;
7134 struct dl_bw *dl_b;
7135 bool overflow;
7136 int cpus;
7137
7138 switch (action) {
7139 case CPU_DOWN_PREPARE:
7140 rcu_read_lock_sched();
7141 dl_b = dl_bw_of(cpu);
7142
7143 raw_spin_lock_irqsave(&dl_b->lock, flags);
7144 cpus = dl_bw_cpus(cpu);
7145 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7146 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7147
7148 rcu_read_unlock_sched();
7149
7150 if (overflow)
7151 return notifier_from_errno(-EBUSY);
7152 cpuset_update_active_cpus(false);
7153 break;
7154 case CPU_DOWN_PREPARE_FROZEN:
7155 num_cpus_frozen++;
7156 partition_sched_domains(1, NULL, NULL);
7157 break;
7158 default:
7159 return NOTIFY_DONE;
7160 }
7161 return NOTIFY_OK;
7162}
7163
7164void __init sched_init_smp(void)
7165{
7166 cpumask_var_t non_isolated_cpus;
7167
7168 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7169 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7170
7171 sched_init_numa();
7172
7173 /*
7174 * There's no userspace yet to cause hotplug operations; hence all the
7175 * cpu masks are stable and all blatant races in the below code cannot
7176 * happen.
7177 */
7178 mutex_lock(&sched_domains_mutex);
7179 init_sched_domains(cpu_active_mask);
7180 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7181 if (cpumask_empty(non_isolated_cpus))
7182 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7183 mutex_unlock(&sched_domains_mutex);
7184
7185 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7186 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7187 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7188
7189 init_hrtick();
7190
7191 /* Move init over to a non-isolated CPU */
7192 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7193 BUG();
7194 sched_init_granularity();
7195 free_cpumask_var(non_isolated_cpus);
7196
7197 init_sched_rt_class();
7198 init_sched_dl_class();
7199}
7200#else
7201void __init sched_init_smp(void)
7202{
7203 sched_init_granularity();
7204}
7205#endif /* CONFIG_SMP */
7206
7207int in_sched_functions(unsigned long addr)
7208{
7209 return in_lock_functions(addr) ||
7210 (addr >= (unsigned long)__sched_text_start
7211 && addr < (unsigned long)__sched_text_end);
7212}
7213
7214#ifdef CONFIG_CGROUP_SCHED
7215/*
7216 * Default task group.
7217 * Every task in system belongs to this group at bootup.
7218 */
7219struct task_group root_task_group;
7220LIST_HEAD(task_groups);
7221
7222/* Cacheline aligned slab cache for task_group */
7223static struct kmem_cache *task_group_cache __read_mostly;
7224#endif
7225
7226DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7227
7228void __init sched_init(void)
7229{
7230 int i, j;
7231 unsigned long alloc_size = 0, ptr;
7232
7233#ifdef CONFIG_FAIR_GROUP_SCHED
7234 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7235#endif
7236#ifdef CONFIG_RT_GROUP_SCHED
7237 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7238#endif
7239 if (alloc_size) {
7240 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7241
7242#ifdef CONFIG_FAIR_GROUP_SCHED
7243 root_task_group.se = (struct sched_entity **)ptr;
7244 ptr += nr_cpu_ids * sizeof(void **);
7245
7246 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7247 ptr += nr_cpu_ids * sizeof(void **);
7248
7249#endif /* CONFIG_FAIR_GROUP_SCHED */
7250#ifdef CONFIG_RT_GROUP_SCHED
7251 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7252 ptr += nr_cpu_ids * sizeof(void **);
7253
7254 root_task_group.rt_rq = (struct rt_rq **)ptr;
7255 ptr += nr_cpu_ids * sizeof(void **);
7256
7257#endif /* CONFIG_RT_GROUP_SCHED */
7258 }
7259#ifdef CONFIG_CPUMASK_OFFSTACK
7260 for_each_possible_cpu(i) {
7261 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7262 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7263 }
7264#endif /* CONFIG_CPUMASK_OFFSTACK */
7265
7266 init_rt_bandwidth(&def_rt_bandwidth,
7267 global_rt_period(), global_rt_runtime());
7268 init_dl_bandwidth(&def_dl_bandwidth,
7269 global_rt_period(), global_rt_runtime());
7270
7271#ifdef CONFIG_SMP
7272 init_defrootdomain();
7273#endif
7274
7275#ifdef CONFIG_RT_GROUP_SCHED
7276 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7277 global_rt_period(), global_rt_runtime());
7278#endif /* CONFIG_RT_GROUP_SCHED */
7279
7280#ifdef CONFIG_CGROUP_SCHED
7281 task_group_cache = KMEM_CACHE(task_group, 0);
7282
7283 list_add(&root_task_group.list, &task_groups);
7284 INIT_LIST_HEAD(&root_task_group.children);
7285 INIT_LIST_HEAD(&root_task_group.siblings);
7286 autogroup_init(&init_task);
7287#endif /* CONFIG_CGROUP_SCHED */
7288
7289 for_each_possible_cpu(i) {
7290 struct rq *rq;
7291
7292 rq = cpu_rq(i);
7293 raw_spin_lock_init(&rq->lock);
7294 rq->nr_running = 0;
7295 rq->calc_load_active = 0;
7296 rq->calc_load_update = jiffies + LOAD_FREQ;
7297 init_cfs_rq(&rq->cfs);
7298 init_rt_rq(&rq->rt);
7299 init_dl_rq(&rq->dl);
7300#ifdef CONFIG_FAIR_GROUP_SCHED
7301 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7302 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7303 /*
7304 * How much cpu bandwidth does root_task_group get?
7305 *
7306 * In case of task-groups formed thr' the cgroup filesystem, it
7307 * gets 100% of the cpu resources in the system. This overall
7308 * system cpu resource is divided among the tasks of
7309 * root_task_group and its child task-groups in a fair manner,
7310 * based on each entity's (task or task-group's) weight
7311 * (se->load.weight).
7312 *
7313 * In other words, if root_task_group has 10 tasks of weight
7314 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7315 * then A0's share of the cpu resource is:
7316 *
7317 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7318 *
7319 * We achieve this by letting root_task_group's tasks sit
7320 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7321 */
7322 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7323 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7324#endif /* CONFIG_FAIR_GROUP_SCHED */
7325
7326 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7327#ifdef CONFIG_RT_GROUP_SCHED
7328 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7329#endif
7330
7331 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7332 rq->cpu_load[j] = 0;
7333
7334 rq->last_load_update_tick = jiffies;
7335
7336#ifdef CONFIG_SMP
7337 rq->sd = NULL;
7338 rq->rd = NULL;
7339 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7340 rq->balance_callback = NULL;
7341 rq->active_balance = 0;
7342 rq->next_balance = jiffies;
7343 rq->push_cpu = 0;
7344 rq->cpu = i;
7345 rq->online = 0;
7346 rq->idle_stamp = 0;
7347 rq->avg_idle = 2*sysctl_sched_migration_cost;
7348 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7349
7350 INIT_LIST_HEAD(&rq->cfs_tasks);
7351
7352 rq_attach_root(rq, &def_root_domain);
7353#ifdef CONFIG_NO_HZ_COMMON
7354 rq->nohz_flags = 0;
7355#endif
7356#ifdef CONFIG_NO_HZ_FULL
7357 rq->last_sched_tick = 0;
7358#endif
7359#endif
7360 init_rq_hrtick(rq);
7361 atomic_set(&rq->nr_iowait, 0);
7362 }
7363
7364 set_load_weight(&init_task);
7365
7366#ifdef CONFIG_PREEMPT_NOTIFIERS
7367 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7368#endif
7369
7370 /*
7371 * The boot idle thread does lazy MMU switching as well:
7372 */
7373 atomic_inc(&init_mm.mm_count);
7374 enter_lazy_tlb(&init_mm, current);
7375
7376 /*
7377 * During early bootup we pretend to be a normal task:
7378 */
7379 current->sched_class = &fair_sched_class;
7380
7381 /*
7382 * Make us the idle thread. Technically, schedule() should not be
7383 * called from this thread, however somewhere below it might be,
7384 * but because we are the idle thread, we just pick up running again
7385 * when this runqueue becomes "idle".
7386 */
7387 init_idle(current, smp_processor_id());
7388
7389 calc_load_update = jiffies + LOAD_FREQ;
7390
7391#ifdef CONFIG_SMP
7392 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7393 /* May be allocated at isolcpus cmdline parse time */
7394 if (cpu_isolated_map == NULL)
7395 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7396 idle_thread_set_boot_cpu();
7397 set_cpu_rq_start_time();
7398#endif
7399 init_sched_fair_class();
7400
7401 scheduler_running = 1;
7402}
7403
7404#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7405static inline int preempt_count_equals(int preempt_offset)
7406{
7407 int nested = preempt_count() + rcu_preempt_depth();
7408
7409 return (nested == preempt_offset);
7410}
7411
7412void __might_sleep(const char *file, int line, int preempt_offset)
7413{
7414 /*
7415 * Blocking primitives will set (and therefore destroy) current->state,
7416 * since we will exit with TASK_RUNNING make sure we enter with it,
7417 * otherwise we will destroy state.
7418 */
7419 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7420 "do not call blocking ops when !TASK_RUNNING; "
7421 "state=%lx set at [<%p>] %pS\n",
7422 current->state,
7423 (void *)current->task_state_change,
7424 (void *)current->task_state_change);
7425
7426 ___might_sleep(file, line, preempt_offset);
7427}
7428EXPORT_SYMBOL(__might_sleep);
7429
7430void ___might_sleep(const char *file, int line, int preempt_offset)
7431{
7432 static unsigned long prev_jiffy; /* ratelimiting */
7433
7434 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7435 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7436 !is_idle_task(current)) ||
7437 system_state != SYSTEM_RUNNING || oops_in_progress)
7438 return;
7439 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7440 return;
7441 prev_jiffy = jiffies;
7442
7443 printk(KERN_ERR
7444 "BUG: sleeping function called from invalid context at %s:%d\n",
7445 file, line);
7446 printk(KERN_ERR
7447 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7448 in_atomic(), irqs_disabled(),
7449 current->pid, current->comm);
7450
7451 if (task_stack_end_corrupted(current))
7452 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7453
7454 debug_show_held_locks(current);
7455 if (irqs_disabled())
7456 print_irqtrace_events(current);
7457#ifdef CONFIG_DEBUG_PREEMPT
7458 if (!preempt_count_equals(preempt_offset)) {
7459 pr_err("Preemption disabled at:");
7460 print_ip_sym(current->preempt_disable_ip);
7461 pr_cont("\n");
7462 }
7463#endif
7464 dump_stack();
7465}
7466EXPORT_SYMBOL(___might_sleep);
7467#endif
7468
7469#ifdef CONFIG_MAGIC_SYSRQ
7470void normalize_rt_tasks(void)
7471{
7472 struct task_struct *g, *p;
7473 struct sched_attr attr = {
7474 .sched_policy = SCHED_NORMAL,
7475 };
7476
7477 read_lock(&tasklist_lock);
7478 for_each_process_thread(g, p) {
7479 /*
7480 * Only normalize user tasks:
7481 */
7482 if (p->flags & PF_KTHREAD)
7483 continue;
7484
7485 p->se.exec_start = 0;
7486#ifdef CONFIG_SCHEDSTATS
7487 p->se.statistics.wait_start = 0;
7488 p->se.statistics.sleep_start = 0;
7489 p->se.statistics.block_start = 0;
7490#endif
7491
7492 if (!dl_task(p) && !rt_task(p)) {
7493 /*
7494 * Renice negative nice level userspace
7495 * tasks back to 0:
7496 */
7497 if (task_nice(p) < 0)
7498 set_user_nice(p, 0);
7499 continue;
7500 }
7501
7502 __sched_setscheduler(p, &attr, false, false);
7503 }
7504 read_unlock(&tasklist_lock);
7505}
7506
7507#endif /* CONFIG_MAGIC_SYSRQ */
7508
7509#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7510/*
7511 * These functions are only useful for the IA64 MCA handling, or kdb.
7512 *
7513 * They can only be called when the whole system has been
7514 * stopped - every CPU needs to be quiescent, and no scheduling
7515 * activity can take place. Using them for anything else would
7516 * be a serious bug, and as a result, they aren't even visible
7517 * under any other configuration.
7518 */
7519
7520/**
7521 * curr_task - return the current task for a given cpu.
7522 * @cpu: the processor in question.
7523 *
7524 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7525 *
7526 * Return: The current task for @cpu.
7527 */
7528struct task_struct *curr_task(int cpu)
7529{
7530 return cpu_curr(cpu);
7531}
7532
7533#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7534
7535#ifdef CONFIG_IA64
7536/**
7537 * set_curr_task - set the current task for a given cpu.
7538 * @cpu: the processor in question.
7539 * @p: the task pointer to set.
7540 *
7541 * Description: This function must only be used when non-maskable interrupts
7542 * are serviced on a separate stack. It allows the architecture to switch the
7543 * notion of the current task on a cpu in a non-blocking manner. This function
7544 * must be called with all CPU's synchronized, and interrupts disabled, the
7545 * and caller must save the original value of the current task (see
7546 * curr_task() above) and restore that value before reenabling interrupts and
7547 * re-starting the system.
7548 *
7549 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7550 */
7551void set_curr_task(int cpu, struct task_struct *p)
7552{
7553 cpu_curr(cpu) = p;
7554}
7555
7556#endif
7557
7558#ifdef CONFIG_CGROUP_SCHED
7559/* task_group_lock serializes the addition/removal of task groups */
7560static DEFINE_SPINLOCK(task_group_lock);
7561
7562static void sched_free_group(struct task_group *tg)
7563{
7564 free_fair_sched_group(tg);
7565 free_rt_sched_group(tg);
7566 autogroup_free(tg);
7567 kmem_cache_free(task_group_cache, tg);
7568}
7569
7570/* allocate runqueue etc for a new task group */
7571struct task_group *sched_create_group(struct task_group *parent)
7572{
7573 struct task_group *tg;
7574
7575 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7576 if (!tg)
7577 return ERR_PTR(-ENOMEM);
7578
7579 if (!alloc_fair_sched_group(tg, parent))
7580 goto err;
7581
7582 if (!alloc_rt_sched_group(tg, parent))
7583 goto err;
7584
7585 return tg;
7586
7587err:
7588 sched_free_group(tg);
7589 return ERR_PTR(-ENOMEM);
7590}
7591
7592void sched_online_group(struct task_group *tg, struct task_group *parent)
7593{
7594 unsigned long flags;
7595
7596 spin_lock_irqsave(&task_group_lock, flags);
7597 list_add_rcu(&tg->list, &task_groups);
7598
7599 WARN_ON(!parent); /* root should already exist */
7600
7601 tg->parent = parent;
7602 INIT_LIST_HEAD(&tg->children);
7603 list_add_rcu(&tg->siblings, &parent->children);
7604 spin_unlock_irqrestore(&task_group_lock, flags);
7605}
7606
7607/* rcu callback to free various structures associated with a task group */
7608static void sched_free_group_rcu(struct rcu_head *rhp)
7609{
7610 /* now it should be safe to free those cfs_rqs */
7611 sched_free_group(container_of(rhp, struct task_group, rcu));
7612}
7613
7614void sched_destroy_group(struct task_group *tg)
7615{
7616 /* wait for possible concurrent references to cfs_rqs complete */
7617 call_rcu(&tg->rcu, sched_free_group_rcu);
7618}
7619
7620void sched_offline_group(struct task_group *tg)
7621{
7622 unsigned long flags;
7623
7624 /* end participation in shares distribution */
7625 unregister_fair_sched_group(tg);
7626
7627 spin_lock_irqsave(&task_group_lock, flags);
7628 list_del_rcu(&tg->list);
7629 list_del_rcu(&tg->siblings);
7630 spin_unlock_irqrestore(&task_group_lock, flags);
7631}
7632
7633/* change task's runqueue when it moves between groups.
7634 * The caller of this function should have put the task in its new group
7635 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7636 * reflect its new group.
7637 */
7638void sched_move_task(struct task_struct *tsk)
7639{
7640 struct task_group *tg;
7641 int queued, running;
7642 unsigned long flags;
7643 struct rq *rq;
7644
7645 rq = task_rq_lock(tsk, &flags);
7646
7647 running = task_current(rq, tsk);
7648 queued = task_on_rq_queued(tsk);
7649
7650 if (queued)
7651 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7652 if (unlikely(running))
7653 put_prev_task(rq, tsk);
7654
7655 /*
7656 * All callers are synchronized by task_rq_lock(); we do not use RCU
7657 * which is pointless here. Thus, we pass "true" to task_css_check()
7658 * to prevent lockdep warnings.
7659 */
7660 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7661 struct task_group, css);
7662 tg = autogroup_task_group(tsk, tg);
7663 tsk->sched_task_group = tg;
7664
7665#ifdef CONFIG_FAIR_GROUP_SCHED
7666 if (tsk->sched_class->task_move_group)
7667 tsk->sched_class->task_move_group(tsk);
7668 else
7669#endif
7670 set_task_rq(tsk, task_cpu(tsk));
7671
7672 if (unlikely(running))
7673 tsk->sched_class->set_curr_task(rq);
7674 if (queued)
7675 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7676
7677 task_rq_unlock(rq, tsk, &flags);
7678}
7679#endif /* CONFIG_CGROUP_SCHED */
7680
7681#ifdef CONFIG_RT_GROUP_SCHED
7682/*
7683 * Ensure that the real time constraints are schedulable.
7684 */
7685static DEFINE_MUTEX(rt_constraints_mutex);
7686
7687/* Must be called with tasklist_lock held */
7688static inline int tg_has_rt_tasks(struct task_group *tg)
7689{
7690 struct task_struct *g, *p;
7691
7692 /*
7693 * Autogroups do not have RT tasks; see autogroup_create().
7694 */
7695 if (task_group_is_autogroup(tg))
7696 return 0;
7697
7698 for_each_process_thread(g, p) {
7699 if (rt_task(p) && task_group(p) == tg)
7700 return 1;
7701 }
7702
7703 return 0;
7704}
7705
7706struct rt_schedulable_data {
7707 struct task_group *tg;
7708 u64 rt_period;
7709 u64 rt_runtime;
7710};
7711
7712static int tg_rt_schedulable(struct task_group *tg, void *data)
7713{
7714 struct rt_schedulable_data *d = data;
7715 struct task_group *child;
7716 unsigned long total, sum = 0;
7717 u64 period, runtime;
7718
7719 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7720 runtime = tg->rt_bandwidth.rt_runtime;
7721
7722 if (tg == d->tg) {
7723 period = d->rt_period;
7724 runtime = d->rt_runtime;
7725 }
7726
7727 /*
7728 * Cannot have more runtime than the period.
7729 */
7730 if (runtime > period && runtime != RUNTIME_INF)
7731 return -EINVAL;
7732
7733 /*
7734 * Ensure we don't starve existing RT tasks.
7735 */
7736 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7737 return -EBUSY;
7738
7739 total = to_ratio(period, runtime);
7740
7741 /*
7742 * Nobody can have more than the global setting allows.
7743 */
7744 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7745 return -EINVAL;
7746
7747 /*
7748 * The sum of our children's runtime should not exceed our own.
7749 */
7750 list_for_each_entry_rcu(child, &tg->children, siblings) {
7751 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7752 runtime = child->rt_bandwidth.rt_runtime;
7753
7754 if (child == d->tg) {
7755 period = d->rt_period;
7756 runtime = d->rt_runtime;
7757 }
7758
7759 sum += to_ratio(period, runtime);
7760 }
7761
7762 if (sum > total)
7763 return -EINVAL;
7764
7765 return 0;
7766}
7767
7768static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7769{
7770 int ret;
7771
7772 struct rt_schedulable_data data = {
7773 .tg = tg,
7774 .rt_period = period,
7775 .rt_runtime = runtime,
7776 };
7777
7778 rcu_read_lock();
7779 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7780 rcu_read_unlock();
7781
7782 return ret;
7783}
7784
7785static int tg_set_rt_bandwidth(struct task_group *tg,
7786 u64 rt_period, u64 rt_runtime)
7787{
7788 int i, err = 0;
7789
7790 /*
7791 * Disallowing the root group RT runtime is BAD, it would disallow the
7792 * kernel creating (and or operating) RT threads.
7793 */
7794 if (tg == &root_task_group && rt_runtime == 0)
7795 return -EINVAL;
7796
7797 /* No period doesn't make any sense. */
7798 if (rt_period == 0)
7799 return -EINVAL;
7800
7801 mutex_lock(&rt_constraints_mutex);
7802 read_lock(&tasklist_lock);
7803 err = __rt_schedulable(tg, rt_period, rt_runtime);
7804 if (err)
7805 goto unlock;
7806
7807 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7808 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7809 tg->rt_bandwidth.rt_runtime = rt_runtime;
7810
7811 for_each_possible_cpu(i) {
7812 struct rt_rq *rt_rq = tg->rt_rq[i];
7813
7814 raw_spin_lock(&rt_rq->rt_runtime_lock);
7815 rt_rq->rt_runtime = rt_runtime;
7816 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7817 }
7818 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7819unlock:
7820 read_unlock(&tasklist_lock);
7821 mutex_unlock(&rt_constraints_mutex);
7822
7823 return err;
7824}
7825
7826static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7827{
7828 u64 rt_runtime, rt_period;
7829
7830 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7832 if (rt_runtime_us < 0)
7833 rt_runtime = RUNTIME_INF;
7834
7835 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7836}
7837
7838static long sched_group_rt_runtime(struct task_group *tg)
7839{
7840 u64 rt_runtime_us;
7841
7842 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7843 return -1;
7844
7845 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7846 do_div(rt_runtime_us, NSEC_PER_USEC);
7847 return rt_runtime_us;
7848}
7849
7850static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7851{
7852 u64 rt_runtime, rt_period;
7853
7854 rt_period = rt_period_us * NSEC_PER_USEC;
7855 rt_runtime = tg->rt_bandwidth.rt_runtime;
7856
7857 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7858}
7859
7860static long sched_group_rt_period(struct task_group *tg)
7861{
7862 u64 rt_period_us;
7863
7864 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7865 do_div(rt_period_us, NSEC_PER_USEC);
7866 return rt_period_us;
7867}
7868#endif /* CONFIG_RT_GROUP_SCHED */
7869
7870#ifdef CONFIG_RT_GROUP_SCHED
7871static int sched_rt_global_constraints(void)
7872{
7873 int ret = 0;
7874
7875 mutex_lock(&rt_constraints_mutex);
7876 read_lock(&tasklist_lock);
7877 ret = __rt_schedulable(NULL, 0, 0);
7878 read_unlock(&tasklist_lock);
7879 mutex_unlock(&rt_constraints_mutex);
7880
7881 return ret;
7882}
7883
7884static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7885{
7886 /* Don't accept realtime tasks when there is no way for them to run */
7887 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7888 return 0;
7889
7890 return 1;
7891}
7892
7893#else /* !CONFIG_RT_GROUP_SCHED */
7894static int sched_rt_global_constraints(void)
7895{
7896 unsigned long flags;
7897 int i, ret = 0;
7898
7899 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7900 for_each_possible_cpu(i) {
7901 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7902
7903 raw_spin_lock(&rt_rq->rt_runtime_lock);
7904 rt_rq->rt_runtime = global_rt_runtime();
7905 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7906 }
7907 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7908
7909 return ret;
7910}
7911#endif /* CONFIG_RT_GROUP_SCHED */
7912
7913static int sched_dl_global_validate(void)
7914{
7915 u64 runtime = global_rt_runtime();
7916 u64 period = global_rt_period();
7917 u64 new_bw = to_ratio(period, runtime);
7918 struct dl_bw *dl_b;
7919 int cpu, ret = 0;
7920 unsigned long flags;
7921
7922 /*
7923 * Here we want to check the bandwidth not being set to some
7924 * value smaller than the currently allocated bandwidth in
7925 * any of the root_domains.
7926 *
7927 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7928 * cycling on root_domains... Discussion on different/better
7929 * solutions is welcome!
7930 */
7931 for_each_possible_cpu(cpu) {
7932 rcu_read_lock_sched();
7933 dl_b = dl_bw_of(cpu);
7934
7935 raw_spin_lock_irqsave(&dl_b->lock, flags);
7936 if (new_bw < dl_b->total_bw)
7937 ret = -EBUSY;
7938 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7939
7940 rcu_read_unlock_sched();
7941
7942 if (ret)
7943 break;
7944 }
7945
7946 return ret;
7947}
7948
7949static void sched_dl_do_global(void)
7950{
7951 u64 new_bw = -1;
7952 struct dl_bw *dl_b;
7953 int cpu;
7954 unsigned long flags;
7955
7956 def_dl_bandwidth.dl_period = global_rt_period();
7957 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7958
7959 if (global_rt_runtime() != RUNTIME_INF)
7960 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7961
7962 /*
7963 * FIXME: As above...
7964 */
7965 for_each_possible_cpu(cpu) {
7966 rcu_read_lock_sched();
7967 dl_b = dl_bw_of(cpu);
7968
7969 raw_spin_lock_irqsave(&dl_b->lock, flags);
7970 dl_b->bw = new_bw;
7971 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7972
7973 rcu_read_unlock_sched();
7974 }
7975}
7976
7977static int sched_rt_global_validate(void)
7978{
7979 if (sysctl_sched_rt_period <= 0)
7980 return -EINVAL;
7981
7982 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7983 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7984 return -EINVAL;
7985
7986 return 0;
7987}
7988
7989static void sched_rt_do_global(void)
7990{
7991 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7992 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7993}
7994
7995int sched_rt_handler(struct ctl_table *table, int write,
7996 void __user *buffer, size_t *lenp,
7997 loff_t *ppos)
7998{
7999 int old_period, old_runtime;
8000 static DEFINE_MUTEX(mutex);
8001 int ret;
8002
8003 mutex_lock(&mutex);
8004 old_period = sysctl_sched_rt_period;
8005 old_runtime = sysctl_sched_rt_runtime;
8006
8007 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8008
8009 if (!ret && write) {
8010 ret = sched_rt_global_validate();
8011 if (ret)
8012 goto undo;
8013
8014 ret = sched_dl_global_validate();
8015 if (ret)
8016 goto undo;
8017
8018 ret = sched_rt_global_constraints();
8019 if (ret)
8020 goto undo;
8021
8022 sched_rt_do_global();
8023 sched_dl_do_global();
8024 }
8025 if (0) {
8026undo:
8027 sysctl_sched_rt_period = old_period;
8028 sysctl_sched_rt_runtime = old_runtime;
8029 }
8030 mutex_unlock(&mutex);
8031
8032 return ret;
8033}
8034
8035int sched_rr_handler(struct ctl_table *table, int write,
8036 void __user *buffer, size_t *lenp,
8037 loff_t *ppos)
8038{
8039 int ret;
8040 static DEFINE_MUTEX(mutex);
8041
8042 mutex_lock(&mutex);
8043 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8044 /* make sure that internally we keep jiffies */
8045 /* also, writing zero resets timeslice to default */
8046 if (!ret && write) {
8047 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8048 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8049 }
8050 mutex_unlock(&mutex);
8051 return ret;
8052}
8053
8054#ifdef CONFIG_CGROUP_SCHED
8055
8056static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8057{
8058 return css ? container_of(css, struct task_group, css) : NULL;
8059}
8060
8061static struct cgroup_subsys_state *
8062cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8063{
8064 struct task_group *parent = css_tg(parent_css);
8065 struct task_group *tg;
8066
8067 if (!parent) {
8068 /* This is early initialization for the top cgroup */
8069 return &root_task_group.css;
8070 }
8071
8072 tg = sched_create_group(parent);
8073 if (IS_ERR(tg))
8074 return ERR_PTR(-ENOMEM);
8075
8076 sched_online_group(tg, parent);
8077
8078 return &tg->css;
8079}
8080
8081static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8082{
8083 struct task_group *tg = css_tg(css);
8084
8085 sched_offline_group(tg);
8086}
8087
8088static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8089{
8090 struct task_group *tg = css_tg(css);
8091
8092 /*
8093 * Relies on the RCU grace period between css_released() and this.
8094 */
8095 sched_free_group(tg);
8096}
8097
8098static void cpu_cgroup_fork(struct task_struct *task)
8099{
8100 sched_move_task(task);
8101}
8102
8103static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8104{
8105 struct task_struct *task;
8106 struct cgroup_subsys_state *css;
8107
8108 cgroup_taskset_for_each(task, css, tset) {
8109#ifdef CONFIG_RT_GROUP_SCHED
8110 if (!sched_rt_can_attach(css_tg(css), task))
8111 return -EINVAL;
8112#else
8113 /* We don't support RT-tasks being in separate groups */
8114 if (task->sched_class != &fair_sched_class)
8115 return -EINVAL;
8116#endif
8117 }
8118 return 0;
8119}
8120
8121static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8122{
8123 struct task_struct *task;
8124 struct cgroup_subsys_state *css;
8125
8126 cgroup_taskset_for_each(task, css, tset)
8127 sched_move_task(task);
8128}
8129
8130#ifdef CONFIG_FAIR_GROUP_SCHED
8131static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8132 struct cftype *cftype, u64 shareval)
8133{
8134 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8135}
8136
8137static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8138 struct cftype *cft)
8139{
8140 struct task_group *tg = css_tg(css);
8141
8142 return (u64) scale_load_down(tg->shares);
8143}
8144
8145#ifdef CONFIG_CFS_BANDWIDTH
8146static DEFINE_MUTEX(cfs_constraints_mutex);
8147
8148const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8149const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8150
8151static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8152
8153static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8154{
8155 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8156 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8157
8158 if (tg == &root_task_group)
8159 return -EINVAL;
8160
8161 /*
8162 * Ensure we have at some amount of bandwidth every period. This is
8163 * to prevent reaching a state of large arrears when throttled via
8164 * entity_tick() resulting in prolonged exit starvation.
8165 */
8166 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8167 return -EINVAL;
8168
8169 /*
8170 * Likewise, bound things on the otherside by preventing insane quota
8171 * periods. This also allows us to normalize in computing quota
8172 * feasibility.
8173 */
8174 if (period > max_cfs_quota_period)
8175 return -EINVAL;
8176
8177 /*
8178 * Prevent race between setting of cfs_rq->runtime_enabled and
8179 * unthrottle_offline_cfs_rqs().
8180 */
8181 get_online_cpus();
8182 mutex_lock(&cfs_constraints_mutex);
8183 ret = __cfs_schedulable(tg, period, quota);
8184 if (ret)
8185 goto out_unlock;
8186
8187 runtime_enabled = quota != RUNTIME_INF;
8188 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8189 /*
8190 * If we need to toggle cfs_bandwidth_used, off->on must occur
8191 * before making related changes, and on->off must occur afterwards
8192 */
8193 if (runtime_enabled && !runtime_was_enabled)
8194 cfs_bandwidth_usage_inc();
8195 raw_spin_lock_irq(&cfs_b->lock);
8196 cfs_b->period = ns_to_ktime(period);
8197 cfs_b->quota = quota;
8198
8199 __refill_cfs_bandwidth_runtime(cfs_b);
8200 /* restart the period timer (if active) to handle new period expiry */
8201 if (runtime_enabled)
8202 start_cfs_bandwidth(cfs_b);
8203 raw_spin_unlock_irq(&cfs_b->lock);
8204
8205 for_each_online_cpu(i) {
8206 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8207 struct rq *rq = cfs_rq->rq;
8208
8209 raw_spin_lock_irq(&rq->lock);
8210 cfs_rq->runtime_enabled = runtime_enabled;
8211 cfs_rq->runtime_remaining = 0;
8212
8213 if (cfs_rq->throttled)
8214 unthrottle_cfs_rq(cfs_rq);
8215 raw_spin_unlock_irq(&rq->lock);
8216 }
8217 if (runtime_was_enabled && !runtime_enabled)
8218 cfs_bandwidth_usage_dec();
8219out_unlock:
8220 mutex_unlock(&cfs_constraints_mutex);
8221 put_online_cpus();
8222
8223 return ret;
8224}
8225
8226int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8227{
8228 u64 quota, period;
8229
8230 period = ktime_to_ns(tg->cfs_bandwidth.period);
8231 if (cfs_quota_us < 0)
8232 quota = RUNTIME_INF;
8233 else
8234 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8235
8236 return tg_set_cfs_bandwidth(tg, period, quota);
8237}
8238
8239long tg_get_cfs_quota(struct task_group *tg)
8240{
8241 u64 quota_us;
8242
8243 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8244 return -1;
8245
8246 quota_us = tg->cfs_bandwidth.quota;
8247 do_div(quota_us, NSEC_PER_USEC);
8248
8249 return quota_us;
8250}
8251
8252int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8253{
8254 u64 quota, period;
8255
8256 period = (u64)cfs_period_us * NSEC_PER_USEC;
8257 quota = tg->cfs_bandwidth.quota;
8258
8259 return tg_set_cfs_bandwidth(tg, period, quota);
8260}
8261
8262long tg_get_cfs_period(struct task_group *tg)
8263{
8264 u64 cfs_period_us;
8265
8266 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8267 do_div(cfs_period_us, NSEC_PER_USEC);
8268
8269 return cfs_period_us;
8270}
8271
8272static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8273 struct cftype *cft)
8274{
8275 return tg_get_cfs_quota(css_tg(css));
8276}
8277
8278static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8279 struct cftype *cftype, s64 cfs_quota_us)
8280{
8281 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8282}
8283
8284static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8285 struct cftype *cft)
8286{
8287 return tg_get_cfs_period(css_tg(css));
8288}
8289
8290static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8291 struct cftype *cftype, u64 cfs_period_us)
8292{
8293 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8294}
8295
8296struct cfs_schedulable_data {
8297 struct task_group *tg;
8298 u64 period, quota;
8299};
8300
8301/*
8302 * normalize group quota/period to be quota/max_period
8303 * note: units are usecs
8304 */
8305static u64 normalize_cfs_quota(struct task_group *tg,
8306 struct cfs_schedulable_data *d)
8307{
8308 u64 quota, period;
8309
8310 if (tg == d->tg) {
8311 period = d->period;
8312 quota = d->quota;
8313 } else {
8314 period = tg_get_cfs_period(tg);
8315 quota = tg_get_cfs_quota(tg);
8316 }
8317
8318 /* note: these should typically be equivalent */
8319 if (quota == RUNTIME_INF || quota == -1)
8320 return RUNTIME_INF;
8321
8322 return to_ratio(period, quota);
8323}
8324
8325static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8326{
8327 struct cfs_schedulable_data *d = data;
8328 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8329 s64 quota = 0, parent_quota = -1;
8330
8331 if (!tg->parent) {
8332 quota = RUNTIME_INF;
8333 } else {
8334 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8335
8336 quota = normalize_cfs_quota(tg, d);
8337 parent_quota = parent_b->hierarchical_quota;
8338
8339 /*
8340 * ensure max(child_quota) <= parent_quota, inherit when no
8341 * limit is set
8342 */
8343 if (quota == RUNTIME_INF)
8344 quota = parent_quota;
8345 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8346 return -EINVAL;
8347 }
8348 cfs_b->hierarchical_quota = quota;
8349
8350 return 0;
8351}
8352
8353static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8354{
8355 int ret;
8356 struct cfs_schedulable_data data = {
8357 .tg = tg,
8358 .period = period,
8359 .quota = quota,
8360 };
8361
8362 if (quota != RUNTIME_INF) {
8363 do_div(data.period, NSEC_PER_USEC);
8364 do_div(data.quota, NSEC_PER_USEC);
8365 }
8366
8367 rcu_read_lock();
8368 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8369 rcu_read_unlock();
8370
8371 return ret;
8372}
8373
8374static int cpu_stats_show(struct seq_file *sf, void *v)
8375{
8376 struct task_group *tg = css_tg(seq_css(sf));
8377 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8378
8379 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8380 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8381 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8382
8383 return 0;
8384}
8385#endif /* CONFIG_CFS_BANDWIDTH */
8386#endif /* CONFIG_FAIR_GROUP_SCHED */
8387
8388#ifdef CONFIG_RT_GROUP_SCHED
8389static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8390 struct cftype *cft, s64 val)
8391{
8392 return sched_group_set_rt_runtime(css_tg(css), val);
8393}
8394
8395static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8396 struct cftype *cft)
8397{
8398 return sched_group_rt_runtime(css_tg(css));
8399}
8400
8401static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8402 struct cftype *cftype, u64 rt_period_us)
8403{
8404 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8405}
8406
8407static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8408 struct cftype *cft)
8409{
8410 return sched_group_rt_period(css_tg(css));
8411}
8412#endif /* CONFIG_RT_GROUP_SCHED */
8413
8414static struct cftype cpu_files[] = {
8415#ifdef CONFIG_FAIR_GROUP_SCHED
8416 {
8417 .name = "shares",
8418 .read_u64 = cpu_shares_read_u64,
8419 .write_u64 = cpu_shares_write_u64,
8420 },
8421#endif
8422#ifdef CONFIG_CFS_BANDWIDTH
8423 {
8424 .name = "cfs_quota_us",
8425 .read_s64 = cpu_cfs_quota_read_s64,
8426 .write_s64 = cpu_cfs_quota_write_s64,
8427 },
8428 {
8429 .name = "cfs_period_us",
8430 .read_u64 = cpu_cfs_period_read_u64,
8431 .write_u64 = cpu_cfs_period_write_u64,
8432 },
8433 {
8434 .name = "stat",
8435 .seq_show = cpu_stats_show,
8436 },
8437#endif
8438#ifdef CONFIG_RT_GROUP_SCHED
8439 {
8440 .name = "rt_runtime_us",
8441 .read_s64 = cpu_rt_runtime_read,
8442 .write_s64 = cpu_rt_runtime_write,
8443 },
8444 {
8445 .name = "rt_period_us",
8446 .read_u64 = cpu_rt_period_read_uint,
8447 .write_u64 = cpu_rt_period_write_uint,
8448 },
8449#endif
8450 { } /* terminate */
8451};
8452
8453struct cgroup_subsys cpu_cgrp_subsys = {
8454 .css_alloc = cpu_cgroup_css_alloc,
8455 .css_released = cpu_cgroup_css_released,
8456 .css_free = cpu_cgroup_css_free,
8457 .fork = cpu_cgroup_fork,
8458 .can_attach = cpu_cgroup_can_attach,
8459 .attach = cpu_cgroup_attach,
8460 .legacy_cftypes = cpu_files,
8461 .early_init = true,
8462};
8463
8464#endif /* CONFIG_CGROUP_SCHED */
8465
8466void dump_cpu_task(int cpu)
8467{
8468 pr_info("Task dump for CPU %d:\n", cpu);
8469 sched_show_task(cpu_curr(cpu));
8470}
8471
8472/*
8473 * Nice levels are multiplicative, with a gentle 10% change for every
8474 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8475 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8476 * that remained on nice 0.
8477 *
8478 * The "10% effect" is relative and cumulative: from _any_ nice level,
8479 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8480 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8481 * If a task goes up by ~10% and another task goes down by ~10% then
8482 * the relative distance between them is ~25%.)
8483 */
8484const int sched_prio_to_weight[40] = {
8485 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8486 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8487 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8488 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8489 /* 0 */ 1024, 820, 655, 526, 423,
8490 /* 5 */ 335, 272, 215, 172, 137,
8491 /* 10 */ 110, 87, 70, 56, 45,
8492 /* 15 */ 36, 29, 23, 18, 15,
8493};
8494
8495/*
8496 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8497 *
8498 * In cases where the weight does not change often, we can use the
8499 * precalculated inverse to speed up arithmetics by turning divisions
8500 * into multiplications:
8501 */
8502const u32 sched_prio_to_wmult[40] = {
8503 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8504 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8505 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8506 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8507 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8508 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8509 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8510 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8511};
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#define CREATE_TRACE_POINTS
10#include <trace/events/sched.h>
11#undef CREATE_TRACE_POINTS
12
13#include "sched.h"
14
15#include <linux/nospec.h>
16
17#include <linux/kcov.h>
18#include <linux/scs.h>
19
20#include <asm/switch_to.h>
21#include <asm/tlb.h>
22
23#include "../workqueue_internal.h"
24#include "../../fs/io-wq.h"
25#include "../smpboot.h"
26
27#include "pelt.h"
28#include "smp.h"
29
30/*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47#ifdef CONFIG_SCHED_DEBUG
48/*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55#define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57const_debug unsigned int sysctl_sched_features =
58#include "features.h"
59 0;
60#undef SCHED_FEAT
61
62/*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69__read_mostly int sysctl_resched_latency_warn_ms = 100;
70__read_mostly int sysctl_resched_latency_warn_once = 1;
71#endif /* CONFIG_SCHED_DEBUG */
72
73/*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
79/*
80 * period over which we measure -rt task CPU usage in us.
81 * default: 1s
82 */
83unsigned int sysctl_sched_rt_period = 1000000;
84
85__read_mostly int scheduler_running;
86
87#ifdef CONFIG_SCHED_CORE
88
89DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
91/* kernel prio, less is more */
92static inline int __task_prio(struct task_struct *p)
93{
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104}
105
106/*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113/* real prio, less is less */
114static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115{
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
130
131 return false;
132}
133
134static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135{
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144 return true;
145
146 return false;
147}
148
149#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152{
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154}
155
156static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157{
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168}
169
170void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171{
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178}
179
180void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181{
182 rq->core->core_task_seq++;
183
184 if (!sched_core_enqueued(p))
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
188 RB_CLEAR_NODE(&p->core_node);
189}
190
191/*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195{
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206}
207
208static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209{
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221}
222
223/*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236static DEFINE_MUTEX(sched_core_mutex);
237static atomic_t sched_core_count;
238static struct cpumask sched_core_mask;
239
240static void sched_core_lock(int cpu, unsigned long *flags)
241{
242 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
243 int t, i = 0;
244
245 local_irq_save(*flags);
246 for_each_cpu(t, smt_mask)
247 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
248}
249
250static void sched_core_unlock(int cpu, unsigned long *flags)
251{
252 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
253 int t;
254
255 for_each_cpu(t, smt_mask)
256 raw_spin_unlock(&cpu_rq(t)->__lock);
257 local_irq_restore(*flags);
258}
259
260static void __sched_core_flip(bool enabled)
261{
262 unsigned long flags;
263 int cpu, t;
264
265 cpus_read_lock();
266
267 /*
268 * Toggle the online cores, one by one.
269 */
270 cpumask_copy(&sched_core_mask, cpu_online_mask);
271 for_each_cpu(cpu, &sched_core_mask) {
272 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
273
274 sched_core_lock(cpu, &flags);
275
276 for_each_cpu(t, smt_mask)
277 cpu_rq(t)->core_enabled = enabled;
278
279 sched_core_unlock(cpu, &flags);
280
281 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
282 }
283
284 /*
285 * Toggle the offline CPUs.
286 */
287 cpumask_copy(&sched_core_mask, cpu_possible_mask);
288 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
289
290 for_each_cpu(cpu, &sched_core_mask)
291 cpu_rq(cpu)->core_enabled = enabled;
292
293 cpus_read_unlock();
294}
295
296static void sched_core_assert_empty(void)
297{
298 int cpu;
299
300 for_each_possible_cpu(cpu)
301 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
302}
303
304static void __sched_core_enable(void)
305{
306 static_branch_enable(&__sched_core_enabled);
307 /*
308 * Ensure all previous instances of raw_spin_rq_*lock() have finished
309 * and future ones will observe !sched_core_disabled().
310 */
311 synchronize_rcu();
312 __sched_core_flip(true);
313 sched_core_assert_empty();
314}
315
316static void __sched_core_disable(void)
317{
318 sched_core_assert_empty();
319 __sched_core_flip(false);
320 static_branch_disable(&__sched_core_enabled);
321}
322
323void sched_core_get(void)
324{
325 if (atomic_inc_not_zero(&sched_core_count))
326 return;
327
328 mutex_lock(&sched_core_mutex);
329 if (!atomic_read(&sched_core_count))
330 __sched_core_enable();
331
332 smp_mb__before_atomic();
333 atomic_inc(&sched_core_count);
334 mutex_unlock(&sched_core_mutex);
335}
336
337static void __sched_core_put(struct work_struct *work)
338{
339 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
340 __sched_core_disable();
341 mutex_unlock(&sched_core_mutex);
342 }
343}
344
345void sched_core_put(void)
346{
347 static DECLARE_WORK(_work, __sched_core_put);
348
349 /*
350 * "There can be only one"
351 *
352 * Either this is the last one, or we don't actually need to do any
353 * 'work'. If it is the last *again*, we rely on
354 * WORK_STRUCT_PENDING_BIT.
355 */
356 if (!atomic_add_unless(&sched_core_count, -1, 1))
357 schedule_work(&_work);
358}
359
360#else /* !CONFIG_SCHED_CORE */
361
362static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
363static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
364
365#endif /* CONFIG_SCHED_CORE */
366
367/*
368 * part of the period that we allow rt tasks to run in us.
369 * default: 0.95s
370 */
371int sysctl_sched_rt_runtime = 950000;
372
373
374/*
375 * Serialization rules:
376 *
377 * Lock order:
378 *
379 * p->pi_lock
380 * rq->lock
381 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
382 *
383 * rq1->lock
384 * rq2->lock where: rq1 < rq2
385 *
386 * Regular state:
387 *
388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
389 * local CPU's rq->lock, it optionally removes the task from the runqueue and
390 * always looks at the local rq data structures to find the most eligible task
391 * to run next.
392 *
393 * Task enqueue is also under rq->lock, possibly taken from another CPU.
394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
395 * the local CPU to avoid bouncing the runqueue state around [ see
396 * ttwu_queue_wakelist() ]
397 *
398 * Task wakeup, specifically wakeups that involve migration, are horribly
399 * complicated to avoid having to take two rq->locks.
400 *
401 * Special state:
402 *
403 * System-calls and anything external will use task_rq_lock() which acquires
404 * both p->pi_lock and rq->lock. As a consequence the state they change is
405 * stable while holding either lock:
406 *
407 * - sched_setaffinity()/
408 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
409 * - set_user_nice(): p->se.load, p->*prio
410 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
411 * p->se.load, p->rt_priority,
412 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
413 * - sched_setnuma(): p->numa_preferred_nid
414 * - sched_move_task()/
415 * cpu_cgroup_fork(): p->sched_task_group
416 * - uclamp_update_active() p->uclamp*
417 *
418 * p->state <- TASK_*:
419 *
420 * is changed locklessly using set_current_state(), __set_current_state() or
421 * set_special_state(), see their respective comments, or by
422 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
423 * concurrent self.
424 *
425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
426 *
427 * is set by activate_task() and cleared by deactivate_task(), under
428 * rq->lock. Non-zero indicates the task is runnable, the special
429 * ON_RQ_MIGRATING state is used for migration without holding both
430 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
431 *
432 * p->on_cpu <- { 0, 1 }:
433 *
434 * is set by prepare_task() and cleared by finish_task() such that it will be
435 * set before p is scheduled-in and cleared after p is scheduled-out, both
436 * under rq->lock. Non-zero indicates the task is running on its CPU.
437 *
438 * [ The astute reader will observe that it is possible for two tasks on one
439 * CPU to have ->on_cpu = 1 at the same time. ]
440 *
441 * task_cpu(p): is changed by set_task_cpu(), the rules are:
442 *
443 * - Don't call set_task_cpu() on a blocked task:
444 *
445 * We don't care what CPU we're not running on, this simplifies hotplug,
446 * the CPU assignment of blocked tasks isn't required to be valid.
447 *
448 * - for try_to_wake_up(), called under p->pi_lock:
449 *
450 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
451 *
452 * - for migration called under rq->lock:
453 * [ see task_on_rq_migrating() in task_rq_lock() ]
454 *
455 * o move_queued_task()
456 * o detach_task()
457 *
458 * - for migration called under double_rq_lock():
459 *
460 * o __migrate_swap_task()
461 * o push_rt_task() / pull_rt_task()
462 * o push_dl_task() / pull_dl_task()
463 * o dl_task_offline_migration()
464 *
465 */
466
467void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
468{
469 raw_spinlock_t *lock;
470
471 /* Matches synchronize_rcu() in __sched_core_enable() */
472 preempt_disable();
473 if (sched_core_disabled()) {
474 raw_spin_lock_nested(&rq->__lock, subclass);
475 /* preempt_count *MUST* be > 1 */
476 preempt_enable_no_resched();
477 return;
478 }
479
480 for (;;) {
481 lock = __rq_lockp(rq);
482 raw_spin_lock_nested(lock, subclass);
483 if (likely(lock == __rq_lockp(rq))) {
484 /* preempt_count *MUST* be > 1 */
485 preempt_enable_no_resched();
486 return;
487 }
488 raw_spin_unlock(lock);
489 }
490}
491
492bool raw_spin_rq_trylock(struct rq *rq)
493{
494 raw_spinlock_t *lock;
495 bool ret;
496
497 /* Matches synchronize_rcu() in __sched_core_enable() */
498 preempt_disable();
499 if (sched_core_disabled()) {
500 ret = raw_spin_trylock(&rq->__lock);
501 preempt_enable();
502 return ret;
503 }
504
505 for (;;) {
506 lock = __rq_lockp(rq);
507 ret = raw_spin_trylock(lock);
508 if (!ret || (likely(lock == __rq_lockp(rq)))) {
509 preempt_enable();
510 return ret;
511 }
512 raw_spin_unlock(lock);
513 }
514}
515
516void raw_spin_rq_unlock(struct rq *rq)
517{
518 raw_spin_unlock(rq_lockp(rq));
519}
520
521#ifdef CONFIG_SMP
522/*
523 * double_rq_lock - safely lock two runqueues
524 */
525void double_rq_lock(struct rq *rq1, struct rq *rq2)
526{
527 lockdep_assert_irqs_disabled();
528
529 if (rq_order_less(rq2, rq1))
530 swap(rq1, rq2);
531
532 raw_spin_rq_lock(rq1);
533 if (__rq_lockp(rq1) == __rq_lockp(rq2))
534 return;
535
536 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
537}
538#endif
539
540/*
541 * __task_rq_lock - lock the rq @p resides on.
542 */
543struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
544 __acquires(rq->lock)
545{
546 struct rq *rq;
547
548 lockdep_assert_held(&p->pi_lock);
549
550 for (;;) {
551 rq = task_rq(p);
552 raw_spin_rq_lock(rq);
553 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
554 rq_pin_lock(rq, rf);
555 return rq;
556 }
557 raw_spin_rq_unlock(rq);
558
559 while (unlikely(task_on_rq_migrating(p)))
560 cpu_relax();
561 }
562}
563
564/*
565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
566 */
567struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
568 __acquires(p->pi_lock)
569 __acquires(rq->lock)
570{
571 struct rq *rq;
572
573 for (;;) {
574 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
575 rq = task_rq(p);
576 raw_spin_rq_lock(rq);
577 /*
578 * move_queued_task() task_rq_lock()
579 *
580 * ACQUIRE (rq->lock)
581 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
582 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
583 * [S] ->cpu = new_cpu [L] task_rq()
584 * [L] ->on_rq
585 * RELEASE (rq->lock)
586 *
587 * If we observe the old CPU in task_rq_lock(), the acquire of
588 * the old rq->lock will fully serialize against the stores.
589 *
590 * If we observe the new CPU in task_rq_lock(), the address
591 * dependency headed by '[L] rq = task_rq()' and the acquire
592 * will pair with the WMB to ensure we then also see migrating.
593 */
594 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
595 rq_pin_lock(rq, rf);
596 return rq;
597 }
598 raw_spin_rq_unlock(rq);
599 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
600
601 while (unlikely(task_on_rq_migrating(p)))
602 cpu_relax();
603 }
604}
605
606/*
607 * RQ-clock updating methods:
608 */
609
610static void update_rq_clock_task(struct rq *rq, s64 delta)
611{
612/*
613 * In theory, the compile should just see 0 here, and optimize out the call
614 * to sched_rt_avg_update. But I don't trust it...
615 */
616 s64 __maybe_unused steal = 0, irq_delta = 0;
617
618#ifdef CONFIG_IRQ_TIME_ACCOUNTING
619 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
620
621 /*
622 * Since irq_time is only updated on {soft,}irq_exit, we might run into
623 * this case when a previous update_rq_clock() happened inside a
624 * {soft,}irq region.
625 *
626 * When this happens, we stop ->clock_task and only update the
627 * prev_irq_time stamp to account for the part that fit, so that a next
628 * update will consume the rest. This ensures ->clock_task is
629 * monotonic.
630 *
631 * It does however cause some slight miss-attribution of {soft,}irq
632 * time, a more accurate solution would be to update the irq_time using
633 * the current rq->clock timestamp, except that would require using
634 * atomic ops.
635 */
636 if (irq_delta > delta)
637 irq_delta = delta;
638
639 rq->prev_irq_time += irq_delta;
640 delta -= irq_delta;
641#endif
642#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
643 if (static_key_false((¶virt_steal_rq_enabled))) {
644 steal = paravirt_steal_clock(cpu_of(rq));
645 steal -= rq->prev_steal_time_rq;
646
647 if (unlikely(steal > delta))
648 steal = delta;
649
650 rq->prev_steal_time_rq += steal;
651 delta -= steal;
652 }
653#endif
654
655 rq->clock_task += delta;
656
657#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
658 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
659 update_irq_load_avg(rq, irq_delta + steal);
660#endif
661 update_rq_clock_pelt(rq, delta);
662}
663
664void update_rq_clock(struct rq *rq)
665{
666 s64 delta;
667
668 lockdep_assert_rq_held(rq);
669
670 if (rq->clock_update_flags & RQCF_ACT_SKIP)
671 return;
672
673#ifdef CONFIG_SCHED_DEBUG
674 if (sched_feat(WARN_DOUBLE_CLOCK))
675 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
676 rq->clock_update_flags |= RQCF_UPDATED;
677#endif
678
679 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
680 if (delta < 0)
681 return;
682 rq->clock += delta;
683 update_rq_clock_task(rq, delta);
684}
685
686#ifdef CONFIG_SCHED_HRTICK
687/*
688 * Use HR-timers to deliver accurate preemption points.
689 */
690
691static void hrtick_clear(struct rq *rq)
692{
693 if (hrtimer_active(&rq->hrtick_timer))
694 hrtimer_cancel(&rq->hrtick_timer);
695}
696
697/*
698 * High-resolution timer tick.
699 * Runs from hardirq context with interrupts disabled.
700 */
701static enum hrtimer_restart hrtick(struct hrtimer *timer)
702{
703 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
704 struct rq_flags rf;
705
706 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
707
708 rq_lock(rq, &rf);
709 update_rq_clock(rq);
710 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
711 rq_unlock(rq, &rf);
712
713 return HRTIMER_NORESTART;
714}
715
716#ifdef CONFIG_SMP
717
718static void __hrtick_restart(struct rq *rq)
719{
720 struct hrtimer *timer = &rq->hrtick_timer;
721 ktime_t time = rq->hrtick_time;
722
723 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
724}
725
726/*
727 * called from hardirq (IPI) context
728 */
729static void __hrtick_start(void *arg)
730{
731 struct rq *rq = arg;
732 struct rq_flags rf;
733
734 rq_lock(rq, &rf);
735 __hrtick_restart(rq);
736 rq_unlock(rq, &rf);
737}
738
739/*
740 * Called to set the hrtick timer state.
741 *
742 * called with rq->lock held and irqs disabled
743 */
744void hrtick_start(struct rq *rq, u64 delay)
745{
746 struct hrtimer *timer = &rq->hrtick_timer;
747 s64 delta;
748
749 /*
750 * Don't schedule slices shorter than 10000ns, that just
751 * doesn't make sense and can cause timer DoS.
752 */
753 delta = max_t(s64, delay, 10000LL);
754 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
755
756 if (rq == this_rq())
757 __hrtick_restart(rq);
758 else
759 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
760}
761
762#else
763/*
764 * Called to set the hrtick timer state.
765 *
766 * called with rq->lock held and irqs disabled
767 */
768void hrtick_start(struct rq *rq, u64 delay)
769{
770 /*
771 * Don't schedule slices shorter than 10000ns, that just
772 * doesn't make sense. Rely on vruntime for fairness.
773 */
774 delay = max_t(u64, delay, 10000LL);
775 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
776 HRTIMER_MODE_REL_PINNED_HARD);
777}
778
779#endif /* CONFIG_SMP */
780
781static void hrtick_rq_init(struct rq *rq)
782{
783#ifdef CONFIG_SMP
784 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
785#endif
786 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
787 rq->hrtick_timer.function = hrtick;
788}
789#else /* CONFIG_SCHED_HRTICK */
790static inline void hrtick_clear(struct rq *rq)
791{
792}
793
794static inline void hrtick_rq_init(struct rq *rq)
795{
796}
797#endif /* CONFIG_SCHED_HRTICK */
798
799/*
800 * cmpxchg based fetch_or, macro so it works for different integer types
801 */
802#define fetch_or(ptr, mask) \
803 ({ \
804 typeof(ptr) _ptr = (ptr); \
805 typeof(mask) _mask = (mask); \
806 typeof(*_ptr) _old, _val = *_ptr; \
807 \
808 for (;;) { \
809 _old = cmpxchg(_ptr, _val, _val | _mask); \
810 if (_old == _val) \
811 break; \
812 _val = _old; \
813 } \
814 _old; \
815})
816
817#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
818/*
819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
820 * this avoids any races wrt polling state changes and thereby avoids
821 * spurious IPIs.
822 */
823static bool set_nr_and_not_polling(struct task_struct *p)
824{
825 struct thread_info *ti = task_thread_info(p);
826 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
827}
828
829/*
830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
831 *
832 * If this returns true, then the idle task promises to call
833 * sched_ttwu_pending() and reschedule soon.
834 */
835static bool set_nr_if_polling(struct task_struct *p)
836{
837 struct thread_info *ti = task_thread_info(p);
838 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
839
840 for (;;) {
841 if (!(val & _TIF_POLLING_NRFLAG))
842 return false;
843 if (val & _TIF_NEED_RESCHED)
844 return true;
845 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
846 if (old == val)
847 break;
848 val = old;
849 }
850 return true;
851}
852
853#else
854static bool set_nr_and_not_polling(struct task_struct *p)
855{
856 set_tsk_need_resched(p);
857 return true;
858}
859
860#ifdef CONFIG_SMP
861static bool set_nr_if_polling(struct task_struct *p)
862{
863 return false;
864}
865#endif
866#endif
867
868static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
869{
870 struct wake_q_node *node = &task->wake_q;
871
872 /*
873 * Atomically grab the task, if ->wake_q is !nil already it means
874 * it's already queued (either by us or someone else) and will get the
875 * wakeup due to that.
876 *
877 * In order to ensure that a pending wakeup will observe our pending
878 * state, even in the failed case, an explicit smp_mb() must be used.
879 */
880 smp_mb__before_atomic();
881 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
882 return false;
883
884 /*
885 * The head is context local, there can be no concurrency.
886 */
887 *head->lastp = node;
888 head->lastp = &node->next;
889 return true;
890}
891
892/**
893 * wake_q_add() - queue a wakeup for 'later' waking.
894 * @head: the wake_q_head to add @task to
895 * @task: the task to queue for 'later' wakeup
896 *
897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
899 * instantly.
900 *
901 * This function must be used as-if it were wake_up_process(); IOW the task
902 * must be ready to be woken at this location.
903 */
904void wake_q_add(struct wake_q_head *head, struct task_struct *task)
905{
906 if (__wake_q_add(head, task))
907 get_task_struct(task);
908}
909
910/**
911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
912 * @head: the wake_q_head to add @task to
913 * @task: the task to queue for 'later' wakeup
914 *
915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
917 * instantly.
918 *
919 * This function must be used as-if it were wake_up_process(); IOW the task
920 * must be ready to be woken at this location.
921 *
922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
923 * that already hold reference to @task can call the 'safe' version and trust
924 * wake_q to do the right thing depending whether or not the @task is already
925 * queued for wakeup.
926 */
927void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
928{
929 if (!__wake_q_add(head, task))
930 put_task_struct(task);
931}
932
933void wake_up_q(struct wake_q_head *head)
934{
935 struct wake_q_node *node = head->first;
936
937 while (node != WAKE_Q_TAIL) {
938 struct task_struct *task;
939
940 task = container_of(node, struct task_struct, wake_q);
941 /* Task can safely be re-inserted now: */
942 node = node->next;
943 task->wake_q.next = NULL;
944
945 /*
946 * wake_up_process() executes a full barrier, which pairs with
947 * the queueing in wake_q_add() so as not to miss wakeups.
948 */
949 wake_up_process(task);
950 put_task_struct(task);
951 }
952}
953
954/*
955 * resched_curr - mark rq's current task 'to be rescheduled now'.
956 *
957 * On UP this means the setting of the need_resched flag, on SMP it
958 * might also involve a cross-CPU call to trigger the scheduler on
959 * the target CPU.
960 */
961void resched_curr(struct rq *rq)
962{
963 struct task_struct *curr = rq->curr;
964 int cpu;
965
966 lockdep_assert_rq_held(rq);
967
968 if (test_tsk_need_resched(curr))
969 return;
970
971 cpu = cpu_of(rq);
972
973 if (cpu == smp_processor_id()) {
974 set_tsk_need_resched(curr);
975 set_preempt_need_resched();
976 return;
977 }
978
979 if (set_nr_and_not_polling(curr))
980 smp_send_reschedule(cpu);
981 else
982 trace_sched_wake_idle_without_ipi(cpu);
983}
984
985void resched_cpu(int cpu)
986{
987 struct rq *rq = cpu_rq(cpu);
988 unsigned long flags;
989
990 raw_spin_rq_lock_irqsave(rq, flags);
991 if (cpu_online(cpu) || cpu == smp_processor_id())
992 resched_curr(rq);
993 raw_spin_rq_unlock_irqrestore(rq, flags);
994}
995
996#ifdef CONFIG_SMP
997#ifdef CONFIG_NO_HZ_COMMON
998/*
999 * In the semi idle case, use the nearest busy CPU for migrating timers
1000 * from an idle CPU. This is good for power-savings.
1001 *
1002 * We don't do similar optimization for completely idle system, as
1003 * selecting an idle CPU will add more delays to the timers than intended
1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1005 */
1006int get_nohz_timer_target(void)
1007{
1008 int i, cpu = smp_processor_id(), default_cpu = -1;
1009 struct sched_domain *sd;
1010
1011 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1012 if (!idle_cpu(cpu))
1013 return cpu;
1014 default_cpu = cpu;
1015 }
1016
1017 rcu_read_lock();
1018 for_each_domain(cpu, sd) {
1019 for_each_cpu_and(i, sched_domain_span(sd),
1020 housekeeping_cpumask(HK_FLAG_TIMER)) {
1021 if (cpu == i)
1022 continue;
1023
1024 if (!idle_cpu(i)) {
1025 cpu = i;
1026 goto unlock;
1027 }
1028 }
1029 }
1030
1031 if (default_cpu == -1)
1032 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1033 cpu = default_cpu;
1034unlock:
1035 rcu_read_unlock();
1036 return cpu;
1037}
1038
1039/*
1040 * When add_timer_on() enqueues a timer into the timer wheel of an
1041 * idle CPU then this timer might expire before the next timer event
1042 * which is scheduled to wake up that CPU. In case of a completely
1043 * idle system the next event might even be infinite time into the
1044 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1045 * leaves the inner idle loop so the newly added timer is taken into
1046 * account when the CPU goes back to idle and evaluates the timer
1047 * wheel for the next timer event.
1048 */
1049static void wake_up_idle_cpu(int cpu)
1050{
1051 struct rq *rq = cpu_rq(cpu);
1052
1053 if (cpu == smp_processor_id())
1054 return;
1055
1056 if (set_nr_and_not_polling(rq->idle))
1057 smp_send_reschedule(cpu);
1058 else
1059 trace_sched_wake_idle_without_ipi(cpu);
1060}
1061
1062static bool wake_up_full_nohz_cpu(int cpu)
1063{
1064 /*
1065 * We just need the target to call irq_exit() and re-evaluate
1066 * the next tick. The nohz full kick at least implies that.
1067 * If needed we can still optimize that later with an
1068 * empty IRQ.
1069 */
1070 if (cpu_is_offline(cpu))
1071 return true; /* Don't try to wake offline CPUs. */
1072 if (tick_nohz_full_cpu(cpu)) {
1073 if (cpu != smp_processor_id() ||
1074 tick_nohz_tick_stopped())
1075 tick_nohz_full_kick_cpu(cpu);
1076 return true;
1077 }
1078
1079 return false;
1080}
1081
1082/*
1083 * Wake up the specified CPU. If the CPU is going offline, it is the
1084 * caller's responsibility to deal with the lost wakeup, for example,
1085 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1086 */
1087void wake_up_nohz_cpu(int cpu)
1088{
1089 if (!wake_up_full_nohz_cpu(cpu))
1090 wake_up_idle_cpu(cpu);
1091}
1092
1093static void nohz_csd_func(void *info)
1094{
1095 struct rq *rq = info;
1096 int cpu = cpu_of(rq);
1097 unsigned int flags;
1098
1099 /*
1100 * Release the rq::nohz_csd.
1101 */
1102 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1103 WARN_ON(!(flags & NOHZ_KICK_MASK));
1104
1105 rq->idle_balance = idle_cpu(cpu);
1106 if (rq->idle_balance && !need_resched()) {
1107 rq->nohz_idle_balance = flags;
1108 raise_softirq_irqoff(SCHED_SOFTIRQ);
1109 }
1110}
1111
1112#endif /* CONFIG_NO_HZ_COMMON */
1113
1114#ifdef CONFIG_NO_HZ_FULL
1115bool sched_can_stop_tick(struct rq *rq)
1116{
1117 int fifo_nr_running;
1118
1119 /* Deadline tasks, even if single, need the tick */
1120 if (rq->dl.dl_nr_running)
1121 return false;
1122
1123 /*
1124 * If there are more than one RR tasks, we need the tick to affect the
1125 * actual RR behaviour.
1126 */
1127 if (rq->rt.rr_nr_running) {
1128 if (rq->rt.rr_nr_running == 1)
1129 return true;
1130 else
1131 return false;
1132 }
1133
1134 /*
1135 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1136 * forced preemption between FIFO tasks.
1137 */
1138 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1139 if (fifo_nr_running)
1140 return true;
1141
1142 /*
1143 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1144 * if there's more than one we need the tick for involuntary
1145 * preemption.
1146 */
1147 if (rq->nr_running > 1)
1148 return false;
1149
1150 return true;
1151}
1152#endif /* CONFIG_NO_HZ_FULL */
1153#endif /* CONFIG_SMP */
1154
1155#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1156 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1157/*
1158 * Iterate task_group tree rooted at *from, calling @down when first entering a
1159 * node and @up when leaving it for the final time.
1160 *
1161 * Caller must hold rcu_lock or sufficient equivalent.
1162 */
1163int walk_tg_tree_from(struct task_group *from,
1164 tg_visitor down, tg_visitor up, void *data)
1165{
1166 struct task_group *parent, *child;
1167 int ret;
1168
1169 parent = from;
1170
1171down:
1172 ret = (*down)(parent, data);
1173 if (ret)
1174 goto out;
1175 list_for_each_entry_rcu(child, &parent->children, siblings) {
1176 parent = child;
1177 goto down;
1178
1179up:
1180 continue;
1181 }
1182 ret = (*up)(parent, data);
1183 if (ret || parent == from)
1184 goto out;
1185
1186 child = parent;
1187 parent = parent->parent;
1188 if (parent)
1189 goto up;
1190out:
1191 return ret;
1192}
1193
1194int tg_nop(struct task_group *tg, void *data)
1195{
1196 return 0;
1197}
1198#endif
1199
1200static void set_load_weight(struct task_struct *p, bool update_load)
1201{
1202 int prio = p->static_prio - MAX_RT_PRIO;
1203 struct load_weight *load = &p->se.load;
1204
1205 /*
1206 * SCHED_IDLE tasks get minimal weight:
1207 */
1208 if (task_has_idle_policy(p)) {
1209 load->weight = scale_load(WEIGHT_IDLEPRIO);
1210 load->inv_weight = WMULT_IDLEPRIO;
1211 return;
1212 }
1213
1214 /*
1215 * SCHED_OTHER tasks have to update their load when changing their
1216 * weight
1217 */
1218 if (update_load && p->sched_class == &fair_sched_class) {
1219 reweight_task(p, prio);
1220 } else {
1221 load->weight = scale_load(sched_prio_to_weight[prio]);
1222 load->inv_weight = sched_prio_to_wmult[prio];
1223 }
1224}
1225
1226#ifdef CONFIG_UCLAMP_TASK
1227/*
1228 * Serializes updates of utilization clamp values
1229 *
1230 * The (slow-path) user-space triggers utilization clamp value updates which
1231 * can require updates on (fast-path) scheduler's data structures used to
1232 * support enqueue/dequeue operations.
1233 * While the per-CPU rq lock protects fast-path update operations, user-space
1234 * requests are serialized using a mutex to reduce the risk of conflicting
1235 * updates or API abuses.
1236 */
1237static DEFINE_MUTEX(uclamp_mutex);
1238
1239/* Max allowed minimum utilization */
1240unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1241
1242/* Max allowed maximum utilization */
1243unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1244
1245/*
1246 * By default RT tasks run at the maximum performance point/capacity of the
1247 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1248 * SCHED_CAPACITY_SCALE.
1249 *
1250 * This knob allows admins to change the default behavior when uclamp is being
1251 * used. In battery powered devices, particularly, running at the maximum
1252 * capacity and frequency will increase energy consumption and shorten the
1253 * battery life.
1254 *
1255 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1256 *
1257 * This knob will not override the system default sched_util_clamp_min defined
1258 * above.
1259 */
1260unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1261
1262/* All clamps are required to be less or equal than these values */
1263static struct uclamp_se uclamp_default[UCLAMP_CNT];
1264
1265/*
1266 * This static key is used to reduce the uclamp overhead in the fast path. It
1267 * primarily disables the call to uclamp_rq_{inc, dec}() in
1268 * enqueue/dequeue_task().
1269 *
1270 * This allows users to continue to enable uclamp in their kernel config with
1271 * minimum uclamp overhead in the fast path.
1272 *
1273 * As soon as userspace modifies any of the uclamp knobs, the static key is
1274 * enabled, since we have an actual users that make use of uclamp
1275 * functionality.
1276 *
1277 * The knobs that would enable this static key are:
1278 *
1279 * * A task modifying its uclamp value with sched_setattr().
1280 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1281 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1282 */
1283DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1284
1285/* Integer rounded range for each bucket */
1286#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1287
1288#define for_each_clamp_id(clamp_id) \
1289 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1290
1291static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1292{
1293 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1294}
1295
1296static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1297{
1298 if (clamp_id == UCLAMP_MIN)
1299 return 0;
1300 return SCHED_CAPACITY_SCALE;
1301}
1302
1303static inline void uclamp_se_set(struct uclamp_se *uc_se,
1304 unsigned int value, bool user_defined)
1305{
1306 uc_se->value = value;
1307 uc_se->bucket_id = uclamp_bucket_id(value);
1308 uc_se->user_defined = user_defined;
1309}
1310
1311static inline unsigned int
1312uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1313 unsigned int clamp_value)
1314{
1315 /*
1316 * Avoid blocked utilization pushing up the frequency when we go
1317 * idle (which drops the max-clamp) by retaining the last known
1318 * max-clamp.
1319 */
1320 if (clamp_id == UCLAMP_MAX) {
1321 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1322 return clamp_value;
1323 }
1324
1325 return uclamp_none(UCLAMP_MIN);
1326}
1327
1328static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1329 unsigned int clamp_value)
1330{
1331 /* Reset max-clamp retention only on idle exit */
1332 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1333 return;
1334
1335 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1336}
1337
1338static inline
1339unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1340 unsigned int clamp_value)
1341{
1342 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1343 int bucket_id = UCLAMP_BUCKETS - 1;
1344
1345 /*
1346 * Since both min and max clamps are max aggregated, find the
1347 * top most bucket with tasks in.
1348 */
1349 for ( ; bucket_id >= 0; bucket_id--) {
1350 if (!bucket[bucket_id].tasks)
1351 continue;
1352 return bucket[bucket_id].value;
1353 }
1354
1355 /* No tasks -- default clamp values */
1356 return uclamp_idle_value(rq, clamp_id, clamp_value);
1357}
1358
1359static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1360{
1361 unsigned int default_util_min;
1362 struct uclamp_se *uc_se;
1363
1364 lockdep_assert_held(&p->pi_lock);
1365
1366 uc_se = &p->uclamp_req[UCLAMP_MIN];
1367
1368 /* Only sync if user didn't override the default */
1369 if (uc_se->user_defined)
1370 return;
1371
1372 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1373 uclamp_se_set(uc_se, default_util_min, false);
1374}
1375
1376static void uclamp_update_util_min_rt_default(struct task_struct *p)
1377{
1378 struct rq_flags rf;
1379 struct rq *rq;
1380
1381 if (!rt_task(p))
1382 return;
1383
1384 /* Protect updates to p->uclamp_* */
1385 rq = task_rq_lock(p, &rf);
1386 __uclamp_update_util_min_rt_default(p);
1387 task_rq_unlock(rq, p, &rf);
1388}
1389
1390static void uclamp_sync_util_min_rt_default(void)
1391{
1392 struct task_struct *g, *p;
1393
1394 /*
1395 * copy_process() sysctl_uclamp
1396 * uclamp_min_rt = X;
1397 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1398 * // link thread smp_mb__after_spinlock()
1399 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1400 * sched_post_fork() for_each_process_thread()
1401 * __uclamp_sync_rt() __uclamp_sync_rt()
1402 *
1403 * Ensures that either sched_post_fork() will observe the new
1404 * uclamp_min_rt or for_each_process_thread() will observe the new
1405 * task.
1406 */
1407 read_lock(&tasklist_lock);
1408 smp_mb__after_spinlock();
1409 read_unlock(&tasklist_lock);
1410
1411 rcu_read_lock();
1412 for_each_process_thread(g, p)
1413 uclamp_update_util_min_rt_default(p);
1414 rcu_read_unlock();
1415}
1416
1417static inline struct uclamp_se
1418uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1419{
1420 /* Copy by value as we could modify it */
1421 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1422#ifdef CONFIG_UCLAMP_TASK_GROUP
1423 unsigned int tg_min, tg_max, value;
1424
1425 /*
1426 * Tasks in autogroups or root task group will be
1427 * restricted by system defaults.
1428 */
1429 if (task_group_is_autogroup(task_group(p)))
1430 return uc_req;
1431 if (task_group(p) == &root_task_group)
1432 return uc_req;
1433
1434 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1435 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1436 value = uc_req.value;
1437 value = clamp(value, tg_min, tg_max);
1438 uclamp_se_set(&uc_req, value, false);
1439#endif
1440
1441 return uc_req;
1442}
1443
1444/*
1445 * The effective clamp bucket index of a task depends on, by increasing
1446 * priority:
1447 * - the task specific clamp value, when explicitly requested from userspace
1448 * - the task group effective clamp value, for tasks not either in the root
1449 * group or in an autogroup
1450 * - the system default clamp value, defined by the sysadmin
1451 */
1452static inline struct uclamp_se
1453uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1454{
1455 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1456 struct uclamp_se uc_max = uclamp_default[clamp_id];
1457
1458 /* System default restrictions always apply */
1459 if (unlikely(uc_req.value > uc_max.value))
1460 return uc_max;
1461
1462 return uc_req;
1463}
1464
1465unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1466{
1467 struct uclamp_se uc_eff;
1468
1469 /* Task currently refcounted: use back-annotated (effective) value */
1470 if (p->uclamp[clamp_id].active)
1471 return (unsigned long)p->uclamp[clamp_id].value;
1472
1473 uc_eff = uclamp_eff_get(p, clamp_id);
1474
1475 return (unsigned long)uc_eff.value;
1476}
1477
1478/*
1479 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1480 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1481 * updates the rq's clamp value if required.
1482 *
1483 * Tasks can have a task-specific value requested from user-space, track
1484 * within each bucket the maximum value for tasks refcounted in it.
1485 * This "local max aggregation" allows to track the exact "requested" value
1486 * for each bucket when all its RUNNABLE tasks require the same clamp.
1487 */
1488static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1489 enum uclamp_id clamp_id)
1490{
1491 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1492 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1493 struct uclamp_bucket *bucket;
1494
1495 lockdep_assert_rq_held(rq);
1496
1497 /* Update task effective clamp */
1498 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1499
1500 bucket = &uc_rq->bucket[uc_se->bucket_id];
1501 bucket->tasks++;
1502 uc_se->active = true;
1503
1504 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1505
1506 /*
1507 * Local max aggregation: rq buckets always track the max
1508 * "requested" clamp value of its RUNNABLE tasks.
1509 */
1510 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1511 bucket->value = uc_se->value;
1512
1513 if (uc_se->value > READ_ONCE(uc_rq->value))
1514 WRITE_ONCE(uc_rq->value, uc_se->value);
1515}
1516
1517/*
1518 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1519 * is released. If this is the last task reference counting the rq's max
1520 * active clamp value, then the rq's clamp value is updated.
1521 *
1522 * Both refcounted tasks and rq's cached clamp values are expected to be
1523 * always valid. If it's detected they are not, as defensive programming,
1524 * enforce the expected state and warn.
1525 */
1526static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1527 enum uclamp_id clamp_id)
1528{
1529 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1530 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1531 struct uclamp_bucket *bucket;
1532 unsigned int bkt_clamp;
1533 unsigned int rq_clamp;
1534
1535 lockdep_assert_rq_held(rq);
1536
1537 /*
1538 * If sched_uclamp_used was enabled after task @p was enqueued,
1539 * we could end up with unbalanced call to uclamp_rq_dec_id().
1540 *
1541 * In this case the uc_se->active flag should be false since no uclamp
1542 * accounting was performed at enqueue time and we can just return
1543 * here.
1544 *
1545 * Need to be careful of the following enqueue/dequeue ordering
1546 * problem too
1547 *
1548 * enqueue(taskA)
1549 * // sched_uclamp_used gets enabled
1550 * enqueue(taskB)
1551 * dequeue(taskA)
1552 * // Must not decrement bucket->tasks here
1553 * dequeue(taskB)
1554 *
1555 * where we could end up with stale data in uc_se and
1556 * bucket[uc_se->bucket_id].
1557 *
1558 * The following check here eliminates the possibility of such race.
1559 */
1560 if (unlikely(!uc_se->active))
1561 return;
1562
1563 bucket = &uc_rq->bucket[uc_se->bucket_id];
1564
1565 SCHED_WARN_ON(!bucket->tasks);
1566 if (likely(bucket->tasks))
1567 bucket->tasks--;
1568
1569 uc_se->active = false;
1570
1571 /*
1572 * Keep "local max aggregation" simple and accept to (possibly)
1573 * overboost some RUNNABLE tasks in the same bucket.
1574 * The rq clamp bucket value is reset to its base value whenever
1575 * there are no more RUNNABLE tasks refcounting it.
1576 */
1577 if (likely(bucket->tasks))
1578 return;
1579
1580 rq_clamp = READ_ONCE(uc_rq->value);
1581 /*
1582 * Defensive programming: this should never happen. If it happens,
1583 * e.g. due to future modification, warn and fixup the expected value.
1584 */
1585 SCHED_WARN_ON(bucket->value > rq_clamp);
1586 if (bucket->value >= rq_clamp) {
1587 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1588 WRITE_ONCE(uc_rq->value, bkt_clamp);
1589 }
1590}
1591
1592static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1593{
1594 enum uclamp_id clamp_id;
1595
1596 /*
1597 * Avoid any overhead until uclamp is actually used by the userspace.
1598 *
1599 * The condition is constructed such that a NOP is generated when
1600 * sched_uclamp_used is disabled.
1601 */
1602 if (!static_branch_unlikely(&sched_uclamp_used))
1603 return;
1604
1605 if (unlikely(!p->sched_class->uclamp_enabled))
1606 return;
1607
1608 for_each_clamp_id(clamp_id)
1609 uclamp_rq_inc_id(rq, p, clamp_id);
1610
1611 /* Reset clamp idle holding when there is one RUNNABLE task */
1612 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1613 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1614}
1615
1616static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1617{
1618 enum uclamp_id clamp_id;
1619
1620 /*
1621 * Avoid any overhead until uclamp is actually used by the userspace.
1622 *
1623 * The condition is constructed such that a NOP is generated when
1624 * sched_uclamp_used is disabled.
1625 */
1626 if (!static_branch_unlikely(&sched_uclamp_used))
1627 return;
1628
1629 if (unlikely(!p->sched_class->uclamp_enabled))
1630 return;
1631
1632 for_each_clamp_id(clamp_id)
1633 uclamp_rq_dec_id(rq, p, clamp_id);
1634}
1635
1636static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1637 enum uclamp_id clamp_id)
1638{
1639 if (!p->uclamp[clamp_id].active)
1640 return;
1641
1642 uclamp_rq_dec_id(rq, p, clamp_id);
1643 uclamp_rq_inc_id(rq, p, clamp_id);
1644
1645 /*
1646 * Make sure to clear the idle flag if we've transiently reached 0
1647 * active tasks on rq.
1648 */
1649 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1650 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1651}
1652
1653static inline void
1654uclamp_update_active(struct task_struct *p)
1655{
1656 enum uclamp_id clamp_id;
1657 struct rq_flags rf;
1658 struct rq *rq;
1659
1660 /*
1661 * Lock the task and the rq where the task is (or was) queued.
1662 *
1663 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1664 * price to pay to safely serialize util_{min,max} updates with
1665 * enqueues, dequeues and migration operations.
1666 * This is the same locking schema used by __set_cpus_allowed_ptr().
1667 */
1668 rq = task_rq_lock(p, &rf);
1669
1670 /*
1671 * Setting the clamp bucket is serialized by task_rq_lock().
1672 * If the task is not yet RUNNABLE and its task_struct is not
1673 * affecting a valid clamp bucket, the next time it's enqueued,
1674 * it will already see the updated clamp bucket value.
1675 */
1676 for_each_clamp_id(clamp_id)
1677 uclamp_rq_reinc_id(rq, p, clamp_id);
1678
1679 task_rq_unlock(rq, p, &rf);
1680}
1681
1682#ifdef CONFIG_UCLAMP_TASK_GROUP
1683static inline void
1684uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1685{
1686 struct css_task_iter it;
1687 struct task_struct *p;
1688
1689 css_task_iter_start(css, 0, &it);
1690 while ((p = css_task_iter_next(&it)))
1691 uclamp_update_active(p);
1692 css_task_iter_end(&it);
1693}
1694
1695static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1696static void uclamp_update_root_tg(void)
1697{
1698 struct task_group *tg = &root_task_group;
1699
1700 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1701 sysctl_sched_uclamp_util_min, false);
1702 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1703 sysctl_sched_uclamp_util_max, false);
1704
1705 rcu_read_lock();
1706 cpu_util_update_eff(&root_task_group.css);
1707 rcu_read_unlock();
1708}
1709#else
1710static void uclamp_update_root_tg(void) { }
1711#endif
1712
1713int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1714 void *buffer, size_t *lenp, loff_t *ppos)
1715{
1716 bool update_root_tg = false;
1717 int old_min, old_max, old_min_rt;
1718 int result;
1719
1720 mutex_lock(&uclamp_mutex);
1721 old_min = sysctl_sched_uclamp_util_min;
1722 old_max = sysctl_sched_uclamp_util_max;
1723 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1724
1725 result = proc_dointvec(table, write, buffer, lenp, ppos);
1726 if (result)
1727 goto undo;
1728 if (!write)
1729 goto done;
1730
1731 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1732 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1733 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1734
1735 result = -EINVAL;
1736 goto undo;
1737 }
1738
1739 if (old_min != sysctl_sched_uclamp_util_min) {
1740 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1741 sysctl_sched_uclamp_util_min, false);
1742 update_root_tg = true;
1743 }
1744 if (old_max != sysctl_sched_uclamp_util_max) {
1745 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1746 sysctl_sched_uclamp_util_max, false);
1747 update_root_tg = true;
1748 }
1749
1750 if (update_root_tg) {
1751 static_branch_enable(&sched_uclamp_used);
1752 uclamp_update_root_tg();
1753 }
1754
1755 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1756 static_branch_enable(&sched_uclamp_used);
1757 uclamp_sync_util_min_rt_default();
1758 }
1759
1760 /*
1761 * We update all RUNNABLE tasks only when task groups are in use.
1762 * Otherwise, keep it simple and do just a lazy update at each next
1763 * task enqueue time.
1764 */
1765
1766 goto done;
1767
1768undo:
1769 sysctl_sched_uclamp_util_min = old_min;
1770 sysctl_sched_uclamp_util_max = old_max;
1771 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1772done:
1773 mutex_unlock(&uclamp_mutex);
1774
1775 return result;
1776}
1777
1778static int uclamp_validate(struct task_struct *p,
1779 const struct sched_attr *attr)
1780{
1781 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1782 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1783
1784 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1785 util_min = attr->sched_util_min;
1786
1787 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1788 return -EINVAL;
1789 }
1790
1791 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1792 util_max = attr->sched_util_max;
1793
1794 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1795 return -EINVAL;
1796 }
1797
1798 if (util_min != -1 && util_max != -1 && util_min > util_max)
1799 return -EINVAL;
1800
1801 /*
1802 * We have valid uclamp attributes; make sure uclamp is enabled.
1803 *
1804 * We need to do that here, because enabling static branches is a
1805 * blocking operation which obviously cannot be done while holding
1806 * scheduler locks.
1807 */
1808 static_branch_enable(&sched_uclamp_used);
1809
1810 return 0;
1811}
1812
1813static bool uclamp_reset(const struct sched_attr *attr,
1814 enum uclamp_id clamp_id,
1815 struct uclamp_se *uc_se)
1816{
1817 /* Reset on sched class change for a non user-defined clamp value. */
1818 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1819 !uc_se->user_defined)
1820 return true;
1821
1822 /* Reset on sched_util_{min,max} == -1. */
1823 if (clamp_id == UCLAMP_MIN &&
1824 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1825 attr->sched_util_min == -1) {
1826 return true;
1827 }
1828
1829 if (clamp_id == UCLAMP_MAX &&
1830 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1831 attr->sched_util_max == -1) {
1832 return true;
1833 }
1834
1835 return false;
1836}
1837
1838static void __setscheduler_uclamp(struct task_struct *p,
1839 const struct sched_attr *attr)
1840{
1841 enum uclamp_id clamp_id;
1842
1843 for_each_clamp_id(clamp_id) {
1844 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1845 unsigned int value;
1846
1847 if (!uclamp_reset(attr, clamp_id, uc_se))
1848 continue;
1849
1850 /*
1851 * RT by default have a 100% boost value that could be modified
1852 * at runtime.
1853 */
1854 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1855 value = sysctl_sched_uclamp_util_min_rt_default;
1856 else
1857 value = uclamp_none(clamp_id);
1858
1859 uclamp_se_set(uc_se, value, false);
1860
1861 }
1862
1863 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1864 return;
1865
1866 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1867 attr->sched_util_min != -1) {
1868 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1869 attr->sched_util_min, true);
1870 }
1871
1872 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1873 attr->sched_util_max != -1) {
1874 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1875 attr->sched_util_max, true);
1876 }
1877}
1878
1879static void uclamp_fork(struct task_struct *p)
1880{
1881 enum uclamp_id clamp_id;
1882
1883 /*
1884 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1885 * as the task is still at its early fork stages.
1886 */
1887 for_each_clamp_id(clamp_id)
1888 p->uclamp[clamp_id].active = false;
1889
1890 if (likely(!p->sched_reset_on_fork))
1891 return;
1892
1893 for_each_clamp_id(clamp_id) {
1894 uclamp_se_set(&p->uclamp_req[clamp_id],
1895 uclamp_none(clamp_id), false);
1896 }
1897}
1898
1899static void uclamp_post_fork(struct task_struct *p)
1900{
1901 uclamp_update_util_min_rt_default(p);
1902}
1903
1904static void __init init_uclamp_rq(struct rq *rq)
1905{
1906 enum uclamp_id clamp_id;
1907 struct uclamp_rq *uc_rq = rq->uclamp;
1908
1909 for_each_clamp_id(clamp_id) {
1910 uc_rq[clamp_id] = (struct uclamp_rq) {
1911 .value = uclamp_none(clamp_id)
1912 };
1913 }
1914
1915 rq->uclamp_flags = 0;
1916}
1917
1918static void __init init_uclamp(void)
1919{
1920 struct uclamp_se uc_max = {};
1921 enum uclamp_id clamp_id;
1922 int cpu;
1923
1924 for_each_possible_cpu(cpu)
1925 init_uclamp_rq(cpu_rq(cpu));
1926
1927 for_each_clamp_id(clamp_id) {
1928 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1929 uclamp_none(clamp_id), false);
1930 }
1931
1932 /* System defaults allow max clamp values for both indexes */
1933 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1934 for_each_clamp_id(clamp_id) {
1935 uclamp_default[clamp_id] = uc_max;
1936#ifdef CONFIG_UCLAMP_TASK_GROUP
1937 root_task_group.uclamp_req[clamp_id] = uc_max;
1938 root_task_group.uclamp[clamp_id] = uc_max;
1939#endif
1940 }
1941}
1942
1943#else /* CONFIG_UCLAMP_TASK */
1944static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1945static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1946static inline int uclamp_validate(struct task_struct *p,
1947 const struct sched_attr *attr)
1948{
1949 return -EOPNOTSUPP;
1950}
1951static void __setscheduler_uclamp(struct task_struct *p,
1952 const struct sched_attr *attr) { }
1953static inline void uclamp_fork(struct task_struct *p) { }
1954static inline void uclamp_post_fork(struct task_struct *p) { }
1955static inline void init_uclamp(void) { }
1956#endif /* CONFIG_UCLAMP_TASK */
1957
1958bool sched_task_on_rq(struct task_struct *p)
1959{
1960 return task_on_rq_queued(p);
1961}
1962
1963static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1964{
1965 if (!(flags & ENQUEUE_NOCLOCK))
1966 update_rq_clock(rq);
1967
1968 if (!(flags & ENQUEUE_RESTORE)) {
1969 sched_info_enqueue(rq, p);
1970 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1971 }
1972
1973 uclamp_rq_inc(rq, p);
1974 p->sched_class->enqueue_task(rq, p, flags);
1975
1976 if (sched_core_enabled(rq))
1977 sched_core_enqueue(rq, p);
1978}
1979
1980static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1981{
1982 if (sched_core_enabled(rq))
1983 sched_core_dequeue(rq, p);
1984
1985 if (!(flags & DEQUEUE_NOCLOCK))
1986 update_rq_clock(rq);
1987
1988 if (!(flags & DEQUEUE_SAVE)) {
1989 sched_info_dequeue(rq, p);
1990 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1991 }
1992
1993 uclamp_rq_dec(rq, p);
1994 p->sched_class->dequeue_task(rq, p, flags);
1995}
1996
1997void activate_task(struct rq *rq, struct task_struct *p, int flags)
1998{
1999 enqueue_task(rq, p, flags);
2000
2001 p->on_rq = TASK_ON_RQ_QUEUED;
2002}
2003
2004void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2005{
2006 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2007
2008 dequeue_task(rq, p, flags);
2009}
2010
2011static inline int __normal_prio(int policy, int rt_prio, int nice)
2012{
2013 int prio;
2014
2015 if (dl_policy(policy))
2016 prio = MAX_DL_PRIO - 1;
2017 else if (rt_policy(policy))
2018 prio = MAX_RT_PRIO - 1 - rt_prio;
2019 else
2020 prio = NICE_TO_PRIO(nice);
2021
2022 return prio;
2023}
2024
2025/*
2026 * Calculate the expected normal priority: i.e. priority
2027 * without taking RT-inheritance into account. Might be
2028 * boosted by interactivity modifiers. Changes upon fork,
2029 * setprio syscalls, and whenever the interactivity
2030 * estimator recalculates.
2031 */
2032static inline int normal_prio(struct task_struct *p)
2033{
2034 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2035}
2036
2037/*
2038 * Calculate the current priority, i.e. the priority
2039 * taken into account by the scheduler. This value might
2040 * be boosted by RT tasks, or might be boosted by
2041 * interactivity modifiers. Will be RT if the task got
2042 * RT-boosted. If not then it returns p->normal_prio.
2043 */
2044static int effective_prio(struct task_struct *p)
2045{
2046 p->normal_prio = normal_prio(p);
2047 /*
2048 * If we are RT tasks or we were boosted to RT priority,
2049 * keep the priority unchanged. Otherwise, update priority
2050 * to the normal priority:
2051 */
2052 if (!rt_prio(p->prio))
2053 return p->normal_prio;
2054 return p->prio;
2055}
2056
2057/**
2058 * task_curr - is this task currently executing on a CPU?
2059 * @p: the task in question.
2060 *
2061 * Return: 1 if the task is currently executing. 0 otherwise.
2062 */
2063inline int task_curr(const struct task_struct *p)
2064{
2065 return cpu_curr(task_cpu(p)) == p;
2066}
2067
2068/*
2069 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2070 * use the balance_callback list if you want balancing.
2071 *
2072 * this means any call to check_class_changed() must be followed by a call to
2073 * balance_callback().
2074 */
2075static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2076 const struct sched_class *prev_class,
2077 int oldprio)
2078{
2079 if (prev_class != p->sched_class) {
2080 if (prev_class->switched_from)
2081 prev_class->switched_from(rq, p);
2082
2083 p->sched_class->switched_to(rq, p);
2084 } else if (oldprio != p->prio || dl_task(p))
2085 p->sched_class->prio_changed(rq, p, oldprio);
2086}
2087
2088void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2089{
2090 if (p->sched_class == rq->curr->sched_class)
2091 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2092 else if (p->sched_class > rq->curr->sched_class)
2093 resched_curr(rq);
2094
2095 /*
2096 * A queue event has occurred, and we're going to schedule. In
2097 * this case, we can save a useless back to back clock update.
2098 */
2099 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2100 rq_clock_skip_update(rq);
2101}
2102
2103#ifdef CONFIG_SMP
2104
2105static void
2106__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2107
2108static int __set_cpus_allowed_ptr(struct task_struct *p,
2109 const struct cpumask *new_mask,
2110 u32 flags);
2111
2112static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2113{
2114 if (likely(!p->migration_disabled))
2115 return;
2116
2117 if (p->cpus_ptr != &p->cpus_mask)
2118 return;
2119
2120 /*
2121 * Violates locking rules! see comment in __do_set_cpus_allowed().
2122 */
2123 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2124}
2125
2126void migrate_disable(void)
2127{
2128 struct task_struct *p = current;
2129
2130 if (p->migration_disabled) {
2131 p->migration_disabled++;
2132 return;
2133 }
2134
2135 preempt_disable();
2136 this_rq()->nr_pinned++;
2137 p->migration_disabled = 1;
2138 preempt_enable();
2139}
2140EXPORT_SYMBOL_GPL(migrate_disable);
2141
2142void migrate_enable(void)
2143{
2144 struct task_struct *p = current;
2145
2146 if (p->migration_disabled > 1) {
2147 p->migration_disabled--;
2148 return;
2149 }
2150
2151 /*
2152 * Ensure stop_task runs either before or after this, and that
2153 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2154 */
2155 preempt_disable();
2156 if (p->cpus_ptr != &p->cpus_mask)
2157 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2158 /*
2159 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2160 * regular cpus_mask, otherwise things that race (eg.
2161 * select_fallback_rq) get confused.
2162 */
2163 barrier();
2164 p->migration_disabled = 0;
2165 this_rq()->nr_pinned--;
2166 preempt_enable();
2167}
2168EXPORT_SYMBOL_GPL(migrate_enable);
2169
2170static inline bool rq_has_pinned_tasks(struct rq *rq)
2171{
2172 return rq->nr_pinned;
2173}
2174
2175/*
2176 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2177 * __set_cpus_allowed_ptr() and select_fallback_rq().
2178 */
2179static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2180{
2181 /* When not in the task's cpumask, no point in looking further. */
2182 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2183 return false;
2184
2185 /* migrate_disabled() must be allowed to finish. */
2186 if (is_migration_disabled(p))
2187 return cpu_online(cpu);
2188
2189 /* Non kernel threads are not allowed during either online or offline. */
2190 if (!(p->flags & PF_KTHREAD))
2191 return cpu_active(cpu);
2192
2193 /* KTHREAD_IS_PER_CPU is always allowed. */
2194 if (kthread_is_per_cpu(p))
2195 return cpu_online(cpu);
2196
2197 /* Regular kernel threads don't get to stay during offline. */
2198 if (cpu_dying(cpu))
2199 return false;
2200
2201 /* But are allowed during online. */
2202 return cpu_online(cpu);
2203}
2204
2205/*
2206 * This is how migration works:
2207 *
2208 * 1) we invoke migration_cpu_stop() on the target CPU using
2209 * stop_one_cpu().
2210 * 2) stopper starts to run (implicitly forcing the migrated thread
2211 * off the CPU)
2212 * 3) it checks whether the migrated task is still in the wrong runqueue.
2213 * 4) if it's in the wrong runqueue then the migration thread removes
2214 * it and puts it into the right queue.
2215 * 5) stopper completes and stop_one_cpu() returns and the migration
2216 * is done.
2217 */
2218
2219/*
2220 * move_queued_task - move a queued task to new rq.
2221 *
2222 * Returns (locked) new rq. Old rq's lock is released.
2223 */
2224static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2225 struct task_struct *p, int new_cpu)
2226{
2227 lockdep_assert_rq_held(rq);
2228
2229 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2230 set_task_cpu(p, new_cpu);
2231 rq_unlock(rq, rf);
2232
2233 rq = cpu_rq(new_cpu);
2234
2235 rq_lock(rq, rf);
2236 BUG_ON(task_cpu(p) != new_cpu);
2237 activate_task(rq, p, 0);
2238 check_preempt_curr(rq, p, 0);
2239
2240 return rq;
2241}
2242
2243struct migration_arg {
2244 struct task_struct *task;
2245 int dest_cpu;
2246 struct set_affinity_pending *pending;
2247};
2248
2249/*
2250 * @refs: number of wait_for_completion()
2251 * @stop_pending: is @stop_work in use
2252 */
2253struct set_affinity_pending {
2254 refcount_t refs;
2255 unsigned int stop_pending;
2256 struct completion done;
2257 struct cpu_stop_work stop_work;
2258 struct migration_arg arg;
2259};
2260
2261/*
2262 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2263 * this because either it can't run here any more (set_cpus_allowed()
2264 * away from this CPU, or CPU going down), or because we're
2265 * attempting to rebalance this task on exec (sched_exec).
2266 *
2267 * So we race with normal scheduler movements, but that's OK, as long
2268 * as the task is no longer on this CPU.
2269 */
2270static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2271 struct task_struct *p, int dest_cpu)
2272{
2273 /* Affinity changed (again). */
2274 if (!is_cpu_allowed(p, dest_cpu))
2275 return rq;
2276
2277 update_rq_clock(rq);
2278 rq = move_queued_task(rq, rf, p, dest_cpu);
2279
2280 return rq;
2281}
2282
2283/*
2284 * migration_cpu_stop - this will be executed by a highprio stopper thread
2285 * and performs thread migration by bumping thread off CPU then
2286 * 'pushing' onto another runqueue.
2287 */
2288static int migration_cpu_stop(void *data)
2289{
2290 struct migration_arg *arg = data;
2291 struct set_affinity_pending *pending = arg->pending;
2292 struct task_struct *p = arg->task;
2293 struct rq *rq = this_rq();
2294 bool complete = false;
2295 struct rq_flags rf;
2296
2297 /*
2298 * The original target CPU might have gone down and we might
2299 * be on another CPU but it doesn't matter.
2300 */
2301 local_irq_save(rf.flags);
2302 /*
2303 * We need to explicitly wake pending tasks before running
2304 * __migrate_task() such that we will not miss enforcing cpus_ptr
2305 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2306 */
2307 flush_smp_call_function_from_idle();
2308
2309 raw_spin_lock(&p->pi_lock);
2310 rq_lock(rq, &rf);
2311
2312 /*
2313 * If we were passed a pending, then ->stop_pending was set, thus
2314 * p->migration_pending must have remained stable.
2315 */
2316 WARN_ON_ONCE(pending && pending != p->migration_pending);
2317
2318 /*
2319 * If task_rq(p) != rq, it cannot be migrated here, because we're
2320 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2321 * we're holding p->pi_lock.
2322 */
2323 if (task_rq(p) == rq) {
2324 if (is_migration_disabled(p))
2325 goto out;
2326
2327 if (pending) {
2328 p->migration_pending = NULL;
2329 complete = true;
2330
2331 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2332 goto out;
2333 }
2334
2335 if (task_on_rq_queued(p))
2336 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2337 else
2338 p->wake_cpu = arg->dest_cpu;
2339
2340 /*
2341 * XXX __migrate_task() can fail, at which point we might end
2342 * up running on a dodgy CPU, AFAICT this can only happen
2343 * during CPU hotplug, at which point we'll get pushed out
2344 * anyway, so it's probably not a big deal.
2345 */
2346
2347 } else if (pending) {
2348 /*
2349 * This happens when we get migrated between migrate_enable()'s
2350 * preempt_enable() and scheduling the stopper task. At that
2351 * point we're a regular task again and not current anymore.
2352 *
2353 * A !PREEMPT kernel has a giant hole here, which makes it far
2354 * more likely.
2355 */
2356
2357 /*
2358 * The task moved before the stopper got to run. We're holding
2359 * ->pi_lock, so the allowed mask is stable - if it got
2360 * somewhere allowed, we're done.
2361 */
2362 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2363 p->migration_pending = NULL;
2364 complete = true;
2365 goto out;
2366 }
2367
2368 /*
2369 * When migrate_enable() hits a rq mis-match we can't reliably
2370 * determine is_migration_disabled() and so have to chase after
2371 * it.
2372 */
2373 WARN_ON_ONCE(!pending->stop_pending);
2374 task_rq_unlock(rq, p, &rf);
2375 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2376 &pending->arg, &pending->stop_work);
2377 return 0;
2378 }
2379out:
2380 if (pending)
2381 pending->stop_pending = false;
2382 task_rq_unlock(rq, p, &rf);
2383
2384 if (complete)
2385 complete_all(&pending->done);
2386
2387 return 0;
2388}
2389
2390int push_cpu_stop(void *arg)
2391{
2392 struct rq *lowest_rq = NULL, *rq = this_rq();
2393 struct task_struct *p = arg;
2394
2395 raw_spin_lock_irq(&p->pi_lock);
2396 raw_spin_rq_lock(rq);
2397
2398 if (task_rq(p) != rq)
2399 goto out_unlock;
2400
2401 if (is_migration_disabled(p)) {
2402 p->migration_flags |= MDF_PUSH;
2403 goto out_unlock;
2404 }
2405
2406 p->migration_flags &= ~MDF_PUSH;
2407
2408 if (p->sched_class->find_lock_rq)
2409 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2410
2411 if (!lowest_rq)
2412 goto out_unlock;
2413
2414 // XXX validate p is still the highest prio task
2415 if (task_rq(p) == rq) {
2416 deactivate_task(rq, p, 0);
2417 set_task_cpu(p, lowest_rq->cpu);
2418 activate_task(lowest_rq, p, 0);
2419 resched_curr(lowest_rq);
2420 }
2421
2422 double_unlock_balance(rq, lowest_rq);
2423
2424out_unlock:
2425 rq->push_busy = false;
2426 raw_spin_rq_unlock(rq);
2427 raw_spin_unlock_irq(&p->pi_lock);
2428
2429 put_task_struct(p);
2430 return 0;
2431}
2432
2433/*
2434 * sched_class::set_cpus_allowed must do the below, but is not required to
2435 * actually call this function.
2436 */
2437void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2438{
2439 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2440 p->cpus_ptr = new_mask;
2441 return;
2442 }
2443
2444 cpumask_copy(&p->cpus_mask, new_mask);
2445 p->nr_cpus_allowed = cpumask_weight(new_mask);
2446}
2447
2448static void
2449__do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2450{
2451 struct rq *rq = task_rq(p);
2452 bool queued, running;
2453
2454 /*
2455 * This here violates the locking rules for affinity, since we're only
2456 * supposed to change these variables while holding both rq->lock and
2457 * p->pi_lock.
2458 *
2459 * HOWEVER, it magically works, because ttwu() is the only code that
2460 * accesses these variables under p->pi_lock and only does so after
2461 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2462 * before finish_task().
2463 *
2464 * XXX do further audits, this smells like something putrid.
2465 */
2466 if (flags & SCA_MIGRATE_DISABLE)
2467 SCHED_WARN_ON(!p->on_cpu);
2468 else
2469 lockdep_assert_held(&p->pi_lock);
2470
2471 queued = task_on_rq_queued(p);
2472 running = task_current(rq, p);
2473
2474 if (queued) {
2475 /*
2476 * Because __kthread_bind() calls this on blocked tasks without
2477 * holding rq->lock.
2478 */
2479 lockdep_assert_rq_held(rq);
2480 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2481 }
2482 if (running)
2483 put_prev_task(rq, p);
2484
2485 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2486
2487 if (queued)
2488 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2489 if (running)
2490 set_next_task(rq, p);
2491}
2492
2493void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2494{
2495 __do_set_cpus_allowed(p, new_mask, 0);
2496}
2497
2498/*
2499 * This function is wildly self concurrent; here be dragons.
2500 *
2501 *
2502 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2503 * designated task is enqueued on an allowed CPU. If that task is currently
2504 * running, we have to kick it out using the CPU stopper.
2505 *
2506 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2507 * Consider:
2508 *
2509 * Initial conditions: P0->cpus_mask = [0, 1]
2510 *
2511 * P0@CPU0 P1
2512 *
2513 * migrate_disable();
2514 * <preempted>
2515 * set_cpus_allowed_ptr(P0, [1]);
2516 *
2517 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2518 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2519 * This means we need the following scheme:
2520 *
2521 * P0@CPU0 P1
2522 *
2523 * migrate_disable();
2524 * <preempted>
2525 * set_cpus_allowed_ptr(P0, [1]);
2526 * <blocks>
2527 * <resumes>
2528 * migrate_enable();
2529 * __set_cpus_allowed_ptr();
2530 * <wakes local stopper>
2531 * `--> <woken on migration completion>
2532 *
2533 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2534 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2535 * task p are serialized by p->pi_lock, which we can leverage: the one that
2536 * should come into effect at the end of the Migrate-Disable region is the last
2537 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2538 * but we still need to properly signal those waiting tasks at the appropriate
2539 * moment.
2540 *
2541 * This is implemented using struct set_affinity_pending. The first
2542 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2543 * setup an instance of that struct and install it on the targeted task_struct.
2544 * Any and all further callers will reuse that instance. Those then wait for
2545 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2546 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2547 *
2548 *
2549 * (1) In the cases covered above. There is one more where the completion is
2550 * signaled within affine_move_task() itself: when a subsequent affinity request
2551 * occurs after the stopper bailed out due to the targeted task still being
2552 * Migrate-Disable. Consider:
2553 *
2554 * Initial conditions: P0->cpus_mask = [0, 1]
2555 *
2556 * CPU0 P1 P2
2557 * <P0>
2558 * migrate_disable();
2559 * <preempted>
2560 * set_cpus_allowed_ptr(P0, [1]);
2561 * <blocks>
2562 * <migration/0>
2563 * migration_cpu_stop()
2564 * is_migration_disabled()
2565 * <bails>
2566 * set_cpus_allowed_ptr(P0, [0, 1]);
2567 * <signal completion>
2568 * <awakes>
2569 *
2570 * Note that the above is safe vs a concurrent migrate_enable(), as any
2571 * pending affinity completion is preceded by an uninstallation of
2572 * p->migration_pending done with p->pi_lock held.
2573 */
2574static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2575 int dest_cpu, unsigned int flags)
2576{
2577 struct set_affinity_pending my_pending = { }, *pending = NULL;
2578 bool stop_pending, complete = false;
2579
2580 /* Can the task run on the task's current CPU? If so, we're done */
2581 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2582 struct task_struct *push_task = NULL;
2583
2584 if ((flags & SCA_MIGRATE_ENABLE) &&
2585 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2586 rq->push_busy = true;
2587 push_task = get_task_struct(p);
2588 }
2589
2590 /*
2591 * If there are pending waiters, but no pending stop_work,
2592 * then complete now.
2593 */
2594 pending = p->migration_pending;
2595 if (pending && !pending->stop_pending) {
2596 p->migration_pending = NULL;
2597 complete = true;
2598 }
2599
2600 task_rq_unlock(rq, p, rf);
2601
2602 if (push_task) {
2603 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2604 p, &rq->push_work);
2605 }
2606
2607 if (complete)
2608 complete_all(&pending->done);
2609
2610 return 0;
2611 }
2612
2613 if (!(flags & SCA_MIGRATE_ENABLE)) {
2614 /* serialized by p->pi_lock */
2615 if (!p->migration_pending) {
2616 /* Install the request */
2617 refcount_set(&my_pending.refs, 1);
2618 init_completion(&my_pending.done);
2619 my_pending.arg = (struct migration_arg) {
2620 .task = p,
2621 .dest_cpu = dest_cpu,
2622 .pending = &my_pending,
2623 };
2624
2625 p->migration_pending = &my_pending;
2626 } else {
2627 pending = p->migration_pending;
2628 refcount_inc(&pending->refs);
2629 /*
2630 * Affinity has changed, but we've already installed a
2631 * pending. migration_cpu_stop() *must* see this, else
2632 * we risk a completion of the pending despite having a
2633 * task on a disallowed CPU.
2634 *
2635 * Serialized by p->pi_lock, so this is safe.
2636 */
2637 pending->arg.dest_cpu = dest_cpu;
2638 }
2639 }
2640 pending = p->migration_pending;
2641 /*
2642 * - !MIGRATE_ENABLE:
2643 * we'll have installed a pending if there wasn't one already.
2644 *
2645 * - MIGRATE_ENABLE:
2646 * we're here because the current CPU isn't matching anymore,
2647 * the only way that can happen is because of a concurrent
2648 * set_cpus_allowed_ptr() call, which should then still be
2649 * pending completion.
2650 *
2651 * Either way, we really should have a @pending here.
2652 */
2653 if (WARN_ON_ONCE(!pending)) {
2654 task_rq_unlock(rq, p, rf);
2655 return -EINVAL;
2656 }
2657
2658 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2659 /*
2660 * MIGRATE_ENABLE gets here because 'p == current', but for
2661 * anything else we cannot do is_migration_disabled(), punt
2662 * and have the stopper function handle it all race-free.
2663 */
2664 stop_pending = pending->stop_pending;
2665 if (!stop_pending)
2666 pending->stop_pending = true;
2667
2668 if (flags & SCA_MIGRATE_ENABLE)
2669 p->migration_flags &= ~MDF_PUSH;
2670
2671 task_rq_unlock(rq, p, rf);
2672
2673 if (!stop_pending) {
2674 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2675 &pending->arg, &pending->stop_work);
2676 }
2677
2678 if (flags & SCA_MIGRATE_ENABLE)
2679 return 0;
2680 } else {
2681
2682 if (!is_migration_disabled(p)) {
2683 if (task_on_rq_queued(p))
2684 rq = move_queued_task(rq, rf, p, dest_cpu);
2685
2686 if (!pending->stop_pending) {
2687 p->migration_pending = NULL;
2688 complete = true;
2689 }
2690 }
2691 task_rq_unlock(rq, p, rf);
2692
2693 if (complete)
2694 complete_all(&pending->done);
2695 }
2696
2697 wait_for_completion(&pending->done);
2698
2699 if (refcount_dec_and_test(&pending->refs))
2700 wake_up_var(&pending->refs); /* No UaF, just an address */
2701
2702 /*
2703 * Block the original owner of &pending until all subsequent callers
2704 * have seen the completion and decremented the refcount
2705 */
2706 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2707
2708 /* ARGH */
2709 WARN_ON_ONCE(my_pending.stop_pending);
2710
2711 return 0;
2712}
2713
2714/*
2715 * Change a given task's CPU affinity. Migrate the thread to a
2716 * proper CPU and schedule it away if the CPU it's executing on
2717 * is removed from the allowed bitmask.
2718 *
2719 * NOTE: the caller must have a valid reference to the task, the
2720 * task must not exit() & deallocate itself prematurely. The
2721 * call is not atomic; no spinlocks may be held.
2722 */
2723static int __set_cpus_allowed_ptr(struct task_struct *p,
2724 const struct cpumask *new_mask,
2725 u32 flags)
2726{
2727 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2728 unsigned int dest_cpu;
2729 struct rq_flags rf;
2730 struct rq *rq;
2731 int ret = 0;
2732
2733 rq = task_rq_lock(p, &rf);
2734 update_rq_clock(rq);
2735
2736 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2737 /*
2738 * Kernel threads are allowed on online && !active CPUs,
2739 * however, during cpu-hot-unplug, even these might get pushed
2740 * away if not KTHREAD_IS_PER_CPU.
2741 *
2742 * Specifically, migration_disabled() tasks must not fail the
2743 * cpumask_any_and_distribute() pick below, esp. so on
2744 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2745 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2746 */
2747 cpu_valid_mask = cpu_online_mask;
2748 }
2749
2750 /*
2751 * Must re-check here, to close a race against __kthread_bind(),
2752 * sched_setaffinity() is not guaranteed to observe the flag.
2753 */
2754 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2755 ret = -EINVAL;
2756 goto out;
2757 }
2758
2759 if (!(flags & SCA_MIGRATE_ENABLE)) {
2760 if (cpumask_equal(&p->cpus_mask, new_mask))
2761 goto out;
2762
2763 if (WARN_ON_ONCE(p == current &&
2764 is_migration_disabled(p) &&
2765 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2766 ret = -EBUSY;
2767 goto out;
2768 }
2769 }
2770
2771 /*
2772 * Picking a ~random cpu helps in cases where we are changing affinity
2773 * for groups of tasks (ie. cpuset), so that load balancing is not
2774 * immediately required to distribute the tasks within their new mask.
2775 */
2776 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2777 if (dest_cpu >= nr_cpu_ids) {
2778 ret = -EINVAL;
2779 goto out;
2780 }
2781
2782 __do_set_cpus_allowed(p, new_mask, flags);
2783
2784 return affine_move_task(rq, p, &rf, dest_cpu, flags);
2785
2786out:
2787 task_rq_unlock(rq, p, &rf);
2788
2789 return ret;
2790}
2791
2792int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2793{
2794 return __set_cpus_allowed_ptr(p, new_mask, 0);
2795}
2796EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2797
2798void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2799{
2800#ifdef CONFIG_SCHED_DEBUG
2801 unsigned int state = READ_ONCE(p->__state);
2802
2803 /*
2804 * We should never call set_task_cpu() on a blocked task,
2805 * ttwu() will sort out the placement.
2806 */
2807 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2808
2809 /*
2810 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2811 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2812 * time relying on p->on_rq.
2813 */
2814 WARN_ON_ONCE(state == TASK_RUNNING &&
2815 p->sched_class == &fair_sched_class &&
2816 (p->on_rq && !task_on_rq_migrating(p)));
2817
2818#ifdef CONFIG_LOCKDEP
2819 /*
2820 * The caller should hold either p->pi_lock or rq->lock, when changing
2821 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2822 *
2823 * sched_move_task() holds both and thus holding either pins the cgroup,
2824 * see task_group().
2825 *
2826 * Furthermore, all task_rq users should acquire both locks, see
2827 * task_rq_lock().
2828 */
2829 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2830 lockdep_is_held(__rq_lockp(task_rq(p)))));
2831#endif
2832 /*
2833 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2834 */
2835 WARN_ON_ONCE(!cpu_online(new_cpu));
2836
2837 WARN_ON_ONCE(is_migration_disabled(p));
2838#endif
2839
2840 trace_sched_migrate_task(p, new_cpu);
2841
2842 if (task_cpu(p) != new_cpu) {
2843 if (p->sched_class->migrate_task_rq)
2844 p->sched_class->migrate_task_rq(p, new_cpu);
2845 p->se.nr_migrations++;
2846 rseq_migrate(p);
2847 perf_event_task_migrate(p);
2848 }
2849
2850 __set_task_cpu(p, new_cpu);
2851}
2852
2853#ifdef CONFIG_NUMA_BALANCING
2854static void __migrate_swap_task(struct task_struct *p, int cpu)
2855{
2856 if (task_on_rq_queued(p)) {
2857 struct rq *src_rq, *dst_rq;
2858 struct rq_flags srf, drf;
2859
2860 src_rq = task_rq(p);
2861 dst_rq = cpu_rq(cpu);
2862
2863 rq_pin_lock(src_rq, &srf);
2864 rq_pin_lock(dst_rq, &drf);
2865
2866 deactivate_task(src_rq, p, 0);
2867 set_task_cpu(p, cpu);
2868 activate_task(dst_rq, p, 0);
2869 check_preempt_curr(dst_rq, p, 0);
2870
2871 rq_unpin_lock(dst_rq, &drf);
2872 rq_unpin_lock(src_rq, &srf);
2873
2874 } else {
2875 /*
2876 * Task isn't running anymore; make it appear like we migrated
2877 * it before it went to sleep. This means on wakeup we make the
2878 * previous CPU our target instead of where it really is.
2879 */
2880 p->wake_cpu = cpu;
2881 }
2882}
2883
2884struct migration_swap_arg {
2885 struct task_struct *src_task, *dst_task;
2886 int src_cpu, dst_cpu;
2887};
2888
2889static int migrate_swap_stop(void *data)
2890{
2891 struct migration_swap_arg *arg = data;
2892 struct rq *src_rq, *dst_rq;
2893 int ret = -EAGAIN;
2894
2895 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2896 return -EAGAIN;
2897
2898 src_rq = cpu_rq(arg->src_cpu);
2899 dst_rq = cpu_rq(arg->dst_cpu);
2900
2901 double_raw_lock(&arg->src_task->pi_lock,
2902 &arg->dst_task->pi_lock);
2903 double_rq_lock(src_rq, dst_rq);
2904
2905 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2906 goto unlock;
2907
2908 if (task_cpu(arg->src_task) != arg->src_cpu)
2909 goto unlock;
2910
2911 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2912 goto unlock;
2913
2914 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2915 goto unlock;
2916
2917 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2918 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2919
2920 ret = 0;
2921
2922unlock:
2923 double_rq_unlock(src_rq, dst_rq);
2924 raw_spin_unlock(&arg->dst_task->pi_lock);
2925 raw_spin_unlock(&arg->src_task->pi_lock);
2926
2927 return ret;
2928}
2929
2930/*
2931 * Cross migrate two tasks
2932 */
2933int migrate_swap(struct task_struct *cur, struct task_struct *p,
2934 int target_cpu, int curr_cpu)
2935{
2936 struct migration_swap_arg arg;
2937 int ret = -EINVAL;
2938
2939 arg = (struct migration_swap_arg){
2940 .src_task = cur,
2941 .src_cpu = curr_cpu,
2942 .dst_task = p,
2943 .dst_cpu = target_cpu,
2944 };
2945
2946 if (arg.src_cpu == arg.dst_cpu)
2947 goto out;
2948
2949 /*
2950 * These three tests are all lockless; this is OK since all of them
2951 * will be re-checked with proper locks held further down the line.
2952 */
2953 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2954 goto out;
2955
2956 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2957 goto out;
2958
2959 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2960 goto out;
2961
2962 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2963 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2964
2965out:
2966 return ret;
2967}
2968#endif /* CONFIG_NUMA_BALANCING */
2969
2970/*
2971 * wait_task_inactive - wait for a thread to unschedule.
2972 *
2973 * If @match_state is nonzero, it's the @p->state value just checked and
2974 * not expected to change. If it changes, i.e. @p might have woken up,
2975 * then return zero. When we succeed in waiting for @p to be off its CPU,
2976 * we return a positive number (its total switch count). If a second call
2977 * a short while later returns the same number, the caller can be sure that
2978 * @p has remained unscheduled the whole time.
2979 *
2980 * The caller must ensure that the task *will* unschedule sometime soon,
2981 * else this function might spin for a *long* time. This function can't
2982 * be called with interrupts off, or it may introduce deadlock with
2983 * smp_call_function() if an IPI is sent by the same process we are
2984 * waiting to become inactive.
2985 */
2986unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2987{
2988 int running, queued;
2989 struct rq_flags rf;
2990 unsigned long ncsw;
2991 struct rq *rq;
2992
2993 for (;;) {
2994 /*
2995 * We do the initial early heuristics without holding
2996 * any task-queue locks at all. We'll only try to get
2997 * the runqueue lock when things look like they will
2998 * work out!
2999 */
3000 rq = task_rq(p);
3001
3002 /*
3003 * If the task is actively running on another CPU
3004 * still, just relax and busy-wait without holding
3005 * any locks.
3006 *
3007 * NOTE! Since we don't hold any locks, it's not
3008 * even sure that "rq" stays as the right runqueue!
3009 * But we don't care, since "task_running()" will
3010 * return false if the runqueue has changed and p
3011 * is actually now running somewhere else!
3012 */
3013 while (task_running(rq, p)) {
3014 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3015 return 0;
3016 cpu_relax();
3017 }
3018
3019 /*
3020 * Ok, time to look more closely! We need the rq
3021 * lock now, to be *sure*. If we're wrong, we'll
3022 * just go back and repeat.
3023 */
3024 rq = task_rq_lock(p, &rf);
3025 trace_sched_wait_task(p);
3026 running = task_running(rq, p);
3027 queued = task_on_rq_queued(p);
3028 ncsw = 0;
3029 if (!match_state || READ_ONCE(p->__state) == match_state)
3030 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3031 task_rq_unlock(rq, p, &rf);
3032
3033 /*
3034 * If it changed from the expected state, bail out now.
3035 */
3036 if (unlikely(!ncsw))
3037 break;
3038
3039 /*
3040 * Was it really running after all now that we
3041 * checked with the proper locks actually held?
3042 *
3043 * Oops. Go back and try again..
3044 */
3045 if (unlikely(running)) {
3046 cpu_relax();
3047 continue;
3048 }
3049
3050 /*
3051 * It's not enough that it's not actively running,
3052 * it must be off the runqueue _entirely_, and not
3053 * preempted!
3054 *
3055 * So if it was still runnable (but just not actively
3056 * running right now), it's preempted, and we should
3057 * yield - it could be a while.
3058 */
3059 if (unlikely(queued)) {
3060 ktime_t to = NSEC_PER_SEC / HZ;
3061
3062 set_current_state(TASK_UNINTERRUPTIBLE);
3063 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3064 continue;
3065 }
3066
3067 /*
3068 * Ahh, all good. It wasn't running, and it wasn't
3069 * runnable, which means that it will never become
3070 * running in the future either. We're all done!
3071 */
3072 break;
3073 }
3074
3075 return ncsw;
3076}
3077
3078/***
3079 * kick_process - kick a running thread to enter/exit the kernel
3080 * @p: the to-be-kicked thread
3081 *
3082 * Cause a process which is running on another CPU to enter
3083 * kernel-mode, without any delay. (to get signals handled.)
3084 *
3085 * NOTE: this function doesn't have to take the runqueue lock,
3086 * because all it wants to ensure is that the remote task enters
3087 * the kernel. If the IPI races and the task has been migrated
3088 * to another CPU then no harm is done and the purpose has been
3089 * achieved as well.
3090 */
3091void kick_process(struct task_struct *p)
3092{
3093 int cpu;
3094
3095 preempt_disable();
3096 cpu = task_cpu(p);
3097 if ((cpu != smp_processor_id()) && task_curr(p))
3098 smp_send_reschedule(cpu);
3099 preempt_enable();
3100}
3101EXPORT_SYMBOL_GPL(kick_process);
3102
3103/*
3104 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3105 *
3106 * A few notes on cpu_active vs cpu_online:
3107 *
3108 * - cpu_active must be a subset of cpu_online
3109 *
3110 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3111 * see __set_cpus_allowed_ptr(). At this point the newly online
3112 * CPU isn't yet part of the sched domains, and balancing will not
3113 * see it.
3114 *
3115 * - on CPU-down we clear cpu_active() to mask the sched domains and
3116 * avoid the load balancer to place new tasks on the to be removed
3117 * CPU. Existing tasks will remain running there and will be taken
3118 * off.
3119 *
3120 * This means that fallback selection must not select !active CPUs.
3121 * And can assume that any active CPU must be online. Conversely
3122 * select_task_rq() below may allow selection of !active CPUs in order
3123 * to satisfy the above rules.
3124 */
3125static int select_fallback_rq(int cpu, struct task_struct *p)
3126{
3127 int nid = cpu_to_node(cpu);
3128 const struct cpumask *nodemask = NULL;
3129 enum { cpuset, possible, fail } state = cpuset;
3130 int dest_cpu;
3131
3132 /*
3133 * If the node that the CPU is on has been offlined, cpu_to_node()
3134 * will return -1. There is no CPU on the node, and we should
3135 * select the CPU on the other node.
3136 */
3137 if (nid != -1) {
3138 nodemask = cpumask_of_node(nid);
3139
3140 /* Look for allowed, online CPU in same node. */
3141 for_each_cpu(dest_cpu, nodemask) {
3142 if (!cpu_active(dest_cpu))
3143 continue;
3144 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
3145 return dest_cpu;
3146 }
3147 }
3148
3149 for (;;) {
3150 /* Any allowed, online CPU? */
3151 for_each_cpu(dest_cpu, p->cpus_ptr) {
3152 if (!is_cpu_allowed(p, dest_cpu))
3153 continue;
3154
3155 goto out;
3156 }
3157
3158 /* No more Mr. Nice Guy. */
3159 switch (state) {
3160 case cpuset:
3161 if (IS_ENABLED(CONFIG_CPUSETS)) {
3162 cpuset_cpus_allowed_fallback(p);
3163 state = possible;
3164 break;
3165 }
3166 fallthrough;
3167 case possible:
3168 /*
3169 * XXX When called from select_task_rq() we only
3170 * hold p->pi_lock and again violate locking order.
3171 *
3172 * More yuck to audit.
3173 */
3174 do_set_cpus_allowed(p, cpu_possible_mask);
3175 state = fail;
3176 break;
3177
3178 case fail:
3179 BUG();
3180 break;
3181 }
3182 }
3183
3184out:
3185 if (state != cpuset) {
3186 /*
3187 * Don't tell them about moving exiting tasks or
3188 * kernel threads (both mm NULL), since they never
3189 * leave kernel.
3190 */
3191 if (p->mm && printk_ratelimit()) {
3192 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3193 task_pid_nr(p), p->comm, cpu);
3194 }
3195 }
3196
3197 return dest_cpu;
3198}
3199
3200/*
3201 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3202 */
3203static inline
3204int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3205{
3206 lockdep_assert_held(&p->pi_lock);
3207
3208 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3209 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3210 else
3211 cpu = cpumask_any(p->cpus_ptr);
3212
3213 /*
3214 * In order not to call set_task_cpu() on a blocking task we need
3215 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3216 * CPU.
3217 *
3218 * Since this is common to all placement strategies, this lives here.
3219 *
3220 * [ this allows ->select_task() to simply return task_cpu(p) and
3221 * not worry about this generic constraint ]
3222 */
3223 if (unlikely(!is_cpu_allowed(p, cpu)))
3224 cpu = select_fallback_rq(task_cpu(p), p);
3225
3226 return cpu;
3227}
3228
3229void sched_set_stop_task(int cpu, struct task_struct *stop)
3230{
3231 static struct lock_class_key stop_pi_lock;
3232 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3233 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3234
3235 if (stop) {
3236 /*
3237 * Make it appear like a SCHED_FIFO task, its something
3238 * userspace knows about and won't get confused about.
3239 *
3240 * Also, it will make PI more or less work without too
3241 * much confusion -- but then, stop work should not
3242 * rely on PI working anyway.
3243 */
3244 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3245
3246 stop->sched_class = &stop_sched_class;
3247
3248 /*
3249 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3250 * adjust the effective priority of a task. As a result,
3251 * rt_mutex_setprio() can trigger (RT) balancing operations,
3252 * which can then trigger wakeups of the stop thread to push
3253 * around the current task.
3254 *
3255 * The stop task itself will never be part of the PI-chain, it
3256 * never blocks, therefore that ->pi_lock recursion is safe.
3257 * Tell lockdep about this by placing the stop->pi_lock in its
3258 * own class.
3259 */
3260 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3261 }
3262
3263 cpu_rq(cpu)->stop = stop;
3264
3265 if (old_stop) {
3266 /*
3267 * Reset it back to a normal scheduling class so that
3268 * it can die in pieces.
3269 */
3270 old_stop->sched_class = &rt_sched_class;
3271 }
3272}
3273
3274#else /* CONFIG_SMP */
3275
3276static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3277 const struct cpumask *new_mask,
3278 u32 flags)
3279{
3280 return set_cpus_allowed_ptr(p, new_mask);
3281}
3282
3283static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3284
3285static inline bool rq_has_pinned_tasks(struct rq *rq)
3286{
3287 return false;
3288}
3289
3290#endif /* !CONFIG_SMP */
3291
3292static void
3293ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3294{
3295 struct rq *rq;
3296
3297 if (!schedstat_enabled())
3298 return;
3299
3300 rq = this_rq();
3301
3302#ifdef CONFIG_SMP
3303 if (cpu == rq->cpu) {
3304 __schedstat_inc(rq->ttwu_local);
3305 __schedstat_inc(p->se.statistics.nr_wakeups_local);
3306 } else {
3307 struct sched_domain *sd;
3308
3309 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
3310 rcu_read_lock();
3311 for_each_domain(rq->cpu, sd) {
3312 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3313 __schedstat_inc(sd->ttwu_wake_remote);
3314 break;
3315 }
3316 }
3317 rcu_read_unlock();
3318 }
3319
3320 if (wake_flags & WF_MIGRATED)
3321 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3322#endif /* CONFIG_SMP */
3323
3324 __schedstat_inc(rq->ttwu_count);
3325 __schedstat_inc(p->se.statistics.nr_wakeups);
3326
3327 if (wake_flags & WF_SYNC)
3328 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
3329}
3330
3331/*
3332 * Mark the task runnable and perform wakeup-preemption.
3333 */
3334static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3335 struct rq_flags *rf)
3336{
3337 check_preempt_curr(rq, p, wake_flags);
3338 WRITE_ONCE(p->__state, TASK_RUNNING);
3339 trace_sched_wakeup(p);
3340
3341#ifdef CONFIG_SMP
3342 if (p->sched_class->task_woken) {
3343 /*
3344 * Our task @p is fully woken up and running; so it's safe to
3345 * drop the rq->lock, hereafter rq is only used for statistics.
3346 */
3347 rq_unpin_lock(rq, rf);
3348 p->sched_class->task_woken(rq, p);
3349 rq_repin_lock(rq, rf);
3350 }
3351
3352 if (rq->idle_stamp) {
3353 u64 delta = rq_clock(rq) - rq->idle_stamp;
3354 u64 max = 2*rq->max_idle_balance_cost;
3355
3356 update_avg(&rq->avg_idle, delta);
3357
3358 if (rq->avg_idle > max)
3359 rq->avg_idle = max;
3360
3361 rq->wake_stamp = jiffies;
3362 rq->wake_avg_idle = rq->avg_idle / 2;
3363
3364 rq->idle_stamp = 0;
3365 }
3366#endif
3367}
3368
3369static void
3370ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3371 struct rq_flags *rf)
3372{
3373 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3374
3375 lockdep_assert_rq_held(rq);
3376
3377 if (p->sched_contributes_to_load)
3378 rq->nr_uninterruptible--;
3379
3380#ifdef CONFIG_SMP
3381 if (wake_flags & WF_MIGRATED)
3382 en_flags |= ENQUEUE_MIGRATED;
3383 else
3384#endif
3385 if (p->in_iowait) {
3386 delayacct_blkio_end(p);
3387 atomic_dec(&task_rq(p)->nr_iowait);
3388 }
3389
3390 activate_task(rq, p, en_flags);
3391 ttwu_do_wakeup(rq, p, wake_flags, rf);
3392}
3393
3394/*
3395 * Consider @p being inside a wait loop:
3396 *
3397 * for (;;) {
3398 * set_current_state(TASK_UNINTERRUPTIBLE);
3399 *
3400 * if (CONDITION)
3401 * break;
3402 *
3403 * schedule();
3404 * }
3405 * __set_current_state(TASK_RUNNING);
3406 *
3407 * between set_current_state() and schedule(). In this case @p is still
3408 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3409 * an atomic manner.
3410 *
3411 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3412 * then schedule() must still happen and p->state can be changed to
3413 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3414 * need to do a full wakeup with enqueue.
3415 *
3416 * Returns: %true when the wakeup is done,
3417 * %false otherwise.
3418 */
3419static int ttwu_runnable(struct task_struct *p, int wake_flags)
3420{
3421 struct rq_flags rf;
3422 struct rq *rq;
3423 int ret = 0;
3424
3425 rq = __task_rq_lock(p, &rf);
3426 if (task_on_rq_queued(p)) {
3427 /* check_preempt_curr() may use rq clock */
3428 update_rq_clock(rq);
3429 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3430 ret = 1;
3431 }
3432 __task_rq_unlock(rq, &rf);
3433
3434 return ret;
3435}
3436
3437#ifdef CONFIG_SMP
3438void sched_ttwu_pending(void *arg)
3439{
3440 struct llist_node *llist = arg;
3441 struct rq *rq = this_rq();
3442 struct task_struct *p, *t;
3443 struct rq_flags rf;
3444
3445 if (!llist)
3446 return;
3447
3448 /*
3449 * rq::ttwu_pending racy indication of out-standing wakeups.
3450 * Races such that false-negatives are possible, since they
3451 * are shorter lived that false-positives would be.
3452 */
3453 WRITE_ONCE(rq->ttwu_pending, 0);
3454
3455 rq_lock_irqsave(rq, &rf);
3456 update_rq_clock(rq);
3457
3458 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3459 if (WARN_ON_ONCE(p->on_cpu))
3460 smp_cond_load_acquire(&p->on_cpu, !VAL);
3461
3462 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3463 set_task_cpu(p, cpu_of(rq));
3464
3465 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3466 }
3467
3468 rq_unlock_irqrestore(rq, &rf);
3469}
3470
3471void send_call_function_single_ipi(int cpu)
3472{
3473 struct rq *rq = cpu_rq(cpu);
3474
3475 if (!set_nr_if_polling(rq->idle))
3476 arch_send_call_function_single_ipi(cpu);
3477 else
3478 trace_sched_wake_idle_without_ipi(cpu);
3479}
3480
3481/*
3482 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3483 * necessary. The wakee CPU on receipt of the IPI will queue the task
3484 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3485 * of the wakeup instead of the waker.
3486 */
3487static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3488{
3489 struct rq *rq = cpu_rq(cpu);
3490
3491 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3492
3493 WRITE_ONCE(rq->ttwu_pending, 1);
3494 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3495}
3496
3497void wake_up_if_idle(int cpu)
3498{
3499 struct rq *rq = cpu_rq(cpu);
3500 struct rq_flags rf;
3501
3502 rcu_read_lock();
3503
3504 if (!is_idle_task(rcu_dereference(rq->curr)))
3505 goto out;
3506
3507 if (set_nr_if_polling(rq->idle)) {
3508 trace_sched_wake_idle_without_ipi(cpu);
3509 } else {
3510 rq_lock_irqsave(rq, &rf);
3511 if (is_idle_task(rq->curr))
3512 smp_send_reschedule(cpu);
3513 /* Else CPU is not idle, do nothing here: */
3514 rq_unlock_irqrestore(rq, &rf);
3515 }
3516
3517out:
3518 rcu_read_unlock();
3519}
3520
3521bool cpus_share_cache(int this_cpu, int that_cpu)
3522{
3523 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3524}
3525
3526static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3527{
3528 /*
3529 * Do not complicate things with the async wake_list while the CPU is
3530 * in hotplug state.
3531 */
3532 if (!cpu_active(cpu))
3533 return false;
3534
3535 /*
3536 * If the CPU does not share cache, then queue the task on the
3537 * remote rqs wakelist to avoid accessing remote data.
3538 */
3539 if (!cpus_share_cache(smp_processor_id(), cpu))
3540 return true;
3541
3542 /*
3543 * If the task is descheduling and the only running task on the
3544 * CPU then use the wakelist to offload the task activation to
3545 * the soon-to-be-idle CPU as the current CPU is likely busy.
3546 * nr_running is checked to avoid unnecessary task stacking.
3547 */
3548 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3549 return true;
3550
3551 return false;
3552}
3553
3554static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3555{
3556 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3557 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3558 return false;
3559
3560 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3561 __ttwu_queue_wakelist(p, cpu, wake_flags);
3562 return true;
3563 }
3564
3565 return false;
3566}
3567
3568#else /* !CONFIG_SMP */
3569
3570static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3571{
3572 return false;
3573}
3574
3575#endif /* CONFIG_SMP */
3576
3577static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3578{
3579 struct rq *rq = cpu_rq(cpu);
3580 struct rq_flags rf;
3581
3582 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3583 return;
3584
3585 rq_lock(rq, &rf);
3586 update_rq_clock(rq);
3587 ttwu_do_activate(rq, p, wake_flags, &rf);
3588 rq_unlock(rq, &rf);
3589}
3590
3591/*
3592 * Notes on Program-Order guarantees on SMP systems.
3593 *
3594 * MIGRATION
3595 *
3596 * The basic program-order guarantee on SMP systems is that when a task [t]
3597 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3598 * execution on its new CPU [c1].
3599 *
3600 * For migration (of runnable tasks) this is provided by the following means:
3601 *
3602 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3603 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3604 * rq(c1)->lock (if not at the same time, then in that order).
3605 * C) LOCK of the rq(c1)->lock scheduling in task
3606 *
3607 * Release/acquire chaining guarantees that B happens after A and C after B.
3608 * Note: the CPU doing B need not be c0 or c1
3609 *
3610 * Example:
3611 *
3612 * CPU0 CPU1 CPU2
3613 *
3614 * LOCK rq(0)->lock
3615 * sched-out X
3616 * sched-in Y
3617 * UNLOCK rq(0)->lock
3618 *
3619 * LOCK rq(0)->lock // orders against CPU0
3620 * dequeue X
3621 * UNLOCK rq(0)->lock
3622 *
3623 * LOCK rq(1)->lock
3624 * enqueue X
3625 * UNLOCK rq(1)->lock
3626 *
3627 * LOCK rq(1)->lock // orders against CPU2
3628 * sched-out Z
3629 * sched-in X
3630 * UNLOCK rq(1)->lock
3631 *
3632 *
3633 * BLOCKING -- aka. SLEEP + WAKEUP
3634 *
3635 * For blocking we (obviously) need to provide the same guarantee as for
3636 * migration. However the means are completely different as there is no lock
3637 * chain to provide order. Instead we do:
3638 *
3639 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3640 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3641 *
3642 * Example:
3643 *
3644 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3645 *
3646 * LOCK rq(0)->lock LOCK X->pi_lock
3647 * dequeue X
3648 * sched-out X
3649 * smp_store_release(X->on_cpu, 0);
3650 *
3651 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3652 * X->state = WAKING
3653 * set_task_cpu(X,2)
3654 *
3655 * LOCK rq(2)->lock
3656 * enqueue X
3657 * X->state = RUNNING
3658 * UNLOCK rq(2)->lock
3659 *
3660 * LOCK rq(2)->lock // orders against CPU1
3661 * sched-out Z
3662 * sched-in X
3663 * UNLOCK rq(2)->lock
3664 *
3665 * UNLOCK X->pi_lock
3666 * UNLOCK rq(0)->lock
3667 *
3668 *
3669 * However, for wakeups there is a second guarantee we must provide, namely we
3670 * must ensure that CONDITION=1 done by the caller can not be reordered with
3671 * accesses to the task state; see try_to_wake_up() and set_current_state().
3672 */
3673
3674/**
3675 * try_to_wake_up - wake up a thread
3676 * @p: the thread to be awakened
3677 * @state: the mask of task states that can be woken
3678 * @wake_flags: wake modifier flags (WF_*)
3679 *
3680 * Conceptually does:
3681 *
3682 * If (@state & @p->state) @p->state = TASK_RUNNING.
3683 *
3684 * If the task was not queued/runnable, also place it back on a runqueue.
3685 *
3686 * This function is atomic against schedule() which would dequeue the task.
3687 *
3688 * It issues a full memory barrier before accessing @p->state, see the comment
3689 * with set_current_state().
3690 *
3691 * Uses p->pi_lock to serialize against concurrent wake-ups.
3692 *
3693 * Relies on p->pi_lock stabilizing:
3694 * - p->sched_class
3695 * - p->cpus_ptr
3696 * - p->sched_task_group
3697 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3698 *
3699 * Tries really hard to only take one task_rq(p)->lock for performance.
3700 * Takes rq->lock in:
3701 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3702 * - ttwu_queue() -- new rq, for enqueue of the task;
3703 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3704 *
3705 * As a consequence we race really badly with just about everything. See the
3706 * many memory barriers and their comments for details.
3707 *
3708 * Return: %true if @p->state changes (an actual wakeup was done),
3709 * %false otherwise.
3710 */
3711static int
3712try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3713{
3714 unsigned long flags;
3715 int cpu, success = 0;
3716
3717 preempt_disable();
3718 if (p == current) {
3719 /*
3720 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3721 * == smp_processor_id()'. Together this means we can special
3722 * case the whole 'p->on_rq && ttwu_runnable()' case below
3723 * without taking any locks.
3724 *
3725 * In particular:
3726 * - we rely on Program-Order guarantees for all the ordering,
3727 * - we're serialized against set_special_state() by virtue of
3728 * it disabling IRQs (this allows not taking ->pi_lock).
3729 */
3730 if (!(READ_ONCE(p->__state) & state))
3731 goto out;
3732
3733 success = 1;
3734 trace_sched_waking(p);
3735 WRITE_ONCE(p->__state, TASK_RUNNING);
3736 trace_sched_wakeup(p);
3737 goto out;
3738 }
3739
3740 /*
3741 * If we are going to wake up a thread waiting for CONDITION we
3742 * need to ensure that CONDITION=1 done by the caller can not be
3743 * reordered with p->state check below. This pairs with smp_store_mb()
3744 * in set_current_state() that the waiting thread does.
3745 */
3746 raw_spin_lock_irqsave(&p->pi_lock, flags);
3747 smp_mb__after_spinlock();
3748 if (!(READ_ONCE(p->__state) & state))
3749 goto unlock;
3750
3751 trace_sched_waking(p);
3752
3753 /* We're going to change ->state: */
3754 success = 1;
3755
3756 /*
3757 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3758 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3759 * in smp_cond_load_acquire() below.
3760 *
3761 * sched_ttwu_pending() try_to_wake_up()
3762 * STORE p->on_rq = 1 LOAD p->state
3763 * UNLOCK rq->lock
3764 *
3765 * __schedule() (switch to task 'p')
3766 * LOCK rq->lock smp_rmb();
3767 * smp_mb__after_spinlock();
3768 * UNLOCK rq->lock
3769 *
3770 * [task p]
3771 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3772 *
3773 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3774 * __schedule(). See the comment for smp_mb__after_spinlock().
3775 *
3776 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3777 */
3778 smp_rmb();
3779 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3780 goto unlock;
3781
3782#ifdef CONFIG_SMP
3783 /*
3784 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3785 * possible to, falsely, observe p->on_cpu == 0.
3786 *
3787 * One must be running (->on_cpu == 1) in order to remove oneself
3788 * from the runqueue.
3789 *
3790 * __schedule() (switch to task 'p') try_to_wake_up()
3791 * STORE p->on_cpu = 1 LOAD p->on_rq
3792 * UNLOCK rq->lock
3793 *
3794 * __schedule() (put 'p' to sleep)
3795 * LOCK rq->lock smp_rmb();
3796 * smp_mb__after_spinlock();
3797 * STORE p->on_rq = 0 LOAD p->on_cpu
3798 *
3799 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3800 * __schedule(). See the comment for smp_mb__after_spinlock().
3801 *
3802 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3803 * schedule()'s deactivate_task() has 'happened' and p will no longer
3804 * care about it's own p->state. See the comment in __schedule().
3805 */
3806 smp_acquire__after_ctrl_dep();
3807
3808 /*
3809 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3810 * == 0), which means we need to do an enqueue, change p->state to
3811 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3812 * enqueue, such as ttwu_queue_wakelist().
3813 */
3814 WRITE_ONCE(p->__state, TASK_WAKING);
3815
3816 /*
3817 * If the owning (remote) CPU is still in the middle of schedule() with
3818 * this task as prev, considering queueing p on the remote CPUs wake_list
3819 * which potentially sends an IPI instead of spinning on p->on_cpu to
3820 * let the waker make forward progress. This is safe because IRQs are
3821 * disabled and the IPI will deliver after on_cpu is cleared.
3822 *
3823 * Ensure we load task_cpu(p) after p->on_cpu:
3824 *
3825 * set_task_cpu(p, cpu);
3826 * STORE p->cpu = @cpu
3827 * __schedule() (switch to task 'p')
3828 * LOCK rq->lock
3829 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3830 * STORE p->on_cpu = 1 LOAD p->cpu
3831 *
3832 * to ensure we observe the correct CPU on which the task is currently
3833 * scheduling.
3834 */
3835 if (smp_load_acquire(&p->on_cpu) &&
3836 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3837 goto unlock;
3838
3839 /*
3840 * If the owning (remote) CPU is still in the middle of schedule() with
3841 * this task as prev, wait until it's done referencing the task.
3842 *
3843 * Pairs with the smp_store_release() in finish_task().
3844 *
3845 * This ensures that tasks getting woken will be fully ordered against
3846 * their previous state and preserve Program Order.
3847 */
3848 smp_cond_load_acquire(&p->on_cpu, !VAL);
3849
3850 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3851 if (task_cpu(p) != cpu) {
3852 if (p->in_iowait) {
3853 delayacct_blkio_end(p);
3854 atomic_dec(&task_rq(p)->nr_iowait);
3855 }
3856
3857 wake_flags |= WF_MIGRATED;
3858 psi_ttwu_dequeue(p);
3859 set_task_cpu(p, cpu);
3860 }
3861#else
3862 cpu = task_cpu(p);
3863#endif /* CONFIG_SMP */
3864
3865 ttwu_queue(p, cpu, wake_flags);
3866unlock:
3867 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3868out:
3869 if (success)
3870 ttwu_stat(p, task_cpu(p), wake_flags);
3871 preempt_enable();
3872
3873 return success;
3874}
3875
3876/**
3877 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3878 * @p: Process for which the function is to be invoked, can be @current.
3879 * @func: Function to invoke.
3880 * @arg: Argument to function.
3881 *
3882 * If the specified task can be quickly locked into a definite state
3883 * (either sleeping or on a given runqueue), arrange to keep it in that
3884 * state while invoking @func(@arg). This function can use ->on_rq and
3885 * task_curr() to work out what the state is, if required. Given that
3886 * @func can be invoked with a runqueue lock held, it had better be quite
3887 * lightweight.
3888 *
3889 * Returns:
3890 * @false if the task slipped out from under the locks.
3891 * @true if the task was locked onto a runqueue or is sleeping.
3892 * However, @func can override this by returning @false.
3893 */
3894bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3895{
3896 struct rq_flags rf;
3897 bool ret = false;
3898 struct rq *rq;
3899
3900 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3901 if (p->on_rq) {
3902 rq = __task_rq_lock(p, &rf);
3903 if (task_rq(p) == rq)
3904 ret = func(p, arg);
3905 rq_unlock(rq, &rf);
3906 } else {
3907 switch (READ_ONCE(p->__state)) {
3908 case TASK_RUNNING:
3909 case TASK_WAKING:
3910 break;
3911 default:
3912 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3913 if (!p->on_rq)
3914 ret = func(p, arg);
3915 }
3916 }
3917 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3918 return ret;
3919}
3920
3921/**
3922 * wake_up_process - Wake up a specific process
3923 * @p: The process to be woken up.
3924 *
3925 * Attempt to wake up the nominated process and move it to the set of runnable
3926 * processes.
3927 *
3928 * Return: 1 if the process was woken up, 0 if it was already running.
3929 *
3930 * This function executes a full memory barrier before accessing the task state.
3931 */
3932int wake_up_process(struct task_struct *p)
3933{
3934 return try_to_wake_up(p, TASK_NORMAL, 0);
3935}
3936EXPORT_SYMBOL(wake_up_process);
3937
3938int wake_up_state(struct task_struct *p, unsigned int state)
3939{
3940 return try_to_wake_up(p, state, 0);
3941}
3942
3943/*
3944 * Perform scheduler related setup for a newly forked process p.
3945 * p is forked by current.
3946 *
3947 * __sched_fork() is basic setup used by init_idle() too:
3948 */
3949static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3950{
3951 p->on_rq = 0;
3952
3953 p->se.on_rq = 0;
3954 p->se.exec_start = 0;
3955 p->se.sum_exec_runtime = 0;
3956 p->se.prev_sum_exec_runtime = 0;
3957 p->se.nr_migrations = 0;
3958 p->se.vruntime = 0;
3959 INIT_LIST_HEAD(&p->se.group_node);
3960
3961#ifdef CONFIG_FAIR_GROUP_SCHED
3962 p->se.cfs_rq = NULL;
3963#endif
3964
3965#ifdef CONFIG_SCHEDSTATS
3966 /* Even if schedstat is disabled, there should not be garbage */
3967 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3968#endif
3969
3970 RB_CLEAR_NODE(&p->dl.rb_node);
3971 init_dl_task_timer(&p->dl);
3972 init_dl_inactive_task_timer(&p->dl);
3973 __dl_clear_params(p);
3974
3975 INIT_LIST_HEAD(&p->rt.run_list);
3976 p->rt.timeout = 0;
3977 p->rt.time_slice = sched_rr_timeslice;
3978 p->rt.on_rq = 0;
3979 p->rt.on_list = 0;
3980
3981#ifdef CONFIG_PREEMPT_NOTIFIERS
3982 INIT_HLIST_HEAD(&p->preempt_notifiers);
3983#endif
3984
3985#ifdef CONFIG_COMPACTION
3986 p->capture_control = NULL;
3987#endif
3988 init_numa_balancing(clone_flags, p);
3989#ifdef CONFIG_SMP
3990 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3991 p->migration_pending = NULL;
3992#endif
3993}
3994
3995DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3996
3997#ifdef CONFIG_NUMA_BALANCING
3998
3999void set_numabalancing_state(bool enabled)
4000{
4001 if (enabled)
4002 static_branch_enable(&sched_numa_balancing);
4003 else
4004 static_branch_disable(&sched_numa_balancing);
4005}
4006
4007#ifdef CONFIG_PROC_SYSCTL
4008int sysctl_numa_balancing(struct ctl_table *table, int write,
4009 void *buffer, size_t *lenp, loff_t *ppos)
4010{
4011 struct ctl_table t;
4012 int err;
4013 int state = static_branch_likely(&sched_numa_balancing);
4014
4015 if (write && !capable(CAP_SYS_ADMIN))
4016 return -EPERM;
4017
4018 t = *table;
4019 t.data = &state;
4020 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4021 if (err < 0)
4022 return err;
4023 if (write)
4024 set_numabalancing_state(state);
4025 return err;
4026}
4027#endif
4028#endif
4029
4030#ifdef CONFIG_SCHEDSTATS
4031
4032DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4033
4034static void set_schedstats(bool enabled)
4035{
4036 if (enabled)
4037 static_branch_enable(&sched_schedstats);
4038 else
4039 static_branch_disable(&sched_schedstats);
4040}
4041
4042void force_schedstat_enabled(void)
4043{
4044 if (!schedstat_enabled()) {
4045 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4046 static_branch_enable(&sched_schedstats);
4047 }
4048}
4049
4050static int __init setup_schedstats(char *str)
4051{
4052 int ret = 0;
4053 if (!str)
4054 goto out;
4055
4056 if (!strcmp(str, "enable")) {
4057 set_schedstats(true);
4058 ret = 1;
4059 } else if (!strcmp(str, "disable")) {
4060 set_schedstats(false);
4061 ret = 1;
4062 }
4063out:
4064 if (!ret)
4065 pr_warn("Unable to parse schedstats=\n");
4066
4067 return ret;
4068}
4069__setup("schedstats=", setup_schedstats);
4070
4071#ifdef CONFIG_PROC_SYSCTL
4072int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4073 size_t *lenp, loff_t *ppos)
4074{
4075 struct ctl_table t;
4076 int err;
4077 int state = static_branch_likely(&sched_schedstats);
4078
4079 if (write && !capable(CAP_SYS_ADMIN))
4080 return -EPERM;
4081
4082 t = *table;
4083 t.data = &state;
4084 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4085 if (err < 0)
4086 return err;
4087 if (write)
4088 set_schedstats(state);
4089 return err;
4090}
4091#endif /* CONFIG_PROC_SYSCTL */
4092#endif /* CONFIG_SCHEDSTATS */
4093
4094/*
4095 * fork()/clone()-time setup:
4096 */
4097int sched_fork(unsigned long clone_flags, struct task_struct *p)
4098{
4099 unsigned long flags;
4100
4101 __sched_fork(clone_flags, p);
4102 /*
4103 * We mark the process as NEW here. This guarantees that
4104 * nobody will actually run it, and a signal or other external
4105 * event cannot wake it up and insert it on the runqueue either.
4106 */
4107 p->__state = TASK_NEW;
4108
4109 /*
4110 * Make sure we do not leak PI boosting priority to the child.
4111 */
4112 p->prio = current->normal_prio;
4113
4114 uclamp_fork(p);
4115
4116 /*
4117 * Revert to default priority/policy on fork if requested.
4118 */
4119 if (unlikely(p->sched_reset_on_fork)) {
4120 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4121 p->policy = SCHED_NORMAL;
4122 p->static_prio = NICE_TO_PRIO(0);
4123 p->rt_priority = 0;
4124 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4125 p->static_prio = NICE_TO_PRIO(0);
4126
4127 p->prio = p->normal_prio = p->static_prio;
4128 set_load_weight(p, false);
4129
4130 /*
4131 * We don't need the reset flag anymore after the fork. It has
4132 * fulfilled its duty:
4133 */
4134 p->sched_reset_on_fork = 0;
4135 }
4136
4137 if (dl_prio(p->prio))
4138 return -EAGAIN;
4139 else if (rt_prio(p->prio))
4140 p->sched_class = &rt_sched_class;
4141 else
4142 p->sched_class = &fair_sched_class;
4143
4144 init_entity_runnable_average(&p->se);
4145
4146 /*
4147 * The child is not yet in the pid-hash so no cgroup attach races,
4148 * and the cgroup is pinned to this child due to cgroup_fork()
4149 * is ran before sched_fork().
4150 *
4151 * Silence PROVE_RCU.
4152 */
4153 raw_spin_lock_irqsave(&p->pi_lock, flags);
4154 rseq_migrate(p);
4155 /*
4156 * We're setting the CPU for the first time, we don't migrate,
4157 * so use __set_task_cpu().
4158 */
4159 __set_task_cpu(p, smp_processor_id());
4160 if (p->sched_class->task_fork)
4161 p->sched_class->task_fork(p);
4162 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4163
4164#ifdef CONFIG_SCHED_INFO
4165 if (likely(sched_info_on()))
4166 memset(&p->sched_info, 0, sizeof(p->sched_info));
4167#endif
4168#if defined(CONFIG_SMP)
4169 p->on_cpu = 0;
4170#endif
4171 init_task_preempt_count(p);
4172#ifdef CONFIG_SMP
4173 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4174 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4175#endif
4176 return 0;
4177}
4178
4179void sched_post_fork(struct task_struct *p)
4180{
4181 uclamp_post_fork(p);
4182}
4183
4184unsigned long to_ratio(u64 period, u64 runtime)
4185{
4186 if (runtime == RUNTIME_INF)
4187 return BW_UNIT;
4188
4189 /*
4190 * Doing this here saves a lot of checks in all
4191 * the calling paths, and returning zero seems
4192 * safe for them anyway.
4193 */
4194 if (period == 0)
4195 return 0;
4196
4197 return div64_u64(runtime << BW_SHIFT, period);
4198}
4199
4200/*
4201 * wake_up_new_task - wake up a newly created task for the first time.
4202 *
4203 * This function will do some initial scheduler statistics housekeeping
4204 * that must be done for every newly created context, then puts the task
4205 * on the runqueue and wakes it.
4206 */
4207void wake_up_new_task(struct task_struct *p)
4208{
4209 struct rq_flags rf;
4210 struct rq *rq;
4211
4212 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4213 WRITE_ONCE(p->__state, TASK_RUNNING);
4214#ifdef CONFIG_SMP
4215 /*
4216 * Fork balancing, do it here and not earlier because:
4217 * - cpus_ptr can change in the fork path
4218 * - any previously selected CPU might disappear through hotplug
4219 *
4220 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4221 * as we're not fully set-up yet.
4222 */
4223 p->recent_used_cpu = task_cpu(p);
4224 rseq_migrate(p);
4225 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4226#endif
4227 rq = __task_rq_lock(p, &rf);
4228 update_rq_clock(rq);
4229 post_init_entity_util_avg(p);
4230
4231 activate_task(rq, p, ENQUEUE_NOCLOCK);
4232 trace_sched_wakeup_new(p);
4233 check_preempt_curr(rq, p, WF_FORK);
4234#ifdef CONFIG_SMP
4235 if (p->sched_class->task_woken) {
4236 /*
4237 * Nothing relies on rq->lock after this, so it's fine to
4238 * drop it.
4239 */
4240 rq_unpin_lock(rq, &rf);
4241 p->sched_class->task_woken(rq, p);
4242 rq_repin_lock(rq, &rf);
4243 }
4244#endif
4245 task_rq_unlock(rq, p, &rf);
4246}
4247
4248#ifdef CONFIG_PREEMPT_NOTIFIERS
4249
4250static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4251
4252void preempt_notifier_inc(void)
4253{
4254 static_branch_inc(&preempt_notifier_key);
4255}
4256EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4257
4258void preempt_notifier_dec(void)
4259{
4260 static_branch_dec(&preempt_notifier_key);
4261}
4262EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4263
4264/**
4265 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4266 * @notifier: notifier struct to register
4267 */
4268void preempt_notifier_register(struct preempt_notifier *notifier)
4269{
4270 if (!static_branch_unlikely(&preempt_notifier_key))
4271 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4272
4273 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4274}
4275EXPORT_SYMBOL_GPL(preempt_notifier_register);
4276
4277/**
4278 * preempt_notifier_unregister - no longer interested in preemption notifications
4279 * @notifier: notifier struct to unregister
4280 *
4281 * This is *not* safe to call from within a preemption notifier.
4282 */
4283void preempt_notifier_unregister(struct preempt_notifier *notifier)
4284{
4285 hlist_del(¬ifier->link);
4286}
4287EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4288
4289static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4290{
4291 struct preempt_notifier *notifier;
4292
4293 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4294 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4295}
4296
4297static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4298{
4299 if (static_branch_unlikely(&preempt_notifier_key))
4300 __fire_sched_in_preempt_notifiers(curr);
4301}
4302
4303static void
4304__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4305 struct task_struct *next)
4306{
4307 struct preempt_notifier *notifier;
4308
4309 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4310 notifier->ops->sched_out(notifier, next);
4311}
4312
4313static __always_inline void
4314fire_sched_out_preempt_notifiers(struct task_struct *curr,
4315 struct task_struct *next)
4316{
4317 if (static_branch_unlikely(&preempt_notifier_key))
4318 __fire_sched_out_preempt_notifiers(curr, next);
4319}
4320
4321#else /* !CONFIG_PREEMPT_NOTIFIERS */
4322
4323static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4324{
4325}
4326
4327static inline void
4328fire_sched_out_preempt_notifiers(struct task_struct *curr,
4329 struct task_struct *next)
4330{
4331}
4332
4333#endif /* CONFIG_PREEMPT_NOTIFIERS */
4334
4335static inline void prepare_task(struct task_struct *next)
4336{
4337#ifdef CONFIG_SMP
4338 /*
4339 * Claim the task as running, we do this before switching to it
4340 * such that any running task will have this set.
4341 *
4342 * See the ttwu() WF_ON_CPU case and its ordering comment.
4343 */
4344 WRITE_ONCE(next->on_cpu, 1);
4345#endif
4346}
4347
4348static inline void finish_task(struct task_struct *prev)
4349{
4350#ifdef CONFIG_SMP
4351 /*
4352 * This must be the very last reference to @prev from this CPU. After
4353 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4354 * must ensure this doesn't happen until the switch is completely
4355 * finished.
4356 *
4357 * In particular, the load of prev->state in finish_task_switch() must
4358 * happen before this.
4359 *
4360 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4361 */
4362 smp_store_release(&prev->on_cpu, 0);
4363#endif
4364}
4365
4366#ifdef CONFIG_SMP
4367
4368static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4369{
4370 void (*func)(struct rq *rq);
4371 struct callback_head *next;
4372
4373 lockdep_assert_rq_held(rq);
4374
4375 while (head) {
4376 func = (void (*)(struct rq *))head->func;
4377 next = head->next;
4378 head->next = NULL;
4379 head = next;
4380
4381 func(rq);
4382 }
4383}
4384
4385static void balance_push(struct rq *rq);
4386
4387struct callback_head balance_push_callback = {
4388 .next = NULL,
4389 .func = (void (*)(struct callback_head *))balance_push,
4390};
4391
4392static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4393{
4394 struct callback_head *head = rq->balance_callback;
4395
4396 lockdep_assert_rq_held(rq);
4397 if (head)
4398 rq->balance_callback = NULL;
4399
4400 return head;
4401}
4402
4403static void __balance_callbacks(struct rq *rq)
4404{
4405 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4406}
4407
4408static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4409{
4410 unsigned long flags;
4411
4412 if (unlikely(head)) {
4413 raw_spin_rq_lock_irqsave(rq, flags);
4414 do_balance_callbacks(rq, head);
4415 raw_spin_rq_unlock_irqrestore(rq, flags);
4416 }
4417}
4418
4419#else
4420
4421static inline void __balance_callbacks(struct rq *rq)
4422{
4423}
4424
4425static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4426{
4427 return NULL;
4428}
4429
4430static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4431{
4432}
4433
4434#endif
4435
4436static inline void
4437prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4438{
4439 /*
4440 * Since the runqueue lock will be released by the next
4441 * task (which is an invalid locking op but in the case
4442 * of the scheduler it's an obvious special-case), so we
4443 * do an early lockdep release here:
4444 */
4445 rq_unpin_lock(rq, rf);
4446 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4447#ifdef CONFIG_DEBUG_SPINLOCK
4448 /* this is a valid case when another task releases the spinlock */
4449 rq_lockp(rq)->owner = next;
4450#endif
4451}
4452
4453static inline void finish_lock_switch(struct rq *rq)
4454{
4455 /*
4456 * If we are tracking spinlock dependencies then we have to
4457 * fix up the runqueue lock - which gets 'carried over' from
4458 * prev into current:
4459 */
4460 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4461 __balance_callbacks(rq);
4462 raw_spin_rq_unlock_irq(rq);
4463}
4464
4465/*
4466 * NOP if the arch has not defined these:
4467 */
4468
4469#ifndef prepare_arch_switch
4470# define prepare_arch_switch(next) do { } while (0)
4471#endif
4472
4473#ifndef finish_arch_post_lock_switch
4474# define finish_arch_post_lock_switch() do { } while (0)
4475#endif
4476
4477static inline void kmap_local_sched_out(void)
4478{
4479#ifdef CONFIG_KMAP_LOCAL
4480 if (unlikely(current->kmap_ctrl.idx))
4481 __kmap_local_sched_out();
4482#endif
4483}
4484
4485static inline void kmap_local_sched_in(void)
4486{
4487#ifdef CONFIG_KMAP_LOCAL
4488 if (unlikely(current->kmap_ctrl.idx))
4489 __kmap_local_sched_in();
4490#endif
4491}
4492
4493/**
4494 * prepare_task_switch - prepare to switch tasks
4495 * @rq: the runqueue preparing to switch
4496 * @prev: the current task that is being switched out
4497 * @next: the task we are going to switch to.
4498 *
4499 * This is called with the rq lock held and interrupts off. It must
4500 * be paired with a subsequent finish_task_switch after the context
4501 * switch.
4502 *
4503 * prepare_task_switch sets up locking and calls architecture specific
4504 * hooks.
4505 */
4506static inline void
4507prepare_task_switch(struct rq *rq, struct task_struct *prev,
4508 struct task_struct *next)
4509{
4510 kcov_prepare_switch(prev);
4511 sched_info_switch(rq, prev, next);
4512 perf_event_task_sched_out(prev, next);
4513 rseq_preempt(prev);
4514 fire_sched_out_preempt_notifiers(prev, next);
4515 kmap_local_sched_out();
4516 prepare_task(next);
4517 prepare_arch_switch(next);
4518}
4519
4520/**
4521 * finish_task_switch - clean up after a task-switch
4522 * @prev: the thread we just switched away from.
4523 *
4524 * finish_task_switch must be called after the context switch, paired
4525 * with a prepare_task_switch call before the context switch.
4526 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4527 * and do any other architecture-specific cleanup actions.
4528 *
4529 * Note that we may have delayed dropping an mm in context_switch(). If
4530 * so, we finish that here outside of the runqueue lock. (Doing it
4531 * with the lock held can cause deadlocks; see schedule() for
4532 * details.)
4533 *
4534 * The context switch have flipped the stack from under us and restored the
4535 * local variables which were saved when this task called schedule() in the
4536 * past. prev == current is still correct but we need to recalculate this_rq
4537 * because prev may have moved to another CPU.
4538 */
4539static struct rq *finish_task_switch(struct task_struct *prev)
4540 __releases(rq->lock)
4541{
4542 struct rq *rq = this_rq();
4543 struct mm_struct *mm = rq->prev_mm;
4544 long prev_state;
4545
4546 /*
4547 * The previous task will have left us with a preempt_count of 2
4548 * because it left us after:
4549 *
4550 * schedule()
4551 * preempt_disable(); // 1
4552 * __schedule()
4553 * raw_spin_lock_irq(&rq->lock) // 2
4554 *
4555 * Also, see FORK_PREEMPT_COUNT.
4556 */
4557 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4558 "corrupted preempt_count: %s/%d/0x%x\n",
4559 current->comm, current->pid, preempt_count()))
4560 preempt_count_set(FORK_PREEMPT_COUNT);
4561
4562 rq->prev_mm = NULL;
4563
4564 /*
4565 * A task struct has one reference for the use as "current".
4566 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4567 * schedule one last time. The schedule call will never return, and
4568 * the scheduled task must drop that reference.
4569 *
4570 * We must observe prev->state before clearing prev->on_cpu (in
4571 * finish_task), otherwise a concurrent wakeup can get prev
4572 * running on another CPU and we could rave with its RUNNING -> DEAD
4573 * transition, resulting in a double drop.
4574 */
4575 prev_state = READ_ONCE(prev->__state);
4576 vtime_task_switch(prev);
4577 perf_event_task_sched_in(prev, current);
4578 finish_task(prev);
4579 tick_nohz_task_switch();
4580 finish_lock_switch(rq);
4581 finish_arch_post_lock_switch();
4582 kcov_finish_switch(current);
4583 /*
4584 * kmap_local_sched_out() is invoked with rq::lock held and
4585 * interrupts disabled. There is no requirement for that, but the
4586 * sched out code does not have an interrupt enabled section.
4587 * Restoring the maps on sched in does not require interrupts being
4588 * disabled either.
4589 */
4590 kmap_local_sched_in();
4591
4592 fire_sched_in_preempt_notifiers(current);
4593 /*
4594 * When switching through a kernel thread, the loop in
4595 * membarrier_{private,global}_expedited() may have observed that
4596 * kernel thread and not issued an IPI. It is therefore possible to
4597 * schedule between user->kernel->user threads without passing though
4598 * switch_mm(). Membarrier requires a barrier after storing to
4599 * rq->curr, before returning to userspace, so provide them here:
4600 *
4601 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4602 * provided by mmdrop(),
4603 * - a sync_core for SYNC_CORE.
4604 */
4605 if (mm) {
4606 membarrier_mm_sync_core_before_usermode(mm);
4607 mmdrop(mm);
4608 }
4609 if (unlikely(prev_state == TASK_DEAD)) {
4610 if (prev->sched_class->task_dead)
4611 prev->sched_class->task_dead(prev);
4612
4613 /*
4614 * Remove function-return probe instances associated with this
4615 * task and put them back on the free list.
4616 */
4617 kprobe_flush_task(prev);
4618
4619 /* Task is done with its stack. */
4620 put_task_stack(prev);
4621
4622 put_task_struct_rcu_user(prev);
4623 }
4624
4625 return rq;
4626}
4627
4628/**
4629 * schedule_tail - first thing a freshly forked thread must call.
4630 * @prev: the thread we just switched away from.
4631 */
4632asmlinkage __visible void schedule_tail(struct task_struct *prev)
4633 __releases(rq->lock)
4634{
4635 /*
4636 * New tasks start with FORK_PREEMPT_COUNT, see there and
4637 * finish_task_switch() for details.
4638 *
4639 * finish_task_switch() will drop rq->lock() and lower preempt_count
4640 * and the preempt_enable() will end up enabling preemption (on
4641 * PREEMPT_COUNT kernels).
4642 */
4643
4644 finish_task_switch(prev);
4645 preempt_enable();
4646
4647 if (current->set_child_tid)
4648 put_user(task_pid_vnr(current), current->set_child_tid);
4649
4650 calculate_sigpending();
4651}
4652
4653/*
4654 * context_switch - switch to the new MM and the new thread's register state.
4655 */
4656static __always_inline struct rq *
4657context_switch(struct rq *rq, struct task_struct *prev,
4658 struct task_struct *next, struct rq_flags *rf)
4659{
4660 prepare_task_switch(rq, prev, next);
4661
4662 /*
4663 * For paravirt, this is coupled with an exit in switch_to to
4664 * combine the page table reload and the switch backend into
4665 * one hypercall.
4666 */
4667 arch_start_context_switch(prev);
4668
4669 /*
4670 * kernel -> kernel lazy + transfer active
4671 * user -> kernel lazy + mmgrab() active
4672 *
4673 * kernel -> user switch + mmdrop() active
4674 * user -> user switch
4675 */
4676 if (!next->mm) { // to kernel
4677 enter_lazy_tlb(prev->active_mm, next);
4678
4679 next->active_mm = prev->active_mm;
4680 if (prev->mm) // from user
4681 mmgrab(prev->active_mm);
4682 else
4683 prev->active_mm = NULL;
4684 } else { // to user
4685 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4686 /*
4687 * sys_membarrier() requires an smp_mb() between setting
4688 * rq->curr / membarrier_switch_mm() and returning to userspace.
4689 *
4690 * The below provides this either through switch_mm(), or in
4691 * case 'prev->active_mm == next->mm' through
4692 * finish_task_switch()'s mmdrop().
4693 */
4694 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4695
4696 if (!prev->mm) { // from kernel
4697 /* will mmdrop() in finish_task_switch(). */
4698 rq->prev_mm = prev->active_mm;
4699 prev->active_mm = NULL;
4700 }
4701 }
4702
4703 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4704
4705 prepare_lock_switch(rq, next, rf);
4706
4707 /* Here we just switch the register state and the stack. */
4708 switch_to(prev, next, prev);
4709 barrier();
4710
4711 return finish_task_switch(prev);
4712}
4713
4714/*
4715 * nr_running and nr_context_switches:
4716 *
4717 * externally visible scheduler statistics: current number of runnable
4718 * threads, total number of context switches performed since bootup.
4719 */
4720unsigned int nr_running(void)
4721{
4722 unsigned int i, sum = 0;
4723
4724 for_each_online_cpu(i)
4725 sum += cpu_rq(i)->nr_running;
4726
4727 return sum;
4728}
4729
4730/*
4731 * Check if only the current task is running on the CPU.
4732 *
4733 * Caution: this function does not check that the caller has disabled
4734 * preemption, thus the result might have a time-of-check-to-time-of-use
4735 * race. The caller is responsible to use it correctly, for example:
4736 *
4737 * - from a non-preemptible section (of course)
4738 *
4739 * - from a thread that is bound to a single CPU
4740 *
4741 * - in a loop with very short iterations (e.g. a polling loop)
4742 */
4743bool single_task_running(void)
4744{
4745 return raw_rq()->nr_running == 1;
4746}
4747EXPORT_SYMBOL(single_task_running);
4748
4749unsigned long long nr_context_switches(void)
4750{
4751 int i;
4752 unsigned long long sum = 0;
4753
4754 for_each_possible_cpu(i)
4755 sum += cpu_rq(i)->nr_switches;
4756
4757 return sum;
4758}
4759
4760/*
4761 * Consumers of these two interfaces, like for example the cpuidle menu
4762 * governor, are using nonsensical data. Preferring shallow idle state selection
4763 * for a CPU that has IO-wait which might not even end up running the task when
4764 * it does become runnable.
4765 */
4766
4767unsigned int nr_iowait_cpu(int cpu)
4768{
4769 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4770}
4771
4772/*
4773 * IO-wait accounting, and how it's mostly bollocks (on SMP).
4774 *
4775 * The idea behind IO-wait account is to account the idle time that we could
4776 * have spend running if it were not for IO. That is, if we were to improve the
4777 * storage performance, we'd have a proportional reduction in IO-wait time.
4778 *
4779 * This all works nicely on UP, where, when a task blocks on IO, we account
4780 * idle time as IO-wait, because if the storage were faster, it could've been
4781 * running and we'd not be idle.
4782 *
4783 * This has been extended to SMP, by doing the same for each CPU. This however
4784 * is broken.
4785 *
4786 * Imagine for instance the case where two tasks block on one CPU, only the one
4787 * CPU will have IO-wait accounted, while the other has regular idle. Even
4788 * though, if the storage were faster, both could've ran at the same time,
4789 * utilising both CPUs.
4790 *
4791 * This means, that when looking globally, the current IO-wait accounting on
4792 * SMP is a lower bound, by reason of under accounting.
4793 *
4794 * Worse, since the numbers are provided per CPU, they are sometimes
4795 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4796 * associated with any one particular CPU, it can wake to another CPU than it
4797 * blocked on. This means the per CPU IO-wait number is meaningless.
4798 *
4799 * Task CPU affinities can make all that even more 'interesting'.
4800 */
4801
4802unsigned int nr_iowait(void)
4803{
4804 unsigned int i, sum = 0;
4805
4806 for_each_possible_cpu(i)
4807 sum += nr_iowait_cpu(i);
4808
4809 return sum;
4810}
4811
4812#ifdef CONFIG_SMP
4813
4814/*
4815 * sched_exec - execve() is a valuable balancing opportunity, because at
4816 * this point the task has the smallest effective memory and cache footprint.
4817 */
4818void sched_exec(void)
4819{
4820 struct task_struct *p = current;
4821 unsigned long flags;
4822 int dest_cpu;
4823
4824 raw_spin_lock_irqsave(&p->pi_lock, flags);
4825 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4826 if (dest_cpu == smp_processor_id())
4827 goto unlock;
4828
4829 if (likely(cpu_active(dest_cpu))) {
4830 struct migration_arg arg = { p, dest_cpu };
4831
4832 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4833 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4834 return;
4835 }
4836unlock:
4837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4838}
4839
4840#endif
4841
4842DEFINE_PER_CPU(struct kernel_stat, kstat);
4843DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4844
4845EXPORT_PER_CPU_SYMBOL(kstat);
4846EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4847
4848/*
4849 * The function fair_sched_class.update_curr accesses the struct curr
4850 * and its field curr->exec_start; when called from task_sched_runtime(),
4851 * we observe a high rate of cache misses in practice.
4852 * Prefetching this data results in improved performance.
4853 */
4854static inline void prefetch_curr_exec_start(struct task_struct *p)
4855{
4856#ifdef CONFIG_FAIR_GROUP_SCHED
4857 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4858#else
4859 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4860#endif
4861 prefetch(curr);
4862 prefetch(&curr->exec_start);
4863}
4864
4865/*
4866 * Return accounted runtime for the task.
4867 * In case the task is currently running, return the runtime plus current's
4868 * pending runtime that have not been accounted yet.
4869 */
4870unsigned long long task_sched_runtime(struct task_struct *p)
4871{
4872 struct rq_flags rf;
4873 struct rq *rq;
4874 u64 ns;
4875
4876#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4877 /*
4878 * 64-bit doesn't need locks to atomically read a 64-bit value.
4879 * So we have a optimization chance when the task's delta_exec is 0.
4880 * Reading ->on_cpu is racy, but this is ok.
4881 *
4882 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4883 * If we race with it entering CPU, unaccounted time is 0. This is
4884 * indistinguishable from the read occurring a few cycles earlier.
4885 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4886 * been accounted, so we're correct here as well.
4887 */
4888 if (!p->on_cpu || !task_on_rq_queued(p))
4889 return p->se.sum_exec_runtime;
4890#endif
4891
4892 rq = task_rq_lock(p, &rf);
4893 /*
4894 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4895 * project cycles that may never be accounted to this
4896 * thread, breaking clock_gettime().
4897 */
4898 if (task_current(rq, p) && task_on_rq_queued(p)) {
4899 prefetch_curr_exec_start(p);
4900 update_rq_clock(rq);
4901 p->sched_class->update_curr(rq);
4902 }
4903 ns = p->se.sum_exec_runtime;
4904 task_rq_unlock(rq, p, &rf);
4905
4906 return ns;
4907}
4908
4909#ifdef CONFIG_SCHED_DEBUG
4910static u64 cpu_resched_latency(struct rq *rq)
4911{
4912 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4913 u64 resched_latency, now = rq_clock(rq);
4914 static bool warned_once;
4915
4916 if (sysctl_resched_latency_warn_once && warned_once)
4917 return 0;
4918
4919 if (!need_resched() || !latency_warn_ms)
4920 return 0;
4921
4922 if (system_state == SYSTEM_BOOTING)
4923 return 0;
4924
4925 if (!rq->last_seen_need_resched_ns) {
4926 rq->last_seen_need_resched_ns = now;
4927 rq->ticks_without_resched = 0;
4928 return 0;
4929 }
4930
4931 rq->ticks_without_resched++;
4932 resched_latency = now - rq->last_seen_need_resched_ns;
4933 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4934 return 0;
4935
4936 warned_once = true;
4937
4938 return resched_latency;
4939}
4940
4941static int __init setup_resched_latency_warn_ms(char *str)
4942{
4943 long val;
4944
4945 if ((kstrtol(str, 0, &val))) {
4946 pr_warn("Unable to set resched_latency_warn_ms\n");
4947 return 1;
4948 }
4949
4950 sysctl_resched_latency_warn_ms = val;
4951 return 1;
4952}
4953__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4954#else
4955static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4956#endif /* CONFIG_SCHED_DEBUG */
4957
4958/*
4959 * This function gets called by the timer code, with HZ frequency.
4960 * We call it with interrupts disabled.
4961 */
4962void scheduler_tick(void)
4963{
4964 int cpu = smp_processor_id();
4965 struct rq *rq = cpu_rq(cpu);
4966 struct task_struct *curr = rq->curr;
4967 struct rq_flags rf;
4968 unsigned long thermal_pressure;
4969 u64 resched_latency;
4970
4971 arch_scale_freq_tick();
4972 sched_clock_tick();
4973
4974 rq_lock(rq, &rf);
4975
4976 update_rq_clock(rq);
4977 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4978 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4979 curr->sched_class->task_tick(rq, curr, 0);
4980 if (sched_feat(LATENCY_WARN))
4981 resched_latency = cpu_resched_latency(rq);
4982 calc_global_load_tick(rq);
4983
4984 rq_unlock(rq, &rf);
4985
4986 if (sched_feat(LATENCY_WARN) && resched_latency)
4987 resched_latency_warn(cpu, resched_latency);
4988
4989 perf_event_task_tick();
4990
4991#ifdef CONFIG_SMP
4992 rq->idle_balance = idle_cpu(cpu);
4993 trigger_load_balance(rq);
4994#endif
4995}
4996
4997#ifdef CONFIG_NO_HZ_FULL
4998
4999struct tick_work {
5000 int cpu;
5001 atomic_t state;
5002 struct delayed_work work;
5003};
5004/* Values for ->state, see diagram below. */
5005#define TICK_SCHED_REMOTE_OFFLINE 0
5006#define TICK_SCHED_REMOTE_OFFLINING 1
5007#define TICK_SCHED_REMOTE_RUNNING 2
5008
5009/*
5010 * State diagram for ->state:
5011 *
5012 *
5013 * TICK_SCHED_REMOTE_OFFLINE
5014 * | ^
5015 * | |
5016 * | | sched_tick_remote()
5017 * | |
5018 * | |
5019 * +--TICK_SCHED_REMOTE_OFFLINING
5020 * | ^
5021 * | |
5022 * sched_tick_start() | | sched_tick_stop()
5023 * | |
5024 * V |
5025 * TICK_SCHED_REMOTE_RUNNING
5026 *
5027 *
5028 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5029 * and sched_tick_start() are happy to leave the state in RUNNING.
5030 */
5031
5032static struct tick_work __percpu *tick_work_cpu;
5033
5034static void sched_tick_remote(struct work_struct *work)
5035{
5036 struct delayed_work *dwork = to_delayed_work(work);
5037 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5038 int cpu = twork->cpu;
5039 struct rq *rq = cpu_rq(cpu);
5040 struct task_struct *curr;
5041 struct rq_flags rf;
5042 u64 delta;
5043 int os;
5044
5045 /*
5046 * Handle the tick only if it appears the remote CPU is running in full
5047 * dynticks mode. The check is racy by nature, but missing a tick or
5048 * having one too much is no big deal because the scheduler tick updates
5049 * statistics and checks timeslices in a time-independent way, regardless
5050 * of when exactly it is running.
5051 */
5052 if (!tick_nohz_tick_stopped_cpu(cpu))
5053 goto out_requeue;
5054
5055 rq_lock_irq(rq, &rf);
5056 curr = rq->curr;
5057 if (cpu_is_offline(cpu))
5058 goto out_unlock;
5059
5060 update_rq_clock(rq);
5061
5062 if (!is_idle_task(curr)) {
5063 /*
5064 * Make sure the next tick runs within a reasonable
5065 * amount of time.
5066 */
5067 delta = rq_clock_task(rq) - curr->se.exec_start;
5068 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5069 }
5070 curr->sched_class->task_tick(rq, curr, 0);
5071
5072 calc_load_nohz_remote(rq);
5073out_unlock:
5074 rq_unlock_irq(rq, &rf);
5075out_requeue:
5076
5077 /*
5078 * Run the remote tick once per second (1Hz). This arbitrary
5079 * frequency is large enough to avoid overload but short enough
5080 * to keep scheduler internal stats reasonably up to date. But
5081 * first update state to reflect hotplug activity if required.
5082 */
5083 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5084 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5085 if (os == TICK_SCHED_REMOTE_RUNNING)
5086 queue_delayed_work(system_unbound_wq, dwork, HZ);
5087}
5088
5089static void sched_tick_start(int cpu)
5090{
5091 int os;
5092 struct tick_work *twork;
5093
5094 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5095 return;
5096
5097 WARN_ON_ONCE(!tick_work_cpu);
5098
5099 twork = per_cpu_ptr(tick_work_cpu, cpu);
5100 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5101 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5102 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5103 twork->cpu = cpu;
5104 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5105 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5106 }
5107}
5108
5109#ifdef CONFIG_HOTPLUG_CPU
5110static void sched_tick_stop(int cpu)
5111{
5112 struct tick_work *twork;
5113 int os;
5114
5115 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5116 return;
5117
5118 WARN_ON_ONCE(!tick_work_cpu);
5119
5120 twork = per_cpu_ptr(tick_work_cpu, cpu);
5121 /* There cannot be competing actions, but don't rely on stop-machine. */
5122 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5123 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5124 /* Don't cancel, as this would mess up the state machine. */
5125}
5126#endif /* CONFIG_HOTPLUG_CPU */
5127
5128int __init sched_tick_offload_init(void)
5129{
5130 tick_work_cpu = alloc_percpu(struct tick_work);
5131 BUG_ON(!tick_work_cpu);
5132 return 0;
5133}
5134
5135#else /* !CONFIG_NO_HZ_FULL */
5136static inline void sched_tick_start(int cpu) { }
5137static inline void sched_tick_stop(int cpu) { }
5138#endif
5139
5140#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5141 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5142/*
5143 * If the value passed in is equal to the current preempt count
5144 * then we just disabled preemption. Start timing the latency.
5145 */
5146static inline void preempt_latency_start(int val)
5147{
5148 if (preempt_count() == val) {
5149 unsigned long ip = get_lock_parent_ip();
5150#ifdef CONFIG_DEBUG_PREEMPT
5151 current->preempt_disable_ip = ip;
5152#endif
5153 trace_preempt_off(CALLER_ADDR0, ip);
5154 }
5155}
5156
5157void preempt_count_add(int val)
5158{
5159#ifdef CONFIG_DEBUG_PREEMPT
5160 /*
5161 * Underflow?
5162 */
5163 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5164 return;
5165#endif
5166 __preempt_count_add(val);
5167#ifdef CONFIG_DEBUG_PREEMPT
5168 /*
5169 * Spinlock count overflowing soon?
5170 */
5171 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5172 PREEMPT_MASK - 10);
5173#endif
5174 preempt_latency_start(val);
5175}
5176EXPORT_SYMBOL(preempt_count_add);
5177NOKPROBE_SYMBOL(preempt_count_add);
5178
5179/*
5180 * If the value passed in equals to the current preempt count
5181 * then we just enabled preemption. Stop timing the latency.
5182 */
5183static inline void preempt_latency_stop(int val)
5184{
5185 if (preempt_count() == val)
5186 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5187}
5188
5189void preempt_count_sub(int val)
5190{
5191#ifdef CONFIG_DEBUG_PREEMPT
5192 /*
5193 * Underflow?
5194 */
5195 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5196 return;
5197 /*
5198 * Is the spinlock portion underflowing?
5199 */
5200 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5201 !(preempt_count() & PREEMPT_MASK)))
5202 return;
5203#endif
5204
5205 preempt_latency_stop(val);
5206 __preempt_count_sub(val);
5207}
5208EXPORT_SYMBOL(preempt_count_sub);
5209NOKPROBE_SYMBOL(preempt_count_sub);
5210
5211#else
5212static inline void preempt_latency_start(int val) { }
5213static inline void preempt_latency_stop(int val) { }
5214#endif
5215
5216static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5217{
5218#ifdef CONFIG_DEBUG_PREEMPT
5219 return p->preempt_disable_ip;
5220#else
5221 return 0;
5222#endif
5223}
5224
5225/*
5226 * Print scheduling while atomic bug:
5227 */
5228static noinline void __schedule_bug(struct task_struct *prev)
5229{
5230 /* Save this before calling printk(), since that will clobber it */
5231 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5232
5233 if (oops_in_progress)
5234 return;
5235
5236 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5237 prev->comm, prev->pid, preempt_count());
5238
5239 debug_show_held_locks(prev);
5240 print_modules();
5241 if (irqs_disabled())
5242 print_irqtrace_events(prev);
5243 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5244 && in_atomic_preempt_off()) {
5245 pr_err("Preemption disabled at:");
5246 print_ip_sym(KERN_ERR, preempt_disable_ip);
5247 }
5248 if (panic_on_warn)
5249 panic("scheduling while atomic\n");
5250
5251 dump_stack();
5252 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5253}
5254
5255/*
5256 * Various schedule()-time debugging checks and statistics:
5257 */
5258static inline void schedule_debug(struct task_struct *prev, bool preempt)
5259{
5260#ifdef CONFIG_SCHED_STACK_END_CHECK
5261 if (task_stack_end_corrupted(prev))
5262 panic("corrupted stack end detected inside scheduler\n");
5263
5264 if (task_scs_end_corrupted(prev))
5265 panic("corrupted shadow stack detected inside scheduler\n");
5266#endif
5267
5268#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5269 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5270 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5271 prev->comm, prev->pid, prev->non_block_count);
5272 dump_stack();
5273 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5274 }
5275#endif
5276
5277 if (unlikely(in_atomic_preempt_off())) {
5278 __schedule_bug(prev);
5279 preempt_count_set(PREEMPT_DISABLED);
5280 }
5281 rcu_sleep_check();
5282 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5283
5284 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5285
5286 schedstat_inc(this_rq()->sched_count);
5287}
5288
5289static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5290 struct rq_flags *rf)
5291{
5292#ifdef CONFIG_SMP
5293 const struct sched_class *class;
5294 /*
5295 * We must do the balancing pass before put_prev_task(), such
5296 * that when we release the rq->lock the task is in the same
5297 * state as before we took rq->lock.
5298 *
5299 * We can terminate the balance pass as soon as we know there is
5300 * a runnable task of @class priority or higher.
5301 */
5302 for_class_range(class, prev->sched_class, &idle_sched_class) {
5303 if (class->balance(rq, prev, rf))
5304 break;
5305 }
5306#endif
5307
5308 put_prev_task(rq, prev);
5309}
5310
5311/*
5312 * Pick up the highest-prio task:
5313 */
5314static inline struct task_struct *
5315__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5316{
5317 const struct sched_class *class;
5318 struct task_struct *p;
5319
5320 /*
5321 * Optimization: we know that if all tasks are in the fair class we can
5322 * call that function directly, but only if the @prev task wasn't of a
5323 * higher scheduling class, because otherwise those lose the
5324 * opportunity to pull in more work from other CPUs.
5325 */
5326 if (likely(prev->sched_class <= &fair_sched_class &&
5327 rq->nr_running == rq->cfs.h_nr_running)) {
5328
5329 p = pick_next_task_fair(rq, prev, rf);
5330 if (unlikely(p == RETRY_TASK))
5331 goto restart;
5332
5333 /* Assume the next prioritized class is idle_sched_class */
5334 if (!p) {
5335 put_prev_task(rq, prev);
5336 p = pick_next_task_idle(rq);
5337 }
5338
5339 return p;
5340 }
5341
5342restart:
5343 put_prev_task_balance(rq, prev, rf);
5344
5345 for_each_class(class) {
5346 p = class->pick_next_task(rq);
5347 if (p)
5348 return p;
5349 }
5350
5351 /* The idle class should always have a runnable task: */
5352 BUG();
5353}
5354
5355#ifdef CONFIG_SCHED_CORE
5356static inline bool is_task_rq_idle(struct task_struct *t)
5357{
5358 return (task_rq(t)->idle == t);
5359}
5360
5361static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5362{
5363 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5364}
5365
5366static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5367{
5368 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5369 return true;
5370
5371 return a->core_cookie == b->core_cookie;
5372}
5373
5374// XXX fairness/fwd progress conditions
5375/*
5376 * Returns
5377 * - NULL if there is no runnable task for this class.
5378 * - the highest priority task for this runqueue if it matches
5379 * rq->core->core_cookie or its priority is greater than max.
5380 * - Else returns idle_task.
5381 */
5382static struct task_struct *
5383pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5384{
5385 struct task_struct *class_pick, *cookie_pick;
5386 unsigned long cookie = rq->core->core_cookie;
5387
5388 class_pick = class->pick_task(rq);
5389 if (!class_pick)
5390 return NULL;
5391
5392 if (!cookie) {
5393 /*
5394 * If class_pick is tagged, return it only if it has
5395 * higher priority than max.
5396 */
5397 if (max && class_pick->core_cookie &&
5398 prio_less(class_pick, max, in_fi))
5399 return idle_sched_class.pick_task(rq);
5400
5401 return class_pick;
5402 }
5403
5404 /*
5405 * If class_pick is idle or matches cookie, return early.
5406 */
5407 if (cookie_equals(class_pick, cookie))
5408 return class_pick;
5409
5410 cookie_pick = sched_core_find(rq, cookie);
5411
5412 /*
5413 * If class > max && class > cookie, it is the highest priority task on
5414 * the core (so far) and it must be selected, otherwise we must go with
5415 * the cookie pick in order to satisfy the constraint.
5416 */
5417 if (prio_less(cookie_pick, class_pick, in_fi) &&
5418 (!max || prio_less(max, class_pick, in_fi)))
5419 return class_pick;
5420
5421 return cookie_pick;
5422}
5423
5424extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5425
5426static struct task_struct *
5427pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5428{
5429 struct task_struct *next, *max = NULL;
5430 const struct sched_class *class;
5431 const struct cpumask *smt_mask;
5432 bool fi_before = false;
5433 int i, j, cpu, occ = 0;
5434 bool need_sync;
5435
5436 if (!sched_core_enabled(rq))
5437 return __pick_next_task(rq, prev, rf);
5438
5439 cpu = cpu_of(rq);
5440
5441 /* Stopper task is switching into idle, no need core-wide selection. */
5442 if (cpu_is_offline(cpu)) {
5443 /*
5444 * Reset core_pick so that we don't enter the fastpath when
5445 * coming online. core_pick would already be migrated to
5446 * another cpu during offline.
5447 */
5448 rq->core_pick = NULL;
5449 return __pick_next_task(rq, prev, rf);
5450 }
5451
5452 /*
5453 * If there were no {en,de}queues since we picked (IOW, the task
5454 * pointers are all still valid), and we haven't scheduled the last
5455 * pick yet, do so now.
5456 *
5457 * rq->core_pick can be NULL if no selection was made for a CPU because
5458 * it was either offline or went offline during a sibling's core-wide
5459 * selection. In this case, do a core-wide selection.
5460 */
5461 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5462 rq->core->core_pick_seq != rq->core_sched_seq &&
5463 rq->core_pick) {
5464 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5465
5466 next = rq->core_pick;
5467 if (next != prev) {
5468 put_prev_task(rq, prev);
5469 set_next_task(rq, next);
5470 }
5471
5472 rq->core_pick = NULL;
5473 return next;
5474 }
5475
5476 put_prev_task_balance(rq, prev, rf);
5477
5478 smt_mask = cpu_smt_mask(cpu);
5479 need_sync = !!rq->core->core_cookie;
5480
5481 /* reset state */
5482 rq->core->core_cookie = 0UL;
5483 if (rq->core->core_forceidle) {
5484 need_sync = true;
5485 fi_before = true;
5486 rq->core->core_forceidle = false;
5487 }
5488
5489 /*
5490 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5491 *
5492 * @task_seq guards the task state ({en,de}queues)
5493 * @pick_seq is the @task_seq we did a selection on
5494 * @sched_seq is the @pick_seq we scheduled
5495 *
5496 * However, preemptions can cause multiple picks on the same task set.
5497 * 'Fix' this by also increasing @task_seq for every pick.
5498 */
5499 rq->core->core_task_seq++;
5500
5501 /*
5502 * Optimize for common case where this CPU has no cookies
5503 * and there are no cookied tasks running on siblings.
5504 */
5505 if (!need_sync) {
5506 for_each_class(class) {
5507 next = class->pick_task(rq);
5508 if (next)
5509 break;
5510 }
5511
5512 if (!next->core_cookie) {
5513 rq->core_pick = NULL;
5514 /*
5515 * For robustness, update the min_vruntime_fi for
5516 * unconstrained picks as well.
5517 */
5518 WARN_ON_ONCE(fi_before);
5519 task_vruntime_update(rq, next, false);
5520 goto done;
5521 }
5522 }
5523
5524 for_each_cpu(i, smt_mask) {
5525 struct rq *rq_i = cpu_rq(i);
5526
5527 rq_i->core_pick = NULL;
5528
5529 if (i != cpu)
5530 update_rq_clock(rq_i);
5531 }
5532
5533 /*
5534 * Try and select tasks for each sibling in descending sched_class
5535 * order.
5536 */
5537 for_each_class(class) {
5538again:
5539 for_each_cpu_wrap(i, smt_mask, cpu) {
5540 struct rq *rq_i = cpu_rq(i);
5541 struct task_struct *p;
5542
5543 if (rq_i->core_pick)
5544 continue;
5545
5546 /*
5547 * If this sibling doesn't yet have a suitable task to
5548 * run; ask for the most eligible task, given the
5549 * highest priority task already selected for this
5550 * core.
5551 */
5552 p = pick_task(rq_i, class, max, fi_before);
5553 if (!p)
5554 continue;
5555
5556 if (!is_task_rq_idle(p))
5557 occ++;
5558
5559 rq_i->core_pick = p;
5560 if (rq_i->idle == p && rq_i->nr_running) {
5561 rq->core->core_forceidle = true;
5562 if (!fi_before)
5563 rq->core->core_forceidle_seq++;
5564 }
5565
5566 /*
5567 * If this new candidate is of higher priority than the
5568 * previous; and they're incompatible; we need to wipe
5569 * the slate and start over. pick_task makes sure that
5570 * p's priority is more than max if it doesn't match
5571 * max's cookie.
5572 *
5573 * NOTE: this is a linear max-filter and is thus bounded
5574 * in execution time.
5575 */
5576 if (!max || !cookie_match(max, p)) {
5577 struct task_struct *old_max = max;
5578
5579 rq->core->core_cookie = p->core_cookie;
5580 max = p;
5581
5582 if (old_max) {
5583 rq->core->core_forceidle = false;
5584 for_each_cpu(j, smt_mask) {
5585 if (j == i)
5586 continue;
5587
5588 cpu_rq(j)->core_pick = NULL;
5589 }
5590 occ = 1;
5591 goto again;
5592 }
5593 }
5594 }
5595 }
5596
5597 rq->core->core_pick_seq = rq->core->core_task_seq;
5598 next = rq->core_pick;
5599 rq->core_sched_seq = rq->core->core_pick_seq;
5600
5601 /* Something should have been selected for current CPU */
5602 WARN_ON_ONCE(!next);
5603
5604 /*
5605 * Reschedule siblings
5606 *
5607 * NOTE: L1TF -- at this point we're no longer running the old task and
5608 * sending an IPI (below) ensures the sibling will no longer be running
5609 * their task. This ensures there is no inter-sibling overlap between
5610 * non-matching user state.
5611 */
5612 for_each_cpu(i, smt_mask) {
5613 struct rq *rq_i = cpu_rq(i);
5614
5615 /*
5616 * An online sibling might have gone offline before a task
5617 * could be picked for it, or it might be offline but later
5618 * happen to come online, but its too late and nothing was
5619 * picked for it. That's Ok - it will pick tasks for itself,
5620 * so ignore it.
5621 */
5622 if (!rq_i->core_pick)
5623 continue;
5624
5625 /*
5626 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5627 * fi_before fi update?
5628 * 0 0 1
5629 * 0 1 1
5630 * 1 0 1
5631 * 1 1 0
5632 */
5633 if (!(fi_before && rq->core->core_forceidle))
5634 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5635
5636 rq_i->core_pick->core_occupation = occ;
5637
5638 if (i == cpu) {
5639 rq_i->core_pick = NULL;
5640 continue;
5641 }
5642
5643 /* Did we break L1TF mitigation requirements? */
5644 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5645
5646 if (rq_i->curr == rq_i->core_pick) {
5647 rq_i->core_pick = NULL;
5648 continue;
5649 }
5650
5651 resched_curr(rq_i);
5652 }
5653
5654done:
5655 set_next_task(rq, next);
5656 return next;
5657}
5658
5659static bool try_steal_cookie(int this, int that)
5660{
5661 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5662 struct task_struct *p;
5663 unsigned long cookie;
5664 bool success = false;
5665
5666 local_irq_disable();
5667 double_rq_lock(dst, src);
5668
5669 cookie = dst->core->core_cookie;
5670 if (!cookie)
5671 goto unlock;
5672
5673 if (dst->curr != dst->idle)
5674 goto unlock;
5675
5676 p = sched_core_find(src, cookie);
5677 if (p == src->idle)
5678 goto unlock;
5679
5680 do {
5681 if (p == src->core_pick || p == src->curr)
5682 goto next;
5683
5684 if (!cpumask_test_cpu(this, &p->cpus_mask))
5685 goto next;
5686
5687 if (p->core_occupation > dst->idle->core_occupation)
5688 goto next;
5689
5690 p->on_rq = TASK_ON_RQ_MIGRATING;
5691 deactivate_task(src, p, 0);
5692 set_task_cpu(p, this);
5693 activate_task(dst, p, 0);
5694 p->on_rq = TASK_ON_RQ_QUEUED;
5695
5696 resched_curr(dst);
5697
5698 success = true;
5699 break;
5700
5701next:
5702 p = sched_core_next(p, cookie);
5703 } while (p);
5704
5705unlock:
5706 double_rq_unlock(dst, src);
5707 local_irq_enable();
5708
5709 return success;
5710}
5711
5712static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5713{
5714 int i;
5715
5716 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5717 if (i == cpu)
5718 continue;
5719
5720 if (need_resched())
5721 break;
5722
5723 if (try_steal_cookie(cpu, i))
5724 return true;
5725 }
5726
5727 return false;
5728}
5729
5730static void sched_core_balance(struct rq *rq)
5731{
5732 struct sched_domain *sd;
5733 int cpu = cpu_of(rq);
5734
5735 preempt_disable();
5736 rcu_read_lock();
5737 raw_spin_rq_unlock_irq(rq);
5738 for_each_domain(cpu, sd) {
5739 if (need_resched())
5740 break;
5741
5742 if (steal_cookie_task(cpu, sd))
5743 break;
5744 }
5745 raw_spin_rq_lock_irq(rq);
5746 rcu_read_unlock();
5747 preempt_enable();
5748}
5749
5750static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5751
5752void queue_core_balance(struct rq *rq)
5753{
5754 if (!sched_core_enabled(rq))
5755 return;
5756
5757 if (!rq->core->core_cookie)
5758 return;
5759
5760 if (!rq->nr_running) /* not forced idle */
5761 return;
5762
5763 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5764}
5765
5766static void sched_core_cpu_starting(unsigned int cpu)
5767{
5768 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5769 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5770 unsigned long flags;
5771 int t;
5772
5773 sched_core_lock(cpu, &flags);
5774
5775 WARN_ON_ONCE(rq->core != rq);
5776
5777 /* if we're the first, we'll be our own leader */
5778 if (cpumask_weight(smt_mask) == 1)
5779 goto unlock;
5780
5781 /* find the leader */
5782 for_each_cpu(t, smt_mask) {
5783 if (t == cpu)
5784 continue;
5785 rq = cpu_rq(t);
5786 if (rq->core == rq) {
5787 core_rq = rq;
5788 break;
5789 }
5790 }
5791
5792 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
5793 goto unlock;
5794
5795 /* install and validate core_rq */
5796 for_each_cpu(t, smt_mask) {
5797 rq = cpu_rq(t);
5798
5799 if (t == cpu)
5800 rq->core = core_rq;
5801
5802 WARN_ON_ONCE(rq->core != core_rq);
5803 }
5804
5805unlock:
5806 sched_core_unlock(cpu, &flags);
5807}
5808
5809static void sched_core_cpu_deactivate(unsigned int cpu)
5810{
5811 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
5812 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
5813 unsigned long flags;
5814 int t;
5815
5816 sched_core_lock(cpu, &flags);
5817
5818 /* if we're the last man standing, nothing to do */
5819 if (cpumask_weight(smt_mask) == 1) {
5820 WARN_ON_ONCE(rq->core != rq);
5821 goto unlock;
5822 }
5823
5824 /* if we're not the leader, nothing to do */
5825 if (rq->core != rq)
5826 goto unlock;
5827
5828 /* find a new leader */
5829 for_each_cpu(t, smt_mask) {
5830 if (t == cpu)
5831 continue;
5832 core_rq = cpu_rq(t);
5833 break;
5834 }
5835
5836 if (WARN_ON_ONCE(!core_rq)) /* impossible */
5837 goto unlock;
5838
5839 /* copy the shared state to the new leader */
5840 core_rq->core_task_seq = rq->core_task_seq;
5841 core_rq->core_pick_seq = rq->core_pick_seq;
5842 core_rq->core_cookie = rq->core_cookie;
5843 core_rq->core_forceidle = rq->core_forceidle;
5844 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
5845
5846 /* install new leader */
5847 for_each_cpu(t, smt_mask) {
5848 rq = cpu_rq(t);
5849 rq->core = core_rq;
5850 }
5851
5852unlock:
5853 sched_core_unlock(cpu, &flags);
5854}
5855
5856static inline void sched_core_cpu_dying(unsigned int cpu)
5857{
5858 struct rq *rq = cpu_rq(cpu);
5859
5860 if (rq->core != rq)
5861 rq->core = rq;
5862}
5863
5864#else /* !CONFIG_SCHED_CORE */
5865
5866static inline void sched_core_cpu_starting(unsigned int cpu) {}
5867static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
5868static inline void sched_core_cpu_dying(unsigned int cpu) {}
5869
5870static struct task_struct *
5871pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5872{
5873 return __pick_next_task(rq, prev, rf);
5874}
5875
5876#endif /* CONFIG_SCHED_CORE */
5877
5878/*
5879 * __schedule() is the main scheduler function.
5880 *
5881 * The main means of driving the scheduler and thus entering this function are:
5882 *
5883 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
5884 *
5885 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
5886 * paths. For example, see arch/x86/entry_64.S.
5887 *
5888 * To drive preemption between tasks, the scheduler sets the flag in timer
5889 * interrupt handler scheduler_tick().
5890 *
5891 * 3. Wakeups don't really cause entry into schedule(). They add a
5892 * task to the run-queue and that's it.
5893 *
5894 * Now, if the new task added to the run-queue preempts the current
5895 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5896 * called on the nearest possible occasion:
5897 *
5898 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
5899 *
5900 * - in syscall or exception context, at the next outmost
5901 * preempt_enable(). (this might be as soon as the wake_up()'s
5902 * spin_unlock()!)
5903 *
5904 * - in IRQ context, return from interrupt-handler to
5905 * preemptible context
5906 *
5907 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
5908 * then at the next:
5909 *
5910 * - cond_resched() call
5911 * - explicit schedule() call
5912 * - return from syscall or exception to user-space
5913 * - return from interrupt-handler to user-space
5914 *
5915 * WARNING: must be called with preemption disabled!
5916 */
5917static void __sched notrace __schedule(bool preempt)
5918{
5919 struct task_struct *prev, *next;
5920 unsigned long *switch_count;
5921 unsigned long prev_state;
5922 struct rq_flags rf;
5923 struct rq *rq;
5924 int cpu;
5925
5926 cpu = smp_processor_id();
5927 rq = cpu_rq(cpu);
5928 prev = rq->curr;
5929
5930 schedule_debug(prev, preempt);
5931
5932 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
5933 hrtick_clear(rq);
5934
5935 local_irq_disable();
5936 rcu_note_context_switch(preempt);
5937
5938 /*
5939 * Make sure that signal_pending_state()->signal_pending() below
5940 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
5941 * done by the caller to avoid the race with signal_wake_up():
5942 *
5943 * __set_current_state(@state) signal_wake_up()
5944 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
5945 * wake_up_state(p, state)
5946 * LOCK rq->lock LOCK p->pi_state
5947 * smp_mb__after_spinlock() smp_mb__after_spinlock()
5948 * if (signal_pending_state()) if (p->state & @state)
5949 *
5950 * Also, the membarrier system call requires a full memory barrier
5951 * after coming from user-space, before storing to rq->curr.
5952 */
5953 rq_lock(rq, &rf);
5954 smp_mb__after_spinlock();
5955
5956 /* Promote REQ to ACT */
5957 rq->clock_update_flags <<= 1;
5958 update_rq_clock(rq);
5959
5960 switch_count = &prev->nivcsw;
5961
5962 /*
5963 * We must load prev->state once (task_struct::state is volatile), such
5964 * that:
5965 *
5966 * - we form a control dependency vs deactivate_task() below.
5967 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
5968 */
5969 prev_state = READ_ONCE(prev->__state);
5970 if (!preempt && prev_state) {
5971 if (signal_pending_state(prev_state, prev)) {
5972 WRITE_ONCE(prev->__state, TASK_RUNNING);
5973 } else {
5974 prev->sched_contributes_to_load =
5975 (prev_state & TASK_UNINTERRUPTIBLE) &&
5976 !(prev_state & TASK_NOLOAD) &&
5977 !(prev->flags & PF_FROZEN);
5978
5979 if (prev->sched_contributes_to_load)
5980 rq->nr_uninterruptible++;
5981
5982 /*
5983 * __schedule() ttwu()
5984 * prev_state = prev->state; if (p->on_rq && ...)
5985 * if (prev_state) goto out;
5986 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5987 * p->state = TASK_WAKING
5988 *
5989 * Where __schedule() and ttwu() have matching control dependencies.
5990 *
5991 * After this, schedule() must not care about p->state any more.
5992 */
5993 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5994
5995 if (prev->in_iowait) {
5996 atomic_inc(&rq->nr_iowait);
5997 delayacct_blkio_start();
5998 }
5999 }
6000 switch_count = &prev->nvcsw;
6001 }
6002
6003 next = pick_next_task(rq, prev, &rf);
6004 clear_tsk_need_resched(prev);
6005 clear_preempt_need_resched();
6006#ifdef CONFIG_SCHED_DEBUG
6007 rq->last_seen_need_resched_ns = 0;
6008#endif
6009
6010 if (likely(prev != next)) {
6011 rq->nr_switches++;
6012 /*
6013 * RCU users of rcu_dereference(rq->curr) may not see
6014 * changes to task_struct made by pick_next_task().
6015 */
6016 RCU_INIT_POINTER(rq->curr, next);
6017 /*
6018 * The membarrier system call requires each architecture
6019 * to have a full memory barrier after updating
6020 * rq->curr, before returning to user-space.
6021 *
6022 * Here are the schemes providing that barrier on the
6023 * various architectures:
6024 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6025 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6026 * - finish_lock_switch() for weakly-ordered
6027 * architectures where spin_unlock is a full barrier,
6028 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6029 * is a RELEASE barrier),
6030 */
6031 ++*switch_count;
6032
6033 migrate_disable_switch(rq, prev);
6034 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6035
6036 trace_sched_switch(preempt, prev, next);
6037
6038 /* Also unlocks the rq: */
6039 rq = context_switch(rq, prev, next, &rf);
6040 } else {
6041 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6042
6043 rq_unpin_lock(rq, &rf);
6044 __balance_callbacks(rq);
6045 raw_spin_rq_unlock_irq(rq);
6046 }
6047}
6048
6049void __noreturn do_task_dead(void)
6050{
6051 /* Causes final put_task_struct in finish_task_switch(): */
6052 set_special_state(TASK_DEAD);
6053
6054 /* Tell freezer to ignore us: */
6055 current->flags |= PF_NOFREEZE;
6056
6057 __schedule(false);
6058 BUG();
6059
6060 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6061 for (;;)
6062 cpu_relax();
6063}
6064
6065static inline void sched_submit_work(struct task_struct *tsk)
6066{
6067 unsigned int task_flags;
6068
6069 if (task_is_running(tsk))
6070 return;
6071
6072 task_flags = tsk->flags;
6073 /*
6074 * If a worker went to sleep, notify and ask workqueue whether
6075 * it wants to wake up a task to maintain concurrency.
6076 * As this function is called inside the schedule() context,
6077 * we disable preemption to avoid it calling schedule() again
6078 * in the possible wakeup of a kworker and because wq_worker_sleeping()
6079 * requires it.
6080 */
6081 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6082 preempt_disable();
6083 if (task_flags & PF_WQ_WORKER)
6084 wq_worker_sleeping(tsk);
6085 else
6086 io_wq_worker_sleeping(tsk);
6087 preempt_enable_no_resched();
6088 }
6089
6090 if (tsk_is_pi_blocked(tsk))
6091 return;
6092
6093 /*
6094 * If we are going to sleep and we have plugged IO queued,
6095 * make sure to submit it to avoid deadlocks.
6096 */
6097 if (blk_needs_flush_plug(tsk))
6098 blk_schedule_flush_plug(tsk);
6099}
6100
6101static void sched_update_worker(struct task_struct *tsk)
6102{
6103 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6104 if (tsk->flags & PF_WQ_WORKER)
6105 wq_worker_running(tsk);
6106 else
6107 io_wq_worker_running(tsk);
6108 }
6109}
6110
6111asmlinkage __visible void __sched schedule(void)
6112{
6113 struct task_struct *tsk = current;
6114
6115 sched_submit_work(tsk);
6116 do {
6117 preempt_disable();
6118 __schedule(false);
6119 sched_preempt_enable_no_resched();
6120 } while (need_resched());
6121 sched_update_worker(tsk);
6122}
6123EXPORT_SYMBOL(schedule);
6124
6125/*
6126 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6127 * state (have scheduled out non-voluntarily) by making sure that all
6128 * tasks have either left the run queue or have gone into user space.
6129 * As idle tasks do not do either, they must not ever be preempted
6130 * (schedule out non-voluntarily).
6131 *
6132 * schedule_idle() is similar to schedule_preempt_disable() except that it
6133 * never enables preemption because it does not call sched_submit_work().
6134 */
6135void __sched schedule_idle(void)
6136{
6137 /*
6138 * As this skips calling sched_submit_work(), which the idle task does
6139 * regardless because that function is a nop when the task is in a
6140 * TASK_RUNNING state, make sure this isn't used someplace that the
6141 * current task can be in any other state. Note, idle is always in the
6142 * TASK_RUNNING state.
6143 */
6144 WARN_ON_ONCE(current->__state);
6145 do {
6146 __schedule(false);
6147 } while (need_resched());
6148}
6149
6150#if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6151asmlinkage __visible void __sched schedule_user(void)
6152{
6153 /*
6154 * If we come here after a random call to set_need_resched(),
6155 * or we have been woken up remotely but the IPI has not yet arrived,
6156 * we haven't yet exited the RCU idle mode. Do it here manually until
6157 * we find a better solution.
6158 *
6159 * NB: There are buggy callers of this function. Ideally we
6160 * should warn if prev_state != CONTEXT_USER, but that will trigger
6161 * too frequently to make sense yet.
6162 */
6163 enum ctx_state prev_state = exception_enter();
6164 schedule();
6165 exception_exit(prev_state);
6166}
6167#endif
6168
6169/**
6170 * schedule_preempt_disabled - called with preemption disabled
6171 *
6172 * Returns with preemption disabled. Note: preempt_count must be 1
6173 */
6174void __sched schedule_preempt_disabled(void)
6175{
6176 sched_preempt_enable_no_resched();
6177 schedule();
6178 preempt_disable();
6179}
6180
6181static void __sched notrace preempt_schedule_common(void)
6182{
6183 do {
6184 /*
6185 * Because the function tracer can trace preempt_count_sub()
6186 * and it also uses preempt_enable/disable_notrace(), if
6187 * NEED_RESCHED is set, the preempt_enable_notrace() called
6188 * by the function tracer will call this function again and
6189 * cause infinite recursion.
6190 *
6191 * Preemption must be disabled here before the function
6192 * tracer can trace. Break up preempt_disable() into two
6193 * calls. One to disable preemption without fear of being
6194 * traced. The other to still record the preemption latency,
6195 * which can also be traced by the function tracer.
6196 */
6197 preempt_disable_notrace();
6198 preempt_latency_start(1);
6199 __schedule(true);
6200 preempt_latency_stop(1);
6201 preempt_enable_no_resched_notrace();
6202
6203 /*
6204 * Check again in case we missed a preemption opportunity
6205 * between schedule and now.
6206 */
6207 } while (need_resched());
6208}
6209
6210#ifdef CONFIG_PREEMPTION
6211/*
6212 * This is the entry point to schedule() from in-kernel preemption
6213 * off of preempt_enable.
6214 */
6215asmlinkage __visible void __sched notrace preempt_schedule(void)
6216{
6217 /*
6218 * If there is a non-zero preempt_count or interrupts are disabled,
6219 * we do not want to preempt the current task. Just return..
6220 */
6221 if (likely(!preemptible()))
6222 return;
6223
6224 preempt_schedule_common();
6225}
6226NOKPROBE_SYMBOL(preempt_schedule);
6227EXPORT_SYMBOL(preempt_schedule);
6228
6229#ifdef CONFIG_PREEMPT_DYNAMIC
6230DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6231EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6232#endif
6233
6234
6235/**
6236 * preempt_schedule_notrace - preempt_schedule called by tracing
6237 *
6238 * The tracing infrastructure uses preempt_enable_notrace to prevent
6239 * recursion and tracing preempt enabling caused by the tracing
6240 * infrastructure itself. But as tracing can happen in areas coming
6241 * from userspace or just about to enter userspace, a preempt enable
6242 * can occur before user_exit() is called. This will cause the scheduler
6243 * to be called when the system is still in usermode.
6244 *
6245 * To prevent this, the preempt_enable_notrace will use this function
6246 * instead of preempt_schedule() to exit user context if needed before
6247 * calling the scheduler.
6248 */
6249asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6250{
6251 enum ctx_state prev_ctx;
6252
6253 if (likely(!preemptible()))
6254 return;
6255
6256 do {
6257 /*
6258 * Because the function tracer can trace preempt_count_sub()
6259 * and it also uses preempt_enable/disable_notrace(), if
6260 * NEED_RESCHED is set, the preempt_enable_notrace() called
6261 * by the function tracer will call this function again and
6262 * cause infinite recursion.
6263 *
6264 * Preemption must be disabled here before the function
6265 * tracer can trace. Break up preempt_disable() into two
6266 * calls. One to disable preemption without fear of being
6267 * traced. The other to still record the preemption latency,
6268 * which can also be traced by the function tracer.
6269 */
6270 preempt_disable_notrace();
6271 preempt_latency_start(1);
6272 /*
6273 * Needs preempt disabled in case user_exit() is traced
6274 * and the tracer calls preempt_enable_notrace() causing
6275 * an infinite recursion.
6276 */
6277 prev_ctx = exception_enter();
6278 __schedule(true);
6279 exception_exit(prev_ctx);
6280
6281 preempt_latency_stop(1);
6282 preempt_enable_no_resched_notrace();
6283 } while (need_resched());
6284}
6285EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6286
6287#ifdef CONFIG_PREEMPT_DYNAMIC
6288DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6289EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6290#endif
6291
6292#endif /* CONFIG_PREEMPTION */
6293
6294#ifdef CONFIG_PREEMPT_DYNAMIC
6295
6296#include <linux/entry-common.h>
6297
6298/*
6299 * SC:cond_resched
6300 * SC:might_resched
6301 * SC:preempt_schedule
6302 * SC:preempt_schedule_notrace
6303 * SC:irqentry_exit_cond_resched
6304 *
6305 *
6306 * NONE:
6307 * cond_resched <- __cond_resched
6308 * might_resched <- RET0
6309 * preempt_schedule <- NOP
6310 * preempt_schedule_notrace <- NOP
6311 * irqentry_exit_cond_resched <- NOP
6312 *
6313 * VOLUNTARY:
6314 * cond_resched <- __cond_resched
6315 * might_resched <- __cond_resched
6316 * preempt_schedule <- NOP
6317 * preempt_schedule_notrace <- NOP
6318 * irqentry_exit_cond_resched <- NOP
6319 *
6320 * FULL:
6321 * cond_resched <- RET0
6322 * might_resched <- RET0
6323 * preempt_schedule <- preempt_schedule
6324 * preempt_schedule_notrace <- preempt_schedule_notrace
6325 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6326 */
6327
6328enum {
6329 preempt_dynamic_none = 0,
6330 preempt_dynamic_voluntary,
6331 preempt_dynamic_full,
6332};
6333
6334int preempt_dynamic_mode = preempt_dynamic_full;
6335
6336int sched_dynamic_mode(const char *str)
6337{
6338 if (!strcmp(str, "none"))
6339 return preempt_dynamic_none;
6340
6341 if (!strcmp(str, "voluntary"))
6342 return preempt_dynamic_voluntary;
6343
6344 if (!strcmp(str, "full"))
6345 return preempt_dynamic_full;
6346
6347 return -EINVAL;
6348}
6349
6350void sched_dynamic_update(int mode)
6351{
6352 /*
6353 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6354 * the ZERO state, which is invalid.
6355 */
6356 static_call_update(cond_resched, __cond_resched);
6357 static_call_update(might_resched, __cond_resched);
6358 static_call_update(preempt_schedule, __preempt_schedule_func);
6359 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6360 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6361
6362 switch (mode) {
6363 case preempt_dynamic_none:
6364 static_call_update(cond_resched, __cond_resched);
6365 static_call_update(might_resched, (void *)&__static_call_return0);
6366 static_call_update(preempt_schedule, NULL);
6367 static_call_update(preempt_schedule_notrace, NULL);
6368 static_call_update(irqentry_exit_cond_resched, NULL);
6369 pr_info("Dynamic Preempt: none\n");
6370 break;
6371
6372 case preempt_dynamic_voluntary:
6373 static_call_update(cond_resched, __cond_resched);
6374 static_call_update(might_resched, __cond_resched);
6375 static_call_update(preempt_schedule, NULL);
6376 static_call_update(preempt_schedule_notrace, NULL);
6377 static_call_update(irqentry_exit_cond_resched, NULL);
6378 pr_info("Dynamic Preempt: voluntary\n");
6379 break;
6380
6381 case preempt_dynamic_full:
6382 static_call_update(cond_resched, (void *)&__static_call_return0);
6383 static_call_update(might_resched, (void *)&__static_call_return0);
6384 static_call_update(preempt_schedule, __preempt_schedule_func);
6385 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6386 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6387 pr_info("Dynamic Preempt: full\n");
6388 break;
6389 }
6390
6391 preempt_dynamic_mode = mode;
6392}
6393
6394static int __init setup_preempt_mode(char *str)
6395{
6396 int mode = sched_dynamic_mode(str);
6397 if (mode < 0) {
6398 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6399 return 1;
6400 }
6401
6402 sched_dynamic_update(mode);
6403 return 0;
6404}
6405__setup("preempt=", setup_preempt_mode);
6406
6407#endif /* CONFIG_PREEMPT_DYNAMIC */
6408
6409/*
6410 * This is the entry point to schedule() from kernel preemption
6411 * off of irq context.
6412 * Note, that this is called and return with irqs disabled. This will
6413 * protect us against recursive calling from irq.
6414 */
6415asmlinkage __visible void __sched preempt_schedule_irq(void)
6416{
6417 enum ctx_state prev_state;
6418
6419 /* Catch callers which need to be fixed */
6420 BUG_ON(preempt_count() || !irqs_disabled());
6421
6422 prev_state = exception_enter();
6423
6424 do {
6425 preempt_disable();
6426 local_irq_enable();
6427 __schedule(true);
6428 local_irq_disable();
6429 sched_preempt_enable_no_resched();
6430 } while (need_resched());
6431
6432 exception_exit(prev_state);
6433}
6434
6435int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6436 void *key)
6437{
6438 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6439 return try_to_wake_up(curr->private, mode, wake_flags);
6440}
6441EXPORT_SYMBOL(default_wake_function);
6442
6443static void __setscheduler_prio(struct task_struct *p, int prio)
6444{
6445 if (dl_prio(prio))
6446 p->sched_class = &dl_sched_class;
6447 else if (rt_prio(prio))
6448 p->sched_class = &rt_sched_class;
6449 else
6450 p->sched_class = &fair_sched_class;
6451
6452 p->prio = prio;
6453}
6454
6455#ifdef CONFIG_RT_MUTEXES
6456
6457static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6458{
6459 if (pi_task)
6460 prio = min(prio, pi_task->prio);
6461
6462 return prio;
6463}
6464
6465static inline int rt_effective_prio(struct task_struct *p, int prio)
6466{
6467 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6468
6469 return __rt_effective_prio(pi_task, prio);
6470}
6471
6472/*
6473 * rt_mutex_setprio - set the current priority of a task
6474 * @p: task to boost
6475 * @pi_task: donor task
6476 *
6477 * This function changes the 'effective' priority of a task. It does
6478 * not touch ->normal_prio like __setscheduler().
6479 *
6480 * Used by the rt_mutex code to implement priority inheritance
6481 * logic. Call site only calls if the priority of the task changed.
6482 */
6483void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6484{
6485 int prio, oldprio, queued, running, queue_flag =
6486 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6487 const struct sched_class *prev_class;
6488 struct rq_flags rf;
6489 struct rq *rq;
6490
6491 /* XXX used to be waiter->prio, not waiter->task->prio */
6492 prio = __rt_effective_prio(pi_task, p->normal_prio);
6493
6494 /*
6495 * If nothing changed; bail early.
6496 */
6497 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6498 return;
6499
6500 rq = __task_rq_lock(p, &rf);
6501 update_rq_clock(rq);
6502 /*
6503 * Set under pi_lock && rq->lock, such that the value can be used under
6504 * either lock.
6505 *
6506 * Note that there is loads of tricky to make this pointer cache work
6507 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6508 * ensure a task is de-boosted (pi_task is set to NULL) before the
6509 * task is allowed to run again (and can exit). This ensures the pointer
6510 * points to a blocked task -- which guarantees the task is present.
6511 */
6512 p->pi_top_task = pi_task;
6513
6514 /*
6515 * For FIFO/RR we only need to set prio, if that matches we're done.
6516 */
6517 if (prio == p->prio && !dl_prio(prio))
6518 goto out_unlock;
6519
6520 /*
6521 * Idle task boosting is a nono in general. There is one
6522 * exception, when PREEMPT_RT and NOHZ is active:
6523 *
6524 * The idle task calls get_next_timer_interrupt() and holds
6525 * the timer wheel base->lock on the CPU and another CPU wants
6526 * to access the timer (probably to cancel it). We can safely
6527 * ignore the boosting request, as the idle CPU runs this code
6528 * with interrupts disabled and will complete the lock
6529 * protected section without being interrupted. So there is no
6530 * real need to boost.
6531 */
6532 if (unlikely(p == rq->idle)) {
6533 WARN_ON(p != rq->curr);
6534 WARN_ON(p->pi_blocked_on);
6535 goto out_unlock;
6536 }
6537
6538 trace_sched_pi_setprio(p, pi_task);
6539 oldprio = p->prio;
6540
6541 if (oldprio == prio)
6542 queue_flag &= ~DEQUEUE_MOVE;
6543
6544 prev_class = p->sched_class;
6545 queued = task_on_rq_queued(p);
6546 running = task_current(rq, p);
6547 if (queued)
6548 dequeue_task(rq, p, queue_flag);
6549 if (running)
6550 put_prev_task(rq, p);
6551
6552 /*
6553 * Boosting condition are:
6554 * 1. -rt task is running and holds mutex A
6555 * --> -dl task blocks on mutex A
6556 *
6557 * 2. -dl task is running and holds mutex A
6558 * --> -dl task blocks on mutex A and could preempt the
6559 * running task
6560 */
6561 if (dl_prio(prio)) {
6562 if (!dl_prio(p->normal_prio) ||
6563 (pi_task && dl_prio(pi_task->prio) &&
6564 dl_entity_preempt(&pi_task->dl, &p->dl))) {
6565 p->dl.pi_se = pi_task->dl.pi_se;
6566 queue_flag |= ENQUEUE_REPLENISH;
6567 } else {
6568 p->dl.pi_se = &p->dl;
6569 }
6570 } else if (rt_prio(prio)) {
6571 if (dl_prio(oldprio))
6572 p->dl.pi_se = &p->dl;
6573 if (oldprio < prio)
6574 queue_flag |= ENQUEUE_HEAD;
6575 } else {
6576 if (dl_prio(oldprio))
6577 p->dl.pi_se = &p->dl;
6578 if (rt_prio(oldprio))
6579 p->rt.timeout = 0;
6580 }
6581
6582 __setscheduler_prio(p, prio);
6583
6584 if (queued)
6585 enqueue_task(rq, p, queue_flag);
6586 if (running)
6587 set_next_task(rq, p);
6588
6589 check_class_changed(rq, p, prev_class, oldprio);
6590out_unlock:
6591 /* Avoid rq from going away on us: */
6592 preempt_disable();
6593
6594 rq_unpin_lock(rq, &rf);
6595 __balance_callbacks(rq);
6596 raw_spin_rq_unlock(rq);
6597
6598 preempt_enable();
6599}
6600#else
6601static inline int rt_effective_prio(struct task_struct *p, int prio)
6602{
6603 return prio;
6604}
6605#endif
6606
6607void set_user_nice(struct task_struct *p, long nice)
6608{
6609 bool queued, running;
6610 int old_prio;
6611 struct rq_flags rf;
6612 struct rq *rq;
6613
6614 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6615 return;
6616 /*
6617 * We have to be careful, if called from sys_setpriority(),
6618 * the task might be in the middle of scheduling on another CPU.
6619 */
6620 rq = task_rq_lock(p, &rf);
6621 update_rq_clock(rq);
6622
6623 /*
6624 * The RT priorities are set via sched_setscheduler(), but we still
6625 * allow the 'normal' nice value to be set - but as expected
6626 * it won't have any effect on scheduling until the task is
6627 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6628 */
6629 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6630 p->static_prio = NICE_TO_PRIO(nice);
6631 goto out_unlock;
6632 }
6633 queued = task_on_rq_queued(p);
6634 running = task_current(rq, p);
6635 if (queued)
6636 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6637 if (running)
6638 put_prev_task(rq, p);
6639
6640 p->static_prio = NICE_TO_PRIO(nice);
6641 set_load_weight(p, true);
6642 old_prio = p->prio;
6643 p->prio = effective_prio(p);
6644
6645 if (queued)
6646 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6647 if (running)
6648 set_next_task(rq, p);
6649
6650 /*
6651 * If the task increased its priority or is running and
6652 * lowered its priority, then reschedule its CPU:
6653 */
6654 p->sched_class->prio_changed(rq, p, old_prio);
6655
6656out_unlock:
6657 task_rq_unlock(rq, p, &rf);
6658}
6659EXPORT_SYMBOL(set_user_nice);
6660
6661/*
6662 * can_nice - check if a task can reduce its nice value
6663 * @p: task
6664 * @nice: nice value
6665 */
6666int can_nice(const struct task_struct *p, const int nice)
6667{
6668 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
6669 int nice_rlim = nice_to_rlimit(nice);
6670
6671 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6672 capable(CAP_SYS_NICE));
6673}
6674
6675#ifdef __ARCH_WANT_SYS_NICE
6676
6677/*
6678 * sys_nice - change the priority of the current process.
6679 * @increment: priority increment
6680 *
6681 * sys_setpriority is a more generic, but much slower function that
6682 * does similar things.
6683 */
6684SYSCALL_DEFINE1(nice, int, increment)
6685{
6686 long nice, retval;
6687
6688 /*
6689 * Setpriority might change our priority at the same moment.
6690 * We don't have to worry. Conceptually one call occurs first
6691 * and we have a single winner.
6692 */
6693 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6694 nice = task_nice(current) + increment;
6695
6696 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6697 if (increment < 0 && !can_nice(current, nice))
6698 return -EPERM;
6699
6700 retval = security_task_setnice(current, nice);
6701 if (retval)
6702 return retval;
6703
6704 set_user_nice(current, nice);
6705 return 0;
6706}
6707
6708#endif
6709
6710/**
6711 * task_prio - return the priority value of a given task.
6712 * @p: the task in question.
6713 *
6714 * Return: The priority value as seen by users in /proc.
6715 *
6716 * sched policy return value kernel prio user prio/nice
6717 *
6718 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6719 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6720 * deadline -101 -1 0
6721 */
6722int task_prio(const struct task_struct *p)
6723{
6724 return p->prio - MAX_RT_PRIO;
6725}
6726
6727/**
6728 * idle_cpu - is a given CPU idle currently?
6729 * @cpu: the processor in question.
6730 *
6731 * Return: 1 if the CPU is currently idle. 0 otherwise.
6732 */
6733int idle_cpu(int cpu)
6734{
6735 struct rq *rq = cpu_rq(cpu);
6736
6737 if (rq->curr != rq->idle)
6738 return 0;
6739
6740 if (rq->nr_running)
6741 return 0;
6742
6743#ifdef CONFIG_SMP
6744 if (rq->ttwu_pending)
6745 return 0;
6746#endif
6747
6748 return 1;
6749}
6750
6751/**
6752 * available_idle_cpu - is a given CPU idle for enqueuing work.
6753 * @cpu: the CPU in question.
6754 *
6755 * Return: 1 if the CPU is currently idle. 0 otherwise.
6756 */
6757int available_idle_cpu(int cpu)
6758{
6759 if (!idle_cpu(cpu))
6760 return 0;
6761
6762 if (vcpu_is_preempted(cpu))
6763 return 0;
6764
6765 return 1;
6766}
6767
6768/**
6769 * idle_task - return the idle task for a given CPU.
6770 * @cpu: the processor in question.
6771 *
6772 * Return: The idle task for the CPU @cpu.
6773 */
6774struct task_struct *idle_task(int cpu)
6775{
6776 return cpu_rq(cpu)->idle;
6777}
6778
6779#ifdef CONFIG_SMP
6780/*
6781 * This function computes an effective utilization for the given CPU, to be
6782 * used for frequency selection given the linear relation: f = u * f_max.
6783 *
6784 * The scheduler tracks the following metrics:
6785 *
6786 * cpu_util_{cfs,rt,dl,irq}()
6787 * cpu_bw_dl()
6788 *
6789 * Where the cfs,rt and dl util numbers are tracked with the same metric and
6790 * synchronized windows and are thus directly comparable.
6791 *
6792 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
6793 * which excludes things like IRQ and steal-time. These latter are then accrued
6794 * in the irq utilization.
6795 *
6796 * The DL bandwidth number otoh is not a measured metric but a value computed
6797 * based on the task model parameters and gives the minimal utilization
6798 * required to meet deadlines.
6799 */
6800unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
6801 unsigned long max, enum cpu_util_type type,
6802 struct task_struct *p)
6803{
6804 unsigned long dl_util, util, irq;
6805 struct rq *rq = cpu_rq(cpu);
6806
6807 if (!uclamp_is_used() &&
6808 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
6809 return max;
6810 }
6811
6812 /*
6813 * Early check to see if IRQ/steal time saturates the CPU, can be
6814 * because of inaccuracies in how we track these -- see
6815 * update_irq_load_avg().
6816 */
6817 irq = cpu_util_irq(rq);
6818 if (unlikely(irq >= max))
6819 return max;
6820
6821 /*
6822 * Because the time spend on RT/DL tasks is visible as 'lost' time to
6823 * CFS tasks and we use the same metric to track the effective
6824 * utilization (PELT windows are synchronized) we can directly add them
6825 * to obtain the CPU's actual utilization.
6826 *
6827 * CFS and RT utilization can be boosted or capped, depending on
6828 * utilization clamp constraints requested by currently RUNNABLE
6829 * tasks.
6830 * When there are no CFS RUNNABLE tasks, clamps are released and
6831 * frequency will be gracefully reduced with the utilization decay.
6832 */
6833 util = util_cfs + cpu_util_rt(rq);
6834 if (type == FREQUENCY_UTIL)
6835 util = uclamp_rq_util_with(rq, util, p);
6836
6837 dl_util = cpu_util_dl(rq);
6838
6839 /*
6840 * For frequency selection we do not make cpu_util_dl() a permanent part
6841 * of this sum because we want to use cpu_bw_dl() later on, but we need
6842 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
6843 * that we select f_max when there is no idle time.
6844 *
6845 * NOTE: numerical errors or stop class might cause us to not quite hit
6846 * saturation when we should -- something for later.
6847 */
6848 if (util + dl_util >= max)
6849 return max;
6850
6851 /*
6852 * OTOH, for energy computation we need the estimated running time, so
6853 * include util_dl and ignore dl_bw.
6854 */
6855 if (type == ENERGY_UTIL)
6856 util += dl_util;
6857
6858 /*
6859 * There is still idle time; further improve the number by using the
6860 * irq metric. Because IRQ/steal time is hidden from the task clock we
6861 * need to scale the task numbers:
6862 *
6863 * max - irq
6864 * U' = irq + --------- * U
6865 * max
6866 */
6867 util = scale_irq_capacity(util, irq, max);
6868 util += irq;
6869
6870 /*
6871 * Bandwidth required by DEADLINE must always be granted while, for
6872 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
6873 * to gracefully reduce the frequency when no tasks show up for longer
6874 * periods of time.
6875 *
6876 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
6877 * bw_dl as requested freq. However, cpufreq is not yet ready for such
6878 * an interface. So, we only do the latter for now.
6879 */
6880 if (type == FREQUENCY_UTIL)
6881 util += cpu_bw_dl(rq);
6882
6883 return min(max, util);
6884}
6885
6886unsigned long sched_cpu_util(int cpu, unsigned long max)
6887{
6888 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
6889 ENERGY_UTIL, NULL);
6890}
6891#endif /* CONFIG_SMP */
6892
6893/**
6894 * find_process_by_pid - find a process with a matching PID value.
6895 * @pid: the pid in question.
6896 *
6897 * The task of @pid, if found. %NULL otherwise.
6898 */
6899static struct task_struct *find_process_by_pid(pid_t pid)
6900{
6901 return pid ? find_task_by_vpid(pid) : current;
6902}
6903
6904/*
6905 * sched_setparam() passes in -1 for its policy, to let the functions
6906 * it calls know not to change it.
6907 */
6908#define SETPARAM_POLICY -1
6909
6910static void __setscheduler_params(struct task_struct *p,
6911 const struct sched_attr *attr)
6912{
6913 int policy = attr->sched_policy;
6914
6915 if (policy == SETPARAM_POLICY)
6916 policy = p->policy;
6917
6918 p->policy = policy;
6919
6920 if (dl_policy(policy))
6921 __setparam_dl(p, attr);
6922 else if (fair_policy(policy))
6923 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6924
6925 /*
6926 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6927 * !rt_policy. Always setting this ensures that things like
6928 * getparam()/getattr() don't report silly values for !rt tasks.
6929 */
6930 p->rt_priority = attr->sched_priority;
6931 p->normal_prio = normal_prio(p);
6932 set_load_weight(p, true);
6933}
6934
6935/*
6936 * Check the target process has a UID that matches the current process's:
6937 */
6938static bool check_same_owner(struct task_struct *p)
6939{
6940 const struct cred *cred = current_cred(), *pcred;
6941 bool match;
6942
6943 rcu_read_lock();
6944 pcred = __task_cred(p);
6945 match = (uid_eq(cred->euid, pcred->euid) ||
6946 uid_eq(cred->euid, pcred->uid));
6947 rcu_read_unlock();
6948 return match;
6949}
6950
6951static int __sched_setscheduler(struct task_struct *p,
6952 const struct sched_attr *attr,
6953 bool user, bool pi)
6954{
6955 int oldpolicy = -1, policy = attr->sched_policy;
6956 int retval, oldprio, newprio, queued, running;
6957 const struct sched_class *prev_class;
6958 struct callback_head *head;
6959 struct rq_flags rf;
6960 int reset_on_fork;
6961 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6962 struct rq *rq;
6963
6964 /* The pi code expects interrupts enabled */
6965 BUG_ON(pi && in_interrupt());
6966recheck:
6967 /* Double check policy once rq lock held: */
6968 if (policy < 0) {
6969 reset_on_fork = p->sched_reset_on_fork;
6970 policy = oldpolicy = p->policy;
6971 } else {
6972 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6973
6974 if (!valid_policy(policy))
6975 return -EINVAL;
6976 }
6977
6978 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6979 return -EINVAL;
6980
6981 /*
6982 * Valid priorities for SCHED_FIFO and SCHED_RR are
6983 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6984 * SCHED_BATCH and SCHED_IDLE is 0.
6985 */
6986 if (attr->sched_priority > MAX_RT_PRIO-1)
6987 return -EINVAL;
6988 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6989 (rt_policy(policy) != (attr->sched_priority != 0)))
6990 return -EINVAL;
6991
6992 /*
6993 * Allow unprivileged RT tasks to decrease priority:
6994 */
6995 if (user && !capable(CAP_SYS_NICE)) {
6996 if (fair_policy(policy)) {
6997 if (attr->sched_nice < task_nice(p) &&
6998 !can_nice(p, attr->sched_nice))
6999 return -EPERM;
7000 }
7001
7002 if (rt_policy(policy)) {
7003 unsigned long rlim_rtprio =
7004 task_rlimit(p, RLIMIT_RTPRIO);
7005
7006 /* Can't set/change the rt policy: */
7007 if (policy != p->policy && !rlim_rtprio)
7008 return -EPERM;
7009
7010 /* Can't increase priority: */
7011 if (attr->sched_priority > p->rt_priority &&
7012 attr->sched_priority > rlim_rtprio)
7013 return -EPERM;
7014 }
7015
7016 /*
7017 * Can't set/change SCHED_DEADLINE policy at all for now
7018 * (safest behavior); in the future we would like to allow
7019 * unprivileged DL tasks to increase their relative deadline
7020 * or reduce their runtime (both ways reducing utilization)
7021 */
7022 if (dl_policy(policy))
7023 return -EPERM;
7024
7025 /*
7026 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7027 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7028 */
7029 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7030 if (!can_nice(p, task_nice(p)))
7031 return -EPERM;
7032 }
7033
7034 /* Can't change other user's priorities: */
7035 if (!check_same_owner(p))
7036 return -EPERM;
7037
7038 /* Normal users shall not reset the sched_reset_on_fork flag: */
7039 if (p->sched_reset_on_fork && !reset_on_fork)
7040 return -EPERM;
7041 }
7042
7043 if (user) {
7044 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7045 return -EINVAL;
7046
7047 retval = security_task_setscheduler(p);
7048 if (retval)
7049 return retval;
7050 }
7051
7052 /* Update task specific "requested" clamps */
7053 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7054 retval = uclamp_validate(p, attr);
7055 if (retval)
7056 return retval;
7057 }
7058
7059 if (pi)
7060 cpuset_read_lock();
7061
7062 /*
7063 * Make sure no PI-waiters arrive (or leave) while we are
7064 * changing the priority of the task:
7065 *
7066 * To be able to change p->policy safely, the appropriate
7067 * runqueue lock must be held.
7068 */
7069 rq = task_rq_lock(p, &rf);
7070 update_rq_clock(rq);
7071
7072 /*
7073 * Changing the policy of the stop threads its a very bad idea:
7074 */
7075 if (p == rq->stop) {
7076 retval = -EINVAL;
7077 goto unlock;
7078 }
7079
7080 /*
7081 * If not changing anything there's no need to proceed further,
7082 * but store a possible modification of reset_on_fork.
7083 */
7084 if (unlikely(policy == p->policy)) {
7085 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7086 goto change;
7087 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7088 goto change;
7089 if (dl_policy(policy) && dl_param_changed(p, attr))
7090 goto change;
7091 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7092 goto change;
7093
7094 p->sched_reset_on_fork = reset_on_fork;
7095 retval = 0;
7096 goto unlock;
7097 }
7098change:
7099
7100 if (user) {
7101#ifdef CONFIG_RT_GROUP_SCHED
7102 /*
7103 * Do not allow realtime tasks into groups that have no runtime
7104 * assigned.
7105 */
7106 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7107 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7108 !task_group_is_autogroup(task_group(p))) {
7109 retval = -EPERM;
7110 goto unlock;
7111 }
7112#endif
7113#ifdef CONFIG_SMP
7114 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7115 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7116 cpumask_t *span = rq->rd->span;
7117
7118 /*
7119 * Don't allow tasks with an affinity mask smaller than
7120 * the entire root_domain to become SCHED_DEADLINE. We
7121 * will also fail if there's no bandwidth available.
7122 */
7123 if (!cpumask_subset(span, p->cpus_ptr) ||
7124 rq->rd->dl_bw.bw == 0) {
7125 retval = -EPERM;
7126 goto unlock;
7127 }
7128 }
7129#endif
7130 }
7131
7132 /* Re-check policy now with rq lock held: */
7133 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7134 policy = oldpolicy = -1;
7135 task_rq_unlock(rq, p, &rf);
7136 if (pi)
7137 cpuset_read_unlock();
7138 goto recheck;
7139 }
7140
7141 /*
7142 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7143 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7144 * is available.
7145 */
7146 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7147 retval = -EBUSY;
7148 goto unlock;
7149 }
7150
7151 p->sched_reset_on_fork = reset_on_fork;
7152 oldprio = p->prio;
7153
7154 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7155 if (pi) {
7156 /*
7157 * Take priority boosted tasks into account. If the new
7158 * effective priority is unchanged, we just store the new
7159 * normal parameters and do not touch the scheduler class and
7160 * the runqueue. This will be done when the task deboost
7161 * itself.
7162 */
7163 newprio = rt_effective_prio(p, newprio);
7164 if (newprio == oldprio)
7165 queue_flags &= ~DEQUEUE_MOVE;
7166 }
7167
7168 queued = task_on_rq_queued(p);
7169 running = task_current(rq, p);
7170 if (queued)
7171 dequeue_task(rq, p, queue_flags);
7172 if (running)
7173 put_prev_task(rq, p);
7174
7175 prev_class = p->sched_class;
7176
7177 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7178 __setscheduler_params(p, attr);
7179 __setscheduler_prio(p, newprio);
7180 }
7181 __setscheduler_uclamp(p, attr);
7182
7183 if (queued) {
7184 /*
7185 * We enqueue to tail when the priority of a task is
7186 * increased (user space view).
7187 */
7188 if (oldprio < p->prio)
7189 queue_flags |= ENQUEUE_HEAD;
7190
7191 enqueue_task(rq, p, queue_flags);
7192 }
7193 if (running)
7194 set_next_task(rq, p);
7195
7196 check_class_changed(rq, p, prev_class, oldprio);
7197
7198 /* Avoid rq from going away on us: */
7199 preempt_disable();
7200 head = splice_balance_callbacks(rq);
7201 task_rq_unlock(rq, p, &rf);
7202
7203 if (pi) {
7204 cpuset_read_unlock();
7205 rt_mutex_adjust_pi(p);
7206 }
7207
7208 /* Run balance callbacks after we've adjusted the PI chain: */
7209 balance_callbacks(rq, head);
7210 preempt_enable();
7211
7212 return 0;
7213
7214unlock:
7215 task_rq_unlock(rq, p, &rf);
7216 if (pi)
7217 cpuset_read_unlock();
7218 return retval;
7219}
7220
7221static int _sched_setscheduler(struct task_struct *p, int policy,
7222 const struct sched_param *param, bool check)
7223{
7224 struct sched_attr attr = {
7225 .sched_policy = policy,
7226 .sched_priority = param->sched_priority,
7227 .sched_nice = PRIO_TO_NICE(p->static_prio),
7228 };
7229
7230 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7231 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7232 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7233 policy &= ~SCHED_RESET_ON_FORK;
7234 attr.sched_policy = policy;
7235 }
7236
7237 return __sched_setscheduler(p, &attr, check, true);
7238}
7239/**
7240 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7241 * @p: the task in question.
7242 * @policy: new policy.
7243 * @param: structure containing the new RT priority.
7244 *
7245 * Use sched_set_fifo(), read its comment.
7246 *
7247 * Return: 0 on success. An error code otherwise.
7248 *
7249 * NOTE that the task may be already dead.
7250 */
7251int sched_setscheduler(struct task_struct *p, int policy,
7252 const struct sched_param *param)
7253{
7254 return _sched_setscheduler(p, policy, param, true);
7255}
7256
7257int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7258{
7259 return __sched_setscheduler(p, attr, true, true);
7260}
7261
7262int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7263{
7264 return __sched_setscheduler(p, attr, false, true);
7265}
7266EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7267
7268/**
7269 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7270 * @p: the task in question.
7271 * @policy: new policy.
7272 * @param: structure containing the new RT priority.
7273 *
7274 * Just like sched_setscheduler, only don't bother checking if the
7275 * current context has permission. For example, this is needed in
7276 * stop_machine(): we create temporary high priority worker threads,
7277 * but our caller might not have that capability.
7278 *
7279 * Return: 0 on success. An error code otherwise.
7280 */
7281int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7282 const struct sched_param *param)
7283{
7284 return _sched_setscheduler(p, policy, param, false);
7285}
7286
7287/*
7288 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7289 * incapable of resource management, which is the one thing an OS really should
7290 * be doing.
7291 *
7292 * This is of course the reason it is limited to privileged users only.
7293 *
7294 * Worse still; it is fundamentally impossible to compose static priority
7295 * workloads. You cannot take two correctly working static prio workloads
7296 * and smash them together and still expect them to work.
7297 *
7298 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7299 *
7300 * MAX_RT_PRIO / 2
7301 *
7302 * The administrator _MUST_ configure the system, the kernel simply doesn't
7303 * know enough information to make a sensible choice.
7304 */
7305void sched_set_fifo(struct task_struct *p)
7306{
7307 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7308 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7309}
7310EXPORT_SYMBOL_GPL(sched_set_fifo);
7311
7312/*
7313 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7314 */
7315void sched_set_fifo_low(struct task_struct *p)
7316{
7317 struct sched_param sp = { .sched_priority = 1 };
7318 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7319}
7320EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7321
7322void sched_set_normal(struct task_struct *p, int nice)
7323{
7324 struct sched_attr attr = {
7325 .sched_policy = SCHED_NORMAL,
7326 .sched_nice = nice,
7327 };
7328 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7329}
7330EXPORT_SYMBOL_GPL(sched_set_normal);
7331
7332static int
7333do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7334{
7335 struct sched_param lparam;
7336 struct task_struct *p;
7337 int retval;
7338
7339 if (!param || pid < 0)
7340 return -EINVAL;
7341 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7342 return -EFAULT;
7343
7344 rcu_read_lock();
7345 retval = -ESRCH;
7346 p = find_process_by_pid(pid);
7347 if (likely(p))
7348 get_task_struct(p);
7349 rcu_read_unlock();
7350
7351 if (likely(p)) {
7352 retval = sched_setscheduler(p, policy, &lparam);
7353 put_task_struct(p);
7354 }
7355
7356 return retval;
7357}
7358
7359/*
7360 * Mimics kernel/events/core.c perf_copy_attr().
7361 */
7362static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7363{
7364 u32 size;
7365 int ret;
7366
7367 /* Zero the full structure, so that a short copy will be nice: */
7368 memset(attr, 0, sizeof(*attr));
7369
7370 ret = get_user(size, &uattr->size);
7371 if (ret)
7372 return ret;
7373
7374 /* ABI compatibility quirk: */
7375 if (!size)
7376 size = SCHED_ATTR_SIZE_VER0;
7377 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7378 goto err_size;
7379
7380 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7381 if (ret) {
7382 if (ret == -E2BIG)
7383 goto err_size;
7384 return ret;
7385 }
7386
7387 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7388 size < SCHED_ATTR_SIZE_VER1)
7389 return -EINVAL;
7390
7391 /*
7392 * XXX: Do we want to be lenient like existing syscalls; or do we want
7393 * to be strict and return an error on out-of-bounds values?
7394 */
7395 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7396
7397 return 0;
7398
7399err_size:
7400 put_user(sizeof(*attr), &uattr->size);
7401 return -E2BIG;
7402}
7403
7404/**
7405 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7406 * @pid: the pid in question.
7407 * @policy: new policy.
7408 * @param: structure containing the new RT priority.
7409 *
7410 * Return: 0 on success. An error code otherwise.
7411 */
7412SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7413{
7414 if (policy < 0)
7415 return -EINVAL;
7416
7417 return do_sched_setscheduler(pid, policy, param);
7418}
7419
7420/**
7421 * sys_sched_setparam - set/change the RT priority of a thread
7422 * @pid: the pid in question.
7423 * @param: structure containing the new RT priority.
7424 *
7425 * Return: 0 on success. An error code otherwise.
7426 */
7427SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7428{
7429 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7430}
7431
7432/**
7433 * sys_sched_setattr - same as above, but with extended sched_attr
7434 * @pid: the pid in question.
7435 * @uattr: structure containing the extended parameters.
7436 * @flags: for future extension.
7437 */
7438SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7439 unsigned int, flags)
7440{
7441 struct sched_attr attr;
7442 struct task_struct *p;
7443 int retval;
7444
7445 if (!uattr || pid < 0 || flags)
7446 return -EINVAL;
7447
7448 retval = sched_copy_attr(uattr, &attr);
7449 if (retval)
7450 return retval;
7451
7452 if ((int)attr.sched_policy < 0)
7453 return -EINVAL;
7454 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7455 attr.sched_policy = SETPARAM_POLICY;
7456
7457 rcu_read_lock();
7458 retval = -ESRCH;
7459 p = find_process_by_pid(pid);
7460 if (likely(p))
7461 get_task_struct(p);
7462 rcu_read_unlock();
7463
7464 if (likely(p)) {
7465 retval = sched_setattr(p, &attr);
7466 put_task_struct(p);
7467 }
7468
7469 return retval;
7470}
7471
7472/**
7473 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7474 * @pid: the pid in question.
7475 *
7476 * Return: On success, the policy of the thread. Otherwise, a negative error
7477 * code.
7478 */
7479SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7480{
7481 struct task_struct *p;
7482 int retval;
7483
7484 if (pid < 0)
7485 return -EINVAL;
7486
7487 retval = -ESRCH;
7488 rcu_read_lock();
7489 p = find_process_by_pid(pid);
7490 if (p) {
7491 retval = security_task_getscheduler(p);
7492 if (!retval)
7493 retval = p->policy
7494 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7495 }
7496 rcu_read_unlock();
7497 return retval;
7498}
7499
7500/**
7501 * sys_sched_getparam - get the RT priority of a thread
7502 * @pid: the pid in question.
7503 * @param: structure containing the RT priority.
7504 *
7505 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7506 * code.
7507 */
7508SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7509{
7510 struct sched_param lp = { .sched_priority = 0 };
7511 struct task_struct *p;
7512 int retval;
7513
7514 if (!param || pid < 0)
7515 return -EINVAL;
7516
7517 rcu_read_lock();
7518 p = find_process_by_pid(pid);
7519 retval = -ESRCH;
7520 if (!p)
7521 goto out_unlock;
7522
7523 retval = security_task_getscheduler(p);
7524 if (retval)
7525 goto out_unlock;
7526
7527 if (task_has_rt_policy(p))
7528 lp.sched_priority = p->rt_priority;
7529 rcu_read_unlock();
7530
7531 /*
7532 * This one might sleep, we cannot do it with a spinlock held ...
7533 */
7534 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7535
7536 return retval;
7537
7538out_unlock:
7539 rcu_read_unlock();
7540 return retval;
7541}
7542
7543/*
7544 * Copy the kernel size attribute structure (which might be larger
7545 * than what user-space knows about) to user-space.
7546 *
7547 * Note that all cases are valid: user-space buffer can be larger or
7548 * smaller than the kernel-space buffer. The usual case is that both
7549 * have the same size.
7550 */
7551static int
7552sched_attr_copy_to_user(struct sched_attr __user *uattr,
7553 struct sched_attr *kattr,
7554 unsigned int usize)
7555{
7556 unsigned int ksize = sizeof(*kattr);
7557
7558 if (!access_ok(uattr, usize))
7559 return -EFAULT;
7560
7561 /*
7562 * sched_getattr() ABI forwards and backwards compatibility:
7563 *
7564 * If usize == ksize then we just copy everything to user-space and all is good.
7565 *
7566 * If usize < ksize then we only copy as much as user-space has space for,
7567 * this keeps ABI compatibility as well. We skip the rest.
7568 *
7569 * If usize > ksize then user-space is using a newer version of the ABI,
7570 * which part the kernel doesn't know about. Just ignore it - tooling can
7571 * detect the kernel's knowledge of attributes from the attr->size value
7572 * which is set to ksize in this case.
7573 */
7574 kattr->size = min(usize, ksize);
7575
7576 if (copy_to_user(uattr, kattr, kattr->size))
7577 return -EFAULT;
7578
7579 return 0;
7580}
7581
7582/**
7583 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7584 * @pid: the pid in question.
7585 * @uattr: structure containing the extended parameters.
7586 * @usize: sizeof(attr) for fwd/bwd comp.
7587 * @flags: for future extension.
7588 */
7589SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7590 unsigned int, usize, unsigned int, flags)
7591{
7592 struct sched_attr kattr = { };
7593 struct task_struct *p;
7594 int retval;
7595
7596 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7597 usize < SCHED_ATTR_SIZE_VER0 || flags)
7598 return -EINVAL;
7599
7600 rcu_read_lock();
7601 p = find_process_by_pid(pid);
7602 retval = -ESRCH;
7603 if (!p)
7604 goto out_unlock;
7605
7606 retval = security_task_getscheduler(p);
7607 if (retval)
7608 goto out_unlock;
7609
7610 kattr.sched_policy = p->policy;
7611 if (p->sched_reset_on_fork)
7612 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7613 if (task_has_dl_policy(p))
7614 __getparam_dl(p, &kattr);
7615 else if (task_has_rt_policy(p))
7616 kattr.sched_priority = p->rt_priority;
7617 else
7618 kattr.sched_nice = task_nice(p);
7619
7620#ifdef CONFIG_UCLAMP_TASK
7621 /*
7622 * This could race with another potential updater, but this is fine
7623 * because it'll correctly read the old or the new value. We don't need
7624 * to guarantee who wins the race as long as it doesn't return garbage.
7625 */
7626 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7627 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7628#endif
7629
7630 rcu_read_unlock();
7631
7632 return sched_attr_copy_to_user(uattr, &kattr, usize);
7633
7634out_unlock:
7635 rcu_read_unlock();
7636 return retval;
7637}
7638
7639long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7640{
7641 cpumask_var_t cpus_allowed, new_mask;
7642 struct task_struct *p;
7643 int retval;
7644
7645 rcu_read_lock();
7646
7647 p = find_process_by_pid(pid);
7648 if (!p) {
7649 rcu_read_unlock();
7650 return -ESRCH;
7651 }
7652
7653 /* Prevent p going away */
7654 get_task_struct(p);
7655 rcu_read_unlock();
7656
7657 if (p->flags & PF_NO_SETAFFINITY) {
7658 retval = -EINVAL;
7659 goto out_put_task;
7660 }
7661 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
7662 retval = -ENOMEM;
7663 goto out_put_task;
7664 }
7665 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7666 retval = -ENOMEM;
7667 goto out_free_cpus_allowed;
7668 }
7669 retval = -EPERM;
7670 if (!check_same_owner(p)) {
7671 rcu_read_lock();
7672 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
7673 rcu_read_unlock();
7674 goto out_free_new_mask;
7675 }
7676 rcu_read_unlock();
7677 }
7678
7679 retval = security_task_setscheduler(p);
7680 if (retval)
7681 goto out_free_new_mask;
7682
7683
7684 cpuset_cpus_allowed(p, cpus_allowed);
7685 cpumask_and(new_mask, in_mask, cpus_allowed);
7686
7687 /*
7688 * Since bandwidth control happens on root_domain basis,
7689 * if admission test is enabled, we only admit -deadline
7690 * tasks allowed to run on all the CPUs in the task's
7691 * root_domain.
7692 */
7693#ifdef CONFIG_SMP
7694 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
7695 rcu_read_lock();
7696 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
7697 retval = -EBUSY;
7698 rcu_read_unlock();
7699 goto out_free_new_mask;
7700 }
7701 rcu_read_unlock();
7702 }
7703#endif
7704again:
7705 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
7706
7707 if (!retval) {
7708 cpuset_cpus_allowed(p, cpus_allowed);
7709 if (!cpumask_subset(new_mask, cpus_allowed)) {
7710 /*
7711 * We must have raced with a concurrent cpuset
7712 * update. Just reset the cpus_allowed to the
7713 * cpuset's cpus_allowed
7714 */
7715 cpumask_copy(new_mask, cpus_allowed);
7716 goto again;
7717 }
7718 }
7719out_free_new_mask:
7720 free_cpumask_var(new_mask);
7721out_free_cpus_allowed:
7722 free_cpumask_var(cpus_allowed);
7723out_put_task:
7724 put_task_struct(p);
7725 return retval;
7726}
7727
7728static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
7729 struct cpumask *new_mask)
7730{
7731 if (len < cpumask_size())
7732 cpumask_clear(new_mask);
7733 else if (len > cpumask_size())
7734 len = cpumask_size();
7735
7736 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
7737}
7738
7739/**
7740 * sys_sched_setaffinity - set the CPU affinity of a process
7741 * @pid: pid of the process
7742 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7743 * @user_mask_ptr: user-space pointer to the new CPU mask
7744 *
7745 * Return: 0 on success. An error code otherwise.
7746 */
7747SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
7748 unsigned long __user *, user_mask_ptr)
7749{
7750 cpumask_var_t new_mask;
7751 int retval;
7752
7753 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
7754 return -ENOMEM;
7755
7756 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
7757 if (retval == 0)
7758 retval = sched_setaffinity(pid, new_mask);
7759 free_cpumask_var(new_mask);
7760 return retval;
7761}
7762
7763long sched_getaffinity(pid_t pid, struct cpumask *mask)
7764{
7765 struct task_struct *p;
7766 unsigned long flags;
7767 int retval;
7768
7769 rcu_read_lock();
7770
7771 retval = -ESRCH;
7772 p = find_process_by_pid(pid);
7773 if (!p)
7774 goto out_unlock;
7775
7776 retval = security_task_getscheduler(p);
7777 if (retval)
7778 goto out_unlock;
7779
7780 raw_spin_lock_irqsave(&p->pi_lock, flags);
7781 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
7782 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
7783
7784out_unlock:
7785 rcu_read_unlock();
7786
7787 return retval;
7788}
7789
7790/**
7791 * sys_sched_getaffinity - get the CPU affinity of a process
7792 * @pid: pid of the process
7793 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
7794 * @user_mask_ptr: user-space pointer to hold the current CPU mask
7795 *
7796 * Return: size of CPU mask copied to user_mask_ptr on success. An
7797 * error code otherwise.
7798 */
7799SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
7800 unsigned long __user *, user_mask_ptr)
7801{
7802 int ret;
7803 cpumask_var_t mask;
7804
7805 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
7806 return -EINVAL;
7807 if (len & (sizeof(unsigned long)-1))
7808 return -EINVAL;
7809
7810 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
7811 return -ENOMEM;
7812
7813 ret = sched_getaffinity(pid, mask);
7814 if (ret == 0) {
7815 unsigned int retlen = min(len, cpumask_size());
7816
7817 if (copy_to_user(user_mask_ptr, mask, retlen))
7818 ret = -EFAULT;
7819 else
7820 ret = retlen;
7821 }
7822 free_cpumask_var(mask);
7823
7824 return ret;
7825}
7826
7827static void do_sched_yield(void)
7828{
7829 struct rq_flags rf;
7830 struct rq *rq;
7831
7832 rq = this_rq_lock_irq(&rf);
7833
7834 schedstat_inc(rq->yld_count);
7835 current->sched_class->yield_task(rq);
7836
7837 preempt_disable();
7838 rq_unlock_irq(rq, &rf);
7839 sched_preempt_enable_no_resched();
7840
7841 schedule();
7842}
7843
7844/**
7845 * sys_sched_yield - yield the current processor to other threads.
7846 *
7847 * This function yields the current CPU to other tasks. If there are no
7848 * other threads running on this CPU then this function will return.
7849 *
7850 * Return: 0.
7851 */
7852SYSCALL_DEFINE0(sched_yield)
7853{
7854 do_sched_yield();
7855 return 0;
7856}
7857
7858#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
7859int __sched __cond_resched(void)
7860{
7861 if (should_resched(0)) {
7862 preempt_schedule_common();
7863 return 1;
7864 }
7865#ifndef CONFIG_PREEMPT_RCU
7866 rcu_all_qs();
7867#endif
7868 return 0;
7869}
7870EXPORT_SYMBOL(__cond_resched);
7871#endif
7872
7873#ifdef CONFIG_PREEMPT_DYNAMIC
7874DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7875EXPORT_STATIC_CALL_TRAMP(cond_resched);
7876
7877DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7878EXPORT_STATIC_CALL_TRAMP(might_resched);
7879#endif
7880
7881/*
7882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7883 * call schedule, and on return reacquire the lock.
7884 *
7885 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7886 * operations here to prevent schedule() from being called twice (once via
7887 * spin_unlock(), once by hand).
7888 */
7889int __cond_resched_lock(spinlock_t *lock)
7890{
7891 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7892 int ret = 0;
7893
7894 lockdep_assert_held(lock);
7895
7896 if (spin_needbreak(lock) || resched) {
7897 spin_unlock(lock);
7898 if (resched)
7899 preempt_schedule_common();
7900 else
7901 cpu_relax();
7902 ret = 1;
7903 spin_lock(lock);
7904 }
7905 return ret;
7906}
7907EXPORT_SYMBOL(__cond_resched_lock);
7908
7909int __cond_resched_rwlock_read(rwlock_t *lock)
7910{
7911 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7912 int ret = 0;
7913
7914 lockdep_assert_held_read(lock);
7915
7916 if (rwlock_needbreak(lock) || resched) {
7917 read_unlock(lock);
7918 if (resched)
7919 preempt_schedule_common();
7920 else
7921 cpu_relax();
7922 ret = 1;
7923 read_lock(lock);
7924 }
7925 return ret;
7926}
7927EXPORT_SYMBOL(__cond_resched_rwlock_read);
7928
7929int __cond_resched_rwlock_write(rwlock_t *lock)
7930{
7931 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7932 int ret = 0;
7933
7934 lockdep_assert_held_write(lock);
7935
7936 if (rwlock_needbreak(lock) || resched) {
7937 write_unlock(lock);
7938 if (resched)
7939 preempt_schedule_common();
7940 else
7941 cpu_relax();
7942 ret = 1;
7943 write_lock(lock);
7944 }
7945 return ret;
7946}
7947EXPORT_SYMBOL(__cond_resched_rwlock_write);
7948
7949/**
7950 * yield - yield the current processor to other threads.
7951 *
7952 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7953 *
7954 * The scheduler is at all times free to pick the calling task as the most
7955 * eligible task to run, if removing the yield() call from your code breaks
7956 * it, it's already broken.
7957 *
7958 * Typical broken usage is:
7959 *
7960 * while (!event)
7961 * yield();
7962 *
7963 * where one assumes that yield() will let 'the other' process run that will
7964 * make event true. If the current task is a SCHED_FIFO task that will never
7965 * happen. Never use yield() as a progress guarantee!!
7966 *
7967 * If you want to use yield() to wait for something, use wait_event().
7968 * If you want to use yield() to be 'nice' for others, use cond_resched().
7969 * If you still want to use yield(), do not!
7970 */
7971void __sched yield(void)
7972{
7973 set_current_state(TASK_RUNNING);
7974 do_sched_yield();
7975}
7976EXPORT_SYMBOL(yield);
7977
7978/**
7979 * yield_to - yield the current processor to another thread in
7980 * your thread group, or accelerate that thread toward the
7981 * processor it's on.
7982 * @p: target task
7983 * @preempt: whether task preemption is allowed or not
7984 *
7985 * It's the caller's job to ensure that the target task struct
7986 * can't go away on us before we can do any checks.
7987 *
7988 * Return:
7989 * true (>0) if we indeed boosted the target task.
7990 * false (0) if we failed to boost the target.
7991 * -ESRCH if there's no task to yield to.
7992 */
7993int __sched yield_to(struct task_struct *p, bool preempt)
7994{
7995 struct task_struct *curr = current;
7996 struct rq *rq, *p_rq;
7997 unsigned long flags;
7998 int yielded = 0;
7999
8000 local_irq_save(flags);
8001 rq = this_rq();
8002
8003again:
8004 p_rq = task_rq(p);
8005 /*
8006 * If we're the only runnable task on the rq and target rq also
8007 * has only one task, there's absolutely no point in yielding.
8008 */
8009 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8010 yielded = -ESRCH;
8011 goto out_irq;
8012 }
8013
8014 double_rq_lock(rq, p_rq);
8015 if (task_rq(p) != p_rq) {
8016 double_rq_unlock(rq, p_rq);
8017 goto again;
8018 }
8019
8020 if (!curr->sched_class->yield_to_task)
8021 goto out_unlock;
8022
8023 if (curr->sched_class != p->sched_class)
8024 goto out_unlock;
8025
8026 if (task_running(p_rq, p) || !task_is_running(p))
8027 goto out_unlock;
8028
8029 yielded = curr->sched_class->yield_to_task(rq, p);
8030 if (yielded) {
8031 schedstat_inc(rq->yld_count);
8032 /*
8033 * Make p's CPU reschedule; pick_next_entity takes care of
8034 * fairness.
8035 */
8036 if (preempt && rq != p_rq)
8037 resched_curr(p_rq);
8038 }
8039
8040out_unlock:
8041 double_rq_unlock(rq, p_rq);
8042out_irq:
8043 local_irq_restore(flags);
8044
8045 if (yielded > 0)
8046 schedule();
8047
8048 return yielded;
8049}
8050EXPORT_SYMBOL_GPL(yield_to);
8051
8052int io_schedule_prepare(void)
8053{
8054 int old_iowait = current->in_iowait;
8055
8056 current->in_iowait = 1;
8057 blk_schedule_flush_plug(current);
8058
8059 return old_iowait;
8060}
8061
8062void io_schedule_finish(int token)
8063{
8064 current->in_iowait = token;
8065}
8066
8067/*
8068 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8069 * that process accounting knows that this is a task in IO wait state.
8070 */
8071long __sched io_schedule_timeout(long timeout)
8072{
8073 int token;
8074 long ret;
8075
8076 token = io_schedule_prepare();
8077 ret = schedule_timeout(timeout);
8078 io_schedule_finish(token);
8079
8080 return ret;
8081}
8082EXPORT_SYMBOL(io_schedule_timeout);
8083
8084void __sched io_schedule(void)
8085{
8086 int token;
8087
8088 token = io_schedule_prepare();
8089 schedule();
8090 io_schedule_finish(token);
8091}
8092EXPORT_SYMBOL(io_schedule);
8093
8094/**
8095 * sys_sched_get_priority_max - return maximum RT priority.
8096 * @policy: scheduling class.
8097 *
8098 * Return: On success, this syscall returns the maximum
8099 * rt_priority that can be used by a given scheduling class.
8100 * On failure, a negative error code is returned.
8101 */
8102SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8103{
8104 int ret = -EINVAL;
8105
8106 switch (policy) {
8107 case SCHED_FIFO:
8108 case SCHED_RR:
8109 ret = MAX_RT_PRIO-1;
8110 break;
8111 case SCHED_DEADLINE:
8112 case SCHED_NORMAL:
8113 case SCHED_BATCH:
8114 case SCHED_IDLE:
8115 ret = 0;
8116 break;
8117 }
8118 return ret;
8119}
8120
8121/**
8122 * sys_sched_get_priority_min - return minimum RT priority.
8123 * @policy: scheduling class.
8124 *
8125 * Return: On success, this syscall returns the minimum
8126 * rt_priority that can be used by a given scheduling class.
8127 * On failure, a negative error code is returned.
8128 */
8129SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8130{
8131 int ret = -EINVAL;
8132
8133 switch (policy) {
8134 case SCHED_FIFO:
8135 case SCHED_RR:
8136 ret = 1;
8137 break;
8138 case SCHED_DEADLINE:
8139 case SCHED_NORMAL:
8140 case SCHED_BATCH:
8141 case SCHED_IDLE:
8142 ret = 0;
8143 }
8144 return ret;
8145}
8146
8147static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8148{
8149 struct task_struct *p;
8150 unsigned int time_slice;
8151 struct rq_flags rf;
8152 struct rq *rq;
8153 int retval;
8154
8155 if (pid < 0)
8156 return -EINVAL;
8157
8158 retval = -ESRCH;
8159 rcu_read_lock();
8160 p = find_process_by_pid(pid);
8161 if (!p)
8162 goto out_unlock;
8163
8164 retval = security_task_getscheduler(p);
8165 if (retval)
8166 goto out_unlock;
8167
8168 rq = task_rq_lock(p, &rf);
8169 time_slice = 0;
8170 if (p->sched_class->get_rr_interval)
8171 time_slice = p->sched_class->get_rr_interval(rq, p);
8172 task_rq_unlock(rq, p, &rf);
8173
8174 rcu_read_unlock();
8175 jiffies_to_timespec64(time_slice, t);
8176 return 0;
8177
8178out_unlock:
8179 rcu_read_unlock();
8180 return retval;
8181}
8182
8183/**
8184 * sys_sched_rr_get_interval - return the default timeslice of a process.
8185 * @pid: pid of the process.
8186 * @interval: userspace pointer to the timeslice value.
8187 *
8188 * this syscall writes the default timeslice value of a given process
8189 * into the user-space timespec buffer. A value of '0' means infinity.
8190 *
8191 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8192 * an error code.
8193 */
8194SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8195 struct __kernel_timespec __user *, interval)
8196{
8197 struct timespec64 t;
8198 int retval = sched_rr_get_interval(pid, &t);
8199
8200 if (retval == 0)
8201 retval = put_timespec64(&t, interval);
8202
8203 return retval;
8204}
8205
8206#ifdef CONFIG_COMPAT_32BIT_TIME
8207SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8208 struct old_timespec32 __user *, interval)
8209{
8210 struct timespec64 t;
8211 int retval = sched_rr_get_interval(pid, &t);
8212
8213 if (retval == 0)
8214 retval = put_old_timespec32(&t, interval);
8215 return retval;
8216}
8217#endif
8218
8219void sched_show_task(struct task_struct *p)
8220{
8221 unsigned long free = 0;
8222 int ppid;
8223
8224 if (!try_get_task_stack(p))
8225 return;
8226
8227 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8228
8229 if (task_is_running(p))
8230 pr_cont(" running task ");
8231#ifdef CONFIG_DEBUG_STACK_USAGE
8232 free = stack_not_used(p);
8233#endif
8234 ppid = 0;
8235 rcu_read_lock();
8236 if (pid_alive(p))
8237 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8238 rcu_read_unlock();
8239 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8240 free, task_pid_nr(p), ppid,
8241 (unsigned long)task_thread_info(p)->flags);
8242
8243 print_worker_info(KERN_INFO, p);
8244 print_stop_info(KERN_INFO, p);
8245 show_stack(p, NULL, KERN_INFO);
8246 put_task_stack(p);
8247}
8248EXPORT_SYMBOL_GPL(sched_show_task);
8249
8250static inline bool
8251state_filter_match(unsigned long state_filter, struct task_struct *p)
8252{
8253 unsigned int state = READ_ONCE(p->__state);
8254
8255 /* no filter, everything matches */
8256 if (!state_filter)
8257 return true;
8258
8259 /* filter, but doesn't match */
8260 if (!(state & state_filter))
8261 return false;
8262
8263 /*
8264 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8265 * TASK_KILLABLE).
8266 */
8267 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8268 return false;
8269
8270 return true;
8271}
8272
8273
8274void show_state_filter(unsigned int state_filter)
8275{
8276 struct task_struct *g, *p;
8277
8278 rcu_read_lock();
8279 for_each_process_thread(g, p) {
8280 /*
8281 * reset the NMI-timeout, listing all files on a slow
8282 * console might take a lot of time:
8283 * Also, reset softlockup watchdogs on all CPUs, because
8284 * another CPU might be blocked waiting for us to process
8285 * an IPI.
8286 */
8287 touch_nmi_watchdog();
8288 touch_all_softlockup_watchdogs();
8289 if (state_filter_match(state_filter, p))
8290 sched_show_task(p);
8291 }
8292
8293#ifdef CONFIG_SCHED_DEBUG
8294 if (!state_filter)
8295 sysrq_sched_debug_show();
8296#endif
8297 rcu_read_unlock();
8298 /*
8299 * Only show locks if all tasks are dumped:
8300 */
8301 if (!state_filter)
8302 debug_show_all_locks();
8303}
8304
8305/**
8306 * init_idle - set up an idle thread for a given CPU
8307 * @idle: task in question
8308 * @cpu: CPU the idle task belongs to
8309 *
8310 * NOTE: this function does not set the idle thread's NEED_RESCHED
8311 * flag, to make booting more robust.
8312 */
8313void __init init_idle(struct task_struct *idle, int cpu)
8314{
8315 struct rq *rq = cpu_rq(cpu);
8316 unsigned long flags;
8317
8318 __sched_fork(0, idle);
8319
8320 /*
8321 * The idle task doesn't need the kthread struct to function, but it
8322 * is dressed up as a per-CPU kthread and thus needs to play the part
8323 * if we want to avoid special-casing it in code that deals with per-CPU
8324 * kthreads.
8325 */
8326 set_kthread_struct(idle);
8327
8328 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8329 raw_spin_rq_lock(rq);
8330
8331 idle->__state = TASK_RUNNING;
8332 idle->se.exec_start = sched_clock();
8333 /*
8334 * PF_KTHREAD should already be set at this point; regardless, make it
8335 * look like a proper per-CPU kthread.
8336 */
8337 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8338 kthread_set_per_cpu(idle, cpu);
8339
8340 scs_task_reset(idle);
8341 kasan_unpoison_task_stack(idle);
8342
8343#ifdef CONFIG_SMP
8344 /*
8345 * It's possible that init_idle() gets called multiple times on a task,
8346 * in that case do_set_cpus_allowed() will not do the right thing.
8347 *
8348 * And since this is boot we can forgo the serialization.
8349 */
8350 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8351#endif
8352 /*
8353 * We're having a chicken and egg problem, even though we are
8354 * holding rq->lock, the CPU isn't yet set to this CPU so the
8355 * lockdep check in task_group() will fail.
8356 *
8357 * Similar case to sched_fork(). / Alternatively we could
8358 * use task_rq_lock() here and obtain the other rq->lock.
8359 *
8360 * Silence PROVE_RCU
8361 */
8362 rcu_read_lock();
8363 __set_task_cpu(idle, cpu);
8364 rcu_read_unlock();
8365
8366 rq->idle = idle;
8367 rcu_assign_pointer(rq->curr, idle);
8368 idle->on_rq = TASK_ON_RQ_QUEUED;
8369#ifdef CONFIG_SMP
8370 idle->on_cpu = 1;
8371#endif
8372 raw_spin_rq_unlock(rq);
8373 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8374
8375 /* Set the preempt count _outside_ the spinlocks! */
8376 init_idle_preempt_count(idle, cpu);
8377
8378 /*
8379 * The idle tasks have their own, simple scheduling class:
8380 */
8381 idle->sched_class = &idle_sched_class;
8382 ftrace_graph_init_idle_task(idle, cpu);
8383 vtime_init_idle(idle, cpu);
8384#ifdef CONFIG_SMP
8385 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8386#endif
8387}
8388
8389#ifdef CONFIG_SMP
8390
8391int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8392 const struct cpumask *trial)
8393{
8394 int ret = 1;
8395
8396 if (!cpumask_weight(cur))
8397 return ret;
8398
8399 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8400
8401 return ret;
8402}
8403
8404int task_can_attach(struct task_struct *p,
8405 const struct cpumask *cs_cpus_allowed)
8406{
8407 int ret = 0;
8408
8409 /*
8410 * Kthreads which disallow setaffinity shouldn't be moved
8411 * to a new cpuset; we don't want to change their CPU
8412 * affinity and isolating such threads by their set of
8413 * allowed nodes is unnecessary. Thus, cpusets are not
8414 * applicable for such threads. This prevents checking for
8415 * success of set_cpus_allowed_ptr() on all attached tasks
8416 * before cpus_mask may be changed.
8417 */
8418 if (p->flags & PF_NO_SETAFFINITY) {
8419 ret = -EINVAL;
8420 goto out;
8421 }
8422
8423 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8424 cs_cpus_allowed))
8425 ret = dl_task_can_attach(p, cs_cpus_allowed);
8426
8427out:
8428 return ret;
8429}
8430
8431bool sched_smp_initialized __read_mostly;
8432
8433#ifdef CONFIG_NUMA_BALANCING
8434/* Migrate current task p to target_cpu */
8435int migrate_task_to(struct task_struct *p, int target_cpu)
8436{
8437 struct migration_arg arg = { p, target_cpu };
8438 int curr_cpu = task_cpu(p);
8439
8440 if (curr_cpu == target_cpu)
8441 return 0;
8442
8443 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8444 return -EINVAL;
8445
8446 /* TODO: This is not properly updating schedstats */
8447
8448 trace_sched_move_numa(p, curr_cpu, target_cpu);
8449 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8450}
8451
8452/*
8453 * Requeue a task on a given node and accurately track the number of NUMA
8454 * tasks on the runqueues
8455 */
8456void sched_setnuma(struct task_struct *p, int nid)
8457{
8458 bool queued, running;
8459 struct rq_flags rf;
8460 struct rq *rq;
8461
8462 rq = task_rq_lock(p, &rf);
8463 queued = task_on_rq_queued(p);
8464 running = task_current(rq, p);
8465
8466 if (queued)
8467 dequeue_task(rq, p, DEQUEUE_SAVE);
8468 if (running)
8469 put_prev_task(rq, p);
8470
8471 p->numa_preferred_nid = nid;
8472
8473 if (queued)
8474 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8475 if (running)
8476 set_next_task(rq, p);
8477 task_rq_unlock(rq, p, &rf);
8478}
8479#endif /* CONFIG_NUMA_BALANCING */
8480
8481#ifdef CONFIG_HOTPLUG_CPU
8482/*
8483 * Ensure that the idle task is using init_mm right before its CPU goes
8484 * offline.
8485 */
8486void idle_task_exit(void)
8487{
8488 struct mm_struct *mm = current->active_mm;
8489
8490 BUG_ON(cpu_online(smp_processor_id()));
8491 BUG_ON(current != this_rq()->idle);
8492
8493 if (mm != &init_mm) {
8494 switch_mm(mm, &init_mm, current);
8495 finish_arch_post_lock_switch();
8496 }
8497
8498 scs_task_reset(current);
8499 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8500}
8501
8502static int __balance_push_cpu_stop(void *arg)
8503{
8504 struct task_struct *p = arg;
8505 struct rq *rq = this_rq();
8506 struct rq_flags rf;
8507 int cpu;
8508
8509 raw_spin_lock_irq(&p->pi_lock);
8510 rq_lock(rq, &rf);
8511
8512 update_rq_clock(rq);
8513
8514 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8515 cpu = select_fallback_rq(rq->cpu, p);
8516 rq = __migrate_task(rq, &rf, p, cpu);
8517 }
8518
8519 rq_unlock(rq, &rf);
8520 raw_spin_unlock_irq(&p->pi_lock);
8521
8522 put_task_struct(p);
8523
8524 return 0;
8525}
8526
8527static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8528
8529/*
8530 * Ensure we only run per-cpu kthreads once the CPU goes !active.
8531 *
8532 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8533 * effective when the hotplug motion is down.
8534 */
8535static void balance_push(struct rq *rq)
8536{
8537 struct task_struct *push_task = rq->curr;
8538
8539 lockdep_assert_rq_held(rq);
8540
8541 /*
8542 * Ensure the thing is persistent until balance_push_set(.on = false);
8543 */
8544 rq->balance_callback = &balance_push_callback;
8545
8546 /*
8547 * Only active while going offline and when invoked on the outgoing
8548 * CPU.
8549 */
8550 if (!cpu_dying(rq->cpu) || rq != this_rq())
8551 return;
8552
8553 /*
8554 * Both the cpu-hotplug and stop task are in this case and are
8555 * required to complete the hotplug process.
8556 */
8557 if (kthread_is_per_cpu(push_task) ||
8558 is_migration_disabled(push_task)) {
8559
8560 /*
8561 * If this is the idle task on the outgoing CPU try to wake
8562 * up the hotplug control thread which might wait for the
8563 * last task to vanish. The rcuwait_active() check is
8564 * accurate here because the waiter is pinned on this CPU
8565 * and can't obviously be running in parallel.
8566 *
8567 * On RT kernels this also has to check whether there are
8568 * pinned and scheduled out tasks on the runqueue. They
8569 * need to leave the migrate disabled section first.
8570 */
8571 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8572 rcuwait_active(&rq->hotplug_wait)) {
8573 raw_spin_rq_unlock(rq);
8574 rcuwait_wake_up(&rq->hotplug_wait);
8575 raw_spin_rq_lock(rq);
8576 }
8577 return;
8578 }
8579
8580 get_task_struct(push_task);
8581 /*
8582 * Temporarily drop rq->lock such that we can wake-up the stop task.
8583 * Both preemption and IRQs are still disabled.
8584 */
8585 raw_spin_rq_unlock(rq);
8586 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8587 this_cpu_ptr(&push_work));
8588 /*
8589 * At this point need_resched() is true and we'll take the loop in
8590 * schedule(). The next pick is obviously going to be the stop task
8591 * which kthread_is_per_cpu() and will push this task away.
8592 */
8593 raw_spin_rq_lock(rq);
8594}
8595
8596static void balance_push_set(int cpu, bool on)
8597{
8598 struct rq *rq = cpu_rq(cpu);
8599 struct rq_flags rf;
8600
8601 rq_lock_irqsave(rq, &rf);
8602 if (on) {
8603 WARN_ON_ONCE(rq->balance_callback);
8604 rq->balance_callback = &balance_push_callback;
8605 } else if (rq->balance_callback == &balance_push_callback) {
8606 rq->balance_callback = NULL;
8607 }
8608 rq_unlock_irqrestore(rq, &rf);
8609}
8610
8611/*
8612 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8613 * inactive. All tasks which are not per CPU kernel threads are either
8614 * pushed off this CPU now via balance_push() or placed on a different CPU
8615 * during wakeup. Wait until the CPU is quiescent.
8616 */
8617static void balance_hotplug_wait(void)
8618{
8619 struct rq *rq = this_rq();
8620
8621 rcuwait_wait_event(&rq->hotplug_wait,
8622 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8623 TASK_UNINTERRUPTIBLE);
8624}
8625
8626#else
8627
8628static inline void balance_push(struct rq *rq)
8629{
8630}
8631
8632static inline void balance_push_set(int cpu, bool on)
8633{
8634}
8635
8636static inline void balance_hotplug_wait(void)
8637{
8638}
8639
8640#endif /* CONFIG_HOTPLUG_CPU */
8641
8642void set_rq_online(struct rq *rq)
8643{
8644 if (!rq->online) {
8645 const struct sched_class *class;
8646
8647 cpumask_set_cpu(rq->cpu, rq->rd->online);
8648 rq->online = 1;
8649
8650 for_each_class(class) {
8651 if (class->rq_online)
8652 class->rq_online(rq);
8653 }
8654 }
8655}
8656
8657void set_rq_offline(struct rq *rq)
8658{
8659 if (rq->online) {
8660 const struct sched_class *class;
8661
8662 for_each_class(class) {
8663 if (class->rq_offline)
8664 class->rq_offline(rq);
8665 }
8666
8667 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8668 rq->online = 0;
8669 }
8670}
8671
8672/*
8673 * used to mark begin/end of suspend/resume:
8674 */
8675static int num_cpus_frozen;
8676
8677/*
8678 * Update cpusets according to cpu_active mask. If cpusets are
8679 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8680 * around partition_sched_domains().
8681 *
8682 * If we come here as part of a suspend/resume, don't touch cpusets because we
8683 * want to restore it back to its original state upon resume anyway.
8684 */
8685static void cpuset_cpu_active(void)
8686{
8687 if (cpuhp_tasks_frozen) {
8688 /*
8689 * num_cpus_frozen tracks how many CPUs are involved in suspend
8690 * resume sequence. As long as this is not the last online
8691 * operation in the resume sequence, just build a single sched
8692 * domain, ignoring cpusets.
8693 */
8694 partition_sched_domains(1, NULL, NULL);
8695 if (--num_cpus_frozen)
8696 return;
8697 /*
8698 * This is the last CPU online operation. So fall through and
8699 * restore the original sched domains by considering the
8700 * cpuset configurations.
8701 */
8702 cpuset_force_rebuild();
8703 }
8704 cpuset_update_active_cpus();
8705}
8706
8707static int cpuset_cpu_inactive(unsigned int cpu)
8708{
8709 if (!cpuhp_tasks_frozen) {
8710 if (dl_cpu_busy(cpu))
8711 return -EBUSY;
8712 cpuset_update_active_cpus();
8713 } else {
8714 num_cpus_frozen++;
8715 partition_sched_domains(1, NULL, NULL);
8716 }
8717 return 0;
8718}
8719
8720int sched_cpu_activate(unsigned int cpu)
8721{
8722 struct rq *rq = cpu_rq(cpu);
8723 struct rq_flags rf;
8724
8725 /*
8726 * Clear the balance_push callback and prepare to schedule
8727 * regular tasks.
8728 */
8729 balance_push_set(cpu, false);
8730
8731#ifdef CONFIG_SCHED_SMT
8732 /*
8733 * When going up, increment the number of cores with SMT present.
8734 */
8735 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8736 static_branch_inc_cpuslocked(&sched_smt_present);
8737#endif
8738 set_cpu_active(cpu, true);
8739
8740 if (sched_smp_initialized) {
8741 sched_domains_numa_masks_set(cpu);
8742 cpuset_cpu_active();
8743 }
8744
8745 /*
8746 * Put the rq online, if not already. This happens:
8747 *
8748 * 1) In the early boot process, because we build the real domains
8749 * after all CPUs have been brought up.
8750 *
8751 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
8752 * domains.
8753 */
8754 rq_lock_irqsave(rq, &rf);
8755 if (rq->rd) {
8756 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8757 set_rq_online(rq);
8758 }
8759 rq_unlock_irqrestore(rq, &rf);
8760
8761 return 0;
8762}
8763
8764int sched_cpu_deactivate(unsigned int cpu)
8765{
8766 struct rq *rq = cpu_rq(cpu);
8767 struct rq_flags rf;
8768 int ret;
8769
8770 /*
8771 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
8772 * load balancing when not active
8773 */
8774 nohz_balance_exit_idle(rq);
8775
8776 set_cpu_active(cpu, false);
8777
8778 /*
8779 * From this point forward, this CPU will refuse to run any task that
8780 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
8781 * push those tasks away until this gets cleared, see
8782 * sched_cpu_dying().
8783 */
8784 balance_push_set(cpu, true);
8785
8786 /*
8787 * We've cleared cpu_active_mask / set balance_push, wait for all
8788 * preempt-disabled and RCU users of this state to go away such that
8789 * all new such users will observe it.
8790 *
8791 * Specifically, we rely on ttwu to no longer target this CPU, see
8792 * ttwu_queue_cond() and is_cpu_allowed().
8793 *
8794 * Do sync before park smpboot threads to take care the rcu boost case.
8795 */
8796 synchronize_rcu();
8797
8798 rq_lock_irqsave(rq, &rf);
8799 if (rq->rd) {
8800 update_rq_clock(rq);
8801 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
8802 set_rq_offline(rq);
8803 }
8804 rq_unlock_irqrestore(rq, &rf);
8805
8806#ifdef CONFIG_SCHED_SMT
8807 /*
8808 * When going down, decrement the number of cores with SMT present.
8809 */
8810 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
8811 static_branch_dec_cpuslocked(&sched_smt_present);
8812
8813 sched_core_cpu_deactivate(cpu);
8814#endif
8815
8816 if (!sched_smp_initialized)
8817 return 0;
8818
8819 ret = cpuset_cpu_inactive(cpu);
8820 if (ret) {
8821 balance_push_set(cpu, false);
8822 set_cpu_active(cpu, true);
8823 return ret;
8824 }
8825 sched_domains_numa_masks_clear(cpu);
8826 return 0;
8827}
8828
8829static void sched_rq_cpu_starting(unsigned int cpu)
8830{
8831 struct rq *rq = cpu_rq(cpu);
8832
8833 rq->calc_load_update = calc_load_update;
8834 update_max_interval();
8835}
8836
8837int sched_cpu_starting(unsigned int cpu)
8838{
8839 sched_core_cpu_starting(cpu);
8840 sched_rq_cpu_starting(cpu);
8841 sched_tick_start(cpu);
8842 return 0;
8843}
8844
8845#ifdef CONFIG_HOTPLUG_CPU
8846
8847/*
8848 * Invoked immediately before the stopper thread is invoked to bring the
8849 * CPU down completely. At this point all per CPU kthreads except the
8850 * hotplug thread (current) and the stopper thread (inactive) have been
8851 * either parked or have been unbound from the outgoing CPU. Ensure that
8852 * any of those which might be on the way out are gone.
8853 *
8854 * If after this point a bound task is being woken on this CPU then the
8855 * responsible hotplug callback has failed to do it's job.
8856 * sched_cpu_dying() will catch it with the appropriate fireworks.
8857 */
8858int sched_cpu_wait_empty(unsigned int cpu)
8859{
8860 balance_hotplug_wait();
8861 return 0;
8862}
8863
8864/*
8865 * Since this CPU is going 'away' for a while, fold any nr_active delta we
8866 * might have. Called from the CPU stopper task after ensuring that the
8867 * stopper is the last running task on the CPU, so nr_active count is
8868 * stable. We need to take the teardown thread which is calling this into
8869 * account, so we hand in adjust = 1 to the load calculation.
8870 *
8871 * Also see the comment "Global load-average calculations".
8872 */
8873static void calc_load_migrate(struct rq *rq)
8874{
8875 long delta = calc_load_fold_active(rq, 1);
8876
8877 if (delta)
8878 atomic_long_add(delta, &calc_load_tasks);
8879}
8880
8881static void dump_rq_tasks(struct rq *rq, const char *loglvl)
8882{
8883 struct task_struct *g, *p;
8884 int cpu = cpu_of(rq);
8885
8886 lockdep_assert_rq_held(rq);
8887
8888 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8889 for_each_process_thread(g, p) {
8890 if (task_cpu(p) != cpu)
8891 continue;
8892
8893 if (!task_on_rq_queued(p))
8894 continue;
8895
8896 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8897 }
8898}
8899
8900int sched_cpu_dying(unsigned int cpu)
8901{
8902 struct rq *rq = cpu_rq(cpu);
8903 struct rq_flags rf;
8904
8905 /* Handle pending wakeups and then migrate everything off */
8906 sched_tick_stop(cpu);
8907
8908 rq_lock_irqsave(rq, &rf);
8909 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8910 WARN(true, "Dying CPU not properly vacated!");
8911 dump_rq_tasks(rq, KERN_WARNING);
8912 }
8913 rq_unlock_irqrestore(rq, &rf);
8914
8915 calc_load_migrate(rq);
8916 update_max_interval();
8917 hrtick_clear(rq);
8918 sched_core_cpu_dying(cpu);
8919 return 0;
8920}
8921#endif
8922
8923void __init sched_init_smp(void)
8924{
8925 sched_init_numa();
8926
8927 /*
8928 * There's no userspace yet to cause hotplug operations; hence all the
8929 * CPU masks are stable and all blatant races in the below code cannot
8930 * happen.
8931 */
8932 mutex_lock(&sched_domains_mutex);
8933 sched_init_domains(cpu_active_mask);
8934 mutex_unlock(&sched_domains_mutex);
8935
8936 /* Move init over to a non-isolated CPU */
8937 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8938 BUG();
8939 current->flags &= ~PF_NO_SETAFFINITY;
8940 sched_init_granularity();
8941
8942 init_sched_rt_class();
8943 init_sched_dl_class();
8944
8945 sched_smp_initialized = true;
8946}
8947
8948static int __init migration_init(void)
8949{
8950 sched_cpu_starting(smp_processor_id());
8951 return 0;
8952}
8953early_initcall(migration_init);
8954
8955#else
8956void __init sched_init_smp(void)
8957{
8958 sched_init_granularity();
8959}
8960#endif /* CONFIG_SMP */
8961
8962int in_sched_functions(unsigned long addr)
8963{
8964 return in_lock_functions(addr) ||
8965 (addr >= (unsigned long)__sched_text_start
8966 && addr < (unsigned long)__sched_text_end);
8967}
8968
8969#ifdef CONFIG_CGROUP_SCHED
8970/*
8971 * Default task group.
8972 * Every task in system belongs to this group at bootup.
8973 */
8974struct task_group root_task_group;
8975LIST_HEAD(task_groups);
8976
8977/* Cacheline aligned slab cache for task_group */
8978static struct kmem_cache *task_group_cache __read_mostly;
8979#endif
8980
8981DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8982DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8983
8984void __init sched_init(void)
8985{
8986 unsigned long ptr = 0;
8987 int i;
8988
8989 /* Make sure the linker didn't screw up */
8990 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8991 &fair_sched_class + 1 != &rt_sched_class ||
8992 &rt_sched_class + 1 != &dl_sched_class);
8993#ifdef CONFIG_SMP
8994 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8995#endif
8996
8997 wait_bit_init();
8998
8999#ifdef CONFIG_FAIR_GROUP_SCHED
9000 ptr += 2 * nr_cpu_ids * sizeof(void **);
9001#endif
9002#ifdef CONFIG_RT_GROUP_SCHED
9003 ptr += 2 * nr_cpu_ids * sizeof(void **);
9004#endif
9005 if (ptr) {
9006 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9007
9008#ifdef CONFIG_FAIR_GROUP_SCHED
9009 root_task_group.se = (struct sched_entity **)ptr;
9010 ptr += nr_cpu_ids * sizeof(void **);
9011
9012 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9013 ptr += nr_cpu_ids * sizeof(void **);
9014
9015 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9016 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9017#endif /* CONFIG_FAIR_GROUP_SCHED */
9018#ifdef CONFIG_RT_GROUP_SCHED
9019 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9020 ptr += nr_cpu_ids * sizeof(void **);
9021
9022 root_task_group.rt_rq = (struct rt_rq **)ptr;
9023 ptr += nr_cpu_ids * sizeof(void **);
9024
9025#endif /* CONFIG_RT_GROUP_SCHED */
9026 }
9027#ifdef CONFIG_CPUMASK_OFFSTACK
9028 for_each_possible_cpu(i) {
9029 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9030 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9031 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9032 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9033 }
9034#endif /* CONFIG_CPUMASK_OFFSTACK */
9035
9036 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9037 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9038
9039#ifdef CONFIG_SMP
9040 init_defrootdomain();
9041#endif
9042
9043#ifdef CONFIG_RT_GROUP_SCHED
9044 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9045 global_rt_period(), global_rt_runtime());
9046#endif /* CONFIG_RT_GROUP_SCHED */
9047
9048#ifdef CONFIG_CGROUP_SCHED
9049 task_group_cache = KMEM_CACHE(task_group, 0);
9050
9051 list_add(&root_task_group.list, &task_groups);
9052 INIT_LIST_HEAD(&root_task_group.children);
9053 INIT_LIST_HEAD(&root_task_group.siblings);
9054 autogroup_init(&init_task);
9055#endif /* CONFIG_CGROUP_SCHED */
9056
9057 for_each_possible_cpu(i) {
9058 struct rq *rq;
9059
9060 rq = cpu_rq(i);
9061 raw_spin_lock_init(&rq->__lock);
9062 rq->nr_running = 0;
9063 rq->calc_load_active = 0;
9064 rq->calc_load_update = jiffies + LOAD_FREQ;
9065 init_cfs_rq(&rq->cfs);
9066 init_rt_rq(&rq->rt);
9067 init_dl_rq(&rq->dl);
9068#ifdef CONFIG_FAIR_GROUP_SCHED
9069 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9070 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9071 /*
9072 * How much CPU bandwidth does root_task_group get?
9073 *
9074 * In case of task-groups formed thr' the cgroup filesystem, it
9075 * gets 100% of the CPU resources in the system. This overall
9076 * system CPU resource is divided among the tasks of
9077 * root_task_group and its child task-groups in a fair manner,
9078 * based on each entity's (task or task-group's) weight
9079 * (se->load.weight).
9080 *
9081 * In other words, if root_task_group has 10 tasks of weight
9082 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9083 * then A0's share of the CPU resource is:
9084 *
9085 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9086 *
9087 * We achieve this by letting root_task_group's tasks sit
9088 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9089 */
9090 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9091#endif /* CONFIG_FAIR_GROUP_SCHED */
9092
9093 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9094#ifdef CONFIG_RT_GROUP_SCHED
9095 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9096#endif
9097#ifdef CONFIG_SMP
9098 rq->sd = NULL;
9099 rq->rd = NULL;
9100 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9101 rq->balance_callback = &balance_push_callback;
9102 rq->active_balance = 0;
9103 rq->next_balance = jiffies;
9104 rq->push_cpu = 0;
9105 rq->cpu = i;
9106 rq->online = 0;
9107 rq->idle_stamp = 0;
9108 rq->avg_idle = 2*sysctl_sched_migration_cost;
9109 rq->wake_stamp = jiffies;
9110 rq->wake_avg_idle = rq->avg_idle;
9111 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9112
9113 INIT_LIST_HEAD(&rq->cfs_tasks);
9114
9115 rq_attach_root(rq, &def_root_domain);
9116#ifdef CONFIG_NO_HZ_COMMON
9117 rq->last_blocked_load_update_tick = jiffies;
9118 atomic_set(&rq->nohz_flags, 0);
9119
9120 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9121#endif
9122#ifdef CONFIG_HOTPLUG_CPU
9123 rcuwait_init(&rq->hotplug_wait);
9124#endif
9125#endif /* CONFIG_SMP */
9126 hrtick_rq_init(rq);
9127 atomic_set(&rq->nr_iowait, 0);
9128
9129#ifdef CONFIG_SCHED_CORE
9130 rq->core = rq;
9131 rq->core_pick = NULL;
9132 rq->core_enabled = 0;
9133 rq->core_tree = RB_ROOT;
9134 rq->core_forceidle = false;
9135
9136 rq->core_cookie = 0UL;
9137#endif
9138 }
9139
9140 set_load_weight(&init_task, false);
9141
9142 /*
9143 * The boot idle thread does lazy MMU switching as well:
9144 */
9145 mmgrab(&init_mm);
9146 enter_lazy_tlb(&init_mm, current);
9147
9148 /*
9149 * Make us the idle thread. Technically, schedule() should not be
9150 * called from this thread, however somewhere below it might be,
9151 * but because we are the idle thread, we just pick up running again
9152 * when this runqueue becomes "idle".
9153 */
9154 init_idle(current, smp_processor_id());
9155
9156 calc_load_update = jiffies + LOAD_FREQ;
9157
9158#ifdef CONFIG_SMP
9159 idle_thread_set_boot_cpu();
9160 balance_push_set(smp_processor_id(), false);
9161#endif
9162 init_sched_fair_class();
9163
9164 psi_init();
9165
9166 init_uclamp();
9167
9168 scheduler_running = 1;
9169}
9170
9171#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9172static inline int preempt_count_equals(int preempt_offset)
9173{
9174 int nested = preempt_count() + rcu_preempt_depth();
9175
9176 return (nested == preempt_offset);
9177}
9178
9179void __might_sleep(const char *file, int line, int preempt_offset)
9180{
9181 unsigned int state = get_current_state();
9182 /*
9183 * Blocking primitives will set (and therefore destroy) current->state,
9184 * since we will exit with TASK_RUNNING make sure we enter with it,
9185 * otherwise we will destroy state.
9186 */
9187 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9188 "do not call blocking ops when !TASK_RUNNING; "
9189 "state=%x set at [<%p>] %pS\n", state,
9190 (void *)current->task_state_change,
9191 (void *)current->task_state_change);
9192
9193 ___might_sleep(file, line, preempt_offset);
9194}
9195EXPORT_SYMBOL(__might_sleep);
9196
9197void ___might_sleep(const char *file, int line, int preempt_offset)
9198{
9199 /* Ratelimiting timestamp: */
9200 static unsigned long prev_jiffy;
9201
9202 unsigned long preempt_disable_ip;
9203
9204 /* WARN_ON_ONCE() by default, no rate limit required: */
9205 rcu_sleep_check();
9206
9207 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9208 !is_idle_task(current) && !current->non_block_count) ||
9209 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9210 oops_in_progress)
9211 return;
9212
9213 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9214 return;
9215 prev_jiffy = jiffies;
9216
9217 /* Save this before calling printk(), since that will clobber it: */
9218 preempt_disable_ip = get_preempt_disable_ip(current);
9219
9220 printk(KERN_ERR
9221 "BUG: sleeping function called from invalid context at %s:%d\n",
9222 file, line);
9223 printk(KERN_ERR
9224 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9225 in_atomic(), irqs_disabled(), current->non_block_count,
9226 current->pid, current->comm);
9227
9228 if (task_stack_end_corrupted(current))
9229 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9230
9231 debug_show_held_locks(current);
9232 if (irqs_disabled())
9233 print_irqtrace_events(current);
9234 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9235 && !preempt_count_equals(preempt_offset)) {
9236 pr_err("Preemption disabled at:");
9237 print_ip_sym(KERN_ERR, preempt_disable_ip);
9238 }
9239 dump_stack();
9240 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9241}
9242EXPORT_SYMBOL(___might_sleep);
9243
9244void __cant_sleep(const char *file, int line, int preempt_offset)
9245{
9246 static unsigned long prev_jiffy;
9247
9248 if (irqs_disabled())
9249 return;
9250
9251 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9252 return;
9253
9254 if (preempt_count() > preempt_offset)
9255 return;
9256
9257 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9258 return;
9259 prev_jiffy = jiffies;
9260
9261 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9262 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9263 in_atomic(), irqs_disabled(),
9264 current->pid, current->comm);
9265
9266 debug_show_held_locks(current);
9267 dump_stack();
9268 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9269}
9270EXPORT_SYMBOL_GPL(__cant_sleep);
9271
9272#ifdef CONFIG_SMP
9273void __cant_migrate(const char *file, int line)
9274{
9275 static unsigned long prev_jiffy;
9276
9277 if (irqs_disabled())
9278 return;
9279
9280 if (is_migration_disabled(current))
9281 return;
9282
9283 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9284 return;
9285
9286 if (preempt_count() > 0)
9287 return;
9288
9289 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9290 return;
9291 prev_jiffy = jiffies;
9292
9293 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9294 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9295 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9296 current->pid, current->comm);
9297
9298 debug_show_held_locks(current);
9299 dump_stack();
9300 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9301}
9302EXPORT_SYMBOL_GPL(__cant_migrate);
9303#endif
9304#endif
9305
9306#ifdef CONFIG_MAGIC_SYSRQ
9307void normalize_rt_tasks(void)
9308{
9309 struct task_struct *g, *p;
9310 struct sched_attr attr = {
9311 .sched_policy = SCHED_NORMAL,
9312 };
9313
9314 read_lock(&tasklist_lock);
9315 for_each_process_thread(g, p) {
9316 /*
9317 * Only normalize user tasks:
9318 */
9319 if (p->flags & PF_KTHREAD)
9320 continue;
9321
9322 p->se.exec_start = 0;
9323 schedstat_set(p->se.statistics.wait_start, 0);
9324 schedstat_set(p->se.statistics.sleep_start, 0);
9325 schedstat_set(p->se.statistics.block_start, 0);
9326
9327 if (!dl_task(p) && !rt_task(p)) {
9328 /*
9329 * Renice negative nice level userspace
9330 * tasks back to 0:
9331 */
9332 if (task_nice(p) < 0)
9333 set_user_nice(p, 0);
9334 continue;
9335 }
9336
9337 __sched_setscheduler(p, &attr, false, false);
9338 }
9339 read_unlock(&tasklist_lock);
9340}
9341
9342#endif /* CONFIG_MAGIC_SYSRQ */
9343
9344#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9345/*
9346 * These functions are only useful for the IA64 MCA handling, or kdb.
9347 *
9348 * They can only be called when the whole system has been
9349 * stopped - every CPU needs to be quiescent, and no scheduling
9350 * activity can take place. Using them for anything else would
9351 * be a serious bug, and as a result, they aren't even visible
9352 * under any other configuration.
9353 */
9354
9355/**
9356 * curr_task - return the current task for a given CPU.
9357 * @cpu: the processor in question.
9358 *
9359 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9360 *
9361 * Return: The current task for @cpu.
9362 */
9363struct task_struct *curr_task(int cpu)
9364{
9365 return cpu_curr(cpu);
9366}
9367
9368#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9369
9370#ifdef CONFIG_IA64
9371/**
9372 * ia64_set_curr_task - set the current task for a given CPU.
9373 * @cpu: the processor in question.
9374 * @p: the task pointer to set.
9375 *
9376 * Description: This function must only be used when non-maskable interrupts
9377 * are serviced on a separate stack. It allows the architecture to switch the
9378 * notion of the current task on a CPU in a non-blocking manner. This function
9379 * must be called with all CPU's synchronized, and interrupts disabled, the
9380 * and caller must save the original value of the current task (see
9381 * curr_task() above) and restore that value before reenabling interrupts and
9382 * re-starting the system.
9383 *
9384 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9385 */
9386void ia64_set_curr_task(int cpu, struct task_struct *p)
9387{
9388 cpu_curr(cpu) = p;
9389}
9390
9391#endif
9392
9393#ifdef CONFIG_CGROUP_SCHED
9394/* task_group_lock serializes the addition/removal of task groups */
9395static DEFINE_SPINLOCK(task_group_lock);
9396
9397static inline void alloc_uclamp_sched_group(struct task_group *tg,
9398 struct task_group *parent)
9399{
9400#ifdef CONFIG_UCLAMP_TASK_GROUP
9401 enum uclamp_id clamp_id;
9402
9403 for_each_clamp_id(clamp_id) {
9404 uclamp_se_set(&tg->uclamp_req[clamp_id],
9405 uclamp_none(clamp_id), false);
9406 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9407 }
9408#endif
9409}
9410
9411static void sched_free_group(struct task_group *tg)
9412{
9413 free_fair_sched_group(tg);
9414 free_rt_sched_group(tg);
9415 autogroup_free(tg);
9416 kmem_cache_free(task_group_cache, tg);
9417}
9418
9419/* allocate runqueue etc for a new task group */
9420struct task_group *sched_create_group(struct task_group *parent)
9421{
9422 struct task_group *tg;
9423
9424 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9425 if (!tg)
9426 return ERR_PTR(-ENOMEM);
9427
9428 if (!alloc_fair_sched_group(tg, parent))
9429 goto err;
9430
9431 if (!alloc_rt_sched_group(tg, parent))
9432 goto err;
9433
9434 alloc_uclamp_sched_group(tg, parent);
9435
9436 return tg;
9437
9438err:
9439 sched_free_group(tg);
9440 return ERR_PTR(-ENOMEM);
9441}
9442
9443void sched_online_group(struct task_group *tg, struct task_group *parent)
9444{
9445 unsigned long flags;
9446
9447 spin_lock_irqsave(&task_group_lock, flags);
9448 list_add_rcu(&tg->list, &task_groups);
9449
9450 /* Root should already exist: */
9451 WARN_ON(!parent);
9452
9453 tg->parent = parent;
9454 INIT_LIST_HEAD(&tg->children);
9455 list_add_rcu(&tg->siblings, &parent->children);
9456 spin_unlock_irqrestore(&task_group_lock, flags);
9457
9458 online_fair_sched_group(tg);
9459}
9460
9461/* rcu callback to free various structures associated with a task group */
9462static void sched_free_group_rcu(struct rcu_head *rhp)
9463{
9464 /* Now it should be safe to free those cfs_rqs: */
9465 sched_free_group(container_of(rhp, struct task_group, rcu));
9466}
9467
9468void sched_destroy_group(struct task_group *tg)
9469{
9470 /* Wait for possible concurrent references to cfs_rqs complete: */
9471 call_rcu(&tg->rcu, sched_free_group_rcu);
9472}
9473
9474void sched_offline_group(struct task_group *tg)
9475{
9476 unsigned long flags;
9477
9478 /* End participation in shares distribution: */
9479 unregister_fair_sched_group(tg);
9480
9481 spin_lock_irqsave(&task_group_lock, flags);
9482 list_del_rcu(&tg->list);
9483 list_del_rcu(&tg->siblings);
9484 spin_unlock_irqrestore(&task_group_lock, flags);
9485}
9486
9487static void sched_change_group(struct task_struct *tsk, int type)
9488{
9489 struct task_group *tg;
9490
9491 /*
9492 * All callers are synchronized by task_rq_lock(); we do not use RCU
9493 * which is pointless here. Thus, we pass "true" to task_css_check()
9494 * to prevent lockdep warnings.
9495 */
9496 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9497 struct task_group, css);
9498 tg = autogroup_task_group(tsk, tg);
9499 tsk->sched_task_group = tg;
9500
9501#ifdef CONFIG_FAIR_GROUP_SCHED
9502 if (tsk->sched_class->task_change_group)
9503 tsk->sched_class->task_change_group(tsk, type);
9504 else
9505#endif
9506 set_task_rq(tsk, task_cpu(tsk));
9507}
9508
9509/*
9510 * Change task's runqueue when it moves between groups.
9511 *
9512 * The caller of this function should have put the task in its new group by
9513 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9514 * its new group.
9515 */
9516void sched_move_task(struct task_struct *tsk)
9517{
9518 int queued, running, queue_flags =
9519 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9520 struct rq_flags rf;
9521 struct rq *rq;
9522
9523 rq = task_rq_lock(tsk, &rf);
9524 update_rq_clock(rq);
9525
9526 running = task_current(rq, tsk);
9527 queued = task_on_rq_queued(tsk);
9528
9529 if (queued)
9530 dequeue_task(rq, tsk, queue_flags);
9531 if (running)
9532 put_prev_task(rq, tsk);
9533
9534 sched_change_group(tsk, TASK_MOVE_GROUP);
9535
9536 if (queued)
9537 enqueue_task(rq, tsk, queue_flags);
9538 if (running) {
9539 set_next_task(rq, tsk);
9540 /*
9541 * After changing group, the running task may have joined a
9542 * throttled one but it's still the running task. Trigger a
9543 * resched to make sure that task can still run.
9544 */
9545 resched_curr(rq);
9546 }
9547
9548 task_rq_unlock(rq, tsk, &rf);
9549}
9550
9551static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9552{
9553 return css ? container_of(css, struct task_group, css) : NULL;
9554}
9555
9556static struct cgroup_subsys_state *
9557cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9558{
9559 struct task_group *parent = css_tg(parent_css);
9560 struct task_group *tg;
9561
9562 if (!parent) {
9563 /* This is early initialization for the top cgroup */
9564 return &root_task_group.css;
9565 }
9566
9567 tg = sched_create_group(parent);
9568 if (IS_ERR(tg))
9569 return ERR_PTR(-ENOMEM);
9570
9571 return &tg->css;
9572}
9573
9574/* Expose task group only after completing cgroup initialization */
9575static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9576{
9577 struct task_group *tg = css_tg(css);
9578 struct task_group *parent = css_tg(css->parent);
9579
9580 if (parent)
9581 sched_online_group(tg, parent);
9582
9583#ifdef CONFIG_UCLAMP_TASK_GROUP
9584 /* Propagate the effective uclamp value for the new group */
9585 mutex_lock(&uclamp_mutex);
9586 rcu_read_lock();
9587 cpu_util_update_eff(css);
9588 rcu_read_unlock();
9589 mutex_unlock(&uclamp_mutex);
9590#endif
9591
9592 return 0;
9593}
9594
9595static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9596{
9597 struct task_group *tg = css_tg(css);
9598
9599 sched_offline_group(tg);
9600}
9601
9602static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9603{
9604 struct task_group *tg = css_tg(css);
9605
9606 /*
9607 * Relies on the RCU grace period between css_released() and this.
9608 */
9609 sched_free_group(tg);
9610}
9611
9612/*
9613 * This is called before wake_up_new_task(), therefore we really only
9614 * have to set its group bits, all the other stuff does not apply.
9615 */
9616static void cpu_cgroup_fork(struct task_struct *task)
9617{
9618 struct rq_flags rf;
9619 struct rq *rq;
9620
9621 rq = task_rq_lock(task, &rf);
9622
9623 update_rq_clock(rq);
9624 sched_change_group(task, TASK_SET_GROUP);
9625
9626 task_rq_unlock(rq, task, &rf);
9627}
9628
9629static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9630{
9631 struct task_struct *task;
9632 struct cgroup_subsys_state *css;
9633 int ret = 0;
9634
9635 cgroup_taskset_for_each(task, css, tset) {
9636#ifdef CONFIG_RT_GROUP_SCHED
9637 if (!sched_rt_can_attach(css_tg(css), task))
9638 return -EINVAL;
9639#endif
9640 /*
9641 * Serialize against wake_up_new_task() such that if it's
9642 * running, we're sure to observe its full state.
9643 */
9644 raw_spin_lock_irq(&task->pi_lock);
9645 /*
9646 * Avoid calling sched_move_task() before wake_up_new_task()
9647 * has happened. This would lead to problems with PELT, due to
9648 * move wanting to detach+attach while we're not attached yet.
9649 */
9650 if (READ_ONCE(task->__state) == TASK_NEW)
9651 ret = -EINVAL;
9652 raw_spin_unlock_irq(&task->pi_lock);
9653
9654 if (ret)
9655 break;
9656 }
9657 return ret;
9658}
9659
9660static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9661{
9662 struct task_struct *task;
9663 struct cgroup_subsys_state *css;
9664
9665 cgroup_taskset_for_each(task, css, tset)
9666 sched_move_task(task);
9667}
9668
9669#ifdef CONFIG_UCLAMP_TASK_GROUP
9670static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9671{
9672 struct cgroup_subsys_state *top_css = css;
9673 struct uclamp_se *uc_parent = NULL;
9674 struct uclamp_se *uc_se = NULL;
9675 unsigned int eff[UCLAMP_CNT];
9676 enum uclamp_id clamp_id;
9677 unsigned int clamps;
9678
9679 lockdep_assert_held(&uclamp_mutex);
9680 SCHED_WARN_ON(!rcu_read_lock_held());
9681
9682 css_for_each_descendant_pre(css, top_css) {
9683 uc_parent = css_tg(css)->parent
9684 ? css_tg(css)->parent->uclamp : NULL;
9685
9686 for_each_clamp_id(clamp_id) {
9687 /* Assume effective clamps matches requested clamps */
9688 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
9689 /* Cap effective clamps with parent's effective clamps */
9690 if (uc_parent &&
9691 eff[clamp_id] > uc_parent[clamp_id].value) {
9692 eff[clamp_id] = uc_parent[clamp_id].value;
9693 }
9694 }
9695 /* Ensure protection is always capped by limit */
9696 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
9697
9698 /* Propagate most restrictive effective clamps */
9699 clamps = 0x0;
9700 uc_se = css_tg(css)->uclamp;
9701 for_each_clamp_id(clamp_id) {
9702 if (eff[clamp_id] == uc_se[clamp_id].value)
9703 continue;
9704 uc_se[clamp_id].value = eff[clamp_id];
9705 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
9706 clamps |= (0x1 << clamp_id);
9707 }
9708 if (!clamps) {
9709 css = css_rightmost_descendant(css);
9710 continue;
9711 }
9712
9713 /* Immediately update descendants RUNNABLE tasks */
9714 uclamp_update_active_tasks(css);
9715 }
9716}
9717
9718/*
9719 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
9720 * C expression. Since there is no way to convert a macro argument (N) into a
9721 * character constant, use two levels of macros.
9722 */
9723#define _POW10(exp) ((unsigned int)1e##exp)
9724#define POW10(exp) _POW10(exp)
9725
9726struct uclamp_request {
9727#define UCLAMP_PERCENT_SHIFT 2
9728#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
9729 s64 percent;
9730 u64 util;
9731 int ret;
9732};
9733
9734static inline struct uclamp_request
9735capacity_from_percent(char *buf)
9736{
9737 struct uclamp_request req = {
9738 .percent = UCLAMP_PERCENT_SCALE,
9739 .util = SCHED_CAPACITY_SCALE,
9740 .ret = 0,
9741 };
9742
9743 buf = strim(buf);
9744 if (strcmp(buf, "max")) {
9745 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
9746 &req.percent);
9747 if (req.ret)
9748 return req;
9749 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
9750 req.ret = -ERANGE;
9751 return req;
9752 }
9753
9754 req.util = req.percent << SCHED_CAPACITY_SHIFT;
9755 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
9756 }
9757
9758 return req;
9759}
9760
9761static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
9762 size_t nbytes, loff_t off,
9763 enum uclamp_id clamp_id)
9764{
9765 struct uclamp_request req;
9766 struct task_group *tg;
9767
9768 req = capacity_from_percent(buf);
9769 if (req.ret)
9770 return req.ret;
9771
9772 static_branch_enable(&sched_uclamp_used);
9773
9774 mutex_lock(&uclamp_mutex);
9775 rcu_read_lock();
9776
9777 tg = css_tg(of_css(of));
9778 if (tg->uclamp_req[clamp_id].value != req.util)
9779 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
9780
9781 /*
9782 * Because of not recoverable conversion rounding we keep track of the
9783 * exact requested value
9784 */
9785 tg->uclamp_pct[clamp_id] = req.percent;
9786
9787 /* Update effective clamps to track the most restrictive value */
9788 cpu_util_update_eff(of_css(of));
9789
9790 rcu_read_unlock();
9791 mutex_unlock(&uclamp_mutex);
9792
9793 return nbytes;
9794}
9795
9796static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
9797 char *buf, size_t nbytes,
9798 loff_t off)
9799{
9800 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
9801}
9802
9803static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
9804 char *buf, size_t nbytes,
9805 loff_t off)
9806{
9807 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
9808}
9809
9810static inline void cpu_uclamp_print(struct seq_file *sf,
9811 enum uclamp_id clamp_id)
9812{
9813 struct task_group *tg;
9814 u64 util_clamp;
9815 u64 percent;
9816 u32 rem;
9817
9818 rcu_read_lock();
9819 tg = css_tg(seq_css(sf));
9820 util_clamp = tg->uclamp_req[clamp_id].value;
9821 rcu_read_unlock();
9822
9823 if (util_clamp == SCHED_CAPACITY_SCALE) {
9824 seq_puts(sf, "max\n");
9825 return;
9826 }
9827
9828 percent = tg->uclamp_pct[clamp_id];
9829 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
9830 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
9831}
9832
9833static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
9834{
9835 cpu_uclamp_print(sf, UCLAMP_MIN);
9836 return 0;
9837}
9838
9839static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
9840{
9841 cpu_uclamp_print(sf, UCLAMP_MAX);
9842 return 0;
9843}
9844#endif /* CONFIG_UCLAMP_TASK_GROUP */
9845
9846#ifdef CONFIG_FAIR_GROUP_SCHED
9847static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
9848 struct cftype *cftype, u64 shareval)
9849{
9850 if (shareval > scale_load_down(ULONG_MAX))
9851 shareval = MAX_SHARES;
9852 return sched_group_set_shares(css_tg(css), scale_load(shareval));
9853}
9854
9855static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
9856 struct cftype *cft)
9857{
9858 struct task_group *tg = css_tg(css);
9859
9860 return (u64) scale_load_down(tg->shares);
9861}
9862
9863#ifdef CONFIG_CFS_BANDWIDTH
9864static DEFINE_MUTEX(cfs_constraints_mutex);
9865
9866const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9867static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9868/* More than 203 days if BW_SHIFT equals 20. */
9869static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
9870
9871static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9872
9873static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
9874 u64 burst)
9875{
9876 int i, ret = 0, runtime_enabled, runtime_was_enabled;
9877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9878
9879 if (tg == &root_task_group)
9880 return -EINVAL;
9881
9882 /*
9883 * Ensure we have at some amount of bandwidth every period. This is
9884 * to prevent reaching a state of large arrears when throttled via
9885 * entity_tick() resulting in prolonged exit starvation.
9886 */
9887 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9888 return -EINVAL;
9889
9890 /*
9891 * Likewise, bound things on the other side by preventing insane quota
9892 * periods. This also allows us to normalize in computing quota
9893 * feasibility.
9894 */
9895 if (period > max_cfs_quota_period)
9896 return -EINVAL;
9897
9898 /*
9899 * Bound quota to defend quota against overflow during bandwidth shift.
9900 */
9901 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
9902 return -EINVAL;
9903
9904 if (quota != RUNTIME_INF && (burst > quota ||
9905 burst + quota > max_cfs_runtime))
9906 return -EINVAL;
9907
9908 /*
9909 * Prevent race between setting of cfs_rq->runtime_enabled and
9910 * unthrottle_offline_cfs_rqs().
9911 */
9912 get_online_cpus();
9913 mutex_lock(&cfs_constraints_mutex);
9914 ret = __cfs_schedulable(tg, period, quota);
9915 if (ret)
9916 goto out_unlock;
9917
9918 runtime_enabled = quota != RUNTIME_INF;
9919 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9920 /*
9921 * If we need to toggle cfs_bandwidth_used, off->on must occur
9922 * before making related changes, and on->off must occur afterwards
9923 */
9924 if (runtime_enabled && !runtime_was_enabled)
9925 cfs_bandwidth_usage_inc();
9926 raw_spin_lock_irq(&cfs_b->lock);
9927 cfs_b->period = ns_to_ktime(period);
9928 cfs_b->quota = quota;
9929 cfs_b->burst = burst;
9930
9931 __refill_cfs_bandwidth_runtime(cfs_b);
9932
9933 /* Restart the period timer (if active) to handle new period expiry: */
9934 if (runtime_enabled)
9935 start_cfs_bandwidth(cfs_b);
9936
9937 raw_spin_unlock_irq(&cfs_b->lock);
9938
9939 for_each_online_cpu(i) {
9940 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9941 struct rq *rq = cfs_rq->rq;
9942 struct rq_flags rf;
9943
9944 rq_lock_irq(rq, &rf);
9945 cfs_rq->runtime_enabled = runtime_enabled;
9946 cfs_rq->runtime_remaining = 0;
9947
9948 if (cfs_rq->throttled)
9949 unthrottle_cfs_rq(cfs_rq);
9950 rq_unlock_irq(rq, &rf);
9951 }
9952 if (runtime_was_enabled && !runtime_enabled)
9953 cfs_bandwidth_usage_dec();
9954out_unlock:
9955 mutex_unlock(&cfs_constraints_mutex);
9956 put_online_cpus();
9957
9958 return ret;
9959}
9960
9961static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9962{
9963 u64 quota, period, burst;
9964
9965 period = ktime_to_ns(tg->cfs_bandwidth.period);
9966 burst = tg->cfs_bandwidth.burst;
9967 if (cfs_quota_us < 0)
9968 quota = RUNTIME_INF;
9969 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9970 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9971 else
9972 return -EINVAL;
9973
9974 return tg_set_cfs_bandwidth(tg, period, quota, burst);
9975}
9976
9977static long tg_get_cfs_quota(struct task_group *tg)
9978{
9979 u64 quota_us;
9980
9981 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9982 return -1;
9983
9984 quota_us = tg->cfs_bandwidth.quota;
9985 do_div(quota_us, NSEC_PER_USEC);
9986
9987 return quota_us;
9988}
9989
9990static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9991{
9992 u64 quota, period, burst;
9993
9994 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9995 return -EINVAL;
9996
9997 period = (u64)cfs_period_us * NSEC_PER_USEC;
9998 quota = tg->cfs_bandwidth.quota;
9999 burst = tg->cfs_bandwidth.burst;
10000
10001 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10002}
10003
10004static long tg_get_cfs_period(struct task_group *tg)
10005{
10006 u64 cfs_period_us;
10007
10008 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10009 do_div(cfs_period_us, NSEC_PER_USEC);
10010
10011 return cfs_period_us;
10012}
10013
10014static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10015{
10016 u64 quota, period, burst;
10017
10018 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10019 return -EINVAL;
10020
10021 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10022 period = ktime_to_ns(tg->cfs_bandwidth.period);
10023 quota = tg->cfs_bandwidth.quota;
10024
10025 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10026}
10027
10028static long tg_get_cfs_burst(struct task_group *tg)
10029{
10030 u64 burst_us;
10031
10032 burst_us = tg->cfs_bandwidth.burst;
10033 do_div(burst_us, NSEC_PER_USEC);
10034
10035 return burst_us;
10036}
10037
10038static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10039 struct cftype *cft)
10040{
10041 return tg_get_cfs_quota(css_tg(css));
10042}
10043
10044static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10045 struct cftype *cftype, s64 cfs_quota_us)
10046{
10047 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10048}
10049
10050static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10051 struct cftype *cft)
10052{
10053 return tg_get_cfs_period(css_tg(css));
10054}
10055
10056static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10057 struct cftype *cftype, u64 cfs_period_us)
10058{
10059 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10060}
10061
10062static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10063 struct cftype *cft)
10064{
10065 return tg_get_cfs_burst(css_tg(css));
10066}
10067
10068static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10069 struct cftype *cftype, u64 cfs_burst_us)
10070{
10071 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10072}
10073
10074struct cfs_schedulable_data {
10075 struct task_group *tg;
10076 u64 period, quota;
10077};
10078
10079/*
10080 * normalize group quota/period to be quota/max_period
10081 * note: units are usecs
10082 */
10083static u64 normalize_cfs_quota(struct task_group *tg,
10084 struct cfs_schedulable_data *d)
10085{
10086 u64 quota, period;
10087
10088 if (tg == d->tg) {
10089 period = d->period;
10090 quota = d->quota;
10091 } else {
10092 period = tg_get_cfs_period(tg);
10093 quota = tg_get_cfs_quota(tg);
10094 }
10095
10096 /* note: these should typically be equivalent */
10097 if (quota == RUNTIME_INF || quota == -1)
10098 return RUNTIME_INF;
10099
10100 return to_ratio(period, quota);
10101}
10102
10103static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10104{
10105 struct cfs_schedulable_data *d = data;
10106 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10107 s64 quota = 0, parent_quota = -1;
10108
10109 if (!tg->parent) {
10110 quota = RUNTIME_INF;
10111 } else {
10112 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10113
10114 quota = normalize_cfs_quota(tg, d);
10115 parent_quota = parent_b->hierarchical_quota;
10116
10117 /*
10118 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10119 * always take the min. On cgroup1, only inherit when no
10120 * limit is set:
10121 */
10122 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10123 quota = min(quota, parent_quota);
10124 } else {
10125 if (quota == RUNTIME_INF)
10126 quota = parent_quota;
10127 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10128 return -EINVAL;
10129 }
10130 }
10131 cfs_b->hierarchical_quota = quota;
10132
10133 return 0;
10134}
10135
10136static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10137{
10138 int ret;
10139 struct cfs_schedulable_data data = {
10140 .tg = tg,
10141 .period = period,
10142 .quota = quota,
10143 };
10144
10145 if (quota != RUNTIME_INF) {
10146 do_div(data.period, NSEC_PER_USEC);
10147 do_div(data.quota, NSEC_PER_USEC);
10148 }
10149
10150 rcu_read_lock();
10151 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10152 rcu_read_unlock();
10153
10154 return ret;
10155}
10156
10157static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10158{
10159 struct task_group *tg = css_tg(seq_css(sf));
10160 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10161
10162 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10163 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10164 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10165
10166 if (schedstat_enabled() && tg != &root_task_group) {
10167 u64 ws = 0;
10168 int i;
10169
10170 for_each_possible_cpu(i)
10171 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10172
10173 seq_printf(sf, "wait_sum %llu\n", ws);
10174 }
10175
10176 return 0;
10177}
10178#endif /* CONFIG_CFS_BANDWIDTH */
10179#endif /* CONFIG_FAIR_GROUP_SCHED */
10180
10181#ifdef CONFIG_RT_GROUP_SCHED
10182static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10183 struct cftype *cft, s64 val)
10184{
10185 return sched_group_set_rt_runtime(css_tg(css), val);
10186}
10187
10188static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10189 struct cftype *cft)
10190{
10191 return sched_group_rt_runtime(css_tg(css));
10192}
10193
10194static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10195 struct cftype *cftype, u64 rt_period_us)
10196{
10197 return sched_group_set_rt_period(css_tg(css), rt_period_us);
10198}
10199
10200static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10201 struct cftype *cft)
10202{
10203 return sched_group_rt_period(css_tg(css));
10204}
10205#endif /* CONFIG_RT_GROUP_SCHED */
10206
10207static struct cftype cpu_legacy_files[] = {
10208#ifdef CONFIG_FAIR_GROUP_SCHED
10209 {
10210 .name = "shares",
10211 .read_u64 = cpu_shares_read_u64,
10212 .write_u64 = cpu_shares_write_u64,
10213 },
10214#endif
10215#ifdef CONFIG_CFS_BANDWIDTH
10216 {
10217 .name = "cfs_quota_us",
10218 .read_s64 = cpu_cfs_quota_read_s64,
10219 .write_s64 = cpu_cfs_quota_write_s64,
10220 },
10221 {
10222 .name = "cfs_period_us",
10223 .read_u64 = cpu_cfs_period_read_u64,
10224 .write_u64 = cpu_cfs_period_write_u64,
10225 },
10226 {
10227 .name = "cfs_burst_us",
10228 .read_u64 = cpu_cfs_burst_read_u64,
10229 .write_u64 = cpu_cfs_burst_write_u64,
10230 },
10231 {
10232 .name = "stat",
10233 .seq_show = cpu_cfs_stat_show,
10234 },
10235#endif
10236#ifdef CONFIG_RT_GROUP_SCHED
10237 {
10238 .name = "rt_runtime_us",
10239 .read_s64 = cpu_rt_runtime_read,
10240 .write_s64 = cpu_rt_runtime_write,
10241 },
10242 {
10243 .name = "rt_period_us",
10244 .read_u64 = cpu_rt_period_read_uint,
10245 .write_u64 = cpu_rt_period_write_uint,
10246 },
10247#endif
10248#ifdef CONFIG_UCLAMP_TASK_GROUP
10249 {
10250 .name = "uclamp.min",
10251 .flags = CFTYPE_NOT_ON_ROOT,
10252 .seq_show = cpu_uclamp_min_show,
10253 .write = cpu_uclamp_min_write,
10254 },
10255 {
10256 .name = "uclamp.max",
10257 .flags = CFTYPE_NOT_ON_ROOT,
10258 .seq_show = cpu_uclamp_max_show,
10259 .write = cpu_uclamp_max_write,
10260 },
10261#endif
10262 { } /* Terminate */
10263};
10264
10265static int cpu_extra_stat_show(struct seq_file *sf,
10266 struct cgroup_subsys_state *css)
10267{
10268#ifdef CONFIG_CFS_BANDWIDTH
10269 {
10270 struct task_group *tg = css_tg(css);
10271 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10272 u64 throttled_usec;
10273
10274 throttled_usec = cfs_b->throttled_time;
10275 do_div(throttled_usec, NSEC_PER_USEC);
10276
10277 seq_printf(sf, "nr_periods %d\n"
10278 "nr_throttled %d\n"
10279 "throttled_usec %llu\n",
10280 cfs_b->nr_periods, cfs_b->nr_throttled,
10281 throttled_usec);
10282 }
10283#endif
10284 return 0;
10285}
10286
10287#ifdef CONFIG_FAIR_GROUP_SCHED
10288static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10289 struct cftype *cft)
10290{
10291 struct task_group *tg = css_tg(css);
10292 u64 weight = scale_load_down(tg->shares);
10293
10294 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10295}
10296
10297static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10298 struct cftype *cft, u64 weight)
10299{
10300 /*
10301 * cgroup weight knobs should use the common MIN, DFL and MAX
10302 * values which are 1, 100 and 10000 respectively. While it loses
10303 * a bit of range on both ends, it maps pretty well onto the shares
10304 * value used by scheduler and the round-trip conversions preserve
10305 * the original value over the entire range.
10306 */
10307 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10308 return -ERANGE;
10309
10310 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10311
10312 return sched_group_set_shares(css_tg(css), scale_load(weight));
10313}
10314
10315static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10316 struct cftype *cft)
10317{
10318 unsigned long weight = scale_load_down(css_tg(css)->shares);
10319 int last_delta = INT_MAX;
10320 int prio, delta;
10321
10322 /* find the closest nice value to the current weight */
10323 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10324 delta = abs(sched_prio_to_weight[prio] - weight);
10325 if (delta >= last_delta)
10326 break;
10327 last_delta = delta;
10328 }
10329
10330 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10331}
10332
10333static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10334 struct cftype *cft, s64 nice)
10335{
10336 unsigned long weight;
10337 int idx;
10338
10339 if (nice < MIN_NICE || nice > MAX_NICE)
10340 return -ERANGE;
10341
10342 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10343 idx = array_index_nospec(idx, 40);
10344 weight = sched_prio_to_weight[idx];
10345
10346 return sched_group_set_shares(css_tg(css), scale_load(weight));
10347}
10348#endif
10349
10350static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10351 long period, long quota)
10352{
10353 if (quota < 0)
10354 seq_puts(sf, "max");
10355 else
10356 seq_printf(sf, "%ld", quota);
10357
10358 seq_printf(sf, " %ld\n", period);
10359}
10360
10361/* caller should put the current value in *@periodp before calling */
10362static int __maybe_unused cpu_period_quota_parse(char *buf,
10363 u64 *periodp, u64 *quotap)
10364{
10365 char tok[21]; /* U64_MAX */
10366
10367 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10368 return -EINVAL;
10369
10370 *periodp *= NSEC_PER_USEC;
10371
10372 if (sscanf(tok, "%llu", quotap))
10373 *quotap *= NSEC_PER_USEC;
10374 else if (!strcmp(tok, "max"))
10375 *quotap = RUNTIME_INF;
10376 else
10377 return -EINVAL;
10378
10379 return 0;
10380}
10381
10382#ifdef CONFIG_CFS_BANDWIDTH
10383static int cpu_max_show(struct seq_file *sf, void *v)
10384{
10385 struct task_group *tg = css_tg(seq_css(sf));
10386
10387 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10388 return 0;
10389}
10390
10391static ssize_t cpu_max_write(struct kernfs_open_file *of,
10392 char *buf, size_t nbytes, loff_t off)
10393{
10394 struct task_group *tg = css_tg(of_css(of));
10395 u64 period = tg_get_cfs_period(tg);
10396 u64 burst = tg_get_cfs_burst(tg);
10397 u64 quota;
10398 int ret;
10399
10400 ret = cpu_period_quota_parse(buf, &period, "a);
10401 if (!ret)
10402 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10403 return ret ?: nbytes;
10404}
10405#endif
10406
10407static struct cftype cpu_files[] = {
10408#ifdef CONFIG_FAIR_GROUP_SCHED
10409 {
10410 .name = "weight",
10411 .flags = CFTYPE_NOT_ON_ROOT,
10412 .read_u64 = cpu_weight_read_u64,
10413 .write_u64 = cpu_weight_write_u64,
10414 },
10415 {
10416 .name = "weight.nice",
10417 .flags = CFTYPE_NOT_ON_ROOT,
10418 .read_s64 = cpu_weight_nice_read_s64,
10419 .write_s64 = cpu_weight_nice_write_s64,
10420 },
10421#endif
10422#ifdef CONFIG_CFS_BANDWIDTH
10423 {
10424 .name = "max",
10425 .flags = CFTYPE_NOT_ON_ROOT,
10426 .seq_show = cpu_max_show,
10427 .write = cpu_max_write,
10428 },
10429 {
10430 .name = "max.burst",
10431 .flags = CFTYPE_NOT_ON_ROOT,
10432 .read_u64 = cpu_cfs_burst_read_u64,
10433 .write_u64 = cpu_cfs_burst_write_u64,
10434 },
10435#endif
10436#ifdef CONFIG_UCLAMP_TASK_GROUP
10437 {
10438 .name = "uclamp.min",
10439 .flags = CFTYPE_NOT_ON_ROOT,
10440 .seq_show = cpu_uclamp_min_show,
10441 .write = cpu_uclamp_min_write,
10442 },
10443 {
10444 .name = "uclamp.max",
10445 .flags = CFTYPE_NOT_ON_ROOT,
10446 .seq_show = cpu_uclamp_max_show,
10447 .write = cpu_uclamp_max_write,
10448 },
10449#endif
10450 { } /* terminate */
10451};
10452
10453struct cgroup_subsys cpu_cgrp_subsys = {
10454 .css_alloc = cpu_cgroup_css_alloc,
10455 .css_online = cpu_cgroup_css_online,
10456 .css_released = cpu_cgroup_css_released,
10457 .css_free = cpu_cgroup_css_free,
10458 .css_extra_stat_show = cpu_extra_stat_show,
10459 .fork = cpu_cgroup_fork,
10460 .can_attach = cpu_cgroup_can_attach,
10461 .attach = cpu_cgroup_attach,
10462 .legacy_cftypes = cpu_legacy_files,
10463 .dfl_cftypes = cpu_files,
10464 .early_init = true,
10465 .threaded = true,
10466};
10467
10468#endif /* CONFIG_CGROUP_SCHED */
10469
10470void dump_cpu_task(int cpu)
10471{
10472 pr_info("Task dump for CPU %d:\n", cpu);
10473 sched_show_task(cpu_curr(cpu));
10474}
10475
10476/*
10477 * Nice levels are multiplicative, with a gentle 10% change for every
10478 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10479 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10480 * that remained on nice 0.
10481 *
10482 * The "10% effect" is relative and cumulative: from _any_ nice level,
10483 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10484 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10485 * If a task goes up by ~10% and another task goes down by ~10% then
10486 * the relative distance between them is ~25%.)
10487 */
10488const int sched_prio_to_weight[40] = {
10489 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10490 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10491 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10492 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10493 /* 0 */ 1024, 820, 655, 526, 423,
10494 /* 5 */ 335, 272, 215, 172, 137,
10495 /* 10 */ 110, 87, 70, 56, 45,
10496 /* 15 */ 36, 29, 23, 18, 15,
10497};
10498
10499/*
10500 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10501 *
10502 * In cases where the weight does not change often, we can use the
10503 * precalculated inverse to speed up arithmetics by turning divisions
10504 * into multiplications:
10505 */
10506const u32 sched_prio_to_wmult[40] = {
10507 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10508 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10509 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10510 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10511 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10512 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10513 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10514 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10515};
10516
10517void call_trace_sched_update_nr_running(struct rq *rq, int count)
10518{
10519 trace_sched_update_nr_running_tp(rq, count);
10520}