Linux Audio

Check our new training course

Loading...
v4.6
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
 
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched.h>
 
 
 
 
  11#include <linux/unistd.h>
  12#include <linux/cpu.h>
  13#include <linux/oom.h>
  14#include <linux/rcupdate.h>
  15#include <linux/export.h>
  16#include <linux/bug.h>
  17#include <linux/kthread.h>
  18#include <linux/stop_machine.h>
  19#include <linux/mutex.h>
  20#include <linux/gfp.h>
  21#include <linux/suspend.h>
  22#include <linux/lockdep.h>
  23#include <linux/tick.h>
  24#include <linux/irq.h>
 
  25#include <linux/smpboot.h>
 
 
 
  26
  27#include <trace/events/power.h>
  28#define CREATE_TRACE_POINTS
  29#include <trace/events/cpuhp.h>
  30
  31#include "smpboot.h"
  32
  33/**
  34 * cpuhp_cpu_state - Per cpu hotplug state storage
  35 * @state:	The current cpu state
  36 * @target:	The target state
  37 * @thread:	Pointer to the hotplug thread
  38 * @should_run:	Thread should execute
  39 * @rollback:	Perform a rollback
  40 * @cb_stat:	The state for a single callback (install/uninstall)
  41 * @cb:		Single callback function (install/uninstall)
 
  42 * @result:	Result of the operation
  43 * @done:	Signal completion to the issuer of the task
 
  44 */
  45struct cpuhp_cpu_state {
  46	enum cpuhp_state	state;
  47	enum cpuhp_state	target;
 
  48#ifdef CONFIG_SMP
  49	struct task_struct	*thread;
  50	bool			should_run;
  51	bool			rollback;
 
 
 
 
  52	enum cpuhp_state	cb_state;
  53	int			(*cb)(unsigned int cpu);
  54	int			result;
  55	struct completion	done;
 
  56#endif
  57};
  58
  59static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61/**
  62 * cpuhp_step - Hotplug state machine step
  63 * @name:	Name of the step
  64 * @startup:	Startup function of the step
  65 * @teardown:	Teardown function of the step
  66 * @skip_onerr:	Do not invoke the functions on error rollback
  67 *		Will go away once the notifiers	are gone
  68 * @cant_stop:	Bringup/teardown can't be stopped at this step
  69 */
  70struct cpuhp_step {
  71	const char	*name;
  72	int		(*startup)(unsigned int cpu);
  73	int		(*teardown)(unsigned int cpu);
  74	bool		skip_onerr;
  75	bool		cant_stop;
 
 
 
 
 
 
 
 
 
  76};
  77
  78static DEFINE_MUTEX(cpuhp_state_mutex);
  79static struct cpuhp_step cpuhp_bp_states[];
  80static struct cpuhp_step cpuhp_ap_states[];
 
 
 
 
  81
  82/**
  83 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
  84 * @cpu:	The cpu for which the callback should be invoked
  85 * @step:	The step in the state machine
  86 * @cb:		The callback function to invoke
 
 
  87 *
  88 * Called from cpu hotplug and from the state register machinery
  89 */
  90static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
  91				 int (*cb)(unsigned int))
 
  92{
  93	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
  94	int ret = 0;
  95
  96	if (cb) {
  97		trace_cpuhp_enter(cpu, st->target, step, cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98		ret = cb(cpu);
  99		trace_cpuhp_exit(cpu, st->state, step, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100	}
 101	return ret;
 102}
 103
 104#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 106static DEFINE_MUTEX(cpu_add_remove_lock);
 107bool cpuhp_tasks_frozen;
 108EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 109
 110/*
 111 * The following two APIs (cpu_maps_update_begin/done) must be used when
 112 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 113 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
 114 * hotplug callback (un)registration performed using __register_cpu_notifier()
 115 * or __unregister_cpu_notifier().
 116 */
 117void cpu_maps_update_begin(void)
 118{
 119	mutex_lock(&cpu_add_remove_lock);
 120}
 121EXPORT_SYMBOL(cpu_notifier_register_begin);
 122
 123void cpu_maps_update_done(void)
 124{
 125	mutex_unlock(&cpu_add_remove_lock);
 126}
 127EXPORT_SYMBOL(cpu_notifier_register_done);
 128
 129static RAW_NOTIFIER_HEAD(cpu_chain);
 130
 131/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 
 132 * Should always be manipulated under cpu_add_remove_lock
 133 */
 134static int cpu_hotplug_disabled;
 135
 136#ifdef CONFIG_HOTPLUG_CPU
 137
 138static struct {
 139	struct task_struct *active_writer;
 140	/* wait queue to wake up the active_writer */
 141	wait_queue_head_t wq;
 142	/* verifies that no writer will get active while readers are active */
 143	struct mutex lock;
 144	/*
 145	 * Also blocks the new readers during
 146	 * an ongoing cpu hotplug operation.
 147	 */
 148	atomic_t refcount;
 149
 150#ifdef CONFIG_DEBUG_LOCK_ALLOC
 151	struct lockdep_map dep_map;
 152#endif
 153} cpu_hotplug = {
 154	.active_writer = NULL,
 155	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
 156	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
 157#ifdef CONFIG_DEBUG_LOCK_ALLOC
 158	.dep_map = {.name = "cpu_hotplug.lock" },
 159#endif
 160};
 161
 162/* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
 163#define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
 164#define cpuhp_lock_acquire_tryread() \
 165				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
 166#define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
 167#define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
 168
 
 
 
 
 
 169
 170void get_online_cpus(void)
 171{
 172	might_sleep();
 173	if (cpu_hotplug.active_writer == current)
 174		return;
 175	cpuhp_lock_acquire_read();
 176	mutex_lock(&cpu_hotplug.lock);
 177	atomic_inc(&cpu_hotplug.refcount);
 178	mutex_unlock(&cpu_hotplug.lock);
 179}
 180EXPORT_SYMBOL_GPL(get_online_cpus);
 181
 182void put_online_cpus(void)
 183{
 184	int refcount;
 
 185
 186	if (cpu_hotplug.active_writer == current)
 
 
 
 
 
 
 
 
 187		return;
 188
 189	refcount = atomic_dec_return(&cpu_hotplug.refcount);
 190	if (WARN_ON(refcount < 0)) /* try to fix things up */
 191		atomic_inc(&cpu_hotplug.refcount);
 192
 193	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
 194		wake_up(&cpu_hotplug.wq);
 195
 196	cpuhp_lock_release();
 197
 198}
 199EXPORT_SYMBOL_GPL(put_online_cpus);
 200
 201/*
 202 * This ensures that the hotplug operation can begin only when the
 203 * refcount goes to zero.
 204 *
 205 * Note that during a cpu-hotplug operation, the new readers, if any,
 206 * will be blocked by the cpu_hotplug.lock
 207 *
 208 * Since cpu_hotplug_begin() is always called after invoking
 209 * cpu_maps_update_begin(), we can be sure that only one writer is active.
 210 *
 211 * Note that theoretically, there is a possibility of a livelock:
 212 * - Refcount goes to zero, last reader wakes up the sleeping
 213 *   writer.
 214 * - Last reader unlocks the cpu_hotplug.lock.
 215 * - A new reader arrives at this moment, bumps up the refcount.
 216 * - The writer acquires the cpu_hotplug.lock finds the refcount
 217 *   non zero and goes to sleep again.
 218 *
 219 * However, this is very difficult to achieve in practice since
 220 * get_online_cpus() not an api which is called all that often.
 221 *
 222 */
 223void cpu_hotplug_begin(void)
 224{
 225	DEFINE_WAIT(wait);
 226
 227	cpu_hotplug.active_writer = current;
 228	cpuhp_lock_acquire();
 229
 230	for (;;) {
 231		mutex_lock(&cpu_hotplug.lock);
 232		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
 233		if (likely(!atomic_read(&cpu_hotplug.refcount)))
 234				break;
 235		mutex_unlock(&cpu_hotplug.lock);
 236		schedule();
 237	}
 238	finish_wait(&cpu_hotplug.wq, &wait);
 239}
 240
 241void cpu_hotplug_done(void)
 242{
 243	cpu_hotplug.active_writer = NULL;
 244	mutex_unlock(&cpu_hotplug.lock);
 245	cpuhp_lock_release();
 246}
 247
 248/*
 249 * Wait for currently running CPU hotplug operations to complete (if any) and
 250 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 251 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 252 * hotplug path before performing hotplug operations. So acquiring that lock
 253 * guarantees mutual exclusion from any currently running hotplug operations.
 254 */
 255void cpu_hotplug_disable(void)
 256{
 257	cpu_maps_update_begin();
 258	cpu_hotplug_disabled++;
 259	cpu_maps_update_done();
 260}
 261EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 262
 
 
 
 
 
 
 
 263void cpu_hotplug_enable(void)
 264{
 265	cpu_maps_update_begin();
 266	WARN_ON(--cpu_hotplug_disabled < 0);
 267	cpu_maps_update_done();
 268}
 269EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 
 
 
 
 
 
 
 
 
 
 
 270#endif	/* CONFIG_HOTPLUG_CPU */
 271
 272/* Need to know about CPUs going up/down? */
 273int register_cpu_notifier(struct notifier_block *nb)
 
 
 
 
 
 
 
 
 274{
 275	int ret;
 276	cpu_maps_update_begin();
 277	ret = raw_notifier_chain_register(&cpu_chain, nb);
 278	cpu_maps_update_done();
 279	return ret;
 
 
 
 
 
 280}
 281
 282int __register_cpu_notifier(struct notifier_block *nb)
 
 
 
 
 283{
 284	return raw_notifier_chain_register(&cpu_chain, nb);
 
 285}
 286
 287static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
 288			int *nr_calls)
 289{
 290	unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
 291	void *hcpu = (void *)(long)cpu;
 
 
 292
 293	int ret;
 
 
 
 294
 295	ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
 296					nr_calls);
 297
 298	return notifier_to_errno(ret);
 
 
 
 
 
 
 299}
 300
 301static int cpu_notify(unsigned long val, unsigned int cpu)
 
 302{
 303	return __cpu_notify(val, cpu, -1, NULL);
 
 304}
 
 
 
 
 305
 306static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
 
 307{
 308	BUG_ON(cpu_notify(val, cpu));
 
 
 
 
 
 
 
 
 
 309}
 310
 311/* Notifier wrappers for transitioning to state machine */
 312static int notify_prepare(unsigned int cpu)
 313{
 314	int nr_calls = 0;
 315	int ret;
 316
 317	ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
 318	if (ret) {
 319		nr_calls--;
 320		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
 321				__func__, cpu);
 322		__cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
 
 
 
 323	}
 324	return ret;
 
 
 325}
 326
 327static int notify_online(unsigned int cpu)
 
 328{
 329	cpu_notify(CPU_ONLINE, cpu);
 330	return 0;
 
 
 
 
 
 
 
 
 
 
 331}
 332
 333static int notify_starting(unsigned int cpu)
 334{
 335	cpu_notify(CPU_STARTING, cpu);
 336	return 0;
 
 
 
 
 
 
 
 
 
 337}
 338
 339static int bringup_wait_for_ap(unsigned int cpu)
 340{
 341	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 342
 343	wait_for_completion(&st->done);
 344	return st->result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345}
 346
 347static int bringup_cpu(unsigned int cpu)
 348{
 349	struct task_struct *idle = idle_thread_get(cpu);
 350	int ret;
 351
 
 
 
 
 
 
 
 352	/* Arch-specific enabling code. */
 353	ret = __cpu_up(cpu, idle);
 354	if (ret) {
 355		cpu_notify(CPU_UP_CANCELED, cpu);
 356		return ret;
 357	}
 358	ret = bringup_wait_for_ap(cpu);
 359	BUG_ON(!cpu_online(cpu));
 360	return ret;
 361}
 362
 363/*
 364 * Hotplug state machine related functions
 365 */
 366static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
 367			  struct cpuhp_step *steps)
 368{
 369	for (st->state++; st->state < st->target; st->state++) {
 370		struct cpuhp_step *step = steps + st->state;
 371
 372		if (!step->skip_onerr)
 373			cpuhp_invoke_callback(cpu, st->state, step->startup);
 374	}
 
 
 
 
 
 375}
 376
 377static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 378				struct cpuhp_step *steps, enum cpuhp_state target)
 379{
 380	enum cpuhp_state prev_state = st->state;
 381	int ret = 0;
 382
 383	for (; st->state > target; st->state--) {
 384		struct cpuhp_step *step = steps + st->state;
 385
 386		ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
 387		if (ret) {
 388			st->target = prev_state;
 389			undo_cpu_down(cpu, st, steps);
 390			break;
 391		}
 392	}
 393	return ret;
 394}
 395
 396static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
 397			struct cpuhp_step *steps)
 398{
 399	for (st->state--; st->state > st->target; st->state--) {
 400		struct cpuhp_step *step = steps + st->state;
 401
 402		if (!step->skip_onerr)
 403			cpuhp_invoke_callback(cpu, st->state, step->teardown);
 404	}
 
 
 
 
 405}
 406
 407static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 408			      struct cpuhp_step *steps, enum cpuhp_state target)
 409{
 410	enum cpuhp_state prev_state = st->state;
 411	int ret = 0;
 412
 413	while (st->state < target) {
 414		struct cpuhp_step *step;
 415
 416		st->state++;
 417		step = steps + st->state;
 418		ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
 419		if (ret) {
 420			st->target = prev_state;
 421			undo_cpu_up(cpu, st, steps);
 
 
 422			break;
 423		}
 424	}
 425	return ret;
 426}
 427
 428/*
 429 * The cpu hotplug threads manage the bringup and teardown of the cpus
 430 */
 431static void cpuhp_create(unsigned int cpu)
 432{
 433	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 434
 435	init_completion(&st->done);
 
 436}
 437
 438static int cpuhp_should_run(unsigned int cpu)
 439{
 440	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 441
 442	return st->should_run;
 443}
 444
 445/* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
 446static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
 447{
 448	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
 449
 450	return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
 451}
 452
 453/* Execute the online startup callbacks. Used to be CPU_ONLINE */
 454static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
 455{
 456	return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
 457}
 458
 459/*
 460 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 461 * callbacks when a state gets [un]installed at runtime.
 
 
 
 
 
 
 
 
 
 
 462 */
 463static void cpuhp_thread_fun(unsigned int cpu)
 464{
 465	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 466	int ret = 0;
 
 
 
 
 467
 468	/*
 469	 * Paired with the mb() in cpuhp_kick_ap_work and
 470	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
 471	 */
 472	smp_mb();
 473	if (!st->should_run)
 474		return;
 475
 476	st->should_run = false;
 477
 478	/* Single callback invocation for [un]install ? */
 479	if (st->cb) {
 480		if (st->cb_state < CPUHP_AP_ONLINE) {
 481			local_irq_disable();
 482			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
 483			local_irq_enable();
 
 
 
 
 
 
 
 
 
 
 
 484		} else {
 485			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
 
 
 
 486		}
 487	} else if (st->rollback) {
 488		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
 
 
 
 
 
 
 489
 490		undo_cpu_down(cpu, st, cpuhp_ap_states);
 491		/*
 492		 * This is a momentary workaround to keep the notifier users
 493		 * happy. Will go away once we got rid of the notifiers.
 494		 */
 495		cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
 496		st->rollback = false;
 497	} else {
 498		/* Cannot happen .... */
 499		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
 500
 501		/* Regular hotplug work */
 502		if (st->state < st->target)
 503			ret = cpuhp_ap_online(cpu, st);
 504		else if (st->state > st->target)
 505			ret = cpuhp_ap_offline(cpu, st);
 
 
 
 506	}
 507	st->result = ret;
 508	complete(&st->done);
 
 
 
 
 509}
 510
 511/* Invoke a single callback on a remote cpu */
 512static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
 513				    int (*cb)(unsigned int))
 
 514{
 515	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 
 516
 517	if (!cpu_online(cpu))
 518		return 0;
 519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520	st->cb_state = state;
 521	st->cb = cb;
 
 
 
 522	/*
 523	 * Make sure the above stores are visible before should_run becomes
 524	 * true. Paired with the mb() above in cpuhp_thread_fun()
 525	 */
 526	smp_mb();
 527	st->should_run = true;
 528	wake_up_process(st->thread);
 529	wait_for_completion(&st->done);
 530	return st->result;
 531}
 532
 533/* Regular hotplug invocation of the AP hotplug thread */
 534static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
 535{
 536	st->result = 0;
 537	st->cb = NULL;
 538	/*
 539	 * Make sure the above stores are visible before should_run becomes
 540	 * true. Paired with the mb() above in cpuhp_thread_fun()
 541	 */
 542	smp_mb();
 543	st->should_run = true;
 544	wake_up_process(st->thread);
 545}
 546
 547static int cpuhp_kick_ap_work(unsigned int cpu)
 548{
 549	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 550	enum cpuhp_state state = st->state;
 
 
 
 
 
 
 
 551
 552	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
 553	__cpuhp_kick_ap_work(st);
 554	wait_for_completion(&st->done);
 555	trace_cpuhp_exit(cpu, st->state, state, st->result);
 556	return st->result;
 557}
 558
 559static struct smp_hotplug_thread cpuhp_threads = {
 560	.store			= &cpuhp_state.thread,
 561	.create			= &cpuhp_create,
 562	.thread_should_run	= cpuhp_should_run,
 563	.thread_fn		= cpuhp_thread_fun,
 564	.thread_comm		= "cpuhp/%u",
 565	.selfparking		= true,
 566};
 567
 568void __init cpuhp_threads_init(void)
 569{
 570	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 571	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 572}
 573
 574#ifdef CONFIG_HOTPLUG_CPU
 575EXPORT_SYMBOL(register_cpu_notifier);
 576EXPORT_SYMBOL(__register_cpu_notifier);
 577void unregister_cpu_notifier(struct notifier_block *nb)
 578{
 579	cpu_maps_update_begin();
 580	raw_notifier_chain_unregister(&cpu_chain, nb);
 581	cpu_maps_update_done();
 582}
 583EXPORT_SYMBOL(unregister_cpu_notifier);
 584
 585void __unregister_cpu_notifier(struct notifier_block *nb)
 586{
 587	raw_notifier_chain_unregister(&cpu_chain, nb);
 588}
 589EXPORT_SYMBOL(__unregister_cpu_notifier);
 590
 591/**
 592 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 593 * @cpu: a CPU id
 594 *
 595 * This function walks all processes, finds a valid mm struct for each one and
 596 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 597 * trivial, there are various non-obvious corner cases, which this function
 598 * tries to solve in a safe manner.
 599 *
 600 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 601 * be called only for an already offlined CPU.
 602 */
 603void clear_tasks_mm_cpumask(int cpu)
 604{
 605	struct task_struct *p;
 606
 607	/*
 608	 * This function is called after the cpu is taken down and marked
 609	 * offline, so its not like new tasks will ever get this cpu set in
 610	 * their mm mask. -- Peter Zijlstra
 611	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 612	 * full-fledged tasklist_lock.
 613	 */
 614	WARN_ON(cpu_online(cpu));
 615	rcu_read_lock();
 616	for_each_process(p) {
 617		struct task_struct *t;
 618
 619		/*
 620		 * Main thread might exit, but other threads may still have
 621		 * a valid mm. Find one.
 622		 */
 623		t = find_lock_task_mm(p);
 624		if (!t)
 625			continue;
 626		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 627		task_unlock(t);
 628	}
 629	rcu_read_unlock();
 630}
 631
 632static inline void check_for_tasks(int dead_cpu)
 633{
 634	struct task_struct *g, *p;
 635
 636	read_lock(&tasklist_lock);
 637	for_each_process_thread(g, p) {
 638		if (!p->on_rq)
 639			continue;
 640		/*
 641		 * We do the check with unlocked task_rq(p)->lock.
 642		 * Order the reading to do not warn about a task,
 643		 * which was running on this cpu in the past, and
 644		 * it's just been woken on another cpu.
 645		 */
 646		rmb();
 647		if (task_cpu(p) != dead_cpu)
 648			continue;
 649
 650		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
 651			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
 652	}
 653	read_unlock(&tasklist_lock);
 654}
 655
 656static int notify_down_prepare(unsigned int cpu)
 657{
 658	int err, nr_calls = 0;
 659
 660	err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
 661	if (err) {
 662		nr_calls--;
 663		__cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
 664		pr_warn("%s: attempt to take down CPU %u failed\n",
 665				__func__, cpu);
 666	}
 667	return err;
 668}
 669
 670static int notify_dying(unsigned int cpu)
 671{
 672	cpu_notify(CPU_DYING, cpu);
 673	return 0;
 674}
 675
 676/* Take this CPU down. */
 677static int take_cpu_down(void *_param)
 678{
 679	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 680	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 681	int err, cpu = smp_processor_id();
 
 682
 683	/* Ensure this CPU doesn't handle any more interrupts. */
 684	err = __cpu_disable();
 685	if (err < 0)
 686		return err;
 687
 
 
 
 
 
 
 688	/* Invoke the former CPU_DYING callbacks */
 689	for (; st->state > target; st->state--) {
 690		struct cpuhp_step *step = cpuhp_ap_states + st->state;
 691
 692		cpuhp_invoke_callback(cpu, st->state, step->teardown);
 
 
 693	}
 
 694	/* Give up timekeeping duties */
 695	tick_handover_do_timer();
 
 
 696	/* Park the stopper thread */
 697	stop_machine_park(cpu);
 698	return 0;
 699}
 700
 701static int takedown_cpu(unsigned int cpu)
 702{
 703	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 704	int err;
 705
 706	/*
 707	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
 708	 * and RCU users of this state to go away such that all new such users
 709	 * will observe it.
 710	 *
 711	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
 712	 * not imply sync_sched(), so wait for both.
 713	 *
 714	 * Do sync before park smpboot threads to take care the rcu boost case.
 715	 */
 716	if (IS_ENABLED(CONFIG_PREEMPT))
 717		synchronize_rcu_mult(call_rcu, call_rcu_sched);
 718	else
 719		synchronize_rcu();
 720
 721	/* Park the smpboot threads */
 722	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 723	smpboot_park_threads(cpu);
 724
 725	/*
 726	 * Prevent irq alloc/free while the dying cpu reorganizes the
 727	 * interrupt affinities.
 728	 */
 729	irq_lock_sparse();
 730
 731	/*
 732	 * So now all preempt/rcu users must observe !cpu_active().
 733	 */
 734	err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
 735	if (err) {
 736		/* CPU refused to die */
 737		irq_unlock_sparse();
 738		/* Unpark the hotplug thread so we can rollback there */
 739		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 740		return err;
 741	}
 742	BUG_ON(cpu_online(cpu));
 743
 744	/*
 745	 * The migration_call() CPU_DYING callback will have removed all
 746	 * runnable tasks from the cpu, there's only the idle task left now
 747	 * that the migration thread is done doing the stop_machine thing.
 748	 *
 749	 * Wait for the stop thread to go away.
 750	 */
 751	wait_for_completion(&st->done);
 752	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 753
 754	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 755	irq_unlock_sparse();
 756
 757	hotplug_cpu__broadcast_tick_pull(cpu);
 758	/* This actually kills the CPU. */
 759	__cpu_die(cpu);
 760
 761	tick_cleanup_dead_cpu(cpu);
 762	return 0;
 763}
 764
 765static int notify_dead(unsigned int cpu)
 766{
 767	cpu_notify_nofail(CPU_DEAD, cpu);
 768	check_for_tasks(cpu);
 769	return 0;
 770}
 771
 772static void cpuhp_complete_idle_dead(void *arg)
 773{
 774	struct cpuhp_cpu_state *st = arg;
 775
 776	complete(&st->done);
 777}
 778
 779void cpuhp_report_idle_dead(void)
 780{
 781	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 782
 783	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 784	rcu_report_dead(smp_processor_id());
 785	st->state = CPUHP_AP_IDLE_DEAD;
 786	/*
 787	 * We cannot call complete after rcu_report_dead() so we delegate it
 788	 * to an online cpu.
 789	 */
 790	smp_call_function_single(cpumask_first(cpu_online_mask),
 791				 cpuhp_complete_idle_dead, st, 0);
 792}
 793
 794#else
 795#define notify_down_prepare	NULL
 796#define takedown_cpu		NULL
 797#define notify_dead		NULL
 798#define notify_dying		NULL
 799#endif
 800
 801#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803/* Requires cpu_add_remove_lock to be held */
 804static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 805			   enum cpuhp_state target)
 806{
 807	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 808	int prev_state, ret = 0;
 809	bool hasdied = false;
 810
 811	if (num_online_cpus() == 1)
 812		return -EBUSY;
 813
 814	if (!cpu_present(cpu))
 815		return -EINVAL;
 816
 817	cpu_hotplug_begin();
 818
 819	cpuhp_tasks_frozen = tasks_frozen;
 820
 821	prev_state = st->state;
 822	st->target = target;
 823	/*
 824	 * If the current CPU state is in the range of the AP hotplug thread,
 825	 * then we need to kick the thread.
 826	 */
 827	if (st->state > CPUHP_TEARDOWN_CPU) {
 
 828		ret = cpuhp_kick_ap_work(cpu);
 829		/*
 830		 * The AP side has done the error rollback already. Just
 831		 * return the error code..
 832		 */
 833		if (ret)
 834			goto out;
 835
 836		/*
 837		 * We might have stopped still in the range of the AP hotplug
 838		 * thread. Nothing to do anymore.
 839		 */
 840		if (st->state > CPUHP_TEARDOWN_CPU)
 841			goto out;
 
 
 842	}
 843	/*
 844	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 845	 * to do the further cleanups.
 846	 */
 847	ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
 848	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 849		st->target = prev_state;
 850		st->rollback = true;
 851		cpuhp_kick_ap_work(cpu);
 852	}
 853
 854	hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
 855out:
 856	cpu_hotplug_done();
 857	/* This post dead nonsense must die */
 858	if (!ret && hasdied)
 859		cpu_notify_nofail(CPU_POST_DEAD, cpu);
 
 
 
 860	return ret;
 861}
 862
 863static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 
 
 
 
 
 
 
 864{
 865	int err;
 866
 867	cpu_maps_update_begin();
 
 
 
 
 868
 869	if (cpu_hotplug_disabled) {
 870		err = -EBUSY;
 871		goto out;
 872	}
 
 
 
 
 
 
 
 
 873
 874	err = _cpu_down(cpu, 0, target);
 
 
 875
 876out:
 877	cpu_maps_update_done();
 878	return err;
 
 
 879}
 880int cpu_down(unsigned int cpu)
 
 
 881{
 882	return do_cpu_down(cpu, CPUHP_OFFLINE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884EXPORT_SYMBOL(cpu_down);
 
 
 885#endif /*CONFIG_HOTPLUG_CPU*/
 886
 887/**
 888 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
 889 * @cpu: cpu that just started
 890 *
 891 * This function calls the cpu_chain notifiers with CPU_STARTING.
 892 * It must be called by the arch code on the new cpu, before the new cpu
 893 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 894 */
 895void notify_cpu_starting(unsigned int cpu)
 896{
 897	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 898	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 
 899
 
 
 900	while (st->state < target) {
 901		struct cpuhp_step *step;
 902
 903		st->state++;
 904		step = cpuhp_ap_states + st->state;
 905		cpuhp_invoke_callback(cpu, st->state, step->startup);
 
 
 
 906	}
 907}
 908
 909/*
 910 * Called from the idle task. We need to set active here, so we can kick off
 911 * the stopper thread and unpark the smpboot threads. If the target state is
 912 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
 913 * cpu further.
 914 */
 915void cpuhp_online_idle(enum cpuhp_state state)
 916{
 917	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 918	unsigned int cpu = smp_processor_id();
 919
 920	/* Happens for the boot cpu */
 921	if (state != CPUHP_AP_ONLINE_IDLE)
 922		return;
 923
 924	st->state = CPUHP_AP_ONLINE_IDLE;
 925
 926	/* The cpu is marked online, set it active now */
 927	set_cpu_active(cpu, true);
 928	/* Unpark the stopper thread and the hotplug thread of this cpu */
 929	stop_machine_unpark(cpu);
 930	kthread_unpark(st->thread);
 931
 932	/* Should we go further up ? */
 933	if (st->target > CPUHP_AP_ONLINE_IDLE)
 934		__cpuhp_kick_ap_work(st);
 935	else
 936		complete(&st->done);
 937}
 938
 939/* Requires cpu_add_remove_lock to be held */
 940static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
 941{
 942	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 943	struct task_struct *idle;
 944	int ret = 0;
 945
 946	cpu_hotplug_begin();
 947
 948	if (!cpu_present(cpu)) {
 949		ret = -EINVAL;
 950		goto out;
 951	}
 952
 953	/*
 954	 * The caller of do_cpu_up might have raced with another
 955	 * caller. Ignore it for now.
 956	 */
 957	if (st->state >= target)
 958		goto out;
 959
 960	if (st->state == CPUHP_OFFLINE) {
 961		/* Let it fail before we try to bring the cpu up */
 962		idle = idle_thread_get(cpu);
 963		if (IS_ERR(idle)) {
 964			ret = PTR_ERR(idle);
 965			goto out;
 966		}
 967	}
 968
 969	cpuhp_tasks_frozen = tasks_frozen;
 970
 971	st->target = target;
 972	/*
 973	 * If the current CPU state is in the range of the AP hotplug thread,
 974	 * then we need to kick the thread once more.
 975	 */
 976	if (st->state > CPUHP_BRINGUP_CPU) {
 977		ret = cpuhp_kick_ap_work(cpu);
 978		/*
 979		 * The AP side has done the error rollback already. Just
 980		 * return the error code..
 981		 */
 982		if (ret)
 983			goto out;
 984	}
 985
 986	/*
 987	 * Try to reach the target state. We max out on the BP at
 988	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
 989	 * responsible for bringing it up to the target state.
 990	 */
 991	target = min((int)target, CPUHP_BRINGUP_CPU);
 992	ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
 993out:
 994	cpu_hotplug_done();
 
 995	return ret;
 996}
 997
 998static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
 999{
1000	int err = 0;
1001
1002	if (!cpu_possible(cpu)) {
1003		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1004		       cpu);
1005#if defined(CONFIG_IA64)
1006		pr_err("please check additional_cpus= boot parameter\n");
1007#endif
1008		return -EINVAL;
1009	}
1010
1011	err = try_online_node(cpu_to_node(cpu));
1012	if (err)
1013		return err;
1014
1015	cpu_maps_update_begin();
1016
1017	if (cpu_hotplug_disabled) {
1018		err = -EBUSY;
1019		goto out;
1020	}
 
 
 
 
1021
1022	err = _cpu_up(cpu, 0, target);
1023out:
1024	cpu_maps_update_done();
1025	return err;
1026}
1027
1028int cpu_up(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029{
1030	return do_cpu_up(cpu, CPUHP_ONLINE);
 
 
 
 
 
 
 
1031}
1032EXPORT_SYMBOL_GPL(cpu_up);
1033
1034#ifdef CONFIG_PM_SLEEP_SMP
1035static cpumask_var_t frozen_cpus;
1036
1037int disable_nonboot_cpus(void)
1038{
1039	int cpu, first_cpu, error = 0;
1040
1041	cpu_maps_update_begin();
1042	first_cpu = cpumask_first(cpu_online_mask);
 
 
 
 
 
 
 
 
1043	/*
1044	 * We take down all of the non-boot CPUs in one shot to avoid races
1045	 * with the userspace trying to use the CPU hotplug at the same time
1046	 */
1047	cpumask_clear(frozen_cpus);
1048
1049	pr_info("Disabling non-boot CPUs ...\n");
1050	for_each_online_cpu(cpu) {
1051		if (cpu == first_cpu)
1052			continue;
 
 
 
 
 
 
 
1053		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1054		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1055		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1056		if (!error)
1057			cpumask_set_cpu(cpu, frozen_cpus);
1058		else {
1059			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1060			break;
1061		}
1062	}
1063
1064	if (!error)
1065		BUG_ON(num_online_cpus() > 1);
1066	else
1067		pr_err("Non-boot CPUs are not disabled\n");
1068
1069	/*
1070	 * Make sure the CPUs won't be enabled by someone else. We need to do
1071	 * this even in case of failure as all disable_nonboot_cpus() users are
1072	 * supposed to do enable_nonboot_cpus() on the failure path.
1073	 */
1074	cpu_hotplug_disabled++;
1075
1076	cpu_maps_update_done();
1077	return error;
1078}
1079
1080void __weak arch_enable_nonboot_cpus_begin(void)
1081{
1082}
1083
1084void __weak arch_enable_nonboot_cpus_end(void)
1085{
1086}
1087
1088void enable_nonboot_cpus(void)
1089{
1090	int cpu, error;
1091
1092	/* Allow everyone to use the CPU hotplug again */
1093	cpu_maps_update_begin();
1094	WARN_ON(--cpu_hotplug_disabled < 0);
1095	if (cpumask_empty(frozen_cpus))
1096		goto out;
1097
1098	pr_info("Enabling non-boot CPUs ...\n");
1099
1100	arch_enable_nonboot_cpus_begin();
1101
1102	for_each_cpu(cpu, frozen_cpus) {
1103		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1104		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1105		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1106		if (!error) {
1107			pr_info("CPU%d is up\n", cpu);
1108			continue;
1109		}
1110		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1111	}
1112
1113	arch_enable_nonboot_cpus_end();
1114
1115	cpumask_clear(frozen_cpus);
1116out:
1117	cpu_maps_update_done();
1118}
1119
1120static int __init alloc_frozen_cpus(void)
1121{
1122	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1123		return -ENOMEM;
1124	return 0;
1125}
1126core_initcall(alloc_frozen_cpus);
1127
1128/*
1129 * When callbacks for CPU hotplug notifications are being executed, we must
1130 * ensure that the state of the system with respect to the tasks being frozen
1131 * or not, as reported by the notification, remains unchanged *throughout the
1132 * duration* of the execution of the callbacks.
1133 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1134 *
1135 * This synchronization is implemented by mutually excluding regular CPU
1136 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1137 * Hibernate notifications.
1138 */
1139static int
1140cpu_hotplug_pm_callback(struct notifier_block *nb,
1141			unsigned long action, void *ptr)
1142{
1143	switch (action) {
1144
1145	case PM_SUSPEND_PREPARE:
1146	case PM_HIBERNATION_PREPARE:
1147		cpu_hotplug_disable();
1148		break;
1149
1150	case PM_POST_SUSPEND:
1151	case PM_POST_HIBERNATION:
1152		cpu_hotplug_enable();
1153		break;
1154
1155	default:
1156		return NOTIFY_DONE;
1157	}
1158
1159	return NOTIFY_OK;
1160}
1161
1162
1163static int __init cpu_hotplug_pm_sync_init(void)
1164{
1165	/*
1166	 * cpu_hotplug_pm_callback has higher priority than x86
1167	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1168	 * to disable cpu hotplug to avoid cpu hotplug race.
1169	 */
1170	pm_notifier(cpu_hotplug_pm_callback, 0);
1171	return 0;
1172}
1173core_initcall(cpu_hotplug_pm_sync_init);
1174
1175#endif /* CONFIG_PM_SLEEP_SMP */
1176
 
 
1177#endif /* CONFIG_SMP */
1178
1179/* Boot processor state steps */
1180static struct cpuhp_step cpuhp_bp_states[] = {
1181	[CPUHP_OFFLINE] = {
1182		.name			= "offline",
1183		.startup		= NULL,
1184		.teardown		= NULL,
1185	},
1186#ifdef CONFIG_SMP
1187	[CPUHP_CREATE_THREADS]= {
1188		.name			= "threads:create",
1189		.startup		= smpboot_create_threads,
1190		.teardown		= NULL,
1191		.cant_stop		= true,
1192	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193	/*
1194	 * Preparatory and dead notifiers. Will be replaced once the notifiers
1195	 * are converted to states.
1196	 */
1197	[CPUHP_NOTIFY_PREPARE] = {
1198		.name			= "notify:prepare",
1199		.startup		= notify_prepare,
1200		.teardown		= notify_dead,
1201		.skip_onerr		= true,
1202		.cant_stop		= true,
1203	},
1204	/* Kicks the plugged cpu into life */
1205	[CPUHP_BRINGUP_CPU] = {
1206		.name			= "cpu:bringup",
1207		.startup		= bringup_cpu,
1208		.teardown		= NULL,
1209		.cant_stop		= true,
1210	},
1211	/*
1212	 * Handled on controll processor until the plugged processor manages
1213	 * this itself.
1214	 */
1215	[CPUHP_TEARDOWN_CPU] = {
1216		.name			= "cpu:teardown",
1217		.startup		= NULL,
1218		.teardown		= takedown_cpu,
1219		.cant_stop		= true,
1220	},
1221#endif
1222};
1223
1224/* Application processor state steps */
1225static struct cpuhp_step cpuhp_ap_states[] = {
1226#ifdef CONFIG_SMP
1227	/* Final state before CPU kills itself */
1228	[CPUHP_AP_IDLE_DEAD] = {
1229		.name			= "idle:dead",
1230	},
1231	/*
1232	 * Last state before CPU enters the idle loop to die. Transient state
1233	 * for synchronization.
1234	 */
1235	[CPUHP_AP_OFFLINE] = {
1236		.name			= "ap:offline",
1237		.cant_stop		= true,
1238	},
1239	/*
1240	 * Low level startup/teardown notifiers. Run with interrupts
1241	 * disabled. Will be removed once the notifiers are converted to
1242	 * states.
1243	 */
1244	[CPUHP_AP_NOTIFY_STARTING] = {
1245		.name			= "notify:starting",
1246		.startup		= notify_starting,
1247		.teardown		= notify_dying,
1248		.skip_onerr		= true,
1249		.cant_stop		= true,
 
 
 
 
1250	},
1251	/* Entry state on starting. Interrupts enabled from here on. Transient
1252	 * state for synchronsization */
1253	[CPUHP_AP_ONLINE] = {
1254		.name			= "ap:online",
1255	},
 
 
 
 
 
 
 
 
 
 
1256	/* Handle smpboot threads park/unpark */
1257	[CPUHP_AP_SMPBOOT_THREADS] = {
1258		.name			= "smpboot:threads",
1259		.startup		= smpboot_unpark_threads,
1260		.teardown		= NULL,
1261	},
1262	/*
1263	 * Online/down_prepare notifiers. Will be removed once the notifiers
1264	 * are converted to states.
1265	 */
1266	[CPUHP_AP_NOTIFY_ONLINE] = {
1267		.name			= "notify:online",
1268		.startup		= notify_online,
1269		.teardown		= notify_down_prepare,
1270		.skip_onerr		= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271	},
1272#endif
1273	/*
1274	 * The dynamically registered state space is here
1275	 */
1276
 
 
 
 
 
 
 
 
 
1277	/* CPU is fully up and running. */
1278	[CPUHP_ONLINE] = {
1279		.name			= "online",
1280		.startup		= NULL,
1281		.teardown		= NULL,
1282	},
1283};
1284
1285/* Sanity check for callbacks */
1286static int cpuhp_cb_check(enum cpuhp_state state)
1287{
1288	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1289		return -EINVAL;
1290	return 0;
1291}
1292
1293static bool cpuhp_is_ap_state(enum cpuhp_state state)
 
 
 
 
 
1294{
1295	/*
1296	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
1297	 * purposes as that state is handled explicitely in cpu_down.
1298	 */
1299	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
1300}
1301
1302static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1303{
1304	struct cpuhp_step *sp;
 
 
 
 
 
 
 
 
 
1305
1306	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1307	return sp + state;
 
 
 
 
1308}
1309
1310static void cpuhp_store_callbacks(enum cpuhp_state state,
1311				  const char *name,
1312				  int (*startup)(unsigned int cpu),
1313				  int (*teardown)(unsigned int cpu))
1314{
1315	/* (Un)Install the callbacks for further cpu hotplug operations */
1316	struct cpuhp_step *sp;
 
1317
1318	mutex_lock(&cpuhp_state_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319	sp = cpuhp_get_step(state);
1320	sp->startup = startup;
1321	sp->teardown = teardown;
 
 
 
1322	sp->name = name;
1323	mutex_unlock(&cpuhp_state_mutex);
 
 
1324}
1325
1326static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1327{
1328	return cpuhp_get_step(state)->teardown;
1329}
1330
1331/*
1332 * Call the startup/teardown function for a step either on the AP or
1333 * on the current CPU.
1334 */
1335static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1336			    int (*cb)(unsigned int), bool bringup)
1337{
 
1338	int ret;
1339
1340	if (!cb)
 
 
 
 
 
1341		return 0;
1342	/*
1343	 * The non AP bound callbacks can fail on bringup. On teardown
1344	 * e.g. module removal we crash for now.
1345	 */
1346#ifdef CONFIG_SMP
1347	if (cpuhp_is_ap_state(state))
1348		ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1349	else
1350		ret = cpuhp_invoke_callback(cpu, state, cb);
1351#else
1352	ret = cpuhp_invoke_callback(cpu, state, cb);
1353#endif
1354	BUG_ON(ret && !bringup);
1355	return ret;
1356}
1357
1358/*
1359 * Called from __cpuhp_setup_state on a recoverable failure.
1360 *
1361 * Note: The teardown callbacks for rollback are not allowed to fail!
1362 */
1363static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1364				   int (*teardown)(unsigned int cpu))
1365{
1366	int cpu;
1367
1368	if (!teardown)
1369		return;
1370
1371	/* Roll back the already executed steps on the other cpus */
1372	for_each_present_cpu(cpu) {
1373		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1374		int cpustate = st->state;
1375
1376		if (cpu >= failedcpu)
1377			break;
1378
1379		/* Did we invoke the startup call on that cpu ? */
1380		if (cpustate >= state)
1381			cpuhp_issue_call(cpu, state, teardown, false);
1382	}
1383}
1384
1385/*
1386 * Returns a free for dynamic slot assignment of the Online state. The states
1387 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1388 * by having no name assigned.
1389 */
1390static int cpuhp_reserve_state(enum cpuhp_state state)
1391{
1392	enum cpuhp_state i;
 
 
 
 
 
 
 
 
1393
1394	mutex_lock(&cpuhp_state_mutex);
1395	for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1396		if (cpuhp_ap_states[i].name)
 
 
 
 
 
 
 
 
 
 
 
1397			continue;
1398
1399		cpuhp_ap_states[i].name = "Reserved";
1400		mutex_unlock(&cpuhp_state_mutex);
1401		return i;
 
 
 
1402	}
 
 
 
 
1403	mutex_unlock(&cpuhp_state_mutex);
1404	WARN(1, "No more dynamic states available for CPU hotplug\n");
1405	return -ENOSPC;
1406}
1407
 
 
 
 
 
 
 
 
 
 
 
 
1408/**
1409 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1410 * @state:	The state to setup
1411 * @invoke:	If true, the startup function is invoked for cpus where
1412 *		cpu state >= @state
1413 * @startup:	startup callback function
1414 * @teardown:	teardown callback function
 
 
1415 *
1416 * Returns 0 if successful, otherwise a proper error code
1417 */
1418int __cpuhp_setup_state(enum cpuhp_state state,
1419			const char *name, bool invoke,
1420			int (*startup)(unsigned int cpu),
1421			int (*teardown)(unsigned int cpu))
 
 
 
 
 
 
1422{
1423	int cpu, ret = 0;
1424	int dyn_state = 0;
 
 
1425
1426	if (cpuhp_cb_check(state) || !name)
1427		return -EINVAL;
1428
1429	get_online_cpus();
1430
1431	/* currently assignments for the ONLINE state are possible */
1432	if (state == CPUHP_AP_ONLINE_DYN) {
1433		dyn_state = 1;
1434		ret = cpuhp_reserve_state(state);
1435		if (ret < 0)
1436			goto out;
1437		state = ret;
 
1438	}
1439
1440	cpuhp_store_callbacks(state, name, startup, teardown);
1441
1442	if (!invoke || !startup)
1443		goto out;
1444
1445	/*
1446	 * Try to call the startup callback for each present cpu
1447	 * depending on the hotplug state of the cpu.
1448	 */
1449	for_each_present_cpu(cpu) {
1450		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1451		int cpustate = st->state;
1452
1453		if (cpustate < state)
1454			continue;
1455
1456		ret = cpuhp_issue_call(cpu, state, startup, true);
1457		if (ret) {
1458			cpuhp_rollback_install(cpu, state, teardown);
1459			cpuhp_store_callbacks(state, NULL, NULL, NULL);
 
1460			goto out;
1461		}
1462	}
1463out:
1464	put_online_cpus();
1465	if (!ret && dyn_state)
 
 
 
 
1466		return state;
1467	return ret;
1468}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469EXPORT_SYMBOL(__cpuhp_setup_state);
1470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1471/**
1472 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1473 * @state:	The state to remove
1474 * @invoke:	If true, the teardown function is invoked for cpus where
1475 *		cpu state >= @state
1476 *
 
1477 * The teardown callback is currently not allowed to fail. Think
1478 * about module removal!
1479 */
1480void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1481{
1482	int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1483	int cpu;
1484
1485	BUG_ON(cpuhp_cb_check(state));
1486
1487	get_online_cpus();
1488
1489	if (!invoke || !teardown)
 
 
 
 
 
 
 
 
1490		goto remove;
1491
1492	/*
1493	 * Call the teardown callback for each present cpu depending
1494	 * on the hotplug state of the cpu. This function is not
1495	 * allowed to fail currently!
1496	 */
1497	for_each_present_cpu(cpu) {
1498		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1499		int cpustate = st->state;
1500
1501		if (cpustate >= state)
1502			cpuhp_issue_call(cpu, state, teardown, false);
1503	}
1504remove:
1505	cpuhp_store_callbacks(state, NULL, NULL, NULL);
1506	put_online_cpus();
 
 
 
 
 
 
 
 
1507}
1508EXPORT_SYMBOL(__cpuhp_remove_state);
1509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1511static ssize_t show_cpuhp_state(struct device *dev,
1512				struct device_attribute *attr, char *buf)
1513{
1514	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1515
1516	return sprintf(buf, "%d\n", st->state);
1517}
1518static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1519
1520static ssize_t write_cpuhp_target(struct device *dev,
1521				  struct device_attribute *attr,
1522				  const char *buf, size_t count)
1523{
1524	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1525	struct cpuhp_step *sp;
1526	int target, ret;
1527
1528	ret = kstrtoint(buf, 10, &target);
1529	if (ret)
1530		return ret;
1531
1532#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1533	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1534		return -EINVAL;
1535#else
1536	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1537		return -EINVAL;
1538#endif
1539
1540	ret = lock_device_hotplug_sysfs();
1541	if (ret)
1542		return ret;
1543
1544	mutex_lock(&cpuhp_state_mutex);
1545	sp = cpuhp_get_step(target);
1546	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1547	mutex_unlock(&cpuhp_state_mutex);
1548	if (ret)
1549		return ret;
1550
1551	if (st->state < target)
1552		ret = do_cpu_up(dev->id, target);
1553	else
1554		ret = do_cpu_down(dev->id, target);
1555
1556	unlock_device_hotplug();
1557	return ret ? ret : count;
1558}
1559
1560static ssize_t show_cpuhp_target(struct device *dev,
1561				 struct device_attribute *attr, char *buf)
1562{
1563	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1564
1565	return sprintf(buf, "%d\n", st->target);
1566}
1567static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569static struct attribute *cpuhp_cpu_attrs[] = {
1570	&dev_attr_state.attr,
1571	&dev_attr_target.attr,
 
1572	NULL
1573};
1574
1575static struct attribute_group cpuhp_cpu_attr_group = {
1576	.attrs = cpuhp_cpu_attrs,
1577	.name = "hotplug",
1578	NULL
1579};
1580
1581static ssize_t show_cpuhp_states(struct device *dev,
1582				 struct device_attribute *attr, char *buf)
1583{
1584	ssize_t cur, res = 0;
1585	int i;
1586
1587	mutex_lock(&cpuhp_state_mutex);
1588	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1589		struct cpuhp_step *sp = cpuhp_get_step(i);
1590
1591		if (sp->name) {
1592			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1593			buf += cur;
1594			res += cur;
1595		}
1596	}
1597	mutex_unlock(&cpuhp_state_mutex);
1598	return res;
1599}
1600static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1601
1602static struct attribute *cpuhp_cpu_root_attrs[] = {
1603	&dev_attr_states.attr,
1604	NULL
1605};
1606
1607static struct attribute_group cpuhp_cpu_root_attr_group = {
1608	.attrs = cpuhp_cpu_root_attrs,
1609	.name = "hotplug",
1610	NULL
1611};
1612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1613static int __init cpuhp_sysfs_init(void)
1614{
1615	int cpu, ret;
1616
 
 
 
 
1617	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1618				 &cpuhp_cpu_root_attr_group);
1619	if (ret)
1620		return ret;
1621
1622	for_each_possible_cpu(cpu) {
1623		struct device *dev = get_cpu_device(cpu);
1624
1625		if (!dev)
1626			continue;
1627		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1628		if (ret)
1629			return ret;
1630	}
1631	return 0;
1632}
1633device_initcall(cpuhp_sysfs_init);
1634#endif
1635
1636/*
1637 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1638 * represents all NR_CPUS bits binary values of 1<<nr.
1639 *
1640 * It is used by cpumask_of() to get a constant address to a CPU
1641 * mask value that has a single bit set only.
1642 */
1643
1644/* cpu_bit_bitmap[0] is empty - so we can back into it */
1645#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1646#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1647#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1648#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1649
1650const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1651
1652	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1653	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1654#if BITS_PER_LONG > 32
1655	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1656	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1657#endif
1658};
1659EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1660
1661const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1662EXPORT_SYMBOL(cpu_all_bits);
1663
1664#ifdef CONFIG_INIT_ALL_POSSIBLE
1665struct cpumask __cpu_possible_mask __read_mostly
1666	= {CPU_BITS_ALL};
1667#else
1668struct cpumask __cpu_possible_mask __read_mostly;
1669#endif
1670EXPORT_SYMBOL(__cpu_possible_mask);
1671
1672struct cpumask __cpu_online_mask __read_mostly;
1673EXPORT_SYMBOL(__cpu_online_mask);
1674
1675struct cpumask __cpu_present_mask __read_mostly;
1676EXPORT_SYMBOL(__cpu_present_mask);
1677
1678struct cpumask __cpu_active_mask __read_mostly;
1679EXPORT_SYMBOL(__cpu_active_mask);
1680
 
 
 
1681void init_cpu_present(const struct cpumask *src)
1682{
1683	cpumask_copy(&__cpu_present_mask, src);
1684}
1685
1686void init_cpu_possible(const struct cpumask *src)
1687{
1688	cpumask_copy(&__cpu_possible_mask, src);
1689}
1690
1691void init_cpu_online(const struct cpumask *src)
1692{
1693	cpumask_copy(&__cpu_online_mask, src);
1694}
1695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696/*
1697 * Activate the first processor.
1698 */
1699void __init boot_cpu_init(void)
1700{
1701	int cpu = smp_processor_id();
1702
1703	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1704	set_cpu_online(cpu, true);
1705	set_cpu_active(cpu, true);
1706	set_cpu_present(cpu, true);
1707	set_cpu_possible(cpu, true);
 
 
 
 
1708}
1709
1710/*
1711 * Must be called _AFTER_ setting up the per_cpu areas
1712 */
1713void __init boot_cpu_state_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714{
1715	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1716}
v5.9
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/sched/mm.h>
   7#include <linux/proc_fs.h>
   8#include <linux/smp.h>
   9#include <linux/init.h>
  10#include <linux/notifier.h>
  11#include <linux/sched/signal.h>
  12#include <linux/sched/hotplug.h>
  13#include <linux/sched/isolation.h>
  14#include <linux/sched/task.h>
  15#include <linux/sched/smt.h>
  16#include <linux/unistd.h>
  17#include <linux/cpu.h>
  18#include <linux/oom.h>
  19#include <linux/rcupdate.h>
  20#include <linux/export.h>
  21#include <linux/bug.h>
  22#include <linux/kthread.h>
  23#include <linux/stop_machine.h>
  24#include <linux/mutex.h>
  25#include <linux/gfp.h>
  26#include <linux/suspend.h>
  27#include <linux/lockdep.h>
  28#include <linux/tick.h>
  29#include <linux/irq.h>
  30#include <linux/nmi.h>
  31#include <linux/smpboot.h>
  32#include <linux/relay.h>
  33#include <linux/slab.h>
  34#include <linux/percpu-rwsem.h>
  35
  36#include <trace/events/power.h>
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/cpuhp.h>
  39
  40#include "smpboot.h"
  41
  42/**
  43 * cpuhp_cpu_state - Per cpu hotplug state storage
  44 * @state:	The current cpu state
  45 * @target:	The target state
  46 * @thread:	Pointer to the hotplug thread
  47 * @should_run:	Thread should execute
  48 * @rollback:	Perform a rollback
  49 * @single:	Single callback invocation
  50 * @bringup:	Single callback bringup or teardown selector
  51 * @cb_state:	The state for a single callback (install/uninstall)
  52 * @result:	Result of the operation
  53 * @done_up:	Signal completion to the issuer of the task for cpu-up
  54 * @done_down:	Signal completion to the issuer of the task for cpu-down
  55 */
  56struct cpuhp_cpu_state {
  57	enum cpuhp_state	state;
  58	enum cpuhp_state	target;
  59	enum cpuhp_state	fail;
  60#ifdef CONFIG_SMP
  61	struct task_struct	*thread;
  62	bool			should_run;
  63	bool			rollback;
  64	bool			single;
  65	bool			bringup;
  66	struct hlist_node	*node;
  67	struct hlist_node	*last;
  68	enum cpuhp_state	cb_state;
 
  69	int			result;
  70	struct completion	done_up;
  71	struct completion	done_down;
  72#endif
  73};
  74
  75static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  76	.fail = CPUHP_INVALID,
  77};
  78
  79#ifdef CONFIG_SMP
  80cpumask_t cpus_booted_once_mask;
  81#endif
  82
  83#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  84static struct lockdep_map cpuhp_state_up_map =
  85	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  86static struct lockdep_map cpuhp_state_down_map =
  87	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  88
  89
  90static inline void cpuhp_lock_acquire(bool bringup)
  91{
  92	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  93}
  94
  95static inline void cpuhp_lock_release(bool bringup)
  96{
  97	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  98}
  99#else
 100
 101static inline void cpuhp_lock_acquire(bool bringup) { }
 102static inline void cpuhp_lock_release(bool bringup) { }
 103
 104#endif
 105
 106/**
 107 * cpuhp_step - Hotplug state machine step
 108 * @name:	Name of the step
 109 * @startup:	Startup function of the step
 110 * @teardown:	Teardown function of the step
 
 
 111 * @cant_stop:	Bringup/teardown can't be stopped at this step
 112 */
 113struct cpuhp_step {
 114	const char		*name;
 115	union {
 116		int		(*single)(unsigned int cpu);
 117		int		(*multi)(unsigned int cpu,
 118					 struct hlist_node *node);
 119	} startup;
 120	union {
 121		int		(*single)(unsigned int cpu);
 122		int		(*multi)(unsigned int cpu,
 123					 struct hlist_node *node);
 124	} teardown;
 125	struct hlist_head	list;
 126	bool			cant_stop;
 127	bool			multi_instance;
 128};
 129
 130static DEFINE_MUTEX(cpuhp_state_mutex);
 131static struct cpuhp_step cpuhp_hp_states[];
 132
 133static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 134{
 135	return cpuhp_hp_states + state;
 136}
 137
 138/**
 139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 140 * @cpu:	The cpu for which the callback should be invoked
 141 * @state:	The state to do callbacks for
 142 * @bringup:	True if the bringup callback should be invoked
 143 * @node:	For multi-instance, do a single entry callback for install/remove
 144 * @lastp:	For multi-instance rollback, remember how far we got
 145 *
 146 * Called from cpu hotplug and from the state register machinery.
 147 */
 148static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 149				 bool bringup, struct hlist_node *node,
 150				 struct hlist_node **lastp)
 151{
 152	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 153	struct cpuhp_step *step = cpuhp_get_step(state);
 154	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 155	int (*cb)(unsigned int cpu);
 156	int ret, cnt;
 157
 158	if (st->fail == state) {
 159		st->fail = CPUHP_INVALID;
 160
 161		if (!(bringup ? step->startup.single : step->teardown.single))
 162			return 0;
 163
 164		return -EAGAIN;
 165	}
 166
 167	if (!step->multi_instance) {
 168		WARN_ON_ONCE(lastp && *lastp);
 169		cb = bringup ? step->startup.single : step->teardown.single;
 170		if (!cb)
 171			return 0;
 172		trace_cpuhp_enter(cpu, st->target, state, cb);
 173		ret = cb(cpu);
 174		trace_cpuhp_exit(cpu, st->state, state, ret);
 175		return ret;
 176	}
 177	cbm = bringup ? step->startup.multi : step->teardown.multi;
 178	if (!cbm)
 179		return 0;
 180
 181	/* Single invocation for instance add/remove */
 182	if (node) {
 183		WARN_ON_ONCE(lastp && *lastp);
 184		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 185		ret = cbm(cpu, node);
 186		trace_cpuhp_exit(cpu, st->state, state, ret);
 187		return ret;
 188	}
 189
 190	/* State transition. Invoke on all instances */
 191	cnt = 0;
 192	hlist_for_each(node, &step->list) {
 193		if (lastp && node == *lastp)
 194			break;
 195
 196		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 197		ret = cbm(cpu, node);
 198		trace_cpuhp_exit(cpu, st->state, state, ret);
 199		if (ret) {
 200			if (!lastp)
 201				goto err;
 202
 203			*lastp = node;
 204			return ret;
 205		}
 206		cnt++;
 207	}
 208	if (lastp)
 209		*lastp = NULL;
 210	return 0;
 211err:
 212	/* Rollback the instances if one failed */
 213	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 214	if (!cbm)
 215		return ret;
 216
 217	hlist_for_each(node, &step->list) {
 218		if (!cnt--)
 219			break;
 220
 221		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 222		ret = cbm(cpu, node);
 223		trace_cpuhp_exit(cpu, st->state, state, ret);
 224		/*
 225		 * Rollback must not fail,
 226		 */
 227		WARN_ON_ONCE(ret);
 228	}
 229	return ret;
 230}
 231
 232#ifdef CONFIG_SMP
 233static bool cpuhp_is_ap_state(enum cpuhp_state state)
 234{
 235	/*
 236	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 237	 * purposes as that state is handled explicitly in cpu_down.
 238	 */
 239	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 240}
 241
 242static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 243{
 244	struct completion *done = bringup ? &st->done_up : &st->done_down;
 245	wait_for_completion(done);
 246}
 247
 248static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 249{
 250	struct completion *done = bringup ? &st->done_up : &st->done_down;
 251	complete(done);
 252}
 253
 254/*
 255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 256 */
 257static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 258{
 259	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 260}
 261
 262/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 263static DEFINE_MUTEX(cpu_add_remove_lock);
 264bool cpuhp_tasks_frozen;
 265EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 266
 267/*
 268 * The following two APIs (cpu_maps_update_begin/done) must be used when
 269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 
 
 
 270 */
 271void cpu_maps_update_begin(void)
 272{
 273	mutex_lock(&cpu_add_remove_lock);
 274}
 
 275
 276void cpu_maps_update_done(void)
 277{
 278	mutex_unlock(&cpu_add_remove_lock);
 279}
 
 
 
 280
 281/*
 282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 283 * Should always be manipulated under cpu_add_remove_lock
 284 */
 285static int cpu_hotplug_disabled;
 286
 287#ifdef CONFIG_HOTPLUG_CPU
 288
 289DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 
 
 
 
 
 
 
 
 
 
 290
 291void cpus_read_lock(void)
 292{
 293	percpu_down_read(&cpu_hotplug_lock);
 294}
 295EXPORT_SYMBOL_GPL(cpus_read_lock);
 
 
 
 
 
 
 296
 297int cpus_read_trylock(void)
 298{
 299	return percpu_down_read_trylock(&cpu_hotplug_lock);
 300}
 301EXPORT_SYMBOL_GPL(cpus_read_trylock);
 
 302
 303void cpus_read_unlock(void)
 304{
 305	percpu_up_read(&cpu_hotplug_lock);
 306}
 307EXPORT_SYMBOL_GPL(cpus_read_unlock);
 308
 309void cpus_write_lock(void)
 310{
 311	percpu_down_write(&cpu_hotplug_lock);
 
 
 
 
 
 
 312}
 
 313
 314void cpus_write_unlock(void)
 315{
 316	percpu_up_write(&cpu_hotplug_lock);
 317}
 318
 319void lockdep_assert_cpus_held(void)
 320{
 321	/*
 322	 * We can't have hotplug operations before userspace starts running,
 323	 * and some init codepaths will knowingly not take the hotplug lock.
 324	 * This is all valid, so mute lockdep until it makes sense to report
 325	 * unheld locks.
 326	 */
 327	if (system_state < SYSTEM_RUNNING)
 328		return;
 329
 330	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 
 
 
 
 
 
 
 
 331}
 
 332
 333static void lockdep_acquire_cpus_lock(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334{
 335	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 336}
 337
 338static void lockdep_release_cpus_lock(void)
 339{
 340	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
 
 
 341}
 342
 343/*
 344 * Wait for currently running CPU hotplug operations to complete (if any) and
 345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 347 * hotplug path before performing hotplug operations. So acquiring that lock
 348 * guarantees mutual exclusion from any currently running hotplug operations.
 349 */
 350void cpu_hotplug_disable(void)
 351{
 352	cpu_maps_update_begin();
 353	cpu_hotplug_disabled++;
 354	cpu_maps_update_done();
 355}
 356EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 357
 358static void __cpu_hotplug_enable(void)
 359{
 360	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 361		return;
 362	cpu_hotplug_disabled--;
 363}
 364
 365void cpu_hotplug_enable(void)
 366{
 367	cpu_maps_update_begin();
 368	__cpu_hotplug_enable();
 369	cpu_maps_update_done();
 370}
 371EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 372
 373#else
 374
 375static void lockdep_acquire_cpus_lock(void)
 376{
 377}
 378
 379static void lockdep_release_cpus_lock(void)
 380{
 381}
 382
 383#endif	/* CONFIG_HOTPLUG_CPU */
 384
 385/*
 386 * Architectures that need SMT-specific errata handling during SMT hotplug
 387 * should override this.
 388 */
 389void __weak arch_smt_update(void) { }
 390
 391#ifdef CONFIG_HOTPLUG_SMT
 392enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 393
 394void __init cpu_smt_disable(bool force)
 395{
 396	if (!cpu_smt_possible())
 397		return;
 398
 399	if (force) {
 400		pr_info("SMT: Force disabled\n");
 401		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 402	} else {
 403		pr_info("SMT: disabled\n");
 404		cpu_smt_control = CPU_SMT_DISABLED;
 405	}
 406}
 407
 408/*
 409 * The decision whether SMT is supported can only be done after the full
 410 * CPU identification. Called from architecture code.
 411 */
 412void __init cpu_smt_check_topology(void)
 413{
 414	if (!topology_smt_supported())
 415		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 416}
 417
 418static int __init smt_cmdline_disable(char *str)
 
 419{
 420	cpu_smt_disable(str && !strcmp(str, "force"));
 421	return 0;
 422}
 423early_param("nosmt", smt_cmdline_disable);
 424
 425static inline bool cpu_smt_allowed(unsigned int cpu)
 426{
 427	if (cpu_smt_control == CPU_SMT_ENABLED)
 428		return true;
 429
 430	if (topology_is_primary_thread(cpu))
 431		return true;
 432
 433	/*
 434	 * On x86 it's required to boot all logical CPUs at least once so
 435	 * that the init code can get a chance to set CR4.MCE on each
 436	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
 437	 * core will shutdown the machine.
 438	 */
 439	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
 440}
 441
 442/* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
 443bool cpu_smt_possible(void)
 444{
 445	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
 446		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
 447}
 448EXPORT_SYMBOL_GPL(cpu_smt_possible);
 449#else
 450static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 451#endif
 452
 453static inline enum cpuhp_state
 454cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 455{
 456	enum cpuhp_state prev_state = st->state;
 457
 458	st->rollback = false;
 459	st->last = NULL;
 460
 461	st->target = target;
 462	st->single = false;
 463	st->bringup = st->state < target;
 464
 465	return prev_state;
 466}
 467
 468static inline void
 469cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 470{
 471	st->rollback = true;
 
 472
 473	/*
 474	 * If we have st->last we need to undo partial multi_instance of this
 475	 * state first. Otherwise start undo at the previous state.
 476	 */
 477	if (!st->last) {
 478		if (st->bringup)
 479			st->state--;
 480		else
 481			st->state++;
 482	}
 483
 484	st->target = prev_state;
 485	st->bringup = !st->bringup;
 486}
 487
 488/* Regular hotplug invocation of the AP hotplug thread */
 489static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 490{
 491	if (!st->single && st->state == st->target)
 492		return;
 493
 494	st->result = 0;
 495	/*
 496	 * Make sure the above stores are visible before should_run becomes
 497	 * true. Paired with the mb() above in cpuhp_thread_fun()
 498	 */
 499	smp_mb();
 500	st->should_run = true;
 501	wake_up_process(st->thread);
 502	wait_for_ap_thread(st, st->bringup);
 503}
 504
 505static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 506{
 507	enum cpuhp_state prev_state;
 508	int ret;
 509
 510	prev_state = cpuhp_set_state(st, target);
 511	__cpuhp_kick_ap(st);
 512	if ((ret = st->result)) {
 513		cpuhp_reset_state(st, prev_state);
 514		__cpuhp_kick_ap(st);
 515	}
 516
 517	return ret;
 518}
 519
 520static int bringup_wait_for_ap(unsigned int cpu)
 521{
 522	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 523
 524	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 525	wait_for_ap_thread(st, true);
 526	if (WARN_ON_ONCE((!cpu_online(cpu))))
 527		return -ECANCELED;
 528
 529	/* Unpark the hotplug thread of the target cpu */
 530	kthread_unpark(st->thread);
 531
 532	/*
 533	 * SMT soft disabling on X86 requires to bring the CPU out of the
 534	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 535	 * CPU marked itself as booted_once in notify_cpu_starting() so the
 536	 * cpu_smt_allowed() check will now return false if this is not the
 537	 * primary sibling.
 538	 */
 539	if (!cpu_smt_allowed(cpu))
 540		return -ECANCELED;
 541
 542	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 543		return 0;
 544
 545	return cpuhp_kick_ap(st, st->target);
 546}
 547
 548static int bringup_cpu(unsigned int cpu)
 549{
 550	struct task_struct *idle = idle_thread_get(cpu);
 551	int ret;
 552
 553	/*
 554	 * Some architectures have to walk the irq descriptors to
 555	 * setup the vector space for the cpu which comes online.
 556	 * Prevent irq alloc/free across the bringup.
 557	 */
 558	irq_lock_sparse();
 559
 560	/* Arch-specific enabling code. */
 561	ret = __cpu_up(cpu, idle);
 562	irq_unlock_sparse();
 563	if (ret)
 564		return ret;
 565	return bringup_wait_for_ap(cpu);
 
 
 
 566}
 567
 568static int finish_cpu(unsigned int cpu)
 
 
 
 
 569{
 570	struct task_struct *idle = idle_thread_get(cpu);
 571	struct mm_struct *mm = idle->active_mm;
 572
 573	/*
 574	 * idle_task_exit() will have switched to &init_mm, now
 575	 * clean up any remaining active_mm state.
 576	 */
 577	if (mm != &init_mm)
 578		idle->active_mm = &init_mm;
 579	mmdrop(mm);
 580	return 0;
 581}
 582
 583/*
 584 * Hotplug state machine related functions
 585 */
 
 
 
 
 
 586
 587static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 588{
 589	for (st->state--; st->state > st->target; st->state--)
 590		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 
 
 
 
 591}
 592
 593static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
 
 594{
 595	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
 596		return true;
 597	/*
 598	 * When CPU hotplug is disabled, then taking the CPU down is not
 599	 * possible because takedown_cpu() and the architecture and
 600	 * subsystem specific mechanisms are not available. So the CPU
 601	 * which would be completely unplugged again needs to stay around
 602	 * in the current state.
 603	 */
 604	return st->state <= CPUHP_BRINGUP_CPU;
 605}
 606
 607static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 608			      enum cpuhp_state target)
 609{
 610	enum cpuhp_state prev_state = st->state;
 611	int ret = 0;
 612
 613	while (st->state < target) {
 
 
 614		st->state++;
 615		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 
 616		if (ret) {
 617			if (can_rollback_cpu(st)) {
 618				st->target = prev_state;
 619				undo_cpu_up(cpu, st);
 620			}
 621			break;
 622		}
 623	}
 624	return ret;
 625}
 626
 627/*
 628 * The cpu hotplug threads manage the bringup and teardown of the cpus
 629 */
 630static void cpuhp_create(unsigned int cpu)
 631{
 632	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 633
 634	init_completion(&st->done_up);
 635	init_completion(&st->done_down);
 636}
 637
 638static int cpuhp_should_run(unsigned int cpu)
 639{
 640	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 641
 642	return st->should_run;
 643}
 644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645/*
 646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 647 * callbacks when a state gets [un]installed at runtime.
 648 *
 649 * Each invocation of this function by the smpboot thread does a single AP
 650 * state callback.
 651 *
 652 * It has 3 modes of operation:
 653 *  - single: runs st->cb_state
 654 *  - up:     runs ++st->state, while st->state < st->target
 655 *  - down:   runs st->state--, while st->state > st->target
 656 *
 657 * When complete or on error, should_run is cleared and the completion is fired.
 658 */
 659static void cpuhp_thread_fun(unsigned int cpu)
 660{
 661	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 662	bool bringup = st->bringup;
 663	enum cpuhp_state state;
 664
 665	if (WARN_ON_ONCE(!st->should_run))
 666		return;
 667
 668	/*
 669	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 670	 * that if we see ->should_run we also see the rest of the state.
 671	 */
 672	smp_mb();
 
 
 
 
 673
 674	/*
 675	 * The BP holds the hotplug lock, but we're now running on the AP,
 676	 * ensure that anybody asserting the lock is held, will actually find
 677	 * it so.
 678	 */
 679	lockdep_acquire_cpus_lock();
 680	cpuhp_lock_acquire(bringup);
 681
 682	if (st->single) {
 683		state = st->cb_state;
 684		st->should_run = false;
 685	} else {
 686		if (bringup) {
 687			st->state++;
 688			state = st->state;
 689			st->should_run = (st->state < st->target);
 690			WARN_ON_ONCE(st->state > st->target);
 691		} else {
 692			state = st->state;
 693			st->state--;
 694			st->should_run = (st->state > st->target);
 695			WARN_ON_ONCE(st->state < st->target);
 696		}
 697	}
 698
 699	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 700
 701	if (cpuhp_is_atomic_state(state)) {
 702		local_irq_disable();
 703		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 704		local_irq_enable();
 705
 
 706		/*
 707		 * STARTING/DYING must not fail!
 
 708		 */
 709		WARN_ON_ONCE(st->result);
 
 710	} else {
 711		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 712	}
 713
 714	if (st->result) {
 715		/*
 716		 * If we fail on a rollback, we're up a creek without no
 717		 * paddle, no way forward, no way back. We loose, thanks for
 718		 * playing.
 719		 */
 720		WARN_ON_ONCE(st->rollback);
 721		st->should_run = false;
 722	}
 723
 724	cpuhp_lock_release(bringup);
 725	lockdep_release_cpus_lock();
 726
 727	if (!st->should_run)
 728		complete_ap_thread(st, bringup);
 729}
 730
 731/* Invoke a single callback on a remote cpu */
 732static int
 733cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 734			 struct hlist_node *node)
 735{
 736	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 737	int ret;
 738
 739	if (!cpu_online(cpu))
 740		return 0;
 741
 742	cpuhp_lock_acquire(false);
 743	cpuhp_lock_release(false);
 744
 745	cpuhp_lock_acquire(true);
 746	cpuhp_lock_release(true);
 747
 748	/*
 749	 * If we are up and running, use the hotplug thread. For early calls
 750	 * we invoke the thread function directly.
 751	 */
 752	if (!st->thread)
 753		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 754
 755	st->rollback = false;
 756	st->last = NULL;
 757
 758	st->node = node;
 759	st->bringup = bringup;
 760	st->cb_state = state;
 761	st->single = true;
 762
 763	__cpuhp_kick_ap(st);
 764
 765	/*
 766	 * If we failed and did a partial, do a rollback.
 
 767	 */
 768	if ((ret = st->result) && st->last) {
 769		st->rollback = true;
 770		st->bringup = !bringup;
 771
 772		__cpuhp_kick_ap(st);
 773	}
 774
 
 
 
 
 
 775	/*
 776	 * Clean up the leftovers so the next hotplug operation wont use stale
 777	 * data.
 778	 */
 779	st->node = st->last = NULL;
 780	return ret;
 
 781}
 782
 783static int cpuhp_kick_ap_work(unsigned int cpu)
 784{
 785	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 786	enum cpuhp_state prev_state = st->state;
 787	int ret;
 788
 789	cpuhp_lock_acquire(false);
 790	cpuhp_lock_release(false);
 791
 792	cpuhp_lock_acquire(true);
 793	cpuhp_lock_release(true);
 794
 795	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 796	ret = cpuhp_kick_ap(st, st->target);
 797	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 798
 799	return ret;
 800}
 801
 802static struct smp_hotplug_thread cpuhp_threads = {
 803	.store			= &cpuhp_state.thread,
 804	.create			= &cpuhp_create,
 805	.thread_should_run	= cpuhp_should_run,
 806	.thread_fn		= cpuhp_thread_fun,
 807	.thread_comm		= "cpuhp/%u",
 808	.selfparking		= true,
 809};
 810
 811void __init cpuhp_threads_init(void)
 812{
 813	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 814	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 815}
 816
 817#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818/**
 819 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 820 * @cpu: a CPU id
 821 *
 822 * This function walks all processes, finds a valid mm struct for each one and
 823 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 824 * trivial, there are various non-obvious corner cases, which this function
 825 * tries to solve in a safe manner.
 826 *
 827 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 828 * be called only for an already offlined CPU.
 829 */
 830void clear_tasks_mm_cpumask(int cpu)
 831{
 832	struct task_struct *p;
 833
 834	/*
 835	 * This function is called after the cpu is taken down and marked
 836	 * offline, so its not like new tasks will ever get this cpu set in
 837	 * their mm mask. -- Peter Zijlstra
 838	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 839	 * full-fledged tasklist_lock.
 840	 */
 841	WARN_ON(cpu_online(cpu));
 842	rcu_read_lock();
 843	for_each_process(p) {
 844		struct task_struct *t;
 845
 846		/*
 847		 * Main thread might exit, but other threads may still have
 848		 * a valid mm. Find one.
 849		 */
 850		t = find_lock_task_mm(p);
 851		if (!t)
 852			continue;
 853		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 854		task_unlock(t);
 855	}
 856	rcu_read_unlock();
 857}
 858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859/* Take this CPU down. */
 860static int take_cpu_down(void *_param)
 861{
 862	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 863	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 864	int err, cpu = smp_processor_id();
 865	int ret;
 866
 867	/* Ensure this CPU doesn't handle any more interrupts. */
 868	err = __cpu_disable();
 869	if (err < 0)
 870		return err;
 871
 872	/*
 873	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 874	 * do this step again.
 875	 */
 876	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 877	st->state--;
 878	/* Invoke the former CPU_DYING callbacks */
 879	for (; st->state > target; st->state--) {
 880		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 881		/*
 882		 * DYING must not fail!
 883		 */
 884		WARN_ON_ONCE(ret);
 885	}
 886
 887	/* Give up timekeeping duties */
 888	tick_handover_do_timer();
 889	/* Remove CPU from timer broadcasting */
 890	tick_offline_cpu(cpu);
 891	/* Park the stopper thread */
 892	stop_machine_park(cpu);
 893	return 0;
 894}
 895
 896static int takedown_cpu(unsigned int cpu)
 897{
 898	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 899	int err;
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901	/* Park the smpboot threads */
 902	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 
 903
 904	/*
 905	 * Prevent irq alloc/free while the dying cpu reorganizes the
 906	 * interrupt affinities.
 907	 */
 908	irq_lock_sparse();
 909
 910	/*
 911	 * So now all preempt/rcu users must observe !cpu_active().
 912	 */
 913	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 914	if (err) {
 915		/* CPU refused to die */
 916		irq_unlock_sparse();
 917		/* Unpark the hotplug thread so we can rollback there */
 918		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 919		return err;
 920	}
 921	BUG_ON(cpu_online(cpu));
 922
 923	/*
 924	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 925	 * all runnable tasks from the CPU, there's only the idle task left now
 926	 * that the migration thread is done doing the stop_machine thing.
 927	 *
 928	 * Wait for the stop thread to go away.
 929	 */
 930	wait_for_ap_thread(st, false);
 931	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 932
 933	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 934	irq_unlock_sparse();
 935
 936	hotplug_cpu__broadcast_tick_pull(cpu);
 937	/* This actually kills the CPU. */
 938	__cpu_die(cpu);
 939
 940	tick_cleanup_dead_cpu(cpu);
 941	rcutree_migrate_callbacks(cpu);
 
 
 
 
 
 
 942	return 0;
 943}
 944
 945static void cpuhp_complete_idle_dead(void *arg)
 946{
 947	struct cpuhp_cpu_state *st = arg;
 948
 949	complete_ap_thread(st, false);
 950}
 951
 952void cpuhp_report_idle_dead(void)
 953{
 954	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 955
 956	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 957	rcu_report_dead(smp_processor_id());
 958	st->state = CPUHP_AP_IDLE_DEAD;
 959	/*
 960	 * We cannot call complete after rcu_report_dead() so we delegate it
 961	 * to an online cpu.
 962	 */
 963	smp_call_function_single(cpumask_first(cpu_online_mask),
 964				 cpuhp_complete_idle_dead, st, 0);
 965}
 966
 967static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 968{
 969	for (st->state++; st->state < st->target; st->state++)
 970		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 971}
 
 972
 973static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 974				enum cpuhp_state target)
 975{
 976	enum cpuhp_state prev_state = st->state;
 977	int ret = 0;
 978
 979	for (; st->state > target; st->state--) {
 980		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 981		if (ret) {
 982			st->target = prev_state;
 983			if (st->state < prev_state)
 984				undo_cpu_down(cpu, st);
 985			break;
 986		}
 987	}
 988	return ret;
 989}
 990
 991/* Requires cpu_add_remove_lock to be held */
 992static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 993			   enum cpuhp_state target)
 994{
 995	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 996	int prev_state, ret = 0;
 
 997
 998	if (num_online_cpus() == 1)
 999		return -EBUSY;
1000
1001	if (!cpu_present(cpu))
1002		return -EINVAL;
1003
1004	cpus_write_lock();
1005
1006	cpuhp_tasks_frozen = tasks_frozen;
1007
1008	prev_state = cpuhp_set_state(st, target);
 
1009	/*
1010	 * If the current CPU state is in the range of the AP hotplug thread,
1011	 * then we need to kick the thread.
1012	 */
1013	if (st->state > CPUHP_TEARDOWN_CPU) {
1014		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1015		ret = cpuhp_kick_ap_work(cpu);
1016		/*
1017		 * The AP side has done the error rollback already. Just
1018		 * return the error code..
1019		 */
1020		if (ret)
1021			goto out;
1022
1023		/*
1024		 * We might have stopped still in the range of the AP hotplug
1025		 * thread. Nothing to do anymore.
1026		 */
1027		if (st->state > CPUHP_TEARDOWN_CPU)
1028			goto out;
1029
1030		st->target = target;
1031	}
1032	/*
1033	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1034	 * to do the further cleanups.
1035	 */
1036	ret = cpuhp_down_callbacks(cpu, st, target);
1037	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1038		cpuhp_reset_state(st, prev_state);
1039		__cpuhp_kick_ap(st);
 
1040	}
1041
 
1042out:
1043	cpus_write_unlock();
1044	/*
1045	 * Do post unplug cleanup. This is still protected against
1046	 * concurrent CPU hotplug via cpu_add_remove_lock.
1047	 */
1048	lockup_detector_cleanup();
1049	arch_smt_update();
1050	return ret;
1051}
1052
1053static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1054{
1055	if (cpu_hotplug_disabled)
1056		return -EBUSY;
1057	return _cpu_down(cpu, 0, target);
1058}
1059
1060static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1061{
1062	int err;
1063
1064	cpu_maps_update_begin();
1065	err = cpu_down_maps_locked(cpu, target);
1066	cpu_maps_update_done();
1067	return err;
1068}
1069
1070/**
1071 * cpu_device_down - Bring down a cpu device
1072 * @dev: Pointer to the cpu device to offline
1073 *
1074 * This function is meant to be used by device core cpu subsystem only.
1075 *
1076 * Other subsystems should use remove_cpu() instead.
1077 */
1078int cpu_device_down(struct device *dev)
1079{
1080	return cpu_down(dev->id, CPUHP_OFFLINE);
1081}
1082
1083int remove_cpu(unsigned int cpu)
1084{
1085	int ret;
1086
1087	lock_device_hotplug();
1088	ret = device_offline(get_cpu_device(cpu));
1089	unlock_device_hotplug();
1090
1091	return ret;
1092}
1093EXPORT_SYMBOL_GPL(remove_cpu);
1094
1095void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1096{
1097	unsigned int cpu;
1098	int error;
1099
1100	cpu_maps_update_begin();
1101
1102	/*
1103	 * Make certain the cpu I'm about to reboot on is online.
1104	 *
1105	 * This is inline to what migrate_to_reboot_cpu() already do.
1106	 */
1107	if (!cpu_online(primary_cpu))
1108		primary_cpu = cpumask_first(cpu_online_mask);
1109
1110	for_each_online_cpu(cpu) {
1111		if (cpu == primary_cpu)
1112			continue;
1113
1114		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1115		if (error) {
1116			pr_err("Failed to offline CPU%d - error=%d",
1117				cpu, error);
1118			break;
1119		}
1120	}
1121
1122	/*
1123	 * Ensure all but the reboot CPU are offline.
1124	 */
1125	BUG_ON(num_online_cpus() > 1);
1126
1127	/*
1128	 * Make sure the CPUs won't be enabled by someone else after this
1129	 * point. Kexec will reboot to a new kernel shortly resetting
1130	 * everything along the way.
1131	 */
1132	cpu_hotplug_disabled++;
1133
1134	cpu_maps_update_done();
1135}
1136
1137#else
1138#define takedown_cpu		NULL
1139#endif /*CONFIG_HOTPLUG_CPU*/
1140
1141/**
1142 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1143 * @cpu: cpu that just started
1144 *
 
1145 * It must be called by the arch code on the new cpu, before the new cpu
1146 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1147 */
1148void notify_cpu_starting(unsigned int cpu)
1149{
1150	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1151	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1152	int ret;
1153
1154	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1155	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1156	while (st->state < target) {
 
 
1157		st->state++;
1158		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1159		/*
1160		 * STARTING must not fail!
1161		 */
1162		WARN_ON_ONCE(ret);
1163	}
1164}
1165
1166/*
1167 * Called from the idle task. Wake up the controlling task which brings the
1168 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1169 * online bringup to the hotplug thread.
 
1170 */
1171void cpuhp_online_idle(enum cpuhp_state state)
1172{
1173	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 
1174
1175	/* Happens for the boot cpu */
1176	if (state != CPUHP_AP_ONLINE_IDLE)
1177		return;
1178
1179	/*
1180	 * Unpart the stopper thread before we start the idle loop (and start
1181	 * scheduling); this ensures the stopper task is always available.
1182	 */
1183	stop_machine_unpark(smp_processor_id());
 
 
1184
1185	st->state = CPUHP_AP_ONLINE_IDLE;
1186	complete_ap_thread(st, true);
 
 
 
1187}
1188
1189/* Requires cpu_add_remove_lock to be held */
1190static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1191{
1192	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1193	struct task_struct *idle;
1194	int ret = 0;
1195
1196	cpus_write_lock();
1197
1198	if (!cpu_present(cpu)) {
1199		ret = -EINVAL;
1200		goto out;
1201	}
1202
1203	/*
1204	 * The caller of cpu_up() might have raced with another
1205	 * caller. Nothing to do.
1206	 */
1207	if (st->state >= target)
1208		goto out;
1209
1210	if (st->state == CPUHP_OFFLINE) {
1211		/* Let it fail before we try to bring the cpu up */
1212		idle = idle_thread_get(cpu);
1213		if (IS_ERR(idle)) {
1214			ret = PTR_ERR(idle);
1215			goto out;
1216		}
1217	}
1218
1219	cpuhp_tasks_frozen = tasks_frozen;
1220
1221	cpuhp_set_state(st, target);
1222	/*
1223	 * If the current CPU state is in the range of the AP hotplug thread,
1224	 * then we need to kick the thread once more.
1225	 */
1226	if (st->state > CPUHP_BRINGUP_CPU) {
1227		ret = cpuhp_kick_ap_work(cpu);
1228		/*
1229		 * The AP side has done the error rollback already. Just
1230		 * return the error code..
1231		 */
1232		if (ret)
1233			goto out;
1234	}
1235
1236	/*
1237	 * Try to reach the target state. We max out on the BP at
1238	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1239	 * responsible for bringing it up to the target state.
1240	 */
1241	target = min((int)target, CPUHP_BRINGUP_CPU);
1242	ret = cpuhp_up_callbacks(cpu, st, target);
1243out:
1244	cpus_write_unlock();
1245	arch_smt_update();
1246	return ret;
1247}
1248
1249static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1250{
1251	int err = 0;
1252
1253	if (!cpu_possible(cpu)) {
1254		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1255		       cpu);
1256#if defined(CONFIG_IA64)
1257		pr_err("please check additional_cpus= boot parameter\n");
1258#endif
1259		return -EINVAL;
1260	}
1261
1262	err = try_online_node(cpu_to_node(cpu));
1263	if (err)
1264		return err;
1265
1266	cpu_maps_update_begin();
1267
1268	if (cpu_hotplug_disabled) {
1269		err = -EBUSY;
1270		goto out;
1271	}
1272	if (!cpu_smt_allowed(cpu)) {
1273		err = -EPERM;
1274		goto out;
1275	}
1276
1277	err = _cpu_up(cpu, 0, target);
1278out:
1279	cpu_maps_update_done();
1280	return err;
1281}
1282
1283/**
1284 * cpu_device_up - Bring up a cpu device
1285 * @dev: Pointer to the cpu device to online
1286 *
1287 * This function is meant to be used by device core cpu subsystem only.
1288 *
1289 * Other subsystems should use add_cpu() instead.
1290 */
1291int cpu_device_up(struct device *dev)
1292{
1293	return cpu_up(dev->id, CPUHP_ONLINE);
1294}
1295
1296int add_cpu(unsigned int cpu)
1297{
1298	int ret;
1299
1300	lock_device_hotplug();
1301	ret = device_online(get_cpu_device(cpu));
1302	unlock_device_hotplug();
1303
1304	return ret;
1305}
1306EXPORT_SYMBOL_GPL(add_cpu);
1307
1308/**
1309 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1310 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1311 *
1312 * On some architectures like arm64, we can hibernate on any CPU, but on
1313 * wake up the CPU we hibernated on might be offline as a side effect of
1314 * using maxcpus= for example.
1315 */
1316int bringup_hibernate_cpu(unsigned int sleep_cpu)
1317{
1318	int ret;
1319
1320	if (!cpu_online(sleep_cpu)) {
1321		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1322		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1323		if (ret) {
1324			pr_err("Failed to bring hibernate-CPU up!\n");
1325			return ret;
1326		}
1327	}
1328	return 0;
1329}
1330
1331void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1332{
1333	unsigned int cpu;
1334
1335	for_each_present_cpu(cpu) {
1336		if (num_online_cpus() >= setup_max_cpus)
1337			break;
1338		if (!cpu_online(cpu))
1339			cpu_up(cpu, CPUHP_ONLINE);
1340	}
1341}
 
1342
1343#ifdef CONFIG_PM_SLEEP_SMP
1344static cpumask_var_t frozen_cpus;
1345
1346int freeze_secondary_cpus(int primary)
1347{
1348	int cpu, error = 0;
1349
1350	cpu_maps_update_begin();
1351	if (primary == -1) {
1352		primary = cpumask_first(cpu_online_mask);
1353		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1354			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1355	} else {
1356		if (!cpu_online(primary))
1357			primary = cpumask_first(cpu_online_mask);
1358	}
1359
1360	/*
1361	 * We take down all of the non-boot CPUs in one shot to avoid races
1362	 * with the userspace trying to use the CPU hotplug at the same time
1363	 */
1364	cpumask_clear(frozen_cpus);
1365
1366	pr_info("Disabling non-boot CPUs ...\n");
1367	for_each_online_cpu(cpu) {
1368		if (cpu == primary)
1369			continue;
1370
1371		if (pm_wakeup_pending()) {
1372			pr_info("Wakeup pending. Abort CPU freeze\n");
1373			error = -EBUSY;
1374			break;
1375		}
1376
1377		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1378		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1379		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1380		if (!error)
1381			cpumask_set_cpu(cpu, frozen_cpus);
1382		else {
1383			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1384			break;
1385		}
1386	}
1387
1388	if (!error)
1389		BUG_ON(num_online_cpus() > 1);
1390	else
1391		pr_err("Non-boot CPUs are not disabled\n");
1392
1393	/*
1394	 * Make sure the CPUs won't be enabled by someone else. We need to do
1395	 * this even in case of failure as all freeze_secondary_cpus() users are
1396	 * supposed to do thaw_secondary_cpus() on the failure path.
1397	 */
1398	cpu_hotplug_disabled++;
1399
1400	cpu_maps_update_done();
1401	return error;
1402}
1403
1404void __weak arch_thaw_secondary_cpus_begin(void)
1405{
1406}
1407
1408void __weak arch_thaw_secondary_cpus_end(void)
1409{
1410}
1411
1412void thaw_secondary_cpus(void)
1413{
1414	int cpu, error;
1415
1416	/* Allow everyone to use the CPU hotplug again */
1417	cpu_maps_update_begin();
1418	__cpu_hotplug_enable();
1419	if (cpumask_empty(frozen_cpus))
1420		goto out;
1421
1422	pr_info("Enabling non-boot CPUs ...\n");
1423
1424	arch_thaw_secondary_cpus_begin();
1425
1426	for_each_cpu(cpu, frozen_cpus) {
1427		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1428		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1429		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1430		if (!error) {
1431			pr_info("CPU%d is up\n", cpu);
1432			continue;
1433		}
1434		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1435	}
1436
1437	arch_thaw_secondary_cpus_end();
1438
1439	cpumask_clear(frozen_cpus);
1440out:
1441	cpu_maps_update_done();
1442}
1443
1444static int __init alloc_frozen_cpus(void)
1445{
1446	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1447		return -ENOMEM;
1448	return 0;
1449}
1450core_initcall(alloc_frozen_cpus);
1451
1452/*
1453 * When callbacks for CPU hotplug notifications are being executed, we must
1454 * ensure that the state of the system with respect to the tasks being frozen
1455 * or not, as reported by the notification, remains unchanged *throughout the
1456 * duration* of the execution of the callbacks.
1457 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1458 *
1459 * This synchronization is implemented by mutually excluding regular CPU
1460 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1461 * Hibernate notifications.
1462 */
1463static int
1464cpu_hotplug_pm_callback(struct notifier_block *nb,
1465			unsigned long action, void *ptr)
1466{
1467	switch (action) {
1468
1469	case PM_SUSPEND_PREPARE:
1470	case PM_HIBERNATION_PREPARE:
1471		cpu_hotplug_disable();
1472		break;
1473
1474	case PM_POST_SUSPEND:
1475	case PM_POST_HIBERNATION:
1476		cpu_hotplug_enable();
1477		break;
1478
1479	default:
1480		return NOTIFY_DONE;
1481	}
1482
1483	return NOTIFY_OK;
1484}
1485
1486
1487static int __init cpu_hotplug_pm_sync_init(void)
1488{
1489	/*
1490	 * cpu_hotplug_pm_callback has higher priority than x86
1491	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1492	 * to disable cpu hotplug to avoid cpu hotplug race.
1493	 */
1494	pm_notifier(cpu_hotplug_pm_callback, 0);
1495	return 0;
1496}
1497core_initcall(cpu_hotplug_pm_sync_init);
1498
1499#endif /* CONFIG_PM_SLEEP_SMP */
1500
1501int __boot_cpu_id;
1502
1503#endif /* CONFIG_SMP */
1504
1505/* Boot processor state steps */
1506static struct cpuhp_step cpuhp_hp_states[] = {
1507	[CPUHP_OFFLINE] = {
1508		.name			= "offline",
1509		.startup.single		= NULL,
1510		.teardown.single	= NULL,
1511	},
1512#ifdef CONFIG_SMP
1513	[CPUHP_CREATE_THREADS]= {
1514		.name			= "threads:prepare",
1515		.startup.single		= smpboot_create_threads,
1516		.teardown.single	= NULL,
1517		.cant_stop		= true,
1518	},
1519	[CPUHP_PERF_PREPARE] = {
1520		.name			= "perf:prepare",
1521		.startup.single		= perf_event_init_cpu,
1522		.teardown.single	= perf_event_exit_cpu,
1523	},
1524	[CPUHP_WORKQUEUE_PREP] = {
1525		.name			= "workqueue:prepare",
1526		.startup.single		= workqueue_prepare_cpu,
1527		.teardown.single	= NULL,
1528	},
1529	[CPUHP_HRTIMERS_PREPARE] = {
1530		.name			= "hrtimers:prepare",
1531		.startup.single		= hrtimers_prepare_cpu,
1532		.teardown.single	= hrtimers_dead_cpu,
1533	},
1534	[CPUHP_SMPCFD_PREPARE] = {
1535		.name			= "smpcfd:prepare",
1536		.startup.single		= smpcfd_prepare_cpu,
1537		.teardown.single	= smpcfd_dead_cpu,
1538	},
1539	[CPUHP_RELAY_PREPARE] = {
1540		.name			= "relay:prepare",
1541		.startup.single		= relay_prepare_cpu,
1542		.teardown.single	= NULL,
1543	},
1544	[CPUHP_SLAB_PREPARE] = {
1545		.name			= "slab:prepare",
1546		.startup.single		= slab_prepare_cpu,
1547		.teardown.single	= slab_dead_cpu,
1548	},
1549	[CPUHP_RCUTREE_PREP] = {
1550		.name			= "RCU/tree:prepare",
1551		.startup.single		= rcutree_prepare_cpu,
1552		.teardown.single	= rcutree_dead_cpu,
1553	},
1554	/*
1555	 * On the tear-down path, timers_dead_cpu() must be invoked
1556	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1557	 * otherwise a RCU stall occurs.
1558	 */
1559	[CPUHP_TIMERS_PREPARE] = {
1560		.name			= "timers:prepare",
1561		.startup.single		= timers_prepare_cpu,
1562		.teardown.single	= timers_dead_cpu,
 
1563	},
1564	/* Kicks the plugged cpu into life */
1565	[CPUHP_BRINGUP_CPU] = {
1566		.name			= "cpu:bringup",
1567		.startup.single		= bringup_cpu,
1568		.teardown.single	= finish_cpu,
 
 
 
 
 
 
 
 
 
 
1569		.cant_stop		= true,
1570	},
 
 
 
 
 
 
1571	/* Final state before CPU kills itself */
1572	[CPUHP_AP_IDLE_DEAD] = {
1573		.name			= "idle:dead",
1574	},
1575	/*
1576	 * Last state before CPU enters the idle loop to die. Transient state
1577	 * for synchronization.
1578	 */
1579	[CPUHP_AP_OFFLINE] = {
1580		.name			= "ap:offline",
1581		.cant_stop		= true,
1582	},
1583	/* First state is scheduler control. Interrupts are disabled */
1584	[CPUHP_AP_SCHED_STARTING] = {
1585		.name			= "sched:starting",
1586		.startup.single		= sched_cpu_starting,
1587		.teardown.single	= sched_cpu_dying,
1588	},
1589	[CPUHP_AP_RCUTREE_DYING] = {
1590		.name			= "RCU/tree:dying",
1591		.startup.single		= NULL,
1592		.teardown.single	= rcutree_dying_cpu,
1593	},
1594	[CPUHP_AP_SMPCFD_DYING] = {
1595		.name			= "smpcfd:dying",
1596		.startup.single		= NULL,
1597		.teardown.single	= smpcfd_dying_cpu,
1598	},
1599	/* Entry state on starting. Interrupts enabled from here on. Transient
1600	 * state for synchronsization */
1601	[CPUHP_AP_ONLINE] = {
1602		.name			= "ap:online",
1603	},
1604	/*
1605	 * Handled on controll processor until the plugged processor manages
1606	 * this itself.
1607	 */
1608	[CPUHP_TEARDOWN_CPU] = {
1609		.name			= "cpu:teardown",
1610		.startup.single		= NULL,
1611		.teardown.single	= takedown_cpu,
1612		.cant_stop		= true,
1613	},
1614	/* Handle smpboot threads park/unpark */
1615	[CPUHP_AP_SMPBOOT_THREADS] = {
1616		.name			= "smpboot/threads:online",
1617		.startup.single		= smpboot_unpark_threads,
1618		.teardown.single	= smpboot_park_threads,
1619	},
1620	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1621		.name			= "irq/affinity:online",
1622		.startup.single		= irq_affinity_online_cpu,
1623		.teardown.single	= NULL,
1624	},
1625	[CPUHP_AP_PERF_ONLINE] = {
1626		.name			= "perf:online",
1627		.startup.single		= perf_event_init_cpu,
1628		.teardown.single	= perf_event_exit_cpu,
1629	},
1630	[CPUHP_AP_WATCHDOG_ONLINE] = {
1631		.name			= "lockup_detector:online",
1632		.startup.single		= lockup_detector_online_cpu,
1633		.teardown.single	= lockup_detector_offline_cpu,
1634	},
1635	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1636		.name			= "workqueue:online",
1637		.startup.single		= workqueue_online_cpu,
1638		.teardown.single	= workqueue_offline_cpu,
1639	},
1640	[CPUHP_AP_RCUTREE_ONLINE] = {
1641		.name			= "RCU/tree:online",
1642		.startup.single		= rcutree_online_cpu,
1643		.teardown.single	= rcutree_offline_cpu,
1644	},
1645#endif
1646	/*
1647	 * The dynamically registered state space is here
1648	 */
1649
1650#ifdef CONFIG_SMP
1651	/* Last state is scheduler control setting the cpu active */
1652	[CPUHP_AP_ACTIVE] = {
1653		.name			= "sched:active",
1654		.startup.single		= sched_cpu_activate,
1655		.teardown.single	= sched_cpu_deactivate,
1656	},
1657#endif
1658
1659	/* CPU is fully up and running. */
1660	[CPUHP_ONLINE] = {
1661		.name			= "online",
1662		.startup.single		= NULL,
1663		.teardown.single	= NULL,
1664	},
1665};
1666
1667/* Sanity check for callbacks */
1668static int cpuhp_cb_check(enum cpuhp_state state)
1669{
1670	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1671		return -EINVAL;
1672	return 0;
1673}
1674
1675/*
1676 * Returns a free for dynamic slot assignment of the Online state. The states
1677 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1678 * by having no name assigned.
1679 */
1680static int cpuhp_reserve_state(enum cpuhp_state state)
1681{
1682	enum cpuhp_state i, end;
1683	struct cpuhp_step *step;
 
 
 
 
1684
1685	switch (state) {
1686	case CPUHP_AP_ONLINE_DYN:
1687		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1688		end = CPUHP_AP_ONLINE_DYN_END;
1689		break;
1690	case CPUHP_BP_PREPARE_DYN:
1691		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1692		end = CPUHP_BP_PREPARE_DYN_END;
1693		break;
1694	default:
1695		return -EINVAL;
1696	}
1697
1698	for (i = state; i <= end; i++, step++) {
1699		if (!step->name)
1700			return i;
1701	}
1702	WARN(1, "No more dynamic states available for CPU hotplug\n");
1703	return -ENOSPC;
1704}
1705
1706static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1707				 int (*startup)(unsigned int cpu),
1708				 int (*teardown)(unsigned int cpu),
1709				 bool multi_instance)
1710{
1711	/* (Un)Install the callbacks for further cpu hotplug operations */
1712	struct cpuhp_step *sp;
1713	int ret = 0;
1714
1715	/*
1716	 * If name is NULL, then the state gets removed.
1717	 *
1718	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1719	 * the first allocation from these dynamic ranges, so the removal
1720	 * would trigger a new allocation and clear the wrong (already
1721	 * empty) state, leaving the callbacks of the to be cleared state
1722	 * dangling, which causes wreckage on the next hotplug operation.
1723	 */
1724	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1725		     state == CPUHP_BP_PREPARE_DYN)) {
1726		ret = cpuhp_reserve_state(state);
1727		if (ret < 0)
1728			return ret;
1729		state = ret;
1730	}
1731	sp = cpuhp_get_step(state);
1732	if (name && sp->name)
1733		return -EBUSY;
1734
1735	sp->startup.single = startup;
1736	sp->teardown.single = teardown;
1737	sp->name = name;
1738	sp->multi_instance = multi_instance;
1739	INIT_HLIST_HEAD(&sp->list);
1740	return ret;
1741}
1742
1743static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1744{
1745	return cpuhp_get_step(state)->teardown.single;
1746}
1747
1748/*
1749 * Call the startup/teardown function for a step either on the AP or
1750 * on the current CPU.
1751 */
1752static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1753			    struct hlist_node *node)
1754{
1755	struct cpuhp_step *sp = cpuhp_get_step(state);
1756	int ret;
1757
1758	/*
1759	 * If there's nothing to do, we done.
1760	 * Relies on the union for multi_instance.
1761	 */
1762	if ((bringup && !sp->startup.single) ||
1763	    (!bringup && !sp->teardown.single))
1764		return 0;
1765	/*
1766	 * The non AP bound callbacks can fail on bringup. On teardown
1767	 * e.g. module removal we crash for now.
1768	 */
1769#ifdef CONFIG_SMP
1770	if (cpuhp_is_ap_state(state))
1771		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1772	else
1773		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1774#else
1775	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1776#endif
1777	BUG_ON(ret && !bringup);
1778	return ret;
1779}
1780
1781/*
1782 * Called from __cpuhp_setup_state on a recoverable failure.
1783 *
1784 * Note: The teardown callbacks for rollback are not allowed to fail!
1785 */
1786static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1787				   struct hlist_node *node)
1788{
1789	int cpu;
1790
 
 
 
1791	/* Roll back the already executed steps on the other cpus */
1792	for_each_present_cpu(cpu) {
1793		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1794		int cpustate = st->state;
1795
1796		if (cpu >= failedcpu)
1797			break;
1798
1799		/* Did we invoke the startup call on that cpu ? */
1800		if (cpustate >= state)
1801			cpuhp_issue_call(cpu, state, false, node);
1802	}
1803}
1804
1805int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1806					  struct hlist_node *node,
1807					  bool invoke)
 
 
 
1808{
1809	struct cpuhp_step *sp;
1810	int cpu;
1811	int ret;
1812
1813	lockdep_assert_cpus_held();
1814
1815	sp = cpuhp_get_step(state);
1816	if (sp->multi_instance == false)
1817		return -EINVAL;
1818
1819	mutex_lock(&cpuhp_state_mutex);
1820
1821	if (!invoke || !sp->startup.multi)
1822		goto add_node;
1823
1824	/*
1825	 * Try to call the startup callback for each present cpu
1826	 * depending on the hotplug state of the cpu.
1827	 */
1828	for_each_present_cpu(cpu) {
1829		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1830		int cpustate = st->state;
1831
1832		if (cpustate < state)
1833			continue;
1834
1835		ret = cpuhp_issue_call(cpu, state, true, node);
1836		if (ret) {
1837			if (sp->teardown.multi)
1838				cpuhp_rollback_install(cpu, state, node);
1839			goto unlock;
1840		}
1841	}
1842add_node:
1843	ret = 0;
1844	hlist_add_head(node, &sp->list);
1845unlock:
1846	mutex_unlock(&cpuhp_state_mutex);
1847	return ret;
 
1848}
1849
1850int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1851			       bool invoke)
1852{
1853	int ret;
1854
1855	cpus_read_lock();
1856	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1857	cpus_read_unlock();
1858	return ret;
1859}
1860EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1861
1862/**
1863 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1864 * @state:		The state to setup
1865 * @invoke:		If true, the startup function is invoked for cpus where
1866 *			cpu state >= @state
1867 * @startup:		startup callback function
1868 * @teardown:		teardown callback function
1869 * @multi_instance:	State is set up for multiple instances which get
1870 *			added afterwards.
1871 *
1872 * The caller needs to hold cpus read locked while calling this function.
1873 * Returns:
1874 *   On success:
1875 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1876 *      0 for all other states
1877 *   On failure: proper (negative) error code
1878 */
1879int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1880				   const char *name, bool invoke,
1881				   int (*startup)(unsigned int cpu),
1882				   int (*teardown)(unsigned int cpu),
1883				   bool multi_instance)
1884{
1885	int cpu, ret = 0;
1886	bool dynstate;
1887
1888	lockdep_assert_cpus_held();
1889
1890	if (cpuhp_cb_check(state) || !name)
1891		return -EINVAL;
1892
1893	mutex_lock(&cpuhp_state_mutex);
1894
1895	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1896				    multi_instance);
1897
1898	dynstate = state == CPUHP_AP_ONLINE_DYN;
1899	if (ret > 0 && dynstate) {
 
1900		state = ret;
1901		ret = 0;
1902	}
1903
1904	if (ret || !invoke || !startup)
 
 
1905		goto out;
1906
1907	/*
1908	 * Try to call the startup callback for each present cpu
1909	 * depending on the hotplug state of the cpu.
1910	 */
1911	for_each_present_cpu(cpu) {
1912		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1913		int cpustate = st->state;
1914
1915		if (cpustate < state)
1916			continue;
1917
1918		ret = cpuhp_issue_call(cpu, state, true, NULL);
1919		if (ret) {
1920			if (teardown)
1921				cpuhp_rollback_install(cpu, state, NULL);
1922			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1923			goto out;
1924		}
1925	}
1926out:
1927	mutex_unlock(&cpuhp_state_mutex);
1928	/*
1929	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1930	 * dynamically allocated state in case of success.
1931	 */
1932	if (!ret && dynstate)
1933		return state;
1934	return ret;
1935}
1936EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1937
1938int __cpuhp_setup_state(enum cpuhp_state state,
1939			const char *name, bool invoke,
1940			int (*startup)(unsigned int cpu),
1941			int (*teardown)(unsigned int cpu),
1942			bool multi_instance)
1943{
1944	int ret;
1945
1946	cpus_read_lock();
1947	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1948					     teardown, multi_instance);
1949	cpus_read_unlock();
1950	return ret;
1951}
1952EXPORT_SYMBOL(__cpuhp_setup_state);
1953
1954int __cpuhp_state_remove_instance(enum cpuhp_state state,
1955				  struct hlist_node *node, bool invoke)
1956{
1957	struct cpuhp_step *sp = cpuhp_get_step(state);
1958	int cpu;
1959
1960	BUG_ON(cpuhp_cb_check(state));
1961
1962	if (!sp->multi_instance)
1963		return -EINVAL;
1964
1965	cpus_read_lock();
1966	mutex_lock(&cpuhp_state_mutex);
1967
1968	if (!invoke || !cpuhp_get_teardown_cb(state))
1969		goto remove;
1970	/*
1971	 * Call the teardown callback for each present cpu depending
1972	 * on the hotplug state of the cpu. This function is not
1973	 * allowed to fail currently!
1974	 */
1975	for_each_present_cpu(cpu) {
1976		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1977		int cpustate = st->state;
1978
1979		if (cpustate >= state)
1980			cpuhp_issue_call(cpu, state, false, node);
1981	}
1982
1983remove:
1984	hlist_del(node);
1985	mutex_unlock(&cpuhp_state_mutex);
1986	cpus_read_unlock();
1987
1988	return 0;
1989}
1990EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1991
1992/**
1993 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1994 * @state:	The state to remove
1995 * @invoke:	If true, the teardown function is invoked for cpus where
1996 *		cpu state >= @state
1997 *
1998 * The caller needs to hold cpus read locked while calling this function.
1999 * The teardown callback is currently not allowed to fail. Think
2000 * about module removal!
2001 */
2002void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2003{
2004	struct cpuhp_step *sp = cpuhp_get_step(state);
2005	int cpu;
2006
2007	BUG_ON(cpuhp_cb_check(state));
2008
2009	lockdep_assert_cpus_held();
2010
2011	mutex_lock(&cpuhp_state_mutex);
2012	if (sp->multi_instance) {
2013		WARN(!hlist_empty(&sp->list),
2014		     "Error: Removing state %d which has instances left.\n",
2015		     state);
2016		goto remove;
2017	}
2018
2019	if (!invoke || !cpuhp_get_teardown_cb(state))
2020		goto remove;
2021
2022	/*
2023	 * Call the teardown callback for each present cpu depending
2024	 * on the hotplug state of the cpu. This function is not
2025	 * allowed to fail currently!
2026	 */
2027	for_each_present_cpu(cpu) {
2028		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2029		int cpustate = st->state;
2030
2031		if (cpustate >= state)
2032			cpuhp_issue_call(cpu, state, false, NULL);
2033	}
2034remove:
2035	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2036	mutex_unlock(&cpuhp_state_mutex);
2037}
2038EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2039
2040void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2041{
2042	cpus_read_lock();
2043	__cpuhp_remove_state_cpuslocked(state, invoke);
2044	cpus_read_unlock();
2045}
2046EXPORT_SYMBOL(__cpuhp_remove_state);
2047
2048#ifdef CONFIG_HOTPLUG_SMT
2049static void cpuhp_offline_cpu_device(unsigned int cpu)
2050{
2051	struct device *dev = get_cpu_device(cpu);
2052
2053	dev->offline = true;
2054	/* Tell user space about the state change */
2055	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2056}
2057
2058static void cpuhp_online_cpu_device(unsigned int cpu)
2059{
2060	struct device *dev = get_cpu_device(cpu);
2061
2062	dev->offline = false;
2063	/* Tell user space about the state change */
2064	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2065}
2066
2067int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2068{
2069	int cpu, ret = 0;
2070
2071	cpu_maps_update_begin();
2072	for_each_online_cpu(cpu) {
2073		if (topology_is_primary_thread(cpu))
2074			continue;
2075		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2076		if (ret)
2077			break;
2078		/*
2079		 * As this needs to hold the cpu maps lock it's impossible
2080		 * to call device_offline() because that ends up calling
2081		 * cpu_down() which takes cpu maps lock. cpu maps lock
2082		 * needs to be held as this might race against in kernel
2083		 * abusers of the hotplug machinery (thermal management).
2084		 *
2085		 * So nothing would update device:offline state. That would
2086		 * leave the sysfs entry stale and prevent onlining after
2087		 * smt control has been changed to 'off' again. This is
2088		 * called under the sysfs hotplug lock, so it is properly
2089		 * serialized against the regular offline usage.
2090		 */
2091		cpuhp_offline_cpu_device(cpu);
2092	}
2093	if (!ret)
2094		cpu_smt_control = ctrlval;
2095	cpu_maps_update_done();
2096	return ret;
2097}
2098
2099int cpuhp_smt_enable(void)
2100{
2101	int cpu, ret = 0;
2102
2103	cpu_maps_update_begin();
2104	cpu_smt_control = CPU_SMT_ENABLED;
2105	for_each_present_cpu(cpu) {
2106		/* Skip online CPUs and CPUs on offline nodes */
2107		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2108			continue;
2109		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2110		if (ret)
2111			break;
2112		/* See comment in cpuhp_smt_disable() */
2113		cpuhp_online_cpu_device(cpu);
2114	}
2115	cpu_maps_update_done();
2116	return ret;
2117}
2118#endif
2119
2120#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2121static ssize_t show_cpuhp_state(struct device *dev,
2122				struct device_attribute *attr, char *buf)
2123{
2124	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2125
2126	return sprintf(buf, "%d\n", st->state);
2127}
2128static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2129
2130static ssize_t write_cpuhp_target(struct device *dev,
2131				  struct device_attribute *attr,
2132				  const char *buf, size_t count)
2133{
2134	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2135	struct cpuhp_step *sp;
2136	int target, ret;
2137
2138	ret = kstrtoint(buf, 10, &target);
2139	if (ret)
2140		return ret;
2141
2142#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2143	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2144		return -EINVAL;
2145#else
2146	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2147		return -EINVAL;
2148#endif
2149
2150	ret = lock_device_hotplug_sysfs();
2151	if (ret)
2152		return ret;
2153
2154	mutex_lock(&cpuhp_state_mutex);
2155	sp = cpuhp_get_step(target);
2156	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2157	mutex_unlock(&cpuhp_state_mutex);
2158	if (ret)
2159		goto out;
2160
2161	if (st->state < target)
2162		ret = cpu_up(dev->id, target);
2163	else
2164		ret = cpu_down(dev->id, target);
2165out:
2166	unlock_device_hotplug();
2167	return ret ? ret : count;
2168}
2169
2170static ssize_t show_cpuhp_target(struct device *dev,
2171				 struct device_attribute *attr, char *buf)
2172{
2173	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2174
2175	return sprintf(buf, "%d\n", st->target);
2176}
2177static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2178
2179
2180static ssize_t write_cpuhp_fail(struct device *dev,
2181				struct device_attribute *attr,
2182				const char *buf, size_t count)
2183{
2184	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2185	struct cpuhp_step *sp;
2186	int fail, ret;
2187
2188	ret = kstrtoint(buf, 10, &fail);
2189	if (ret)
2190		return ret;
2191
2192	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2193		return -EINVAL;
2194
2195	/*
2196	 * Cannot fail STARTING/DYING callbacks.
2197	 */
2198	if (cpuhp_is_atomic_state(fail))
2199		return -EINVAL;
2200
2201	/*
2202	 * Cannot fail anything that doesn't have callbacks.
2203	 */
2204	mutex_lock(&cpuhp_state_mutex);
2205	sp = cpuhp_get_step(fail);
2206	if (!sp->startup.single && !sp->teardown.single)
2207		ret = -EINVAL;
2208	mutex_unlock(&cpuhp_state_mutex);
2209	if (ret)
2210		return ret;
2211
2212	st->fail = fail;
2213
2214	return count;
2215}
2216
2217static ssize_t show_cpuhp_fail(struct device *dev,
2218			       struct device_attribute *attr, char *buf)
2219{
2220	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2221
2222	return sprintf(buf, "%d\n", st->fail);
2223}
2224
2225static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2226
2227static struct attribute *cpuhp_cpu_attrs[] = {
2228	&dev_attr_state.attr,
2229	&dev_attr_target.attr,
2230	&dev_attr_fail.attr,
2231	NULL
2232};
2233
2234static const struct attribute_group cpuhp_cpu_attr_group = {
2235	.attrs = cpuhp_cpu_attrs,
2236	.name = "hotplug",
2237	NULL
2238};
2239
2240static ssize_t show_cpuhp_states(struct device *dev,
2241				 struct device_attribute *attr, char *buf)
2242{
2243	ssize_t cur, res = 0;
2244	int i;
2245
2246	mutex_lock(&cpuhp_state_mutex);
2247	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2248		struct cpuhp_step *sp = cpuhp_get_step(i);
2249
2250		if (sp->name) {
2251			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2252			buf += cur;
2253			res += cur;
2254		}
2255	}
2256	mutex_unlock(&cpuhp_state_mutex);
2257	return res;
2258}
2259static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2260
2261static struct attribute *cpuhp_cpu_root_attrs[] = {
2262	&dev_attr_states.attr,
2263	NULL
2264};
2265
2266static const struct attribute_group cpuhp_cpu_root_attr_group = {
2267	.attrs = cpuhp_cpu_root_attrs,
2268	.name = "hotplug",
2269	NULL
2270};
2271
2272#ifdef CONFIG_HOTPLUG_SMT
2273
2274static ssize_t
2275__store_smt_control(struct device *dev, struct device_attribute *attr,
2276		    const char *buf, size_t count)
2277{
2278	int ctrlval, ret;
2279
2280	if (sysfs_streq(buf, "on"))
2281		ctrlval = CPU_SMT_ENABLED;
2282	else if (sysfs_streq(buf, "off"))
2283		ctrlval = CPU_SMT_DISABLED;
2284	else if (sysfs_streq(buf, "forceoff"))
2285		ctrlval = CPU_SMT_FORCE_DISABLED;
2286	else
2287		return -EINVAL;
2288
2289	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2290		return -EPERM;
2291
2292	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2293		return -ENODEV;
2294
2295	ret = lock_device_hotplug_sysfs();
2296	if (ret)
2297		return ret;
2298
2299	if (ctrlval != cpu_smt_control) {
2300		switch (ctrlval) {
2301		case CPU_SMT_ENABLED:
2302			ret = cpuhp_smt_enable();
2303			break;
2304		case CPU_SMT_DISABLED:
2305		case CPU_SMT_FORCE_DISABLED:
2306			ret = cpuhp_smt_disable(ctrlval);
2307			break;
2308		}
2309	}
2310
2311	unlock_device_hotplug();
2312	return ret ? ret : count;
2313}
2314
2315#else /* !CONFIG_HOTPLUG_SMT */
2316static ssize_t
2317__store_smt_control(struct device *dev, struct device_attribute *attr,
2318		    const char *buf, size_t count)
2319{
2320	return -ENODEV;
2321}
2322#endif /* CONFIG_HOTPLUG_SMT */
2323
2324static const char *smt_states[] = {
2325	[CPU_SMT_ENABLED]		= "on",
2326	[CPU_SMT_DISABLED]		= "off",
2327	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2328	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2329	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2330};
2331
2332static ssize_t
2333show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2334{
2335	const char *state = smt_states[cpu_smt_control];
2336
2337	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2338}
2339
2340static ssize_t
2341store_smt_control(struct device *dev, struct device_attribute *attr,
2342		  const char *buf, size_t count)
2343{
2344	return __store_smt_control(dev, attr, buf, count);
2345}
2346static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2347
2348static ssize_t
2349show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2350{
2351	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2352}
2353static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2354
2355static struct attribute *cpuhp_smt_attrs[] = {
2356	&dev_attr_control.attr,
2357	&dev_attr_active.attr,
2358	NULL
2359};
2360
2361static const struct attribute_group cpuhp_smt_attr_group = {
2362	.attrs = cpuhp_smt_attrs,
2363	.name = "smt",
2364	NULL
2365};
2366
2367static int __init cpu_smt_sysfs_init(void)
2368{
2369	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2370				  &cpuhp_smt_attr_group);
2371}
2372
2373static int __init cpuhp_sysfs_init(void)
2374{
2375	int cpu, ret;
2376
2377	ret = cpu_smt_sysfs_init();
2378	if (ret)
2379		return ret;
2380
2381	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2382				 &cpuhp_cpu_root_attr_group);
2383	if (ret)
2384		return ret;
2385
2386	for_each_possible_cpu(cpu) {
2387		struct device *dev = get_cpu_device(cpu);
2388
2389		if (!dev)
2390			continue;
2391		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2392		if (ret)
2393			return ret;
2394	}
2395	return 0;
2396}
2397device_initcall(cpuhp_sysfs_init);
2398#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2399
2400/*
2401 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2402 * represents all NR_CPUS bits binary values of 1<<nr.
2403 *
2404 * It is used by cpumask_of() to get a constant address to a CPU
2405 * mask value that has a single bit set only.
2406 */
2407
2408/* cpu_bit_bitmap[0] is empty - so we can back into it */
2409#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2410#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2411#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2412#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2413
2414const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2415
2416	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2417	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2418#if BITS_PER_LONG > 32
2419	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2420	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2421#endif
2422};
2423EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2424
2425const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2426EXPORT_SYMBOL(cpu_all_bits);
2427
2428#ifdef CONFIG_INIT_ALL_POSSIBLE
2429struct cpumask __cpu_possible_mask __read_mostly
2430	= {CPU_BITS_ALL};
2431#else
2432struct cpumask __cpu_possible_mask __read_mostly;
2433#endif
2434EXPORT_SYMBOL(__cpu_possible_mask);
2435
2436struct cpumask __cpu_online_mask __read_mostly;
2437EXPORT_SYMBOL(__cpu_online_mask);
2438
2439struct cpumask __cpu_present_mask __read_mostly;
2440EXPORT_SYMBOL(__cpu_present_mask);
2441
2442struct cpumask __cpu_active_mask __read_mostly;
2443EXPORT_SYMBOL(__cpu_active_mask);
2444
2445atomic_t __num_online_cpus __read_mostly;
2446EXPORT_SYMBOL(__num_online_cpus);
2447
2448void init_cpu_present(const struct cpumask *src)
2449{
2450	cpumask_copy(&__cpu_present_mask, src);
2451}
2452
2453void init_cpu_possible(const struct cpumask *src)
2454{
2455	cpumask_copy(&__cpu_possible_mask, src);
2456}
2457
2458void init_cpu_online(const struct cpumask *src)
2459{
2460	cpumask_copy(&__cpu_online_mask, src);
2461}
2462
2463void set_cpu_online(unsigned int cpu, bool online)
2464{
2465	/*
2466	 * atomic_inc/dec() is required to handle the horrid abuse of this
2467	 * function by the reboot and kexec code which invoke it from
2468	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2469	 * regular CPU hotplug is properly serialized.
2470	 *
2471	 * Note, that the fact that __num_online_cpus is of type atomic_t
2472	 * does not protect readers which are not serialized against
2473	 * concurrent hotplug operations.
2474	 */
2475	if (online) {
2476		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2477			atomic_inc(&__num_online_cpus);
2478	} else {
2479		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2480			atomic_dec(&__num_online_cpus);
2481	}
2482}
2483
2484/*
2485 * Activate the first processor.
2486 */
2487void __init boot_cpu_init(void)
2488{
2489	int cpu = smp_processor_id();
2490
2491	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2492	set_cpu_online(cpu, true);
2493	set_cpu_active(cpu, true);
2494	set_cpu_present(cpu, true);
2495	set_cpu_possible(cpu, true);
2496
2497#ifdef CONFIG_SMP
2498	__boot_cpu_id = cpu;
2499#endif
2500}
2501
2502/*
2503 * Must be called _AFTER_ setting up the per_cpu areas
2504 */
2505void __init boot_cpu_hotplug_init(void)
2506{
2507#ifdef CONFIG_SMP
2508	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2509#endif
2510	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2511}
2512
2513/*
2514 * These are used for a global "mitigations=" cmdline option for toggling
2515 * optional CPU mitigations.
2516 */
2517enum cpu_mitigations {
2518	CPU_MITIGATIONS_OFF,
2519	CPU_MITIGATIONS_AUTO,
2520	CPU_MITIGATIONS_AUTO_NOSMT,
2521};
2522
2523static enum cpu_mitigations cpu_mitigations __ro_after_init =
2524	CPU_MITIGATIONS_AUTO;
2525
2526static int __init mitigations_parse_cmdline(char *arg)
2527{
2528	if (!strcmp(arg, "off"))
2529		cpu_mitigations = CPU_MITIGATIONS_OFF;
2530	else if (!strcmp(arg, "auto"))
2531		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2532	else if (!strcmp(arg, "auto,nosmt"))
2533		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2534	else
2535		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2536			arg);
2537
2538	return 0;
2539}
2540early_param("mitigations", mitigations_parse_cmdline);
2541
2542/* mitigations=off */
2543bool cpu_mitigations_off(void)
2544{
2545	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2546}
2547EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2548
2549/* mitigations=auto,nosmt */
2550bool cpu_mitigations_auto_nosmt(void)
2551{
2552	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2553}
2554EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);