Linux Audio

Check our new training course

Loading...
v4.6
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched.h>
 
 
  11#include <linux/unistd.h>
  12#include <linux/cpu.h>
  13#include <linux/oom.h>
  14#include <linux/rcupdate.h>
  15#include <linux/export.h>
  16#include <linux/bug.h>
  17#include <linux/kthread.h>
  18#include <linux/stop_machine.h>
  19#include <linux/mutex.h>
  20#include <linux/gfp.h>
  21#include <linux/suspend.h>
  22#include <linux/lockdep.h>
  23#include <linux/tick.h>
  24#include <linux/irq.h>
 
  25#include <linux/smpboot.h>
 
 
 
  26
  27#include <trace/events/power.h>
  28#define CREATE_TRACE_POINTS
  29#include <trace/events/cpuhp.h>
  30
  31#include "smpboot.h"
  32
  33/**
  34 * cpuhp_cpu_state - Per cpu hotplug state storage
  35 * @state:	The current cpu state
  36 * @target:	The target state
  37 * @thread:	Pointer to the hotplug thread
  38 * @should_run:	Thread should execute
  39 * @rollback:	Perform a rollback
  40 * @cb_stat:	The state for a single callback (install/uninstall)
  41 * @cb:		Single callback function (install/uninstall)
 
  42 * @result:	Result of the operation
  43 * @done:	Signal completion to the issuer of the task
 
  44 */
  45struct cpuhp_cpu_state {
  46	enum cpuhp_state	state;
  47	enum cpuhp_state	target;
 
  48#ifdef CONFIG_SMP
  49	struct task_struct	*thread;
  50	bool			should_run;
  51	bool			rollback;
 
 
 
 
  52	enum cpuhp_state	cb_state;
  53	int			(*cb)(unsigned int cpu);
  54	int			result;
  55	struct completion	done;
 
  56#endif
  57};
  58
  59static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61/**
  62 * cpuhp_step - Hotplug state machine step
  63 * @name:	Name of the step
  64 * @startup:	Startup function of the step
  65 * @teardown:	Teardown function of the step
  66 * @skip_onerr:	Do not invoke the functions on error rollback
  67 *		Will go away once the notifiers	are gone
  68 * @cant_stop:	Bringup/teardown can't be stopped at this step
  69 */
  70struct cpuhp_step {
  71	const char	*name;
  72	int		(*startup)(unsigned int cpu);
  73	int		(*teardown)(unsigned int cpu);
  74	bool		skip_onerr;
  75	bool		cant_stop;
 
 
 
 
 
 
 
 
 
 
  76};
  77
  78static DEFINE_MUTEX(cpuhp_state_mutex);
  79static struct cpuhp_step cpuhp_bp_states[];
  80static struct cpuhp_step cpuhp_ap_states[];
 
 
 
 
  81
  82/**
  83 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
  84 * @cpu:	The cpu for which the callback should be invoked
  85 * @step:	The step in the state machine
  86 * @cb:		The callback function to invoke
 
 
  87 *
  88 * Called from cpu hotplug and from the state register machinery
  89 */
  90static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state step,
  91				 int (*cb)(unsigned int))
 
  92{
  93	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
  94	int ret = 0;
  95
  96	if (cb) {
  97		trace_cpuhp_enter(cpu, st->target, step, cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98		ret = cb(cpu);
  99		trace_cpuhp_exit(cpu, st->state, step, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100	}
 101	return ret;
 102}
 103
 104#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 106static DEFINE_MUTEX(cpu_add_remove_lock);
 107bool cpuhp_tasks_frozen;
 108EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 109
 110/*
 111 * The following two APIs (cpu_maps_update_begin/done) must be used when
 112 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 113 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
 114 * hotplug callback (un)registration performed using __register_cpu_notifier()
 115 * or __unregister_cpu_notifier().
 116 */
 117void cpu_maps_update_begin(void)
 118{
 119	mutex_lock(&cpu_add_remove_lock);
 120}
 121EXPORT_SYMBOL(cpu_notifier_register_begin);
 122
 123void cpu_maps_update_done(void)
 124{
 125	mutex_unlock(&cpu_add_remove_lock);
 126}
 127EXPORT_SYMBOL(cpu_notifier_register_done);
 128
 129static RAW_NOTIFIER_HEAD(cpu_chain);
 130
 131/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 
 132 * Should always be manipulated under cpu_add_remove_lock
 133 */
 134static int cpu_hotplug_disabled;
 135
 136#ifdef CONFIG_HOTPLUG_CPU
 137
 138static struct {
 139	struct task_struct *active_writer;
 140	/* wait queue to wake up the active_writer */
 141	wait_queue_head_t wq;
 142	/* verifies that no writer will get active while readers are active */
 143	struct mutex lock;
 144	/*
 145	 * Also blocks the new readers during
 146	 * an ongoing cpu hotplug operation.
 147	 */
 148	atomic_t refcount;
 149
 150#ifdef CONFIG_DEBUG_LOCK_ALLOC
 151	struct lockdep_map dep_map;
 152#endif
 153} cpu_hotplug = {
 154	.active_writer = NULL,
 155	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
 156	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
 157#ifdef CONFIG_DEBUG_LOCK_ALLOC
 158	.dep_map = {.name = "cpu_hotplug.lock" },
 159#endif
 160};
 161
 162/* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
 163#define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
 164#define cpuhp_lock_acquire_tryread() \
 165				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
 166#define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
 167#define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
 168
 169
 170void get_online_cpus(void)
 171{
 172	might_sleep();
 173	if (cpu_hotplug.active_writer == current)
 174		return;
 175	cpuhp_lock_acquire_read();
 176	mutex_lock(&cpu_hotplug.lock);
 177	atomic_inc(&cpu_hotplug.refcount);
 178	mutex_unlock(&cpu_hotplug.lock);
 179}
 180EXPORT_SYMBOL_GPL(get_online_cpus);
 181
 182void put_online_cpus(void)
 183{
 184	int refcount;
 185
 186	if (cpu_hotplug.active_writer == current)
 187		return;
 188
 189	refcount = atomic_dec_return(&cpu_hotplug.refcount);
 190	if (WARN_ON(refcount < 0)) /* try to fix things up */
 191		atomic_inc(&cpu_hotplug.refcount);
 192
 193	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
 194		wake_up(&cpu_hotplug.wq);
 195
 196	cpuhp_lock_release();
 197
 198}
 199EXPORT_SYMBOL_GPL(put_online_cpus);
 200
 201/*
 202 * This ensures that the hotplug operation can begin only when the
 203 * refcount goes to zero.
 204 *
 205 * Note that during a cpu-hotplug operation, the new readers, if any,
 206 * will be blocked by the cpu_hotplug.lock
 207 *
 208 * Since cpu_hotplug_begin() is always called after invoking
 209 * cpu_maps_update_begin(), we can be sure that only one writer is active.
 210 *
 211 * Note that theoretically, there is a possibility of a livelock:
 212 * - Refcount goes to zero, last reader wakes up the sleeping
 213 *   writer.
 214 * - Last reader unlocks the cpu_hotplug.lock.
 215 * - A new reader arrives at this moment, bumps up the refcount.
 216 * - The writer acquires the cpu_hotplug.lock finds the refcount
 217 *   non zero and goes to sleep again.
 218 *
 219 * However, this is very difficult to achieve in practice since
 220 * get_online_cpus() not an api which is called all that often.
 221 *
 222 */
 223void cpu_hotplug_begin(void)
 224{
 225	DEFINE_WAIT(wait);
 226
 227	cpu_hotplug.active_writer = current;
 228	cpuhp_lock_acquire();
 229
 230	for (;;) {
 231		mutex_lock(&cpu_hotplug.lock);
 232		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
 233		if (likely(!atomic_read(&cpu_hotplug.refcount)))
 234				break;
 235		mutex_unlock(&cpu_hotplug.lock);
 236		schedule();
 237	}
 238	finish_wait(&cpu_hotplug.wq, &wait);
 239}
 240
 241void cpu_hotplug_done(void)
 242{
 243	cpu_hotplug.active_writer = NULL;
 244	mutex_unlock(&cpu_hotplug.lock);
 245	cpuhp_lock_release();
 246}
 247
 248/*
 249 * Wait for currently running CPU hotplug operations to complete (if any) and
 250 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 251 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 252 * hotplug path before performing hotplug operations. So acquiring that lock
 253 * guarantees mutual exclusion from any currently running hotplug operations.
 254 */
 255void cpu_hotplug_disable(void)
 256{
 257	cpu_maps_update_begin();
 258	cpu_hotplug_disabled++;
 259	cpu_maps_update_done();
 260}
 261EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 262
 
 
 
 
 
 
 
 263void cpu_hotplug_enable(void)
 264{
 265	cpu_maps_update_begin();
 266	WARN_ON(--cpu_hotplug_disabled < 0);
 267	cpu_maps_update_done();
 268}
 269EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 270#endif	/* CONFIG_HOTPLUG_CPU */
 271
 272/* Need to know about CPUs going up/down? */
 273int register_cpu_notifier(struct notifier_block *nb)
 274{
 275	int ret;
 276	cpu_maps_update_begin();
 277	ret = raw_notifier_chain_register(&cpu_chain, nb);
 278	cpu_maps_update_done();
 279	return ret;
 280}
 281
 282int __register_cpu_notifier(struct notifier_block *nb)
 283{
 284	return raw_notifier_chain_register(&cpu_chain, nb);
 
 
 
 
 
 285}
 286
 287static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
 288			int *nr_calls)
 289{
 290	unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
 291	void *hcpu = (void *)(long)cpu;
 292
 293	int ret;
 294
 295	ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
 296					nr_calls);
 
 
 
 
 
 
 297
 298	return notifier_to_errno(ret);
 
 299}
 300
 301static int cpu_notify(unsigned long val, unsigned int cpu)
 
 302{
 303	return __cpu_notify(val, cpu, -1, NULL);
 304}
 305
 306static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
 307{
 308	BUG_ON(cpu_notify(val, cpu));
 
 
 
 
 
 
 309}
 310
 311/* Notifier wrappers for transitioning to state machine */
 312static int notify_prepare(unsigned int cpu)
 313{
 314	int nr_calls = 0;
 315	int ret;
 316
 317	ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
 318	if (ret) {
 319		nr_calls--;
 320		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
 321				__func__, cpu);
 322		__cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
 323	}
 324	return ret;
 325}
 326
 327static int notify_online(unsigned int cpu)
 328{
 329	cpu_notify(CPU_ONLINE, cpu);
 330	return 0;
 331}
 332
 333static int notify_starting(unsigned int cpu)
 334{
 335	cpu_notify(CPU_STARTING, cpu);
 336	return 0;
 337}
 338
 339static int bringup_wait_for_ap(unsigned int cpu)
 340{
 341	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 342
 343	wait_for_completion(&st->done);
 344	return st->result;
 
 
 
 
 
 
 
 
 
 
 
 345}
 346
 347static int bringup_cpu(unsigned int cpu)
 348{
 349	struct task_struct *idle = idle_thread_get(cpu);
 350	int ret;
 351
 
 
 
 
 
 
 
 352	/* Arch-specific enabling code. */
 353	ret = __cpu_up(cpu, idle);
 354	if (ret) {
 355		cpu_notify(CPU_UP_CANCELED, cpu);
 356		return ret;
 357	}
 358	ret = bringup_wait_for_ap(cpu);
 359	BUG_ON(!cpu_online(cpu));
 360	return ret;
 361}
 362
 363/*
 364 * Hotplug state machine related functions
 365 */
 366static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st,
 367			  struct cpuhp_step *steps)
 368{
 369	for (st->state++; st->state < st->target; st->state++) {
 370		struct cpuhp_step *step = steps + st->state;
 371
 372		if (!step->skip_onerr)
 373			cpuhp_invoke_callback(cpu, st->state, step->startup);
 374	}
 375}
 376
 377static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 378				struct cpuhp_step *steps, enum cpuhp_state target)
 379{
 380	enum cpuhp_state prev_state = st->state;
 381	int ret = 0;
 382
 383	for (; st->state > target; st->state--) {
 384		struct cpuhp_step *step = steps + st->state;
 385
 386		ret = cpuhp_invoke_callback(cpu, st->state, step->teardown);
 387		if (ret) {
 388			st->target = prev_state;
 389			undo_cpu_down(cpu, st, steps);
 390			break;
 391		}
 392	}
 393	return ret;
 394}
 395
 396static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st,
 397			struct cpuhp_step *steps)
 398{
 399	for (st->state--; st->state > st->target; st->state--) {
 400		struct cpuhp_step *step = steps + st->state;
 401
 402		if (!step->skip_onerr)
 403			cpuhp_invoke_callback(cpu, st->state, step->teardown);
 404	}
 405}
 406
 407static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 408			      struct cpuhp_step *steps, enum cpuhp_state target)
 409{
 410	enum cpuhp_state prev_state = st->state;
 411	int ret = 0;
 412
 413	while (st->state < target) {
 414		struct cpuhp_step *step;
 415
 416		st->state++;
 417		step = steps + st->state;
 418		ret = cpuhp_invoke_callback(cpu, st->state, step->startup);
 419		if (ret) {
 420			st->target = prev_state;
 421			undo_cpu_up(cpu, st, steps);
 422			break;
 423		}
 424	}
 425	return ret;
 426}
 427
 428/*
 429 * The cpu hotplug threads manage the bringup and teardown of the cpus
 430 */
 431static void cpuhp_create(unsigned int cpu)
 432{
 433	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 434
 435	init_completion(&st->done);
 
 436}
 437
 438static int cpuhp_should_run(unsigned int cpu)
 439{
 440	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 441
 442	return st->should_run;
 443}
 444
 445/* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
 446static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
 447{
 448	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
 449
 450	return cpuhp_down_callbacks(cpu, st, cpuhp_ap_states, target);
 451}
 452
 453/* Execute the online startup callbacks. Used to be CPU_ONLINE */
 454static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
 455{
 456	return cpuhp_up_callbacks(cpu, st, cpuhp_ap_states, st->target);
 457}
 458
 459/*
 460 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 461 * callbacks when a state gets [un]installed at runtime.
 
 
 
 
 
 
 
 
 
 
 462 */
 463static void cpuhp_thread_fun(unsigned int cpu)
 464{
 465	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 466	int ret = 0;
 
 467
 468	/*
 469	 * Paired with the mb() in cpuhp_kick_ap_work and
 470	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
 471	 */
 472	smp_mb();
 473	if (!st->should_run)
 
 474		return;
 475
 476	st->should_run = false;
 477
 478	/* Single callback invocation for [un]install ? */
 479	if (st->cb) {
 480		if (st->cb_state < CPUHP_AP_ONLINE) {
 481			local_irq_disable();
 482			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
 483			local_irq_enable();
 
 
 
 484		} else {
 485			ret = cpuhp_invoke_callback(cpu, st->cb_state, st->cb);
 
 
 
 486		}
 487	} else if (st->rollback) {
 488		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
 
 
 
 
 
 
 
 
 
 
 
 
 489
 490		undo_cpu_down(cpu, st, cpuhp_ap_states);
 491		/*
 492		 * This is a momentary workaround to keep the notifier users
 493		 * happy. Will go away once we got rid of the notifiers.
 494		 */
 495		cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
 496		st->rollback = false;
 497	} else {
 498		/* Cannot happen .... */
 499		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
 500
 501		/* Regular hotplug work */
 502		if (st->state < st->target)
 503			ret = cpuhp_ap_online(cpu, st);
 504		else if (st->state > st->target)
 505			ret = cpuhp_ap_offline(cpu, st);
 
 
 
 506	}
 507	st->result = ret;
 508	complete(&st->done);
 
 
 
 
 509}
 510
 511/* Invoke a single callback on a remote cpu */
 512static int cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state,
 513				    int (*cb)(unsigned int))
 
 514{
 515	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 
 516
 517	if (!cpu_online(cpu))
 518		return 0;
 519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520	st->cb_state = state;
 521	st->cb = cb;
 
 
 
 522	/*
 523	 * Make sure the above stores are visible before should_run becomes
 524	 * true. Paired with the mb() above in cpuhp_thread_fun()
 525	 */
 526	smp_mb();
 527	st->should_run = true;
 528	wake_up_process(st->thread);
 529	wait_for_completion(&st->done);
 530	return st->result;
 531}
 532
 533/* Regular hotplug invocation of the AP hotplug thread */
 534static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
 535{
 536	st->result = 0;
 537	st->cb = NULL;
 538	/*
 539	 * Make sure the above stores are visible before should_run becomes
 540	 * true. Paired with the mb() above in cpuhp_thread_fun()
 541	 */
 542	smp_mb();
 543	st->should_run = true;
 544	wake_up_process(st->thread);
 545}
 546
 547static int cpuhp_kick_ap_work(unsigned int cpu)
 548{
 549	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 550	enum cpuhp_state state = st->state;
 
 
 
 
 551
 552	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
 553	__cpuhp_kick_ap_work(st);
 554	wait_for_completion(&st->done);
 555	trace_cpuhp_exit(cpu, st->state, state, st->result);
 556	return st->result;
 
 
 
 557}
 558
 559static struct smp_hotplug_thread cpuhp_threads = {
 560	.store			= &cpuhp_state.thread,
 561	.create			= &cpuhp_create,
 562	.thread_should_run	= cpuhp_should_run,
 563	.thread_fn		= cpuhp_thread_fun,
 564	.thread_comm		= "cpuhp/%u",
 565	.selfparking		= true,
 566};
 567
 568void __init cpuhp_threads_init(void)
 569{
 570	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 571	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 572}
 573
 574#ifdef CONFIG_HOTPLUG_CPU
 575EXPORT_SYMBOL(register_cpu_notifier);
 576EXPORT_SYMBOL(__register_cpu_notifier);
 577void unregister_cpu_notifier(struct notifier_block *nb)
 578{
 579	cpu_maps_update_begin();
 580	raw_notifier_chain_unregister(&cpu_chain, nb);
 581	cpu_maps_update_done();
 582}
 583EXPORT_SYMBOL(unregister_cpu_notifier);
 584
 585void __unregister_cpu_notifier(struct notifier_block *nb)
 586{
 587	raw_notifier_chain_unregister(&cpu_chain, nb);
 588}
 589EXPORT_SYMBOL(__unregister_cpu_notifier);
 590
 591/**
 592 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 593 * @cpu: a CPU id
 594 *
 595 * This function walks all processes, finds a valid mm struct for each one and
 596 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 597 * trivial, there are various non-obvious corner cases, which this function
 598 * tries to solve in a safe manner.
 599 *
 600 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 601 * be called only for an already offlined CPU.
 602 */
 603void clear_tasks_mm_cpumask(int cpu)
 604{
 605	struct task_struct *p;
 606
 607	/*
 608	 * This function is called after the cpu is taken down and marked
 609	 * offline, so its not like new tasks will ever get this cpu set in
 610	 * their mm mask. -- Peter Zijlstra
 611	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 612	 * full-fledged tasklist_lock.
 613	 */
 614	WARN_ON(cpu_online(cpu));
 615	rcu_read_lock();
 616	for_each_process(p) {
 617		struct task_struct *t;
 618
 619		/*
 620		 * Main thread might exit, but other threads may still have
 621		 * a valid mm. Find one.
 622		 */
 623		t = find_lock_task_mm(p);
 624		if (!t)
 625			continue;
 626		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 627		task_unlock(t);
 628	}
 629	rcu_read_unlock();
 630}
 631
 632static inline void check_for_tasks(int dead_cpu)
 633{
 634	struct task_struct *g, *p;
 635
 636	read_lock(&tasklist_lock);
 637	for_each_process_thread(g, p) {
 638		if (!p->on_rq)
 639			continue;
 640		/*
 641		 * We do the check with unlocked task_rq(p)->lock.
 642		 * Order the reading to do not warn about a task,
 643		 * which was running on this cpu in the past, and
 644		 * it's just been woken on another cpu.
 645		 */
 646		rmb();
 647		if (task_cpu(p) != dead_cpu)
 648			continue;
 649
 650		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
 651			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
 652	}
 653	read_unlock(&tasklist_lock);
 654}
 655
 656static int notify_down_prepare(unsigned int cpu)
 657{
 658	int err, nr_calls = 0;
 659
 660	err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
 661	if (err) {
 662		nr_calls--;
 663		__cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
 664		pr_warn("%s: attempt to take down CPU %u failed\n",
 665				__func__, cpu);
 666	}
 667	return err;
 668}
 669
 670static int notify_dying(unsigned int cpu)
 671{
 672	cpu_notify(CPU_DYING, cpu);
 673	return 0;
 674}
 675
 676/* Take this CPU down. */
 677static int take_cpu_down(void *_param)
 678{
 679	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 680	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 681	int err, cpu = smp_processor_id();
 
 682
 683	/* Ensure this CPU doesn't handle any more interrupts. */
 684	err = __cpu_disable();
 685	if (err < 0)
 686		return err;
 687
 
 
 
 
 
 
 688	/* Invoke the former CPU_DYING callbacks */
 689	for (; st->state > target; st->state--) {
 690		struct cpuhp_step *step = cpuhp_ap_states + st->state;
 691
 692		cpuhp_invoke_callback(cpu, st->state, step->teardown);
 
 
 693	}
 
 694	/* Give up timekeeping duties */
 695	tick_handover_do_timer();
 696	/* Park the stopper thread */
 697	stop_machine_park(cpu);
 698	return 0;
 699}
 700
 701static int takedown_cpu(unsigned int cpu)
 702{
 703	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 704	int err;
 705
 706	/*
 707	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
 708	 * and RCU users of this state to go away such that all new such users
 709	 * will observe it.
 710	 *
 711	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
 712	 * not imply sync_sched(), so wait for both.
 713	 *
 714	 * Do sync before park smpboot threads to take care the rcu boost case.
 715	 */
 716	if (IS_ENABLED(CONFIG_PREEMPT))
 717		synchronize_rcu_mult(call_rcu, call_rcu_sched);
 718	else
 719		synchronize_rcu();
 720
 721	/* Park the smpboot threads */
 722	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 723	smpboot_park_threads(cpu);
 724
 725	/*
 726	 * Prevent irq alloc/free while the dying cpu reorganizes the
 727	 * interrupt affinities.
 728	 */
 729	irq_lock_sparse();
 730
 731	/*
 732	 * So now all preempt/rcu users must observe !cpu_active().
 733	 */
 734	err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
 735	if (err) {
 736		/* CPU refused to die */
 737		irq_unlock_sparse();
 738		/* Unpark the hotplug thread so we can rollback there */
 739		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 740		return err;
 741	}
 742	BUG_ON(cpu_online(cpu));
 743
 744	/*
 745	 * The migration_call() CPU_DYING callback will have removed all
 746	 * runnable tasks from the cpu, there's only the idle task left now
 747	 * that the migration thread is done doing the stop_machine thing.
 748	 *
 749	 * Wait for the stop thread to go away.
 750	 */
 751	wait_for_completion(&st->done);
 752	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 753
 754	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 755	irq_unlock_sparse();
 756
 757	hotplug_cpu__broadcast_tick_pull(cpu);
 758	/* This actually kills the CPU. */
 759	__cpu_die(cpu);
 760
 761	tick_cleanup_dead_cpu(cpu);
 762	return 0;
 763}
 764
 765static int notify_dead(unsigned int cpu)
 766{
 767	cpu_notify_nofail(CPU_DEAD, cpu);
 768	check_for_tasks(cpu);
 769	return 0;
 770}
 771
 772static void cpuhp_complete_idle_dead(void *arg)
 773{
 774	struct cpuhp_cpu_state *st = arg;
 775
 776	complete(&st->done);
 777}
 778
 779void cpuhp_report_idle_dead(void)
 780{
 781	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 782
 783	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 784	rcu_report_dead(smp_processor_id());
 785	st->state = CPUHP_AP_IDLE_DEAD;
 786	/*
 787	 * We cannot call complete after rcu_report_dead() so we delegate it
 788	 * to an online cpu.
 789	 */
 790	smp_call_function_single(cpumask_first(cpu_online_mask),
 791				 cpuhp_complete_idle_dead, st, 0);
 792}
 793
 794#else
 795#define notify_down_prepare	NULL
 796#define takedown_cpu		NULL
 797#define notify_dead		NULL
 798#define notify_dying		NULL
 799#endif
 800
 801#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803/* Requires cpu_add_remove_lock to be held */
 804static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 805			   enum cpuhp_state target)
 806{
 807	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 808	int prev_state, ret = 0;
 809	bool hasdied = false;
 810
 811	if (num_online_cpus() == 1)
 812		return -EBUSY;
 813
 814	if (!cpu_present(cpu))
 815		return -EINVAL;
 816
 817	cpu_hotplug_begin();
 818
 819	cpuhp_tasks_frozen = tasks_frozen;
 820
 821	prev_state = st->state;
 822	st->target = target;
 823	/*
 824	 * If the current CPU state is in the range of the AP hotplug thread,
 825	 * then we need to kick the thread.
 826	 */
 827	if (st->state > CPUHP_TEARDOWN_CPU) {
 
 828		ret = cpuhp_kick_ap_work(cpu);
 829		/*
 830		 * The AP side has done the error rollback already. Just
 831		 * return the error code..
 832		 */
 833		if (ret)
 834			goto out;
 835
 836		/*
 837		 * We might have stopped still in the range of the AP hotplug
 838		 * thread. Nothing to do anymore.
 839		 */
 840		if (st->state > CPUHP_TEARDOWN_CPU)
 841			goto out;
 
 
 842	}
 843	/*
 844	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 845	 * to do the further cleanups.
 846	 */
 847	ret = cpuhp_down_callbacks(cpu, st, cpuhp_bp_states, target);
 848	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 849		st->target = prev_state;
 850		st->rollback = true;
 851		cpuhp_kick_ap_work(cpu);
 852	}
 853
 854	hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
 855out:
 856	cpu_hotplug_done();
 857	/* This post dead nonsense must die */
 858	if (!ret && hasdied)
 859		cpu_notify_nofail(CPU_POST_DEAD, cpu);
 
 
 860	return ret;
 861}
 862
 863static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 864{
 865	int err;
 866
 867	cpu_maps_update_begin();
 868
 869	if (cpu_hotplug_disabled) {
 870		err = -EBUSY;
 871		goto out;
 872	}
 873
 874	err = _cpu_down(cpu, 0, target);
 875
 876out:
 877	cpu_maps_update_done();
 878	return err;
 879}
 
 880int cpu_down(unsigned int cpu)
 881{
 882	return do_cpu_down(cpu, CPUHP_OFFLINE);
 883}
 884EXPORT_SYMBOL(cpu_down);
 
 
 
 885#endif /*CONFIG_HOTPLUG_CPU*/
 886
 887/**
 888 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
 889 * @cpu: cpu that just started
 890 *
 891 * This function calls the cpu_chain notifiers with CPU_STARTING.
 892 * It must be called by the arch code on the new cpu, before the new cpu
 893 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 894 */
 895void notify_cpu_starting(unsigned int cpu)
 896{
 897	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 898	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 
 899
 
 900	while (st->state < target) {
 901		struct cpuhp_step *step;
 902
 903		st->state++;
 904		step = cpuhp_ap_states + st->state;
 905		cpuhp_invoke_callback(cpu, st->state, step->startup);
 
 
 
 906	}
 907}
 908
 909/*
 910 * Called from the idle task. We need to set active here, so we can kick off
 911 * the stopper thread and unpark the smpboot threads. If the target state is
 912 * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
 913 * cpu further.
 914 */
 915void cpuhp_online_idle(enum cpuhp_state state)
 916{
 917	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 918	unsigned int cpu = smp_processor_id();
 919
 920	/* Happens for the boot cpu */
 921	if (state != CPUHP_AP_ONLINE_IDLE)
 922		return;
 923
 924	st->state = CPUHP_AP_ONLINE_IDLE;
 925
 926	/* The cpu is marked online, set it active now */
 927	set_cpu_active(cpu, true);
 928	/* Unpark the stopper thread and the hotplug thread of this cpu */
 929	stop_machine_unpark(cpu);
 930	kthread_unpark(st->thread);
 931
 932	/* Should we go further up ? */
 933	if (st->target > CPUHP_AP_ONLINE_IDLE)
 934		__cpuhp_kick_ap_work(st);
 935	else
 936		complete(&st->done);
 937}
 938
 939/* Requires cpu_add_remove_lock to be held */
 940static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
 941{
 942	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 943	struct task_struct *idle;
 944	int ret = 0;
 945
 946	cpu_hotplug_begin();
 947
 948	if (!cpu_present(cpu)) {
 949		ret = -EINVAL;
 950		goto out;
 951	}
 952
 953	/*
 954	 * The caller of do_cpu_up might have raced with another
 955	 * caller. Ignore it for now.
 956	 */
 957	if (st->state >= target)
 958		goto out;
 959
 960	if (st->state == CPUHP_OFFLINE) {
 961		/* Let it fail before we try to bring the cpu up */
 962		idle = idle_thread_get(cpu);
 963		if (IS_ERR(idle)) {
 964			ret = PTR_ERR(idle);
 965			goto out;
 966		}
 967	}
 968
 969	cpuhp_tasks_frozen = tasks_frozen;
 970
 971	st->target = target;
 972	/*
 973	 * If the current CPU state is in the range of the AP hotplug thread,
 974	 * then we need to kick the thread once more.
 975	 */
 976	if (st->state > CPUHP_BRINGUP_CPU) {
 977		ret = cpuhp_kick_ap_work(cpu);
 978		/*
 979		 * The AP side has done the error rollback already. Just
 980		 * return the error code..
 981		 */
 982		if (ret)
 983			goto out;
 984	}
 985
 986	/*
 987	 * Try to reach the target state. We max out on the BP at
 988	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
 989	 * responsible for bringing it up to the target state.
 990	 */
 991	target = min((int)target, CPUHP_BRINGUP_CPU);
 992	ret = cpuhp_up_callbacks(cpu, st, cpuhp_bp_states, target);
 993out:
 994	cpu_hotplug_done();
 995	return ret;
 996}
 997
 998static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
 999{
1000	int err = 0;
1001
1002	if (!cpu_possible(cpu)) {
1003		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1004		       cpu);
1005#if defined(CONFIG_IA64)
1006		pr_err("please check additional_cpus= boot parameter\n");
1007#endif
1008		return -EINVAL;
1009	}
1010
1011	err = try_online_node(cpu_to_node(cpu));
1012	if (err)
1013		return err;
1014
1015	cpu_maps_update_begin();
1016
1017	if (cpu_hotplug_disabled) {
1018		err = -EBUSY;
1019		goto out;
1020	}
1021
1022	err = _cpu_up(cpu, 0, target);
1023out:
1024	cpu_maps_update_done();
1025	return err;
1026}
1027
1028int cpu_up(unsigned int cpu)
1029{
1030	return do_cpu_up(cpu, CPUHP_ONLINE);
1031}
1032EXPORT_SYMBOL_GPL(cpu_up);
1033
1034#ifdef CONFIG_PM_SLEEP_SMP
1035static cpumask_var_t frozen_cpus;
1036
1037int disable_nonboot_cpus(void)
1038{
1039	int cpu, first_cpu, error = 0;
1040
1041	cpu_maps_update_begin();
1042	first_cpu = cpumask_first(cpu_online_mask);
 
1043	/*
1044	 * We take down all of the non-boot CPUs in one shot to avoid races
1045	 * with the userspace trying to use the CPU hotplug at the same time
1046	 */
1047	cpumask_clear(frozen_cpus);
1048
1049	pr_info("Disabling non-boot CPUs ...\n");
1050	for_each_online_cpu(cpu) {
1051		if (cpu == first_cpu)
1052			continue;
1053		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1054		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1055		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1056		if (!error)
1057			cpumask_set_cpu(cpu, frozen_cpus);
1058		else {
1059			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1060			break;
1061		}
1062	}
1063
1064	if (!error)
1065		BUG_ON(num_online_cpus() > 1);
1066	else
1067		pr_err("Non-boot CPUs are not disabled\n");
1068
1069	/*
1070	 * Make sure the CPUs won't be enabled by someone else. We need to do
1071	 * this even in case of failure as all disable_nonboot_cpus() users are
1072	 * supposed to do enable_nonboot_cpus() on the failure path.
1073	 */
1074	cpu_hotplug_disabled++;
1075
1076	cpu_maps_update_done();
1077	return error;
1078}
1079
1080void __weak arch_enable_nonboot_cpus_begin(void)
1081{
1082}
1083
1084void __weak arch_enable_nonboot_cpus_end(void)
1085{
1086}
1087
1088void enable_nonboot_cpus(void)
1089{
1090	int cpu, error;
1091
1092	/* Allow everyone to use the CPU hotplug again */
1093	cpu_maps_update_begin();
1094	WARN_ON(--cpu_hotplug_disabled < 0);
1095	if (cpumask_empty(frozen_cpus))
1096		goto out;
1097
1098	pr_info("Enabling non-boot CPUs ...\n");
1099
1100	arch_enable_nonboot_cpus_begin();
1101
1102	for_each_cpu(cpu, frozen_cpus) {
1103		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1104		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1105		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1106		if (!error) {
1107			pr_info("CPU%d is up\n", cpu);
1108			continue;
1109		}
1110		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1111	}
1112
1113	arch_enable_nonboot_cpus_end();
1114
1115	cpumask_clear(frozen_cpus);
1116out:
1117	cpu_maps_update_done();
1118}
1119
1120static int __init alloc_frozen_cpus(void)
1121{
1122	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1123		return -ENOMEM;
1124	return 0;
1125}
1126core_initcall(alloc_frozen_cpus);
1127
1128/*
1129 * When callbacks for CPU hotplug notifications are being executed, we must
1130 * ensure that the state of the system with respect to the tasks being frozen
1131 * or not, as reported by the notification, remains unchanged *throughout the
1132 * duration* of the execution of the callbacks.
1133 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1134 *
1135 * This synchronization is implemented by mutually excluding regular CPU
1136 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1137 * Hibernate notifications.
1138 */
1139static int
1140cpu_hotplug_pm_callback(struct notifier_block *nb,
1141			unsigned long action, void *ptr)
1142{
1143	switch (action) {
1144
1145	case PM_SUSPEND_PREPARE:
1146	case PM_HIBERNATION_PREPARE:
1147		cpu_hotplug_disable();
1148		break;
1149
1150	case PM_POST_SUSPEND:
1151	case PM_POST_HIBERNATION:
1152		cpu_hotplug_enable();
1153		break;
1154
1155	default:
1156		return NOTIFY_DONE;
1157	}
1158
1159	return NOTIFY_OK;
1160}
1161
1162
1163static int __init cpu_hotplug_pm_sync_init(void)
1164{
1165	/*
1166	 * cpu_hotplug_pm_callback has higher priority than x86
1167	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1168	 * to disable cpu hotplug to avoid cpu hotplug race.
1169	 */
1170	pm_notifier(cpu_hotplug_pm_callback, 0);
1171	return 0;
1172}
1173core_initcall(cpu_hotplug_pm_sync_init);
1174
1175#endif /* CONFIG_PM_SLEEP_SMP */
1176
 
 
1177#endif /* CONFIG_SMP */
1178
1179/* Boot processor state steps */
1180static struct cpuhp_step cpuhp_bp_states[] = {
1181	[CPUHP_OFFLINE] = {
1182		.name			= "offline",
1183		.startup		= NULL,
1184		.teardown		= NULL,
1185	},
1186#ifdef CONFIG_SMP
1187	[CPUHP_CREATE_THREADS]= {
1188		.name			= "threads:create",
1189		.startup		= smpboot_create_threads,
1190		.teardown		= NULL,
1191		.cant_stop		= true,
1192	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193	/*
1194	 * Preparatory and dead notifiers. Will be replaced once the notifiers
1195	 * are converted to states.
1196	 */
1197	[CPUHP_NOTIFY_PREPARE] = {
1198		.name			= "notify:prepare",
1199		.startup		= notify_prepare,
1200		.teardown		= notify_dead,
1201		.skip_onerr		= true,
1202		.cant_stop		= true,
1203	},
1204	/* Kicks the plugged cpu into life */
1205	[CPUHP_BRINGUP_CPU] = {
1206		.name			= "cpu:bringup",
1207		.startup		= bringup_cpu,
1208		.teardown		= NULL,
1209		.cant_stop		= true,
1210	},
1211	/*
1212	 * Handled on controll processor until the plugged processor manages
1213	 * this itself.
1214	 */
1215	[CPUHP_TEARDOWN_CPU] = {
1216		.name			= "cpu:teardown",
1217		.startup		= NULL,
1218		.teardown		= takedown_cpu,
1219		.cant_stop		= true,
1220	},
1221#endif
1222};
1223
1224/* Application processor state steps */
1225static struct cpuhp_step cpuhp_ap_states[] = {
1226#ifdef CONFIG_SMP
1227	/* Final state before CPU kills itself */
1228	[CPUHP_AP_IDLE_DEAD] = {
1229		.name			= "idle:dead",
1230	},
1231	/*
1232	 * Last state before CPU enters the idle loop to die. Transient state
1233	 * for synchronization.
1234	 */
1235	[CPUHP_AP_OFFLINE] = {
1236		.name			= "ap:offline",
1237		.cant_stop		= true,
1238	},
1239	/*
1240	 * Low level startup/teardown notifiers. Run with interrupts
1241	 * disabled. Will be removed once the notifiers are converted to
1242	 * states.
1243	 */
1244	[CPUHP_AP_NOTIFY_STARTING] = {
1245		.name			= "notify:starting",
1246		.startup		= notify_starting,
1247		.teardown		= notify_dying,
1248		.skip_onerr		= true,
1249		.cant_stop		= true,
 
 
 
 
1250	},
1251	/* Entry state on starting. Interrupts enabled from here on. Transient
1252	 * state for synchronsization */
1253	[CPUHP_AP_ONLINE] = {
1254		.name			= "ap:online",
1255	},
 
 
 
 
 
 
 
 
 
 
1256	/* Handle smpboot threads park/unpark */
1257	[CPUHP_AP_SMPBOOT_THREADS] = {
1258		.name			= "smpboot:threads",
1259		.startup		= smpboot_unpark_threads,
1260		.teardown		= NULL,
1261	},
1262	/*
1263	 * Online/down_prepare notifiers. Will be removed once the notifiers
1264	 * are converted to states.
1265	 */
1266	[CPUHP_AP_NOTIFY_ONLINE] = {
1267		.name			= "notify:online",
1268		.startup		= notify_online,
1269		.teardown		= notify_down_prepare,
1270		.skip_onerr		= true,
 
 
 
 
 
 
 
 
 
 
1271	},
1272#endif
1273	/*
1274	 * The dynamically registered state space is here
1275	 */
1276
 
 
 
 
 
 
 
 
 
1277	/* CPU is fully up and running. */
1278	[CPUHP_ONLINE] = {
1279		.name			= "online",
1280		.startup		= NULL,
1281		.teardown		= NULL,
1282	},
1283};
1284
1285/* Sanity check for callbacks */
1286static int cpuhp_cb_check(enum cpuhp_state state)
1287{
1288	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1289		return -EINVAL;
1290	return 0;
1291}
1292
1293static bool cpuhp_is_ap_state(enum cpuhp_state state)
 
 
 
 
 
1294{
1295	/*
1296	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
1297	 * purposes as that state is handled explicitely in cpu_down.
1298	 */
1299	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
1300}
1301
1302static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
1303{
1304	struct cpuhp_step *sp;
 
 
 
 
 
 
 
 
 
1305
1306	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
1307	return sp + state;
 
 
 
 
1308}
1309
1310static void cpuhp_store_callbacks(enum cpuhp_state state,
1311				  const char *name,
1312				  int (*startup)(unsigned int cpu),
1313				  int (*teardown)(unsigned int cpu))
1314{
1315	/* (Un)Install the callbacks for further cpu hotplug operations */
1316	struct cpuhp_step *sp;
 
1317
1318	mutex_lock(&cpuhp_state_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319	sp = cpuhp_get_step(state);
1320	sp->startup = startup;
1321	sp->teardown = teardown;
 
 
 
1322	sp->name = name;
1323	mutex_unlock(&cpuhp_state_mutex);
 
 
1324}
1325
1326static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1327{
1328	return cpuhp_get_step(state)->teardown;
1329}
1330
1331/*
1332 * Call the startup/teardown function for a step either on the AP or
1333 * on the current CPU.
1334 */
1335static int cpuhp_issue_call(int cpu, enum cpuhp_state state,
1336			    int (*cb)(unsigned int), bool bringup)
1337{
 
1338	int ret;
1339
1340	if (!cb)
 
 
 
 
 
1341		return 0;
1342	/*
1343	 * The non AP bound callbacks can fail on bringup. On teardown
1344	 * e.g. module removal we crash for now.
1345	 */
1346#ifdef CONFIG_SMP
1347	if (cpuhp_is_ap_state(state))
1348		ret = cpuhp_invoke_ap_callback(cpu, state, cb);
1349	else
1350		ret = cpuhp_invoke_callback(cpu, state, cb);
1351#else
1352	ret = cpuhp_invoke_callback(cpu, state, cb);
1353#endif
1354	BUG_ON(ret && !bringup);
1355	return ret;
1356}
1357
1358/*
1359 * Called from __cpuhp_setup_state on a recoverable failure.
1360 *
1361 * Note: The teardown callbacks for rollback are not allowed to fail!
1362 */
1363static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1364				   int (*teardown)(unsigned int cpu))
1365{
1366	int cpu;
1367
1368	if (!teardown)
1369		return;
1370
1371	/* Roll back the already executed steps on the other cpus */
1372	for_each_present_cpu(cpu) {
1373		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1374		int cpustate = st->state;
1375
1376		if (cpu >= failedcpu)
1377			break;
1378
1379		/* Did we invoke the startup call on that cpu ? */
1380		if (cpustate >= state)
1381			cpuhp_issue_call(cpu, state, teardown, false);
1382	}
1383}
1384
1385/*
1386 * Returns a free for dynamic slot assignment of the Online state. The states
1387 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1388 * by having no name assigned.
1389 */
1390static int cpuhp_reserve_state(enum cpuhp_state state)
1391{
1392	enum cpuhp_state i;
 
 
 
 
 
 
 
 
1393
1394	mutex_lock(&cpuhp_state_mutex);
1395	for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1396		if (cpuhp_ap_states[i].name)
 
 
 
 
 
 
 
 
 
 
 
1397			continue;
1398
1399		cpuhp_ap_states[i].name = "Reserved";
1400		mutex_unlock(&cpuhp_state_mutex);
1401		return i;
 
 
 
1402	}
 
 
 
 
1403	mutex_unlock(&cpuhp_state_mutex);
1404	WARN(1, "No more dynamic states available for CPU hotplug\n");
1405	return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
1406}
 
1407
1408/**
1409 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1410 * @state:	The state to setup
1411 * @invoke:	If true, the startup function is invoked for cpus where
1412 *		cpu state >= @state
1413 * @startup:	startup callback function
1414 * @teardown:	teardown callback function
 
 
1415 *
1416 * Returns 0 if successful, otherwise a proper error code
1417 */
1418int __cpuhp_setup_state(enum cpuhp_state state,
1419			const char *name, bool invoke,
1420			int (*startup)(unsigned int cpu),
1421			int (*teardown)(unsigned int cpu))
 
 
 
 
 
 
1422{
1423	int cpu, ret = 0;
1424	int dyn_state = 0;
 
 
1425
1426	if (cpuhp_cb_check(state) || !name)
1427		return -EINVAL;
1428
1429	get_online_cpus();
1430
1431	/* currently assignments for the ONLINE state are possible */
1432	if (state == CPUHP_AP_ONLINE_DYN) {
1433		dyn_state = 1;
1434		ret = cpuhp_reserve_state(state);
1435		if (ret < 0)
1436			goto out;
1437		state = ret;
 
1438	}
1439
1440	cpuhp_store_callbacks(state, name, startup, teardown);
1441
1442	if (!invoke || !startup)
1443		goto out;
1444
1445	/*
1446	 * Try to call the startup callback for each present cpu
1447	 * depending on the hotplug state of the cpu.
1448	 */
1449	for_each_present_cpu(cpu) {
1450		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1451		int cpustate = st->state;
1452
1453		if (cpustate < state)
1454			continue;
1455
1456		ret = cpuhp_issue_call(cpu, state, startup, true);
1457		if (ret) {
1458			cpuhp_rollback_install(cpu, state, teardown);
1459			cpuhp_store_callbacks(state, NULL, NULL, NULL);
 
1460			goto out;
1461		}
1462	}
1463out:
1464	put_online_cpus();
1465	if (!ret && dyn_state)
 
 
 
 
1466		return state;
1467	return ret;
1468}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469EXPORT_SYMBOL(__cpuhp_setup_state);
1470
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1471/**
1472 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1473 * @state:	The state to remove
1474 * @invoke:	If true, the teardown function is invoked for cpus where
1475 *		cpu state >= @state
1476 *
 
1477 * The teardown callback is currently not allowed to fail. Think
1478 * about module removal!
1479 */
1480void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1481{
1482	int (*teardown)(unsigned int cpu) = cpuhp_get_teardown_cb(state);
1483	int cpu;
1484
1485	BUG_ON(cpuhp_cb_check(state));
1486
1487	get_online_cpus();
 
 
 
 
 
 
 
 
1488
1489	if (!invoke || !teardown)
1490		goto remove;
1491
1492	/*
1493	 * Call the teardown callback for each present cpu depending
1494	 * on the hotplug state of the cpu. This function is not
1495	 * allowed to fail currently!
1496	 */
1497	for_each_present_cpu(cpu) {
1498		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1499		int cpustate = st->state;
1500
1501		if (cpustate >= state)
1502			cpuhp_issue_call(cpu, state, teardown, false);
1503	}
1504remove:
1505	cpuhp_store_callbacks(state, NULL, NULL, NULL);
1506	put_online_cpus();
 
 
 
 
 
 
 
 
1507}
1508EXPORT_SYMBOL(__cpuhp_remove_state);
1509
1510#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1511static ssize_t show_cpuhp_state(struct device *dev,
1512				struct device_attribute *attr, char *buf)
1513{
1514	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1515
1516	return sprintf(buf, "%d\n", st->state);
1517}
1518static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1519
1520static ssize_t write_cpuhp_target(struct device *dev,
1521				  struct device_attribute *attr,
1522				  const char *buf, size_t count)
1523{
1524	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1525	struct cpuhp_step *sp;
1526	int target, ret;
1527
1528	ret = kstrtoint(buf, 10, &target);
1529	if (ret)
1530		return ret;
1531
1532#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1533	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1534		return -EINVAL;
1535#else
1536	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1537		return -EINVAL;
1538#endif
1539
1540	ret = lock_device_hotplug_sysfs();
1541	if (ret)
1542		return ret;
1543
1544	mutex_lock(&cpuhp_state_mutex);
1545	sp = cpuhp_get_step(target);
1546	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1547	mutex_unlock(&cpuhp_state_mutex);
1548	if (ret)
1549		return ret;
1550
1551	if (st->state < target)
1552		ret = do_cpu_up(dev->id, target);
1553	else
1554		ret = do_cpu_down(dev->id, target);
1555
1556	unlock_device_hotplug();
1557	return ret ? ret : count;
1558}
1559
1560static ssize_t show_cpuhp_target(struct device *dev,
1561				 struct device_attribute *attr, char *buf)
1562{
1563	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1564
1565	return sprintf(buf, "%d\n", st->target);
1566}
1567static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569static struct attribute *cpuhp_cpu_attrs[] = {
1570	&dev_attr_state.attr,
1571	&dev_attr_target.attr,
 
1572	NULL
1573};
1574
1575static struct attribute_group cpuhp_cpu_attr_group = {
1576	.attrs = cpuhp_cpu_attrs,
1577	.name = "hotplug",
1578	NULL
1579};
1580
1581static ssize_t show_cpuhp_states(struct device *dev,
1582				 struct device_attribute *attr, char *buf)
1583{
1584	ssize_t cur, res = 0;
1585	int i;
1586
1587	mutex_lock(&cpuhp_state_mutex);
1588	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1589		struct cpuhp_step *sp = cpuhp_get_step(i);
1590
1591		if (sp->name) {
1592			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1593			buf += cur;
1594			res += cur;
1595		}
1596	}
1597	mutex_unlock(&cpuhp_state_mutex);
1598	return res;
1599}
1600static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1601
1602static struct attribute *cpuhp_cpu_root_attrs[] = {
1603	&dev_attr_states.attr,
1604	NULL
1605};
1606
1607static struct attribute_group cpuhp_cpu_root_attr_group = {
1608	.attrs = cpuhp_cpu_root_attrs,
1609	.name = "hotplug",
1610	NULL
1611};
1612
1613static int __init cpuhp_sysfs_init(void)
1614{
1615	int cpu, ret;
1616
1617	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1618				 &cpuhp_cpu_root_attr_group);
1619	if (ret)
1620		return ret;
1621
1622	for_each_possible_cpu(cpu) {
1623		struct device *dev = get_cpu_device(cpu);
1624
1625		if (!dev)
1626			continue;
1627		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1628		if (ret)
1629			return ret;
1630	}
1631	return 0;
1632}
1633device_initcall(cpuhp_sysfs_init);
1634#endif
1635
1636/*
1637 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1638 * represents all NR_CPUS bits binary values of 1<<nr.
1639 *
1640 * It is used by cpumask_of() to get a constant address to a CPU
1641 * mask value that has a single bit set only.
1642 */
1643
1644/* cpu_bit_bitmap[0] is empty - so we can back into it */
1645#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1646#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1647#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1648#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1649
1650const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1651
1652	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1653	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1654#if BITS_PER_LONG > 32
1655	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1656	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1657#endif
1658};
1659EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1660
1661const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1662EXPORT_SYMBOL(cpu_all_bits);
1663
1664#ifdef CONFIG_INIT_ALL_POSSIBLE
1665struct cpumask __cpu_possible_mask __read_mostly
1666	= {CPU_BITS_ALL};
1667#else
1668struct cpumask __cpu_possible_mask __read_mostly;
1669#endif
1670EXPORT_SYMBOL(__cpu_possible_mask);
1671
1672struct cpumask __cpu_online_mask __read_mostly;
1673EXPORT_SYMBOL(__cpu_online_mask);
1674
1675struct cpumask __cpu_present_mask __read_mostly;
1676EXPORT_SYMBOL(__cpu_present_mask);
1677
1678struct cpumask __cpu_active_mask __read_mostly;
1679EXPORT_SYMBOL(__cpu_active_mask);
1680
1681void init_cpu_present(const struct cpumask *src)
1682{
1683	cpumask_copy(&__cpu_present_mask, src);
1684}
1685
1686void init_cpu_possible(const struct cpumask *src)
1687{
1688	cpumask_copy(&__cpu_possible_mask, src);
1689}
1690
1691void init_cpu_online(const struct cpumask *src)
1692{
1693	cpumask_copy(&__cpu_online_mask, src);
1694}
1695
1696/*
1697 * Activate the first processor.
1698 */
1699void __init boot_cpu_init(void)
1700{
1701	int cpu = smp_processor_id();
1702
1703	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1704	set_cpu_online(cpu, true);
1705	set_cpu_active(cpu, true);
1706	set_cpu_present(cpu, true);
1707	set_cpu_possible(cpu, true);
 
 
 
 
1708}
1709
1710/*
1711 * Must be called _AFTER_ setting up the per_cpu areas
1712 */
1713void __init boot_cpu_state_init(void)
1714{
1715	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1716}
v4.17
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/hotplug.h>
  12#include <linux/sched/task.h>
  13#include <linux/unistd.h>
  14#include <linux/cpu.h>
  15#include <linux/oom.h>
  16#include <linux/rcupdate.h>
  17#include <linux/export.h>
  18#include <linux/bug.h>
  19#include <linux/kthread.h>
  20#include <linux/stop_machine.h>
  21#include <linux/mutex.h>
  22#include <linux/gfp.h>
  23#include <linux/suspend.h>
  24#include <linux/lockdep.h>
  25#include <linux/tick.h>
  26#include <linux/irq.h>
  27#include <linux/nmi.h>
  28#include <linux/smpboot.h>
  29#include <linux/relay.h>
  30#include <linux/slab.h>
  31#include <linux/percpu-rwsem.h>
  32
  33#include <trace/events/power.h>
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/cpuhp.h>
  36
  37#include "smpboot.h"
  38
  39/**
  40 * cpuhp_cpu_state - Per cpu hotplug state storage
  41 * @state:	The current cpu state
  42 * @target:	The target state
  43 * @thread:	Pointer to the hotplug thread
  44 * @should_run:	Thread should execute
  45 * @rollback:	Perform a rollback
  46 * @single:	Single callback invocation
  47 * @bringup:	Single callback bringup or teardown selector
  48 * @cb_state:	The state for a single callback (install/uninstall)
  49 * @result:	Result of the operation
  50 * @done_up:	Signal completion to the issuer of the task for cpu-up
  51 * @done_down:	Signal completion to the issuer of the task for cpu-down
  52 */
  53struct cpuhp_cpu_state {
  54	enum cpuhp_state	state;
  55	enum cpuhp_state	target;
  56	enum cpuhp_state	fail;
  57#ifdef CONFIG_SMP
  58	struct task_struct	*thread;
  59	bool			should_run;
  60	bool			rollback;
  61	bool			single;
  62	bool			bringup;
  63	struct hlist_node	*node;
  64	struct hlist_node	*last;
  65	enum cpuhp_state	cb_state;
 
  66	int			result;
  67	struct completion	done_up;
  68	struct completion	done_down;
  69#endif
  70};
  71
  72static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  73	.fail = CPUHP_INVALID,
  74};
  75
  76#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  77static struct lockdep_map cpuhp_state_up_map =
  78	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  79static struct lockdep_map cpuhp_state_down_map =
  80	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  81
  82
  83static inline void cpuhp_lock_acquire(bool bringup)
  84{
  85	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  86}
  87
  88static inline void cpuhp_lock_release(bool bringup)
  89{
  90	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  91}
  92#else
  93
  94static inline void cpuhp_lock_acquire(bool bringup) { }
  95static inline void cpuhp_lock_release(bool bringup) { }
  96
  97#endif
  98
  99/**
 100 * cpuhp_step - Hotplug state machine step
 101 * @name:	Name of the step
 102 * @startup:	Startup function of the step
 103 * @teardown:	Teardown function of the step
 104 * @skip_onerr:	Do not invoke the functions on error rollback
 105 *		Will go away once the notifiers	are gone
 106 * @cant_stop:	Bringup/teardown can't be stopped at this step
 107 */
 108struct cpuhp_step {
 109	const char		*name;
 110	union {
 111		int		(*single)(unsigned int cpu);
 112		int		(*multi)(unsigned int cpu,
 113					 struct hlist_node *node);
 114	} startup;
 115	union {
 116		int		(*single)(unsigned int cpu);
 117		int		(*multi)(unsigned int cpu,
 118					 struct hlist_node *node);
 119	} teardown;
 120	struct hlist_head	list;
 121	bool			skip_onerr;
 122	bool			cant_stop;
 123	bool			multi_instance;
 124};
 125
 126static DEFINE_MUTEX(cpuhp_state_mutex);
 127static struct cpuhp_step cpuhp_hp_states[];
 128
 129static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 130{
 131	return cpuhp_hp_states + state;
 132}
 133
 134/**
 135 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 136 * @cpu:	The cpu for which the callback should be invoked
 137 * @state:	The state to do callbacks for
 138 * @bringup:	True if the bringup callback should be invoked
 139 * @node:	For multi-instance, do a single entry callback for install/remove
 140 * @lastp:	For multi-instance rollback, remember how far we got
 141 *
 142 * Called from cpu hotplug and from the state register machinery.
 143 */
 144static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 145				 bool bringup, struct hlist_node *node,
 146				 struct hlist_node **lastp)
 147{
 148	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 149	struct cpuhp_step *step = cpuhp_get_step(state);
 150	int (*cbm)(unsigned int cpu, struct hlist_node *node);
 151	int (*cb)(unsigned int cpu);
 152	int ret, cnt;
 153
 154	if (st->fail == state) {
 155		st->fail = CPUHP_INVALID;
 156
 157		if (!(bringup ? step->startup.single : step->teardown.single))
 158			return 0;
 159
 160		return -EAGAIN;
 161	}
 162
 163	if (!step->multi_instance) {
 164		WARN_ON_ONCE(lastp && *lastp);
 165		cb = bringup ? step->startup.single : step->teardown.single;
 166		if (!cb)
 167			return 0;
 168		trace_cpuhp_enter(cpu, st->target, state, cb);
 169		ret = cb(cpu);
 170		trace_cpuhp_exit(cpu, st->state, state, ret);
 171		return ret;
 172	}
 173	cbm = bringup ? step->startup.multi : step->teardown.multi;
 174	if (!cbm)
 175		return 0;
 176
 177	/* Single invocation for instance add/remove */
 178	if (node) {
 179		WARN_ON_ONCE(lastp && *lastp);
 180		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 181		ret = cbm(cpu, node);
 182		trace_cpuhp_exit(cpu, st->state, state, ret);
 183		return ret;
 184	}
 185
 186	/* State transition. Invoke on all instances */
 187	cnt = 0;
 188	hlist_for_each(node, &step->list) {
 189		if (lastp && node == *lastp)
 190			break;
 191
 192		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 193		ret = cbm(cpu, node);
 194		trace_cpuhp_exit(cpu, st->state, state, ret);
 195		if (ret) {
 196			if (!lastp)
 197				goto err;
 198
 199			*lastp = node;
 200			return ret;
 201		}
 202		cnt++;
 203	}
 204	if (lastp)
 205		*lastp = NULL;
 206	return 0;
 207err:
 208	/* Rollback the instances if one failed */
 209	cbm = !bringup ? step->startup.multi : step->teardown.multi;
 210	if (!cbm)
 211		return ret;
 212
 213	hlist_for_each(node, &step->list) {
 214		if (!cnt--)
 215			break;
 216
 217		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 218		ret = cbm(cpu, node);
 219		trace_cpuhp_exit(cpu, st->state, state, ret);
 220		/*
 221		 * Rollback must not fail,
 222		 */
 223		WARN_ON_ONCE(ret);
 224	}
 225	return ret;
 226}
 227
 228#ifdef CONFIG_SMP
 229static bool cpuhp_is_ap_state(enum cpuhp_state state)
 230{
 231	/*
 232	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 233	 * purposes as that state is handled explicitly in cpu_down.
 234	 */
 235	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 236}
 237
 238static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 239{
 240	struct completion *done = bringup ? &st->done_up : &st->done_down;
 241	wait_for_completion(done);
 242}
 243
 244static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 245{
 246	struct completion *done = bringup ? &st->done_up : &st->done_down;
 247	complete(done);
 248}
 249
 250/*
 251 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 252 */
 253static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 254{
 255	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 256}
 257
 258/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 259static DEFINE_MUTEX(cpu_add_remove_lock);
 260bool cpuhp_tasks_frozen;
 261EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 262
 263/*
 264 * The following two APIs (cpu_maps_update_begin/done) must be used when
 265 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 
 
 
 266 */
 267void cpu_maps_update_begin(void)
 268{
 269	mutex_lock(&cpu_add_remove_lock);
 270}
 
 271
 272void cpu_maps_update_done(void)
 273{
 274	mutex_unlock(&cpu_add_remove_lock);
 275}
 
 
 
 276
 277/*
 278 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 279 * Should always be manipulated under cpu_add_remove_lock
 280 */
 281static int cpu_hotplug_disabled;
 282
 283#ifdef CONFIG_HOTPLUG_CPU
 284
 285DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286
 287void cpus_read_lock(void)
 288{
 289	percpu_down_read(&cpu_hotplug_lock);
 
 
 
 
 
 
 290}
 291EXPORT_SYMBOL_GPL(cpus_read_lock);
 292
 293void cpus_read_unlock(void)
 294{
 295	percpu_up_read(&cpu_hotplug_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 296}
 297EXPORT_SYMBOL_GPL(cpus_read_unlock);
 298
 299void cpus_write_lock(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300{
 301	percpu_down_write(&cpu_hotplug_lock);
 302}
 
 
 303
 304void cpus_write_unlock(void)
 305{
 306	percpu_up_write(&cpu_hotplug_lock);
 
 
 
 
 
 
 307}
 308
 309void lockdep_assert_cpus_held(void)
 310{
 311	percpu_rwsem_assert_held(&cpu_hotplug_lock);
 
 
 312}
 313
 314/*
 315 * Wait for currently running CPU hotplug operations to complete (if any) and
 316 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 317 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 318 * hotplug path before performing hotplug operations. So acquiring that lock
 319 * guarantees mutual exclusion from any currently running hotplug operations.
 320 */
 321void cpu_hotplug_disable(void)
 322{
 323	cpu_maps_update_begin();
 324	cpu_hotplug_disabled++;
 325	cpu_maps_update_done();
 326}
 327EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 328
 329static void __cpu_hotplug_enable(void)
 330{
 331	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 332		return;
 333	cpu_hotplug_disabled--;
 334}
 335
 336void cpu_hotplug_enable(void)
 337{
 338	cpu_maps_update_begin();
 339	__cpu_hotplug_enable();
 340	cpu_maps_update_done();
 341}
 342EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 343#endif	/* CONFIG_HOTPLUG_CPU */
 344
 345static inline enum cpuhp_state
 346cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 347{
 348	enum cpuhp_state prev_state = st->state;
 
 
 
 
 
 349
 350	st->rollback = false;
 351	st->last = NULL;
 352
 353	st->target = target;
 354	st->single = false;
 355	st->bringup = st->state < target;
 356
 357	return prev_state;
 358}
 359
 360static inline void
 361cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 362{
 363	st->rollback = true;
 
 364
 365	/*
 366	 * If we have st->last we need to undo partial multi_instance of this
 367	 * state first. Otherwise start undo at the previous state.
 368	 */
 369	if (!st->last) {
 370		if (st->bringup)
 371			st->state--;
 372		else
 373			st->state++;
 374	}
 375
 376	st->target = prev_state;
 377	st->bringup = !st->bringup;
 378}
 379
 380/* Regular hotplug invocation of the AP hotplug thread */
 381static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 382{
 383	if (!st->single && st->state == st->target)
 384		return;
 385
 386	st->result = 0;
 387	/*
 388	 * Make sure the above stores are visible before should_run becomes
 389	 * true. Paired with the mb() above in cpuhp_thread_fun()
 390	 */
 391	smp_mb();
 392	st->should_run = true;
 393	wake_up_process(st->thread);
 394	wait_for_ap_thread(st, st->bringup);
 395}
 396
 397static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 
 398{
 399	enum cpuhp_state prev_state;
 400	int ret;
 401
 402	prev_state = cpuhp_set_state(st, target);
 403	__cpuhp_kick_ap(st);
 404	if ((ret = st->result)) {
 405		cpuhp_reset_state(st, prev_state);
 406		__cpuhp_kick_ap(st);
 
 407	}
 
 
 
 
 
 
 
 
 408
 409	return ret;
 
 
 
 410}
 411
 412static int bringup_wait_for_ap(unsigned int cpu)
 413{
 414	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 415
 416	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 417	wait_for_ap_thread(st, true);
 418	if (WARN_ON_ONCE((!cpu_online(cpu))))
 419		return -ECANCELED;
 420
 421	/* Unpark the stopper thread and the hotplug thread of the target cpu */
 422	stop_machine_unpark(cpu);
 423	kthread_unpark(st->thread);
 424
 425	if (st->target <= CPUHP_AP_ONLINE_IDLE)
 426		return 0;
 427
 428	return cpuhp_kick_ap(st, st->target);
 429}
 430
 431static int bringup_cpu(unsigned int cpu)
 432{
 433	struct task_struct *idle = idle_thread_get(cpu);
 434	int ret;
 435
 436	/*
 437	 * Some architectures have to walk the irq descriptors to
 438	 * setup the vector space for the cpu which comes online.
 439	 * Prevent irq alloc/free across the bringup.
 440	 */
 441	irq_lock_sparse();
 442
 443	/* Arch-specific enabling code. */
 444	ret = __cpu_up(cpu, idle);
 445	irq_unlock_sparse();
 446	if (ret)
 447		return ret;
 448	return bringup_wait_for_ap(cpu);
 
 
 
 449}
 450
 451/*
 452 * Hotplug state machine related functions
 453 */
 
 
 
 
 
 
 
 
 
 
 454
 455static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456{
 457	for (st->state--; st->state > st->target; st->state--) {
 458		struct cpuhp_step *step = cpuhp_get_step(st->state);
 459
 460		if (!step->skip_onerr)
 461			cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 462	}
 463}
 464
 465static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 466			      enum cpuhp_state target)
 467{
 468	enum cpuhp_state prev_state = st->state;
 469	int ret = 0;
 470
 471	while (st->state < target) {
 
 
 472		st->state++;
 473		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 
 474		if (ret) {
 475			st->target = prev_state;
 476			undo_cpu_up(cpu, st);
 477			break;
 478		}
 479	}
 480	return ret;
 481}
 482
 483/*
 484 * The cpu hotplug threads manage the bringup and teardown of the cpus
 485 */
 486static void cpuhp_create(unsigned int cpu)
 487{
 488	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 489
 490	init_completion(&st->done_up);
 491	init_completion(&st->done_down);
 492}
 493
 494static int cpuhp_should_run(unsigned int cpu)
 495{
 496	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 497
 498	return st->should_run;
 499}
 500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501/*
 502 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 503 * callbacks when a state gets [un]installed at runtime.
 504 *
 505 * Each invocation of this function by the smpboot thread does a single AP
 506 * state callback.
 507 *
 508 * It has 3 modes of operation:
 509 *  - single: runs st->cb_state
 510 *  - up:     runs ++st->state, while st->state < st->target
 511 *  - down:   runs st->state--, while st->state > st->target
 512 *
 513 * When complete or on error, should_run is cleared and the completion is fired.
 514 */
 515static void cpuhp_thread_fun(unsigned int cpu)
 516{
 517	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 518	bool bringup = st->bringup;
 519	enum cpuhp_state state;
 520
 521	/*
 522	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 523	 * that if we see ->should_run we also see the rest of the state.
 524	 */
 525	smp_mb();
 526
 527	if (WARN_ON_ONCE(!st->should_run))
 528		return;
 529
 530	cpuhp_lock_acquire(bringup);
 531
 532	if (st->single) {
 533		state = st->cb_state;
 534		st->should_run = false;
 535	} else {
 536		if (bringup) {
 537			st->state++;
 538			state = st->state;
 539			st->should_run = (st->state < st->target);
 540			WARN_ON_ONCE(st->state > st->target);
 541		} else {
 542			state = st->state;
 543			st->state--;
 544			st->should_run = (st->state > st->target);
 545			WARN_ON_ONCE(st->state < st->target);
 546		}
 547	}
 548
 549	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 550
 551	if (st->rollback) {
 552		struct cpuhp_step *step = cpuhp_get_step(state);
 553		if (step->skip_onerr)
 554			goto next;
 555	}
 556
 557	if (cpuhp_is_atomic_state(state)) {
 558		local_irq_disable();
 559		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 560		local_irq_enable();
 561
 
 562		/*
 563		 * STARTING/DYING must not fail!
 
 564		 */
 565		WARN_ON_ONCE(st->result);
 
 566	} else {
 567		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 568	}
 569
 570	if (st->result) {
 571		/*
 572		 * If we fail on a rollback, we're up a creek without no
 573		 * paddle, no way forward, no way back. We loose, thanks for
 574		 * playing.
 575		 */
 576		WARN_ON_ONCE(st->rollback);
 577		st->should_run = false;
 578	}
 579
 580next:
 581	cpuhp_lock_release(bringup);
 582
 583	if (!st->should_run)
 584		complete_ap_thread(st, bringup);
 585}
 586
 587/* Invoke a single callback on a remote cpu */
 588static int
 589cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 590			 struct hlist_node *node)
 591{
 592	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 593	int ret;
 594
 595	if (!cpu_online(cpu))
 596		return 0;
 597
 598	cpuhp_lock_acquire(false);
 599	cpuhp_lock_release(false);
 600
 601	cpuhp_lock_acquire(true);
 602	cpuhp_lock_release(true);
 603
 604	/*
 605	 * If we are up and running, use the hotplug thread. For early calls
 606	 * we invoke the thread function directly.
 607	 */
 608	if (!st->thread)
 609		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 610
 611	st->rollback = false;
 612	st->last = NULL;
 613
 614	st->node = node;
 615	st->bringup = bringup;
 616	st->cb_state = state;
 617	st->single = true;
 618
 619	__cpuhp_kick_ap(st);
 620
 621	/*
 622	 * If we failed and did a partial, do a rollback.
 
 623	 */
 624	if ((ret = st->result) && st->last) {
 625		st->rollback = true;
 626		st->bringup = !bringup;
 627
 628		__cpuhp_kick_ap(st);
 629	}
 630
 
 
 
 
 
 631	/*
 632	 * Clean up the leftovers so the next hotplug operation wont use stale
 633	 * data.
 634	 */
 635	st->node = st->last = NULL;
 636	return ret;
 
 637}
 638
 639static int cpuhp_kick_ap_work(unsigned int cpu)
 640{
 641	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 642	enum cpuhp_state prev_state = st->state;
 643	int ret;
 644
 645	cpuhp_lock_acquire(false);
 646	cpuhp_lock_release(false);
 647
 648	cpuhp_lock_acquire(true);
 649	cpuhp_lock_release(true);
 650
 651	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 652	ret = cpuhp_kick_ap(st, st->target);
 653	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 654
 655	return ret;
 656}
 657
 658static struct smp_hotplug_thread cpuhp_threads = {
 659	.store			= &cpuhp_state.thread,
 660	.create			= &cpuhp_create,
 661	.thread_should_run	= cpuhp_should_run,
 662	.thread_fn		= cpuhp_thread_fun,
 663	.thread_comm		= "cpuhp/%u",
 664	.selfparking		= true,
 665};
 666
 667void __init cpuhp_threads_init(void)
 668{
 669	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 670	kthread_unpark(this_cpu_read(cpuhp_state.thread));
 671}
 672
 673#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674/**
 675 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 676 * @cpu: a CPU id
 677 *
 678 * This function walks all processes, finds a valid mm struct for each one and
 679 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 680 * trivial, there are various non-obvious corner cases, which this function
 681 * tries to solve in a safe manner.
 682 *
 683 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 684 * be called only for an already offlined CPU.
 685 */
 686void clear_tasks_mm_cpumask(int cpu)
 687{
 688	struct task_struct *p;
 689
 690	/*
 691	 * This function is called after the cpu is taken down and marked
 692	 * offline, so its not like new tasks will ever get this cpu set in
 693	 * their mm mask. -- Peter Zijlstra
 694	 * Thus, we may use rcu_read_lock() here, instead of grabbing
 695	 * full-fledged tasklist_lock.
 696	 */
 697	WARN_ON(cpu_online(cpu));
 698	rcu_read_lock();
 699	for_each_process(p) {
 700		struct task_struct *t;
 701
 702		/*
 703		 * Main thread might exit, but other threads may still have
 704		 * a valid mm. Find one.
 705		 */
 706		t = find_lock_task_mm(p);
 707		if (!t)
 708			continue;
 709		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 710		task_unlock(t);
 711	}
 712	rcu_read_unlock();
 713}
 714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715/* Take this CPU down. */
 716static int take_cpu_down(void *_param)
 717{
 718	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 719	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 720	int err, cpu = smp_processor_id();
 721	int ret;
 722
 723	/* Ensure this CPU doesn't handle any more interrupts. */
 724	err = __cpu_disable();
 725	if (err < 0)
 726		return err;
 727
 728	/*
 729	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 730	 * do this step again.
 731	 */
 732	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 733	st->state--;
 734	/* Invoke the former CPU_DYING callbacks */
 735	for (; st->state > target; st->state--) {
 736		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 737		/*
 738		 * DYING must not fail!
 739		 */
 740		WARN_ON_ONCE(ret);
 741	}
 742
 743	/* Give up timekeeping duties */
 744	tick_handover_do_timer();
 745	/* Park the stopper thread */
 746	stop_machine_park(cpu);
 747	return 0;
 748}
 749
 750static int takedown_cpu(unsigned int cpu)
 751{
 752	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 753	int err;
 754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755	/* Park the smpboot threads */
 756	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 757	smpboot_park_threads(cpu);
 758
 759	/*
 760	 * Prevent irq alloc/free while the dying cpu reorganizes the
 761	 * interrupt affinities.
 762	 */
 763	irq_lock_sparse();
 764
 765	/*
 766	 * So now all preempt/rcu users must observe !cpu_active().
 767	 */
 768	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 769	if (err) {
 770		/* CPU refused to die */
 771		irq_unlock_sparse();
 772		/* Unpark the hotplug thread so we can rollback there */
 773		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 774		return err;
 775	}
 776	BUG_ON(cpu_online(cpu));
 777
 778	/*
 779	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 780	 * all runnable tasks from the CPU, there's only the idle task left now
 781	 * that the migration thread is done doing the stop_machine thing.
 782	 *
 783	 * Wait for the stop thread to go away.
 784	 */
 785	wait_for_ap_thread(st, false);
 786	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 787
 788	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
 789	irq_unlock_sparse();
 790
 791	hotplug_cpu__broadcast_tick_pull(cpu);
 792	/* This actually kills the CPU. */
 793	__cpu_die(cpu);
 794
 795	tick_cleanup_dead_cpu(cpu);
 796	rcutree_migrate_callbacks(cpu);
 
 
 
 
 
 
 797	return 0;
 798}
 799
 800static void cpuhp_complete_idle_dead(void *arg)
 801{
 802	struct cpuhp_cpu_state *st = arg;
 803
 804	complete_ap_thread(st, false);
 805}
 806
 807void cpuhp_report_idle_dead(void)
 808{
 809	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 810
 811	BUG_ON(st->state != CPUHP_AP_OFFLINE);
 812	rcu_report_dead(smp_processor_id());
 813	st->state = CPUHP_AP_IDLE_DEAD;
 814	/*
 815	 * We cannot call complete after rcu_report_dead() so we delegate it
 816	 * to an online cpu.
 817	 */
 818	smp_call_function_single(cpumask_first(cpu_online_mask),
 819				 cpuhp_complete_idle_dead, st, 0);
 820}
 821
 822static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 823{
 824	for (st->state++; st->state < st->target; st->state++) {
 825		struct cpuhp_step *step = cpuhp_get_step(st->state);
 
 
 826
 827		if (!step->skip_onerr)
 828			cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 829	}
 830}
 831
 832static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 833				enum cpuhp_state target)
 834{
 835	enum cpuhp_state prev_state = st->state;
 836	int ret = 0;
 837
 838	for (; st->state > target; st->state--) {
 839		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 840		if (ret) {
 841			st->target = prev_state;
 842			undo_cpu_down(cpu, st);
 843			break;
 844		}
 845	}
 846	return ret;
 847}
 848
 849/* Requires cpu_add_remove_lock to be held */
 850static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 851			   enum cpuhp_state target)
 852{
 853	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 854	int prev_state, ret = 0;
 
 855
 856	if (num_online_cpus() == 1)
 857		return -EBUSY;
 858
 859	if (!cpu_present(cpu))
 860		return -EINVAL;
 861
 862	cpus_write_lock();
 863
 864	cpuhp_tasks_frozen = tasks_frozen;
 865
 866	prev_state = cpuhp_set_state(st, target);
 
 867	/*
 868	 * If the current CPU state is in the range of the AP hotplug thread,
 869	 * then we need to kick the thread.
 870	 */
 871	if (st->state > CPUHP_TEARDOWN_CPU) {
 872		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
 873		ret = cpuhp_kick_ap_work(cpu);
 874		/*
 875		 * The AP side has done the error rollback already. Just
 876		 * return the error code..
 877		 */
 878		if (ret)
 879			goto out;
 880
 881		/*
 882		 * We might have stopped still in the range of the AP hotplug
 883		 * thread. Nothing to do anymore.
 884		 */
 885		if (st->state > CPUHP_TEARDOWN_CPU)
 886			goto out;
 887
 888		st->target = target;
 889	}
 890	/*
 891	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 892	 * to do the further cleanups.
 893	 */
 894	ret = cpuhp_down_callbacks(cpu, st, target);
 895	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 896		cpuhp_reset_state(st, prev_state);
 897		__cpuhp_kick_ap(st);
 
 898	}
 899
 
 900out:
 901	cpus_write_unlock();
 902	/*
 903	 * Do post unplug cleanup. This is still protected against
 904	 * concurrent CPU hotplug via cpu_add_remove_lock.
 905	 */
 906	lockup_detector_cleanup();
 907	return ret;
 908}
 909
 910static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 911{
 912	int err;
 913
 914	cpu_maps_update_begin();
 915
 916	if (cpu_hotplug_disabled) {
 917		err = -EBUSY;
 918		goto out;
 919	}
 920
 921	err = _cpu_down(cpu, 0, target);
 922
 923out:
 924	cpu_maps_update_done();
 925	return err;
 926}
 927
 928int cpu_down(unsigned int cpu)
 929{
 930	return do_cpu_down(cpu, CPUHP_OFFLINE);
 931}
 932EXPORT_SYMBOL(cpu_down);
 933
 934#else
 935#define takedown_cpu		NULL
 936#endif /*CONFIG_HOTPLUG_CPU*/
 937
 938/**
 939 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
 940 * @cpu: cpu that just started
 941 *
 
 942 * It must be called by the arch code on the new cpu, before the new cpu
 943 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 944 */
 945void notify_cpu_starting(unsigned int cpu)
 946{
 947	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 948	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
 949	int ret;
 950
 951	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
 952	while (st->state < target) {
 
 
 953		st->state++;
 954		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 955		/*
 956		 * STARTING must not fail!
 957		 */
 958		WARN_ON_ONCE(ret);
 959	}
 960}
 961
 962/*
 963 * Called from the idle task. Wake up the controlling task which brings the
 964 * stopper and the hotplug thread of the upcoming CPU up and then delegates
 965 * the rest of the online bringup to the hotplug thread.
 
 966 */
 967void cpuhp_online_idle(enum cpuhp_state state)
 968{
 969	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 
 970
 971	/* Happens for the boot cpu */
 972	if (state != CPUHP_AP_ONLINE_IDLE)
 973		return;
 974
 975	st->state = CPUHP_AP_ONLINE_IDLE;
 976	complete_ap_thread(st, true);
 
 
 
 
 
 
 
 
 
 
 
 977}
 978
 979/* Requires cpu_add_remove_lock to be held */
 980static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
 981{
 982	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 983	struct task_struct *idle;
 984	int ret = 0;
 985
 986	cpus_write_lock();
 987
 988	if (!cpu_present(cpu)) {
 989		ret = -EINVAL;
 990		goto out;
 991	}
 992
 993	/*
 994	 * The caller of do_cpu_up might have raced with another
 995	 * caller. Ignore it for now.
 996	 */
 997	if (st->state >= target)
 998		goto out;
 999
1000	if (st->state == CPUHP_OFFLINE) {
1001		/* Let it fail before we try to bring the cpu up */
1002		idle = idle_thread_get(cpu);
1003		if (IS_ERR(idle)) {
1004			ret = PTR_ERR(idle);
1005			goto out;
1006		}
1007	}
1008
1009	cpuhp_tasks_frozen = tasks_frozen;
1010
1011	cpuhp_set_state(st, target);
1012	/*
1013	 * If the current CPU state is in the range of the AP hotplug thread,
1014	 * then we need to kick the thread once more.
1015	 */
1016	if (st->state > CPUHP_BRINGUP_CPU) {
1017		ret = cpuhp_kick_ap_work(cpu);
1018		/*
1019		 * The AP side has done the error rollback already. Just
1020		 * return the error code..
1021		 */
1022		if (ret)
1023			goto out;
1024	}
1025
1026	/*
1027	 * Try to reach the target state. We max out on the BP at
1028	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1029	 * responsible for bringing it up to the target state.
1030	 */
1031	target = min((int)target, CPUHP_BRINGUP_CPU);
1032	ret = cpuhp_up_callbacks(cpu, st, target);
1033out:
1034	cpus_write_unlock();
1035	return ret;
1036}
1037
1038static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1039{
1040	int err = 0;
1041
1042	if (!cpu_possible(cpu)) {
1043		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1044		       cpu);
1045#if defined(CONFIG_IA64)
1046		pr_err("please check additional_cpus= boot parameter\n");
1047#endif
1048		return -EINVAL;
1049	}
1050
1051	err = try_online_node(cpu_to_node(cpu));
1052	if (err)
1053		return err;
1054
1055	cpu_maps_update_begin();
1056
1057	if (cpu_hotplug_disabled) {
1058		err = -EBUSY;
1059		goto out;
1060	}
1061
1062	err = _cpu_up(cpu, 0, target);
1063out:
1064	cpu_maps_update_done();
1065	return err;
1066}
1067
1068int cpu_up(unsigned int cpu)
1069{
1070	return do_cpu_up(cpu, CPUHP_ONLINE);
1071}
1072EXPORT_SYMBOL_GPL(cpu_up);
1073
1074#ifdef CONFIG_PM_SLEEP_SMP
1075static cpumask_var_t frozen_cpus;
1076
1077int freeze_secondary_cpus(int primary)
1078{
1079	int cpu, error = 0;
1080
1081	cpu_maps_update_begin();
1082	if (!cpu_online(primary))
1083		primary = cpumask_first(cpu_online_mask);
1084	/*
1085	 * We take down all of the non-boot CPUs in one shot to avoid races
1086	 * with the userspace trying to use the CPU hotplug at the same time
1087	 */
1088	cpumask_clear(frozen_cpus);
1089
1090	pr_info("Disabling non-boot CPUs ...\n");
1091	for_each_online_cpu(cpu) {
1092		if (cpu == primary)
1093			continue;
1094		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1095		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1096		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1097		if (!error)
1098			cpumask_set_cpu(cpu, frozen_cpus);
1099		else {
1100			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1101			break;
1102		}
1103	}
1104
1105	if (!error)
1106		BUG_ON(num_online_cpus() > 1);
1107	else
1108		pr_err("Non-boot CPUs are not disabled\n");
1109
1110	/*
1111	 * Make sure the CPUs won't be enabled by someone else. We need to do
1112	 * this even in case of failure as all disable_nonboot_cpus() users are
1113	 * supposed to do enable_nonboot_cpus() on the failure path.
1114	 */
1115	cpu_hotplug_disabled++;
1116
1117	cpu_maps_update_done();
1118	return error;
1119}
1120
1121void __weak arch_enable_nonboot_cpus_begin(void)
1122{
1123}
1124
1125void __weak arch_enable_nonboot_cpus_end(void)
1126{
1127}
1128
1129void enable_nonboot_cpus(void)
1130{
1131	int cpu, error;
1132
1133	/* Allow everyone to use the CPU hotplug again */
1134	cpu_maps_update_begin();
1135	__cpu_hotplug_enable();
1136	if (cpumask_empty(frozen_cpus))
1137		goto out;
1138
1139	pr_info("Enabling non-boot CPUs ...\n");
1140
1141	arch_enable_nonboot_cpus_begin();
1142
1143	for_each_cpu(cpu, frozen_cpus) {
1144		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1145		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1146		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1147		if (!error) {
1148			pr_info("CPU%d is up\n", cpu);
1149			continue;
1150		}
1151		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1152	}
1153
1154	arch_enable_nonboot_cpus_end();
1155
1156	cpumask_clear(frozen_cpus);
1157out:
1158	cpu_maps_update_done();
1159}
1160
1161static int __init alloc_frozen_cpus(void)
1162{
1163	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1164		return -ENOMEM;
1165	return 0;
1166}
1167core_initcall(alloc_frozen_cpus);
1168
1169/*
1170 * When callbacks for CPU hotplug notifications are being executed, we must
1171 * ensure that the state of the system with respect to the tasks being frozen
1172 * or not, as reported by the notification, remains unchanged *throughout the
1173 * duration* of the execution of the callbacks.
1174 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1175 *
1176 * This synchronization is implemented by mutually excluding regular CPU
1177 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1178 * Hibernate notifications.
1179 */
1180static int
1181cpu_hotplug_pm_callback(struct notifier_block *nb,
1182			unsigned long action, void *ptr)
1183{
1184	switch (action) {
1185
1186	case PM_SUSPEND_PREPARE:
1187	case PM_HIBERNATION_PREPARE:
1188		cpu_hotplug_disable();
1189		break;
1190
1191	case PM_POST_SUSPEND:
1192	case PM_POST_HIBERNATION:
1193		cpu_hotplug_enable();
1194		break;
1195
1196	default:
1197		return NOTIFY_DONE;
1198	}
1199
1200	return NOTIFY_OK;
1201}
1202
1203
1204static int __init cpu_hotplug_pm_sync_init(void)
1205{
1206	/*
1207	 * cpu_hotplug_pm_callback has higher priority than x86
1208	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1209	 * to disable cpu hotplug to avoid cpu hotplug race.
1210	 */
1211	pm_notifier(cpu_hotplug_pm_callback, 0);
1212	return 0;
1213}
1214core_initcall(cpu_hotplug_pm_sync_init);
1215
1216#endif /* CONFIG_PM_SLEEP_SMP */
1217
1218int __boot_cpu_id;
1219
1220#endif /* CONFIG_SMP */
1221
1222/* Boot processor state steps */
1223static struct cpuhp_step cpuhp_hp_states[] = {
1224	[CPUHP_OFFLINE] = {
1225		.name			= "offline",
1226		.startup.single		= NULL,
1227		.teardown.single	= NULL,
1228	},
1229#ifdef CONFIG_SMP
1230	[CPUHP_CREATE_THREADS]= {
1231		.name			= "threads:prepare",
1232		.startup.single		= smpboot_create_threads,
1233		.teardown.single	= NULL,
1234		.cant_stop		= true,
1235	},
1236	[CPUHP_PERF_PREPARE] = {
1237		.name			= "perf:prepare",
1238		.startup.single		= perf_event_init_cpu,
1239		.teardown.single	= perf_event_exit_cpu,
1240	},
1241	[CPUHP_WORKQUEUE_PREP] = {
1242		.name			= "workqueue:prepare",
1243		.startup.single		= workqueue_prepare_cpu,
1244		.teardown.single	= NULL,
1245	},
1246	[CPUHP_HRTIMERS_PREPARE] = {
1247		.name			= "hrtimers:prepare",
1248		.startup.single		= hrtimers_prepare_cpu,
1249		.teardown.single	= hrtimers_dead_cpu,
1250	},
1251	[CPUHP_SMPCFD_PREPARE] = {
1252		.name			= "smpcfd:prepare",
1253		.startup.single		= smpcfd_prepare_cpu,
1254		.teardown.single	= smpcfd_dead_cpu,
1255	},
1256	[CPUHP_RELAY_PREPARE] = {
1257		.name			= "relay:prepare",
1258		.startup.single		= relay_prepare_cpu,
1259		.teardown.single	= NULL,
1260	},
1261	[CPUHP_SLAB_PREPARE] = {
1262		.name			= "slab:prepare",
1263		.startup.single		= slab_prepare_cpu,
1264		.teardown.single	= slab_dead_cpu,
1265	},
1266	[CPUHP_RCUTREE_PREP] = {
1267		.name			= "RCU/tree:prepare",
1268		.startup.single		= rcutree_prepare_cpu,
1269		.teardown.single	= rcutree_dead_cpu,
1270	},
1271	/*
1272	 * On the tear-down path, timers_dead_cpu() must be invoked
1273	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1274	 * otherwise a RCU stall occurs.
1275	 */
1276	[CPUHP_TIMERS_PREPARE] = {
1277		.name			= "timers:dead",
1278		.startup.single		= timers_prepare_cpu,
1279		.teardown.single	= timers_dead_cpu,
 
1280	},
1281	/* Kicks the plugged cpu into life */
1282	[CPUHP_BRINGUP_CPU] = {
1283		.name			= "cpu:bringup",
1284		.startup.single		= bringup_cpu,
1285		.teardown.single	= NULL,
 
 
 
 
 
 
 
 
 
 
1286		.cant_stop		= true,
1287	},
 
 
 
 
 
 
1288	/* Final state before CPU kills itself */
1289	[CPUHP_AP_IDLE_DEAD] = {
1290		.name			= "idle:dead",
1291	},
1292	/*
1293	 * Last state before CPU enters the idle loop to die. Transient state
1294	 * for synchronization.
1295	 */
1296	[CPUHP_AP_OFFLINE] = {
1297		.name			= "ap:offline",
1298		.cant_stop		= true,
1299	},
1300	/* First state is scheduler control. Interrupts are disabled */
1301	[CPUHP_AP_SCHED_STARTING] = {
1302		.name			= "sched:starting",
1303		.startup.single		= sched_cpu_starting,
1304		.teardown.single	= sched_cpu_dying,
1305	},
1306	[CPUHP_AP_RCUTREE_DYING] = {
1307		.name			= "RCU/tree:dying",
1308		.startup.single		= NULL,
1309		.teardown.single	= rcutree_dying_cpu,
1310	},
1311	[CPUHP_AP_SMPCFD_DYING] = {
1312		.name			= "smpcfd:dying",
1313		.startup.single		= NULL,
1314		.teardown.single	= smpcfd_dying_cpu,
1315	},
1316	/* Entry state on starting. Interrupts enabled from here on. Transient
1317	 * state for synchronsization */
1318	[CPUHP_AP_ONLINE] = {
1319		.name			= "ap:online",
1320	},
1321	/*
1322	 * Handled on controll processor until the plugged processor manages
1323	 * this itself.
1324	 */
1325	[CPUHP_TEARDOWN_CPU] = {
1326		.name			= "cpu:teardown",
1327		.startup.single		= NULL,
1328		.teardown.single	= takedown_cpu,
1329		.cant_stop		= true,
1330	},
1331	/* Handle smpboot threads park/unpark */
1332	[CPUHP_AP_SMPBOOT_THREADS] = {
1333		.name			= "smpboot/threads:online",
1334		.startup.single		= smpboot_unpark_threads,
1335		.teardown.single	= NULL,
1336	},
1337	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1338		.name			= "irq/affinity:online",
1339		.startup.single		= irq_affinity_online_cpu,
1340		.teardown.single	= NULL,
1341	},
1342	[CPUHP_AP_PERF_ONLINE] = {
1343		.name			= "perf:online",
1344		.startup.single		= perf_event_init_cpu,
1345		.teardown.single	= perf_event_exit_cpu,
1346	},
1347	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1348		.name			= "workqueue:online",
1349		.startup.single		= workqueue_online_cpu,
1350		.teardown.single	= workqueue_offline_cpu,
1351	},
1352	[CPUHP_AP_RCUTREE_ONLINE] = {
1353		.name			= "RCU/tree:online",
1354		.startup.single		= rcutree_online_cpu,
1355		.teardown.single	= rcutree_offline_cpu,
1356	},
1357#endif
1358	/*
1359	 * The dynamically registered state space is here
1360	 */
1361
1362#ifdef CONFIG_SMP
1363	/* Last state is scheduler control setting the cpu active */
1364	[CPUHP_AP_ACTIVE] = {
1365		.name			= "sched:active",
1366		.startup.single		= sched_cpu_activate,
1367		.teardown.single	= sched_cpu_deactivate,
1368	},
1369#endif
1370
1371	/* CPU is fully up and running. */
1372	[CPUHP_ONLINE] = {
1373		.name			= "online",
1374		.startup.single		= NULL,
1375		.teardown.single	= NULL,
1376	},
1377};
1378
1379/* Sanity check for callbacks */
1380static int cpuhp_cb_check(enum cpuhp_state state)
1381{
1382	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1383		return -EINVAL;
1384	return 0;
1385}
1386
1387/*
1388 * Returns a free for dynamic slot assignment of the Online state. The states
1389 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1390 * by having no name assigned.
1391 */
1392static int cpuhp_reserve_state(enum cpuhp_state state)
1393{
1394	enum cpuhp_state i, end;
1395	struct cpuhp_step *step;
 
 
 
 
1396
1397	switch (state) {
1398	case CPUHP_AP_ONLINE_DYN:
1399		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1400		end = CPUHP_AP_ONLINE_DYN_END;
1401		break;
1402	case CPUHP_BP_PREPARE_DYN:
1403		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1404		end = CPUHP_BP_PREPARE_DYN_END;
1405		break;
1406	default:
1407		return -EINVAL;
1408	}
1409
1410	for (i = state; i <= end; i++, step++) {
1411		if (!step->name)
1412			return i;
1413	}
1414	WARN(1, "No more dynamic states available for CPU hotplug\n");
1415	return -ENOSPC;
1416}
1417
1418static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1419				 int (*startup)(unsigned int cpu),
1420				 int (*teardown)(unsigned int cpu),
1421				 bool multi_instance)
1422{
1423	/* (Un)Install the callbacks for further cpu hotplug operations */
1424	struct cpuhp_step *sp;
1425	int ret = 0;
1426
1427	/*
1428	 * If name is NULL, then the state gets removed.
1429	 *
1430	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1431	 * the first allocation from these dynamic ranges, so the removal
1432	 * would trigger a new allocation and clear the wrong (already
1433	 * empty) state, leaving the callbacks of the to be cleared state
1434	 * dangling, which causes wreckage on the next hotplug operation.
1435	 */
1436	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1437		     state == CPUHP_BP_PREPARE_DYN)) {
1438		ret = cpuhp_reserve_state(state);
1439		if (ret < 0)
1440			return ret;
1441		state = ret;
1442	}
1443	sp = cpuhp_get_step(state);
1444	if (name && sp->name)
1445		return -EBUSY;
1446
1447	sp->startup.single = startup;
1448	sp->teardown.single = teardown;
1449	sp->name = name;
1450	sp->multi_instance = multi_instance;
1451	INIT_HLIST_HEAD(&sp->list);
1452	return ret;
1453}
1454
1455static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1456{
1457	return cpuhp_get_step(state)->teardown.single;
1458}
1459
1460/*
1461 * Call the startup/teardown function for a step either on the AP or
1462 * on the current CPU.
1463 */
1464static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1465			    struct hlist_node *node)
1466{
1467	struct cpuhp_step *sp = cpuhp_get_step(state);
1468	int ret;
1469
1470	/*
1471	 * If there's nothing to do, we done.
1472	 * Relies on the union for multi_instance.
1473	 */
1474	if ((bringup && !sp->startup.single) ||
1475	    (!bringup && !sp->teardown.single))
1476		return 0;
1477	/*
1478	 * The non AP bound callbacks can fail on bringup. On teardown
1479	 * e.g. module removal we crash for now.
1480	 */
1481#ifdef CONFIG_SMP
1482	if (cpuhp_is_ap_state(state))
1483		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1484	else
1485		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1486#else
1487	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1488#endif
1489	BUG_ON(ret && !bringup);
1490	return ret;
1491}
1492
1493/*
1494 * Called from __cpuhp_setup_state on a recoverable failure.
1495 *
1496 * Note: The teardown callbacks for rollback are not allowed to fail!
1497 */
1498static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1499				   struct hlist_node *node)
1500{
1501	int cpu;
1502
 
 
 
1503	/* Roll back the already executed steps on the other cpus */
1504	for_each_present_cpu(cpu) {
1505		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1506		int cpustate = st->state;
1507
1508		if (cpu >= failedcpu)
1509			break;
1510
1511		/* Did we invoke the startup call on that cpu ? */
1512		if (cpustate >= state)
1513			cpuhp_issue_call(cpu, state, false, node);
1514	}
1515}
1516
1517int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1518					  struct hlist_node *node,
1519					  bool invoke)
 
 
 
1520{
1521	struct cpuhp_step *sp;
1522	int cpu;
1523	int ret;
1524
1525	lockdep_assert_cpus_held();
1526
1527	sp = cpuhp_get_step(state);
1528	if (sp->multi_instance == false)
1529		return -EINVAL;
1530
1531	mutex_lock(&cpuhp_state_mutex);
1532
1533	if (!invoke || !sp->startup.multi)
1534		goto add_node;
1535
1536	/*
1537	 * Try to call the startup callback for each present cpu
1538	 * depending on the hotplug state of the cpu.
1539	 */
1540	for_each_present_cpu(cpu) {
1541		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1542		int cpustate = st->state;
1543
1544		if (cpustate < state)
1545			continue;
1546
1547		ret = cpuhp_issue_call(cpu, state, true, node);
1548		if (ret) {
1549			if (sp->teardown.multi)
1550				cpuhp_rollback_install(cpu, state, node);
1551			goto unlock;
1552		}
1553	}
1554add_node:
1555	ret = 0;
1556	hlist_add_head(node, &sp->list);
1557unlock:
1558	mutex_unlock(&cpuhp_state_mutex);
1559	return ret;
1560}
1561
1562int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1563			       bool invoke)
1564{
1565	int ret;
1566
1567	cpus_read_lock();
1568	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1569	cpus_read_unlock();
1570	return ret;
1571}
1572EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1573
1574/**
1575 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1576 * @state:		The state to setup
1577 * @invoke:		If true, the startup function is invoked for cpus where
1578 *			cpu state >= @state
1579 * @startup:		startup callback function
1580 * @teardown:		teardown callback function
1581 * @multi_instance:	State is set up for multiple instances which get
1582 *			added afterwards.
1583 *
1584 * The caller needs to hold cpus read locked while calling this function.
1585 * Returns:
1586 *   On success:
1587 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1588 *      0 for all other states
1589 *   On failure: proper (negative) error code
1590 */
1591int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1592				   const char *name, bool invoke,
1593				   int (*startup)(unsigned int cpu),
1594				   int (*teardown)(unsigned int cpu),
1595				   bool multi_instance)
1596{
1597	int cpu, ret = 0;
1598	bool dynstate;
1599
1600	lockdep_assert_cpus_held();
1601
1602	if (cpuhp_cb_check(state) || !name)
1603		return -EINVAL;
1604
1605	mutex_lock(&cpuhp_state_mutex);
1606
1607	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1608				    multi_instance);
1609
1610	dynstate = state == CPUHP_AP_ONLINE_DYN;
1611	if (ret > 0 && dynstate) {
 
1612		state = ret;
1613		ret = 0;
1614	}
1615
1616	if (ret || !invoke || !startup)
 
 
1617		goto out;
1618
1619	/*
1620	 * Try to call the startup callback for each present cpu
1621	 * depending on the hotplug state of the cpu.
1622	 */
1623	for_each_present_cpu(cpu) {
1624		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1625		int cpustate = st->state;
1626
1627		if (cpustate < state)
1628			continue;
1629
1630		ret = cpuhp_issue_call(cpu, state, true, NULL);
1631		if (ret) {
1632			if (teardown)
1633				cpuhp_rollback_install(cpu, state, NULL);
1634			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1635			goto out;
1636		}
1637	}
1638out:
1639	mutex_unlock(&cpuhp_state_mutex);
1640	/*
1641	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1642	 * dynamically allocated state in case of success.
1643	 */
1644	if (!ret && dynstate)
1645		return state;
1646	return ret;
1647}
1648EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1649
1650int __cpuhp_setup_state(enum cpuhp_state state,
1651			const char *name, bool invoke,
1652			int (*startup)(unsigned int cpu),
1653			int (*teardown)(unsigned int cpu),
1654			bool multi_instance)
1655{
1656	int ret;
1657
1658	cpus_read_lock();
1659	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1660					     teardown, multi_instance);
1661	cpus_read_unlock();
1662	return ret;
1663}
1664EXPORT_SYMBOL(__cpuhp_setup_state);
1665
1666int __cpuhp_state_remove_instance(enum cpuhp_state state,
1667				  struct hlist_node *node, bool invoke)
1668{
1669	struct cpuhp_step *sp = cpuhp_get_step(state);
1670	int cpu;
1671
1672	BUG_ON(cpuhp_cb_check(state));
1673
1674	if (!sp->multi_instance)
1675		return -EINVAL;
1676
1677	cpus_read_lock();
1678	mutex_lock(&cpuhp_state_mutex);
1679
1680	if (!invoke || !cpuhp_get_teardown_cb(state))
1681		goto remove;
1682	/*
1683	 * Call the teardown callback for each present cpu depending
1684	 * on the hotplug state of the cpu. This function is not
1685	 * allowed to fail currently!
1686	 */
1687	for_each_present_cpu(cpu) {
1688		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1689		int cpustate = st->state;
1690
1691		if (cpustate >= state)
1692			cpuhp_issue_call(cpu, state, false, node);
1693	}
1694
1695remove:
1696	hlist_del(node);
1697	mutex_unlock(&cpuhp_state_mutex);
1698	cpus_read_unlock();
1699
1700	return 0;
1701}
1702EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1703
1704/**
1705 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1706 * @state:	The state to remove
1707 * @invoke:	If true, the teardown function is invoked for cpus where
1708 *		cpu state >= @state
1709 *
1710 * The caller needs to hold cpus read locked while calling this function.
1711 * The teardown callback is currently not allowed to fail. Think
1712 * about module removal!
1713 */
1714void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1715{
1716	struct cpuhp_step *sp = cpuhp_get_step(state);
1717	int cpu;
1718
1719	BUG_ON(cpuhp_cb_check(state));
1720
1721	lockdep_assert_cpus_held();
1722
1723	mutex_lock(&cpuhp_state_mutex);
1724	if (sp->multi_instance) {
1725		WARN(!hlist_empty(&sp->list),
1726		     "Error: Removing state %d which has instances left.\n",
1727		     state);
1728		goto remove;
1729	}
1730
1731	if (!invoke || !cpuhp_get_teardown_cb(state))
1732		goto remove;
1733
1734	/*
1735	 * Call the teardown callback for each present cpu depending
1736	 * on the hotplug state of the cpu. This function is not
1737	 * allowed to fail currently!
1738	 */
1739	for_each_present_cpu(cpu) {
1740		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1741		int cpustate = st->state;
1742
1743		if (cpustate >= state)
1744			cpuhp_issue_call(cpu, state, false, NULL);
1745	}
1746remove:
1747	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1748	mutex_unlock(&cpuhp_state_mutex);
1749}
1750EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1751
1752void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1753{
1754	cpus_read_lock();
1755	__cpuhp_remove_state_cpuslocked(state, invoke);
1756	cpus_read_unlock();
1757}
1758EXPORT_SYMBOL(__cpuhp_remove_state);
1759
1760#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1761static ssize_t show_cpuhp_state(struct device *dev,
1762				struct device_attribute *attr, char *buf)
1763{
1764	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1765
1766	return sprintf(buf, "%d\n", st->state);
1767}
1768static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1769
1770static ssize_t write_cpuhp_target(struct device *dev,
1771				  struct device_attribute *attr,
1772				  const char *buf, size_t count)
1773{
1774	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1775	struct cpuhp_step *sp;
1776	int target, ret;
1777
1778	ret = kstrtoint(buf, 10, &target);
1779	if (ret)
1780		return ret;
1781
1782#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1783	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1784		return -EINVAL;
1785#else
1786	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1787		return -EINVAL;
1788#endif
1789
1790	ret = lock_device_hotplug_sysfs();
1791	if (ret)
1792		return ret;
1793
1794	mutex_lock(&cpuhp_state_mutex);
1795	sp = cpuhp_get_step(target);
1796	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1797	mutex_unlock(&cpuhp_state_mutex);
1798	if (ret)
1799		goto out;
1800
1801	if (st->state < target)
1802		ret = do_cpu_up(dev->id, target);
1803	else
1804		ret = do_cpu_down(dev->id, target);
1805out:
1806	unlock_device_hotplug();
1807	return ret ? ret : count;
1808}
1809
1810static ssize_t show_cpuhp_target(struct device *dev,
1811				 struct device_attribute *attr, char *buf)
1812{
1813	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1814
1815	return sprintf(buf, "%d\n", st->target);
1816}
1817static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1818
1819
1820static ssize_t write_cpuhp_fail(struct device *dev,
1821				struct device_attribute *attr,
1822				const char *buf, size_t count)
1823{
1824	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1825	struct cpuhp_step *sp;
1826	int fail, ret;
1827
1828	ret = kstrtoint(buf, 10, &fail);
1829	if (ret)
1830		return ret;
1831
1832	/*
1833	 * Cannot fail STARTING/DYING callbacks.
1834	 */
1835	if (cpuhp_is_atomic_state(fail))
1836		return -EINVAL;
1837
1838	/*
1839	 * Cannot fail anything that doesn't have callbacks.
1840	 */
1841	mutex_lock(&cpuhp_state_mutex);
1842	sp = cpuhp_get_step(fail);
1843	if (!sp->startup.single && !sp->teardown.single)
1844		ret = -EINVAL;
1845	mutex_unlock(&cpuhp_state_mutex);
1846	if (ret)
1847		return ret;
1848
1849	st->fail = fail;
1850
1851	return count;
1852}
1853
1854static ssize_t show_cpuhp_fail(struct device *dev,
1855			       struct device_attribute *attr, char *buf)
1856{
1857	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1858
1859	return sprintf(buf, "%d\n", st->fail);
1860}
1861
1862static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1863
1864static struct attribute *cpuhp_cpu_attrs[] = {
1865	&dev_attr_state.attr,
1866	&dev_attr_target.attr,
1867	&dev_attr_fail.attr,
1868	NULL
1869};
1870
1871static const struct attribute_group cpuhp_cpu_attr_group = {
1872	.attrs = cpuhp_cpu_attrs,
1873	.name = "hotplug",
1874	NULL
1875};
1876
1877static ssize_t show_cpuhp_states(struct device *dev,
1878				 struct device_attribute *attr, char *buf)
1879{
1880	ssize_t cur, res = 0;
1881	int i;
1882
1883	mutex_lock(&cpuhp_state_mutex);
1884	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1885		struct cpuhp_step *sp = cpuhp_get_step(i);
1886
1887		if (sp->name) {
1888			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1889			buf += cur;
1890			res += cur;
1891		}
1892	}
1893	mutex_unlock(&cpuhp_state_mutex);
1894	return res;
1895}
1896static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1897
1898static struct attribute *cpuhp_cpu_root_attrs[] = {
1899	&dev_attr_states.attr,
1900	NULL
1901};
1902
1903static const struct attribute_group cpuhp_cpu_root_attr_group = {
1904	.attrs = cpuhp_cpu_root_attrs,
1905	.name = "hotplug",
1906	NULL
1907};
1908
1909static int __init cpuhp_sysfs_init(void)
1910{
1911	int cpu, ret;
1912
1913	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1914				 &cpuhp_cpu_root_attr_group);
1915	if (ret)
1916		return ret;
1917
1918	for_each_possible_cpu(cpu) {
1919		struct device *dev = get_cpu_device(cpu);
1920
1921		if (!dev)
1922			continue;
1923		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1924		if (ret)
1925			return ret;
1926	}
1927	return 0;
1928}
1929device_initcall(cpuhp_sysfs_init);
1930#endif
1931
1932/*
1933 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1934 * represents all NR_CPUS bits binary values of 1<<nr.
1935 *
1936 * It is used by cpumask_of() to get a constant address to a CPU
1937 * mask value that has a single bit set only.
1938 */
1939
1940/* cpu_bit_bitmap[0] is empty - so we can back into it */
1941#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1942#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1943#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1944#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1945
1946const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1947
1948	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1949	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1950#if BITS_PER_LONG > 32
1951	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1952	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1953#endif
1954};
1955EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1956
1957const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1958EXPORT_SYMBOL(cpu_all_bits);
1959
1960#ifdef CONFIG_INIT_ALL_POSSIBLE
1961struct cpumask __cpu_possible_mask __read_mostly
1962	= {CPU_BITS_ALL};
1963#else
1964struct cpumask __cpu_possible_mask __read_mostly;
1965#endif
1966EXPORT_SYMBOL(__cpu_possible_mask);
1967
1968struct cpumask __cpu_online_mask __read_mostly;
1969EXPORT_SYMBOL(__cpu_online_mask);
1970
1971struct cpumask __cpu_present_mask __read_mostly;
1972EXPORT_SYMBOL(__cpu_present_mask);
1973
1974struct cpumask __cpu_active_mask __read_mostly;
1975EXPORT_SYMBOL(__cpu_active_mask);
1976
1977void init_cpu_present(const struct cpumask *src)
1978{
1979	cpumask_copy(&__cpu_present_mask, src);
1980}
1981
1982void init_cpu_possible(const struct cpumask *src)
1983{
1984	cpumask_copy(&__cpu_possible_mask, src);
1985}
1986
1987void init_cpu_online(const struct cpumask *src)
1988{
1989	cpumask_copy(&__cpu_online_mask, src);
1990}
1991
1992/*
1993 * Activate the first processor.
1994 */
1995void __init boot_cpu_init(void)
1996{
1997	int cpu = smp_processor_id();
1998
1999	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2000	set_cpu_online(cpu, true);
2001	set_cpu_active(cpu, true);
2002	set_cpu_present(cpu, true);
2003	set_cpu_possible(cpu, true);
2004
2005#ifdef CONFIG_SMP
2006	__boot_cpu_id = cpu;
2007#endif
2008}
2009
2010/*
2011 * Must be called _AFTER_ setting up the per_cpu areas
2012 */
2013void __init boot_cpu_state_init(void)
2014{
2015	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2016}