Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the AF_INET socket handler.
   7 *
   8 * Version:	@(#)sock.h	1.0.4	05/13/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Volatiles in skbuff pointers. See
  17 *					skbuff comments. May be overdone,
  18 *					better to prove they can be removed
  19 *					than the reverse.
  20 *		Alan Cox	:	Added a zapped field for tcp to note
  21 *					a socket is reset and must stay shut up
  22 *		Alan Cox	:	New fields for options
  23 *	Pauline Middelink	:	identd support
  24 *		Alan Cox	:	Eliminate low level recv/recvfrom
  25 *		David S. Miller	:	New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  28 *              			protinfo be just a void pointer, as the
  29 *              			protocol specific parts were moved to
  30 *              			respective headers and ipv4/v6, etc now
  31 *              			use private slabcaches for its socks
  32 *              Pedro Hortas	:	New flags field for socket options
  33 *
  34 *
  35 *		This program is free software; you can redistribute it and/or
  36 *		modify it under the terms of the GNU General Public License
  37 *		as published by the Free Software Foundation; either version
  38 *		2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>	/* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61#include <linux/wait.h>
  62#include <linux/cgroup-defs.h>
  63
  64#include <linux/filter.h>
  65#include <linux/rculist_nulls.h>
  66#include <linux/poll.h>
 
  67
  68#include <linux/atomic.h>
 
  69#include <net/dst.h>
  70#include <net/checksum.h>
  71#include <net/tcp_states.h>
  72#include <linux/net_tstamp.h>
 
  73
  74/*
  75 * This structure really needs to be cleaned up.
  76 * Most of it is for TCP, and not used by any of
  77 * the other protocols.
  78 */
  79
  80/* Define this to get the SOCK_DBG debugging facility. */
  81#define SOCK_DEBUGGING
  82#ifdef SOCK_DEBUGGING
  83#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  84					printk(KERN_DEBUG msg); } while (0)
  85#else
  86/* Validate arguments and do nothing */
  87static inline __printf(2, 3)
  88void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  89{
  90}
  91#endif
  92
  93/* This is the per-socket lock.  The spinlock provides a synchronization
  94 * between user contexts and software interrupt processing, whereas the
  95 * mini-semaphore synchronizes multiple users amongst themselves.
  96 */
  97typedef struct {
  98	spinlock_t		slock;
  99	int			owned;
 100	wait_queue_head_t	wq;
 101	/*
 102	 * We express the mutex-alike socket_lock semantics
 103	 * to the lock validator by explicitly managing
 104	 * the slock as a lock variant (in addition to
 105	 * the slock itself):
 106	 */
 107#ifdef CONFIG_DEBUG_LOCK_ALLOC
 108	struct lockdep_map dep_map;
 109#endif
 110} socket_lock_t;
 111
 112struct sock;
 113struct proto;
 114struct net;
 115
 116typedef __u32 __bitwise __portpair;
 117typedef __u64 __bitwise __addrpair;
 118
 119/**
 120 *	struct sock_common - minimal network layer representation of sockets
 121 *	@skc_daddr: Foreign IPv4 addr
 122 *	@skc_rcv_saddr: Bound local IPv4 addr
 
 123 *	@skc_hash: hash value used with various protocol lookup tables
 124 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 125 *	@skc_dport: placeholder for inet_dport/tw_dport
 126 *	@skc_num: placeholder for inet_num/tw_num
 
 127 *	@skc_family: network address family
 128 *	@skc_state: Connection state
 129 *	@skc_reuse: %SO_REUSEADDR setting
 130 *	@skc_reuseport: %SO_REUSEPORT setting
 
 
 131 *	@skc_bound_dev_if: bound device index if != 0
 132 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 133 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 134 *	@skc_prot: protocol handlers inside a network family
 135 *	@skc_net: reference to the network namespace of this socket
 
 
 
 136 *	@skc_node: main hash linkage for various protocol lookup tables
 137 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 138 *	@skc_tx_queue_mapping: tx queue number for this connection
 
 139 *	@skc_flags: place holder for sk_flags
 140 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 141 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 
 
 
 
 142 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 
 
 
 
 143 *	@skc_refcnt: reference count
 144 *
 145 *	This is the minimal network layer representation of sockets, the header
 146 *	for struct sock and struct inet_timewait_sock.
 147 */
 148struct sock_common {
 149	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 150	 * address on 64bit arches : cf INET_MATCH()
 151	 */
 152	union {
 153		__addrpair	skc_addrpair;
 154		struct {
 155			__be32	skc_daddr;
 156			__be32	skc_rcv_saddr;
 157		};
 158	};
 159	union  {
 160		unsigned int	skc_hash;
 161		__u16		skc_u16hashes[2];
 162	};
 163	/* skc_dport && skc_num must be grouped as well */
 164	union {
 165		__portpair	skc_portpair;
 166		struct {
 167			__be16	skc_dport;
 168			__u16	skc_num;
 169		};
 170	};
 171
 172	unsigned short		skc_family;
 173	volatile unsigned char	skc_state;
 174	unsigned char		skc_reuse:4;
 175	unsigned char		skc_reuseport:1;
 176	unsigned char		skc_ipv6only:1;
 177	unsigned char		skc_net_refcnt:1;
 178	int			skc_bound_dev_if;
 179	union {
 180		struct hlist_node	skc_bind_node;
 181		struct hlist_nulls_node skc_portaddr_node;
 182	};
 183	struct proto		*skc_prot;
 184	possible_net_t		skc_net;
 185
 186#if IS_ENABLED(CONFIG_IPV6)
 187	struct in6_addr		skc_v6_daddr;
 188	struct in6_addr		skc_v6_rcv_saddr;
 189#endif
 190
 191	atomic64_t		skc_cookie;
 192
 193	/* following fields are padding to force
 194	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 195	 * assuming IPV6 is enabled. We use this padding differently
 196	 * for different kind of 'sockets'
 197	 */
 198	union {
 199		unsigned long	skc_flags;
 200		struct sock	*skc_listener; /* request_sock */
 201		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 202	};
 203	/*
 204	 * fields between dontcopy_begin/dontcopy_end
 205	 * are not copied in sock_copy()
 206	 */
 207	/* private: */
 208	int			skc_dontcopy_begin[0];
 209	/* public: */
 210	union {
 211		struct hlist_node	skc_node;
 212		struct hlist_nulls_node skc_nulls_node;
 213	};
 214	int			skc_tx_queue_mapping;
 
 
 
 215	union {
 216		int		skc_incoming_cpu;
 217		u32		skc_rcv_wnd;
 218		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 219	};
 220
 221	atomic_t		skc_refcnt;
 222	/* private: */
 223	int                     skc_dontcopy_end[0];
 224	union {
 225		u32		skc_rxhash;
 226		u32		skc_window_clamp;
 227		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 228	};
 229	/* public: */
 230};
 231
 
 
 232/**
 233  *	struct sock - network layer representation of sockets
 234  *	@__sk_common: shared layout with inet_timewait_sock
 235  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 236  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 237  *	@sk_lock:	synchronizer
 
 238  *	@sk_rcvbuf: size of receive buffer in bytes
 239  *	@sk_wq: sock wait queue and async head
 240  *	@sk_rx_dst: receive input route used by early demux
 241  *	@sk_dst_cache: destination cache
 
 242  *	@sk_policy: flow policy
 
 243  *	@sk_receive_queue: incoming packets
 244  *	@sk_wmem_alloc: transmit queue bytes committed
 
 245  *	@sk_write_queue: Packet sending queue
 246  *	@sk_omem_alloc: "o" is "option" or "other"
 247  *	@sk_wmem_queued: persistent queue size
 248  *	@sk_forward_alloc: space allocated forward
 249  *	@sk_napi_id: id of the last napi context to receive data for sk
 250  *	@sk_ll_usec: usecs to busypoll when there is no data
 251  *	@sk_allocation: allocation mode
 252  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 
 253  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 254  *	@sk_sndbuf: size of send buffer in bytes
 
 
 255  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 256  *	@sk_no_check_rx: allow zero checksum in RX packets
 257  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 258  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 
 
 259  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 260  *	@sk_gso_max_size: Maximum GSO segment size to build
 261  *	@sk_gso_max_segs: Maximum number of GSO segments
 
 262  *	@sk_lingertime: %SO_LINGER l_linger setting
 263  *	@sk_backlog: always used with the per-socket spinlock held
 264  *	@sk_callback_lock: used with the callbacks in the end of this struct
 265  *	@sk_error_queue: rarely used
 266  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 267  *			  IPV6_ADDRFORM for instance)
 268  *	@sk_err: last error
 269  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 270  *		      persistent failure not just 'timed out'
 271  *	@sk_drops: raw/udp drops counter
 272  *	@sk_ack_backlog: current listen backlog
 273  *	@sk_max_ack_backlog: listen backlog set in listen()
 
 274  *	@sk_priority: %SO_PRIORITY setting
 275  *	@sk_type: socket type (%SOCK_STREAM, etc)
 276  *	@sk_protocol: which protocol this socket belongs in this network family
 277  *	@sk_peer_pid: &struct pid for this socket's peer
 278  *	@sk_peer_cred: %SO_PEERCRED setting
 279  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 280  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 281  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 282  *	@sk_txhash: computed flow hash for use on transmit
 283  *	@sk_filter: socket filtering instructions
 284  *	@sk_timer: sock cleanup timer
 285  *	@sk_stamp: time stamp of last packet received
 
 286  *	@sk_tsflags: SO_TIMESTAMPING socket options
 287  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 
 288  *	@sk_socket: Identd and reporting IO signals
 289  *	@sk_user_data: RPC layer private data
 290  *	@sk_frag: cached page frag
 291  *	@sk_peek_off: current peek_offset value
 292  *	@sk_send_head: front of stuff to transmit
 
 
 293  *	@sk_security: used by security modules
 294  *	@sk_mark: generic packet mark
 295  *	@sk_cgrp_data: cgroup data for this cgroup
 296  *	@sk_memcg: this socket's memory cgroup association
 297  *	@sk_write_pending: a write to stream socket waits to start
 298  *	@sk_state_change: callback to indicate change in the state of the sock
 299  *	@sk_data_ready: callback to indicate there is data to be processed
 300  *	@sk_write_space: callback to indicate there is bf sending space available
 301  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 302  *	@sk_backlog_rcv: callback to process the backlog
 
 303  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 304  *	@sk_reuseport_cb: reuseport group container
 305 */
 
 
 
 
 
 
 306struct sock {
 307	/*
 308	 * Now struct inet_timewait_sock also uses sock_common, so please just
 309	 * don't add nothing before this first member (__sk_common) --acme
 310	 */
 311	struct sock_common	__sk_common;
 312#define sk_node			__sk_common.skc_node
 313#define sk_nulls_node		__sk_common.skc_nulls_node
 314#define sk_refcnt		__sk_common.skc_refcnt
 315#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 
 
 
 316
 317#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 318#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 319#define sk_hash			__sk_common.skc_hash
 320#define sk_portpair		__sk_common.skc_portpair
 321#define sk_num			__sk_common.skc_num
 322#define sk_dport		__sk_common.skc_dport
 323#define sk_addrpair		__sk_common.skc_addrpair
 324#define sk_daddr		__sk_common.skc_daddr
 325#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 326#define sk_family		__sk_common.skc_family
 327#define sk_state		__sk_common.skc_state
 328#define sk_reuse		__sk_common.skc_reuse
 329#define sk_reuseport		__sk_common.skc_reuseport
 330#define sk_ipv6only		__sk_common.skc_ipv6only
 331#define sk_net_refcnt		__sk_common.skc_net_refcnt
 332#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 333#define sk_bind_node		__sk_common.skc_bind_node
 334#define sk_prot			__sk_common.skc_prot
 335#define sk_net			__sk_common.skc_net
 336#define sk_v6_daddr		__sk_common.skc_v6_daddr
 337#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 338#define sk_cookie		__sk_common.skc_cookie
 339#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 340#define sk_flags		__sk_common.skc_flags
 341#define sk_rxhash		__sk_common.skc_rxhash
 342
 343	socket_lock_t		sk_lock;
 
 
 
 
 344	struct sk_buff_head	sk_receive_queue;
 345	/*
 346	 * The backlog queue is special, it is always used with
 347	 * the per-socket spinlock held and requires low latency
 348	 * access. Therefore we special case it's implementation.
 349	 * Note : rmem_alloc is in this structure to fill a hole
 350	 * on 64bit arches, not because its logically part of
 351	 * backlog.
 352	 */
 353	struct {
 354		atomic_t	rmem_alloc;
 355		int		len;
 356		struct sk_buff	*head;
 357		struct sk_buff	*tail;
 358	} sk_backlog;
 359#define sk_rmem_alloc sk_backlog.rmem_alloc
 360	int			sk_forward_alloc;
 361
 362	__u32			sk_txhash;
 363#ifdef CONFIG_NET_RX_BUSY_POLL
 364	unsigned int		sk_napi_id;
 365	unsigned int		sk_ll_usec;
 
 
 366#endif
 367	atomic_t		sk_drops;
 368	int			sk_rcvbuf;
 369
 370	struct sk_filter __rcu	*sk_filter;
 371	union {
 372		struct socket_wq __rcu	*sk_wq;
 
 373		struct socket_wq	*sk_wq_raw;
 
 374	};
 375#ifdef CONFIG_XFRM
 376	struct xfrm_policy __rcu *sk_policy[2];
 377#endif
 378	struct dst_entry	*sk_rx_dst;
 379	struct dst_entry __rcu	*sk_dst_cache;
 380	/* Note: 32bit hole on 64bit arches */
 381	atomic_t		sk_wmem_alloc;
 382	atomic_t		sk_omem_alloc;
 383	int			sk_sndbuf;
 384	struct sk_buff_head	sk_write_queue;
 385	kmemcheck_bitfield_begin(flags);
 386	unsigned int		sk_shutdown  : 2,
 387				sk_no_check_tx : 1,
 388				sk_no_check_rx : 1,
 389				sk_userlocks : 4,
 390				sk_protocol  : 8,
 391				sk_type      : 16;
 392#define SK_PROTOCOL_MAX U8_MAX
 393	kmemcheck_bitfield_end(flags);
 394	int			sk_wmem_queued;
 395	gfp_t			sk_allocation;
 396	u32			sk_pacing_rate; /* bytes per second */
 397	u32			sk_max_pacing_rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398	netdev_features_t	sk_route_caps;
 399	netdev_features_t	sk_route_nocaps;
 
 400	int			sk_gso_type;
 401	unsigned int		sk_gso_max_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402	u16			sk_gso_max_segs;
 403	int			sk_rcvlowat;
 404	unsigned long	        sk_lingertime;
 405	struct sk_buff_head	sk_error_queue;
 406	struct proto		*sk_prot_creator;
 407	rwlock_t		sk_callback_lock;
 408	int			sk_err,
 409				sk_err_soft;
 410	u32			sk_ack_backlog;
 411	u32			sk_max_ack_backlog;
 412	__u32			sk_priority;
 413	__u32			sk_mark;
 414	struct pid		*sk_peer_pid;
 415	const struct cred	*sk_peer_cred;
 416	long			sk_rcvtimeo;
 417	long			sk_sndtimeo;
 418	struct timer_list	sk_timer;
 419	ktime_t			sk_stamp;
 
 
 
 420	u16			sk_tsflags;
 
 421	u32			sk_tskey;
 
 
 
 
 
 
 
 422	struct socket		*sk_socket;
 423	void			*sk_user_data;
 424	struct page_frag	sk_frag;
 425	struct sk_buff		*sk_send_head;
 426	__s32			sk_peek_off;
 427	int			sk_write_pending;
 428#ifdef CONFIG_SECURITY
 429	void			*sk_security;
 430#endif
 431	struct sock_cgroup_data	sk_cgrp_data;
 432	struct mem_cgroup	*sk_memcg;
 433	void			(*sk_state_change)(struct sock *sk);
 434	void			(*sk_data_ready)(struct sock *sk);
 435	void			(*sk_write_space)(struct sock *sk);
 436	void			(*sk_error_report)(struct sock *sk);
 437	int			(*sk_backlog_rcv)(struct sock *sk,
 438						  struct sk_buff *skb);
 
 
 
 
 
 439	void                    (*sk_destruct)(struct sock *sk);
 440	struct sock_reuseport __rcu	*sk_reuseport_cb;
 
 
 
 
 441};
 442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 444
 445#define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
 446#define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447
 448/*
 449 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 450 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 451 * on a socket means that the socket will reuse everybody else's port
 452 * without looking at the other's sk_reuse value.
 453 */
 454
 455#define SK_NO_REUSE	0
 456#define SK_CAN_REUSE	1
 457#define SK_FORCE_REUSE	2
 458
 
 
 459static inline int sk_peek_offset(struct sock *sk, int flags)
 460{
 461	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
 462		return sk->sk_peek_off;
 463	else
 464		return 0;
 
 465}
 466
 467static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 468{
 469	if (sk->sk_peek_off >= 0) {
 470		if (sk->sk_peek_off >= val)
 471			sk->sk_peek_off -= val;
 472		else
 473			sk->sk_peek_off = 0;
 474	}
 475}
 476
 477static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 478{
 479	if (sk->sk_peek_off >= 0)
 480		sk->sk_peek_off += val;
 481}
 482
 483/*
 484 * Hashed lists helper routines
 485 */
 486static inline struct sock *sk_entry(const struct hlist_node *node)
 487{
 488	return hlist_entry(node, struct sock, sk_node);
 489}
 490
 491static inline struct sock *__sk_head(const struct hlist_head *head)
 492{
 493	return hlist_entry(head->first, struct sock, sk_node);
 494}
 495
 496static inline struct sock *sk_head(const struct hlist_head *head)
 497{
 498	return hlist_empty(head) ? NULL : __sk_head(head);
 499}
 500
 501static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 502{
 503	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 504}
 505
 506static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 507{
 508	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 509}
 510
 511static inline struct sock *sk_next(const struct sock *sk)
 512{
 513	return sk->sk_node.next ?
 514		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 515}
 516
 517static inline struct sock *sk_nulls_next(const struct sock *sk)
 518{
 519	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 520		hlist_nulls_entry(sk->sk_nulls_node.next,
 521				  struct sock, sk_nulls_node) :
 522		NULL;
 523}
 524
 525static inline bool sk_unhashed(const struct sock *sk)
 526{
 527	return hlist_unhashed(&sk->sk_node);
 528}
 529
 530static inline bool sk_hashed(const struct sock *sk)
 531{
 532	return !sk_unhashed(sk);
 533}
 534
 535static inline void sk_node_init(struct hlist_node *node)
 536{
 537	node->pprev = NULL;
 538}
 539
 540static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 541{
 542	node->pprev = NULL;
 543}
 544
 545static inline void __sk_del_node(struct sock *sk)
 546{
 547	__hlist_del(&sk->sk_node);
 548}
 549
 550/* NB: equivalent to hlist_del_init_rcu */
 551static inline bool __sk_del_node_init(struct sock *sk)
 552{
 553	if (sk_hashed(sk)) {
 554		__sk_del_node(sk);
 555		sk_node_init(&sk->sk_node);
 556		return true;
 557	}
 558	return false;
 559}
 560
 561/* Grab socket reference count. This operation is valid only
 562   when sk is ALREADY grabbed f.e. it is found in hash table
 563   or a list and the lookup is made under lock preventing hash table
 564   modifications.
 565 */
 566
 567static inline void sock_hold(struct sock *sk)
 568{
 569	atomic_inc(&sk->sk_refcnt);
 570}
 571
 572/* Ungrab socket in the context, which assumes that socket refcnt
 573   cannot hit zero, f.e. it is true in context of any socketcall.
 574 */
 575static inline void __sock_put(struct sock *sk)
 576{
 577	atomic_dec(&sk->sk_refcnt);
 578}
 579
 580static inline bool sk_del_node_init(struct sock *sk)
 581{
 582	bool rc = __sk_del_node_init(sk);
 583
 584	if (rc) {
 585		/* paranoid for a while -acme */
 586		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 587		__sock_put(sk);
 588	}
 589	return rc;
 590}
 591#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 592
 593static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 594{
 595	if (sk_hashed(sk)) {
 596		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 597		return true;
 598	}
 599	return false;
 600}
 601
 602static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 603{
 604	bool rc = __sk_nulls_del_node_init_rcu(sk);
 605
 606	if (rc) {
 607		/* paranoid for a while -acme */
 608		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 609		__sock_put(sk);
 610	}
 611	return rc;
 612}
 613
 614static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 615{
 616	hlist_add_head(&sk->sk_node, list);
 617}
 618
 619static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 620{
 621	sock_hold(sk);
 622	__sk_add_node(sk, list);
 623}
 624
 625static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 626{
 627	sock_hold(sk);
 628	hlist_add_head_rcu(&sk->sk_node, list);
 
 
 
 
 
 
 
 
 
 
 629}
 630
 631static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 632{
 633	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 634	    sk->sk_family == AF_INET6)
 635		hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 636	else
 637		hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 
 638}
 639
 640static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 641{
 642	sock_hold(sk);
 643	__sk_nulls_add_node_rcu(sk, list);
 644}
 645
 646static inline void __sk_del_bind_node(struct sock *sk)
 647{
 648	__hlist_del(&sk->sk_bind_node);
 649}
 650
 651static inline void sk_add_bind_node(struct sock *sk,
 652					struct hlist_head *list)
 653{
 654	hlist_add_head(&sk->sk_bind_node, list);
 655}
 656
 657#define sk_for_each(__sk, list) \
 658	hlist_for_each_entry(__sk, list, sk_node)
 659#define sk_for_each_rcu(__sk, list) \
 660	hlist_for_each_entry_rcu(__sk, list, sk_node)
 661#define sk_nulls_for_each(__sk, node, list) \
 662	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 663#define sk_nulls_for_each_rcu(__sk, node, list) \
 664	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 665#define sk_for_each_from(__sk) \
 666	hlist_for_each_entry_from(__sk, sk_node)
 667#define sk_nulls_for_each_from(__sk, node) \
 668	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 669		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 670#define sk_for_each_safe(__sk, tmp, list) \
 671	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 672#define sk_for_each_bound(__sk, list) \
 673	hlist_for_each_entry(__sk, list, sk_bind_node)
 674
 675/**
 676 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
 677 * @tpos:	the type * to use as a loop cursor.
 678 * @pos:	the &struct hlist_node to use as a loop cursor.
 679 * @head:	the head for your list.
 680 * @offset:	offset of hlist_node within the struct.
 681 *
 682 */
 683#define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
 684	for (pos = (head)->first;					       \
 685	     (!is_a_nulls(pos)) &&					       \
 686		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 687	     pos = pos->next)
 688
 689static inline struct user_namespace *sk_user_ns(struct sock *sk)
 690{
 691	/* Careful only use this in a context where these parameters
 692	 * can not change and must all be valid, such as recvmsg from
 693	 * userspace.
 694	 */
 695	return sk->sk_socket->file->f_cred->user_ns;
 696}
 697
 698/* Sock flags */
 699enum sock_flags {
 700	SOCK_DEAD,
 701	SOCK_DONE,
 702	SOCK_URGINLINE,
 703	SOCK_KEEPOPEN,
 704	SOCK_LINGER,
 705	SOCK_DESTROY,
 706	SOCK_BROADCAST,
 707	SOCK_TIMESTAMP,
 708	SOCK_ZAPPED,
 709	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 710	SOCK_DBG, /* %SO_DEBUG setting */
 711	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 712	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 713	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 714	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 715	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 716	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 717	SOCK_FASYNC, /* fasync() active */
 718	SOCK_RXQ_OVFL,
 719	SOCK_ZEROCOPY, /* buffers from userspace */
 720	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 721	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 722		     * Will use last 4 bytes of packet sent from
 723		     * user-space instead.
 724		     */
 725	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 726	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 
 
 
 
 727};
 728
 729#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 730
 731static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 732{
 733	nsk->sk_flags = osk->sk_flags;
 734}
 735
 736static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 737{
 738	__set_bit(flag, &sk->sk_flags);
 739}
 740
 741static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 742{
 743	__clear_bit(flag, &sk->sk_flags);
 744}
 745
 
 
 
 
 
 
 
 
 
 746static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 747{
 748	return test_bit(flag, &sk->sk_flags);
 749}
 750
 751#ifdef CONFIG_NET
 752extern struct static_key memalloc_socks;
 753static inline int sk_memalloc_socks(void)
 754{
 755	return static_key_false(&memalloc_socks);
 756}
 
 
 757#else
 758
 759static inline int sk_memalloc_socks(void)
 760{
 761	return 0;
 762}
 763
 
 
 764#endif
 765
 766static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 767{
 768	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 769}
 770
 771static inline void sk_acceptq_removed(struct sock *sk)
 772{
 773	sk->sk_ack_backlog--;
 774}
 775
 776static inline void sk_acceptq_added(struct sock *sk)
 777{
 778	sk->sk_ack_backlog++;
 779}
 780
 781static inline bool sk_acceptq_is_full(const struct sock *sk)
 782{
 783	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 784}
 785
 786/*
 787 * Compute minimal free write space needed to queue new packets.
 788 */
 789static inline int sk_stream_min_wspace(const struct sock *sk)
 790{
 791	return sk->sk_wmem_queued >> 1;
 792}
 793
 794static inline int sk_stream_wspace(const struct sock *sk)
 795{
 796	return sk->sk_sndbuf - sk->sk_wmem_queued;
 
 
 
 
 
 797}
 798
 799void sk_stream_write_space(struct sock *sk);
 800
 801/* OOB backlog add */
 802static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 803{
 804	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 805	skb_dst_force_safe(skb);
 806
 807	if (!sk->sk_backlog.tail)
 808		sk->sk_backlog.head = skb;
 809	else
 810		sk->sk_backlog.tail->next = skb;
 811
 812	sk->sk_backlog.tail = skb;
 813	skb->next = NULL;
 814}
 815
 816/*
 817 * Take into account size of receive queue and backlog queue
 818 * Do not take into account this skb truesize,
 819 * to allow even a single big packet to come.
 820 */
 821static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 822{
 823	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 824
 825	return qsize > limit;
 826}
 827
 828/* The per-socket spinlock must be held here. */
 829static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 830					      unsigned int limit)
 831{
 832	if (sk_rcvqueues_full(sk, limit))
 833		return -ENOBUFS;
 834
 835	/*
 836	 * If the skb was allocated from pfmemalloc reserves, only
 837	 * allow SOCK_MEMALLOC sockets to use it as this socket is
 838	 * helping free memory
 839	 */
 840	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 841		return -ENOMEM;
 842
 843	__sk_add_backlog(sk, skb);
 844	sk->sk_backlog.len += skb->truesize;
 845	return 0;
 846}
 847
 848int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 849
 850static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 851{
 852	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 853		return __sk_backlog_rcv(sk, skb);
 854
 855	return sk->sk_backlog_rcv(sk, skb);
 856}
 857
 858static inline void sk_incoming_cpu_update(struct sock *sk)
 859{
 860	sk->sk_incoming_cpu = raw_smp_processor_id();
 
 
 
 861}
 862
 863static inline void sock_rps_record_flow_hash(__u32 hash)
 864{
 865#ifdef CONFIG_RPS
 866	struct rps_sock_flow_table *sock_flow_table;
 867
 868	rcu_read_lock();
 869	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 870	rps_record_sock_flow(sock_flow_table, hash);
 871	rcu_read_unlock();
 872#endif
 873}
 874
 875static inline void sock_rps_record_flow(const struct sock *sk)
 876{
 877#ifdef CONFIG_RPS
 878	sock_rps_record_flow_hash(sk->sk_rxhash);
 
 
 
 
 
 
 
 
 
 
 
 
 
 879#endif
 880}
 881
 882static inline void sock_rps_save_rxhash(struct sock *sk,
 883					const struct sk_buff *skb)
 884{
 885#ifdef CONFIG_RPS
 886	if (unlikely(sk->sk_rxhash != skb->hash))
 887		sk->sk_rxhash = skb->hash;
 888#endif
 889}
 890
 891static inline void sock_rps_reset_rxhash(struct sock *sk)
 892{
 893#ifdef CONFIG_RPS
 894	sk->sk_rxhash = 0;
 895#endif
 896}
 897
 898#define sk_wait_event(__sk, __timeo, __condition)			\
 899	({	int __rc;						\
 900		release_sock(__sk);					\
 901		__rc = __condition;					\
 902		if (!__rc) {						\
 903			*(__timeo) = schedule_timeout(*(__timeo));	\
 
 
 904		}							\
 905		sched_annotate_sleep();						\
 906		lock_sock(__sk);					\
 907		__rc = __condition;					\
 908		__rc;							\
 909	})
 910
 911int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 912int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 913void sk_stream_wait_close(struct sock *sk, long timeo_p);
 914int sk_stream_error(struct sock *sk, int flags, int err);
 915void sk_stream_kill_queues(struct sock *sk);
 916void sk_set_memalloc(struct sock *sk);
 917void sk_clear_memalloc(struct sock *sk);
 918
 
 
 
 
 
 
 
 
 
 
 
 919int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
 920
 921struct request_sock_ops;
 922struct timewait_sock_ops;
 923struct inet_hashinfo;
 924struct raw_hashinfo;
 
 925struct module;
 926
 927/*
 928 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 929 * un-modified. Special care is taken when initializing object to zero.
 930 */
 931static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 932{
 933	if (offsetof(struct sock, sk_node.next) != 0)
 934		memset(sk, 0, offsetof(struct sock, sk_node.next));
 935	memset(&sk->sk_node.pprev, 0,
 936	       size - offsetof(struct sock, sk_node.pprev));
 937}
 938
 939/* Networking protocol blocks we attach to sockets.
 940 * socket layer -> transport layer interface
 941 */
 942struct proto {
 943	void			(*close)(struct sock *sk,
 944					long timeout);
 
 
 
 945	int			(*connect)(struct sock *sk,
 946					struct sockaddr *uaddr,
 947					int addr_len);
 948	int			(*disconnect)(struct sock *sk, int flags);
 949
 950	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
 
 951
 952	int			(*ioctl)(struct sock *sk, int cmd,
 953					 unsigned long arg);
 954	int			(*init)(struct sock *sk);
 955	void			(*destroy)(struct sock *sk);
 956	void			(*shutdown)(struct sock *sk, int how);
 957	int			(*setsockopt)(struct sock *sk, int level,
 958					int optname, char __user *optval,
 959					unsigned int optlen);
 960	int			(*getsockopt)(struct sock *sk, int level,
 961					int optname, char __user *optval,
 962					int __user *option);
 
 963#ifdef CONFIG_COMPAT
 964	int			(*compat_setsockopt)(struct sock *sk,
 965					int level,
 966					int optname, char __user *optval,
 967					unsigned int optlen);
 968	int			(*compat_getsockopt)(struct sock *sk,
 969					int level,
 970					int optname, char __user *optval,
 971					int __user *option);
 972	int			(*compat_ioctl)(struct sock *sk,
 973					unsigned int cmd, unsigned long arg);
 974#endif
 975	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
 976					   size_t len);
 977	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
 978					   size_t len, int noblock, int flags,
 979					   int *addr_len);
 980	int			(*sendpage)(struct sock *sk, struct page *page,
 981					int offset, size_t size, int flags);
 982	int			(*bind)(struct sock *sk,
 983					struct sockaddr *uaddr, int addr_len);
 
 
 984
 985	int			(*backlog_rcv) (struct sock *sk,
 986						struct sk_buff *skb);
 987
 988	void		(*release_cb)(struct sock *sk);
 989
 990	/* Keeping track of sk's, looking them up, and port selection methods. */
 991	int			(*hash)(struct sock *sk);
 992	void			(*unhash)(struct sock *sk);
 993	void			(*rehash)(struct sock *sk);
 994	int			(*get_port)(struct sock *sk, unsigned short snum);
 995	void			(*clear_sk)(struct sock *sk, int size);
 996
 997	/* Keeping track of sockets in use */
 998#ifdef CONFIG_PROC_FS
 999	unsigned int		inuse_idx;
1000#endif
1001
1002	bool			(*stream_memory_free)(const struct sock *sk);
 
1003	/* Memory pressure */
1004	void			(*enter_memory_pressure)(struct sock *sk);
 
1005	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1006	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1007	/*
1008	 * Pressure flag: try to collapse.
1009	 * Technical note: it is used by multiple contexts non atomically.
1010	 * All the __sk_mem_schedule() is of this nature: accounting
1011	 * is strict, actions are advisory and have some latency.
1012	 */
1013	int			*memory_pressure;
1014	long			*sysctl_mem;
 
1015	int			*sysctl_wmem;
1016	int			*sysctl_rmem;
 
 
 
1017	int			max_header;
1018	bool			no_autobind;
1019
1020	struct kmem_cache	*slab;
1021	unsigned int		obj_size;
1022	int			slab_flags;
 
 
1023
1024	struct percpu_counter	*orphan_count;
1025
1026	struct request_sock_ops	*rsk_prot;
1027	struct timewait_sock_ops *twsk_prot;
1028
1029	union {
1030		struct inet_hashinfo	*hashinfo;
1031		struct udp_table	*udp_table;
1032		struct raw_hashinfo	*raw_hash;
 
1033	} h;
1034
1035	struct module		*owner;
1036
1037	char			name[32];
1038
1039	struct list_head	node;
1040#ifdef SOCK_REFCNT_DEBUG
1041	atomic_t		socks;
1042#endif
1043	int			(*diag_destroy)(struct sock *sk, int err);
1044};
1045
1046int proto_register(struct proto *prot, int alloc_slab);
1047void proto_unregister(struct proto *prot);
 
1048
1049#ifdef SOCK_REFCNT_DEBUG
1050static inline void sk_refcnt_debug_inc(struct sock *sk)
1051{
1052	atomic_inc(&sk->sk_prot->socks);
1053}
1054
1055static inline void sk_refcnt_debug_dec(struct sock *sk)
1056{
1057	atomic_dec(&sk->sk_prot->socks);
1058	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1059	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1060}
1061
1062static inline void sk_refcnt_debug_release(const struct sock *sk)
1063{
1064	if (atomic_read(&sk->sk_refcnt) != 1)
1065		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1066		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1067}
1068#else /* SOCK_REFCNT_DEBUG */
1069#define sk_refcnt_debug_inc(sk) do { } while (0)
1070#define sk_refcnt_debug_dec(sk) do { } while (0)
1071#define sk_refcnt_debug_release(sk) do { } while (0)
1072#endif /* SOCK_REFCNT_DEBUG */
1073
1074static inline bool sk_stream_memory_free(const struct sock *sk)
1075{
1076	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1077		return false;
1078
1079	return sk->sk_prot->stream_memory_free ?
1080		sk->sk_prot->stream_memory_free(sk) : true;
1081}
1082
1083static inline bool sk_stream_is_writeable(const struct sock *sk)
 
 
 
 
 
1084{
1085	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1086	       sk_stream_memory_free(sk);
1087}
1088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089
1090static inline bool sk_has_memory_pressure(const struct sock *sk)
1091{
1092	return sk->sk_prot->memory_pressure != NULL;
1093}
1094
1095static inline bool sk_under_memory_pressure(const struct sock *sk)
1096{
1097	if (!sk->sk_prot->memory_pressure)
1098		return false;
1099
1100	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1101	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1102		return true;
1103
1104	return !!*sk->sk_prot->memory_pressure;
1105}
1106
1107static inline void sk_leave_memory_pressure(struct sock *sk)
1108{
1109	int *memory_pressure = sk->sk_prot->memory_pressure;
1110
1111	if (!memory_pressure)
1112		return;
1113
1114	if (*memory_pressure)
1115		*memory_pressure = 0;
1116}
1117
1118static inline void sk_enter_memory_pressure(struct sock *sk)
1119{
1120	if (!sk->sk_prot->enter_memory_pressure)
1121		return;
1122
1123	sk->sk_prot->enter_memory_pressure(sk);
1124}
1125
1126static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1127{
1128	return sk->sk_prot->sysctl_mem[index];
1129}
1130
1131static inline long
1132sk_memory_allocated(const struct sock *sk)
1133{
1134	return atomic_long_read(sk->sk_prot->memory_allocated);
1135}
1136
1137static inline long
1138sk_memory_allocated_add(struct sock *sk, int amt)
1139{
1140	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1141}
1142
1143static inline void
1144sk_memory_allocated_sub(struct sock *sk, int amt)
1145{
1146	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1147}
1148
1149static inline void sk_sockets_allocated_dec(struct sock *sk)
1150{
1151	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1152}
1153
1154static inline void sk_sockets_allocated_inc(struct sock *sk)
1155{
1156	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1157}
1158
1159static inline int
1160sk_sockets_allocated_read_positive(struct sock *sk)
1161{
1162	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1163}
1164
1165static inline int
1166proto_sockets_allocated_sum_positive(struct proto *prot)
1167{
1168	return percpu_counter_sum_positive(prot->sockets_allocated);
1169}
1170
1171static inline long
1172proto_memory_allocated(struct proto *prot)
1173{
1174	return atomic_long_read(prot->memory_allocated);
1175}
1176
1177static inline bool
1178proto_memory_pressure(struct proto *prot)
1179{
1180	if (!prot->memory_pressure)
1181		return false;
1182	return !!*prot->memory_pressure;
1183}
1184
1185
1186#ifdef CONFIG_PROC_FS
1187/* Called with local bh disabled */
1188void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1189int sock_prot_inuse_get(struct net *net, struct proto *proto);
 
1190#else
1191static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1192		int inc)
1193{
1194}
1195#endif
1196
1197
1198/* With per-bucket locks this operation is not-atomic, so that
1199 * this version is not worse.
1200 */
1201static inline int __sk_prot_rehash(struct sock *sk)
1202{
1203	sk->sk_prot->unhash(sk);
1204	return sk->sk_prot->hash(sk);
1205}
1206
1207void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1208
1209/* About 10 seconds */
1210#define SOCK_DESTROY_TIME (10*HZ)
1211
1212/* Sockets 0-1023 can't be bound to unless you are superuser */
1213#define PROT_SOCK	1024
1214
1215#define SHUTDOWN_MASK	3
1216#define RCV_SHUTDOWN	1
1217#define SEND_SHUTDOWN	2
1218
1219#define SOCK_SNDBUF_LOCK	1
1220#define SOCK_RCVBUF_LOCK	2
1221#define SOCK_BINDADDR_LOCK	4
1222#define SOCK_BINDPORT_LOCK	8
1223
1224struct socket_alloc {
1225	struct socket socket;
1226	struct inode vfs_inode;
1227};
1228
1229static inline struct socket *SOCKET_I(struct inode *inode)
1230{
1231	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1232}
1233
1234static inline struct inode *SOCK_INODE(struct socket *socket)
1235{
1236	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1237}
1238
1239/*
1240 * Functions for memory accounting
1241 */
 
1242int __sk_mem_schedule(struct sock *sk, int size, int kind);
 
1243void __sk_mem_reclaim(struct sock *sk, int amount);
1244
1245#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
 
 
 
1246#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1247#define SK_MEM_SEND	0
1248#define SK_MEM_RECV	1
1249
 
 
 
 
 
 
 
 
 
 
 
 
 
1250static inline int sk_mem_pages(int amt)
1251{
1252	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1253}
1254
1255static inline bool sk_has_account(struct sock *sk)
1256{
1257	/* return true if protocol supports memory accounting */
1258	return !!sk->sk_prot->memory_allocated;
1259}
1260
1261static inline bool sk_wmem_schedule(struct sock *sk, int size)
1262{
1263	if (!sk_has_account(sk))
1264		return true;
1265	return size <= sk->sk_forward_alloc ||
1266		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1267}
1268
1269static inline bool
1270sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1271{
1272	if (!sk_has_account(sk))
1273		return true;
1274	return size<= sk->sk_forward_alloc ||
1275		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1276		skb_pfmemalloc(skb);
1277}
1278
1279static inline void sk_mem_reclaim(struct sock *sk)
1280{
1281	if (!sk_has_account(sk))
1282		return;
1283	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1284		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1285}
1286
1287static inline void sk_mem_reclaim_partial(struct sock *sk)
1288{
1289	if (!sk_has_account(sk))
1290		return;
1291	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1292		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1293}
1294
1295static inline void sk_mem_charge(struct sock *sk, int size)
1296{
1297	if (!sk_has_account(sk))
1298		return;
1299	sk->sk_forward_alloc -= size;
1300}
1301
1302static inline void sk_mem_uncharge(struct sock *sk, int size)
1303{
1304	if (!sk_has_account(sk))
1305		return;
1306	sk->sk_forward_alloc += size;
 
 
 
 
 
 
 
 
 
 
1307}
1308
 
1309static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1310{
1311	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1312	sk->sk_wmem_queued -= skb->truesize;
1313	sk_mem_uncharge(sk, skb->truesize);
 
 
 
 
 
 
 
1314	__kfree_skb(skb);
1315}
1316
1317/* Used by processes to "lock" a socket state, so that
1318 * interrupts and bottom half handlers won't change it
1319 * from under us. It essentially blocks any incoming
1320 * packets, so that we won't get any new data or any
1321 * packets that change the state of the socket.
1322 *
1323 * While locked, BH processing will add new packets to
1324 * the backlog queue.  This queue is processed by the
1325 * owner of the socket lock right before it is released.
1326 *
1327 * Since ~2.3.5 it is also exclusive sleep lock serializing
1328 * accesses from user process context.
1329 */
1330#define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
1331
1332static inline void sock_release_ownership(struct sock *sk)
1333{
1334	sk->sk_lock.owned = 0;
 
 
 
 
 
1335}
1336
1337/*
1338 * Macro so as to not evaluate some arguments when
1339 * lockdep is not enabled.
1340 *
1341 * Mark both the sk_lock and the sk_lock.slock as a
1342 * per-address-family lock class.
1343 */
1344#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1345do {									\
1346	sk->sk_lock.owned = 0;						\
1347	init_waitqueue_head(&sk->sk_lock.wq);				\
1348	spin_lock_init(&(sk)->sk_lock.slock);				\
1349	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1350			sizeof((sk)->sk_lock));				\
1351	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1352				(skey), (sname));				\
1353	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1354} while (0)
1355
 
 
 
 
 
 
 
 
1356void lock_sock_nested(struct sock *sk, int subclass);
1357
1358static inline void lock_sock(struct sock *sk)
1359{
1360	lock_sock_nested(sk, 0);
1361}
1362
 
1363void release_sock(struct sock *sk);
1364
1365/* BH context may only use the following locking interface. */
1366#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1367#define bh_lock_sock_nested(__sk) \
1368				spin_lock_nested(&((__sk)->sk_lock.slock), \
1369				SINGLE_DEPTH_NESTING)
1370#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1371
1372bool lock_sock_fast(struct sock *sk);
1373/**
1374 * unlock_sock_fast - complement of lock_sock_fast
1375 * @sk: socket
1376 * @slow: slow mode
1377 *
1378 * fast unlock socket for user context.
1379 * If slow mode is on, we call regular release_sock()
1380 */
1381static inline void unlock_sock_fast(struct sock *sk, bool slow)
1382{
1383	if (slow)
1384		release_sock(sk);
1385	else
1386		spin_unlock_bh(&sk->sk_lock.slock);
1387}
1388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389
1390struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1391		      struct proto *prot, int kern);
1392void sk_free(struct sock *sk);
1393void sk_destruct(struct sock *sk);
1394struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
 
1395
1396struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1397			     gfp_t priority);
 
1398void sock_wfree(struct sk_buff *skb);
 
 
1399void skb_orphan_partial(struct sk_buff *skb);
1400void sock_rfree(struct sk_buff *skb);
1401void sock_efree(struct sk_buff *skb);
1402#ifdef CONFIG_INET
1403void sock_edemux(struct sk_buff *skb);
 
1404#else
1405#define sock_edemux(skb) sock_efree(skb)
1406#endif
1407
1408int sock_setsockopt(struct socket *sock, int level, int op,
1409		    char __user *optval, unsigned int optlen);
1410
1411int sock_getsockopt(struct socket *sock, int level, int op,
1412		    char __user *optval, int __user *optlen);
 
 
1413struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1414				    int noblock, int *errcode);
1415struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1416				     unsigned long data_len, int noblock,
1417				     int *errcode, int max_page_order);
1418void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1419void sock_kfree_s(struct sock *sk, void *mem, int size);
1420void sock_kzfree_s(struct sock *sk, void *mem, int size);
1421void sk_send_sigurg(struct sock *sk);
1422
1423struct sockcm_cookie {
 
1424	u32 mark;
 
1425};
1426
 
 
 
 
 
 
 
 
1427int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1428		   struct sockcm_cookie *sockc);
1429
1430/*
1431 * Functions to fill in entries in struct proto_ops when a protocol
1432 * does not implement a particular function.
1433 */
1434int sock_no_bind(struct socket *, struct sockaddr *, int);
1435int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1436int sock_no_socketpair(struct socket *, struct socket *);
1437int sock_no_accept(struct socket *, struct socket *, int);
1438int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1439unsigned int sock_no_poll(struct file *, struct socket *,
1440			  struct poll_table_struct *);
1441int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1442int sock_no_listen(struct socket *, int);
1443int sock_no_shutdown(struct socket *, int);
1444int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1445int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1446int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
 
1447int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1448int sock_no_mmap(struct file *file, struct socket *sock,
1449		 struct vm_area_struct *vma);
1450ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1451			 size_t size, int flags);
 
 
1452
1453/*
1454 * Functions to fill in entries in struct proto_ops when a protocol
1455 * uses the inet style.
1456 */
1457int sock_common_getsockopt(struct socket *sock, int level, int optname,
1458				  char __user *optval, int __user *optlen);
1459int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1460			int flags);
1461int sock_common_setsockopt(struct socket *sock, int level, int optname,
1462				  char __user *optval, unsigned int optlen);
1463int compat_sock_common_getsockopt(struct socket *sock, int level,
1464		int optname, char __user *optval, int __user *optlen);
1465int compat_sock_common_setsockopt(struct socket *sock, int level,
1466		int optname, char __user *optval, unsigned int optlen);
1467
1468void sk_common_release(struct sock *sk);
1469
1470/*
1471 *	Default socket callbacks and setup code
1472 */
1473
1474/* Initialise core socket variables */
1475void sock_init_data(struct socket *sock, struct sock *sk);
1476
1477/*
1478 * Socket reference counting postulates.
1479 *
1480 * * Each user of socket SHOULD hold a reference count.
1481 * * Each access point to socket (an hash table bucket, reference from a list,
1482 *   running timer, skb in flight MUST hold a reference count.
1483 * * When reference count hits 0, it means it will never increase back.
1484 * * When reference count hits 0, it means that no references from
1485 *   outside exist to this socket and current process on current CPU
1486 *   is last user and may/should destroy this socket.
1487 * * sk_free is called from any context: process, BH, IRQ. When
1488 *   it is called, socket has no references from outside -> sk_free
1489 *   may release descendant resources allocated by the socket, but
1490 *   to the time when it is called, socket is NOT referenced by any
1491 *   hash tables, lists etc.
1492 * * Packets, delivered from outside (from network or from another process)
1493 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1494 *   when they sit in queue. Otherwise, packets will leak to hole, when
1495 *   socket is looked up by one cpu and unhasing is made by another CPU.
1496 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1497 *   (leak to backlog). Packet socket does all the processing inside
1498 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1499 *   use separate SMP lock, so that they are prone too.
1500 */
1501
1502/* Ungrab socket and destroy it, if it was the last reference. */
1503static inline void sock_put(struct sock *sk)
1504{
1505	if (atomic_dec_and_test(&sk->sk_refcnt))
1506		sk_free(sk);
1507}
1508/* Generic version of sock_put(), dealing with all sockets
1509 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1510 */
1511void sock_gen_put(struct sock *sk);
1512
1513int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
 
 
 
 
 
 
1514
1515static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1516{
 
 
 
1517	sk->sk_tx_queue_mapping = tx_queue;
1518}
1519
 
 
1520static inline void sk_tx_queue_clear(struct sock *sk)
1521{
1522	sk->sk_tx_queue_mapping = -1;
1523}
1524
1525static inline int sk_tx_queue_get(const struct sock *sk)
1526{
1527	return sk ? sk->sk_tx_queue_mapping : -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528}
1529
 
 
 
 
 
 
 
 
 
 
1530static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1531{
1532	sk_tx_queue_clear(sk);
1533	sk->sk_socket = sock;
1534}
1535
1536static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1537{
1538	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1539	return &rcu_dereference_raw(sk->sk_wq)->wait;
1540}
1541/* Detach socket from process context.
1542 * Announce socket dead, detach it from wait queue and inode.
1543 * Note that parent inode held reference count on this struct sock,
1544 * we do not release it in this function, because protocol
1545 * probably wants some additional cleanups or even continuing
1546 * to work with this socket (TCP).
1547 */
1548static inline void sock_orphan(struct sock *sk)
1549{
1550	write_lock_bh(&sk->sk_callback_lock);
1551	sock_set_flag(sk, SOCK_DEAD);
1552	sk_set_socket(sk, NULL);
1553	sk->sk_wq  = NULL;
1554	write_unlock_bh(&sk->sk_callback_lock);
1555}
1556
1557static inline void sock_graft(struct sock *sk, struct socket *parent)
1558{
 
1559	write_lock_bh(&sk->sk_callback_lock);
1560	sk->sk_wq = parent->wq;
1561	parent->sk = sk;
1562	sk_set_socket(sk, parent);
 
1563	security_sock_graft(sk, parent);
1564	write_unlock_bh(&sk->sk_callback_lock);
1565}
1566
1567kuid_t sock_i_uid(struct sock *sk);
1568unsigned long sock_i_ino(struct sock *sk);
1569
 
 
 
 
 
1570static inline u32 net_tx_rndhash(void)
1571{
1572	u32 v = prandom_u32();
1573
1574	return v ?: 1;
1575}
1576
1577static inline void sk_set_txhash(struct sock *sk)
1578{
1579	sk->sk_txhash = net_tx_rndhash();
1580}
1581
1582static inline void sk_rethink_txhash(struct sock *sk)
1583{
1584	if (sk->sk_txhash)
1585		sk_set_txhash(sk);
1586}
1587
1588static inline struct dst_entry *
1589__sk_dst_get(struct sock *sk)
1590{
1591	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1592						       lockdep_is_held(&sk->sk_lock.slock));
1593}
1594
1595static inline struct dst_entry *
1596sk_dst_get(struct sock *sk)
1597{
1598	struct dst_entry *dst;
1599
1600	rcu_read_lock();
1601	dst = rcu_dereference(sk->sk_dst_cache);
1602	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1603		dst = NULL;
1604	rcu_read_unlock();
1605	return dst;
1606}
1607
1608static inline void dst_negative_advice(struct sock *sk)
1609{
1610	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1611
1612	sk_rethink_txhash(sk);
1613
1614	if (dst && dst->ops->negative_advice) {
1615		ndst = dst->ops->negative_advice(dst);
1616
1617		if (ndst != dst) {
1618			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1619			sk_tx_queue_clear(sk);
 
1620		}
1621	}
1622}
1623
1624static inline void
1625__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1626{
1627	struct dst_entry *old_dst;
1628
1629	sk_tx_queue_clear(sk);
1630	/*
1631	 * This can be called while sk is owned by the caller only,
1632	 * with no state that can be checked in a rcu_dereference_check() cond
1633	 */
1634	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1635	rcu_assign_pointer(sk->sk_dst_cache, dst);
1636	dst_release(old_dst);
1637}
1638
1639static inline void
1640sk_dst_set(struct sock *sk, struct dst_entry *dst)
1641{
1642	struct dst_entry *old_dst;
1643
1644	sk_tx_queue_clear(sk);
 
1645	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1646	dst_release(old_dst);
1647}
1648
1649static inline void
1650__sk_dst_reset(struct sock *sk)
1651{
1652	__sk_dst_set(sk, NULL);
1653}
1654
1655static inline void
1656sk_dst_reset(struct sock *sk)
1657{
1658	sk_dst_set(sk, NULL);
1659}
1660
1661struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1662
1663struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1665bool sk_mc_loop(struct sock *sk);
1666
1667static inline bool sk_can_gso(const struct sock *sk)
1668{
1669	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1670}
1671
1672void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1673
1674static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1675{
1676	sk->sk_route_nocaps |= flags;
1677	sk->sk_route_caps &= ~flags;
1678}
1679
1680static inline bool sk_check_csum_caps(struct sock *sk)
1681{
1682	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1683	       (sk->sk_family == PF_INET &&
1684		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1685	       (sk->sk_family == PF_INET6 &&
1686		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1687}
1688
1689static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1690					   struct iov_iter *from, char *to,
1691					   int copy, int offset)
1692{
1693	if (skb->ip_summed == CHECKSUM_NONE) {
1694		__wsum csum = 0;
1695		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1696			return -EFAULT;
1697		skb->csum = csum_block_add(skb->csum, csum, offset);
1698	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1699		if (copy_from_iter_nocache(to, copy, from) != copy)
1700			return -EFAULT;
1701	} else if (copy_from_iter(to, copy, from) != copy)
1702		return -EFAULT;
1703
1704	return 0;
1705}
1706
1707static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1708				       struct iov_iter *from, int copy)
1709{
1710	int err, offset = skb->len;
1711
1712	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1713				       copy, offset);
1714	if (err)
1715		__skb_trim(skb, offset);
1716
1717	return err;
1718}
1719
1720static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1721					   struct sk_buff *skb,
1722					   struct page *page,
1723					   int off, int copy)
1724{
1725	int err;
1726
1727	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1728				       copy, skb->len);
1729	if (err)
1730		return err;
1731
1732	skb->len	     += copy;
1733	skb->data_len	     += copy;
1734	skb->truesize	     += copy;
1735	sk->sk_wmem_queued   += copy;
1736	sk_mem_charge(sk, copy);
1737	return 0;
1738}
1739
1740/**
1741 * sk_wmem_alloc_get - returns write allocations
1742 * @sk: socket
1743 *
1744 * Returns sk_wmem_alloc minus initial offset of one
1745 */
1746static inline int sk_wmem_alloc_get(const struct sock *sk)
1747{
1748	return atomic_read(&sk->sk_wmem_alloc) - 1;
1749}
1750
1751/**
1752 * sk_rmem_alloc_get - returns read allocations
1753 * @sk: socket
1754 *
1755 * Returns sk_rmem_alloc
1756 */
1757static inline int sk_rmem_alloc_get(const struct sock *sk)
1758{
1759	return atomic_read(&sk->sk_rmem_alloc);
1760}
1761
1762/**
1763 * sk_has_allocations - check if allocations are outstanding
1764 * @sk: socket
1765 *
1766 * Returns true if socket has write or read allocations
1767 */
1768static inline bool sk_has_allocations(const struct sock *sk)
1769{
1770	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1771}
1772
1773/**
1774 * skwq_has_sleeper - check if there are any waiting processes
1775 * @wq: struct socket_wq
1776 *
1777 * Returns true if socket_wq has waiting processes
1778 *
1779 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1780 * barrier call. They were added due to the race found within the tcp code.
1781 *
1782 * Consider following tcp code paths:
1783 *
1784 * CPU1                  CPU2
1785 *
1786 * sys_select            receive packet
 
1787 *   ...                 ...
1788 *   __add_wait_queue    update tp->rcv_nxt
1789 *   ...                 ...
1790 *   tp->rcv_nxt check   sock_def_readable
1791 *   ...                 {
1792 *   schedule               rcu_read_lock();
1793 *                          wq = rcu_dereference(sk->sk_wq);
1794 *                          if (wq && waitqueue_active(&wq->wait))
1795 *                              wake_up_interruptible(&wq->wait)
1796 *                          ...
1797 *                       }
1798 *
1799 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1800 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1801 * could then endup calling schedule and sleep forever if there are no more
1802 * data on the socket.
1803 *
1804 */
1805static inline bool skwq_has_sleeper(struct socket_wq *wq)
1806{
1807	return wq && wq_has_sleeper(&wq->wait);
1808}
1809
1810/**
1811 * sock_poll_wait - place memory barrier behind the poll_wait call.
1812 * @filp:           file
1813 * @wait_address:   socket wait queue
1814 * @p:              poll_table
1815 *
1816 * See the comments in the wq_has_sleeper function.
1817 */
1818static inline void sock_poll_wait(struct file *filp,
1819		wait_queue_head_t *wait_address, poll_table *p)
1820{
1821	if (!poll_does_not_wait(p) && wait_address) {
1822		poll_wait(filp, wait_address, p);
1823		/* We need to be sure we are in sync with the
1824		 * socket flags modification.
1825		 *
1826		 * This memory barrier is paired in the wq_has_sleeper.
1827		 */
1828		smp_mb();
1829	}
1830}
1831
1832static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1833{
1834	if (sk->sk_txhash) {
1835		skb->l4_hash = 1;
1836		skb->hash = sk->sk_txhash;
1837	}
1838}
1839
1840void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1841
1842/*
1843 *	Queue a received datagram if it will fit. Stream and sequenced
1844 *	protocols can't normally use this as they need to fit buffers in
1845 *	and play with them.
1846 *
1847 *	Inlined as it's very short and called for pretty much every
1848 *	packet ever received.
1849 */
1850static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1851{
1852	skb_orphan(skb);
1853	skb->sk = sk;
1854	skb->destructor = sock_rfree;
1855	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1856	sk_mem_charge(sk, skb->truesize);
1857}
1858
1859void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1860		    unsigned long expires);
1861
1862void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1863
 
 
 
 
 
1864int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1865
1866int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1867struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1868
1869/*
1870 *	Recover an error report and clear atomically
1871 */
1872
1873static inline int sock_error(struct sock *sk)
1874{
1875	int err;
1876	if (likely(!sk->sk_err))
1877		return 0;
1878	err = xchg(&sk->sk_err, 0);
1879	return -err;
1880}
1881
1882static inline unsigned long sock_wspace(struct sock *sk)
1883{
1884	int amt = 0;
1885
1886	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1887		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1888		if (amt < 0)
1889			amt = 0;
1890	}
1891	return amt;
1892}
1893
1894/* Note:
1895 *  We use sk->sk_wq_raw, from contexts knowing this
1896 *  pointer is not NULL and cannot disappear/change.
1897 */
1898static inline void sk_set_bit(int nr, struct sock *sk)
1899{
 
 
 
 
1900	set_bit(nr, &sk->sk_wq_raw->flags);
1901}
1902
1903static inline void sk_clear_bit(int nr, struct sock *sk)
1904{
 
 
 
 
1905	clear_bit(nr, &sk->sk_wq_raw->flags);
1906}
1907
1908static inline void sk_wake_async(const struct sock *sk, int how, int band)
1909{
1910	if (sock_flag(sk, SOCK_FASYNC)) {
1911		rcu_read_lock();
1912		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
1913		rcu_read_unlock();
1914	}
1915}
1916
1917/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
1918 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
1919 * Note: for send buffers, TCP works better if we can build two skbs at
1920 * minimum.
1921 */
1922#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
1923
1924#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
1925#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
1926
1927static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1928{
1929	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1930		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1931		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1932	}
 
 
 
 
1933}
1934
1935struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
1936				    bool force_schedule);
1937
1938/**
1939 * sk_page_frag - return an appropriate page_frag
1940 * @sk: socket
1941 *
1942 * If socket allocation mode allows current thread to sleep, it means its
1943 * safe to use the per task page_frag instead of the per socket one.
 
 
 
 
 
 
 
 
1944 */
1945static inline struct page_frag *sk_page_frag(struct sock *sk)
1946{
1947	if (gfpflags_allow_blocking(sk->sk_allocation))
1948		return &current->task_frag;
1949
1950	return &sk->sk_frag;
1951}
1952
1953bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
1954
1955/*
1956 *	Default write policy as shown to user space via poll/select/SIGIO
1957 */
1958static inline bool sock_writeable(const struct sock *sk)
1959{
1960	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1961}
1962
1963static inline gfp_t gfp_any(void)
1964{
1965	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1966}
1967
1968static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
1969{
1970	return noblock ? 0 : sk->sk_rcvtimeo;
1971}
1972
1973static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
1974{
1975	return noblock ? 0 : sk->sk_sndtimeo;
1976}
1977
1978static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1979{
1980	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
 
 
1981}
1982
1983/* Alas, with timeout socket operations are not restartable.
1984 * Compare this to poll().
1985 */
1986static inline int sock_intr_errno(long timeo)
1987{
1988	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1989}
1990
1991struct sock_skb_cb {
1992	u32 dropcount;
1993};
1994
1995/* Store sock_skb_cb at the end of skb->cb[] so protocol families
1996 * using skb->cb[] would keep using it directly and utilize its
1997 * alignement guarantee.
1998 */
1999#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2000			    sizeof(struct sock_skb_cb)))
2001
2002#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2003			    SOCK_SKB_CB_OFFSET))
2004
2005#define sock_skb_cb_check_size(size) \
2006	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2007
2008static inline void
2009sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2010{
2011	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012}
2013
2014void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2015			   struct sk_buff *skb);
2016void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2017			     struct sk_buff *skb);
2018
2019static inline void
2020sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2021{
2022	ktime_t kt = skb->tstamp;
2023	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2024
2025	/*
2026	 * generate control messages if
2027	 * - receive time stamping in software requested
2028	 * - software time stamp available and wanted
2029	 * - hardware time stamps available and wanted
2030	 */
2031	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2032	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2033	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2034	    (hwtstamps->hwtstamp.tv64 &&
2035	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2036		__sock_recv_timestamp(msg, sk, skb);
2037	else
2038		sk->sk_stamp = kt;
2039
2040	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2041		__sock_recv_wifi_status(msg, sk, skb);
2042}
2043
2044void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2045			      struct sk_buff *skb);
2046
 
2047static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2048					  struct sk_buff *skb)
2049{
2050#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2051			   (1UL << SOCK_RCVTSTAMP))
2052#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2053			   SOF_TIMESTAMPING_RAW_HARDWARE)
2054
2055	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2056		__sock_recv_ts_and_drops(msg, sk, skb);
2057	else
2058		sk->sk_stamp = skb->tstamp;
 
 
2059}
2060
2061void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2062
2063/**
2064 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2065 * @sk:		socket sending this packet
 
2066 * @tx_flags:	completed with instructions for time stamping
 
2067 *
2068 * Note : callers should take care of initial *tx_flags value (usually 0)
2069 */
2070static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
 
2071{
2072	if (unlikely(sk->sk_tsflags))
2073		__sock_tx_timestamp(sk, tx_flags);
 
 
 
 
2074	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2075		*tx_flags |= SKBTX_WIFI_STATUS;
2076}
2077
 
 
 
 
 
 
 
 
 
 
 
 
 
2078/**
2079 * sk_eat_skb - Release a skb if it is no longer needed
2080 * @sk: socket to eat this skb from
2081 * @skb: socket buffer to eat
2082 *
2083 * This routine must be called with interrupts disabled or with the socket
2084 * locked so that the sk_buff queue operation is ok.
2085*/
2086static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2087{
2088	__skb_unlink(skb, &sk->sk_receive_queue);
 
 
 
 
 
 
2089	__kfree_skb(skb);
2090}
2091
2092static inline
2093struct net *sock_net(const struct sock *sk)
2094{
2095	return read_pnet(&sk->sk_net);
2096}
2097
2098static inline
2099void sock_net_set(struct sock *sk, struct net *net)
2100{
2101	write_pnet(&sk->sk_net, net);
2102}
2103
2104static inline struct sock *skb_steal_sock(struct sk_buff *skb)
 
2105{
2106	if (skb->sk) {
2107		struct sock *sk = skb->sk;
2108
2109		skb->destructor = NULL;
2110		skb->sk = NULL;
2111		return sk;
2112	}
2113	return NULL;
2114}
2115
2116/* This helper checks if a socket is a full socket,
2117 * ie _not_ a timewait or request socket.
2118 */
2119static inline bool sk_fullsock(const struct sock *sk)
2120{
2121	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2122}
2123
2124/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2125 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2126 */
2127static inline bool sk_listener(const struct sock *sk)
2128{
2129	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
 
2130}
2131
2132/**
2133 * sk_state_load - read sk->sk_state for lockless contexts
2134 * @sk: socket pointer
2135 *
2136 * Paired with sk_state_store(). Used in places we do not hold socket lock :
2137 * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2138 */
2139static inline int sk_state_load(const struct sock *sk)
 
2140{
2141	return smp_load_acquire(&sk->sk_state);
 
 
 
 
 
 
 
 
 
 
 
2142}
2143
2144/**
2145 * sk_state_store - update sk->sk_state
2146 * @sk: socket pointer
2147 * @newstate: new state
2148 *
2149 * Paired with sk_state_load(). Should be used in contexts where
2150 * state change might impact lockless readers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151 */
2152static inline void sk_state_store(struct sock *sk, int newstate)
2153{
2154	smp_store_release(&sk->sk_state, newstate);
2155}
2156
2157void sock_enable_timestamp(struct sock *sk, int flag);
2158int sock_get_timestamp(struct sock *, struct timeval __user *);
2159int sock_get_timestampns(struct sock *, struct timespec __user *);
2160int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2161		       int type);
2162
2163bool sk_ns_capable(const struct sock *sk,
2164		   struct user_namespace *user_ns, int cap);
2165bool sk_capable(const struct sock *sk, int cap);
2166bool sk_net_capable(const struct sock *sk, int cap);
2167
 
 
 
 
 
 
 
 
 
 
 
 
2168extern __u32 sysctl_wmem_max;
2169extern __u32 sysctl_rmem_max;
2170
2171extern int sysctl_tstamp_allow_data;
2172extern int sysctl_optmem_max;
2173
2174extern __u32 sysctl_wmem_default;
2175extern __u32 sysctl_rmem_default;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176
2177#endif	/* _SOCK_H */
v5.9
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the AF_INET socket handler.
   8 *
   9 * Version:	@(#)sock.h	1.0.4	05/13/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  14 *		Florian La Roche <flla@stud.uni-sb.de>
  15 *
  16 * Fixes:
  17 *		Alan Cox	:	Volatiles in skbuff pointers. See
  18 *					skbuff comments. May be overdone,
  19 *					better to prove they can be removed
  20 *					than the reverse.
  21 *		Alan Cox	:	Added a zapped field for tcp to note
  22 *					a socket is reset and must stay shut up
  23 *		Alan Cox	:	New fields for options
  24 *	Pauline Middelink	:	identd support
  25 *		Alan Cox	:	Eliminate low level recv/recvfrom
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *              Steve Whitehouse:       Default routines for sock_ops
  28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
  29 *              			protinfo be just a void pointer, as the
  30 *              			protocol specific parts were moved to
  31 *              			respective headers and ipv4/v6, etc now
  32 *              			use private slabcaches for its socks
  33 *              Pedro Hortas	:	New flags field for socket options
 
 
 
 
 
 
  34 */
  35#ifndef _SOCK_H
  36#define _SOCK_H
  37
  38#include <linux/hardirq.h>
  39#include <linux/kernel.h>
  40#include <linux/list.h>
  41#include <linux/list_nulls.h>
  42#include <linux/timer.h>
  43#include <linux/cache.h>
  44#include <linux/bitops.h>
  45#include <linux/lockdep.h>
  46#include <linux/netdevice.h>
  47#include <linux/skbuff.h>	/* struct sk_buff */
  48#include <linux/mm.h>
  49#include <linux/security.h>
  50#include <linux/slab.h>
  51#include <linux/uaccess.h>
  52#include <linux/page_counter.h>
  53#include <linux/memcontrol.h>
  54#include <linux/static_key.h>
  55#include <linux/sched.h>
  56#include <linux/wait.h>
  57#include <linux/cgroup-defs.h>
  58#include <linux/rbtree.h>
  59#include <linux/filter.h>
  60#include <linux/rculist_nulls.h>
  61#include <linux/poll.h>
  62#include <linux/sockptr.h>
  63
  64#include <linux/atomic.h>
  65#include <linux/refcount.h>
  66#include <net/dst.h>
  67#include <net/checksum.h>
  68#include <net/tcp_states.h>
  69#include <linux/net_tstamp.h>
  70#include <net/l3mdev.h>
  71
  72/*
  73 * This structure really needs to be cleaned up.
  74 * Most of it is for TCP, and not used by any of
  75 * the other protocols.
  76 */
  77
  78/* Define this to get the SOCK_DBG debugging facility. */
  79#define SOCK_DEBUGGING
  80#ifdef SOCK_DEBUGGING
  81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  82					printk(KERN_DEBUG msg); } while (0)
  83#else
  84/* Validate arguments and do nothing */
  85static inline __printf(2, 3)
  86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
  87{
  88}
  89#endif
  90
  91/* This is the per-socket lock.  The spinlock provides a synchronization
  92 * between user contexts and software interrupt processing, whereas the
  93 * mini-semaphore synchronizes multiple users amongst themselves.
  94 */
  95typedef struct {
  96	spinlock_t		slock;
  97	int			owned;
  98	wait_queue_head_t	wq;
  99	/*
 100	 * We express the mutex-alike socket_lock semantics
 101	 * to the lock validator by explicitly managing
 102	 * the slock as a lock variant (in addition to
 103	 * the slock itself):
 104	 */
 105#ifdef CONFIG_DEBUG_LOCK_ALLOC
 106	struct lockdep_map dep_map;
 107#endif
 108} socket_lock_t;
 109
 110struct sock;
 111struct proto;
 112struct net;
 113
 114typedef __u32 __bitwise __portpair;
 115typedef __u64 __bitwise __addrpair;
 116
 117/**
 118 *	struct sock_common - minimal network layer representation of sockets
 119 *	@skc_daddr: Foreign IPv4 addr
 120 *	@skc_rcv_saddr: Bound local IPv4 addr
 121 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
 122 *	@skc_hash: hash value used with various protocol lookup tables
 123 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
 124 *	@skc_dport: placeholder for inet_dport/tw_dport
 125 *	@skc_num: placeholder for inet_num/tw_num
 126 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
 127 *	@skc_family: network address family
 128 *	@skc_state: Connection state
 129 *	@skc_reuse: %SO_REUSEADDR setting
 130 *	@skc_reuseport: %SO_REUSEPORT setting
 131 *	@skc_ipv6only: socket is IPV6 only
 132 *	@skc_net_refcnt: socket is using net ref counting
 133 *	@skc_bound_dev_if: bound device index if != 0
 134 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
 135 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 136 *	@skc_prot: protocol handlers inside a network family
 137 *	@skc_net: reference to the network namespace of this socket
 138 *	@skc_v6_daddr: IPV6 destination address
 139 *	@skc_v6_rcv_saddr: IPV6 source address
 140 *	@skc_cookie: socket's cookie value
 141 *	@skc_node: main hash linkage for various protocol lookup tables
 142 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 143 *	@skc_tx_queue_mapping: tx queue number for this connection
 144 *	@skc_rx_queue_mapping: rx queue number for this connection
 145 *	@skc_flags: place holder for sk_flags
 146 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 147 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 148 *	@skc_listener: connection request listener socket (aka rsk_listener)
 149 *		[union with @skc_flags]
 150 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
 151 *		[union with @skc_flags]
 152 *	@skc_incoming_cpu: record/match cpu processing incoming packets
 153 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
 154 *		[union with @skc_incoming_cpu]
 155 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
 156 *		[union with @skc_incoming_cpu]
 157 *	@skc_refcnt: reference count
 158 *
 159 *	This is the minimal network layer representation of sockets, the header
 160 *	for struct sock and struct inet_timewait_sock.
 161 */
 162struct sock_common {
 163	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 164	 * address on 64bit arches : cf INET_MATCH()
 165	 */
 166	union {
 167		__addrpair	skc_addrpair;
 168		struct {
 169			__be32	skc_daddr;
 170			__be32	skc_rcv_saddr;
 171		};
 172	};
 173	union  {
 174		unsigned int	skc_hash;
 175		__u16		skc_u16hashes[2];
 176	};
 177	/* skc_dport && skc_num must be grouped as well */
 178	union {
 179		__portpair	skc_portpair;
 180		struct {
 181			__be16	skc_dport;
 182			__u16	skc_num;
 183		};
 184	};
 185
 186	unsigned short		skc_family;
 187	volatile unsigned char	skc_state;
 188	unsigned char		skc_reuse:4;
 189	unsigned char		skc_reuseport:1;
 190	unsigned char		skc_ipv6only:1;
 191	unsigned char		skc_net_refcnt:1;
 192	int			skc_bound_dev_if;
 193	union {
 194		struct hlist_node	skc_bind_node;
 195		struct hlist_node	skc_portaddr_node;
 196	};
 197	struct proto		*skc_prot;
 198	possible_net_t		skc_net;
 199
 200#if IS_ENABLED(CONFIG_IPV6)
 201	struct in6_addr		skc_v6_daddr;
 202	struct in6_addr		skc_v6_rcv_saddr;
 203#endif
 204
 205	atomic64_t		skc_cookie;
 206
 207	/* following fields are padding to force
 208	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
 209	 * assuming IPV6 is enabled. We use this padding differently
 210	 * for different kind of 'sockets'
 211	 */
 212	union {
 213		unsigned long	skc_flags;
 214		struct sock	*skc_listener; /* request_sock */
 215		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
 216	};
 217	/*
 218	 * fields between dontcopy_begin/dontcopy_end
 219	 * are not copied in sock_copy()
 220	 */
 221	/* private: */
 222	int			skc_dontcopy_begin[0];
 223	/* public: */
 224	union {
 225		struct hlist_node	skc_node;
 226		struct hlist_nulls_node skc_nulls_node;
 227	};
 228	unsigned short		skc_tx_queue_mapping;
 229#ifdef CONFIG_XPS
 230	unsigned short		skc_rx_queue_mapping;
 231#endif
 232	union {
 233		int		skc_incoming_cpu;
 234		u32		skc_rcv_wnd;
 235		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
 236	};
 237
 238	refcount_t		skc_refcnt;
 239	/* private: */
 240	int                     skc_dontcopy_end[0];
 241	union {
 242		u32		skc_rxhash;
 243		u32		skc_window_clamp;
 244		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
 245	};
 246	/* public: */
 247};
 248
 249struct bpf_sk_storage;
 250
 251/**
 252  *	struct sock - network layer representation of sockets
 253  *	@__sk_common: shared layout with inet_timewait_sock
 254  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 255  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 256  *	@sk_lock:	synchronizer
 257  *	@sk_kern_sock: True if sock is using kernel lock classes
 258  *	@sk_rcvbuf: size of receive buffer in bytes
 259  *	@sk_wq: sock wait queue and async head
 260  *	@sk_rx_dst: receive input route used by early demux
 261  *	@sk_dst_cache: destination cache
 262  *	@sk_dst_pending_confirm: need to confirm neighbour
 263  *	@sk_policy: flow policy
 264  *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
 265  *	@sk_receive_queue: incoming packets
 266  *	@sk_wmem_alloc: transmit queue bytes committed
 267  *	@sk_tsq_flags: TCP Small Queues flags
 268  *	@sk_write_queue: Packet sending queue
 269  *	@sk_omem_alloc: "o" is "option" or "other"
 270  *	@sk_wmem_queued: persistent queue size
 271  *	@sk_forward_alloc: space allocated forward
 272  *	@sk_napi_id: id of the last napi context to receive data for sk
 273  *	@sk_ll_usec: usecs to busypoll when there is no data
 274  *	@sk_allocation: allocation mode
 275  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 276  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
 277  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 278  *	@sk_sndbuf: size of send buffer in bytes
 279  *	@__sk_flags_offset: empty field used to determine location of bitfield
 280  *	@sk_padding: unused element for alignment
 281  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 282  *	@sk_no_check_rx: allow zero checksum in RX packets
 283  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 284  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 285  *	@sk_route_forced_caps: static, forced route capabilities
 286  *		(set in tcp_init_sock())
 287  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 288  *	@sk_gso_max_size: Maximum GSO segment size to build
 289  *	@sk_gso_max_segs: Maximum number of GSO segments
 290  *	@sk_pacing_shift: scaling factor for TCP Small Queues
 291  *	@sk_lingertime: %SO_LINGER l_linger setting
 292  *	@sk_backlog: always used with the per-socket spinlock held
 293  *	@sk_callback_lock: used with the callbacks in the end of this struct
 294  *	@sk_error_queue: rarely used
 295  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 296  *			  IPV6_ADDRFORM for instance)
 297  *	@sk_err: last error
 298  *	@sk_err_soft: errors that don't cause failure but are the cause of a
 299  *		      persistent failure not just 'timed out'
 300  *	@sk_drops: raw/udp drops counter
 301  *	@sk_ack_backlog: current listen backlog
 302  *	@sk_max_ack_backlog: listen backlog set in listen()
 303  *	@sk_uid: user id of owner
 304  *	@sk_priority: %SO_PRIORITY setting
 305  *	@sk_type: socket type (%SOCK_STREAM, etc)
 306  *	@sk_protocol: which protocol this socket belongs in this network family
 307  *	@sk_peer_pid: &struct pid for this socket's peer
 308  *	@sk_peer_cred: %SO_PEERCRED setting
 309  *	@sk_rcvlowat: %SO_RCVLOWAT setting
 310  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
 311  *	@sk_sndtimeo: %SO_SNDTIMEO setting
 312  *	@sk_txhash: computed flow hash for use on transmit
 313  *	@sk_filter: socket filtering instructions
 314  *	@sk_timer: sock cleanup timer
 315  *	@sk_stamp: time stamp of last packet received
 316  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
 317  *	@sk_tsflags: SO_TIMESTAMPING socket options
 318  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
 319  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
 320  *	@sk_socket: Identd and reporting IO signals
 321  *	@sk_user_data: RPC layer private data
 322  *	@sk_frag: cached page frag
 323  *	@sk_peek_off: current peek_offset value
 324  *	@sk_send_head: front of stuff to transmit
 325  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
 326  *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
 327  *	@sk_security: used by security modules
 328  *	@sk_mark: generic packet mark
 329  *	@sk_cgrp_data: cgroup data for this cgroup
 330  *	@sk_memcg: this socket's memory cgroup association
 331  *	@sk_write_pending: a write to stream socket waits to start
 332  *	@sk_state_change: callback to indicate change in the state of the sock
 333  *	@sk_data_ready: callback to indicate there is data to be processed
 334  *	@sk_write_space: callback to indicate there is bf sending space available
 335  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 336  *	@sk_backlog_rcv: callback to process the backlog
 337  *	@sk_validate_xmit_skb: ptr to an optional validate function
 338  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 339  *	@sk_reuseport_cb: reuseport group container
 340  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
 341  *	@sk_rcu: used during RCU grace period
 342  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
 343  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
 344  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
 345  *	@sk_txtime_unused: unused txtime flags
 346  */
 347struct sock {
 348	/*
 349	 * Now struct inet_timewait_sock also uses sock_common, so please just
 350	 * don't add nothing before this first member (__sk_common) --acme
 351	 */
 352	struct sock_common	__sk_common;
 353#define sk_node			__sk_common.skc_node
 354#define sk_nulls_node		__sk_common.skc_nulls_node
 355#define sk_refcnt		__sk_common.skc_refcnt
 356#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
 357#ifdef CONFIG_XPS
 358#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
 359#endif
 360
 361#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
 362#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
 363#define sk_hash			__sk_common.skc_hash
 364#define sk_portpair		__sk_common.skc_portpair
 365#define sk_num			__sk_common.skc_num
 366#define sk_dport		__sk_common.skc_dport
 367#define sk_addrpair		__sk_common.skc_addrpair
 368#define sk_daddr		__sk_common.skc_daddr
 369#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
 370#define sk_family		__sk_common.skc_family
 371#define sk_state		__sk_common.skc_state
 372#define sk_reuse		__sk_common.skc_reuse
 373#define sk_reuseport		__sk_common.skc_reuseport
 374#define sk_ipv6only		__sk_common.skc_ipv6only
 375#define sk_net_refcnt		__sk_common.skc_net_refcnt
 376#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
 377#define sk_bind_node		__sk_common.skc_bind_node
 378#define sk_prot			__sk_common.skc_prot
 379#define sk_net			__sk_common.skc_net
 380#define sk_v6_daddr		__sk_common.skc_v6_daddr
 381#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
 382#define sk_cookie		__sk_common.skc_cookie
 383#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
 384#define sk_flags		__sk_common.skc_flags
 385#define sk_rxhash		__sk_common.skc_rxhash
 386
 387	socket_lock_t		sk_lock;
 388	atomic_t		sk_drops;
 389	int			sk_rcvlowat;
 390	struct sk_buff_head	sk_error_queue;
 391	struct sk_buff		*sk_rx_skb_cache;
 392	struct sk_buff_head	sk_receive_queue;
 393	/*
 394	 * The backlog queue is special, it is always used with
 395	 * the per-socket spinlock held and requires low latency
 396	 * access. Therefore we special case it's implementation.
 397	 * Note : rmem_alloc is in this structure to fill a hole
 398	 * on 64bit arches, not because its logically part of
 399	 * backlog.
 400	 */
 401	struct {
 402		atomic_t	rmem_alloc;
 403		int		len;
 404		struct sk_buff	*head;
 405		struct sk_buff	*tail;
 406	} sk_backlog;
 407#define sk_rmem_alloc sk_backlog.rmem_alloc
 
 408
 409	int			sk_forward_alloc;
 410#ifdef CONFIG_NET_RX_BUSY_POLL
 
 411	unsigned int		sk_ll_usec;
 412	/* ===== mostly read cache line ===== */
 413	unsigned int		sk_napi_id;
 414#endif
 
 415	int			sk_rcvbuf;
 416
 417	struct sk_filter __rcu	*sk_filter;
 418	union {
 419		struct socket_wq __rcu	*sk_wq;
 420		/* private: */
 421		struct socket_wq	*sk_wq_raw;
 422		/* public: */
 423	};
 424#ifdef CONFIG_XFRM
 425	struct xfrm_policy __rcu *sk_policy[2];
 426#endif
 427	struct dst_entry	*sk_rx_dst;
 428	struct dst_entry __rcu	*sk_dst_cache;
 
 
 429	atomic_t		sk_omem_alloc;
 430	int			sk_sndbuf;
 431
 432	/* ===== cache line for TX ===== */
 
 
 
 
 
 
 
 
 433	int			sk_wmem_queued;
 434	refcount_t		sk_wmem_alloc;
 435	unsigned long		sk_tsq_flags;
 436	union {
 437		struct sk_buff	*sk_send_head;
 438		struct rb_root	tcp_rtx_queue;
 439	};
 440	struct sk_buff		*sk_tx_skb_cache;
 441	struct sk_buff_head	sk_write_queue;
 442	__s32			sk_peek_off;
 443	int			sk_write_pending;
 444	__u32			sk_dst_pending_confirm;
 445	u32			sk_pacing_status; /* see enum sk_pacing */
 446	long			sk_sndtimeo;
 447	struct timer_list	sk_timer;
 448	__u32			sk_priority;
 449	__u32			sk_mark;
 450	unsigned long		sk_pacing_rate; /* bytes per second */
 451	unsigned long		sk_max_pacing_rate;
 452	struct page_frag	sk_frag;
 453	netdev_features_t	sk_route_caps;
 454	netdev_features_t	sk_route_nocaps;
 455	netdev_features_t	sk_route_forced_caps;
 456	int			sk_gso_type;
 457	unsigned int		sk_gso_max_size;
 458	gfp_t			sk_allocation;
 459	__u32			sk_txhash;
 460
 461	/*
 462	 * Because of non atomicity rules, all
 463	 * changes are protected by socket lock.
 464	 */
 465	u8			sk_padding : 1,
 466				sk_kern_sock : 1,
 467				sk_no_check_tx : 1,
 468				sk_no_check_rx : 1,
 469				sk_userlocks : 4;
 470	u8			sk_pacing_shift;
 471	u16			sk_type;
 472	u16			sk_protocol;
 473	u16			sk_gso_max_segs;
 
 474	unsigned long	        sk_lingertime;
 
 475	struct proto		*sk_prot_creator;
 476	rwlock_t		sk_callback_lock;
 477	int			sk_err,
 478				sk_err_soft;
 479	u32			sk_ack_backlog;
 480	u32			sk_max_ack_backlog;
 481	kuid_t			sk_uid;
 
 482	struct pid		*sk_peer_pid;
 483	const struct cred	*sk_peer_cred;
 484	long			sk_rcvtimeo;
 
 
 485	ktime_t			sk_stamp;
 486#if BITS_PER_LONG==32
 487	seqlock_t		sk_stamp_seq;
 488#endif
 489	u16			sk_tsflags;
 490	u8			sk_shutdown;
 491	u32			sk_tskey;
 492	atomic_t		sk_zckey;
 493
 494	u8			sk_clockid;
 495	u8			sk_txtime_deadline_mode : 1,
 496				sk_txtime_report_errors : 1,
 497				sk_txtime_unused : 6;
 498
 499	struct socket		*sk_socket;
 500	void			*sk_user_data;
 
 
 
 
 501#ifdef CONFIG_SECURITY
 502	void			*sk_security;
 503#endif
 504	struct sock_cgroup_data	sk_cgrp_data;
 505	struct mem_cgroup	*sk_memcg;
 506	void			(*sk_state_change)(struct sock *sk);
 507	void			(*sk_data_ready)(struct sock *sk);
 508	void			(*sk_write_space)(struct sock *sk);
 509	void			(*sk_error_report)(struct sock *sk);
 510	int			(*sk_backlog_rcv)(struct sock *sk,
 511						  struct sk_buff *skb);
 512#ifdef CONFIG_SOCK_VALIDATE_XMIT
 513	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
 514							struct net_device *dev,
 515							struct sk_buff *skb);
 516#endif
 517	void                    (*sk_destruct)(struct sock *sk);
 518	struct sock_reuseport __rcu	*sk_reuseport_cb;
 519#ifdef CONFIG_BPF_SYSCALL
 520	struct bpf_sk_storage __rcu	*sk_bpf_storage;
 521#endif
 522	struct rcu_head		sk_rcu;
 523};
 524
 525enum sk_pacing {
 526	SK_PACING_NONE		= 0,
 527	SK_PACING_NEEDED	= 1,
 528	SK_PACING_FQ		= 2,
 529};
 530
 531/* Pointer stored in sk_user_data might not be suitable for copying
 532 * when cloning the socket. For instance, it can point to a reference
 533 * counted object. sk_user_data bottom bit is set if pointer must not
 534 * be copied.
 535 */
 536#define SK_USER_DATA_NOCOPY	1UL
 537#define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
 538#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
 539
 540/**
 541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
 542 * @sk: socket
 543 */
 544static inline bool sk_user_data_is_nocopy(const struct sock *sk)
 545{
 546	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
 547}
 548
 549#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 550
 551#define rcu_dereference_sk_user_data(sk)				\
 552({									\
 553	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
 554	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
 555})
 556#define rcu_assign_sk_user_data(sk, ptr)				\
 557({									\
 558	uintptr_t __tmp = (uintptr_t)(ptr);				\
 559	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
 560	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
 561})
 562#define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
 563({									\
 564	uintptr_t __tmp = (uintptr_t)(ptr);				\
 565	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
 566	rcu_assign_pointer(__sk_user_data((sk)),			\
 567			   __tmp | SK_USER_DATA_NOCOPY);		\
 568})
 569
 570/*
 571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 573 * on a socket means that the socket will reuse everybody else's port
 574 * without looking at the other's sk_reuse value.
 575 */
 576
 577#define SK_NO_REUSE	0
 578#define SK_CAN_REUSE	1
 579#define SK_FORCE_REUSE	2
 580
 581int sk_set_peek_off(struct sock *sk, int val);
 582
 583static inline int sk_peek_offset(struct sock *sk, int flags)
 584{
 585	if (unlikely(flags & MSG_PEEK)) {
 586		return READ_ONCE(sk->sk_peek_off);
 587	}
 588
 589	return 0;
 590}
 591
 592static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 593{
 594	s32 off = READ_ONCE(sk->sk_peek_off);
 595
 596	if (unlikely(off >= 0)) {
 597		off = max_t(s32, off - val, 0);
 598		WRITE_ONCE(sk->sk_peek_off, off);
 599	}
 600}
 601
 602static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 603{
 604	sk_peek_offset_bwd(sk, -val);
 
 605}
 606
 607/*
 608 * Hashed lists helper routines
 609 */
 610static inline struct sock *sk_entry(const struct hlist_node *node)
 611{
 612	return hlist_entry(node, struct sock, sk_node);
 613}
 614
 615static inline struct sock *__sk_head(const struct hlist_head *head)
 616{
 617	return hlist_entry(head->first, struct sock, sk_node);
 618}
 619
 620static inline struct sock *sk_head(const struct hlist_head *head)
 621{
 622	return hlist_empty(head) ? NULL : __sk_head(head);
 623}
 624
 625static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 626{
 627	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 628}
 629
 630static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 631{
 632	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 633}
 634
 635static inline struct sock *sk_next(const struct sock *sk)
 636{
 637	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
 
 638}
 639
 640static inline struct sock *sk_nulls_next(const struct sock *sk)
 641{
 642	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 643		hlist_nulls_entry(sk->sk_nulls_node.next,
 644				  struct sock, sk_nulls_node) :
 645		NULL;
 646}
 647
 648static inline bool sk_unhashed(const struct sock *sk)
 649{
 650	return hlist_unhashed(&sk->sk_node);
 651}
 652
 653static inline bool sk_hashed(const struct sock *sk)
 654{
 655	return !sk_unhashed(sk);
 656}
 657
 658static inline void sk_node_init(struct hlist_node *node)
 659{
 660	node->pprev = NULL;
 661}
 662
 663static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 664{
 665	node->pprev = NULL;
 666}
 667
 668static inline void __sk_del_node(struct sock *sk)
 669{
 670	__hlist_del(&sk->sk_node);
 671}
 672
 673/* NB: equivalent to hlist_del_init_rcu */
 674static inline bool __sk_del_node_init(struct sock *sk)
 675{
 676	if (sk_hashed(sk)) {
 677		__sk_del_node(sk);
 678		sk_node_init(&sk->sk_node);
 679		return true;
 680	}
 681	return false;
 682}
 683
 684/* Grab socket reference count. This operation is valid only
 685   when sk is ALREADY grabbed f.e. it is found in hash table
 686   or a list and the lookup is made under lock preventing hash table
 687   modifications.
 688 */
 689
 690static __always_inline void sock_hold(struct sock *sk)
 691{
 692	refcount_inc(&sk->sk_refcnt);
 693}
 694
 695/* Ungrab socket in the context, which assumes that socket refcnt
 696   cannot hit zero, f.e. it is true in context of any socketcall.
 697 */
 698static __always_inline void __sock_put(struct sock *sk)
 699{
 700	refcount_dec(&sk->sk_refcnt);
 701}
 702
 703static inline bool sk_del_node_init(struct sock *sk)
 704{
 705	bool rc = __sk_del_node_init(sk);
 706
 707	if (rc) {
 708		/* paranoid for a while -acme */
 709		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 710		__sock_put(sk);
 711	}
 712	return rc;
 713}
 714#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
 715
 716static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 717{
 718	if (sk_hashed(sk)) {
 719		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 720		return true;
 721	}
 722	return false;
 723}
 724
 725static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 726{
 727	bool rc = __sk_nulls_del_node_init_rcu(sk);
 728
 729	if (rc) {
 730		/* paranoid for a while -acme */
 731		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
 732		__sock_put(sk);
 733	}
 734	return rc;
 735}
 736
 737static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 738{
 739	hlist_add_head(&sk->sk_node, list);
 740}
 741
 742static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 743{
 744	sock_hold(sk);
 745	__sk_add_node(sk, list);
 746}
 747
 748static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 749{
 750	sock_hold(sk);
 751	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 752	    sk->sk_family == AF_INET6)
 753		hlist_add_tail_rcu(&sk->sk_node, list);
 754	else
 755		hlist_add_head_rcu(&sk->sk_node, list);
 756}
 757
 758static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
 759{
 760	sock_hold(sk);
 761	hlist_add_tail_rcu(&sk->sk_node, list);
 762}
 763
 764static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 765{
 766	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 767}
 768
 769static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
 770{
 771	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 772}
 773
 774static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 775{
 776	sock_hold(sk);
 777	__sk_nulls_add_node_rcu(sk, list);
 778}
 779
 780static inline void __sk_del_bind_node(struct sock *sk)
 781{
 782	__hlist_del(&sk->sk_bind_node);
 783}
 784
 785static inline void sk_add_bind_node(struct sock *sk,
 786					struct hlist_head *list)
 787{
 788	hlist_add_head(&sk->sk_bind_node, list);
 789}
 790
 791#define sk_for_each(__sk, list) \
 792	hlist_for_each_entry(__sk, list, sk_node)
 793#define sk_for_each_rcu(__sk, list) \
 794	hlist_for_each_entry_rcu(__sk, list, sk_node)
 795#define sk_nulls_for_each(__sk, node, list) \
 796	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 797#define sk_nulls_for_each_rcu(__sk, node, list) \
 798	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 799#define sk_for_each_from(__sk) \
 800	hlist_for_each_entry_from(__sk, sk_node)
 801#define sk_nulls_for_each_from(__sk, node) \
 802	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 803		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 804#define sk_for_each_safe(__sk, tmp, list) \
 805	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 806#define sk_for_each_bound(__sk, list) \
 807	hlist_for_each_entry(__sk, list, sk_bind_node)
 808
 809/**
 810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 811 * @tpos:	the type * to use as a loop cursor.
 812 * @pos:	the &struct hlist_node to use as a loop cursor.
 813 * @head:	the head for your list.
 814 * @offset:	offset of hlist_node within the struct.
 815 *
 816 */
 817#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
 818	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
 819	     pos != NULL &&						       \
 820		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 821	     pos = rcu_dereference(hlist_next_rcu(pos)))
 822
 823static inline struct user_namespace *sk_user_ns(struct sock *sk)
 824{
 825	/* Careful only use this in a context where these parameters
 826	 * can not change and must all be valid, such as recvmsg from
 827	 * userspace.
 828	 */
 829	return sk->sk_socket->file->f_cred->user_ns;
 830}
 831
 832/* Sock flags */
 833enum sock_flags {
 834	SOCK_DEAD,
 835	SOCK_DONE,
 836	SOCK_URGINLINE,
 837	SOCK_KEEPOPEN,
 838	SOCK_LINGER,
 839	SOCK_DESTROY,
 840	SOCK_BROADCAST,
 841	SOCK_TIMESTAMP,
 842	SOCK_ZAPPED,
 843	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 844	SOCK_DBG, /* %SO_DEBUG setting */
 845	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 846	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 847	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 848	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 849	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 850	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 851	SOCK_FASYNC, /* fasync() active */
 852	SOCK_RXQ_OVFL,
 853	SOCK_ZEROCOPY, /* buffers from userspace */
 854	SOCK_WIFI_STATUS, /* push wifi status to userspace */
 855	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 856		     * Will use last 4 bytes of packet sent from
 857		     * user-space instead.
 858		     */
 859	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 860	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 861	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 862	SOCK_TXTIME,
 863	SOCK_XDP, /* XDP is attached */
 864	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
 865};
 866
 867#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 868
 869static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 870{
 871	nsk->sk_flags = osk->sk_flags;
 872}
 873
 874static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 875{
 876	__set_bit(flag, &sk->sk_flags);
 877}
 878
 879static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 880{
 881	__clear_bit(flag, &sk->sk_flags);
 882}
 883
 884static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
 885				     int valbool)
 886{
 887	if (valbool)
 888		sock_set_flag(sk, bit);
 889	else
 890		sock_reset_flag(sk, bit);
 891}
 892
 893static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 894{
 895	return test_bit(flag, &sk->sk_flags);
 896}
 897
 898#ifdef CONFIG_NET
 899DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
 900static inline int sk_memalloc_socks(void)
 901{
 902	return static_branch_unlikely(&memalloc_socks_key);
 903}
 904
 905void __receive_sock(struct file *file);
 906#else
 907
 908static inline int sk_memalloc_socks(void)
 909{
 910	return 0;
 911}
 912
 913static inline void __receive_sock(struct file *file)
 914{ }
 915#endif
 916
 917static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
 918{
 919	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
 920}
 921
 922static inline void sk_acceptq_removed(struct sock *sk)
 923{
 924	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
 925}
 926
 927static inline void sk_acceptq_added(struct sock *sk)
 928{
 929	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
 930}
 931
 932static inline bool sk_acceptq_is_full(const struct sock *sk)
 933{
 934	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
 935}
 936
 937/*
 938 * Compute minimal free write space needed to queue new packets.
 939 */
 940static inline int sk_stream_min_wspace(const struct sock *sk)
 941{
 942	return READ_ONCE(sk->sk_wmem_queued) >> 1;
 943}
 944
 945static inline int sk_stream_wspace(const struct sock *sk)
 946{
 947	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
 948}
 949
 950static inline void sk_wmem_queued_add(struct sock *sk, int val)
 951{
 952	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
 953}
 954
 955void sk_stream_write_space(struct sock *sk);
 956
 957/* OOB backlog add */
 958static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 959{
 960	/* dont let skb dst not refcounted, we are going to leave rcu lock */
 961	skb_dst_force(skb);
 962
 963	if (!sk->sk_backlog.tail)
 964		WRITE_ONCE(sk->sk_backlog.head, skb);
 965	else
 966		sk->sk_backlog.tail->next = skb;
 967
 968	WRITE_ONCE(sk->sk_backlog.tail, skb);
 969	skb->next = NULL;
 970}
 971
 972/*
 973 * Take into account size of receive queue and backlog queue
 974 * Do not take into account this skb truesize,
 975 * to allow even a single big packet to come.
 976 */
 977static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 978{
 979	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 980
 981	return qsize > limit;
 982}
 983
 984/* The per-socket spinlock must be held here. */
 985static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 986					      unsigned int limit)
 987{
 988	if (sk_rcvqueues_full(sk, limit))
 989		return -ENOBUFS;
 990
 991	/*
 992	 * If the skb was allocated from pfmemalloc reserves, only
 993	 * allow SOCK_MEMALLOC sockets to use it as this socket is
 994	 * helping free memory
 995	 */
 996	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 997		return -ENOMEM;
 998
 999	__sk_add_backlog(sk, skb);
1000	sk->sk_backlog.len += skb->truesize;
1001	return 0;
1002}
1003
1004int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1005
1006static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1007{
1008	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1009		return __sk_backlog_rcv(sk, skb);
1010
1011	return sk->sk_backlog_rcv(sk, skb);
1012}
1013
1014static inline void sk_incoming_cpu_update(struct sock *sk)
1015{
1016	int cpu = raw_smp_processor_id();
1017
1018	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1019		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1020}
1021
1022static inline void sock_rps_record_flow_hash(__u32 hash)
1023{
1024#ifdef CONFIG_RPS
1025	struct rps_sock_flow_table *sock_flow_table;
1026
1027	rcu_read_lock();
1028	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1029	rps_record_sock_flow(sock_flow_table, hash);
1030	rcu_read_unlock();
1031#endif
1032}
1033
1034static inline void sock_rps_record_flow(const struct sock *sk)
1035{
1036#ifdef CONFIG_RPS
1037	if (static_branch_unlikely(&rfs_needed)) {
1038		/* Reading sk->sk_rxhash might incur an expensive cache line
1039		 * miss.
1040		 *
1041		 * TCP_ESTABLISHED does cover almost all states where RFS
1042		 * might be useful, and is cheaper [1] than testing :
1043		 *	IPv4: inet_sk(sk)->inet_daddr
1044		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1045		 * OR	an additional socket flag
1046		 * [1] : sk_state and sk_prot are in the same cache line.
1047		 */
1048		if (sk->sk_state == TCP_ESTABLISHED)
1049			sock_rps_record_flow_hash(sk->sk_rxhash);
1050	}
1051#endif
1052}
1053
1054static inline void sock_rps_save_rxhash(struct sock *sk,
1055					const struct sk_buff *skb)
1056{
1057#ifdef CONFIG_RPS
1058	if (unlikely(sk->sk_rxhash != skb->hash))
1059		sk->sk_rxhash = skb->hash;
1060#endif
1061}
1062
1063static inline void sock_rps_reset_rxhash(struct sock *sk)
1064{
1065#ifdef CONFIG_RPS
1066	sk->sk_rxhash = 0;
1067#endif
1068}
1069
1070#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1071	({	int __rc;						\
1072		release_sock(__sk);					\
1073		__rc = __condition;					\
1074		if (!__rc) {						\
1075			*(__timeo) = wait_woken(__wait,			\
1076						TASK_INTERRUPTIBLE,	\
1077						*(__timeo));		\
1078		}							\
1079		sched_annotate_sleep();					\
1080		lock_sock(__sk);					\
1081		__rc = __condition;					\
1082		__rc;							\
1083	})
1084
1085int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1086int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1087void sk_stream_wait_close(struct sock *sk, long timeo_p);
1088int sk_stream_error(struct sock *sk, int flags, int err);
1089void sk_stream_kill_queues(struct sock *sk);
1090void sk_set_memalloc(struct sock *sk);
1091void sk_clear_memalloc(struct sock *sk);
1092
1093void __sk_flush_backlog(struct sock *sk);
1094
1095static inline bool sk_flush_backlog(struct sock *sk)
1096{
1097	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1098		__sk_flush_backlog(sk);
1099		return true;
1100	}
1101	return false;
1102}
1103
1104int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1105
1106struct request_sock_ops;
1107struct timewait_sock_ops;
1108struct inet_hashinfo;
1109struct raw_hashinfo;
1110struct smc_hashinfo;
1111struct module;
1112
1113/*
1114 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1115 * un-modified. Special care is taken when initializing object to zero.
1116 */
1117static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1118{
1119	if (offsetof(struct sock, sk_node.next) != 0)
1120		memset(sk, 0, offsetof(struct sock, sk_node.next));
1121	memset(&sk->sk_node.pprev, 0,
1122	       size - offsetof(struct sock, sk_node.pprev));
1123}
1124
1125/* Networking protocol blocks we attach to sockets.
1126 * socket layer -> transport layer interface
1127 */
1128struct proto {
1129	void			(*close)(struct sock *sk,
1130					long timeout);
1131	int			(*pre_connect)(struct sock *sk,
1132					struct sockaddr *uaddr,
1133					int addr_len);
1134	int			(*connect)(struct sock *sk,
1135					struct sockaddr *uaddr,
1136					int addr_len);
1137	int			(*disconnect)(struct sock *sk, int flags);
1138
1139	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1140					  bool kern);
1141
1142	int			(*ioctl)(struct sock *sk, int cmd,
1143					 unsigned long arg);
1144	int			(*init)(struct sock *sk);
1145	void			(*destroy)(struct sock *sk);
1146	void			(*shutdown)(struct sock *sk, int how);
1147	int			(*setsockopt)(struct sock *sk, int level,
1148					int optname, sockptr_t optval,
1149					unsigned int optlen);
1150	int			(*getsockopt)(struct sock *sk, int level,
1151					int optname, char __user *optval,
1152					int __user *option);
1153	void			(*keepalive)(struct sock *sk, int valbool);
1154#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
1155	int			(*compat_ioctl)(struct sock *sk,
1156					unsigned int cmd, unsigned long arg);
1157#endif
1158	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1159					   size_t len);
1160	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1161					   size_t len, int noblock, int flags,
1162					   int *addr_len);
1163	int			(*sendpage)(struct sock *sk, struct page *page,
1164					int offset, size_t size, int flags);
1165	int			(*bind)(struct sock *sk,
1166					struct sockaddr *addr, int addr_len);
1167	int			(*bind_add)(struct sock *sk,
1168					struct sockaddr *addr, int addr_len);
1169
1170	int			(*backlog_rcv) (struct sock *sk,
1171						struct sk_buff *skb);
1172
1173	void		(*release_cb)(struct sock *sk);
1174
1175	/* Keeping track of sk's, looking them up, and port selection methods. */
1176	int			(*hash)(struct sock *sk);
1177	void			(*unhash)(struct sock *sk);
1178	void			(*rehash)(struct sock *sk);
1179	int			(*get_port)(struct sock *sk, unsigned short snum);
 
1180
1181	/* Keeping track of sockets in use */
1182#ifdef CONFIG_PROC_FS
1183	unsigned int		inuse_idx;
1184#endif
1185
1186	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1187	bool			(*stream_memory_read)(const struct sock *sk);
1188	/* Memory pressure */
1189	void			(*enter_memory_pressure)(struct sock *sk);
1190	void			(*leave_memory_pressure)(struct sock *sk);
1191	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1192	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1193	/*
1194	 * Pressure flag: try to collapse.
1195	 * Technical note: it is used by multiple contexts non atomically.
1196	 * All the __sk_mem_schedule() is of this nature: accounting
1197	 * is strict, actions are advisory and have some latency.
1198	 */
1199	unsigned long		*memory_pressure;
1200	long			*sysctl_mem;
1201
1202	int			*sysctl_wmem;
1203	int			*sysctl_rmem;
1204	u32			sysctl_wmem_offset;
1205	u32			sysctl_rmem_offset;
1206
1207	int			max_header;
1208	bool			no_autobind;
1209
1210	struct kmem_cache	*slab;
1211	unsigned int		obj_size;
1212	slab_flags_t		slab_flags;
1213	unsigned int		useroffset;	/* Usercopy region offset */
1214	unsigned int		usersize;	/* Usercopy region size */
1215
1216	struct percpu_counter	*orphan_count;
1217
1218	struct request_sock_ops	*rsk_prot;
1219	struct timewait_sock_ops *twsk_prot;
1220
1221	union {
1222		struct inet_hashinfo	*hashinfo;
1223		struct udp_table	*udp_table;
1224		struct raw_hashinfo	*raw_hash;
1225		struct smc_hashinfo	*smc_hash;
1226	} h;
1227
1228	struct module		*owner;
1229
1230	char			name[32];
1231
1232	struct list_head	node;
1233#ifdef SOCK_REFCNT_DEBUG
1234	atomic_t		socks;
1235#endif
1236	int			(*diag_destroy)(struct sock *sk, int err);
1237} __randomize_layout;
1238
1239int proto_register(struct proto *prot, int alloc_slab);
1240void proto_unregister(struct proto *prot);
1241int sock_load_diag_module(int family, int protocol);
1242
1243#ifdef SOCK_REFCNT_DEBUG
1244static inline void sk_refcnt_debug_inc(struct sock *sk)
1245{
1246	atomic_inc(&sk->sk_prot->socks);
1247}
1248
1249static inline void sk_refcnt_debug_dec(struct sock *sk)
1250{
1251	atomic_dec(&sk->sk_prot->socks);
1252	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1253	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1254}
1255
1256static inline void sk_refcnt_debug_release(const struct sock *sk)
1257{
1258	if (refcount_read(&sk->sk_refcnt) != 1)
1259		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1260		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1261}
1262#else /* SOCK_REFCNT_DEBUG */
1263#define sk_refcnt_debug_inc(sk) do { } while (0)
1264#define sk_refcnt_debug_dec(sk) do { } while (0)
1265#define sk_refcnt_debug_release(sk) do { } while (0)
1266#endif /* SOCK_REFCNT_DEBUG */
1267
1268static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1269{
1270	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1271		return false;
1272
1273	return sk->sk_prot->stream_memory_free ?
1274		sk->sk_prot->stream_memory_free(sk, wake) : true;
1275}
1276
1277static inline bool sk_stream_memory_free(const struct sock *sk)
1278{
1279	return __sk_stream_memory_free(sk, 0);
1280}
1281
1282static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1283{
1284	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1285	       __sk_stream_memory_free(sk, wake);
1286}
1287
1288static inline bool sk_stream_is_writeable(const struct sock *sk)
1289{
1290	return __sk_stream_is_writeable(sk, 0);
1291}
1292
1293static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1294					    struct cgroup *ancestor)
1295{
1296#ifdef CONFIG_SOCK_CGROUP_DATA
1297	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1298				    ancestor);
1299#else
1300	return -ENOTSUPP;
1301#endif
1302}
1303
1304static inline bool sk_has_memory_pressure(const struct sock *sk)
1305{
1306	return sk->sk_prot->memory_pressure != NULL;
1307}
1308
1309static inline bool sk_under_memory_pressure(const struct sock *sk)
1310{
1311	if (!sk->sk_prot->memory_pressure)
1312		return false;
1313
1314	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1315	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1316		return true;
1317
1318	return !!*sk->sk_prot->memory_pressure;
1319}
1320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321static inline long
1322sk_memory_allocated(const struct sock *sk)
1323{
1324	return atomic_long_read(sk->sk_prot->memory_allocated);
1325}
1326
1327static inline long
1328sk_memory_allocated_add(struct sock *sk, int amt)
1329{
1330	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1331}
1332
1333static inline void
1334sk_memory_allocated_sub(struct sock *sk, int amt)
1335{
1336	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1337}
1338
1339static inline void sk_sockets_allocated_dec(struct sock *sk)
1340{
1341	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1342}
1343
1344static inline void sk_sockets_allocated_inc(struct sock *sk)
1345{
1346	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1347}
1348
1349static inline u64
1350sk_sockets_allocated_read_positive(struct sock *sk)
1351{
1352	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1353}
1354
1355static inline int
1356proto_sockets_allocated_sum_positive(struct proto *prot)
1357{
1358	return percpu_counter_sum_positive(prot->sockets_allocated);
1359}
1360
1361static inline long
1362proto_memory_allocated(struct proto *prot)
1363{
1364	return atomic_long_read(prot->memory_allocated);
1365}
1366
1367static inline bool
1368proto_memory_pressure(struct proto *prot)
1369{
1370	if (!prot->memory_pressure)
1371		return false;
1372	return !!*prot->memory_pressure;
1373}
1374
1375
1376#ifdef CONFIG_PROC_FS
1377/* Called with local bh disabled */
1378void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1379int sock_prot_inuse_get(struct net *net, struct proto *proto);
1380int sock_inuse_get(struct net *net);
1381#else
1382static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1383		int inc)
1384{
1385}
1386#endif
1387
1388
1389/* With per-bucket locks this operation is not-atomic, so that
1390 * this version is not worse.
1391 */
1392static inline int __sk_prot_rehash(struct sock *sk)
1393{
1394	sk->sk_prot->unhash(sk);
1395	return sk->sk_prot->hash(sk);
1396}
1397
 
 
1398/* About 10 seconds */
1399#define SOCK_DESTROY_TIME (10*HZ)
1400
1401/* Sockets 0-1023 can't be bound to unless you are superuser */
1402#define PROT_SOCK	1024
1403
1404#define SHUTDOWN_MASK	3
1405#define RCV_SHUTDOWN	1
1406#define SEND_SHUTDOWN	2
1407
1408#define SOCK_SNDBUF_LOCK	1
1409#define SOCK_RCVBUF_LOCK	2
1410#define SOCK_BINDADDR_LOCK	4
1411#define SOCK_BINDPORT_LOCK	8
1412
1413struct socket_alloc {
1414	struct socket socket;
1415	struct inode vfs_inode;
1416};
1417
1418static inline struct socket *SOCKET_I(struct inode *inode)
1419{
1420	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1421}
1422
1423static inline struct inode *SOCK_INODE(struct socket *socket)
1424{
1425	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1426}
1427
1428/*
1429 * Functions for memory accounting
1430 */
1431int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1432int __sk_mem_schedule(struct sock *sk, int size, int kind);
1433void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1434void __sk_mem_reclaim(struct sock *sk, int amount);
1435
1436/* We used to have PAGE_SIZE here, but systems with 64KB pages
1437 * do not necessarily have 16x time more memory than 4KB ones.
1438 */
1439#define SK_MEM_QUANTUM 4096
1440#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1441#define SK_MEM_SEND	0
1442#define SK_MEM_RECV	1
1443
1444/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1445static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1446{
1447	long val = sk->sk_prot->sysctl_mem[index];
1448
1449#if PAGE_SIZE > SK_MEM_QUANTUM
1450	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1451#elif PAGE_SIZE < SK_MEM_QUANTUM
1452	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1453#endif
1454	return val;
1455}
1456
1457static inline int sk_mem_pages(int amt)
1458{
1459	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1460}
1461
1462static inline bool sk_has_account(struct sock *sk)
1463{
1464	/* return true if protocol supports memory accounting */
1465	return !!sk->sk_prot->memory_allocated;
1466}
1467
1468static inline bool sk_wmem_schedule(struct sock *sk, int size)
1469{
1470	if (!sk_has_account(sk))
1471		return true;
1472	return size <= sk->sk_forward_alloc ||
1473		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1474}
1475
1476static inline bool
1477sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1478{
1479	if (!sk_has_account(sk))
1480		return true;
1481	return size<= sk->sk_forward_alloc ||
1482		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1483		skb_pfmemalloc(skb);
1484}
1485
1486static inline void sk_mem_reclaim(struct sock *sk)
1487{
1488	if (!sk_has_account(sk))
1489		return;
1490	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1491		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1492}
1493
1494static inline void sk_mem_reclaim_partial(struct sock *sk)
1495{
1496	if (!sk_has_account(sk))
1497		return;
1498	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1499		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1500}
1501
1502static inline void sk_mem_charge(struct sock *sk, int size)
1503{
1504	if (!sk_has_account(sk))
1505		return;
1506	sk->sk_forward_alloc -= size;
1507}
1508
1509static inline void sk_mem_uncharge(struct sock *sk, int size)
1510{
1511	if (!sk_has_account(sk))
1512		return;
1513	sk->sk_forward_alloc += size;
1514
1515	/* Avoid a possible overflow.
1516	 * TCP send queues can make this happen, if sk_mem_reclaim()
1517	 * is not called and more than 2 GBytes are released at once.
1518	 *
1519	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1520	 * no need to hold that much forward allocation anyway.
1521	 */
1522	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1523		__sk_mem_reclaim(sk, 1 << 20);
1524}
1525
1526DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1527static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1528{
1529	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1530	sk_wmem_queued_add(sk, -skb->truesize);
1531	sk_mem_uncharge(sk, skb->truesize);
1532	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1533	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1534		skb_ext_reset(skb);
1535		skb_zcopy_clear(skb, true);
1536		sk->sk_tx_skb_cache = skb;
1537		return;
1538	}
1539	__kfree_skb(skb);
1540}
1541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542static inline void sock_release_ownership(struct sock *sk)
1543{
1544	if (sk->sk_lock.owned) {
1545		sk->sk_lock.owned = 0;
1546
1547		/* The sk_lock has mutex_unlock() semantics: */
1548		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1549	}
1550}
1551
1552/*
1553 * Macro so as to not evaluate some arguments when
1554 * lockdep is not enabled.
1555 *
1556 * Mark both the sk_lock and the sk_lock.slock as a
1557 * per-address-family lock class.
1558 */
1559#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1560do {									\
1561	sk->sk_lock.owned = 0;						\
1562	init_waitqueue_head(&sk->sk_lock.wq);				\
1563	spin_lock_init(&(sk)->sk_lock.slock);				\
1564	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1565			sizeof((sk)->sk_lock));				\
1566	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1567				(skey), (sname));				\
1568	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1569} while (0)
1570
1571#ifdef CONFIG_LOCKDEP
1572static inline bool lockdep_sock_is_held(const struct sock *sk)
1573{
1574	return lockdep_is_held(&sk->sk_lock) ||
1575	       lockdep_is_held(&sk->sk_lock.slock);
1576}
1577#endif
1578
1579void lock_sock_nested(struct sock *sk, int subclass);
1580
1581static inline void lock_sock(struct sock *sk)
1582{
1583	lock_sock_nested(sk, 0);
1584}
1585
1586void __release_sock(struct sock *sk);
1587void release_sock(struct sock *sk);
1588
1589/* BH context may only use the following locking interface. */
1590#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1591#define bh_lock_sock_nested(__sk) \
1592				spin_lock_nested(&((__sk)->sk_lock.slock), \
1593				SINGLE_DEPTH_NESTING)
1594#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1595
1596bool lock_sock_fast(struct sock *sk);
1597/**
1598 * unlock_sock_fast - complement of lock_sock_fast
1599 * @sk: socket
1600 * @slow: slow mode
1601 *
1602 * fast unlock socket for user context.
1603 * If slow mode is on, we call regular release_sock()
1604 */
1605static inline void unlock_sock_fast(struct sock *sk, bool slow)
1606{
1607	if (slow)
1608		release_sock(sk);
1609	else
1610		spin_unlock_bh(&sk->sk_lock.slock);
1611}
1612
1613/* Used by processes to "lock" a socket state, so that
1614 * interrupts and bottom half handlers won't change it
1615 * from under us. It essentially blocks any incoming
1616 * packets, so that we won't get any new data or any
1617 * packets that change the state of the socket.
1618 *
1619 * While locked, BH processing will add new packets to
1620 * the backlog queue.  This queue is processed by the
1621 * owner of the socket lock right before it is released.
1622 *
1623 * Since ~2.3.5 it is also exclusive sleep lock serializing
1624 * accesses from user process context.
1625 */
1626
1627static inline void sock_owned_by_me(const struct sock *sk)
1628{
1629#ifdef CONFIG_LOCKDEP
1630	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1631#endif
1632}
1633
1634static inline bool sock_owned_by_user(const struct sock *sk)
1635{
1636	sock_owned_by_me(sk);
1637	return sk->sk_lock.owned;
1638}
1639
1640static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1641{
1642	return sk->sk_lock.owned;
1643}
1644
1645/* no reclassification while locks are held */
1646static inline bool sock_allow_reclassification(const struct sock *csk)
1647{
1648	struct sock *sk = (struct sock *)csk;
1649
1650	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1651}
1652
1653struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654		      struct proto *prot, int kern);
1655void sk_free(struct sock *sk);
1656void sk_destruct(struct sock *sk);
1657struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1658void sk_free_unlock_clone(struct sock *sk);
1659
1660struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1661			     gfp_t priority);
1662void __sock_wfree(struct sk_buff *skb);
1663void sock_wfree(struct sk_buff *skb);
1664struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1665			     gfp_t priority);
1666void skb_orphan_partial(struct sk_buff *skb);
1667void sock_rfree(struct sk_buff *skb);
1668void sock_efree(struct sk_buff *skb);
1669#ifdef CONFIG_INET
1670void sock_edemux(struct sk_buff *skb);
1671void sock_pfree(struct sk_buff *skb);
1672#else
1673#define sock_edemux sock_efree
1674#endif
1675
1676int sock_setsockopt(struct socket *sock, int level, int op,
1677		    sockptr_t optval, unsigned int optlen);
1678
1679int sock_getsockopt(struct socket *sock, int level, int op,
1680		    char __user *optval, int __user *optlen);
1681int sock_gettstamp(struct socket *sock, void __user *userstamp,
1682		   bool timeval, bool time32);
1683struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1684				    int noblock, int *errcode);
1685struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1686				     unsigned long data_len, int noblock,
1687				     int *errcode, int max_page_order);
1688void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1689void sock_kfree_s(struct sock *sk, void *mem, int size);
1690void sock_kzfree_s(struct sock *sk, void *mem, int size);
1691void sk_send_sigurg(struct sock *sk);
1692
1693struct sockcm_cookie {
1694	u64 transmit_time;
1695	u32 mark;
1696	u16 tsflags;
1697};
1698
1699static inline void sockcm_init(struct sockcm_cookie *sockc,
1700			       const struct sock *sk)
1701{
1702	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1703}
1704
1705int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1706		     struct sockcm_cookie *sockc);
1707int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1708		   struct sockcm_cookie *sockc);
1709
1710/*
1711 * Functions to fill in entries in struct proto_ops when a protocol
1712 * does not implement a particular function.
1713 */
1714int sock_no_bind(struct socket *, struct sockaddr *, int);
1715int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1716int sock_no_socketpair(struct socket *, struct socket *);
1717int sock_no_accept(struct socket *, struct socket *, int, bool);
1718int sock_no_getname(struct socket *, struct sockaddr *, int);
 
 
1719int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1720int sock_no_listen(struct socket *, int);
1721int sock_no_shutdown(struct socket *, int);
 
 
1722int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1723int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1724int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1725int sock_no_mmap(struct file *file, struct socket *sock,
1726		 struct vm_area_struct *vma);
1727ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1728			 size_t size, int flags);
1729ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1730				int offset, size_t size, int flags);
1731
1732/*
1733 * Functions to fill in entries in struct proto_ops when a protocol
1734 * uses the inet style.
1735 */
1736int sock_common_getsockopt(struct socket *sock, int level, int optname,
1737				  char __user *optval, int __user *optlen);
1738int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1739			int flags);
1740int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741			   sockptr_t optval, unsigned int optlen);
 
 
 
 
1742
1743void sk_common_release(struct sock *sk);
1744
1745/*
1746 *	Default socket callbacks and setup code
1747 */
1748
1749/* Initialise core socket variables */
1750void sock_init_data(struct socket *sock, struct sock *sk);
1751
1752/*
1753 * Socket reference counting postulates.
1754 *
1755 * * Each user of socket SHOULD hold a reference count.
1756 * * Each access point to socket (an hash table bucket, reference from a list,
1757 *   running timer, skb in flight MUST hold a reference count.
1758 * * When reference count hits 0, it means it will never increase back.
1759 * * When reference count hits 0, it means that no references from
1760 *   outside exist to this socket and current process on current CPU
1761 *   is last user and may/should destroy this socket.
1762 * * sk_free is called from any context: process, BH, IRQ. When
1763 *   it is called, socket has no references from outside -> sk_free
1764 *   may release descendant resources allocated by the socket, but
1765 *   to the time when it is called, socket is NOT referenced by any
1766 *   hash tables, lists etc.
1767 * * Packets, delivered from outside (from network or from another process)
1768 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1769 *   when they sit in queue. Otherwise, packets will leak to hole, when
1770 *   socket is looked up by one cpu and unhasing is made by another CPU.
1771 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1772 *   (leak to backlog). Packet socket does all the processing inside
1773 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1774 *   use separate SMP lock, so that they are prone too.
1775 */
1776
1777/* Ungrab socket and destroy it, if it was the last reference. */
1778static inline void sock_put(struct sock *sk)
1779{
1780	if (refcount_dec_and_test(&sk->sk_refcnt))
1781		sk_free(sk);
1782}
1783/* Generic version of sock_put(), dealing with all sockets
1784 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1785 */
1786void sock_gen_put(struct sock *sk);
1787
1788int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1789		     unsigned int trim_cap, bool refcounted);
1790static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1791				 const int nested)
1792{
1793	return __sk_receive_skb(sk, skb, nested, 1, true);
1794}
1795
1796static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1797{
1798	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1799	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1800		return;
1801	sk->sk_tx_queue_mapping = tx_queue;
1802}
1803
1804#define NO_QUEUE_MAPPING	USHRT_MAX
1805
1806static inline void sk_tx_queue_clear(struct sock *sk)
1807{
1808	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1809}
1810
1811static inline int sk_tx_queue_get(const struct sock *sk)
1812{
1813	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1814		return sk->sk_tx_queue_mapping;
1815
1816	return -1;
1817}
1818
1819static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1820{
1821#ifdef CONFIG_XPS
1822	if (skb_rx_queue_recorded(skb)) {
1823		u16 rx_queue = skb_get_rx_queue(skb);
1824
1825		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1826			return;
1827
1828		sk->sk_rx_queue_mapping = rx_queue;
1829	}
1830#endif
1831}
1832
1833static inline void sk_rx_queue_clear(struct sock *sk)
1834{
1835#ifdef CONFIG_XPS
1836	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1837#endif
1838}
1839
1840#ifdef CONFIG_XPS
1841static inline int sk_rx_queue_get(const struct sock *sk)
1842{
1843	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1844		return sk->sk_rx_queue_mapping;
1845
1846	return -1;
1847}
1848#endif
1849
1850static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1851{
 
1852	sk->sk_socket = sock;
1853}
1854
1855static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1856{
1857	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1858	return &rcu_dereference_raw(sk->sk_wq)->wait;
1859}
1860/* Detach socket from process context.
1861 * Announce socket dead, detach it from wait queue and inode.
1862 * Note that parent inode held reference count on this struct sock,
1863 * we do not release it in this function, because protocol
1864 * probably wants some additional cleanups or even continuing
1865 * to work with this socket (TCP).
1866 */
1867static inline void sock_orphan(struct sock *sk)
1868{
1869	write_lock_bh(&sk->sk_callback_lock);
1870	sock_set_flag(sk, SOCK_DEAD);
1871	sk_set_socket(sk, NULL);
1872	sk->sk_wq  = NULL;
1873	write_unlock_bh(&sk->sk_callback_lock);
1874}
1875
1876static inline void sock_graft(struct sock *sk, struct socket *parent)
1877{
1878	WARN_ON(parent->sk);
1879	write_lock_bh(&sk->sk_callback_lock);
1880	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1881	parent->sk = sk;
1882	sk_set_socket(sk, parent);
1883	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1884	security_sock_graft(sk, parent);
1885	write_unlock_bh(&sk->sk_callback_lock);
1886}
1887
1888kuid_t sock_i_uid(struct sock *sk);
1889unsigned long sock_i_ino(struct sock *sk);
1890
1891static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1892{
1893	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1894}
1895
1896static inline u32 net_tx_rndhash(void)
1897{
1898	u32 v = prandom_u32();
1899
1900	return v ?: 1;
1901}
1902
1903static inline void sk_set_txhash(struct sock *sk)
1904{
1905	sk->sk_txhash = net_tx_rndhash();
1906}
1907
1908static inline void sk_rethink_txhash(struct sock *sk)
1909{
1910	if (sk->sk_txhash)
1911		sk_set_txhash(sk);
1912}
1913
1914static inline struct dst_entry *
1915__sk_dst_get(struct sock *sk)
1916{
1917	return rcu_dereference_check(sk->sk_dst_cache,
1918				     lockdep_sock_is_held(sk));
1919}
1920
1921static inline struct dst_entry *
1922sk_dst_get(struct sock *sk)
1923{
1924	struct dst_entry *dst;
1925
1926	rcu_read_lock();
1927	dst = rcu_dereference(sk->sk_dst_cache);
1928	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1929		dst = NULL;
1930	rcu_read_unlock();
1931	return dst;
1932}
1933
1934static inline void dst_negative_advice(struct sock *sk)
1935{
1936	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1937
1938	sk_rethink_txhash(sk);
1939
1940	if (dst && dst->ops->negative_advice) {
1941		ndst = dst->ops->negative_advice(dst);
1942
1943		if (ndst != dst) {
1944			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1945			sk_tx_queue_clear(sk);
1946			sk->sk_dst_pending_confirm = 0;
1947		}
1948	}
1949}
1950
1951static inline void
1952__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1953{
1954	struct dst_entry *old_dst;
1955
1956	sk_tx_queue_clear(sk);
1957	sk->sk_dst_pending_confirm = 0;
1958	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1959					    lockdep_sock_is_held(sk));
 
 
1960	rcu_assign_pointer(sk->sk_dst_cache, dst);
1961	dst_release(old_dst);
1962}
1963
1964static inline void
1965sk_dst_set(struct sock *sk, struct dst_entry *dst)
1966{
1967	struct dst_entry *old_dst;
1968
1969	sk_tx_queue_clear(sk);
1970	sk->sk_dst_pending_confirm = 0;
1971	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1972	dst_release(old_dst);
1973}
1974
1975static inline void
1976__sk_dst_reset(struct sock *sk)
1977{
1978	__sk_dst_set(sk, NULL);
1979}
1980
1981static inline void
1982sk_dst_reset(struct sock *sk)
1983{
1984	sk_dst_set(sk, NULL);
1985}
1986
1987struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1988
1989struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1990
1991static inline void sk_dst_confirm(struct sock *sk)
1992{
1993	if (!READ_ONCE(sk->sk_dst_pending_confirm))
1994		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1995}
1996
1997static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1998{
1999	if (skb_get_dst_pending_confirm(skb)) {
2000		struct sock *sk = skb->sk;
2001		unsigned long now = jiffies;
2002
2003		/* avoid dirtying neighbour */
2004		if (READ_ONCE(n->confirmed) != now)
2005			WRITE_ONCE(n->confirmed, now);
2006		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2007			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2008	}
2009}
2010
2011bool sk_mc_loop(struct sock *sk);
2012
2013static inline bool sk_can_gso(const struct sock *sk)
2014{
2015	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2016}
2017
2018void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2019
2020static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2021{
2022	sk->sk_route_nocaps |= flags;
2023	sk->sk_route_caps &= ~flags;
2024}
2025
 
 
 
 
 
 
 
 
 
2026static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2027					   struct iov_iter *from, char *to,
2028					   int copy, int offset)
2029{
2030	if (skb->ip_summed == CHECKSUM_NONE) {
2031		__wsum csum = 0;
2032		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2033			return -EFAULT;
2034		skb->csum = csum_block_add(skb->csum, csum, offset);
2035	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2036		if (!copy_from_iter_full_nocache(to, copy, from))
2037			return -EFAULT;
2038	} else if (!copy_from_iter_full(to, copy, from))
2039		return -EFAULT;
2040
2041	return 0;
2042}
2043
2044static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2045				       struct iov_iter *from, int copy)
2046{
2047	int err, offset = skb->len;
2048
2049	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2050				       copy, offset);
2051	if (err)
2052		__skb_trim(skb, offset);
2053
2054	return err;
2055}
2056
2057static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2058					   struct sk_buff *skb,
2059					   struct page *page,
2060					   int off, int copy)
2061{
2062	int err;
2063
2064	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2065				       copy, skb->len);
2066	if (err)
2067		return err;
2068
2069	skb->len	     += copy;
2070	skb->data_len	     += copy;
2071	skb->truesize	     += copy;
2072	sk_wmem_queued_add(sk, copy);
2073	sk_mem_charge(sk, copy);
2074	return 0;
2075}
2076
2077/**
2078 * sk_wmem_alloc_get - returns write allocations
2079 * @sk: socket
2080 *
2081 * Return: sk_wmem_alloc minus initial offset of one
2082 */
2083static inline int sk_wmem_alloc_get(const struct sock *sk)
2084{
2085	return refcount_read(&sk->sk_wmem_alloc) - 1;
2086}
2087
2088/**
2089 * sk_rmem_alloc_get - returns read allocations
2090 * @sk: socket
2091 *
2092 * Return: sk_rmem_alloc
2093 */
2094static inline int sk_rmem_alloc_get(const struct sock *sk)
2095{
2096	return atomic_read(&sk->sk_rmem_alloc);
2097}
2098
2099/**
2100 * sk_has_allocations - check if allocations are outstanding
2101 * @sk: socket
2102 *
2103 * Return: true if socket has write or read allocations
2104 */
2105static inline bool sk_has_allocations(const struct sock *sk)
2106{
2107	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2108}
2109
2110/**
2111 * skwq_has_sleeper - check if there are any waiting processes
2112 * @wq: struct socket_wq
2113 *
2114 * Return: true if socket_wq has waiting processes
2115 *
2116 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2117 * barrier call. They were added due to the race found within the tcp code.
2118 *
2119 * Consider following tcp code paths::
 
 
2120 *
2121 *   CPU1                CPU2
2122 *   sys_select          receive packet
2123 *   ...                 ...
2124 *   __add_wait_queue    update tp->rcv_nxt
2125 *   ...                 ...
2126 *   tp->rcv_nxt check   sock_def_readable
2127 *   ...                 {
2128 *   schedule               rcu_read_lock();
2129 *                          wq = rcu_dereference(sk->sk_wq);
2130 *                          if (wq && waitqueue_active(&wq->wait))
2131 *                              wake_up_interruptible(&wq->wait)
2132 *                          ...
2133 *                       }
2134 *
2135 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2136 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2137 * could then endup calling schedule and sleep forever if there are no more
2138 * data on the socket.
2139 *
2140 */
2141static inline bool skwq_has_sleeper(struct socket_wq *wq)
2142{
2143	return wq && wq_has_sleeper(&wq->wait);
2144}
2145
2146/**
2147 * sock_poll_wait - place memory barrier behind the poll_wait call.
2148 * @filp:           file
2149 * @sock:           socket to wait on
2150 * @p:              poll_table
2151 *
2152 * See the comments in the wq_has_sleeper function.
2153 */
2154static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2155				  poll_table *p)
2156{
2157	if (!poll_does_not_wait(p)) {
2158		poll_wait(filp, &sock->wq.wait, p);
2159		/* We need to be sure we are in sync with the
2160		 * socket flags modification.
2161		 *
2162		 * This memory barrier is paired in the wq_has_sleeper.
2163		 */
2164		smp_mb();
2165	}
2166}
2167
2168static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2169{
2170	if (sk->sk_txhash) {
2171		skb->l4_hash = 1;
2172		skb->hash = sk->sk_txhash;
2173	}
2174}
2175
2176void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2177
2178/*
2179 *	Queue a received datagram if it will fit. Stream and sequenced
2180 *	protocols can't normally use this as they need to fit buffers in
2181 *	and play with them.
2182 *
2183 *	Inlined as it's very short and called for pretty much every
2184 *	packet ever received.
2185 */
2186static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2187{
2188	skb_orphan(skb);
2189	skb->sk = sk;
2190	skb->destructor = sock_rfree;
2191	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2192	sk_mem_charge(sk, skb->truesize);
2193}
2194
2195void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2196		    unsigned long expires);
2197
2198void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2199
2200int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2201			struct sk_buff *skb, unsigned int flags,
2202			void (*destructor)(struct sock *sk,
2203					   struct sk_buff *skb));
2204int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2205int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2206
2207int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2208struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2209
2210/*
2211 *	Recover an error report and clear atomically
2212 */
2213
2214static inline int sock_error(struct sock *sk)
2215{
2216	int err;
2217	if (likely(!sk->sk_err))
2218		return 0;
2219	err = xchg(&sk->sk_err, 0);
2220	return -err;
2221}
2222
2223static inline unsigned long sock_wspace(struct sock *sk)
2224{
2225	int amt = 0;
2226
2227	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2228		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2229		if (amt < 0)
2230			amt = 0;
2231	}
2232	return amt;
2233}
2234
2235/* Note:
2236 *  We use sk->sk_wq_raw, from contexts knowing this
2237 *  pointer is not NULL and cannot disappear/change.
2238 */
2239static inline void sk_set_bit(int nr, struct sock *sk)
2240{
2241	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2242	    !sock_flag(sk, SOCK_FASYNC))
2243		return;
2244
2245	set_bit(nr, &sk->sk_wq_raw->flags);
2246}
2247
2248static inline void sk_clear_bit(int nr, struct sock *sk)
2249{
2250	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2251	    !sock_flag(sk, SOCK_FASYNC))
2252		return;
2253
2254	clear_bit(nr, &sk->sk_wq_raw->flags);
2255}
2256
2257static inline void sk_wake_async(const struct sock *sk, int how, int band)
2258{
2259	if (sock_flag(sk, SOCK_FASYNC)) {
2260		rcu_read_lock();
2261		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2262		rcu_read_unlock();
2263	}
2264}
2265
2266/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2267 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2268 * Note: for send buffers, TCP works better if we can build two skbs at
2269 * minimum.
2270 */
2271#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2272
2273#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2274#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2275
2276static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2277{
2278	u32 val;
2279
2280	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2281		return;
2282
2283	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2284
2285	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2286}
2287
2288struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2289				    bool force_schedule);
2290
2291/**
2292 * sk_page_frag - return an appropriate page_frag
2293 * @sk: socket
2294 *
2295 * Use the per task page_frag instead of the per socket one for
2296 * optimization when we know that we're in the normal context and owns
2297 * everything that's associated with %current.
2298 *
2299 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2300 * inside other socket operations and end up recursing into sk_page_frag()
2301 * while it's already in use.
2302 *
2303 * Return: a per task page_frag if context allows that,
2304 * otherwise a per socket one.
2305 */
2306static inline struct page_frag *sk_page_frag(struct sock *sk)
2307{
2308	if (gfpflags_normal_context(sk->sk_allocation))
2309		return &current->task_frag;
2310
2311	return &sk->sk_frag;
2312}
2313
2314bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2315
2316/*
2317 *	Default write policy as shown to user space via poll/select/SIGIO
2318 */
2319static inline bool sock_writeable(const struct sock *sk)
2320{
2321	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2322}
2323
2324static inline gfp_t gfp_any(void)
2325{
2326	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2327}
2328
2329static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2330{
2331	return noblock ? 0 : sk->sk_rcvtimeo;
2332}
2333
2334static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2335{
2336	return noblock ? 0 : sk->sk_sndtimeo;
2337}
2338
2339static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2340{
2341	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2342
2343	return v ?: 1;
2344}
2345
2346/* Alas, with timeout socket operations are not restartable.
2347 * Compare this to poll().
2348 */
2349static inline int sock_intr_errno(long timeo)
2350{
2351	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2352}
2353
2354struct sock_skb_cb {
2355	u32 dropcount;
2356};
2357
2358/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2359 * using skb->cb[] would keep using it directly and utilize its
2360 * alignement guarantee.
2361 */
2362#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2363			    sizeof(struct sock_skb_cb)))
2364
2365#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2366			    SOCK_SKB_CB_OFFSET))
2367
2368#define sock_skb_cb_check_size(size) \
2369	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2370
2371static inline void
2372sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2373{
2374	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2375						atomic_read(&sk->sk_drops) : 0;
2376}
2377
2378static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2379{
2380	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2381
2382	atomic_add(segs, &sk->sk_drops);
2383}
2384
2385static inline ktime_t sock_read_timestamp(struct sock *sk)
2386{
2387#if BITS_PER_LONG==32
2388	unsigned int seq;
2389	ktime_t kt;
2390
2391	do {
2392		seq = read_seqbegin(&sk->sk_stamp_seq);
2393		kt = sk->sk_stamp;
2394	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2395
2396	return kt;
2397#else
2398	return READ_ONCE(sk->sk_stamp);
2399#endif
2400}
2401
2402static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2403{
2404#if BITS_PER_LONG==32
2405	write_seqlock(&sk->sk_stamp_seq);
2406	sk->sk_stamp = kt;
2407	write_sequnlock(&sk->sk_stamp_seq);
2408#else
2409	WRITE_ONCE(sk->sk_stamp, kt);
2410#endif
2411}
2412
2413void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2414			   struct sk_buff *skb);
2415void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2416			     struct sk_buff *skb);
2417
2418static inline void
2419sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2420{
2421	ktime_t kt = skb->tstamp;
2422	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2423
2424	/*
2425	 * generate control messages if
2426	 * - receive time stamping in software requested
2427	 * - software time stamp available and wanted
2428	 * - hardware time stamps available and wanted
2429	 */
2430	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2431	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2432	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2433	    (hwtstamps->hwtstamp &&
2434	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2435		__sock_recv_timestamp(msg, sk, skb);
2436	else
2437		sock_write_timestamp(sk, kt);
2438
2439	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2440		__sock_recv_wifi_status(msg, sk, skb);
2441}
2442
2443void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2444			      struct sk_buff *skb);
2445
2446#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2447static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2448					  struct sk_buff *skb)
2449{
2450#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2451			   (1UL << SOCK_RCVTSTAMP))
2452#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2453			   SOF_TIMESTAMPING_RAW_HARDWARE)
2454
2455	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2456		__sock_recv_ts_and_drops(msg, sk, skb);
2457	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2458		sock_write_timestamp(sk, skb->tstamp);
2459	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2460		sock_write_timestamp(sk, 0);
2461}
2462
2463void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2464
2465/**
2466 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2467 * @sk:		socket sending this packet
2468 * @tsflags:	timestamping flags to use
2469 * @tx_flags:	completed with instructions for time stamping
2470 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2471 *
2472 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2473 */
2474static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2475				      __u8 *tx_flags, __u32 *tskey)
2476{
2477	if (unlikely(tsflags)) {
2478		__sock_tx_timestamp(tsflags, tx_flags);
2479		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2480		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2481			*tskey = sk->sk_tskey++;
2482	}
2483	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2484		*tx_flags |= SKBTX_WIFI_STATUS;
2485}
2486
2487static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2488				     __u8 *tx_flags)
2489{
2490	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2491}
2492
2493static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2494{
2495	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2496			   &skb_shinfo(skb)->tskey);
2497}
2498
2499DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2500/**
2501 * sk_eat_skb - Release a skb if it is no longer needed
2502 * @sk: socket to eat this skb from
2503 * @skb: socket buffer to eat
2504 *
2505 * This routine must be called with interrupts disabled or with the socket
2506 * locked so that the sk_buff queue operation is ok.
2507*/
2508static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2509{
2510	__skb_unlink(skb, &sk->sk_receive_queue);
2511	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2512	    !sk->sk_rx_skb_cache) {
2513		sk->sk_rx_skb_cache = skb;
2514		skb_orphan(skb);
2515		return;
2516	}
2517	__kfree_skb(skb);
2518}
2519
2520static inline
2521struct net *sock_net(const struct sock *sk)
2522{
2523	return read_pnet(&sk->sk_net);
2524}
2525
2526static inline
2527void sock_net_set(struct sock *sk, struct net *net)
2528{
2529	write_pnet(&sk->sk_net, net);
2530}
2531
2532static inline bool
2533skb_sk_is_prefetched(struct sk_buff *skb)
2534{
2535#ifdef CONFIG_INET
2536	return skb->destructor == sock_pfree;
2537#else
2538	return false;
2539#endif /* CONFIG_INET */
 
 
 
2540}
2541
2542/* This helper checks if a socket is a full socket,
2543 * ie _not_ a timewait or request socket.
2544 */
2545static inline bool sk_fullsock(const struct sock *sk)
2546{
2547	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2548}
2549
2550static inline bool
2551sk_is_refcounted(struct sock *sk)
 
 
2552{
2553	/* Only full sockets have sk->sk_flags. */
2554	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2555}
2556
2557/**
2558 * skb_steal_sock - steal a socket from an sk_buff
2559 * @skb: sk_buff to steal the socket from
2560 * @refcounted: is set to true if the socket is reference-counted
 
 
2561 */
2562static inline struct sock *
2563skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2564{
2565	if (skb->sk) {
2566		struct sock *sk = skb->sk;
2567
2568		*refcounted = true;
2569		if (skb_sk_is_prefetched(skb))
2570			*refcounted = sk_is_refcounted(sk);
2571		skb->destructor = NULL;
2572		skb->sk = NULL;
2573		return sk;
2574	}
2575	*refcounted = false;
2576	return NULL;
2577}
2578
2579/* Checks if this SKB belongs to an HW offloaded socket
2580 * and whether any SW fallbacks are required based on dev.
2581 * Check decrypted mark in case skb_orphan() cleared socket.
2582 */
2583static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2584						   struct net_device *dev)
2585{
2586#ifdef CONFIG_SOCK_VALIDATE_XMIT
2587	struct sock *sk = skb->sk;
2588
2589	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2590		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2591#ifdef CONFIG_TLS_DEVICE
2592	} else if (unlikely(skb->decrypted)) {
2593		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2594		kfree_skb(skb);
2595		skb = NULL;
2596#endif
2597	}
2598#endif
2599
2600	return skb;
2601}
2602
2603/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2604 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2605 */
2606static inline bool sk_listener(const struct sock *sk)
2607{
2608	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2609}
2610
2611void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
 
 
2612int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2613		       int type);
2614
2615bool sk_ns_capable(const struct sock *sk,
2616		   struct user_namespace *user_ns, int cap);
2617bool sk_capable(const struct sock *sk, int cap);
2618bool sk_net_capable(const struct sock *sk, int cap);
2619
2620void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2621
2622/* Take into consideration the size of the struct sk_buff overhead in the
2623 * determination of these values, since that is non-constant across
2624 * platforms.  This makes socket queueing behavior and performance
2625 * not depend upon such differences.
2626 */
2627#define _SK_MEM_PACKETS		256
2628#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2629#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2630#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2631
2632extern __u32 sysctl_wmem_max;
2633extern __u32 sysctl_rmem_max;
2634
2635extern int sysctl_tstamp_allow_data;
2636extern int sysctl_optmem_max;
2637
2638extern __u32 sysctl_wmem_default;
2639extern __u32 sysctl_rmem_default;
2640
2641DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2642
2643static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2644{
2645	/* Does this proto have per netns sysctl_wmem ? */
2646	if (proto->sysctl_wmem_offset)
2647		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2648
2649	return *proto->sysctl_wmem;
2650}
2651
2652static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2653{
2654	/* Does this proto have per netns sysctl_rmem ? */
2655	if (proto->sysctl_rmem_offset)
2656		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2657
2658	return *proto->sysctl_rmem;
2659}
2660
2661/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2662 * Some wifi drivers need to tweak it to get more chunks.
2663 * They can use this helper from their ndo_start_xmit()
2664 */
2665static inline void sk_pacing_shift_update(struct sock *sk, int val)
2666{
2667	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2668		return;
2669	WRITE_ONCE(sk->sk_pacing_shift, val);
2670}
2671
2672/* if a socket is bound to a device, check that the given device
2673 * index is either the same or that the socket is bound to an L3
2674 * master device and the given device index is also enslaved to
2675 * that L3 master
2676 */
2677static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2678{
2679	int mdif;
2680
2681	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2682		return true;
2683
2684	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2685	if (mdif && mdif == sk->sk_bound_dev_if)
2686		return true;
2687
2688	return false;
2689}
2690
2691void sock_def_readable(struct sock *sk);
2692
2693int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2694void sock_enable_timestamps(struct sock *sk);
2695void sock_no_linger(struct sock *sk);
2696void sock_set_keepalive(struct sock *sk);
2697void sock_set_priority(struct sock *sk, u32 priority);
2698void sock_set_rcvbuf(struct sock *sk, int val);
2699void sock_set_mark(struct sock *sk, u32 val);
2700void sock_set_reuseaddr(struct sock *sk);
2701void sock_set_reuseport(struct sock *sk);
2702void sock_set_sndtimeo(struct sock *sk, s64 secs);
2703
2704int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2705
2706#endif	/* _SOCK_H */