Linux Audio

Check our new training course

Loading...
v4.6
 
  1#include <linux/ceph/ceph_debug.h>
  2
  3#include <linux/sort.h>
  4#include <linux/slab.h>
  5
  6#include "super.h"
  7#include "mds_client.h"
  8
  9#include <linux/ceph/decode.h>
 10
 
 
 
 11/*
 12 * Snapshots in ceph are driven in large part by cooperation from the
 13 * client.  In contrast to local file systems or file servers that
 14 * implement snapshots at a single point in the system, ceph's
 15 * distributed access to storage requires clients to help decide
 16 * whether a write logically occurs before or after a recently created
 17 * snapshot.
 18 *
 19 * This provides a perfect instantanous client-wide snapshot.  Between
 20 * clients, however, snapshots may appear to be applied at slightly
 21 * different points in time, depending on delays in delivering the
 22 * snapshot notification.
 23 *
 24 * Snapshots are _not_ file system-wide.  Instead, each snapshot
 25 * applies to the subdirectory nested beneath some directory.  This
 26 * effectively divides the hierarchy into multiple "realms," where all
 27 * of the files contained by each realm share the same set of
 28 * snapshots.  An individual realm's snap set contains snapshots
 29 * explicitly created on that realm, as well as any snaps in its
 30 * parent's snap set _after_ the point at which the parent became it's
 31 * parent (due to, say, a rename).  Similarly, snaps from prior parents
 32 * during the time intervals during which they were the parent are included.
 33 *
 34 * The client is spared most of this detail, fortunately... it must only
 35 * maintains a hierarchy of realms reflecting the current parent/child
 36 * realm relationship, and for each realm has an explicit list of snaps
 37 * inherited from prior parents.
 38 *
 39 * A snap_realm struct is maintained for realms containing every inode
 40 * with an open cap in the system.  (The needed snap realm information is
 41 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
 42 * version number is used to ensure that as realm parameters change (new
 43 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
 44 *
 45 * The realm hierarchy drives the generation of a 'snap context' for each
 46 * realm, which simply lists the resulting set of snaps for the realm.  This
 47 * is attached to any writes sent to OSDs.
 48 */
 49/*
 50 * Unfortunately error handling is a bit mixed here.  If we get a snap
 51 * update, but don't have enough memory to update our realm hierarchy,
 52 * it's not clear what we can do about it (besides complaining to the
 53 * console).
 54 */
 55
 56
 57/*
 58 * increase ref count for the realm
 59 *
 60 * caller must hold snap_rwsem for write.
 61 */
 62void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
 63			 struct ceph_snap_realm *realm)
 64{
 65	dout("get_realm %p %d -> %d\n", realm,
 66	     atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
 67	/*
 68	 * since we _only_ increment realm refs or empty the empty
 69	 * list with snap_rwsem held, adjusting the empty list here is
 70	 * safe.  we do need to protect against concurrent empty list
 71	 * additions, however.
 72	 */
 73	if (atomic_inc_return(&realm->nref) == 1) {
 74		spin_lock(&mdsc->snap_empty_lock);
 75		list_del_init(&realm->empty_item);
 76		spin_unlock(&mdsc->snap_empty_lock);
 77	}
 78}
 79
 80static void __insert_snap_realm(struct rb_root *root,
 81				struct ceph_snap_realm *new)
 82{
 83	struct rb_node **p = &root->rb_node;
 84	struct rb_node *parent = NULL;
 85	struct ceph_snap_realm *r = NULL;
 86
 87	while (*p) {
 88		parent = *p;
 89		r = rb_entry(parent, struct ceph_snap_realm, node);
 90		if (new->ino < r->ino)
 91			p = &(*p)->rb_left;
 92		else if (new->ino > r->ino)
 93			p = &(*p)->rb_right;
 94		else
 95			BUG();
 96	}
 97
 98	rb_link_node(&new->node, parent, p);
 99	rb_insert_color(&new->node, root);
100}
101
102/*
103 * create and get the realm rooted at @ino and bump its ref count.
104 *
105 * caller must hold snap_rwsem for write.
106 */
107static struct ceph_snap_realm *ceph_create_snap_realm(
108	struct ceph_mds_client *mdsc,
109	u64 ino)
110{
111	struct ceph_snap_realm *realm;
112
113	realm = kzalloc(sizeof(*realm), GFP_NOFS);
114	if (!realm)
115		return ERR_PTR(-ENOMEM);
116
117	atomic_set(&realm->nref, 1);    /* for caller */
118	realm->ino = ino;
119	INIT_LIST_HEAD(&realm->children);
120	INIT_LIST_HEAD(&realm->child_item);
121	INIT_LIST_HEAD(&realm->empty_item);
122	INIT_LIST_HEAD(&realm->dirty_item);
123	INIT_LIST_HEAD(&realm->inodes_with_caps);
124	spin_lock_init(&realm->inodes_with_caps_lock);
125	__insert_snap_realm(&mdsc->snap_realms, realm);
 
 
126	dout("create_snap_realm %llx %p\n", realm->ino, realm);
127	return realm;
128}
129
130/*
131 * lookup the realm rooted at @ino.
132 *
133 * caller must hold snap_rwsem for write.
134 */
135static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
136						   u64 ino)
137{
138	struct rb_node *n = mdsc->snap_realms.rb_node;
139	struct ceph_snap_realm *r;
140
141	while (n) {
142		r = rb_entry(n, struct ceph_snap_realm, node);
143		if (ino < r->ino)
144			n = n->rb_left;
145		else if (ino > r->ino)
146			n = n->rb_right;
147		else {
148			dout("lookup_snap_realm %llx %p\n", r->ino, r);
149			return r;
150		}
151	}
152	return NULL;
153}
154
155struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
156					       u64 ino)
157{
158	struct ceph_snap_realm *r;
159	r = __lookup_snap_realm(mdsc, ino);
160	if (r)
161		ceph_get_snap_realm(mdsc, r);
162	return r;
163}
164
165static void __put_snap_realm(struct ceph_mds_client *mdsc,
166			     struct ceph_snap_realm *realm);
167
168/*
169 * called with snap_rwsem (write)
170 */
171static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
172				 struct ceph_snap_realm *realm)
173{
174	dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
175
176	rb_erase(&realm->node, &mdsc->snap_realms);
 
177
178	if (realm->parent) {
179		list_del_init(&realm->child_item);
180		__put_snap_realm(mdsc, realm->parent);
181	}
182
183	kfree(realm->prior_parent_snaps);
184	kfree(realm->snaps);
185	ceph_put_snap_context(realm->cached_context);
186	kfree(realm);
187}
188
189/*
190 * caller holds snap_rwsem (write)
191 */
192static void __put_snap_realm(struct ceph_mds_client *mdsc,
193			     struct ceph_snap_realm *realm)
194{
195	dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
196	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
197	if (atomic_dec_and_test(&realm->nref))
198		__destroy_snap_realm(mdsc, realm);
199}
200
201/*
202 * caller needn't hold any locks
203 */
204void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
205			 struct ceph_snap_realm *realm)
206{
207	dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
208	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
209	if (!atomic_dec_and_test(&realm->nref))
210		return;
211
212	if (down_write_trylock(&mdsc->snap_rwsem)) {
213		__destroy_snap_realm(mdsc, realm);
214		up_write(&mdsc->snap_rwsem);
215	} else {
216		spin_lock(&mdsc->snap_empty_lock);
217		list_add(&realm->empty_item, &mdsc->snap_empty);
218		spin_unlock(&mdsc->snap_empty_lock);
219	}
220}
221
222/*
223 * Clean up any realms whose ref counts have dropped to zero.  Note
224 * that this does not include realms who were created but not yet
225 * used.
226 *
227 * Called under snap_rwsem (write)
228 */
229static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
230{
231	struct ceph_snap_realm *realm;
232
233	spin_lock(&mdsc->snap_empty_lock);
234	while (!list_empty(&mdsc->snap_empty)) {
235		realm = list_first_entry(&mdsc->snap_empty,
236				   struct ceph_snap_realm, empty_item);
237		list_del(&realm->empty_item);
238		spin_unlock(&mdsc->snap_empty_lock);
239		__destroy_snap_realm(mdsc, realm);
240		spin_lock(&mdsc->snap_empty_lock);
241	}
242	spin_unlock(&mdsc->snap_empty_lock);
243}
244
245void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
246{
247	down_write(&mdsc->snap_rwsem);
248	__cleanup_empty_realms(mdsc);
249	up_write(&mdsc->snap_rwsem);
250}
251
252/*
253 * adjust the parent realm of a given @realm.  adjust child list, and parent
254 * pointers, and ref counts appropriately.
255 *
256 * return true if parent was changed, 0 if unchanged, <0 on error.
257 *
258 * caller must hold snap_rwsem for write.
259 */
260static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
261				    struct ceph_snap_realm *realm,
262				    u64 parentino)
263{
264	struct ceph_snap_realm *parent;
265
266	if (realm->parent_ino == parentino)
267		return 0;
268
269	parent = ceph_lookup_snap_realm(mdsc, parentino);
270	if (!parent) {
271		parent = ceph_create_snap_realm(mdsc, parentino);
272		if (IS_ERR(parent))
273			return PTR_ERR(parent);
274	}
275	dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
276	     realm->ino, realm, realm->parent_ino, realm->parent,
277	     parentino, parent);
278	if (realm->parent) {
279		list_del_init(&realm->child_item);
280		ceph_put_snap_realm(mdsc, realm->parent);
281	}
282	realm->parent_ino = parentino;
283	realm->parent = parent;
284	list_add(&realm->child_item, &parent->children);
285	return 1;
286}
287
288
289static int cmpu64_rev(const void *a, const void *b)
290{
291	if (*(u64 *)a < *(u64 *)b)
292		return 1;
293	if (*(u64 *)a > *(u64 *)b)
294		return -1;
295	return 0;
296}
297
298
299/*
300 * build the snap context for a given realm.
301 */
302static int build_snap_context(struct ceph_snap_realm *realm)
 
303{
304	struct ceph_snap_realm *parent = realm->parent;
305	struct ceph_snap_context *snapc;
306	int err = 0;
307	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
308
309	/*
310	 * build parent context, if it hasn't been built.
311	 * conservatively estimate that all parent snaps might be
312	 * included by us.
313	 */
314	if (parent) {
315		if (!parent->cached_context) {
316			err = build_snap_context(parent);
317			if (err)
318				goto fail;
319		}
320		num += parent->cached_context->num_snaps;
321	}
322
323	/* do i actually need to update?  not if my context seq
324	   matches realm seq, and my parents' does to.  (this works
325	   because we rebuild_snap_realms() works _downward_ in
326	   hierarchy after each update.) */
327	if (realm->cached_context &&
328	    realm->cached_context->seq == realm->seq &&
329	    (!parent ||
330	     realm->cached_context->seq >= parent->cached_context->seq)) {
331		dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
332		     " (unchanged)\n",
333		     realm->ino, realm, realm->cached_context,
334		     realm->cached_context->seq,
335		     (unsigned int) realm->cached_context->num_snaps);
336		return 0;
337	}
338
339	/* alloc new snap context */
340	err = -ENOMEM;
341	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
342		goto fail;
343	snapc = ceph_create_snap_context(num, GFP_NOFS);
344	if (!snapc)
345		goto fail;
346
347	/* build (reverse sorted) snap vector */
348	num = 0;
349	snapc->seq = realm->seq;
350	if (parent) {
351		u32 i;
352
353		/* include any of parent's snaps occurring _after_ my
354		   parent became my parent */
355		for (i = 0; i < parent->cached_context->num_snaps; i++)
356			if (parent->cached_context->snaps[i] >=
357			    realm->parent_since)
358				snapc->snaps[num++] =
359					parent->cached_context->snaps[i];
360		if (parent->cached_context->seq > snapc->seq)
361			snapc->seq = parent->cached_context->seq;
362	}
363	memcpy(snapc->snaps + num, realm->snaps,
364	       sizeof(u64)*realm->num_snaps);
365	num += realm->num_snaps;
366	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
367	       sizeof(u64)*realm->num_prior_parent_snaps);
368	num += realm->num_prior_parent_snaps;
369
370	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
371	snapc->num_snaps = num;
372	dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
373	     realm->ino, realm, snapc, snapc->seq,
374	     (unsigned int) snapc->num_snaps);
375
376	ceph_put_snap_context(realm->cached_context);
377	realm->cached_context = snapc;
 
 
378	return 0;
379
380fail:
381	/*
382	 * if we fail, clear old (incorrect) cached_context... hopefully
383	 * we'll have better luck building it later
384	 */
385	if (realm->cached_context) {
386		ceph_put_snap_context(realm->cached_context);
387		realm->cached_context = NULL;
388	}
389	pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
390	       realm, err);
391	return err;
392}
393
394/*
395 * rebuild snap context for the given realm and all of its children.
396 */
397static void rebuild_snap_realms(struct ceph_snap_realm *realm)
 
398{
399	struct ceph_snap_realm *child;
400
401	dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
402	build_snap_context(realm);
403
404	list_for_each_entry(child, &realm->children, child_item)
405		rebuild_snap_realms(child);
406}
407
408
409/*
410 * helper to allocate and decode an array of snapids.  free prior
411 * instance, if any.
412 */
413static int dup_array(u64 **dst, __le64 *src, u32 num)
414{
415	u32 i;
416
417	kfree(*dst);
418	if (num) {
419		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
420		if (!*dst)
421			return -ENOMEM;
422		for (i = 0; i < num; i++)
423			(*dst)[i] = get_unaligned_le64(src + i);
424	} else {
425		*dst = NULL;
426	}
427	return 0;
428}
429
430static bool has_new_snaps(struct ceph_snap_context *o,
431			  struct ceph_snap_context *n)
432{
433	if (n->num_snaps == 0)
434		return false;
435	/* snaps are in descending order */
436	return n->snaps[0] > o->seq;
437}
438
439/*
440 * When a snapshot is applied, the size/mtime inode metadata is queued
441 * in a ceph_cap_snap (one for each snapshot) until writeback
442 * completes and the metadata can be flushed back to the MDS.
443 *
444 * However, if a (sync) write is currently in-progress when we apply
445 * the snapshot, we have to wait until the write succeeds or fails
446 * (and a final size/mtime is known).  In this case the
447 * cap_snap->writing = 1, and is said to be "pending."  When the write
448 * finishes, we __ceph_finish_cap_snap().
449 *
450 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
451 * change).
452 */
453void ceph_queue_cap_snap(struct ceph_inode_info *ci)
454{
455	struct inode *inode = &ci->vfs_inode;
456	struct ceph_cap_snap *capsnap;
457	struct ceph_snap_context *old_snapc, *new_snapc;
 
458	int used, dirty;
459
460	capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
461	if (!capsnap) {
462		pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
463		return;
464	}
465
466	spin_lock(&ci->i_ceph_lock);
467	used = __ceph_caps_used(ci);
468	dirty = __ceph_caps_dirty(ci);
469
470	old_snapc = ci->i_head_snapc;
471	new_snapc = ci->i_snap_realm->cached_context;
472
473	/*
474	 * If there is a write in progress, treat that as a dirty Fw,
475	 * even though it hasn't completed yet; by the time we finish
476	 * up this capsnap it will be.
477	 */
478	if (used & CEPH_CAP_FILE_WR)
479		dirty |= CEPH_CAP_FILE_WR;
480
481	if (__ceph_have_pending_cap_snap(ci)) {
482		/* there is no point in queuing multiple "pending" cap_snaps,
483		   as no new writes are allowed to start when pending, so any
484		   writes in progress now were started before the previous
485		   cap_snap.  lucky us. */
486		dout("queue_cap_snap %p already pending\n", inode);
487		goto update_snapc;
488	}
489	if (ci->i_wrbuffer_ref_head == 0 &&
490	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
491		dout("queue_cap_snap %p nothing dirty|writing\n", inode);
492		goto update_snapc;
493	}
494
495	BUG_ON(!old_snapc);
496
497	/*
498	 * There is no need to send FLUSHSNAP message to MDS if there is
499	 * no new snapshot. But when there is dirty pages or on-going
500	 * writes, we still need to create cap_snap. cap_snap is needed
501	 * by the write path and page writeback path.
502	 *
503	 * also see ceph_try_drop_cap_snap()
504	 */
505	if (has_new_snaps(old_snapc, new_snapc)) {
506		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
507			capsnap->need_flush = true;
508	} else {
509		if (!(used & CEPH_CAP_FILE_WR) &&
510		    ci->i_wrbuffer_ref_head == 0) {
511			dout("queue_cap_snap %p "
512			     "no new_snap|dirty_page|writing\n", inode);
513			goto update_snapc;
514		}
515	}
516
517	dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
518	     inode, capsnap, old_snapc, ceph_cap_string(dirty),
519	     capsnap->need_flush ? "" : "no_flush");
520	ihold(inode);
521
522	atomic_set(&capsnap->nref, 1);
523	capsnap->ci = ci;
524	INIT_LIST_HEAD(&capsnap->ci_item);
525	INIT_LIST_HEAD(&capsnap->flushing_item);
526
527	capsnap->follows = old_snapc->seq;
528	capsnap->issued = __ceph_caps_issued(ci, NULL);
529	capsnap->dirty = dirty;
530
531	capsnap->mode = inode->i_mode;
532	capsnap->uid = inode->i_uid;
533	capsnap->gid = inode->i_gid;
534
535	if (dirty & CEPH_CAP_XATTR_EXCL) {
536		__ceph_build_xattrs_blob(ci);
537		capsnap->xattr_blob =
538			ceph_buffer_get(ci->i_xattrs.blob);
539		capsnap->xattr_version = ci->i_xattrs.version;
540	} else {
541		capsnap->xattr_blob = NULL;
542		capsnap->xattr_version = 0;
543	}
544
545	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
546
547	/* dirty page count moved from _head to this cap_snap;
548	   all subsequent writes page dirties occur _after_ this
549	   snapshot. */
550	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
551	ci->i_wrbuffer_ref_head = 0;
552	capsnap->context = old_snapc;
553	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
554	old_snapc = NULL;
555
556	if (used & CEPH_CAP_FILE_WR) {
557		dout("queue_cap_snap %p cap_snap %p snapc %p"
558		     " seq %llu used WR, now pending\n", inode,
559		     capsnap, old_snapc, old_snapc->seq);
560		capsnap->writing = 1;
561	} else {
562		/* note mtime, size NOW. */
563		__ceph_finish_cap_snap(ci, capsnap);
564	}
565	capsnap = NULL;
 
566
567update_snapc:
568	if (ci->i_head_snapc) {
 
 
 
 
 
569		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
570		dout(" new snapc is %p\n", new_snapc);
571	}
572	spin_unlock(&ci->i_ceph_lock);
573
 
574	kfree(capsnap);
575	ceph_put_snap_context(old_snapc);
576}
577
578/*
579 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
580 * to be used for the snapshot, to be flushed back to the mds.
581 *
582 * If capsnap can now be flushed, add to snap_flush list, and return 1.
583 *
584 * Caller must hold i_ceph_lock.
585 */
586int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
587			    struct ceph_cap_snap *capsnap)
588{
589	struct inode *inode = &ci->vfs_inode;
590	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
591
592	BUG_ON(capsnap->writing);
593	capsnap->size = inode->i_size;
594	capsnap->mtime = inode->i_mtime;
595	capsnap->atime = inode->i_atime;
596	capsnap->ctime = inode->i_ctime;
 
 
597	capsnap->time_warp_seq = ci->i_time_warp_seq;
 
 
598	if (capsnap->dirty_pages) {
599		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
600		     "still has %d dirty pages\n", inode, capsnap,
601		     capsnap->context, capsnap->context->seq,
602		     ceph_cap_string(capsnap->dirty), capsnap->size,
603		     capsnap->dirty_pages);
604		return 0;
605	}
 
 
606	dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
607	     inode, capsnap, capsnap->context,
608	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
609	     capsnap->size);
610
611	spin_lock(&mdsc->snap_flush_lock);
612	list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 
613	spin_unlock(&mdsc->snap_flush_lock);
614	return 1;  /* caller may want to ceph_flush_snaps */
615}
616
617/*
618 * Queue cap_snaps for snap writeback for this realm and its children.
619 * Called under snap_rwsem, so realm topology won't change.
620 */
621static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
622{
623	struct ceph_inode_info *ci;
624	struct inode *lastinode = NULL;
625	struct ceph_snap_realm *child;
626
627	dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
628
629	spin_lock(&realm->inodes_with_caps_lock);
630	list_for_each_entry(ci, &realm->inodes_with_caps,
631			    i_snap_realm_item) {
632		struct inode *inode = igrab(&ci->vfs_inode);
633		if (!inode)
634			continue;
635		spin_unlock(&realm->inodes_with_caps_lock);
636		iput(lastinode);
 
 
637		lastinode = inode;
638		ceph_queue_cap_snap(ci);
639		spin_lock(&realm->inodes_with_caps_lock);
640	}
641	spin_unlock(&realm->inodes_with_caps_lock);
642	iput(lastinode);
643
644	list_for_each_entry(child, &realm->children, child_item) {
645		dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n",
646		     realm, realm->ino, child, child->ino);
647		list_del_init(&child->dirty_item);
648		list_add(&child->dirty_item, &realm->dirty_item);
649	}
650
651	list_del_init(&realm->dirty_item);
652	dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
653}
654
655/*
656 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
657 * the snap realm parameters from a given realm and all of its ancestors,
658 * up to the root.
659 *
660 * Caller must hold snap_rwsem for write.
661 */
662int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
663			   void *p, void *e, bool deletion,
664			   struct ceph_snap_realm **realm_ret)
665{
666	struct ceph_mds_snap_realm *ri;    /* encoded */
667	__le64 *snaps;                     /* encoded */
668	__le64 *prior_parent_snaps;        /* encoded */
669	struct ceph_snap_realm *realm = NULL;
670	struct ceph_snap_realm *first_realm = NULL;
671	int invalidate = 0;
672	int err = -ENOMEM;
673	LIST_HEAD(dirty_realms);
674
675	dout("update_snap_trace deletion=%d\n", deletion);
676more:
677	ceph_decode_need(&p, e, sizeof(*ri), bad);
678	ri = p;
679	p += sizeof(*ri);
680	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
681			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
682	snaps = p;
683	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
684	prior_parent_snaps = p;
685	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
686
687	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
688	if (!realm) {
689		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
690		if (IS_ERR(realm)) {
691			err = PTR_ERR(realm);
692			goto fail;
693		}
694	}
695
696	/* ensure the parent is correct */
697	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
698	if (err < 0)
699		goto fail;
700	invalidate += err;
701
702	if (le64_to_cpu(ri->seq) > realm->seq) {
703		dout("update_snap_trace updating %llx %p %lld -> %lld\n",
704		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
705		/* update realm parameters, snap lists */
706		realm->seq = le64_to_cpu(ri->seq);
707		realm->created = le64_to_cpu(ri->created);
708		realm->parent_since = le64_to_cpu(ri->parent_since);
709
710		realm->num_snaps = le32_to_cpu(ri->num_snaps);
711		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
712		if (err < 0)
713			goto fail;
714
715		realm->num_prior_parent_snaps =
716			le32_to_cpu(ri->num_prior_parent_snaps);
717		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
718				realm->num_prior_parent_snaps);
719		if (err < 0)
720			goto fail;
721
722		/* queue realm for cap_snap creation */
723		list_add(&realm->dirty_item, &dirty_realms);
724		if (realm->seq > mdsc->last_snap_seq)
725			mdsc->last_snap_seq = realm->seq;
726
727		invalidate = 1;
728	} else if (!realm->cached_context) {
729		dout("update_snap_trace %llx %p seq %lld new\n",
730		     realm->ino, realm, realm->seq);
731		invalidate = 1;
732	} else {
733		dout("update_snap_trace %llx %p seq %lld unchanged\n",
734		     realm->ino, realm, realm->seq);
735	}
736
737	dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
738	     realm, invalidate, p, e);
739
740	/* invalidate when we reach the _end_ (root) of the trace */
741	if (invalidate && p >= e)
742		rebuild_snap_realms(realm);
743
744	if (!first_realm)
745		first_realm = realm;
746	else
747		ceph_put_snap_realm(mdsc, realm);
748
749	if (p < e)
750		goto more;
751
752	/*
753	 * queue cap snaps _after_ we've built the new snap contexts,
754	 * so that i_head_snapc can be set appropriately.
755	 */
756	while (!list_empty(&dirty_realms)) {
757		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
758					 dirty_item);
 
759		queue_realm_cap_snaps(realm);
760	}
761
762	if (realm_ret)
763		*realm_ret = first_realm;
764	else
765		ceph_put_snap_realm(mdsc, first_realm);
766
767	__cleanup_empty_realms(mdsc);
768	return 0;
769
770bad:
771	err = -EINVAL;
772fail:
773	if (realm && !IS_ERR(realm))
774		ceph_put_snap_realm(mdsc, realm);
775	if (first_realm)
776		ceph_put_snap_realm(mdsc, first_realm);
777	pr_err("update_snap_trace error %d\n", err);
778	return err;
779}
780
781
782/*
783 * Send any cap_snaps that are queued for flush.  Try to carry
784 * s_mutex across multiple snap flushes to avoid locking overhead.
785 *
786 * Caller holds no locks.
787 */
788static void flush_snaps(struct ceph_mds_client *mdsc)
789{
790	struct ceph_inode_info *ci;
791	struct inode *inode;
792	struct ceph_mds_session *session = NULL;
793
794	dout("flush_snaps\n");
795	spin_lock(&mdsc->snap_flush_lock);
796	while (!list_empty(&mdsc->snap_flush_list)) {
797		ci = list_first_entry(&mdsc->snap_flush_list,
798				struct ceph_inode_info, i_snap_flush_item);
799		inode = &ci->vfs_inode;
800		ihold(inode);
801		spin_unlock(&mdsc->snap_flush_lock);
802		spin_lock(&ci->i_ceph_lock);
803		__ceph_flush_snaps(ci, &session, 0);
804		spin_unlock(&ci->i_ceph_lock);
805		iput(inode);
806		spin_lock(&mdsc->snap_flush_lock);
807	}
808	spin_unlock(&mdsc->snap_flush_lock);
809
810	if (session) {
811		mutex_unlock(&session->s_mutex);
812		ceph_put_mds_session(session);
813	}
814	dout("flush_snaps done\n");
815}
816
817
818/*
819 * Handle a snap notification from the MDS.
820 *
821 * This can take two basic forms: the simplest is just a snap creation
822 * or deletion notification on an existing realm.  This should update the
823 * realm and its children.
824 *
825 * The more difficult case is realm creation, due to snap creation at a
826 * new point in the file hierarchy, or due to a rename that moves a file or
827 * directory into another realm.
828 */
829void ceph_handle_snap(struct ceph_mds_client *mdsc,
830		      struct ceph_mds_session *session,
831		      struct ceph_msg *msg)
832{
833	struct super_block *sb = mdsc->fsc->sb;
834	int mds = session->s_mds;
835	u64 split;
836	int op;
837	int trace_len;
838	struct ceph_snap_realm *realm = NULL;
839	void *p = msg->front.iov_base;
840	void *e = p + msg->front.iov_len;
841	struct ceph_mds_snap_head *h;
842	int num_split_inos, num_split_realms;
843	__le64 *split_inos = NULL, *split_realms = NULL;
844	int i;
845	int locked_rwsem = 0;
846
847	/* decode */
848	if (msg->front.iov_len < sizeof(*h))
849		goto bad;
850	h = p;
851	op = le32_to_cpu(h->op);
852	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
853					  * existing realm */
854	num_split_inos = le32_to_cpu(h->num_split_inos);
855	num_split_realms = le32_to_cpu(h->num_split_realms);
856	trace_len = le32_to_cpu(h->trace_len);
857	p += sizeof(*h);
858
859	dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
860	     ceph_snap_op_name(op), split, trace_len);
861
862	mutex_lock(&session->s_mutex);
863	session->s_seq++;
864	mutex_unlock(&session->s_mutex);
865
866	down_write(&mdsc->snap_rwsem);
867	locked_rwsem = 1;
868
869	if (op == CEPH_SNAP_OP_SPLIT) {
870		struct ceph_mds_snap_realm *ri;
871
872		/*
873		 * A "split" breaks part of an existing realm off into
874		 * a new realm.  The MDS provides a list of inodes
875		 * (with caps) and child realms that belong to the new
876		 * child.
877		 */
878		split_inos = p;
879		p += sizeof(u64) * num_split_inos;
880		split_realms = p;
881		p += sizeof(u64) * num_split_realms;
882		ceph_decode_need(&p, e, sizeof(*ri), bad);
883		/* we will peek at realm info here, but will _not_
884		 * advance p, as the realm update will occur below in
885		 * ceph_update_snap_trace. */
886		ri = p;
887
888		realm = ceph_lookup_snap_realm(mdsc, split);
889		if (!realm) {
890			realm = ceph_create_snap_realm(mdsc, split);
891			if (IS_ERR(realm))
892				goto out;
893		}
894
895		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
896		for (i = 0; i < num_split_inos; i++) {
897			struct ceph_vino vino = {
898				.ino = le64_to_cpu(split_inos[i]),
899				.snap = CEPH_NOSNAP,
900			};
901			struct inode *inode = ceph_find_inode(sb, vino);
902			struct ceph_inode_info *ci;
903			struct ceph_snap_realm *oldrealm;
904
905			if (!inode)
906				continue;
907			ci = ceph_inode(inode);
908
909			spin_lock(&ci->i_ceph_lock);
910			if (!ci->i_snap_realm)
911				goto skip_inode;
912			/*
913			 * If this inode belongs to a realm that was
914			 * created after our new realm, we experienced
915			 * a race (due to another split notifications
916			 * arriving from a different MDS).  So skip
917			 * this inode.
918			 */
919			if (ci->i_snap_realm->created >
920			    le64_to_cpu(ri->created)) {
921				dout(" leaving %p in newer realm %llx %p\n",
922				     inode, ci->i_snap_realm->ino,
923				     ci->i_snap_realm);
924				goto skip_inode;
925			}
926			dout(" will move %p to split realm %llx %p\n",
927			     inode, realm->ino, realm);
928			/*
929			 * Move the inode to the new realm
930			 */
931			spin_lock(&realm->inodes_with_caps_lock);
 
932			list_del_init(&ci->i_snap_realm_item);
 
 
 
933			list_add(&ci->i_snap_realm_item,
934				 &realm->inodes_with_caps);
935			oldrealm = ci->i_snap_realm;
936			ci->i_snap_realm = realm;
 
 
937			spin_unlock(&realm->inodes_with_caps_lock);
 
938			spin_unlock(&ci->i_ceph_lock);
939
940			ceph_get_snap_realm(mdsc, realm);
941			ceph_put_snap_realm(mdsc, oldrealm);
942
943			iput(inode);
 
 
944			continue;
945
946skip_inode:
947			spin_unlock(&ci->i_ceph_lock);
948			iput(inode);
949		}
950
951		/* we may have taken some of the old realm's children. */
952		for (i = 0; i < num_split_realms; i++) {
953			struct ceph_snap_realm *child =
954				__lookup_snap_realm(mdsc,
955					   le64_to_cpu(split_realms[i]));
956			if (!child)
957				continue;
958			adjust_snap_realm_parent(mdsc, child, realm->ino);
959		}
960	}
961
962	/*
963	 * update using the provided snap trace. if we are deleting a
964	 * snap, we can avoid queueing cap_snaps.
965	 */
966	ceph_update_snap_trace(mdsc, p, e,
967			       op == CEPH_SNAP_OP_DESTROY, NULL);
968
969	if (op == CEPH_SNAP_OP_SPLIT)
970		/* we took a reference when we created the realm, above */
971		ceph_put_snap_realm(mdsc, realm);
972
973	__cleanup_empty_realms(mdsc);
974
975	up_write(&mdsc->snap_rwsem);
976
977	flush_snaps(mdsc);
978	return;
979
980bad:
981	pr_err("corrupt snap message from mds%d\n", mds);
982	ceph_msg_dump(msg);
983out:
984	if (locked_rwsem)
985		up_write(&mdsc->snap_rwsem);
986	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/sort.h>
   5#include <linux/slab.h>
   6#include <linux/iversion.h>
   7#include "super.h"
   8#include "mds_client.h"
 
   9#include <linux/ceph/decode.h>
  10
  11/* unused map expires after 5 minutes */
  12#define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
  13
  14/*
  15 * Snapshots in ceph are driven in large part by cooperation from the
  16 * client.  In contrast to local file systems or file servers that
  17 * implement snapshots at a single point in the system, ceph's
  18 * distributed access to storage requires clients to help decide
  19 * whether a write logically occurs before or after a recently created
  20 * snapshot.
  21 *
  22 * This provides a perfect instantanous client-wide snapshot.  Between
  23 * clients, however, snapshots may appear to be applied at slightly
  24 * different points in time, depending on delays in delivering the
  25 * snapshot notification.
  26 *
  27 * Snapshots are _not_ file system-wide.  Instead, each snapshot
  28 * applies to the subdirectory nested beneath some directory.  This
  29 * effectively divides the hierarchy into multiple "realms," where all
  30 * of the files contained by each realm share the same set of
  31 * snapshots.  An individual realm's snap set contains snapshots
  32 * explicitly created on that realm, as well as any snaps in its
  33 * parent's snap set _after_ the point at which the parent became it's
  34 * parent (due to, say, a rename).  Similarly, snaps from prior parents
  35 * during the time intervals during which they were the parent are included.
  36 *
  37 * The client is spared most of this detail, fortunately... it must only
  38 * maintains a hierarchy of realms reflecting the current parent/child
  39 * realm relationship, and for each realm has an explicit list of snaps
  40 * inherited from prior parents.
  41 *
  42 * A snap_realm struct is maintained for realms containing every inode
  43 * with an open cap in the system.  (The needed snap realm information is
  44 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
  45 * version number is used to ensure that as realm parameters change (new
  46 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
  47 *
  48 * The realm hierarchy drives the generation of a 'snap context' for each
  49 * realm, which simply lists the resulting set of snaps for the realm.  This
  50 * is attached to any writes sent to OSDs.
  51 */
  52/*
  53 * Unfortunately error handling is a bit mixed here.  If we get a snap
  54 * update, but don't have enough memory to update our realm hierarchy,
  55 * it's not clear what we can do about it (besides complaining to the
  56 * console).
  57 */
  58
  59
  60/*
  61 * increase ref count for the realm
  62 *
  63 * caller must hold snap_rwsem for write.
  64 */
  65void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
  66			 struct ceph_snap_realm *realm)
  67{
  68	dout("get_realm %p %d -> %d\n", realm,
  69	     atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
  70	/*
  71	 * since we _only_ increment realm refs or empty the empty
  72	 * list with snap_rwsem held, adjusting the empty list here is
  73	 * safe.  we do need to protect against concurrent empty list
  74	 * additions, however.
  75	 */
  76	if (atomic_inc_return(&realm->nref) == 1) {
  77		spin_lock(&mdsc->snap_empty_lock);
  78		list_del_init(&realm->empty_item);
  79		spin_unlock(&mdsc->snap_empty_lock);
  80	}
  81}
  82
  83static void __insert_snap_realm(struct rb_root *root,
  84				struct ceph_snap_realm *new)
  85{
  86	struct rb_node **p = &root->rb_node;
  87	struct rb_node *parent = NULL;
  88	struct ceph_snap_realm *r = NULL;
  89
  90	while (*p) {
  91		parent = *p;
  92		r = rb_entry(parent, struct ceph_snap_realm, node);
  93		if (new->ino < r->ino)
  94			p = &(*p)->rb_left;
  95		else if (new->ino > r->ino)
  96			p = &(*p)->rb_right;
  97		else
  98			BUG();
  99	}
 100
 101	rb_link_node(&new->node, parent, p);
 102	rb_insert_color(&new->node, root);
 103}
 104
 105/*
 106 * create and get the realm rooted at @ino and bump its ref count.
 107 *
 108 * caller must hold snap_rwsem for write.
 109 */
 110static struct ceph_snap_realm *ceph_create_snap_realm(
 111	struct ceph_mds_client *mdsc,
 112	u64 ino)
 113{
 114	struct ceph_snap_realm *realm;
 115
 116	realm = kzalloc(sizeof(*realm), GFP_NOFS);
 117	if (!realm)
 118		return ERR_PTR(-ENOMEM);
 119
 120	atomic_set(&realm->nref, 1);    /* for caller */
 121	realm->ino = ino;
 122	INIT_LIST_HEAD(&realm->children);
 123	INIT_LIST_HEAD(&realm->child_item);
 124	INIT_LIST_HEAD(&realm->empty_item);
 125	INIT_LIST_HEAD(&realm->dirty_item);
 126	INIT_LIST_HEAD(&realm->inodes_with_caps);
 127	spin_lock_init(&realm->inodes_with_caps_lock);
 128	__insert_snap_realm(&mdsc->snap_realms, realm);
 129	mdsc->num_snap_realms++;
 130
 131	dout("create_snap_realm %llx %p\n", realm->ino, realm);
 132	return realm;
 133}
 134
 135/*
 136 * lookup the realm rooted at @ino.
 137 *
 138 * caller must hold snap_rwsem for write.
 139 */
 140static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
 141						   u64 ino)
 142{
 143	struct rb_node *n = mdsc->snap_realms.rb_node;
 144	struct ceph_snap_realm *r;
 145
 146	while (n) {
 147		r = rb_entry(n, struct ceph_snap_realm, node);
 148		if (ino < r->ino)
 149			n = n->rb_left;
 150		else if (ino > r->ino)
 151			n = n->rb_right;
 152		else {
 153			dout("lookup_snap_realm %llx %p\n", r->ino, r);
 154			return r;
 155		}
 156	}
 157	return NULL;
 158}
 159
 160struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
 161					       u64 ino)
 162{
 163	struct ceph_snap_realm *r;
 164	r = __lookup_snap_realm(mdsc, ino);
 165	if (r)
 166		ceph_get_snap_realm(mdsc, r);
 167	return r;
 168}
 169
 170static void __put_snap_realm(struct ceph_mds_client *mdsc,
 171			     struct ceph_snap_realm *realm);
 172
 173/*
 174 * called with snap_rwsem (write)
 175 */
 176static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
 177				 struct ceph_snap_realm *realm)
 178{
 179	dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
 180
 181	rb_erase(&realm->node, &mdsc->snap_realms);
 182	mdsc->num_snap_realms--;
 183
 184	if (realm->parent) {
 185		list_del_init(&realm->child_item);
 186		__put_snap_realm(mdsc, realm->parent);
 187	}
 188
 189	kfree(realm->prior_parent_snaps);
 190	kfree(realm->snaps);
 191	ceph_put_snap_context(realm->cached_context);
 192	kfree(realm);
 193}
 194
 195/*
 196 * caller holds snap_rwsem (write)
 197 */
 198static void __put_snap_realm(struct ceph_mds_client *mdsc,
 199			     struct ceph_snap_realm *realm)
 200{
 201	dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
 202	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
 203	if (atomic_dec_and_test(&realm->nref))
 204		__destroy_snap_realm(mdsc, realm);
 205}
 206
 207/*
 208 * caller needn't hold any locks
 209 */
 210void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
 211			 struct ceph_snap_realm *realm)
 212{
 213	dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
 214	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
 215	if (!atomic_dec_and_test(&realm->nref))
 216		return;
 217
 218	if (down_write_trylock(&mdsc->snap_rwsem)) {
 219		__destroy_snap_realm(mdsc, realm);
 220		up_write(&mdsc->snap_rwsem);
 221	} else {
 222		spin_lock(&mdsc->snap_empty_lock);
 223		list_add(&realm->empty_item, &mdsc->snap_empty);
 224		spin_unlock(&mdsc->snap_empty_lock);
 225	}
 226}
 227
 228/*
 229 * Clean up any realms whose ref counts have dropped to zero.  Note
 230 * that this does not include realms who were created but not yet
 231 * used.
 232 *
 233 * Called under snap_rwsem (write)
 234 */
 235static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
 236{
 237	struct ceph_snap_realm *realm;
 238
 239	spin_lock(&mdsc->snap_empty_lock);
 240	while (!list_empty(&mdsc->snap_empty)) {
 241		realm = list_first_entry(&mdsc->snap_empty,
 242				   struct ceph_snap_realm, empty_item);
 243		list_del(&realm->empty_item);
 244		spin_unlock(&mdsc->snap_empty_lock);
 245		__destroy_snap_realm(mdsc, realm);
 246		spin_lock(&mdsc->snap_empty_lock);
 247	}
 248	spin_unlock(&mdsc->snap_empty_lock);
 249}
 250
 251void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
 252{
 253	down_write(&mdsc->snap_rwsem);
 254	__cleanup_empty_realms(mdsc);
 255	up_write(&mdsc->snap_rwsem);
 256}
 257
 258/*
 259 * adjust the parent realm of a given @realm.  adjust child list, and parent
 260 * pointers, and ref counts appropriately.
 261 *
 262 * return true if parent was changed, 0 if unchanged, <0 on error.
 263 *
 264 * caller must hold snap_rwsem for write.
 265 */
 266static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
 267				    struct ceph_snap_realm *realm,
 268				    u64 parentino)
 269{
 270	struct ceph_snap_realm *parent;
 271
 272	if (realm->parent_ino == parentino)
 273		return 0;
 274
 275	parent = ceph_lookup_snap_realm(mdsc, parentino);
 276	if (!parent) {
 277		parent = ceph_create_snap_realm(mdsc, parentino);
 278		if (IS_ERR(parent))
 279			return PTR_ERR(parent);
 280	}
 281	dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
 282	     realm->ino, realm, realm->parent_ino, realm->parent,
 283	     parentino, parent);
 284	if (realm->parent) {
 285		list_del_init(&realm->child_item);
 286		ceph_put_snap_realm(mdsc, realm->parent);
 287	}
 288	realm->parent_ino = parentino;
 289	realm->parent = parent;
 290	list_add(&realm->child_item, &parent->children);
 291	return 1;
 292}
 293
 294
 295static int cmpu64_rev(const void *a, const void *b)
 296{
 297	if (*(u64 *)a < *(u64 *)b)
 298		return 1;
 299	if (*(u64 *)a > *(u64 *)b)
 300		return -1;
 301	return 0;
 302}
 303
 304
 305/*
 306 * build the snap context for a given realm.
 307 */
 308static int build_snap_context(struct ceph_snap_realm *realm,
 309			      struct list_head* dirty_realms)
 310{
 311	struct ceph_snap_realm *parent = realm->parent;
 312	struct ceph_snap_context *snapc;
 313	int err = 0;
 314	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
 315
 316	/*
 317	 * build parent context, if it hasn't been built.
 318	 * conservatively estimate that all parent snaps might be
 319	 * included by us.
 320	 */
 321	if (parent) {
 322		if (!parent->cached_context) {
 323			err = build_snap_context(parent, dirty_realms);
 324			if (err)
 325				goto fail;
 326		}
 327		num += parent->cached_context->num_snaps;
 328	}
 329
 330	/* do i actually need to update?  not if my context seq
 331	   matches realm seq, and my parents' does to.  (this works
 332	   because we rebuild_snap_realms() works _downward_ in
 333	   hierarchy after each update.) */
 334	if (realm->cached_context &&
 335	    realm->cached_context->seq == realm->seq &&
 336	    (!parent ||
 337	     realm->cached_context->seq >= parent->cached_context->seq)) {
 338		dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
 339		     " (unchanged)\n",
 340		     realm->ino, realm, realm->cached_context,
 341		     realm->cached_context->seq,
 342		     (unsigned int)realm->cached_context->num_snaps);
 343		return 0;
 344	}
 345
 346	/* alloc new snap context */
 347	err = -ENOMEM;
 348	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
 349		goto fail;
 350	snapc = ceph_create_snap_context(num, GFP_NOFS);
 351	if (!snapc)
 352		goto fail;
 353
 354	/* build (reverse sorted) snap vector */
 355	num = 0;
 356	snapc->seq = realm->seq;
 357	if (parent) {
 358		u32 i;
 359
 360		/* include any of parent's snaps occurring _after_ my
 361		   parent became my parent */
 362		for (i = 0; i < parent->cached_context->num_snaps; i++)
 363			if (parent->cached_context->snaps[i] >=
 364			    realm->parent_since)
 365				snapc->snaps[num++] =
 366					parent->cached_context->snaps[i];
 367		if (parent->cached_context->seq > snapc->seq)
 368			snapc->seq = parent->cached_context->seq;
 369	}
 370	memcpy(snapc->snaps + num, realm->snaps,
 371	       sizeof(u64)*realm->num_snaps);
 372	num += realm->num_snaps;
 373	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
 374	       sizeof(u64)*realm->num_prior_parent_snaps);
 375	num += realm->num_prior_parent_snaps;
 376
 377	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
 378	snapc->num_snaps = num;
 379	dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
 380	     realm->ino, realm, snapc, snapc->seq,
 381	     (unsigned int) snapc->num_snaps);
 382
 383	ceph_put_snap_context(realm->cached_context);
 384	realm->cached_context = snapc;
 385	/* queue realm for cap_snap creation */
 386	list_add_tail(&realm->dirty_item, dirty_realms);
 387	return 0;
 388
 389fail:
 390	/*
 391	 * if we fail, clear old (incorrect) cached_context... hopefully
 392	 * we'll have better luck building it later
 393	 */
 394	if (realm->cached_context) {
 395		ceph_put_snap_context(realm->cached_context);
 396		realm->cached_context = NULL;
 397	}
 398	pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
 399	       realm, err);
 400	return err;
 401}
 402
 403/*
 404 * rebuild snap context for the given realm and all of its children.
 405 */
 406static void rebuild_snap_realms(struct ceph_snap_realm *realm,
 407				struct list_head *dirty_realms)
 408{
 409	struct ceph_snap_realm *child;
 410
 411	dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
 412	build_snap_context(realm, dirty_realms);
 413
 414	list_for_each_entry(child, &realm->children, child_item)
 415		rebuild_snap_realms(child, dirty_realms);
 416}
 417
 418
 419/*
 420 * helper to allocate and decode an array of snapids.  free prior
 421 * instance, if any.
 422 */
 423static int dup_array(u64 **dst, __le64 *src, u32 num)
 424{
 425	u32 i;
 426
 427	kfree(*dst);
 428	if (num) {
 429		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
 430		if (!*dst)
 431			return -ENOMEM;
 432		for (i = 0; i < num; i++)
 433			(*dst)[i] = get_unaligned_le64(src + i);
 434	} else {
 435		*dst = NULL;
 436	}
 437	return 0;
 438}
 439
 440static bool has_new_snaps(struct ceph_snap_context *o,
 441			  struct ceph_snap_context *n)
 442{
 443	if (n->num_snaps == 0)
 444		return false;
 445	/* snaps are in descending order */
 446	return n->snaps[0] > o->seq;
 447}
 448
 449/*
 450 * When a snapshot is applied, the size/mtime inode metadata is queued
 451 * in a ceph_cap_snap (one for each snapshot) until writeback
 452 * completes and the metadata can be flushed back to the MDS.
 453 *
 454 * However, if a (sync) write is currently in-progress when we apply
 455 * the snapshot, we have to wait until the write succeeds or fails
 456 * (and a final size/mtime is known).  In this case the
 457 * cap_snap->writing = 1, and is said to be "pending."  When the write
 458 * finishes, we __ceph_finish_cap_snap().
 459 *
 460 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
 461 * change).
 462 */
 463void ceph_queue_cap_snap(struct ceph_inode_info *ci)
 464{
 465	struct inode *inode = &ci->vfs_inode;
 466	struct ceph_cap_snap *capsnap;
 467	struct ceph_snap_context *old_snapc, *new_snapc;
 468	struct ceph_buffer *old_blob = NULL;
 469	int used, dirty;
 470
 471	capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
 472	if (!capsnap) {
 473		pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
 474		return;
 475	}
 476
 477	spin_lock(&ci->i_ceph_lock);
 478	used = __ceph_caps_used(ci);
 479	dirty = __ceph_caps_dirty(ci);
 480
 481	old_snapc = ci->i_head_snapc;
 482	new_snapc = ci->i_snap_realm->cached_context;
 483
 484	/*
 485	 * If there is a write in progress, treat that as a dirty Fw,
 486	 * even though it hasn't completed yet; by the time we finish
 487	 * up this capsnap it will be.
 488	 */
 489	if (used & CEPH_CAP_FILE_WR)
 490		dirty |= CEPH_CAP_FILE_WR;
 491
 492	if (__ceph_have_pending_cap_snap(ci)) {
 493		/* there is no point in queuing multiple "pending" cap_snaps,
 494		   as no new writes are allowed to start when pending, so any
 495		   writes in progress now were started before the previous
 496		   cap_snap.  lucky us. */
 497		dout("queue_cap_snap %p already pending\n", inode);
 498		goto update_snapc;
 499	}
 500	if (ci->i_wrbuffer_ref_head == 0 &&
 501	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
 502		dout("queue_cap_snap %p nothing dirty|writing\n", inode);
 503		goto update_snapc;
 504	}
 505
 506	BUG_ON(!old_snapc);
 507
 508	/*
 509	 * There is no need to send FLUSHSNAP message to MDS if there is
 510	 * no new snapshot. But when there is dirty pages or on-going
 511	 * writes, we still need to create cap_snap. cap_snap is needed
 512	 * by the write path and page writeback path.
 513	 *
 514	 * also see ceph_try_drop_cap_snap()
 515	 */
 516	if (has_new_snaps(old_snapc, new_snapc)) {
 517		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
 518			capsnap->need_flush = true;
 519	} else {
 520		if (!(used & CEPH_CAP_FILE_WR) &&
 521		    ci->i_wrbuffer_ref_head == 0) {
 522			dout("queue_cap_snap %p "
 523			     "no new_snap|dirty_page|writing\n", inode);
 524			goto update_snapc;
 525		}
 526	}
 527
 528	dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
 529	     inode, capsnap, old_snapc, ceph_cap_string(dirty),
 530	     capsnap->need_flush ? "" : "no_flush");
 531	ihold(inode);
 532
 533	refcount_set(&capsnap->nref, 1);
 
 534	INIT_LIST_HEAD(&capsnap->ci_item);
 
 535
 536	capsnap->follows = old_snapc->seq;
 537	capsnap->issued = __ceph_caps_issued(ci, NULL);
 538	capsnap->dirty = dirty;
 539
 540	capsnap->mode = inode->i_mode;
 541	capsnap->uid = inode->i_uid;
 542	capsnap->gid = inode->i_gid;
 543
 544	if (dirty & CEPH_CAP_XATTR_EXCL) {
 545		old_blob = __ceph_build_xattrs_blob(ci);
 546		capsnap->xattr_blob =
 547			ceph_buffer_get(ci->i_xattrs.blob);
 548		capsnap->xattr_version = ci->i_xattrs.version;
 549	} else {
 550		capsnap->xattr_blob = NULL;
 551		capsnap->xattr_version = 0;
 552	}
 553
 554	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
 555
 556	/* dirty page count moved from _head to this cap_snap;
 557	   all subsequent writes page dirties occur _after_ this
 558	   snapshot. */
 559	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
 560	ci->i_wrbuffer_ref_head = 0;
 561	capsnap->context = old_snapc;
 562	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
 
 563
 564	if (used & CEPH_CAP_FILE_WR) {
 565		dout("queue_cap_snap %p cap_snap %p snapc %p"
 566		     " seq %llu used WR, now pending\n", inode,
 567		     capsnap, old_snapc, old_snapc->seq);
 568		capsnap->writing = 1;
 569	} else {
 570		/* note mtime, size NOW. */
 571		__ceph_finish_cap_snap(ci, capsnap);
 572	}
 573	capsnap = NULL;
 574	old_snapc = NULL;
 575
 576update_snapc:
 577       if (ci->i_wrbuffer_ref_head == 0 &&
 578           ci->i_wr_ref == 0 &&
 579           ci->i_dirty_caps == 0 &&
 580           ci->i_flushing_caps == 0) {
 581               ci->i_head_snapc = NULL;
 582       } else {
 583		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
 584		dout(" new snapc is %p\n", new_snapc);
 585	}
 586	spin_unlock(&ci->i_ceph_lock);
 587
 588	ceph_buffer_put(old_blob);
 589	kfree(capsnap);
 590	ceph_put_snap_context(old_snapc);
 591}
 592
 593/*
 594 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
 595 * to be used for the snapshot, to be flushed back to the mds.
 596 *
 597 * If capsnap can now be flushed, add to snap_flush list, and return 1.
 598 *
 599 * Caller must hold i_ceph_lock.
 600 */
 601int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
 602			    struct ceph_cap_snap *capsnap)
 603{
 604	struct inode *inode = &ci->vfs_inode;
 605	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
 606
 607	BUG_ON(capsnap->writing);
 608	capsnap->size = inode->i_size;
 609	capsnap->mtime = inode->i_mtime;
 610	capsnap->atime = inode->i_atime;
 611	capsnap->ctime = inode->i_ctime;
 612	capsnap->btime = ci->i_btime;
 613	capsnap->change_attr = inode_peek_iversion_raw(inode);
 614	capsnap->time_warp_seq = ci->i_time_warp_seq;
 615	capsnap->truncate_size = ci->i_truncate_size;
 616	capsnap->truncate_seq = ci->i_truncate_seq;
 617	if (capsnap->dirty_pages) {
 618		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
 619		     "still has %d dirty pages\n", inode, capsnap,
 620		     capsnap->context, capsnap->context->seq,
 621		     ceph_cap_string(capsnap->dirty), capsnap->size,
 622		     capsnap->dirty_pages);
 623		return 0;
 624	}
 625
 626	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
 627	dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
 628	     inode, capsnap, capsnap->context,
 629	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 630	     capsnap->size);
 631
 632	spin_lock(&mdsc->snap_flush_lock);
 633	if (list_empty(&ci->i_snap_flush_item))
 634		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 635	spin_unlock(&mdsc->snap_flush_lock);
 636	return 1;  /* caller may want to ceph_flush_snaps */
 637}
 638
 639/*
 640 * Queue cap_snaps for snap writeback for this realm and its children.
 641 * Called under snap_rwsem, so realm topology won't change.
 642 */
 643static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
 644{
 645	struct ceph_inode_info *ci;
 646	struct inode *lastinode = NULL;
 
 647
 648	dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
 649
 650	spin_lock(&realm->inodes_with_caps_lock);
 651	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
 
 652		struct inode *inode = igrab(&ci->vfs_inode);
 653		if (!inode)
 654			continue;
 655		spin_unlock(&realm->inodes_with_caps_lock);
 656		/* avoid calling iput_final() while holding
 657		 * mdsc->snap_rwsem or in mds dispatch threads */
 658		ceph_async_iput(lastinode);
 659		lastinode = inode;
 660		ceph_queue_cap_snap(ci);
 661		spin_lock(&realm->inodes_with_caps_lock);
 662	}
 663	spin_unlock(&realm->inodes_with_caps_lock);
 664	ceph_async_iput(lastinode);
 665
 
 
 
 
 
 
 
 
 666	dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
 667}
 668
 669/*
 670 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
 671 * the snap realm parameters from a given realm and all of its ancestors,
 672 * up to the root.
 673 *
 674 * Caller must hold snap_rwsem for write.
 675 */
 676int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
 677			   void *p, void *e, bool deletion,
 678			   struct ceph_snap_realm **realm_ret)
 679{
 680	struct ceph_mds_snap_realm *ri;    /* encoded */
 681	__le64 *snaps;                     /* encoded */
 682	__le64 *prior_parent_snaps;        /* encoded */
 683	struct ceph_snap_realm *realm = NULL;
 684	struct ceph_snap_realm *first_realm = NULL;
 685	int invalidate = 0;
 686	int err = -ENOMEM;
 687	LIST_HEAD(dirty_realms);
 688
 689	dout("update_snap_trace deletion=%d\n", deletion);
 690more:
 691	ceph_decode_need(&p, e, sizeof(*ri), bad);
 692	ri = p;
 693	p += sizeof(*ri);
 694	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
 695			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
 696	snaps = p;
 697	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
 698	prior_parent_snaps = p;
 699	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
 700
 701	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
 702	if (!realm) {
 703		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
 704		if (IS_ERR(realm)) {
 705			err = PTR_ERR(realm);
 706			goto fail;
 707		}
 708	}
 709
 710	/* ensure the parent is correct */
 711	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
 712	if (err < 0)
 713		goto fail;
 714	invalidate += err;
 715
 716	if (le64_to_cpu(ri->seq) > realm->seq) {
 717		dout("update_snap_trace updating %llx %p %lld -> %lld\n",
 718		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
 719		/* update realm parameters, snap lists */
 720		realm->seq = le64_to_cpu(ri->seq);
 721		realm->created = le64_to_cpu(ri->created);
 722		realm->parent_since = le64_to_cpu(ri->parent_since);
 723
 724		realm->num_snaps = le32_to_cpu(ri->num_snaps);
 725		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
 726		if (err < 0)
 727			goto fail;
 728
 729		realm->num_prior_parent_snaps =
 730			le32_to_cpu(ri->num_prior_parent_snaps);
 731		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
 732				realm->num_prior_parent_snaps);
 733		if (err < 0)
 734			goto fail;
 735
 
 
 736		if (realm->seq > mdsc->last_snap_seq)
 737			mdsc->last_snap_seq = realm->seq;
 738
 739		invalidate = 1;
 740	} else if (!realm->cached_context) {
 741		dout("update_snap_trace %llx %p seq %lld new\n",
 742		     realm->ino, realm, realm->seq);
 743		invalidate = 1;
 744	} else {
 745		dout("update_snap_trace %llx %p seq %lld unchanged\n",
 746		     realm->ino, realm, realm->seq);
 747	}
 748
 749	dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
 750	     realm, invalidate, p, e);
 751
 752	/* invalidate when we reach the _end_ (root) of the trace */
 753	if (invalidate && p >= e)
 754		rebuild_snap_realms(realm, &dirty_realms);
 755
 756	if (!first_realm)
 757		first_realm = realm;
 758	else
 759		ceph_put_snap_realm(mdsc, realm);
 760
 761	if (p < e)
 762		goto more;
 763
 764	/*
 765	 * queue cap snaps _after_ we've built the new snap contexts,
 766	 * so that i_head_snapc can be set appropriately.
 767	 */
 768	while (!list_empty(&dirty_realms)) {
 769		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
 770					 dirty_item);
 771		list_del_init(&realm->dirty_item);
 772		queue_realm_cap_snaps(realm);
 773	}
 774
 775	if (realm_ret)
 776		*realm_ret = first_realm;
 777	else
 778		ceph_put_snap_realm(mdsc, first_realm);
 779
 780	__cleanup_empty_realms(mdsc);
 781	return 0;
 782
 783bad:
 784	err = -EINVAL;
 785fail:
 786	if (realm && !IS_ERR(realm))
 787		ceph_put_snap_realm(mdsc, realm);
 788	if (first_realm)
 789		ceph_put_snap_realm(mdsc, first_realm);
 790	pr_err("update_snap_trace error %d\n", err);
 791	return err;
 792}
 793
 794
 795/*
 796 * Send any cap_snaps that are queued for flush.  Try to carry
 797 * s_mutex across multiple snap flushes to avoid locking overhead.
 798 *
 799 * Caller holds no locks.
 800 */
 801static void flush_snaps(struct ceph_mds_client *mdsc)
 802{
 803	struct ceph_inode_info *ci;
 804	struct inode *inode;
 805	struct ceph_mds_session *session = NULL;
 806
 807	dout("flush_snaps\n");
 808	spin_lock(&mdsc->snap_flush_lock);
 809	while (!list_empty(&mdsc->snap_flush_list)) {
 810		ci = list_first_entry(&mdsc->snap_flush_list,
 811				struct ceph_inode_info, i_snap_flush_item);
 812		inode = &ci->vfs_inode;
 813		ihold(inode);
 814		spin_unlock(&mdsc->snap_flush_lock);
 815		ceph_flush_snaps(ci, &session);
 816		/* avoid calling iput_final() while holding
 817		 * session->s_mutex or in mds dispatch threads */
 818		ceph_async_iput(inode);
 819		spin_lock(&mdsc->snap_flush_lock);
 820	}
 821	spin_unlock(&mdsc->snap_flush_lock);
 822
 823	if (session) {
 824		mutex_unlock(&session->s_mutex);
 825		ceph_put_mds_session(session);
 826	}
 827	dout("flush_snaps done\n");
 828}
 829
 830
 831/*
 832 * Handle a snap notification from the MDS.
 833 *
 834 * This can take two basic forms: the simplest is just a snap creation
 835 * or deletion notification on an existing realm.  This should update the
 836 * realm and its children.
 837 *
 838 * The more difficult case is realm creation, due to snap creation at a
 839 * new point in the file hierarchy, or due to a rename that moves a file or
 840 * directory into another realm.
 841 */
 842void ceph_handle_snap(struct ceph_mds_client *mdsc,
 843		      struct ceph_mds_session *session,
 844		      struct ceph_msg *msg)
 845{
 846	struct super_block *sb = mdsc->fsc->sb;
 847	int mds = session->s_mds;
 848	u64 split;
 849	int op;
 850	int trace_len;
 851	struct ceph_snap_realm *realm = NULL;
 852	void *p = msg->front.iov_base;
 853	void *e = p + msg->front.iov_len;
 854	struct ceph_mds_snap_head *h;
 855	int num_split_inos, num_split_realms;
 856	__le64 *split_inos = NULL, *split_realms = NULL;
 857	int i;
 858	int locked_rwsem = 0;
 859
 860	/* decode */
 861	if (msg->front.iov_len < sizeof(*h))
 862		goto bad;
 863	h = p;
 864	op = le32_to_cpu(h->op);
 865	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
 866					  * existing realm */
 867	num_split_inos = le32_to_cpu(h->num_split_inos);
 868	num_split_realms = le32_to_cpu(h->num_split_realms);
 869	trace_len = le32_to_cpu(h->trace_len);
 870	p += sizeof(*h);
 871
 872	dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
 873	     ceph_snap_op_name(op), split, trace_len);
 874
 875	mutex_lock(&session->s_mutex);
 876	session->s_seq++;
 877	mutex_unlock(&session->s_mutex);
 878
 879	down_write(&mdsc->snap_rwsem);
 880	locked_rwsem = 1;
 881
 882	if (op == CEPH_SNAP_OP_SPLIT) {
 883		struct ceph_mds_snap_realm *ri;
 884
 885		/*
 886		 * A "split" breaks part of an existing realm off into
 887		 * a new realm.  The MDS provides a list of inodes
 888		 * (with caps) and child realms that belong to the new
 889		 * child.
 890		 */
 891		split_inos = p;
 892		p += sizeof(u64) * num_split_inos;
 893		split_realms = p;
 894		p += sizeof(u64) * num_split_realms;
 895		ceph_decode_need(&p, e, sizeof(*ri), bad);
 896		/* we will peek at realm info here, but will _not_
 897		 * advance p, as the realm update will occur below in
 898		 * ceph_update_snap_trace. */
 899		ri = p;
 900
 901		realm = ceph_lookup_snap_realm(mdsc, split);
 902		if (!realm) {
 903			realm = ceph_create_snap_realm(mdsc, split);
 904			if (IS_ERR(realm))
 905				goto out;
 906		}
 907
 908		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
 909		for (i = 0; i < num_split_inos; i++) {
 910			struct ceph_vino vino = {
 911				.ino = le64_to_cpu(split_inos[i]),
 912				.snap = CEPH_NOSNAP,
 913			};
 914			struct inode *inode = ceph_find_inode(sb, vino);
 915			struct ceph_inode_info *ci;
 916			struct ceph_snap_realm *oldrealm;
 917
 918			if (!inode)
 919				continue;
 920			ci = ceph_inode(inode);
 921
 922			spin_lock(&ci->i_ceph_lock);
 923			if (!ci->i_snap_realm)
 924				goto skip_inode;
 925			/*
 926			 * If this inode belongs to a realm that was
 927			 * created after our new realm, we experienced
 928			 * a race (due to another split notifications
 929			 * arriving from a different MDS).  So skip
 930			 * this inode.
 931			 */
 932			if (ci->i_snap_realm->created >
 933			    le64_to_cpu(ri->created)) {
 934				dout(" leaving %p in newer realm %llx %p\n",
 935				     inode, ci->i_snap_realm->ino,
 936				     ci->i_snap_realm);
 937				goto skip_inode;
 938			}
 939			dout(" will move %p to split realm %llx %p\n",
 940			     inode, realm->ino, realm);
 941			/*
 942			 * Move the inode to the new realm
 943			 */
 944			oldrealm = ci->i_snap_realm;
 945			spin_lock(&oldrealm->inodes_with_caps_lock);
 946			list_del_init(&ci->i_snap_realm_item);
 947			spin_unlock(&oldrealm->inodes_with_caps_lock);
 948
 949			spin_lock(&realm->inodes_with_caps_lock);
 950			list_add(&ci->i_snap_realm_item,
 951				 &realm->inodes_with_caps);
 
 952			ci->i_snap_realm = realm;
 953			if (realm->ino == ci->i_vino.ino)
 954                                realm->inode = inode;
 955			spin_unlock(&realm->inodes_with_caps_lock);
 956
 957			spin_unlock(&ci->i_ceph_lock);
 958
 959			ceph_get_snap_realm(mdsc, realm);
 960			ceph_put_snap_realm(mdsc, oldrealm);
 961
 962			/* avoid calling iput_final() while holding
 963			 * mdsc->snap_rwsem or mds in dispatch threads */
 964			ceph_async_iput(inode);
 965			continue;
 966
 967skip_inode:
 968			spin_unlock(&ci->i_ceph_lock);
 969			ceph_async_iput(inode);
 970		}
 971
 972		/* we may have taken some of the old realm's children. */
 973		for (i = 0; i < num_split_realms; i++) {
 974			struct ceph_snap_realm *child =
 975				__lookup_snap_realm(mdsc,
 976					   le64_to_cpu(split_realms[i]));
 977			if (!child)
 978				continue;
 979			adjust_snap_realm_parent(mdsc, child, realm->ino);
 980		}
 981	}
 982
 983	/*
 984	 * update using the provided snap trace. if we are deleting a
 985	 * snap, we can avoid queueing cap_snaps.
 986	 */
 987	ceph_update_snap_trace(mdsc, p, e,
 988			       op == CEPH_SNAP_OP_DESTROY, NULL);
 989
 990	if (op == CEPH_SNAP_OP_SPLIT)
 991		/* we took a reference when we created the realm, above */
 992		ceph_put_snap_realm(mdsc, realm);
 993
 994	__cleanup_empty_realms(mdsc);
 995
 996	up_write(&mdsc->snap_rwsem);
 997
 998	flush_snaps(mdsc);
 999	return;
1000
1001bad:
1002	pr_err("corrupt snap message from mds%d\n", mds);
1003	ceph_msg_dump(msg);
1004out:
1005	if (locked_rwsem)
1006		up_write(&mdsc->snap_rwsem);
1007	return;
1008}
1009
1010struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1011					    u64 snap)
1012{
1013	struct ceph_snapid_map *sm, *exist;
1014	struct rb_node **p, *parent;
1015	int ret;
1016
1017	exist = NULL;
1018	spin_lock(&mdsc->snapid_map_lock);
1019	p = &mdsc->snapid_map_tree.rb_node;
1020	while (*p) {
1021		exist = rb_entry(*p, struct ceph_snapid_map, node);
1022		if (snap > exist->snap) {
1023			p = &(*p)->rb_left;
1024		} else if (snap < exist->snap) {
1025			p = &(*p)->rb_right;
1026		} else {
1027			if (atomic_inc_return(&exist->ref) == 1)
1028				list_del_init(&exist->lru);
1029			break;
1030		}
1031		exist = NULL;
1032	}
1033	spin_unlock(&mdsc->snapid_map_lock);
1034	if (exist) {
1035		dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
1036		return exist;
1037	}
1038
1039	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1040	if (!sm)
1041		return NULL;
1042
1043	ret = get_anon_bdev(&sm->dev);
1044	if (ret < 0) {
1045		kfree(sm);
1046		return NULL;
1047	}
1048
1049	INIT_LIST_HEAD(&sm->lru);
1050	atomic_set(&sm->ref, 1);
1051	sm->snap = snap;
1052
1053	exist = NULL;
1054	parent = NULL;
1055	p = &mdsc->snapid_map_tree.rb_node;
1056	spin_lock(&mdsc->snapid_map_lock);
1057	while (*p) {
1058		parent = *p;
1059		exist = rb_entry(*p, struct ceph_snapid_map, node);
1060		if (snap > exist->snap)
1061			p = &(*p)->rb_left;
1062		else if (snap < exist->snap)
1063			p = &(*p)->rb_right;
1064		else
1065			break;
1066		exist = NULL;
1067	}
1068	if (exist) {
1069		if (atomic_inc_return(&exist->ref) == 1)
1070			list_del_init(&exist->lru);
1071	} else {
1072		rb_link_node(&sm->node, parent, p);
1073		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1074	}
1075	spin_unlock(&mdsc->snapid_map_lock);
1076	if (exist) {
1077		free_anon_bdev(sm->dev);
1078		kfree(sm);
1079		dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
1080		return exist;
1081	}
1082
1083	dout("create snapid map %llx -> %x\n", sm->snap, sm->dev);
1084	return sm;
1085}
1086
1087void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1088			 struct ceph_snapid_map *sm)
1089{
1090	if (!sm)
1091		return;
1092	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1093		if (!RB_EMPTY_NODE(&sm->node)) {
1094			sm->last_used = jiffies;
1095			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1096			spin_unlock(&mdsc->snapid_map_lock);
1097		} else {
1098			/* already cleaned up by
1099			 * ceph_cleanup_snapid_map() */
1100			spin_unlock(&mdsc->snapid_map_lock);
1101			kfree(sm);
1102		}
1103	}
1104}
1105
1106void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1107{
1108	struct ceph_snapid_map *sm;
1109	unsigned long now;
1110	LIST_HEAD(to_free);
1111
1112	spin_lock(&mdsc->snapid_map_lock);
1113	now = jiffies;
1114
1115	while (!list_empty(&mdsc->snapid_map_lru)) {
1116		sm = list_first_entry(&mdsc->snapid_map_lru,
1117				      struct ceph_snapid_map, lru);
1118		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1119			break;
1120
1121		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1122		list_move(&sm->lru, &to_free);
1123	}
1124	spin_unlock(&mdsc->snapid_map_lock);
1125
1126	while (!list_empty(&to_free)) {
1127		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1128		list_del(&sm->lru);
1129		dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1130		free_anon_bdev(sm->dev);
1131		kfree(sm);
1132	}
1133}
1134
1135void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1136{
1137	struct ceph_snapid_map *sm;
1138	struct rb_node *p;
1139	LIST_HEAD(to_free);
1140
1141	spin_lock(&mdsc->snapid_map_lock);
1142	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1143		sm = rb_entry(p, struct ceph_snapid_map, node);
1144		rb_erase(p, &mdsc->snapid_map_tree);
1145		RB_CLEAR_NODE(p);
1146		list_move(&sm->lru, &to_free);
1147	}
1148	spin_unlock(&mdsc->snapid_map_lock);
1149
1150	while (!list_empty(&to_free)) {
1151		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1152		list_del(&sm->lru);
1153		free_anon_bdev(sm->dev);
1154		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1155			pr_err("snapid map %llx -> %x still in use\n",
1156			       sm->snap, sm->dev);
1157		}
1158		kfree(sm);
1159	}
1160}