Linux Audio

Check our new training course

Loading...
v4.6
 
  1#include <linux/ceph/ceph_debug.h>
  2
  3#include <linux/sort.h>
  4#include <linux/slab.h>
  5
  6#include "super.h"
  7#include "mds_client.h"
  8
  9#include <linux/ceph/decode.h>
 10
 
 
 
 11/*
 12 * Snapshots in ceph are driven in large part by cooperation from the
 13 * client.  In contrast to local file systems or file servers that
 14 * implement snapshots at a single point in the system, ceph's
 15 * distributed access to storage requires clients to help decide
 16 * whether a write logically occurs before or after a recently created
 17 * snapshot.
 18 *
 19 * This provides a perfect instantanous client-wide snapshot.  Between
 20 * clients, however, snapshots may appear to be applied at slightly
 21 * different points in time, depending on delays in delivering the
 22 * snapshot notification.
 23 *
 24 * Snapshots are _not_ file system-wide.  Instead, each snapshot
 25 * applies to the subdirectory nested beneath some directory.  This
 26 * effectively divides the hierarchy into multiple "realms," where all
 27 * of the files contained by each realm share the same set of
 28 * snapshots.  An individual realm's snap set contains snapshots
 29 * explicitly created on that realm, as well as any snaps in its
 30 * parent's snap set _after_ the point at which the parent became it's
 31 * parent (due to, say, a rename).  Similarly, snaps from prior parents
 32 * during the time intervals during which they were the parent are included.
 33 *
 34 * The client is spared most of this detail, fortunately... it must only
 35 * maintains a hierarchy of realms reflecting the current parent/child
 36 * realm relationship, and for each realm has an explicit list of snaps
 37 * inherited from prior parents.
 38 *
 39 * A snap_realm struct is maintained for realms containing every inode
 40 * with an open cap in the system.  (The needed snap realm information is
 41 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
 42 * version number is used to ensure that as realm parameters change (new
 43 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
 44 *
 45 * The realm hierarchy drives the generation of a 'snap context' for each
 46 * realm, which simply lists the resulting set of snaps for the realm.  This
 47 * is attached to any writes sent to OSDs.
 48 */
 49/*
 50 * Unfortunately error handling is a bit mixed here.  If we get a snap
 51 * update, but don't have enough memory to update our realm hierarchy,
 52 * it's not clear what we can do about it (besides complaining to the
 53 * console).
 54 */
 55
 56
 57/*
 58 * increase ref count for the realm
 59 *
 60 * caller must hold snap_rwsem for write.
 61 */
 62void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
 63			 struct ceph_snap_realm *realm)
 64{
 65	dout("get_realm %p %d -> %d\n", realm,
 66	     atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
 67	/*
 68	 * since we _only_ increment realm refs or empty the empty
 69	 * list with snap_rwsem held, adjusting the empty list here is
 70	 * safe.  we do need to protect against concurrent empty list
 71	 * additions, however.
 72	 */
 73	if (atomic_inc_return(&realm->nref) == 1) {
 74		spin_lock(&mdsc->snap_empty_lock);
 
 
 
 75		list_del_init(&realm->empty_item);
 76		spin_unlock(&mdsc->snap_empty_lock);
 77	}
 78}
 79
 80static void __insert_snap_realm(struct rb_root *root,
 81				struct ceph_snap_realm *new)
 82{
 83	struct rb_node **p = &root->rb_node;
 84	struct rb_node *parent = NULL;
 85	struct ceph_snap_realm *r = NULL;
 86
 87	while (*p) {
 88		parent = *p;
 89		r = rb_entry(parent, struct ceph_snap_realm, node);
 90		if (new->ino < r->ino)
 91			p = &(*p)->rb_left;
 92		else if (new->ino > r->ino)
 93			p = &(*p)->rb_right;
 94		else
 95			BUG();
 96	}
 97
 98	rb_link_node(&new->node, parent, p);
 99	rb_insert_color(&new->node, root);
100}
101
102/*
103 * create and get the realm rooted at @ino and bump its ref count.
104 *
105 * caller must hold snap_rwsem for write.
106 */
107static struct ceph_snap_realm *ceph_create_snap_realm(
108	struct ceph_mds_client *mdsc,
109	u64 ino)
110{
111	struct ceph_snap_realm *realm;
112
 
 
113	realm = kzalloc(sizeof(*realm), GFP_NOFS);
114	if (!realm)
115		return ERR_PTR(-ENOMEM);
116
117	atomic_set(&realm->nref, 1);    /* for caller */
118	realm->ino = ino;
119	INIT_LIST_HEAD(&realm->children);
120	INIT_LIST_HEAD(&realm->child_item);
121	INIT_LIST_HEAD(&realm->empty_item);
122	INIT_LIST_HEAD(&realm->dirty_item);
123	INIT_LIST_HEAD(&realm->inodes_with_caps);
124	spin_lock_init(&realm->inodes_with_caps_lock);
125	__insert_snap_realm(&mdsc->snap_realms, realm);
 
 
126	dout("create_snap_realm %llx %p\n", realm->ino, realm);
127	return realm;
128}
129
130/*
131 * lookup the realm rooted at @ino.
132 *
133 * caller must hold snap_rwsem for write.
134 */
135static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
136						   u64 ino)
137{
138	struct rb_node *n = mdsc->snap_realms.rb_node;
139	struct ceph_snap_realm *r;
140
 
 
141	while (n) {
142		r = rb_entry(n, struct ceph_snap_realm, node);
143		if (ino < r->ino)
144			n = n->rb_left;
145		else if (ino > r->ino)
146			n = n->rb_right;
147		else {
148			dout("lookup_snap_realm %llx %p\n", r->ino, r);
149			return r;
150		}
151	}
152	return NULL;
153}
154
155struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
156					       u64 ino)
157{
158	struct ceph_snap_realm *r;
159	r = __lookup_snap_realm(mdsc, ino);
160	if (r)
161		ceph_get_snap_realm(mdsc, r);
162	return r;
163}
164
165static void __put_snap_realm(struct ceph_mds_client *mdsc,
166			     struct ceph_snap_realm *realm);
167
168/*
169 * called with snap_rwsem (write)
170 */
171static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
172				 struct ceph_snap_realm *realm)
173{
 
 
174	dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
175
176	rb_erase(&realm->node, &mdsc->snap_realms);
 
177
178	if (realm->parent) {
179		list_del_init(&realm->child_item);
180		__put_snap_realm(mdsc, realm->parent);
181	}
182
183	kfree(realm->prior_parent_snaps);
184	kfree(realm->snaps);
185	ceph_put_snap_context(realm->cached_context);
186	kfree(realm);
187}
188
189/*
190 * caller holds snap_rwsem (write)
191 */
192static void __put_snap_realm(struct ceph_mds_client *mdsc,
193			     struct ceph_snap_realm *realm)
194{
195	dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
196	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
 
 
 
 
197	if (atomic_dec_and_test(&realm->nref))
198		__destroy_snap_realm(mdsc, realm);
199}
200
201/*
202 * caller needn't hold any locks
203 */
204void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
205			 struct ceph_snap_realm *realm)
206{
207	dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
208	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
209	if (!atomic_dec_and_test(&realm->nref))
210		return;
211
212	if (down_write_trylock(&mdsc->snap_rwsem)) {
 
213		__destroy_snap_realm(mdsc, realm);
214		up_write(&mdsc->snap_rwsem);
215	} else {
216		spin_lock(&mdsc->snap_empty_lock);
217		list_add(&realm->empty_item, &mdsc->snap_empty);
218		spin_unlock(&mdsc->snap_empty_lock);
219	}
220}
221
222/*
223 * Clean up any realms whose ref counts have dropped to zero.  Note
224 * that this does not include realms who were created but not yet
225 * used.
226 *
227 * Called under snap_rwsem (write)
228 */
229static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
230{
231	struct ceph_snap_realm *realm;
232
 
 
233	spin_lock(&mdsc->snap_empty_lock);
234	while (!list_empty(&mdsc->snap_empty)) {
235		realm = list_first_entry(&mdsc->snap_empty,
236				   struct ceph_snap_realm, empty_item);
237		list_del(&realm->empty_item);
238		spin_unlock(&mdsc->snap_empty_lock);
239		__destroy_snap_realm(mdsc, realm);
240		spin_lock(&mdsc->snap_empty_lock);
241	}
242	spin_unlock(&mdsc->snap_empty_lock);
243}
244
245void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
246{
247	down_write(&mdsc->snap_rwsem);
248	__cleanup_empty_realms(mdsc);
249	up_write(&mdsc->snap_rwsem);
250}
251
252/*
253 * adjust the parent realm of a given @realm.  adjust child list, and parent
254 * pointers, and ref counts appropriately.
255 *
256 * return true if parent was changed, 0 if unchanged, <0 on error.
257 *
258 * caller must hold snap_rwsem for write.
259 */
260static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
261				    struct ceph_snap_realm *realm,
262				    u64 parentino)
263{
264	struct ceph_snap_realm *parent;
265
 
 
266	if (realm->parent_ino == parentino)
267		return 0;
268
269	parent = ceph_lookup_snap_realm(mdsc, parentino);
270	if (!parent) {
271		parent = ceph_create_snap_realm(mdsc, parentino);
272		if (IS_ERR(parent))
273			return PTR_ERR(parent);
274	}
275	dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
276	     realm->ino, realm, realm->parent_ino, realm->parent,
277	     parentino, parent);
278	if (realm->parent) {
279		list_del_init(&realm->child_item);
280		ceph_put_snap_realm(mdsc, realm->parent);
281	}
282	realm->parent_ino = parentino;
283	realm->parent = parent;
284	list_add(&realm->child_item, &parent->children);
285	return 1;
286}
287
288
289static int cmpu64_rev(const void *a, const void *b)
290{
291	if (*(u64 *)a < *(u64 *)b)
292		return 1;
293	if (*(u64 *)a > *(u64 *)b)
294		return -1;
295	return 0;
296}
297
298
299/*
300 * build the snap context for a given realm.
301 */
302static int build_snap_context(struct ceph_snap_realm *realm)
 
303{
304	struct ceph_snap_realm *parent = realm->parent;
305	struct ceph_snap_context *snapc;
306	int err = 0;
307	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
308
309	/*
310	 * build parent context, if it hasn't been built.
311	 * conservatively estimate that all parent snaps might be
312	 * included by us.
313	 */
314	if (parent) {
315		if (!parent->cached_context) {
316			err = build_snap_context(parent);
317			if (err)
318				goto fail;
319		}
320		num += parent->cached_context->num_snaps;
321	}
322
323	/* do i actually need to update?  not if my context seq
324	   matches realm seq, and my parents' does to.  (this works
325	   because we rebuild_snap_realms() works _downward_ in
326	   hierarchy after each update.) */
327	if (realm->cached_context &&
328	    realm->cached_context->seq == realm->seq &&
329	    (!parent ||
330	     realm->cached_context->seq >= parent->cached_context->seq)) {
331		dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
332		     " (unchanged)\n",
333		     realm->ino, realm, realm->cached_context,
334		     realm->cached_context->seq,
335		     (unsigned int) realm->cached_context->num_snaps);
336		return 0;
337	}
338
339	/* alloc new snap context */
340	err = -ENOMEM;
341	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
342		goto fail;
343	snapc = ceph_create_snap_context(num, GFP_NOFS);
344	if (!snapc)
345		goto fail;
346
347	/* build (reverse sorted) snap vector */
348	num = 0;
349	snapc->seq = realm->seq;
350	if (parent) {
351		u32 i;
352
353		/* include any of parent's snaps occurring _after_ my
354		   parent became my parent */
355		for (i = 0; i < parent->cached_context->num_snaps; i++)
356			if (parent->cached_context->snaps[i] >=
357			    realm->parent_since)
358				snapc->snaps[num++] =
359					parent->cached_context->snaps[i];
360		if (parent->cached_context->seq > snapc->seq)
361			snapc->seq = parent->cached_context->seq;
362	}
363	memcpy(snapc->snaps + num, realm->snaps,
364	       sizeof(u64)*realm->num_snaps);
365	num += realm->num_snaps;
366	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
367	       sizeof(u64)*realm->num_prior_parent_snaps);
368	num += realm->num_prior_parent_snaps;
369
370	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
371	snapc->num_snaps = num;
372	dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
373	     realm->ino, realm, snapc, snapc->seq,
374	     (unsigned int) snapc->num_snaps);
375
376	ceph_put_snap_context(realm->cached_context);
377	realm->cached_context = snapc;
 
 
378	return 0;
379
380fail:
381	/*
382	 * if we fail, clear old (incorrect) cached_context... hopefully
383	 * we'll have better luck building it later
384	 */
385	if (realm->cached_context) {
386		ceph_put_snap_context(realm->cached_context);
387		realm->cached_context = NULL;
388	}
389	pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
390	       realm, err);
391	return err;
392}
393
394/*
395 * rebuild snap context for the given realm and all of its children.
396 */
397static void rebuild_snap_realms(struct ceph_snap_realm *realm)
 
398{
399	struct ceph_snap_realm *child;
400
401	dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
402	build_snap_context(realm);
403
404	list_for_each_entry(child, &realm->children, child_item)
405		rebuild_snap_realms(child);
406}
407
408
409/*
410 * helper to allocate and decode an array of snapids.  free prior
411 * instance, if any.
412 */
413static int dup_array(u64 **dst, __le64 *src, u32 num)
414{
415	u32 i;
416
417	kfree(*dst);
418	if (num) {
419		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
420		if (!*dst)
421			return -ENOMEM;
422		for (i = 0; i < num; i++)
423			(*dst)[i] = get_unaligned_le64(src + i);
424	} else {
425		*dst = NULL;
426	}
427	return 0;
428}
429
430static bool has_new_snaps(struct ceph_snap_context *o,
431			  struct ceph_snap_context *n)
432{
433	if (n->num_snaps == 0)
434		return false;
435	/* snaps are in descending order */
436	return n->snaps[0] > o->seq;
437}
438
439/*
440 * When a snapshot is applied, the size/mtime inode metadata is queued
441 * in a ceph_cap_snap (one for each snapshot) until writeback
442 * completes and the metadata can be flushed back to the MDS.
443 *
444 * However, if a (sync) write is currently in-progress when we apply
445 * the snapshot, we have to wait until the write succeeds or fails
446 * (and a final size/mtime is known).  In this case the
447 * cap_snap->writing = 1, and is said to be "pending."  When the write
448 * finishes, we __ceph_finish_cap_snap().
449 *
450 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
451 * change).
452 */
453void ceph_queue_cap_snap(struct ceph_inode_info *ci)
454{
455	struct inode *inode = &ci->vfs_inode;
456	struct ceph_cap_snap *capsnap;
457	struct ceph_snap_context *old_snapc, *new_snapc;
 
458	int used, dirty;
459
460	capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
461	if (!capsnap) {
462		pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
463		return;
464	}
 
 
 
465
466	spin_lock(&ci->i_ceph_lock);
467	used = __ceph_caps_used(ci);
468	dirty = __ceph_caps_dirty(ci);
469
470	old_snapc = ci->i_head_snapc;
471	new_snapc = ci->i_snap_realm->cached_context;
472
473	/*
474	 * If there is a write in progress, treat that as a dirty Fw,
475	 * even though it hasn't completed yet; by the time we finish
476	 * up this capsnap it will be.
477	 */
478	if (used & CEPH_CAP_FILE_WR)
479		dirty |= CEPH_CAP_FILE_WR;
480
481	if (__ceph_have_pending_cap_snap(ci)) {
482		/* there is no point in queuing multiple "pending" cap_snaps,
483		   as no new writes are allowed to start when pending, so any
484		   writes in progress now were started before the previous
485		   cap_snap.  lucky us. */
486		dout("queue_cap_snap %p already pending\n", inode);
487		goto update_snapc;
488	}
489	if (ci->i_wrbuffer_ref_head == 0 &&
490	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
491		dout("queue_cap_snap %p nothing dirty|writing\n", inode);
492		goto update_snapc;
493	}
494
495	BUG_ON(!old_snapc);
496
497	/*
498	 * There is no need to send FLUSHSNAP message to MDS if there is
499	 * no new snapshot. But when there is dirty pages or on-going
500	 * writes, we still need to create cap_snap. cap_snap is needed
501	 * by the write path and page writeback path.
502	 *
503	 * also see ceph_try_drop_cap_snap()
504	 */
505	if (has_new_snaps(old_snapc, new_snapc)) {
506		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
507			capsnap->need_flush = true;
508	} else {
509		if (!(used & CEPH_CAP_FILE_WR) &&
510		    ci->i_wrbuffer_ref_head == 0) {
511			dout("queue_cap_snap %p "
512			     "no new_snap|dirty_page|writing\n", inode);
513			goto update_snapc;
514		}
515	}
516
517	dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
518	     inode, capsnap, old_snapc, ceph_cap_string(dirty),
519	     capsnap->need_flush ? "" : "no_flush");
520	ihold(inode);
521
522	atomic_set(&capsnap->nref, 1);
523	capsnap->ci = ci;
524	INIT_LIST_HEAD(&capsnap->ci_item);
525	INIT_LIST_HEAD(&capsnap->flushing_item);
526
527	capsnap->follows = old_snapc->seq;
528	capsnap->issued = __ceph_caps_issued(ci, NULL);
529	capsnap->dirty = dirty;
530
531	capsnap->mode = inode->i_mode;
532	capsnap->uid = inode->i_uid;
533	capsnap->gid = inode->i_gid;
534
535	if (dirty & CEPH_CAP_XATTR_EXCL) {
536		__ceph_build_xattrs_blob(ci);
537		capsnap->xattr_blob =
538			ceph_buffer_get(ci->i_xattrs.blob);
539		capsnap->xattr_version = ci->i_xattrs.version;
540	} else {
541		capsnap->xattr_blob = NULL;
542		capsnap->xattr_version = 0;
543	}
544
545	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
546
547	/* dirty page count moved from _head to this cap_snap;
548	   all subsequent writes page dirties occur _after_ this
549	   snapshot. */
550	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
551	ci->i_wrbuffer_ref_head = 0;
552	capsnap->context = old_snapc;
553	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
554	old_snapc = NULL;
555
556	if (used & CEPH_CAP_FILE_WR) {
557		dout("queue_cap_snap %p cap_snap %p snapc %p"
558		     " seq %llu used WR, now pending\n", inode,
559		     capsnap, old_snapc, old_snapc->seq);
560		capsnap->writing = 1;
561	} else {
562		/* note mtime, size NOW. */
563		__ceph_finish_cap_snap(ci, capsnap);
564	}
565	capsnap = NULL;
 
566
567update_snapc:
568	if (ci->i_head_snapc) {
 
 
 
 
 
569		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
570		dout(" new snapc is %p\n", new_snapc);
571	}
572	spin_unlock(&ci->i_ceph_lock);
573
 
574	kfree(capsnap);
575	ceph_put_snap_context(old_snapc);
576}
577
578/*
579 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
580 * to be used for the snapshot, to be flushed back to the mds.
581 *
582 * If capsnap can now be flushed, add to snap_flush list, and return 1.
583 *
584 * Caller must hold i_ceph_lock.
585 */
586int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
587			    struct ceph_cap_snap *capsnap)
588{
589	struct inode *inode = &ci->vfs_inode;
590	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
591
592	BUG_ON(capsnap->writing);
593	capsnap->size = inode->i_size;
594	capsnap->mtime = inode->i_mtime;
595	capsnap->atime = inode->i_atime;
596	capsnap->ctime = inode->i_ctime;
 
 
597	capsnap->time_warp_seq = ci->i_time_warp_seq;
 
 
598	if (capsnap->dirty_pages) {
599		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
600		     "still has %d dirty pages\n", inode, capsnap,
601		     capsnap->context, capsnap->context->seq,
602		     ceph_cap_string(capsnap->dirty), capsnap->size,
603		     capsnap->dirty_pages);
604		return 0;
605	}
 
 
 
 
 
 
 
 
 
 
 
 
606	dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
607	     inode, capsnap, capsnap->context,
608	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
609	     capsnap->size);
610
611	spin_lock(&mdsc->snap_flush_lock);
612	list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 
613	spin_unlock(&mdsc->snap_flush_lock);
614	return 1;  /* caller may want to ceph_flush_snaps */
615}
616
617/*
618 * Queue cap_snaps for snap writeback for this realm and its children.
619 * Called under snap_rwsem, so realm topology won't change.
620 */
621static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
622{
623	struct ceph_inode_info *ci;
624	struct inode *lastinode = NULL;
625	struct ceph_snap_realm *child;
626
627	dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
628
629	spin_lock(&realm->inodes_with_caps_lock);
630	list_for_each_entry(ci, &realm->inodes_with_caps,
631			    i_snap_realm_item) {
632		struct inode *inode = igrab(&ci->vfs_inode);
633		if (!inode)
634			continue;
635		spin_unlock(&realm->inodes_with_caps_lock);
636		iput(lastinode);
637		lastinode = inode;
638		ceph_queue_cap_snap(ci);
639		spin_lock(&realm->inodes_with_caps_lock);
640	}
641	spin_unlock(&realm->inodes_with_caps_lock);
642	iput(lastinode);
643
644	list_for_each_entry(child, &realm->children, child_item) {
645		dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n",
646		     realm, realm->ino, child, child->ino);
647		list_del_init(&child->dirty_item);
648		list_add(&child->dirty_item, &realm->dirty_item);
649	}
650
651	list_del_init(&realm->dirty_item);
652	dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
653}
654
655/*
656 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
657 * the snap realm parameters from a given realm and all of its ancestors,
658 * up to the root.
659 *
660 * Caller must hold snap_rwsem for write.
661 */
662int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
663			   void *p, void *e, bool deletion,
664			   struct ceph_snap_realm **realm_ret)
665{
666	struct ceph_mds_snap_realm *ri;    /* encoded */
667	__le64 *snaps;                     /* encoded */
668	__le64 *prior_parent_snaps;        /* encoded */
669	struct ceph_snap_realm *realm = NULL;
670	struct ceph_snap_realm *first_realm = NULL;
671	int invalidate = 0;
672	int err = -ENOMEM;
673	LIST_HEAD(dirty_realms);
674
 
 
675	dout("update_snap_trace deletion=%d\n", deletion);
676more:
677	ceph_decode_need(&p, e, sizeof(*ri), bad);
678	ri = p;
679	p += sizeof(*ri);
680	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
681			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
682	snaps = p;
683	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
684	prior_parent_snaps = p;
685	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
686
687	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
688	if (!realm) {
689		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
690		if (IS_ERR(realm)) {
691			err = PTR_ERR(realm);
692			goto fail;
693		}
694	}
695
696	/* ensure the parent is correct */
697	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
698	if (err < 0)
699		goto fail;
700	invalidate += err;
701
702	if (le64_to_cpu(ri->seq) > realm->seq) {
703		dout("update_snap_trace updating %llx %p %lld -> %lld\n",
704		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
705		/* update realm parameters, snap lists */
706		realm->seq = le64_to_cpu(ri->seq);
707		realm->created = le64_to_cpu(ri->created);
708		realm->parent_since = le64_to_cpu(ri->parent_since);
709
710		realm->num_snaps = le32_to_cpu(ri->num_snaps);
711		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
712		if (err < 0)
713			goto fail;
714
715		realm->num_prior_parent_snaps =
716			le32_to_cpu(ri->num_prior_parent_snaps);
717		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
718				realm->num_prior_parent_snaps);
719		if (err < 0)
720			goto fail;
721
722		/* queue realm for cap_snap creation */
723		list_add(&realm->dirty_item, &dirty_realms);
724		if (realm->seq > mdsc->last_snap_seq)
725			mdsc->last_snap_seq = realm->seq;
726
727		invalidate = 1;
728	} else if (!realm->cached_context) {
729		dout("update_snap_trace %llx %p seq %lld new\n",
730		     realm->ino, realm, realm->seq);
731		invalidate = 1;
732	} else {
733		dout("update_snap_trace %llx %p seq %lld unchanged\n",
734		     realm->ino, realm, realm->seq);
735	}
736
737	dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
738	     realm, invalidate, p, e);
739
740	/* invalidate when we reach the _end_ (root) of the trace */
741	if (invalidate && p >= e)
742		rebuild_snap_realms(realm);
743
744	if (!first_realm)
745		first_realm = realm;
746	else
747		ceph_put_snap_realm(mdsc, realm);
748
749	if (p < e)
750		goto more;
751
752	/*
753	 * queue cap snaps _after_ we've built the new snap contexts,
754	 * so that i_head_snapc can be set appropriately.
755	 */
756	while (!list_empty(&dirty_realms)) {
757		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
758					 dirty_item);
 
759		queue_realm_cap_snaps(realm);
760	}
761
762	if (realm_ret)
763		*realm_ret = first_realm;
764	else
765		ceph_put_snap_realm(mdsc, first_realm);
766
767	__cleanup_empty_realms(mdsc);
768	return 0;
769
770bad:
771	err = -EINVAL;
772fail:
773	if (realm && !IS_ERR(realm))
774		ceph_put_snap_realm(mdsc, realm);
775	if (first_realm)
776		ceph_put_snap_realm(mdsc, first_realm);
777	pr_err("update_snap_trace error %d\n", err);
778	return err;
779}
780
781
782/*
783 * Send any cap_snaps that are queued for flush.  Try to carry
784 * s_mutex across multiple snap flushes to avoid locking overhead.
785 *
786 * Caller holds no locks.
787 */
788static void flush_snaps(struct ceph_mds_client *mdsc)
789{
790	struct ceph_inode_info *ci;
791	struct inode *inode;
792	struct ceph_mds_session *session = NULL;
793
794	dout("flush_snaps\n");
795	spin_lock(&mdsc->snap_flush_lock);
796	while (!list_empty(&mdsc->snap_flush_list)) {
797		ci = list_first_entry(&mdsc->snap_flush_list,
798				struct ceph_inode_info, i_snap_flush_item);
799		inode = &ci->vfs_inode;
800		ihold(inode);
801		spin_unlock(&mdsc->snap_flush_lock);
802		spin_lock(&ci->i_ceph_lock);
803		__ceph_flush_snaps(ci, &session, 0);
804		spin_unlock(&ci->i_ceph_lock);
805		iput(inode);
806		spin_lock(&mdsc->snap_flush_lock);
807	}
808	spin_unlock(&mdsc->snap_flush_lock);
809
810	if (session) {
811		mutex_unlock(&session->s_mutex);
812		ceph_put_mds_session(session);
813	}
814	dout("flush_snaps done\n");
815}
816
817
818/*
819 * Handle a snap notification from the MDS.
820 *
821 * This can take two basic forms: the simplest is just a snap creation
822 * or deletion notification on an existing realm.  This should update the
823 * realm and its children.
824 *
825 * The more difficult case is realm creation, due to snap creation at a
826 * new point in the file hierarchy, or due to a rename that moves a file or
827 * directory into another realm.
828 */
829void ceph_handle_snap(struct ceph_mds_client *mdsc,
830		      struct ceph_mds_session *session,
831		      struct ceph_msg *msg)
832{
833	struct super_block *sb = mdsc->fsc->sb;
834	int mds = session->s_mds;
835	u64 split;
836	int op;
837	int trace_len;
838	struct ceph_snap_realm *realm = NULL;
839	void *p = msg->front.iov_base;
840	void *e = p + msg->front.iov_len;
841	struct ceph_mds_snap_head *h;
842	int num_split_inos, num_split_realms;
843	__le64 *split_inos = NULL, *split_realms = NULL;
844	int i;
845	int locked_rwsem = 0;
846
847	/* decode */
848	if (msg->front.iov_len < sizeof(*h))
849		goto bad;
850	h = p;
851	op = le32_to_cpu(h->op);
852	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
853					  * existing realm */
854	num_split_inos = le32_to_cpu(h->num_split_inos);
855	num_split_realms = le32_to_cpu(h->num_split_realms);
856	trace_len = le32_to_cpu(h->trace_len);
857	p += sizeof(*h);
858
859	dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
860	     ceph_snap_op_name(op), split, trace_len);
861
862	mutex_lock(&session->s_mutex);
863	session->s_seq++;
864	mutex_unlock(&session->s_mutex);
865
866	down_write(&mdsc->snap_rwsem);
867	locked_rwsem = 1;
868
869	if (op == CEPH_SNAP_OP_SPLIT) {
870		struct ceph_mds_snap_realm *ri;
871
872		/*
873		 * A "split" breaks part of an existing realm off into
874		 * a new realm.  The MDS provides a list of inodes
875		 * (with caps) and child realms that belong to the new
876		 * child.
877		 */
878		split_inos = p;
879		p += sizeof(u64) * num_split_inos;
880		split_realms = p;
881		p += sizeof(u64) * num_split_realms;
882		ceph_decode_need(&p, e, sizeof(*ri), bad);
883		/* we will peek at realm info here, but will _not_
884		 * advance p, as the realm update will occur below in
885		 * ceph_update_snap_trace. */
886		ri = p;
887
888		realm = ceph_lookup_snap_realm(mdsc, split);
889		if (!realm) {
890			realm = ceph_create_snap_realm(mdsc, split);
891			if (IS_ERR(realm))
892				goto out;
893		}
894
895		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
896		for (i = 0; i < num_split_inos; i++) {
897			struct ceph_vino vino = {
898				.ino = le64_to_cpu(split_inos[i]),
899				.snap = CEPH_NOSNAP,
900			};
901			struct inode *inode = ceph_find_inode(sb, vino);
902			struct ceph_inode_info *ci;
903			struct ceph_snap_realm *oldrealm;
904
905			if (!inode)
906				continue;
907			ci = ceph_inode(inode);
908
909			spin_lock(&ci->i_ceph_lock);
910			if (!ci->i_snap_realm)
911				goto skip_inode;
912			/*
913			 * If this inode belongs to a realm that was
914			 * created after our new realm, we experienced
915			 * a race (due to another split notifications
916			 * arriving from a different MDS).  So skip
917			 * this inode.
918			 */
919			if (ci->i_snap_realm->created >
920			    le64_to_cpu(ri->created)) {
921				dout(" leaving %p in newer realm %llx %p\n",
922				     inode, ci->i_snap_realm->ino,
923				     ci->i_snap_realm);
924				goto skip_inode;
925			}
926			dout(" will move %p to split realm %llx %p\n",
927			     inode, realm->ino, realm);
928			/*
929			 * Move the inode to the new realm
930			 */
931			spin_lock(&realm->inodes_with_caps_lock);
 
932			list_del_init(&ci->i_snap_realm_item);
 
 
 
933			list_add(&ci->i_snap_realm_item,
934				 &realm->inodes_with_caps);
935			oldrealm = ci->i_snap_realm;
936			ci->i_snap_realm = realm;
 
 
937			spin_unlock(&realm->inodes_with_caps_lock);
 
938			spin_unlock(&ci->i_ceph_lock);
939
940			ceph_get_snap_realm(mdsc, realm);
941			ceph_put_snap_realm(mdsc, oldrealm);
942
943			iput(inode);
944			continue;
945
946skip_inode:
947			spin_unlock(&ci->i_ceph_lock);
948			iput(inode);
949		}
950
951		/* we may have taken some of the old realm's children. */
952		for (i = 0; i < num_split_realms; i++) {
953			struct ceph_snap_realm *child =
954				__lookup_snap_realm(mdsc,
955					   le64_to_cpu(split_realms[i]));
956			if (!child)
957				continue;
958			adjust_snap_realm_parent(mdsc, child, realm->ino);
959		}
960	}
961
962	/*
963	 * update using the provided snap trace. if we are deleting a
964	 * snap, we can avoid queueing cap_snaps.
965	 */
966	ceph_update_snap_trace(mdsc, p, e,
967			       op == CEPH_SNAP_OP_DESTROY, NULL);
968
969	if (op == CEPH_SNAP_OP_SPLIT)
970		/* we took a reference when we created the realm, above */
971		ceph_put_snap_realm(mdsc, realm);
972
973	__cleanup_empty_realms(mdsc);
974
975	up_write(&mdsc->snap_rwsem);
976
977	flush_snaps(mdsc);
978	return;
979
980bad:
981	pr_err("corrupt snap message from mds%d\n", mds);
982	ceph_msg_dump(msg);
983out:
984	if (locked_rwsem)
985		up_write(&mdsc->snap_rwsem);
986	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
987}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/sort.h>
   5#include <linux/slab.h>
   6#include <linux/iversion.h>
   7#include "super.h"
   8#include "mds_client.h"
 
   9#include <linux/ceph/decode.h>
  10
  11/* unused map expires after 5 minutes */
  12#define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
  13
  14/*
  15 * Snapshots in ceph are driven in large part by cooperation from the
  16 * client.  In contrast to local file systems or file servers that
  17 * implement snapshots at a single point in the system, ceph's
  18 * distributed access to storage requires clients to help decide
  19 * whether a write logically occurs before or after a recently created
  20 * snapshot.
  21 *
  22 * This provides a perfect instantanous client-wide snapshot.  Between
  23 * clients, however, snapshots may appear to be applied at slightly
  24 * different points in time, depending on delays in delivering the
  25 * snapshot notification.
  26 *
  27 * Snapshots are _not_ file system-wide.  Instead, each snapshot
  28 * applies to the subdirectory nested beneath some directory.  This
  29 * effectively divides the hierarchy into multiple "realms," where all
  30 * of the files contained by each realm share the same set of
  31 * snapshots.  An individual realm's snap set contains snapshots
  32 * explicitly created on that realm, as well as any snaps in its
  33 * parent's snap set _after_ the point at which the parent became it's
  34 * parent (due to, say, a rename).  Similarly, snaps from prior parents
  35 * during the time intervals during which they were the parent are included.
  36 *
  37 * The client is spared most of this detail, fortunately... it must only
  38 * maintains a hierarchy of realms reflecting the current parent/child
  39 * realm relationship, and for each realm has an explicit list of snaps
  40 * inherited from prior parents.
  41 *
  42 * A snap_realm struct is maintained for realms containing every inode
  43 * with an open cap in the system.  (The needed snap realm information is
  44 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
  45 * version number is used to ensure that as realm parameters change (new
  46 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
  47 *
  48 * The realm hierarchy drives the generation of a 'snap context' for each
  49 * realm, which simply lists the resulting set of snaps for the realm.  This
  50 * is attached to any writes sent to OSDs.
  51 */
  52/*
  53 * Unfortunately error handling is a bit mixed here.  If we get a snap
  54 * update, but don't have enough memory to update our realm hierarchy,
  55 * it's not clear what we can do about it (besides complaining to the
  56 * console).
  57 */
  58
  59
  60/*
  61 * increase ref count for the realm
  62 *
  63 * caller must hold snap_rwsem.
  64 */
  65void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
  66			 struct ceph_snap_realm *realm)
  67{
  68	lockdep_assert_held(&mdsc->snap_rwsem);
  69
  70	/*
  71	 * The 0->1 and 1->0 transitions must take the snap_empty_lock
  72	 * atomically with the refcount change. Go ahead and bump the
  73	 * nref here, unless it's 0, in which case we take the spinlock
  74	 * and then do the increment and remove it from the list.
  75	 */
  76	if (atomic_inc_not_zero(&realm->nref))
  77		return;
  78
  79	spin_lock(&mdsc->snap_empty_lock);
  80	if (atomic_inc_return(&realm->nref) == 1)
  81		list_del_init(&realm->empty_item);
  82	spin_unlock(&mdsc->snap_empty_lock);
 
  83}
  84
  85static void __insert_snap_realm(struct rb_root *root,
  86				struct ceph_snap_realm *new)
  87{
  88	struct rb_node **p = &root->rb_node;
  89	struct rb_node *parent = NULL;
  90	struct ceph_snap_realm *r = NULL;
  91
  92	while (*p) {
  93		parent = *p;
  94		r = rb_entry(parent, struct ceph_snap_realm, node);
  95		if (new->ino < r->ino)
  96			p = &(*p)->rb_left;
  97		else if (new->ino > r->ino)
  98			p = &(*p)->rb_right;
  99		else
 100			BUG();
 101	}
 102
 103	rb_link_node(&new->node, parent, p);
 104	rb_insert_color(&new->node, root);
 105}
 106
 107/*
 108 * create and get the realm rooted at @ino and bump its ref count.
 109 *
 110 * caller must hold snap_rwsem for write.
 111 */
 112static struct ceph_snap_realm *ceph_create_snap_realm(
 113	struct ceph_mds_client *mdsc,
 114	u64 ino)
 115{
 116	struct ceph_snap_realm *realm;
 117
 118	lockdep_assert_held_write(&mdsc->snap_rwsem);
 119
 120	realm = kzalloc(sizeof(*realm), GFP_NOFS);
 121	if (!realm)
 122		return ERR_PTR(-ENOMEM);
 123
 124	atomic_set(&realm->nref, 1);    /* for caller */
 125	realm->ino = ino;
 126	INIT_LIST_HEAD(&realm->children);
 127	INIT_LIST_HEAD(&realm->child_item);
 128	INIT_LIST_HEAD(&realm->empty_item);
 129	INIT_LIST_HEAD(&realm->dirty_item);
 130	INIT_LIST_HEAD(&realm->inodes_with_caps);
 131	spin_lock_init(&realm->inodes_with_caps_lock);
 132	__insert_snap_realm(&mdsc->snap_realms, realm);
 133	mdsc->num_snap_realms++;
 134
 135	dout("create_snap_realm %llx %p\n", realm->ino, realm);
 136	return realm;
 137}
 138
 139/*
 140 * lookup the realm rooted at @ino.
 141 *
 142 * caller must hold snap_rwsem.
 143 */
 144static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
 145						   u64 ino)
 146{
 147	struct rb_node *n = mdsc->snap_realms.rb_node;
 148	struct ceph_snap_realm *r;
 149
 150	lockdep_assert_held(&mdsc->snap_rwsem);
 151
 152	while (n) {
 153		r = rb_entry(n, struct ceph_snap_realm, node);
 154		if (ino < r->ino)
 155			n = n->rb_left;
 156		else if (ino > r->ino)
 157			n = n->rb_right;
 158		else {
 159			dout("lookup_snap_realm %llx %p\n", r->ino, r);
 160			return r;
 161		}
 162	}
 163	return NULL;
 164}
 165
 166struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
 167					       u64 ino)
 168{
 169	struct ceph_snap_realm *r;
 170	r = __lookup_snap_realm(mdsc, ino);
 171	if (r)
 172		ceph_get_snap_realm(mdsc, r);
 173	return r;
 174}
 175
 176static void __put_snap_realm(struct ceph_mds_client *mdsc,
 177			     struct ceph_snap_realm *realm);
 178
 179/*
 180 * called with snap_rwsem (write)
 181 */
 182static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
 183				 struct ceph_snap_realm *realm)
 184{
 185	lockdep_assert_held_write(&mdsc->snap_rwsem);
 186
 187	dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
 188
 189	rb_erase(&realm->node, &mdsc->snap_realms);
 190	mdsc->num_snap_realms--;
 191
 192	if (realm->parent) {
 193		list_del_init(&realm->child_item);
 194		__put_snap_realm(mdsc, realm->parent);
 195	}
 196
 197	kfree(realm->prior_parent_snaps);
 198	kfree(realm->snaps);
 199	ceph_put_snap_context(realm->cached_context);
 200	kfree(realm);
 201}
 202
 203/*
 204 * caller holds snap_rwsem (write)
 205 */
 206static void __put_snap_realm(struct ceph_mds_client *mdsc,
 207			     struct ceph_snap_realm *realm)
 208{
 209	lockdep_assert_held_write(&mdsc->snap_rwsem);
 210
 211	/*
 212	 * We do not require the snap_empty_lock here, as any caller that
 213	 * increments the value must hold the snap_rwsem.
 214	 */
 215	if (atomic_dec_and_test(&realm->nref))
 216		__destroy_snap_realm(mdsc, realm);
 217}
 218
 219/*
 220 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
 221 */
 222void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
 223			 struct ceph_snap_realm *realm)
 224{
 225	if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
 
 
 226		return;
 227
 228	if (down_write_trylock(&mdsc->snap_rwsem)) {
 229		spin_unlock(&mdsc->snap_empty_lock);
 230		__destroy_snap_realm(mdsc, realm);
 231		up_write(&mdsc->snap_rwsem);
 232	} else {
 
 233		list_add(&realm->empty_item, &mdsc->snap_empty);
 234		spin_unlock(&mdsc->snap_empty_lock);
 235	}
 236}
 237
 238/*
 239 * Clean up any realms whose ref counts have dropped to zero.  Note
 240 * that this does not include realms who were created but not yet
 241 * used.
 242 *
 243 * Called under snap_rwsem (write)
 244 */
 245static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
 246{
 247	struct ceph_snap_realm *realm;
 248
 249	lockdep_assert_held_write(&mdsc->snap_rwsem);
 250
 251	spin_lock(&mdsc->snap_empty_lock);
 252	while (!list_empty(&mdsc->snap_empty)) {
 253		realm = list_first_entry(&mdsc->snap_empty,
 254				   struct ceph_snap_realm, empty_item);
 255		list_del(&realm->empty_item);
 256		spin_unlock(&mdsc->snap_empty_lock);
 257		__destroy_snap_realm(mdsc, realm);
 258		spin_lock(&mdsc->snap_empty_lock);
 259	}
 260	spin_unlock(&mdsc->snap_empty_lock);
 261}
 262
 263void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
 264{
 265	down_write(&mdsc->snap_rwsem);
 266	__cleanup_empty_realms(mdsc);
 267	up_write(&mdsc->snap_rwsem);
 268}
 269
 270/*
 271 * adjust the parent realm of a given @realm.  adjust child list, and parent
 272 * pointers, and ref counts appropriately.
 273 *
 274 * return true if parent was changed, 0 if unchanged, <0 on error.
 275 *
 276 * caller must hold snap_rwsem for write.
 277 */
 278static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
 279				    struct ceph_snap_realm *realm,
 280				    u64 parentino)
 281{
 282	struct ceph_snap_realm *parent;
 283
 284	lockdep_assert_held_write(&mdsc->snap_rwsem);
 285
 286	if (realm->parent_ino == parentino)
 287		return 0;
 288
 289	parent = ceph_lookup_snap_realm(mdsc, parentino);
 290	if (!parent) {
 291		parent = ceph_create_snap_realm(mdsc, parentino);
 292		if (IS_ERR(parent))
 293			return PTR_ERR(parent);
 294	}
 295	dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
 296	     realm->ino, realm, realm->parent_ino, realm->parent,
 297	     parentino, parent);
 298	if (realm->parent) {
 299		list_del_init(&realm->child_item);
 300		ceph_put_snap_realm(mdsc, realm->parent);
 301	}
 302	realm->parent_ino = parentino;
 303	realm->parent = parent;
 304	list_add(&realm->child_item, &parent->children);
 305	return 1;
 306}
 307
 308
 309static int cmpu64_rev(const void *a, const void *b)
 310{
 311	if (*(u64 *)a < *(u64 *)b)
 312		return 1;
 313	if (*(u64 *)a > *(u64 *)b)
 314		return -1;
 315	return 0;
 316}
 317
 318
 319/*
 320 * build the snap context for a given realm.
 321 */
 322static int build_snap_context(struct ceph_snap_realm *realm,
 323			      struct list_head* dirty_realms)
 324{
 325	struct ceph_snap_realm *parent = realm->parent;
 326	struct ceph_snap_context *snapc;
 327	int err = 0;
 328	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
 329
 330	/*
 331	 * build parent context, if it hasn't been built.
 332	 * conservatively estimate that all parent snaps might be
 333	 * included by us.
 334	 */
 335	if (parent) {
 336		if (!parent->cached_context) {
 337			err = build_snap_context(parent, dirty_realms);
 338			if (err)
 339				goto fail;
 340		}
 341		num += parent->cached_context->num_snaps;
 342	}
 343
 344	/* do i actually need to update?  not if my context seq
 345	   matches realm seq, and my parents' does to.  (this works
 346	   because we rebuild_snap_realms() works _downward_ in
 347	   hierarchy after each update.) */
 348	if (realm->cached_context &&
 349	    realm->cached_context->seq == realm->seq &&
 350	    (!parent ||
 351	     realm->cached_context->seq >= parent->cached_context->seq)) {
 352		dout("build_snap_context %llx %p: %p seq %lld (%u snaps)"
 353		     " (unchanged)\n",
 354		     realm->ino, realm, realm->cached_context,
 355		     realm->cached_context->seq,
 356		     (unsigned int)realm->cached_context->num_snaps);
 357		return 0;
 358	}
 359
 360	/* alloc new snap context */
 361	err = -ENOMEM;
 362	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
 363		goto fail;
 364	snapc = ceph_create_snap_context(num, GFP_NOFS);
 365	if (!snapc)
 366		goto fail;
 367
 368	/* build (reverse sorted) snap vector */
 369	num = 0;
 370	snapc->seq = realm->seq;
 371	if (parent) {
 372		u32 i;
 373
 374		/* include any of parent's snaps occurring _after_ my
 375		   parent became my parent */
 376		for (i = 0; i < parent->cached_context->num_snaps; i++)
 377			if (parent->cached_context->snaps[i] >=
 378			    realm->parent_since)
 379				snapc->snaps[num++] =
 380					parent->cached_context->snaps[i];
 381		if (parent->cached_context->seq > snapc->seq)
 382			snapc->seq = parent->cached_context->seq;
 383	}
 384	memcpy(snapc->snaps + num, realm->snaps,
 385	       sizeof(u64)*realm->num_snaps);
 386	num += realm->num_snaps;
 387	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
 388	       sizeof(u64)*realm->num_prior_parent_snaps);
 389	num += realm->num_prior_parent_snaps;
 390
 391	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
 392	snapc->num_snaps = num;
 393	dout("build_snap_context %llx %p: %p seq %lld (%u snaps)\n",
 394	     realm->ino, realm, snapc, snapc->seq,
 395	     (unsigned int) snapc->num_snaps);
 396
 397	ceph_put_snap_context(realm->cached_context);
 398	realm->cached_context = snapc;
 399	/* queue realm for cap_snap creation */
 400	list_add_tail(&realm->dirty_item, dirty_realms);
 401	return 0;
 402
 403fail:
 404	/*
 405	 * if we fail, clear old (incorrect) cached_context... hopefully
 406	 * we'll have better luck building it later
 407	 */
 408	if (realm->cached_context) {
 409		ceph_put_snap_context(realm->cached_context);
 410		realm->cached_context = NULL;
 411	}
 412	pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
 413	       realm, err);
 414	return err;
 415}
 416
 417/*
 418 * rebuild snap context for the given realm and all of its children.
 419 */
 420static void rebuild_snap_realms(struct ceph_snap_realm *realm,
 421				struct list_head *dirty_realms)
 422{
 423	struct ceph_snap_realm *child;
 424
 425	dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
 426	build_snap_context(realm, dirty_realms);
 427
 428	list_for_each_entry(child, &realm->children, child_item)
 429		rebuild_snap_realms(child, dirty_realms);
 430}
 431
 432
 433/*
 434 * helper to allocate and decode an array of snapids.  free prior
 435 * instance, if any.
 436 */
 437static int dup_array(u64 **dst, __le64 *src, u32 num)
 438{
 439	u32 i;
 440
 441	kfree(*dst);
 442	if (num) {
 443		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
 444		if (!*dst)
 445			return -ENOMEM;
 446		for (i = 0; i < num; i++)
 447			(*dst)[i] = get_unaligned_le64(src + i);
 448	} else {
 449		*dst = NULL;
 450	}
 451	return 0;
 452}
 453
 454static bool has_new_snaps(struct ceph_snap_context *o,
 455			  struct ceph_snap_context *n)
 456{
 457	if (n->num_snaps == 0)
 458		return false;
 459	/* snaps are in descending order */
 460	return n->snaps[0] > o->seq;
 461}
 462
 463/*
 464 * When a snapshot is applied, the size/mtime inode metadata is queued
 465 * in a ceph_cap_snap (one for each snapshot) until writeback
 466 * completes and the metadata can be flushed back to the MDS.
 467 *
 468 * However, if a (sync) write is currently in-progress when we apply
 469 * the snapshot, we have to wait until the write succeeds or fails
 470 * (and a final size/mtime is known).  In this case the
 471 * cap_snap->writing = 1, and is said to be "pending."  When the write
 472 * finishes, we __ceph_finish_cap_snap().
 473 *
 474 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
 475 * change).
 476 */
 477static void ceph_queue_cap_snap(struct ceph_inode_info *ci)
 478{
 479	struct inode *inode = &ci->vfs_inode;
 480	struct ceph_cap_snap *capsnap;
 481	struct ceph_snap_context *old_snapc, *new_snapc;
 482	struct ceph_buffer *old_blob = NULL;
 483	int used, dirty;
 484
 485	capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
 486	if (!capsnap) {
 487		pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
 488		return;
 489	}
 490	capsnap->cap_flush.is_capsnap = true;
 491	INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
 492	INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
 493
 494	spin_lock(&ci->i_ceph_lock);
 495	used = __ceph_caps_used(ci);
 496	dirty = __ceph_caps_dirty(ci);
 497
 498	old_snapc = ci->i_head_snapc;
 499	new_snapc = ci->i_snap_realm->cached_context;
 500
 501	/*
 502	 * If there is a write in progress, treat that as a dirty Fw,
 503	 * even though it hasn't completed yet; by the time we finish
 504	 * up this capsnap it will be.
 505	 */
 506	if (used & CEPH_CAP_FILE_WR)
 507		dirty |= CEPH_CAP_FILE_WR;
 508
 509	if (__ceph_have_pending_cap_snap(ci)) {
 510		/* there is no point in queuing multiple "pending" cap_snaps,
 511		   as no new writes are allowed to start when pending, so any
 512		   writes in progress now were started before the previous
 513		   cap_snap.  lucky us. */
 514		dout("queue_cap_snap %p already pending\n", inode);
 515		goto update_snapc;
 516	}
 517	if (ci->i_wrbuffer_ref_head == 0 &&
 518	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
 519		dout("queue_cap_snap %p nothing dirty|writing\n", inode);
 520		goto update_snapc;
 521	}
 522
 523	BUG_ON(!old_snapc);
 524
 525	/*
 526	 * There is no need to send FLUSHSNAP message to MDS if there is
 527	 * no new snapshot. But when there is dirty pages or on-going
 528	 * writes, we still need to create cap_snap. cap_snap is needed
 529	 * by the write path and page writeback path.
 530	 *
 531	 * also see ceph_try_drop_cap_snap()
 532	 */
 533	if (has_new_snaps(old_snapc, new_snapc)) {
 534		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
 535			capsnap->need_flush = true;
 536	} else {
 537		if (!(used & CEPH_CAP_FILE_WR) &&
 538		    ci->i_wrbuffer_ref_head == 0) {
 539			dout("queue_cap_snap %p "
 540			     "no new_snap|dirty_page|writing\n", inode);
 541			goto update_snapc;
 542		}
 543	}
 544
 545	dout("queue_cap_snap %p cap_snap %p queuing under %p %s %s\n",
 546	     inode, capsnap, old_snapc, ceph_cap_string(dirty),
 547	     capsnap->need_flush ? "" : "no_flush");
 548	ihold(inode);
 549
 550	refcount_set(&capsnap->nref, 1);
 
 551	INIT_LIST_HEAD(&capsnap->ci_item);
 
 552
 553	capsnap->follows = old_snapc->seq;
 554	capsnap->issued = __ceph_caps_issued(ci, NULL);
 555	capsnap->dirty = dirty;
 556
 557	capsnap->mode = inode->i_mode;
 558	capsnap->uid = inode->i_uid;
 559	capsnap->gid = inode->i_gid;
 560
 561	if (dirty & CEPH_CAP_XATTR_EXCL) {
 562		old_blob = __ceph_build_xattrs_blob(ci);
 563		capsnap->xattr_blob =
 564			ceph_buffer_get(ci->i_xattrs.blob);
 565		capsnap->xattr_version = ci->i_xattrs.version;
 566	} else {
 567		capsnap->xattr_blob = NULL;
 568		capsnap->xattr_version = 0;
 569	}
 570
 571	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
 572
 573	/* dirty page count moved from _head to this cap_snap;
 574	   all subsequent writes page dirties occur _after_ this
 575	   snapshot. */
 576	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
 577	ci->i_wrbuffer_ref_head = 0;
 578	capsnap->context = old_snapc;
 579	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
 
 580
 581	if (used & CEPH_CAP_FILE_WR) {
 582		dout("queue_cap_snap %p cap_snap %p snapc %p"
 583		     " seq %llu used WR, now pending\n", inode,
 584		     capsnap, old_snapc, old_snapc->seq);
 585		capsnap->writing = 1;
 586	} else {
 587		/* note mtime, size NOW. */
 588		__ceph_finish_cap_snap(ci, capsnap);
 589	}
 590	capsnap = NULL;
 591	old_snapc = NULL;
 592
 593update_snapc:
 594       if (ci->i_wrbuffer_ref_head == 0 &&
 595           ci->i_wr_ref == 0 &&
 596           ci->i_dirty_caps == 0 &&
 597           ci->i_flushing_caps == 0) {
 598               ci->i_head_snapc = NULL;
 599       } else {
 600		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
 601		dout(" new snapc is %p\n", new_snapc);
 602	}
 603	spin_unlock(&ci->i_ceph_lock);
 604
 605	ceph_buffer_put(old_blob);
 606	kfree(capsnap);
 607	ceph_put_snap_context(old_snapc);
 608}
 609
 610/*
 611 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
 612 * to be used for the snapshot, to be flushed back to the mds.
 613 *
 614 * If capsnap can now be flushed, add to snap_flush list, and return 1.
 615 *
 616 * Caller must hold i_ceph_lock.
 617 */
 618int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
 619			    struct ceph_cap_snap *capsnap)
 620{
 621	struct inode *inode = &ci->vfs_inode;
 622	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
 623
 624	BUG_ON(capsnap->writing);
 625	capsnap->size = i_size_read(inode);
 626	capsnap->mtime = inode->i_mtime;
 627	capsnap->atime = inode->i_atime;
 628	capsnap->ctime = inode->i_ctime;
 629	capsnap->btime = ci->i_btime;
 630	capsnap->change_attr = inode_peek_iversion_raw(inode);
 631	capsnap->time_warp_seq = ci->i_time_warp_seq;
 632	capsnap->truncate_size = ci->i_truncate_size;
 633	capsnap->truncate_seq = ci->i_truncate_seq;
 634	if (capsnap->dirty_pages) {
 635		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
 636		     "still has %d dirty pages\n", inode, capsnap,
 637		     capsnap->context, capsnap->context->seq,
 638		     ceph_cap_string(capsnap->dirty), capsnap->size,
 639		     capsnap->dirty_pages);
 640		return 0;
 641	}
 642
 643	/* Fb cap still in use, delay it */
 644	if (ci->i_wb_ref) {
 645		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
 646		     "used WRBUFFER, delaying\n", inode, capsnap,
 647		     capsnap->context, capsnap->context->seq,
 648		     ceph_cap_string(capsnap->dirty), capsnap->size);
 649		capsnap->writing = 1;
 650		return 0;
 651	}
 652
 653	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
 654	dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
 655	     inode, capsnap, capsnap->context,
 656	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 657	     capsnap->size);
 658
 659	spin_lock(&mdsc->snap_flush_lock);
 660	if (list_empty(&ci->i_snap_flush_item))
 661		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 662	spin_unlock(&mdsc->snap_flush_lock);
 663	return 1;  /* caller may want to ceph_flush_snaps */
 664}
 665
 666/*
 667 * Queue cap_snaps for snap writeback for this realm and its children.
 668 * Called under snap_rwsem, so realm topology won't change.
 669 */
 670static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
 671{
 672	struct ceph_inode_info *ci;
 673	struct inode *lastinode = NULL;
 
 674
 675	dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
 676
 677	spin_lock(&realm->inodes_with_caps_lock);
 678	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
 
 679		struct inode *inode = igrab(&ci->vfs_inode);
 680		if (!inode)
 681			continue;
 682		spin_unlock(&realm->inodes_with_caps_lock);
 683		iput(lastinode);
 684		lastinode = inode;
 685		ceph_queue_cap_snap(ci);
 686		spin_lock(&realm->inodes_with_caps_lock);
 687	}
 688	spin_unlock(&realm->inodes_with_caps_lock);
 689	iput(lastinode);
 690
 
 
 
 
 
 
 
 
 691	dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
 692}
 693
 694/*
 695 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
 696 * the snap realm parameters from a given realm and all of its ancestors,
 697 * up to the root.
 698 *
 699 * Caller must hold snap_rwsem for write.
 700 */
 701int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
 702			   void *p, void *e, bool deletion,
 703			   struct ceph_snap_realm **realm_ret)
 704{
 705	struct ceph_mds_snap_realm *ri;    /* encoded */
 706	__le64 *snaps;                     /* encoded */
 707	__le64 *prior_parent_snaps;        /* encoded */
 708	struct ceph_snap_realm *realm = NULL;
 709	struct ceph_snap_realm *first_realm = NULL;
 710	int invalidate = 0;
 711	int err = -ENOMEM;
 712	LIST_HEAD(dirty_realms);
 713
 714	lockdep_assert_held_write(&mdsc->snap_rwsem);
 715
 716	dout("update_snap_trace deletion=%d\n", deletion);
 717more:
 718	ceph_decode_need(&p, e, sizeof(*ri), bad);
 719	ri = p;
 720	p += sizeof(*ri);
 721	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
 722			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
 723	snaps = p;
 724	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
 725	prior_parent_snaps = p;
 726	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
 727
 728	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
 729	if (!realm) {
 730		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
 731		if (IS_ERR(realm)) {
 732			err = PTR_ERR(realm);
 733			goto fail;
 734		}
 735	}
 736
 737	/* ensure the parent is correct */
 738	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
 739	if (err < 0)
 740		goto fail;
 741	invalidate += err;
 742
 743	if (le64_to_cpu(ri->seq) > realm->seq) {
 744		dout("update_snap_trace updating %llx %p %lld -> %lld\n",
 745		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
 746		/* update realm parameters, snap lists */
 747		realm->seq = le64_to_cpu(ri->seq);
 748		realm->created = le64_to_cpu(ri->created);
 749		realm->parent_since = le64_to_cpu(ri->parent_since);
 750
 751		realm->num_snaps = le32_to_cpu(ri->num_snaps);
 752		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
 753		if (err < 0)
 754			goto fail;
 755
 756		realm->num_prior_parent_snaps =
 757			le32_to_cpu(ri->num_prior_parent_snaps);
 758		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
 759				realm->num_prior_parent_snaps);
 760		if (err < 0)
 761			goto fail;
 762
 
 
 763		if (realm->seq > mdsc->last_snap_seq)
 764			mdsc->last_snap_seq = realm->seq;
 765
 766		invalidate = 1;
 767	} else if (!realm->cached_context) {
 768		dout("update_snap_trace %llx %p seq %lld new\n",
 769		     realm->ino, realm, realm->seq);
 770		invalidate = 1;
 771	} else {
 772		dout("update_snap_trace %llx %p seq %lld unchanged\n",
 773		     realm->ino, realm, realm->seq);
 774	}
 775
 776	dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
 777	     realm, invalidate, p, e);
 778
 779	/* invalidate when we reach the _end_ (root) of the trace */
 780	if (invalidate && p >= e)
 781		rebuild_snap_realms(realm, &dirty_realms);
 782
 783	if (!first_realm)
 784		first_realm = realm;
 785	else
 786		ceph_put_snap_realm(mdsc, realm);
 787
 788	if (p < e)
 789		goto more;
 790
 791	/*
 792	 * queue cap snaps _after_ we've built the new snap contexts,
 793	 * so that i_head_snapc can be set appropriately.
 794	 */
 795	while (!list_empty(&dirty_realms)) {
 796		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
 797					 dirty_item);
 798		list_del_init(&realm->dirty_item);
 799		queue_realm_cap_snaps(realm);
 800	}
 801
 802	if (realm_ret)
 803		*realm_ret = first_realm;
 804	else
 805		ceph_put_snap_realm(mdsc, first_realm);
 806
 807	__cleanup_empty_realms(mdsc);
 808	return 0;
 809
 810bad:
 811	err = -EIO;
 812fail:
 813	if (realm && !IS_ERR(realm))
 814		ceph_put_snap_realm(mdsc, realm);
 815	if (first_realm)
 816		ceph_put_snap_realm(mdsc, first_realm);
 817	pr_err("update_snap_trace error %d\n", err);
 818	return err;
 819}
 820
 821
 822/*
 823 * Send any cap_snaps that are queued for flush.  Try to carry
 824 * s_mutex across multiple snap flushes to avoid locking overhead.
 825 *
 826 * Caller holds no locks.
 827 */
 828static void flush_snaps(struct ceph_mds_client *mdsc)
 829{
 830	struct ceph_inode_info *ci;
 831	struct inode *inode;
 832	struct ceph_mds_session *session = NULL;
 833
 834	dout("flush_snaps\n");
 835	spin_lock(&mdsc->snap_flush_lock);
 836	while (!list_empty(&mdsc->snap_flush_list)) {
 837		ci = list_first_entry(&mdsc->snap_flush_list,
 838				struct ceph_inode_info, i_snap_flush_item);
 839		inode = &ci->vfs_inode;
 840		ihold(inode);
 841		spin_unlock(&mdsc->snap_flush_lock);
 842		ceph_flush_snaps(ci, &session);
 
 
 843		iput(inode);
 844		spin_lock(&mdsc->snap_flush_lock);
 845	}
 846	spin_unlock(&mdsc->snap_flush_lock);
 847
 848	ceph_put_mds_session(session);
 
 
 
 849	dout("flush_snaps done\n");
 850}
 851
 852
 853/*
 854 * Handle a snap notification from the MDS.
 855 *
 856 * This can take two basic forms: the simplest is just a snap creation
 857 * or deletion notification on an existing realm.  This should update the
 858 * realm and its children.
 859 *
 860 * The more difficult case is realm creation, due to snap creation at a
 861 * new point in the file hierarchy, or due to a rename that moves a file or
 862 * directory into another realm.
 863 */
 864void ceph_handle_snap(struct ceph_mds_client *mdsc,
 865		      struct ceph_mds_session *session,
 866		      struct ceph_msg *msg)
 867{
 868	struct super_block *sb = mdsc->fsc->sb;
 869	int mds = session->s_mds;
 870	u64 split;
 871	int op;
 872	int trace_len;
 873	struct ceph_snap_realm *realm = NULL;
 874	void *p = msg->front.iov_base;
 875	void *e = p + msg->front.iov_len;
 876	struct ceph_mds_snap_head *h;
 877	int num_split_inos, num_split_realms;
 878	__le64 *split_inos = NULL, *split_realms = NULL;
 879	int i;
 880	int locked_rwsem = 0;
 881
 882	/* decode */
 883	if (msg->front.iov_len < sizeof(*h))
 884		goto bad;
 885	h = p;
 886	op = le32_to_cpu(h->op);
 887	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
 888					  * existing realm */
 889	num_split_inos = le32_to_cpu(h->num_split_inos);
 890	num_split_realms = le32_to_cpu(h->num_split_realms);
 891	trace_len = le32_to_cpu(h->trace_len);
 892	p += sizeof(*h);
 893
 894	dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
 895	     ceph_snap_op_name(op), split, trace_len);
 896
 897	mutex_lock(&session->s_mutex);
 898	inc_session_sequence(session);
 899	mutex_unlock(&session->s_mutex);
 900
 901	down_write(&mdsc->snap_rwsem);
 902	locked_rwsem = 1;
 903
 904	if (op == CEPH_SNAP_OP_SPLIT) {
 905		struct ceph_mds_snap_realm *ri;
 906
 907		/*
 908		 * A "split" breaks part of an existing realm off into
 909		 * a new realm.  The MDS provides a list of inodes
 910		 * (with caps) and child realms that belong to the new
 911		 * child.
 912		 */
 913		split_inos = p;
 914		p += sizeof(u64) * num_split_inos;
 915		split_realms = p;
 916		p += sizeof(u64) * num_split_realms;
 917		ceph_decode_need(&p, e, sizeof(*ri), bad);
 918		/* we will peek at realm info here, but will _not_
 919		 * advance p, as the realm update will occur below in
 920		 * ceph_update_snap_trace. */
 921		ri = p;
 922
 923		realm = ceph_lookup_snap_realm(mdsc, split);
 924		if (!realm) {
 925			realm = ceph_create_snap_realm(mdsc, split);
 926			if (IS_ERR(realm))
 927				goto out;
 928		}
 929
 930		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
 931		for (i = 0; i < num_split_inos; i++) {
 932			struct ceph_vino vino = {
 933				.ino = le64_to_cpu(split_inos[i]),
 934				.snap = CEPH_NOSNAP,
 935			};
 936			struct inode *inode = ceph_find_inode(sb, vino);
 937			struct ceph_inode_info *ci;
 938			struct ceph_snap_realm *oldrealm;
 939
 940			if (!inode)
 941				continue;
 942			ci = ceph_inode(inode);
 943
 944			spin_lock(&ci->i_ceph_lock);
 945			if (!ci->i_snap_realm)
 946				goto skip_inode;
 947			/*
 948			 * If this inode belongs to a realm that was
 949			 * created after our new realm, we experienced
 950			 * a race (due to another split notifications
 951			 * arriving from a different MDS).  So skip
 952			 * this inode.
 953			 */
 954			if (ci->i_snap_realm->created >
 955			    le64_to_cpu(ri->created)) {
 956				dout(" leaving %p in newer realm %llx %p\n",
 957				     inode, ci->i_snap_realm->ino,
 958				     ci->i_snap_realm);
 959				goto skip_inode;
 960			}
 961			dout(" will move %p to split realm %llx %p\n",
 962			     inode, realm->ino, realm);
 963			/*
 964			 * Move the inode to the new realm
 965			 */
 966			oldrealm = ci->i_snap_realm;
 967			spin_lock(&oldrealm->inodes_with_caps_lock);
 968			list_del_init(&ci->i_snap_realm_item);
 969			spin_unlock(&oldrealm->inodes_with_caps_lock);
 970
 971			spin_lock(&realm->inodes_with_caps_lock);
 972			list_add(&ci->i_snap_realm_item,
 973				 &realm->inodes_with_caps);
 
 974			ci->i_snap_realm = realm;
 975			if (realm->ino == ci->i_vino.ino)
 976                                realm->inode = inode;
 977			spin_unlock(&realm->inodes_with_caps_lock);
 978
 979			spin_unlock(&ci->i_ceph_lock);
 980
 981			ceph_get_snap_realm(mdsc, realm);
 982			ceph_put_snap_realm(mdsc, oldrealm);
 983
 984			iput(inode);
 985			continue;
 986
 987skip_inode:
 988			spin_unlock(&ci->i_ceph_lock);
 989			iput(inode);
 990		}
 991
 992		/* we may have taken some of the old realm's children. */
 993		for (i = 0; i < num_split_realms; i++) {
 994			struct ceph_snap_realm *child =
 995				__lookup_snap_realm(mdsc,
 996					   le64_to_cpu(split_realms[i]));
 997			if (!child)
 998				continue;
 999			adjust_snap_realm_parent(mdsc, child, realm->ino);
1000		}
1001	}
1002
1003	/*
1004	 * update using the provided snap trace. if we are deleting a
1005	 * snap, we can avoid queueing cap_snaps.
1006	 */
1007	ceph_update_snap_trace(mdsc, p, e,
1008			       op == CEPH_SNAP_OP_DESTROY, NULL);
1009
1010	if (op == CEPH_SNAP_OP_SPLIT)
1011		/* we took a reference when we created the realm, above */
1012		ceph_put_snap_realm(mdsc, realm);
1013
1014	__cleanup_empty_realms(mdsc);
1015
1016	up_write(&mdsc->snap_rwsem);
1017
1018	flush_snaps(mdsc);
1019	return;
1020
1021bad:
1022	pr_err("corrupt snap message from mds%d\n", mds);
1023	ceph_msg_dump(msg);
1024out:
1025	if (locked_rwsem)
1026		up_write(&mdsc->snap_rwsem);
1027	return;
1028}
1029
1030struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1031					    u64 snap)
1032{
1033	struct ceph_snapid_map *sm, *exist;
1034	struct rb_node **p, *parent;
1035	int ret;
1036
1037	exist = NULL;
1038	spin_lock(&mdsc->snapid_map_lock);
1039	p = &mdsc->snapid_map_tree.rb_node;
1040	while (*p) {
1041		exist = rb_entry(*p, struct ceph_snapid_map, node);
1042		if (snap > exist->snap) {
1043			p = &(*p)->rb_left;
1044		} else if (snap < exist->snap) {
1045			p = &(*p)->rb_right;
1046		} else {
1047			if (atomic_inc_return(&exist->ref) == 1)
1048				list_del_init(&exist->lru);
1049			break;
1050		}
1051		exist = NULL;
1052	}
1053	spin_unlock(&mdsc->snapid_map_lock);
1054	if (exist) {
1055		dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
1056		return exist;
1057	}
1058
1059	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1060	if (!sm)
1061		return NULL;
1062
1063	ret = get_anon_bdev(&sm->dev);
1064	if (ret < 0) {
1065		kfree(sm);
1066		return NULL;
1067	}
1068
1069	INIT_LIST_HEAD(&sm->lru);
1070	atomic_set(&sm->ref, 1);
1071	sm->snap = snap;
1072
1073	exist = NULL;
1074	parent = NULL;
1075	p = &mdsc->snapid_map_tree.rb_node;
1076	spin_lock(&mdsc->snapid_map_lock);
1077	while (*p) {
1078		parent = *p;
1079		exist = rb_entry(*p, struct ceph_snapid_map, node);
1080		if (snap > exist->snap)
1081			p = &(*p)->rb_left;
1082		else if (snap < exist->snap)
1083			p = &(*p)->rb_right;
1084		else
1085			break;
1086		exist = NULL;
1087	}
1088	if (exist) {
1089		if (atomic_inc_return(&exist->ref) == 1)
1090			list_del_init(&exist->lru);
1091	} else {
1092		rb_link_node(&sm->node, parent, p);
1093		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1094	}
1095	spin_unlock(&mdsc->snapid_map_lock);
1096	if (exist) {
1097		free_anon_bdev(sm->dev);
1098		kfree(sm);
1099		dout("found snapid map %llx -> %x\n", exist->snap, exist->dev);
1100		return exist;
1101	}
1102
1103	dout("create snapid map %llx -> %x\n", sm->snap, sm->dev);
1104	return sm;
1105}
1106
1107void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1108			 struct ceph_snapid_map *sm)
1109{
1110	if (!sm)
1111		return;
1112	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1113		if (!RB_EMPTY_NODE(&sm->node)) {
1114			sm->last_used = jiffies;
1115			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1116			spin_unlock(&mdsc->snapid_map_lock);
1117		} else {
1118			/* already cleaned up by
1119			 * ceph_cleanup_snapid_map() */
1120			spin_unlock(&mdsc->snapid_map_lock);
1121			kfree(sm);
1122		}
1123	}
1124}
1125
1126void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1127{
1128	struct ceph_snapid_map *sm;
1129	unsigned long now;
1130	LIST_HEAD(to_free);
1131
1132	spin_lock(&mdsc->snapid_map_lock);
1133	now = jiffies;
1134
1135	while (!list_empty(&mdsc->snapid_map_lru)) {
1136		sm = list_first_entry(&mdsc->snapid_map_lru,
1137				      struct ceph_snapid_map, lru);
1138		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1139			break;
1140
1141		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1142		list_move(&sm->lru, &to_free);
1143	}
1144	spin_unlock(&mdsc->snapid_map_lock);
1145
1146	while (!list_empty(&to_free)) {
1147		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1148		list_del(&sm->lru);
1149		dout("trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1150		free_anon_bdev(sm->dev);
1151		kfree(sm);
1152	}
1153}
1154
1155void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1156{
1157	struct ceph_snapid_map *sm;
1158	struct rb_node *p;
1159	LIST_HEAD(to_free);
1160
1161	spin_lock(&mdsc->snapid_map_lock);
1162	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1163		sm = rb_entry(p, struct ceph_snapid_map, node);
1164		rb_erase(p, &mdsc->snapid_map_tree);
1165		RB_CLEAR_NODE(p);
1166		list_move(&sm->lru, &to_free);
1167	}
1168	spin_unlock(&mdsc->snapid_map_lock);
1169
1170	while (!list_empty(&to_free)) {
1171		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1172		list_del(&sm->lru);
1173		free_anon_bdev(sm->dev);
1174		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1175			pr_err("snapid map %llx -> %x still in use\n",
1176			       sm->snap, sm->dev);
1177		}
1178		kfree(sm);
1179	}
1180}