Loading...
1/*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31#include <linux/blkdev.h>
32#include <linux/bug.h>
33#include <linux/completion.h>
34#include <linux/delay.h>
35#include <linux/device.h>
36#include <linux/dma-mapping.h>
37#include <linux/firewire.h>
38#include <linux/firewire-constants.h>
39#include <linux/init.h>
40#include <linux/jiffies.h>
41#include <linux/kernel.h>
42#include <linux/kref.h>
43#include <linux/list.h>
44#include <linux/mod_devicetable.h>
45#include <linux/module.h>
46#include <linux/moduleparam.h>
47#include <linux/scatterlist.h>
48#include <linux/slab.h>
49#include <linux/spinlock.h>
50#include <linux/string.h>
51#include <linux/stringify.h>
52#include <linux/workqueue.h>
53
54#include <asm/byteorder.h>
55
56#include <scsi/scsi.h>
57#include <scsi/scsi_cmnd.h>
58#include <scsi/scsi_device.h>
59#include <scsi/scsi_host.h>
60
61/*
62 * So far only bridges from Oxford Semiconductor are known to support
63 * concurrent logins. Depending on firmware, four or two concurrent logins
64 * are possible on OXFW911 and newer Oxsemi bridges.
65 *
66 * Concurrent logins are useful together with cluster filesystems.
67 */
68static bool sbp2_param_exclusive_login = 1;
69module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
70MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
71 "(default = Y, use N for concurrent initiators)");
72
73/*
74 * Flags for firmware oddities
75 *
76 * - 128kB max transfer
77 * Limit transfer size. Necessary for some old bridges.
78 *
79 * - 36 byte inquiry
80 * When scsi_mod probes the device, let the inquiry command look like that
81 * from MS Windows.
82 *
83 * - skip mode page 8
84 * Suppress sending of mode_sense for mode page 8 if the device pretends to
85 * support the SCSI Primary Block commands instead of Reduced Block Commands.
86 *
87 * - fix capacity
88 * Tell sd_mod to correct the last sector number reported by read_capacity.
89 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
90 * Don't use this with devices which don't have this bug.
91 *
92 * - delay inquiry
93 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
94 *
95 * - power condition
96 * Set the power condition field in the START STOP UNIT commands sent by
97 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
98 * Some disks need this to spin down or to resume properly.
99 *
100 * - override internal blacklist
101 * Instead of adding to the built-in blacklist, use only the workarounds
102 * specified in the module load parameter.
103 * Useful if a blacklist entry interfered with a non-broken device.
104 */
105#define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
106#define SBP2_WORKAROUND_INQUIRY_36 0x2
107#define SBP2_WORKAROUND_MODE_SENSE_8 0x4
108#define SBP2_WORKAROUND_FIX_CAPACITY 0x8
109#define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
110#define SBP2_INQUIRY_DELAY 12
111#define SBP2_WORKAROUND_POWER_CONDITION 0x20
112#define SBP2_WORKAROUND_OVERRIDE 0x100
113
114static int sbp2_param_workarounds;
115module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
116MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
117 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
118 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
119 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
120 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
121 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
122 ", set power condition in start stop unit = "
123 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
124 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
125 ", or a combination)");
126
127/*
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
130 */
131struct sbp2_logical_unit {
132 struct sbp2_target *tgt;
133 struct list_head link;
134 struct fw_address_handler address_handler;
135 struct list_head orb_list;
136
137 u64 command_block_agent_address;
138 u16 lun;
139 int login_id;
140
141 /*
142 * The generation is updated once we've logged in or reconnected
143 * to the logical unit. Thus, I/O to the device will automatically
144 * fail and get retried if it happens in a window where the device
145 * is not ready, e.g. after a bus reset but before we reconnect.
146 */
147 int generation;
148 int retries;
149 work_func_t workfn;
150 struct delayed_work work;
151 bool has_sdev;
152 bool blocked;
153};
154
155static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
156{
157 queue_delayed_work(fw_workqueue, &lu->work, delay);
158}
159
160/*
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
163 */
164struct sbp2_target {
165 struct fw_unit *unit;
166 struct list_head lu_list;
167
168 u64 management_agent_address;
169 u64 guid;
170 int directory_id;
171 int node_id;
172 int address_high;
173 unsigned int workarounds;
174 unsigned int mgt_orb_timeout;
175 unsigned int max_payload;
176
177 spinlock_t lock;
178 int dont_block; /* counter for each logical unit */
179 int blocked; /* ditto */
180};
181
182static struct fw_device *target_parent_device(struct sbp2_target *tgt)
183{
184 return fw_parent_device(tgt->unit);
185}
186
187static const struct device *tgt_dev(const struct sbp2_target *tgt)
188{
189 return &tgt->unit->device;
190}
191
192static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
193{
194 return &lu->tgt->unit->device;
195}
196
197/* Impossible login_id, to detect logout attempt before successful login */
198#define INVALID_LOGIN_ID 0x10000
199
200#define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
201#define SBP2_ORB_NULL 0x80000000
202#define SBP2_RETRY_LIMIT 0xf /* 15 retries */
203#define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
204
205/*
206 * There is no transport protocol limit to the CDB length, but we implement
207 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
208 */
209#define SBP2_MAX_CDB_SIZE 16
210
211/*
212 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
213 * for compatibility with earlier versions of this driver.
214 */
215#define SBP2_MAX_SEG_SIZE 0xfffc
216
217/* Unit directory keys */
218#define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
219#define SBP2_CSR_FIRMWARE_REVISION 0x3c
220#define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
221#define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
222#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
223
224/* Management orb opcodes */
225#define SBP2_LOGIN_REQUEST 0x0
226#define SBP2_QUERY_LOGINS_REQUEST 0x1
227#define SBP2_RECONNECT_REQUEST 0x3
228#define SBP2_SET_PASSWORD_REQUEST 0x4
229#define SBP2_LOGOUT_REQUEST 0x7
230#define SBP2_ABORT_TASK_REQUEST 0xb
231#define SBP2_ABORT_TASK_SET 0xc
232#define SBP2_LOGICAL_UNIT_RESET 0xe
233#define SBP2_TARGET_RESET_REQUEST 0xf
234
235/* Offsets for command block agent registers */
236#define SBP2_AGENT_STATE 0x00
237#define SBP2_AGENT_RESET 0x04
238#define SBP2_ORB_POINTER 0x08
239#define SBP2_DOORBELL 0x10
240#define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
241
242/* Status write response codes */
243#define SBP2_STATUS_REQUEST_COMPLETE 0x0
244#define SBP2_STATUS_TRANSPORT_FAILURE 0x1
245#define SBP2_STATUS_ILLEGAL_REQUEST 0x2
246#define SBP2_STATUS_VENDOR_DEPENDENT 0x3
247
248#define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
249#define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
250#define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
251#define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
252#define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
253#define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
254#define STATUS_GET_ORB_LOW(v) ((v).orb_low)
255#define STATUS_GET_DATA(v) ((v).data)
256
257struct sbp2_status {
258 u32 status;
259 u32 orb_low;
260 u8 data[24];
261};
262
263struct sbp2_pointer {
264 __be32 high;
265 __be32 low;
266};
267
268struct sbp2_orb {
269 struct fw_transaction t;
270 struct kref kref;
271 dma_addr_t request_bus;
272 int rcode;
273 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
274 struct sbp2_logical_unit *lu;
275 struct list_head link;
276};
277
278#define MANAGEMENT_ORB_LUN(v) ((v))
279#define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
280#define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
281#define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
282#define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
283#define MANAGEMENT_ORB_NOTIFY ((1) << 31)
284
285#define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
286#define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
287
288struct sbp2_management_orb {
289 struct sbp2_orb base;
290 struct {
291 struct sbp2_pointer password;
292 struct sbp2_pointer response;
293 __be32 misc;
294 __be32 length;
295 struct sbp2_pointer status_fifo;
296 } request;
297 __be32 response[4];
298 dma_addr_t response_bus;
299 struct completion done;
300 struct sbp2_status status;
301};
302
303struct sbp2_login_response {
304 __be32 misc;
305 struct sbp2_pointer command_block_agent;
306 __be32 reconnect_hold;
307};
308#define COMMAND_ORB_DATA_SIZE(v) ((v))
309#define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
310#define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
311#define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
312#define COMMAND_ORB_SPEED(v) ((v) << 24)
313#define COMMAND_ORB_DIRECTION ((1) << 27)
314#define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
315#define COMMAND_ORB_NOTIFY ((1) << 31)
316
317struct sbp2_command_orb {
318 struct sbp2_orb base;
319 struct {
320 struct sbp2_pointer next;
321 struct sbp2_pointer data_descriptor;
322 __be32 misc;
323 u8 command_block[SBP2_MAX_CDB_SIZE];
324 } request;
325 struct scsi_cmnd *cmd;
326
327 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
328 dma_addr_t page_table_bus;
329};
330
331#define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
332#define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
333
334/*
335 * List of devices with known bugs.
336 *
337 * The firmware_revision field, masked with 0xffff00, is the best
338 * indicator for the type of bridge chip of a device. It yields a few
339 * false positives but this did not break correctly behaving devices
340 * so far.
341 */
342static const struct {
343 u32 firmware_revision;
344 u32 model;
345 unsigned int workarounds;
346} sbp2_workarounds_table[] = {
347 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
348 .firmware_revision = 0x002800,
349 .model = 0x001010,
350 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
351 SBP2_WORKAROUND_MODE_SENSE_8 |
352 SBP2_WORKAROUND_POWER_CONDITION,
353 },
354 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
355 .firmware_revision = 0x002800,
356 .model = 0x000000,
357 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
358 },
359 /* Initio bridges, actually only needed for some older ones */ {
360 .firmware_revision = 0x000200,
361 .model = SBP2_ROM_VALUE_WILDCARD,
362 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
363 },
364 /* PL-3507 bridge with Prolific firmware */ {
365 .firmware_revision = 0x012800,
366 .model = SBP2_ROM_VALUE_WILDCARD,
367 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
368 },
369 /* Symbios bridge */ {
370 .firmware_revision = 0xa0b800,
371 .model = SBP2_ROM_VALUE_WILDCARD,
372 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
373 },
374 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
375 .firmware_revision = 0x002600,
376 .model = SBP2_ROM_VALUE_WILDCARD,
377 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
378 },
379 /*
380 * iPod 2nd generation: needs 128k max transfer size workaround
381 * iPod 3rd generation: needs fix capacity workaround
382 */
383 {
384 .firmware_revision = 0x0a2700,
385 .model = 0x000000,
386 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
387 SBP2_WORKAROUND_FIX_CAPACITY,
388 },
389 /* iPod 4th generation */ {
390 .firmware_revision = 0x0a2700,
391 .model = 0x000021,
392 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
393 },
394 /* iPod mini */ {
395 .firmware_revision = 0x0a2700,
396 .model = 0x000022,
397 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
398 },
399 /* iPod mini */ {
400 .firmware_revision = 0x0a2700,
401 .model = 0x000023,
402 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
403 },
404 /* iPod Photo */ {
405 .firmware_revision = 0x0a2700,
406 .model = 0x00007e,
407 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
408 }
409};
410
411static void free_orb(struct kref *kref)
412{
413 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
414
415 kfree(orb);
416}
417
418static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
419 int tcode, int destination, int source,
420 int generation, unsigned long long offset,
421 void *payload, size_t length, void *callback_data)
422{
423 struct sbp2_logical_unit *lu = callback_data;
424 struct sbp2_orb *orb;
425 struct sbp2_status status;
426 unsigned long flags;
427
428 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
429 length < 8 || length > sizeof(status)) {
430 fw_send_response(card, request, RCODE_TYPE_ERROR);
431 return;
432 }
433
434 status.status = be32_to_cpup(payload);
435 status.orb_low = be32_to_cpup(payload + 4);
436 memset(status.data, 0, sizeof(status.data));
437 if (length > 8)
438 memcpy(status.data, payload + 8, length - 8);
439
440 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
441 dev_notice(lu_dev(lu),
442 "non-ORB related status write, not handled\n");
443 fw_send_response(card, request, RCODE_COMPLETE);
444 return;
445 }
446
447 /* Lookup the orb corresponding to this status write. */
448 spin_lock_irqsave(&lu->tgt->lock, flags);
449 list_for_each_entry(orb, &lu->orb_list, link) {
450 if (STATUS_GET_ORB_HIGH(status) == 0 &&
451 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
452 orb->rcode = RCODE_COMPLETE;
453 list_del(&orb->link);
454 break;
455 }
456 }
457 spin_unlock_irqrestore(&lu->tgt->lock, flags);
458
459 if (&orb->link != &lu->orb_list) {
460 orb->callback(orb, &status);
461 kref_put(&orb->kref, free_orb); /* orb callback reference */
462 } else {
463 dev_err(lu_dev(lu), "status write for unknown ORB\n");
464 }
465
466 fw_send_response(card, request, RCODE_COMPLETE);
467}
468
469static void complete_transaction(struct fw_card *card, int rcode,
470 void *payload, size_t length, void *data)
471{
472 struct sbp2_orb *orb = data;
473 unsigned long flags;
474
475 /*
476 * This is a little tricky. We can get the status write for
477 * the orb before we get this callback. The status write
478 * handler above will assume the orb pointer transaction was
479 * successful and set the rcode to RCODE_COMPLETE for the orb.
480 * So this callback only sets the rcode if it hasn't already
481 * been set and only does the cleanup if the transaction
482 * failed and we didn't already get a status write.
483 */
484 spin_lock_irqsave(&orb->lu->tgt->lock, flags);
485
486 if (orb->rcode == -1)
487 orb->rcode = rcode;
488 if (orb->rcode != RCODE_COMPLETE) {
489 list_del(&orb->link);
490 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
491
492 orb->callback(orb, NULL);
493 kref_put(&orb->kref, free_orb); /* orb callback reference */
494 } else {
495 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
496 }
497
498 kref_put(&orb->kref, free_orb); /* transaction callback reference */
499}
500
501static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
502 int node_id, int generation, u64 offset)
503{
504 struct fw_device *device = target_parent_device(lu->tgt);
505 struct sbp2_pointer orb_pointer;
506 unsigned long flags;
507
508 orb_pointer.high = 0;
509 orb_pointer.low = cpu_to_be32(orb->request_bus);
510
511 orb->lu = lu;
512 spin_lock_irqsave(&lu->tgt->lock, flags);
513 list_add_tail(&orb->link, &lu->orb_list);
514 spin_unlock_irqrestore(&lu->tgt->lock, flags);
515
516 kref_get(&orb->kref); /* transaction callback reference */
517 kref_get(&orb->kref); /* orb callback reference */
518
519 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
520 node_id, generation, device->max_speed, offset,
521 &orb_pointer, 8, complete_transaction, orb);
522}
523
524static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
525{
526 struct fw_device *device = target_parent_device(lu->tgt);
527 struct sbp2_orb *orb, *next;
528 struct list_head list;
529 int retval = -ENOENT;
530
531 INIT_LIST_HEAD(&list);
532 spin_lock_irq(&lu->tgt->lock);
533 list_splice_init(&lu->orb_list, &list);
534 spin_unlock_irq(&lu->tgt->lock);
535
536 list_for_each_entry_safe(orb, next, &list, link) {
537 retval = 0;
538 if (fw_cancel_transaction(device->card, &orb->t) == 0)
539 continue;
540
541 orb->rcode = RCODE_CANCELLED;
542 orb->callback(orb, NULL);
543 kref_put(&orb->kref, free_orb); /* orb callback reference */
544 }
545
546 return retval;
547}
548
549static void complete_management_orb(struct sbp2_orb *base_orb,
550 struct sbp2_status *status)
551{
552 struct sbp2_management_orb *orb =
553 container_of(base_orb, struct sbp2_management_orb, base);
554
555 if (status)
556 memcpy(&orb->status, status, sizeof(*status));
557 complete(&orb->done);
558}
559
560static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
561 int generation, int function,
562 int lun_or_login_id, void *response)
563{
564 struct fw_device *device = target_parent_device(lu->tgt);
565 struct sbp2_management_orb *orb;
566 unsigned int timeout;
567 int retval = -ENOMEM;
568
569 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
570 return 0;
571
572 orb = kzalloc(sizeof(*orb), GFP_NOIO);
573 if (orb == NULL)
574 return -ENOMEM;
575
576 kref_init(&orb->base.kref);
577 orb->response_bus =
578 dma_map_single(device->card->device, &orb->response,
579 sizeof(orb->response), DMA_FROM_DEVICE);
580 if (dma_mapping_error(device->card->device, orb->response_bus))
581 goto fail_mapping_response;
582
583 orb->request.response.high = 0;
584 orb->request.response.low = cpu_to_be32(orb->response_bus);
585
586 orb->request.misc = cpu_to_be32(
587 MANAGEMENT_ORB_NOTIFY |
588 MANAGEMENT_ORB_FUNCTION(function) |
589 MANAGEMENT_ORB_LUN(lun_or_login_id));
590 orb->request.length = cpu_to_be32(
591 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
592
593 orb->request.status_fifo.high =
594 cpu_to_be32(lu->address_handler.offset >> 32);
595 orb->request.status_fifo.low =
596 cpu_to_be32(lu->address_handler.offset);
597
598 if (function == SBP2_LOGIN_REQUEST) {
599 /* Ask for 2^2 == 4 seconds reconnect grace period */
600 orb->request.misc |= cpu_to_be32(
601 MANAGEMENT_ORB_RECONNECT(2) |
602 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
603 timeout = lu->tgt->mgt_orb_timeout;
604 } else {
605 timeout = SBP2_ORB_TIMEOUT;
606 }
607
608 init_completion(&orb->done);
609 orb->base.callback = complete_management_orb;
610
611 orb->base.request_bus =
612 dma_map_single(device->card->device, &orb->request,
613 sizeof(orb->request), DMA_TO_DEVICE);
614 if (dma_mapping_error(device->card->device, orb->base.request_bus))
615 goto fail_mapping_request;
616
617 sbp2_send_orb(&orb->base, lu, node_id, generation,
618 lu->tgt->management_agent_address);
619
620 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
621
622 retval = -EIO;
623 if (sbp2_cancel_orbs(lu) == 0) {
624 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
625 orb->base.rcode);
626 goto out;
627 }
628
629 if (orb->base.rcode != RCODE_COMPLETE) {
630 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
631 orb->base.rcode);
632 goto out;
633 }
634
635 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
636 STATUS_GET_SBP_STATUS(orb->status) != 0) {
637 dev_err(lu_dev(lu), "error status: %d:%d\n",
638 STATUS_GET_RESPONSE(orb->status),
639 STATUS_GET_SBP_STATUS(orb->status));
640 goto out;
641 }
642
643 retval = 0;
644 out:
645 dma_unmap_single(device->card->device, orb->base.request_bus,
646 sizeof(orb->request), DMA_TO_DEVICE);
647 fail_mapping_request:
648 dma_unmap_single(device->card->device, orb->response_bus,
649 sizeof(orb->response), DMA_FROM_DEVICE);
650 fail_mapping_response:
651 if (response)
652 memcpy(response, orb->response, sizeof(orb->response));
653 kref_put(&orb->base.kref, free_orb);
654
655 return retval;
656}
657
658static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
659{
660 struct fw_device *device = target_parent_device(lu->tgt);
661 __be32 d = 0;
662
663 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
664 lu->tgt->node_id, lu->generation, device->max_speed,
665 lu->command_block_agent_address + SBP2_AGENT_RESET,
666 &d, 4);
667}
668
669static void complete_agent_reset_write_no_wait(struct fw_card *card,
670 int rcode, void *payload, size_t length, void *data)
671{
672 kfree(data);
673}
674
675static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
676{
677 struct fw_device *device = target_parent_device(lu->tgt);
678 struct fw_transaction *t;
679 static __be32 d;
680
681 t = kmalloc(sizeof(*t), GFP_ATOMIC);
682 if (t == NULL)
683 return;
684
685 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
686 lu->tgt->node_id, lu->generation, device->max_speed,
687 lu->command_block_agent_address + SBP2_AGENT_RESET,
688 &d, 4, complete_agent_reset_write_no_wait, t);
689}
690
691static inline void sbp2_allow_block(struct sbp2_target *tgt)
692{
693 spin_lock_irq(&tgt->lock);
694 --tgt->dont_block;
695 spin_unlock_irq(&tgt->lock);
696}
697
698/*
699 * Blocks lu->tgt if all of the following conditions are met:
700 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
701 * logical units have been finished (indicated by dont_block == 0).
702 * - lu->generation is stale.
703 *
704 * Note, scsi_block_requests() must be called while holding tgt->lock,
705 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
706 * unblock the target.
707 */
708static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
709{
710 struct sbp2_target *tgt = lu->tgt;
711 struct fw_card *card = target_parent_device(tgt)->card;
712 struct Scsi_Host *shost =
713 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
714 unsigned long flags;
715
716 spin_lock_irqsave(&tgt->lock, flags);
717 if (!tgt->dont_block && !lu->blocked &&
718 lu->generation != card->generation) {
719 lu->blocked = true;
720 if (++tgt->blocked == 1)
721 scsi_block_requests(shost);
722 }
723 spin_unlock_irqrestore(&tgt->lock, flags);
724}
725
726/*
727 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
728 * Note, it is harmless to run scsi_unblock_requests() outside the
729 * tgt->lock protected section. On the other hand, running it inside
730 * the section might clash with shost->host_lock.
731 */
732static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
733{
734 struct sbp2_target *tgt = lu->tgt;
735 struct fw_card *card = target_parent_device(tgt)->card;
736 struct Scsi_Host *shost =
737 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
738 bool unblock = false;
739
740 spin_lock_irq(&tgt->lock);
741 if (lu->blocked && lu->generation == card->generation) {
742 lu->blocked = false;
743 unblock = --tgt->blocked == 0;
744 }
745 spin_unlock_irq(&tgt->lock);
746
747 if (unblock)
748 scsi_unblock_requests(shost);
749}
750
751/*
752 * Prevents future blocking of tgt and unblocks it.
753 * Note, it is harmless to run scsi_unblock_requests() outside the
754 * tgt->lock protected section. On the other hand, running it inside
755 * the section might clash with shost->host_lock.
756 */
757static void sbp2_unblock(struct sbp2_target *tgt)
758{
759 struct Scsi_Host *shost =
760 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
761
762 spin_lock_irq(&tgt->lock);
763 ++tgt->dont_block;
764 spin_unlock_irq(&tgt->lock);
765
766 scsi_unblock_requests(shost);
767}
768
769static int sbp2_lun2int(u16 lun)
770{
771 struct scsi_lun eight_bytes_lun;
772
773 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
774 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
775 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
776
777 return scsilun_to_int(&eight_bytes_lun);
778}
779
780/*
781 * Write retransmit retry values into the BUSY_TIMEOUT register.
782 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
783 * default retry_limit value is 0 (i.e. never retry transmission). We write a
784 * saner value after logging into the device.
785 * - The dual-phase retry protocol is optional to implement, and if not
786 * supported, writes to the dual-phase portion of the register will be
787 * ignored. We try to write the original 1394-1995 default here.
788 * - In the case of devices that are also SBP-3-compliant, all writes are
789 * ignored, as the register is read-only, but contains single-phase retry of
790 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
791 * write attempt is safe and yields more consistent behavior for all devices.
792 *
793 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
794 * and section 6.4 of the SBP-3 spec for further details.
795 */
796static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
797{
798 struct fw_device *device = target_parent_device(lu->tgt);
799 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
800
801 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
802 lu->tgt->node_id, lu->generation, device->max_speed,
803 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
804}
805
806static void sbp2_reconnect(struct work_struct *work);
807
808static void sbp2_login(struct work_struct *work)
809{
810 struct sbp2_logical_unit *lu =
811 container_of(work, struct sbp2_logical_unit, work.work);
812 struct sbp2_target *tgt = lu->tgt;
813 struct fw_device *device = target_parent_device(tgt);
814 struct Scsi_Host *shost;
815 struct scsi_device *sdev;
816 struct sbp2_login_response response;
817 int generation, node_id, local_node_id;
818
819 if (fw_device_is_shutdown(device))
820 return;
821
822 generation = device->generation;
823 smp_rmb(); /* node IDs must not be older than generation */
824 node_id = device->node_id;
825 local_node_id = device->card->node_id;
826
827 /* If this is a re-login attempt, log out, or we might be rejected. */
828 if (lu->has_sdev)
829 sbp2_send_management_orb(lu, device->node_id, generation,
830 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
831
832 if (sbp2_send_management_orb(lu, node_id, generation,
833 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
834 if (lu->retries++ < 5) {
835 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
836 } else {
837 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
838 lu->lun);
839 /* Let any waiting I/O fail from now on. */
840 sbp2_unblock(lu->tgt);
841 }
842 return;
843 }
844
845 tgt->node_id = node_id;
846 tgt->address_high = local_node_id << 16;
847 smp_wmb(); /* node IDs must not be older than generation */
848 lu->generation = generation;
849
850 lu->command_block_agent_address =
851 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
852 << 32) | be32_to_cpu(response.command_block_agent.low);
853 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
854
855 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
856 lu->lun, lu->retries);
857
858 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
859 sbp2_set_busy_timeout(lu);
860
861 lu->workfn = sbp2_reconnect;
862 sbp2_agent_reset(lu);
863
864 /* This was a re-login. */
865 if (lu->has_sdev) {
866 sbp2_cancel_orbs(lu);
867 sbp2_conditionally_unblock(lu);
868
869 return;
870 }
871
872 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
873 ssleep(SBP2_INQUIRY_DELAY);
874
875 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
876 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
877 /*
878 * FIXME: We are unable to perform reconnects while in sbp2_login().
879 * Therefore __scsi_add_device() will get into trouble if a bus reset
880 * happens in parallel. It will either fail or leave us with an
881 * unusable sdev. As a workaround we check for this and retry the
882 * whole login and SCSI probing.
883 */
884
885 /* Reported error during __scsi_add_device() */
886 if (IS_ERR(sdev))
887 goto out_logout_login;
888
889 /* Unreported error during __scsi_add_device() */
890 smp_rmb(); /* get current card generation */
891 if (generation != device->card->generation) {
892 scsi_remove_device(sdev);
893 scsi_device_put(sdev);
894 goto out_logout_login;
895 }
896
897 /* No error during __scsi_add_device() */
898 lu->has_sdev = true;
899 scsi_device_put(sdev);
900 sbp2_allow_block(tgt);
901
902 return;
903
904 out_logout_login:
905 smp_rmb(); /* generation may have changed */
906 generation = device->generation;
907 smp_rmb(); /* node_id must not be older than generation */
908
909 sbp2_send_management_orb(lu, device->node_id, generation,
910 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
911 /*
912 * If a bus reset happened, sbp2_update will have requeued
913 * lu->work already. Reset the work from reconnect to login.
914 */
915 lu->workfn = sbp2_login;
916}
917
918static void sbp2_reconnect(struct work_struct *work)
919{
920 struct sbp2_logical_unit *lu =
921 container_of(work, struct sbp2_logical_unit, work.work);
922 struct sbp2_target *tgt = lu->tgt;
923 struct fw_device *device = target_parent_device(tgt);
924 int generation, node_id, local_node_id;
925
926 if (fw_device_is_shutdown(device))
927 return;
928
929 generation = device->generation;
930 smp_rmb(); /* node IDs must not be older than generation */
931 node_id = device->node_id;
932 local_node_id = device->card->node_id;
933
934 if (sbp2_send_management_orb(lu, node_id, generation,
935 SBP2_RECONNECT_REQUEST,
936 lu->login_id, NULL) < 0) {
937 /*
938 * If reconnect was impossible even though we are in the
939 * current generation, fall back and try to log in again.
940 *
941 * We could check for "Function rejected" status, but
942 * looking at the bus generation as simpler and more general.
943 */
944 smp_rmb(); /* get current card generation */
945 if (generation == device->card->generation ||
946 lu->retries++ >= 5) {
947 dev_err(tgt_dev(tgt), "failed to reconnect\n");
948 lu->retries = 0;
949 lu->workfn = sbp2_login;
950 }
951 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
952
953 return;
954 }
955
956 tgt->node_id = node_id;
957 tgt->address_high = local_node_id << 16;
958 smp_wmb(); /* node IDs must not be older than generation */
959 lu->generation = generation;
960
961 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
962 lu->lun, lu->retries);
963
964 sbp2_agent_reset(lu);
965 sbp2_cancel_orbs(lu);
966 sbp2_conditionally_unblock(lu);
967}
968
969static void sbp2_lu_workfn(struct work_struct *work)
970{
971 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
972 struct sbp2_logical_unit, work);
973 lu->workfn(work);
974}
975
976static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
977{
978 struct sbp2_logical_unit *lu;
979
980 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
981 if (!lu)
982 return -ENOMEM;
983
984 lu->address_handler.length = 0x100;
985 lu->address_handler.address_callback = sbp2_status_write;
986 lu->address_handler.callback_data = lu;
987
988 if (fw_core_add_address_handler(&lu->address_handler,
989 &fw_high_memory_region) < 0) {
990 kfree(lu);
991 return -ENOMEM;
992 }
993
994 lu->tgt = tgt;
995 lu->lun = lun_entry & 0xffff;
996 lu->login_id = INVALID_LOGIN_ID;
997 lu->retries = 0;
998 lu->has_sdev = false;
999 lu->blocked = false;
1000 ++tgt->dont_block;
1001 INIT_LIST_HEAD(&lu->orb_list);
1002 lu->workfn = sbp2_login;
1003 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
1004
1005 list_add_tail(&lu->link, &tgt->lu_list);
1006 return 0;
1007}
1008
1009static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1010 const u32 *leaf)
1011{
1012 if ((leaf[0] & 0xffff0000) == 0x00020000)
1013 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1014}
1015
1016static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1017 const u32 *directory)
1018{
1019 struct fw_csr_iterator ci;
1020 int key, value;
1021
1022 fw_csr_iterator_init(&ci, directory);
1023 while (fw_csr_iterator_next(&ci, &key, &value))
1024 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1025 sbp2_add_logical_unit(tgt, value) < 0)
1026 return -ENOMEM;
1027 return 0;
1028}
1029
1030static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1031 u32 *model, u32 *firmware_revision)
1032{
1033 struct fw_csr_iterator ci;
1034 int key, value;
1035
1036 fw_csr_iterator_init(&ci, directory);
1037 while (fw_csr_iterator_next(&ci, &key, &value)) {
1038 switch (key) {
1039
1040 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1041 tgt->management_agent_address =
1042 CSR_REGISTER_BASE + 4 * value;
1043 break;
1044
1045 case CSR_DIRECTORY_ID:
1046 tgt->directory_id = value;
1047 break;
1048
1049 case CSR_MODEL:
1050 *model = value;
1051 break;
1052
1053 case SBP2_CSR_FIRMWARE_REVISION:
1054 *firmware_revision = value;
1055 break;
1056
1057 case SBP2_CSR_UNIT_CHARACTERISTICS:
1058 /* the timeout value is stored in 500ms units */
1059 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1060 break;
1061
1062 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1063 if (sbp2_add_logical_unit(tgt, value) < 0)
1064 return -ENOMEM;
1065 break;
1066
1067 case SBP2_CSR_UNIT_UNIQUE_ID:
1068 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1069 break;
1070
1071 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1072 /* Adjust for the increment in the iterator */
1073 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1074 return -ENOMEM;
1075 break;
1076 }
1077 }
1078 return 0;
1079}
1080
1081/*
1082 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1083 * provided in the config rom. Most devices do provide a value, which
1084 * we'll use for login management orbs, but with some sane limits.
1085 */
1086static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1087{
1088 unsigned int timeout = tgt->mgt_orb_timeout;
1089
1090 if (timeout > 40000)
1091 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1092 timeout / 1000);
1093
1094 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1095}
1096
1097static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1098 u32 firmware_revision)
1099{
1100 int i;
1101 unsigned int w = sbp2_param_workarounds;
1102
1103 if (w)
1104 dev_notice(tgt_dev(tgt),
1105 "Please notify linux1394-devel@lists.sf.net "
1106 "if you need the workarounds parameter\n");
1107
1108 if (w & SBP2_WORKAROUND_OVERRIDE)
1109 goto out;
1110
1111 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1112
1113 if (sbp2_workarounds_table[i].firmware_revision !=
1114 (firmware_revision & 0xffffff00))
1115 continue;
1116
1117 if (sbp2_workarounds_table[i].model != model &&
1118 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1119 continue;
1120
1121 w |= sbp2_workarounds_table[i].workarounds;
1122 break;
1123 }
1124 out:
1125 if (w)
1126 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1127 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1128 w, firmware_revision, model);
1129 tgt->workarounds = w;
1130}
1131
1132static struct scsi_host_template scsi_driver_template;
1133static void sbp2_remove(struct fw_unit *unit);
1134
1135static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1136{
1137 struct fw_device *device = fw_parent_device(unit);
1138 struct sbp2_target *tgt;
1139 struct sbp2_logical_unit *lu;
1140 struct Scsi_Host *shost;
1141 u32 model, firmware_revision;
1142
1143 /* cannot (or should not) handle targets on the local node */
1144 if (device->is_local)
1145 return -ENODEV;
1146
1147 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1148 WARN_ON(dma_set_max_seg_size(device->card->device,
1149 SBP2_MAX_SEG_SIZE));
1150
1151 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1152 if (shost == NULL)
1153 return -ENOMEM;
1154
1155 tgt = (struct sbp2_target *)shost->hostdata;
1156 dev_set_drvdata(&unit->device, tgt);
1157 tgt->unit = unit;
1158 INIT_LIST_HEAD(&tgt->lu_list);
1159 spin_lock_init(&tgt->lock);
1160 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1161
1162 if (fw_device_enable_phys_dma(device) < 0)
1163 goto fail_shost_put;
1164
1165 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1166
1167 if (scsi_add_host_with_dma(shost, &unit->device,
1168 device->card->device) < 0)
1169 goto fail_shost_put;
1170
1171 /* implicit directory ID */
1172 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1173 + CSR_CONFIG_ROM) & 0xffffff;
1174
1175 firmware_revision = SBP2_ROM_VALUE_MISSING;
1176 model = SBP2_ROM_VALUE_MISSING;
1177
1178 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1179 &firmware_revision) < 0)
1180 goto fail_remove;
1181
1182 sbp2_clamp_management_orb_timeout(tgt);
1183 sbp2_init_workarounds(tgt, model, firmware_revision);
1184
1185 /*
1186 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1187 * and so on up to 4096 bytes. The SBP-2 max_payload field
1188 * specifies the max payload size as 2 ^ (max_payload + 2), so
1189 * if we set this to max_speed + 7, we get the right value.
1190 */
1191 tgt->max_payload = min3(device->max_speed + 7, 10U,
1192 device->card->max_receive - 1);
1193
1194 /* Do the login in a workqueue so we can easily reschedule retries. */
1195 list_for_each_entry(lu, &tgt->lu_list, link)
1196 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1197
1198 return 0;
1199
1200 fail_remove:
1201 sbp2_remove(unit);
1202 return -ENOMEM;
1203
1204 fail_shost_put:
1205 scsi_host_put(shost);
1206 return -ENOMEM;
1207}
1208
1209static void sbp2_update(struct fw_unit *unit)
1210{
1211 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1212 struct sbp2_logical_unit *lu;
1213
1214 fw_device_enable_phys_dma(fw_parent_device(unit));
1215
1216 /*
1217 * Fw-core serializes sbp2_update() against sbp2_remove().
1218 * Iteration over tgt->lu_list is therefore safe here.
1219 */
1220 list_for_each_entry(lu, &tgt->lu_list, link) {
1221 sbp2_conditionally_block(lu);
1222 lu->retries = 0;
1223 sbp2_queue_work(lu, 0);
1224 }
1225}
1226
1227static void sbp2_remove(struct fw_unit *unit)
1228{
1229 struct fw_device *device = fw_parent_device(unit);
1230 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1231 struct sbp2_logical_unit *lu, *next;
1232 struct Scsi_Host *shost =
1233 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1234 struct scsi_device *sdev;
1235
1236 /* prevent deadlocks */
1237 sbp2_unblock(tgt);
1238
1239 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1240 cancel_delayed_work_sync(&lu->work);
1241 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1242 if (sdev) {
1243 scsi_remove_device(sdev);
1244 scsi_device_put(sdev);
1245 }
1246 if (lu->login_id != INVALID_LOGIN_ID) {
1247 int generation, node_id;
1248 /*
1249 * tgt->node_id may be obsolete here if we failed
1250 * during initial login or after a bus reset where
1251 * the topology changed.
1252 */
1253 generation = device->generation;
1254 smp_rmb(); /* node_id vs. generation */
1255 node_id = device->node_id;
1256 sbp2_send_management_orb(lu, node_id, generation,
1257 SBP2_LOGOUT_REQUEST,
1258 lu->login_id, NULL);
1259 }
1260 fw_core_remove_address_handler(&lu->address_handler);
1261 list_del(&lu->link);
1262 kfree(lu);
1263 }
1264 scsi_remove_host(shost);
1265 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1266
1267 scsi_host_put(shost);
1268}
1269
1270#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1271#define SBP2_SW_VERSION_ENTRY 0x00010483
1272
1273static const struct ieee1394_device_id sbp2_id_table[] = {
1274 {
1275 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1276 IEEE1394_MATCH_VERSION,
1277 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1278 .version = SBP2_SW_VERSION_ENTRY,
1279 },
1280 { }
1281};
1282
1283static struct fw_driver sbp2_driver = {
1284 .driver = {
1285 .owner = THIS_MODULE,
1286 .name = KBUILD_MODNAME,
1287 .bus = &fw_bus_type,
1288 },
1289 .probe = sbp2_probe,
1290 .update = sbp2_update,
1291 .remove = sbp2_remove,
1292 .id_table = sbp2_id_table,
1293};
1294
1295static void sbp2_unmap_scatterlist(struct device *card_device,
1296 struct sbp2_command_orb *orb)
1297{
1298 scsi_dma_unmap(orb->cmd);
1299
1300 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1301 dma_unmap_single(card_device, orb->page_table_bus,
1302 sizeof(orb->page_table), DMA_TO_DEVICE);
1303}
1304
1305static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1306{
1307 int sam_status;
1308 int sfmt = (sbp2_status[0] >> 6) & 0x03;
1309
1310 if (sfmt == 2 || sfmt == 3) {
1311 /*
1312 * Reserved for future standardization (2) or
1313 * Status block format vendor-dependent (3)
1314 */
1315 return DID_ERROR << 16;
1316 }
1317
1318 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1319 sense_data[1] = 0x0;
1320 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1321 sense_data[3] = sbp2_status[4];
1322 sense_data[4] = sbp2_status[5];
1323 sense_data[5] = sbp2_status[6];
1324 sense_data[6] = sbp2_status[7];
1325 sense_data[7] = 10;
1326 sense_data[8] = sbp2_status[8];
1327 sense_data[9] = sbp2_status[9];
1328 sense_data[10] = sbp2_status[10];
1329 sense_data[11] = sbp2_status[11];
1330 sense_data[12] = sbp2_status[2];
1331 sense_data[13] = sbp2_status[3];
1332 sense_data[14] = sbp2_status[12];
1333 sense_data[15] = sbp2_status[13];
1334
1335 sam_status = sbp2_status[0] & 0x3f;
1336
1337 switch (sam_status) {
1338 case SAM_STAT_GOOD:
1339 case SAM_STAT_CHECK_CONDITION:
1340 case SAM_STAT_CONDITION_MET:
1341 case SAM_STAT_BUSY:
1342 case SAM_STAT_RESERVATION_CONFLICT:
1343 case SAM_STAT_COMMAND_TERMINATED:
1344 return DID_OK << 16 | sam_status;
1345
1346 default:
1347 return DID_ERROR << 16;
1348 }
1349}
1350
1351static void complete_command_orb(struct sbp2_orb *base_orb,
1352 struct sbp2_status *status)
1353{
1354 struct sbp2_command_orb *orb =
1355 container_of(base_orb, struct sbp2_command_orb, base);
1356 struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1357 int result;
1358
1359 if (status != NULL) {
1360 if (STATUS_GET_DEAD(*status))
1361 sbp2_agent_reset_no_wait(base_orb->lu);
1362
1363 switch (STATUS_GET_RESPONSE(*status)) {
1364 case SBP2_STATUS_REQUEST_COMPLETE:
1365 result = DID_OK << 16;
1366 break;
1367 case SBP2_STATUS_TRANSPORT_FAILURE:
1368 result = DID_BUS_BUSY << 16;
1369 break;
1370 case SBP2_STATUS_ILLEGAL_REQUEST:
1371 case SBP2_STATUS_VENDOR_DEPENDENT:
1372 default:
1373 result = DID_ERROR << 16;
1374 break;
1375 }
1376
1377 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379 orb->cmd->sense_buffer);
1380 } else {
1381 /*
1382 * If the orb completes with status == NULL, something
1383 * went wrong, typically a bus reset happened mid-orb
1384 * or when sending the write (less likely).
1385 */
1386 result = DID_BUS_BUSY << 16;
1387 sbp2_conditionally_block(base_orb->lu);
1388 }
1389
1390 dma_unmap_single(device->card->device, orb->base.request_bus,
1391 sizeof(orb->request), DMA_TO_DEVICE);
1392 sbp2_unmap_scatterlist(device->card->device, orb);
1393
1394 orb->cmd->result = result;
1395 orb->cmd->scsi_done(orb->cmd);
1396}
1397
1398static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399 struct fw_device *device, struct sbp2_logical_unit *lu)
1400{
1401 struct scatterlist *sg = scsi_sglist(orb->cmd);
1402 int i, n;
1403
1404 n = scsi_dma_map(orb->cmd);
1405 if (n <= 0)
1406 goto fail;
1407
1408 /*
1409 * Handle the special case where there is only one element in
1410 * the scatter list by converting it to an immediate block
1411 * request. This is also a workaround for broken devices such
1412 * as the second generation iPod which doesn't support page
1413 * tables.
1414 */
1415 if (n == 1) {
1416 orb->request.data_descriptor.high =
1417 cpu_to_be32(lu->tgt->address_high);
1418 orb->request.data_descriptor.low =
1419 cpu_to_be32(sg_dma_address(sg));
1420 orb->request.misc |=
1421 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1422 return 0;
1423 }
1424
1425 for_each_sg(sg, sg, n, i) {
1426 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1427 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1428 }
1429
1430 orb->page_table_bus =
1431 dma_map_single(device->card->device, orb->page_table,
1432 sizeof(orb->page_table), DMA_TO_DEVICE);
1433 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1434 goto fail_page_table;
1435
1436 /*
1437 * The data_descriptor pointer is the one case where we need
1438 * to fill in the node ID part of the address. All other
1439 * pointers assume that the data referenced reside on the
1440 * initiator (i.e. us), but data_descriptor can refer to data
1441 * on other nodes so we need to put our ID in descriptor.high.
1442 */
1443 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1444 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1445 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1446 COMMAND_ORB_DATA_SIZE(n));
1447
1448 return 0;
1449
1450 fail_page_table:
1451 scsi_dma_unmap(orb->cmd);
1452 fail:
1453 return -ENOMEM;
1454}
1455
1456/* SCSI stack integration */
1457
1458static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1459 struct scsi_cmnd *cmd)
1460{
1461 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1462 struct fw_device *device = target_parent_device(lu->tgt);
1463 struct sbp2_command_orb *orb;
1464 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1465
1466 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1467 if (orb == NULL)
1468 return SCSI_MLQUEUE_HOST_BUSY;
1469
1470 /* Initialize rcode to something not RCODE_COMPLETE. */
1471 orb->base.rcode = -1;
1472 kref_init(&orb->base.kref);
1473 orb->cmd = cmd;
1474 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1475 orb->request.misc = cpu_to_be32(
1476 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1477 COMMAND_ORB_SPEED(device->max_speed) |
1478 COMMAND_ORB_NOTIFY);
1479
1480 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1481 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1482
1483 generation = device->generation;
1484 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1485
1486 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1487 goto out;
1488
1489 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1490
1491 orb->base.callback = complete_command_orb;
1492 orb->base.request_bus =
1493 dma_map_single(device->card->device, &orb->request,
1494 sizeof(orb->request), DMA_TO_DEVICE);
1495 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1496 sbp2_unmap_scatterlist(device->card->device, orb);
1497 goto out;
1498 }
1499
1500 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1501 lu->command_block_agent_address + SBP2_ORB_POINTER);
1502 retval = 0;
1503 out:
1504 kref_put(&orb->base.kref, free_orb);
1505 return retval;
1506}
1507
1508static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1509{
1510 struct sbp2_logical_unit *lu = sdev->hostdata;
1511
1512 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1513 if (!lu)
1514 return -ENOSYS;
1515
1516 sdev->allow_restart = 1;
1517
1518 /*
1519 * SBP-2 does not require any alignment, but we set it anyway
1520 * for compatibility with earlier versions of this driver.
1521 */
1522 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1523
1524 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1525 sdev->inquiry_len = 36;
1526
1527 return 0;
1528}
1529
1530static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1531{
1532 struct sbp2_logical_unit *lu = sdev->hostdata;
1533
1534 sdev->use_10_for_rw = 1;
1535
1536 if (sbp2_param_exclusive_login)
1537 sdev->manage_start_stop = 1;
1538
1539 if (sdev->type == TYPE_ROM)
1540 sdev->use_10_for_ms = 1;
1541
1542 if (sdev->type == TYPE_DISK &&
1543 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1544 sdev->skip_ms_page_8 = 1;
1545
1546 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1547 sdev->fix_capacity = 1;
1548
1549 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1550 sdev->start_stop_pwr_cond = 1;
1551
1552 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1553 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1554
1555 return 0;
1556}
1557
1558/*
1559 * Called by scsi stack when something has really gone wrong. Usually
1560 * called when a command has timed-out for some reason.
1561 */
1562static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1563{
1564 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1565
1566 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1567 sbp2_agent_reset(lu);
1568 sbp2_cancel_orbs(lu);
1569
1570 return SUCCESS;
1571}
1572
1573/*
1574 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1575 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1576 *
1577 * This is the concatenation of target port identifier and logical unit
1578 * identifier as per SAM-2...SAM-4 annex A.
1579 */
1580static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1581 struct device_attribute *attr, char *buf)
1582{
1583 struct scsi_device *sdev = to_scsi_device(dev);
1584 struct sbp2_logical_unit *lu;
1585
1586 if (!sdev)
1587 return 0;
1588
1589 lu = sdev->hostdata;
1590
1591 return sprintf(buf, "%016llx:%06x:%04x\n",
1592 (unsigned long long)lu->tgt->guid,
1593 lu->tgt->directory_id, lu->lun);
1594}
1595
1596static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1597
1598static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1599 &dev_attr_ieee1394_id,
1600 NULL
1601};
1602
1603static struct scsi_host_template scsi_driver_template = {
1604 .module = THIS_MODULE,
1605 .name = "SBP-2 IEEE-1394",
1606 .proc_name = "sbp2",
1607 .queuecommand = sbp2_scsi_queuecommand,
1608 .slave_alloc = sbp2_scsi_slave_alloc,
1609 .slave_configure = sbp2_scsi_slave_configure,
1610 .eh_abort_handler = sbp2_scsi_abort,
1611 .this_id = -1,
1612 .sg_tablesize = SG_ALL,
1613 .use_clustering = ENABLE_CLUSTERING,
1614 .can_queue = 1,
1615 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1616};
1617
1618MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1619MODULE_DESCRIPTION("SCSI over IEEE1394");
1620MODULE_LICENSE("GPL");
1621MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1622
1623/* Provide a module alias so root-on-sbp2 initrds don't break. */
1624MODULE_ALIAS("sbp2");
1625
1626static int __init sbp2_init(void)
1627{
1628 return driver_register(&sbp2_driver.driver);
1629}
1630
1631static void __exit sbp2_cleanup(void)
1632{
1633 driver_unregister(&sbp2_driver.driver);
1634}
1635
1636module_init(sbp2_init);
1637module_exit(sbp2_cleanup);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SBP2 driver (SCSI over IEEE1394)
4 *
5 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8/*
9 * The basic structure of this driver is based on the old storage driver,
10 * drivers/ieee1394/sbp2.c, originally written by
11 * James Goodwin <jamesg@filanet.com>
12 * with later contributions and ongoing maintenance from
13 * Ben Collins <bcollins@debian.org>,
14 * Stefan Richter <stefanr@s5r6.in-berlin.de>
15 * and many others.
16 */
17
18#include <linux/blkdev.h>
19#include <linux/bug.h>
20#include <linux/completion.h>
21#include <linux/delay.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/firewire.h>
25#include <linux/firewire-constants.h>
26#include <linux/init.h>
27#include <linux/jiffies.h>
28#include <linux/kernel.h>
29#include <linux/kref.h>
30#include <linux/list.h>
31#include <linux/mod_devicetable.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/scatterlist.h>
35#include <linux/slab.h>
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/stringify.h>
39#include <linux/workqueue.h>
40
41#include <asm/byteorder.h>
42
43#include <scsi/scsi.h>
44#include <scsi/scsi_cmnd.h>
45#include <scsi/scsi_device.h>
46#include <scsi/scsi_host.h>
47
48/*
49 * So far only bridges from Oxford Semiconductor are known to support
50 * concurrent logins. Depending on firmware, four or two concurrent logins
51 * are possible on OXFW911 and newer Oxsemi bridges.
52 *
53 * Concurrent logins are useful together with cluster filesystems.
54 */
55static bool sbp2_param_exclusive_login = 1;
56module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
57MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
58 "(default = Y, use N for concurrent initiators)");
59
60/*
61 * Flags for firmware oddities
62 *
63 * - 128kB max transfer
64 * Limit transfer size. Necessary for some old bridges.
65 *
66 * - 36 byte inquiry
67 * When scsi_mod probes the device, let the inquiry command look like that
68 * from MS Windows.
69 *
70 * - skip mode page 8
71 * Suppress sending of mode_sense for mode page 8 if the device pretends to
72 * support the SCSI Primary Block commands instead of Reduced Block Commands.
73 *
74 * - fix capacity
75 * Tell sd_mod to correct the last sector number reported by read_capacity.
76 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
77 * Don't use this with devices which don't have this bug.
78 *
79 * - delay inquiry
80 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
81 *
82 * - power condition
83 * Set the power condition field in the START STOP UNIT commands sent by
84 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
85 * Some disks need this to spin down or to resume properly.
86 *
87 * - override internal blacklist
88 * Instead of adding to the built-in blacklist, use only the workarounds
89 * specified in the module load parameter.
90 * Useful if a blacklist entry interfered with a non-broken device.
91 */
92#define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
93#define SBP2_WORKAROUND_INQUIRY_36 0x2
94#define SBP2_WORKAROUND_MODE_SENSE_8 0x4
95#define SBP2_WORKAROUND_FIX_CAPACITY 0x8
96#define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
97#define SBP2_INQUIRY_DELAY 12
98#define SBP2_WORKAROUND_POWER_CONDITION 0x20
99#define SBP2_WORKAROUND_OVERRIDE 0x100
100
101static int sbp2_param_workarounds;
102module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
103MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
104 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
105 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
106 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
107 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
108 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
109 ", set power condition in start stop unit = "
110 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
111 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
112 ", or a combination)");
113
114/*
115 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
116 * and one struct scsi_device per sbp2_logical_unit.
117 */
118struct sbp2_logical_unit {
119 struct sbp2_target *tgt;
120 struct list_head link;
121 struct fw_address_handler address_handler;
122 struct list_head orb_list;
123
124 u64 command_block_agent_address;
125 u16 lun;
126 int login_id;
127
128 /*
129 * The generation is updated once we've logged in or reconnected
130 * to the logical unit. Thus, I/O to the device will automatically
131 * fail and get retried if it happens in a window where the device
132 * is not ready, e.g. after a bus reset but before we reconnect.
133 */
134 int generation;
135 int retries;
136 work_func_t workfn;
137 struct delayed_work work;
138 bool has_sdev;
139 bool blocked;
140};
141
142static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
143{
144 queue_delayed_work(fw_workqueue, &lu->work, delay);
145}
146
147/*
148 * We create one struct sbp2_target per IEEE 1212 Unit Directory
149 * and one struct Scsi_Host per sbp2_target.
150 */
151struct sbp2_target {
152 struct fw_unit *unit;
153 struct list_head lu_list;
154
155 u64 management_agent_address;
156 u64 guid;
157 int directory_id;
158 int node_id;
159 int address_high;
160 unsigned int workarounds;
161 unsigned int mgt_orb_timeout;
162 unsigned int max_payload;
163
164 spinlock_t lock;
165 int dont_block; /* counter for each logical unit */
166 int blocked; /* ditto */
167};
168
169static struct fw_device *target_parent_device(struct sbp2_target *tgt)
170{
171 return fw_parent_device(tgt->unit);
172}
173
174static const struct device *tgt_dev(const struct sbp2_target *tgt)
175{
176 return &tgt->unit->device;
177}
178
179static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
180{
181 return &lu->tgt->unit->device;
182}
183
184/* Impossible login_id, to detect logout attempt before successful login */
185#define INVALID_LOGIN_ID 0x10000
186
187#define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
188#define SBP2_ORB_NULL 0x80000000
189#define SBP2_RETRY_LIMIT 0xf /* 15 retries */
190#define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
191
192/*
193 * There is no transport protocol limit to the CDB length, but we implement
194 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
195 */
196#define SBP2_MAX_CDB_SIZE 16
197
198/*
199 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
200 * for compatibility with earlier versions of this driver.
201 */
202#define SBP2_MAX_SEG_SIZE 0xfffc
203
204/* Unit directory keys */
205#define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
206#define SBP2_CSR_FIRMWARE_REVISION 0x3c
207#define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
208#define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
209#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
210
211/* Management orb opcodes */
212#define SBP2_LOGIN_REQUEST 0x0
213#define SBP2_QUERY_LOGINS_REQUEST 0x1
214#define SBP2_RECONNECT_REQUEST 0x3
215#define SBP2_SET_PASSWORD_REQUEST 0x4
216#define SBP2_LOGOUT_REQUEST 0x7
217#define SBP2_ABORT_TASK_REQUEST 0xb
218#define SBP2_ABORT_TASK_SET 0xc
219#define SBP2_LOGICAL_UNIT_RESET 0xe
220#define SBP2_TARGET_RESET_REQUEST 0xf
221
222/* Offsets for command block agent registers */
223#define SBP2_AGENT_STATE 0x00
224#define SBP2_AGENT_RESET 0x04
225#define SBP2_ORB_POINTER 0x08
226#define SBP2_DOORBELL 0x10
227#define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
228
229/* Status write response codes */
230#define SBP2_STATUS_REQUEST_COMPLETE 0x0
231#define SBP2_STATUS_TRANSPORT_FAILURE 0x1
232#define SBP2_STATUS_ILLEGAL_REQUEST 0x2
233#define SBP2_STATUS_VENDOR_DEPENDENT 0x3
234
235#define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
236#define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
237#define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
238#define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
239#define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
240#define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
241#define STATUS_GET_ORB_LOW(v) ((v).orb_low)
242#define STATUS_GET_DATA(v) ((v).data)
243
244struct sbp2_status {
245 u32 status;
246 u32 orb_low;
247 u8 data[24];
248};
249
250struct sbp2_pointer {
251 __be32 high;
252 __be32 low;
253};
254
255struct sbp2_orb {
256 struct fw_transaction t;
257 struct kref kref;
258 dma_addr_t request_bus;
259 int rcode;
260 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
261 struct sbp2_logical_unit *lu;
262 struct list_head link;
263};
264
265#define MANAGEMENT_ORB_LUN(v) ((v))
266#define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
267#define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
268#define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
269#define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
270#define MANAGEMENT_ORB_NOTIFY ((1) << 31)
271
272#define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
273#define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
274
275struct sbp2_management_orb {
276 struct sbp2_orb base;
277 struct {
278 struct sbp2_pointer password;
279 struct sbp2_pointer response;
280 __be32 misc;
281 __be32 length;
282 struct sbp2_pointer status_fifo;
283 } request;
284 __be32 response[4];
285 dma_addr_t response_bus;
286 struct completion done;
287 struct sbp2_status status;
288};
289
290struct sbp2_login_response {
291 __be32 misc;
292 struct sbp2_pointer command_block_agent;
293 __be32 reconnect_hold;
294};
295#define COMMAND_ORB_DATA_SIZE(v) ((v))
296#define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
297#define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
298#define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
299#define COMMAND_ORB_SPEED(v) ((v) << 24)
300#define COMMAND_ORB_DIRECTION ((1) << 27)
301#define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
302#define COMMAND_ORB_NOTIFY ((1) << 31)
303
304struct sbp2_command_orb {
305 struct sbp2_orb base;
306 struct {
307 struct sbp2_pointer next;
308 struct sbp2_pointer data_descriptor;
309 __be32 misc;
310 u8 command_block[SBP2_MAX_CDB_SIZE];
311 } request;
312 struct scsi_cmnd *cmd;
313
314 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
315 dma_addr_t page_table_bus;
316};
317
318#define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
319#define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
320
321/*
322 * List of devices with known bugs.
323 *
324 * The firmware_revision field, masked with 0xffff00, is the best
325 * indicator for the type of bridge chip of a device. It yields a few
326 * false positives but this did not break correctly behaving devices
327 * so far.
328 */
329static const struct {
330 u32 firmware_revision;
331 u32 model;
332 unsigned int workarounds;
333} sbp2_workarounds_table[] = {
334 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
335 .firmware_revision = 0x002800,
336 .model = 0x001010,
337 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
338 SBP2_WORKAROUND_MODE_SENSE_8 |
339 SBP2_WORKAROUND_POWER_CONDITION,
340 },
341 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
342 .firmware_revision = 0x002800,
343 .model = 0x000000,
344 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
345 },
346 /* Initio bridges, actually only needed for some older ones */ {
347 .firmware_revision = 0x000200,
348 .model = SBP2_ROM_VALUE_WILDCARD,
349 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
350 },
351 /* PL-3507 bridge with Prolific firmware */ {
352 .firmware_revision = 0x012800,
353 .model = SBP2_ROM_VALUE_WILDCARD,
354 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
355 },
356 /* Symbios bridge */ {
357 .firmware_revision = 0xa0b800,
358 .model = SBP2_ROM_VALUE_WILDCARD,
359 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
360 },
361 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
362 .firmware_revision = 0x002600,
363 .model = SBP2_ROM_VALUE_WILDCARD,
364 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
365 },
366 /*
367 * iPod 2nd generation: needs 128k max transfer size workaround
368 * iPod 3rd generation: needs fix capacity workaround
369 */
370 {
371 .firmware_revision = 0x0a2700,
372 .model = 0x000000,
373 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
374 SBP2_WORKAROUND_FIX_CAPACITY,
375 },
376 /* iPod 4th generation */ {
377 .firmware_revision = 0x0a2700,
378 .model = 0x000021,
379 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
380 },
381 /* iPod mini */ {
382 .firmware_revision = 0x0a2700,
383 .model = 0x000022,
384 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
385 },
386 /* iPod mini */ {
387 .firmware_revision = 0x0a2700,
388 .model = 0x000023,
389 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
390 },
391 /* iPod Photo */ {
392 .firmware_revision = 0x0a2700,
393 .model = 0x00007e,
394 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
395 }
396};
397
398static void free_orb(struct kref *kref)
399{
400 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
401
402 kfree(orb);
403}
404
405static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
406 int tcode, int destination, int source,
407 int generation, unsigned long long offset,
408 void *payload, size_t length, void *callback_data)
409{
410 struct sbp2_logical_unit *lu = callback_data;
411 struct sbp2_orb *orb;
412 struct sbp2_status status;
413 unsigned long flags;
414
415 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
416 length < 8 || length > sizeof(status)) {
417 fw_send_response(card, request, RCODE_TYPE_ERROR);
418 return;
419 }
420
421 status.status = be32_to_cpup(payload);
422 status.orb_low = be32_to_cpup(payload + 4);
423 memset(status.data, 0, sizeof(status.data));
424 if (length > 8)
425 memcpy(status.data, payload + 8, length - 8);
426
427 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
428 dev_notice(lu_dev(lu),
429 "non-ORB related status write, not handled\n");
430 fw_send_response(card, request, RCODE_COMPLETE);
431 return;
432 }
433
434 /* Lookup the orb corresponding to this status write. */
435 spin_lock_irqsave(&lu->tgt->lock, flags);
436 list_for_each_entry(orb, &lu->orb_list, link) {
437 if (STATUS_GET_ORB_HIGH(status) == 0 &&
438 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
439 orb->rcode = RCODE_COMPLETE;
440 list_del(&orb->link);
441 break;
442 }
443 }
444 spin_unlock_irqrestore(&lu->tgt->lock, flags);
445
446 if (&orb->link != &lu->orb_list) {
447 orb->callback(orb, &status);
448 kref_put(&orb->kref, free_orb); /* orb callback reference */
449 } else {
450 dev_err(lu_dev(lu), "status write for unknown ORB\n");
451 }
452
453 fw_send_response(card, request, RCODE_COMPLETE);
454}
455
456static void complete_transaction(struct fw_card *card, int rcode,
457 void *payload, size_t length, void *data)
458{
459 struct sbp2_orb *orb = data;
460 unsigned long flags;
461
462 /*
463 * This is a little tricky. We can get the status write for
464 * the orb before we get this callback. The status write
465 * handler above will assume the orb pointer transaction was
466 * successful and set the rcode to RCODE_COMPLETE for the orb.
467 * So this callback only sets the rcode if it hasn't already
468 * been set and only does the cleanup if the transaction
469 * failed and we didn't already get a status write.
470 */
471 spin_lock_irqsave(&orb->lu->tgt->lock, flags);
472
473 if (orb->rcode == -1)
474 orb->rcode = rcode;
475 if (orb->rcode != RCODE_COMPLETE) {
476 list_del(&orb->link);
477 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
478
479 orb->callback(orb, NULL);
480 kref_put(&orb->kref, free_orb); /* orb callback reference */
481 } else {
482 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
483 }
484
485 kref_put(&orb->kref, free_orb); /* transaction callback reference */
486}
487
488static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
489 int node_id, int generation, u64 offset)
490{
491 struct fw_device *device = target_parent_device(lu->tgt);
492 struct sbp2_pointer orb_pointer;
493 unsigned long flags;
494
495 orb_pointer.high = 0;
496 orb_pointer.low = cpu_to_be32(orb->request_bus);
497
498 orb->lu = lu;
499 spin_lock_irqsave(&lu->tgt->lock, flags);
500 list_add_tail(&orb->link, &lu->orb_list);
501 spin_unlock_irqrestore(&lu->tgt->lock, flags);
502
503 kref_get(&orb->kref); /* transaction callback reference */
504 kref_get(&orb->kref); /* orb callback reference */
505
506 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
507 node_id, generation, device->max_speed, offset,
508 &orb_pointer, 8, complete_transaction, orb);
509}
510
511static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
512{
513 struct fw_device *device = target_parent_device(lu->tgt);
514 struct sbp2_orb *orb, *next;
515 struct list_head list;
516 int retval = -ENOENT;
517
518 INIT_LIST_HEAD(&list);
519 spin_lock_irq(&lu->tgt->lock);
520 list_splice_init(&lu->orb_list, &list);
521 spin_unlock_irq(&lu->tgt->lock);
522
523 list_for_each_entry_safe(orb, next, &list, link) {
524 retval = 0;
525 if (fw_cancel_transaction(device->card, &orb->t) == 0)
526 continue;
527
528 orb->rcode = RCODE_CANCELLED;
529 orb->callback(orb, NULL);
530 kref_put(&orb->kref, free_orb); /* orb callback reference */
531 }
532
533 return retval;
534}
535
536static void complete_management_orb(struct sbp2_orb *base_orb,
537 struct sbp2_status *status)
538{
539 struct sbp2_management_orb *orb =
540 container_of(base_orb, struct sbp2_management_orb, base);
541
542 if (status)
543 memcpy(&orb->status, status, sizeof(*status));
544 complete(&orb->done);
545}
546
547static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
548 int generation, int function,
549 int lun_or_login_id, void *response)
550{
551 struct fw_device *device = target_parent_device(lu->tgt);
552 struct sbp2_management_orb *orb;
553 unsigned int timeout;
554 int retval = -ENOMEM;
555
556 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
557 return 0;
558
559 orb = kzalloc(sizeof(*orb), GFP_NOIO);
560 if (orb == NULL)
561 return -ENOMEM;
562
563 kref_init(&orb->base.kref);
564 orb->response_bus =
565 dma_map_single(device->card->device, &orb->response,
566 sizeof(orb->response), DMA_FROM_DEVICE);
567 if (dma_mapping_error(device->card->device, orb->response_bus))
568 goto fail_mapping_response;
569
570 orb->request.response.high = 0;
571 orb->request.response.low = cpu_to_be32(orb->response_bus);
572
573 orb->request.misc = cpu_to_be32(
574 MANAGEMENT_ORB_NOTIFY |
575 MANAGEMENT_ORB_FUNCTION(function) |
576 MANAGEMENT_ORB_LUN(lun_or_login_id));
577 orb->request.length = cpu_to_be32(
578 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
579
580 orb->request.status_fifo.high =
581 cpu_to_be32(lu->address_handler.offset >> 32);
582 orb->request.status_fifo.low =
583 cpu_to_be32(lu->address_handler.offset);
584
585 if (function == SBP2_LOGIN_REQUEST) {
586 /* Ask for 2^2 == 4 seconds reconnect grace period */
587 orb->request.misc |= cpu_to_be32(
588 MANAGEMENT_ORB_RECONNECT(2) |
589 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
590 timeout = lu->tgt->mgt_orb_timeout;
591 } else {
592 timeout = SBP2_ORB_TIMEOUT;
593 }
594
595 init_completion(&orb->done);
596 orb->base.callback = complete_management_orb;
597
598 orb->base.request_bus =
599 dma_map_single(device->card->device, &orb->request,
600 sizeof(orb->request), DMA_TO_DEVICE);
601 if (dma_mapping_error(device->card->device, orb->base.request_bus))
602 goto fail_mapping_request;
603
604 sbp2_send_orb(&orb->base, lu, node_id, generation,
605 lu->tgt->management_agent_address);
606
607 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
608
609 retval = -EIO;
610 if (sbp2_cancel_orbs(lu) == 0) {
611 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
612 orb->base.rcode);
613 goto out;
614 }
615
616 if (orb->base.rcode != RCODE_COMPLETE) {
617 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
618 orb->base.rcode);
619 goto out;
620 }
621
622 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
623 STATUS_GET_SBP_STATUS(orb->status) != 0) {
624 dev_err(lu_dev(lu), "error status: %d:%d\n",
625 STATUS_GET_RESPONSE(orb->status),
626 STATUS_GET_SBP_STATUS(orb->status));
627 goto out;
628 }
629
630 retval = 0;
631 out:
632 dma_unmap_single(device->card->device, orb->base.request_bus,
633 sizeof(orb->request), DMA_TO_DEVICE);
634 fail_mapping_request:
635 dma_unmap_single(device->card->device, orb->response_bus,
636 sizeof(orb->response), DMA_FROM_DEVICE);
637 fail_mapping_response:
638 if (response)
639 memcpy(response, orb->response, sizeof(orb->response));
640 kref_put(&orb->base.kref, free_orb);
641
642 return retval;
643}
644
645static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
646{
647 struct fw_device *device = target_parent_device(lu->tgt);
648 __be32 d = 0;
649
650 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
651 lu->tgt->node_id, lu->generation, device->max_speed,
652 lu->command_block_agent_address + SBP2_AGENT_RESET,
653 &d, 4);
654}
655
656static void complete_agent_reset_write_no_wait(struct fw_card *card,
657 int rcode, void *payload, size_t length, void *data)
658{
659 kfree(data);
660}
661
662static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
663{
664 struct fw_device *device = target_parent_device(lu->tgt);
665 struct fw_transaction *t;
666 static __be32 d;
667
668 t = kmalloc(sizeof(*t), GFP_ATOMIC);
669 if (t == NULL)
670 return;
671
672 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
673 lu->tgt->node_id, lu->generation, device->max_speed,
674 lu->command_block_agent_address + SBP2_AGENT_RESET,
675 &d, 4, complete_agent_reset_write_no_wait, t);
676}
677
678static inline void sbp2_allow_block(struct sbp2_target *tgt)
679{
680 spin_lock_irq(&tgt->lock);
681 --tgt->dont_block;
682 spin_unlock_irq(&tgt->lock);
683}
684
685/*
686 * Blocks lu->tgt if all of the following conditions are met:
687 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
688 * logical units have been finished (indicated by dont_block == 0).
689 * - lu->generation is stale.
690 *
691 * Note, scsi_block_requests() must be called while holding tgt->lock,
692 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
693 * unblock the target.
694 */
695static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
696{
697 struct sbp2_target *tgt = lu->tgt;
698 struct fw_card *card = target_parent_device(tgt)->card;
699 struct Scsi_Host *shost =
700 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
701 unsigned long flags;
702
703 spin_lock_irqsave(&tgt->lock, flags);
704 if (!tgt->dont_block && !lu->blocked &&
705 lu->generation != card->generation) {
706 lu->blocked = true;
707 if (++tgt->blocked == 1)
708 scsi_block_requests(shost);
709 }
710 spin_unlock_irqrestore(&tgt->lock, flags);
711}
712
713/*
714 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
715 * Note, it is harmless to run scsi_unblock_requests() outside the
716 * tgt->lock protected section. On the other hand, running it inside
717 * the section might clash with shost->host_lock.
718 */
719static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
720{
721 struct sbp2_target *tgt = lu->tgt;
722 struct fw_card *card = target_parent_device(tgt)->card;
723 struct Scsi_Host *shost =
724 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
725 bool unblock = false;
726
727 spin_lock_irq(&tgt->lock);
728 if (lu->blocked && lu->generation == card->generation) {
729 lu->blocked = false;
730 unblock = --tgt->blocked == 0;
731 }
732 spin_unlock_irq(&tgt->lock);
733
734 if (unblock)
735 scsi_unblock_requests(shost);
736}
737
738/*
739 * Prevents future blocking of tgt and unblocks it.
740 * Note, it is harmless to run scsi_unblock_requests() outside the
741 * tgt->lock protected section. On the other hand, running it inside
742 * the section might clash with shost->host_lock.
743 */
744static void sbp2_unblock(struct sbp2_target *tgt)
745{
746 struct Scsi_Host *shost =
747 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
748
749 spin_lock_irq(&tgt->lock);
750 ++tgt->dont_block;
751 spin_unlock_irq(&tgt->lock);
752
753 scsi_unblock_requests(shost);
754}
755
756static int sbp2_lun2int(u16 lun)
757{
758 struct scsi_lun eight_bytes_lun;
759
760 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
761 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
762 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
763
764 return scsilun_to_int(&eight_bytes_lun);
765}
766
767/*
768 * Write retransmit retry values into the BUSY_TIMEOUT register.
769 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
770 * default retry_limit value is 0 (i.e. never retry transmission). We write a
771 * saner value after logging into the device.
772 * - The dual-phase retry protocol is optional to implement, and if not
773 * supported, writes to the dual-phase portion of the register will be
774 * ignored. We try to write the original 1394-1995 default here.
775 * - In the case of devices that are also SBP-3-compliant, all writes are
776 * ignored, as the register is read-only, but contains single-phase retry of
777 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
778 * write attempt is safe and yields more consistent behavior for all devices.
779 *
780 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
781 * and section 6.4 of the SBP-3 spec for further details.
782 */
783static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
784{
785 struct fw_device *device = target_parent_device(lu->tgt);
786 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
787
788 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
789 lu->tgt->node_id, lu->generation, device->max_speed,
790 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
791}
792
793static void sbp2_reconnect(struct work_struct *work);
794
795static void sbp2_login(struct work_struct *work)
796{
797 struct sbp2_logical_unit *lu =
798 container_of(work, struct sbp2_logical_unit, work.work);
799 struct sbp2_target *tgt = lu->tgt;
800 struct fw_device *device = target_parent_device(tgt);
801 struct Scsi_Host *shost;
802 struct scsi_device *sdev;
803 struct sbp2_login_response response;
804 int generation, node_id, local_node_id;
805
806 if (fw_device_is_shutdown(device))
807 return;
808
809 generation = device->generation;
810 smp_rmb(); /* node IDs must not be older than generation */
811 node_id = device->node_id;
812 local_node_id = device->card->node_id;
813
814 /* If this is a re-login attempt, log out, or we might be rejected. */
815 if (lu->has_sdev)
816 sbp2_send_management_orb(lu, device->node_id, generation,
817 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
818
819 if (sbp2_send_management_orb(lu, node_id, generation,
820 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
821 if (lu->retries++ < 5) {
822 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
823 } else {
824 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
825 lu->lun);
826 /* Let any waiting I/O fail from now on. */
827 sbp2_unblock(lu->tgt);
828 }
829 return;
830 }
831
832 tgt->node_id = node_id;
833 tgt->address_high = local_node_id << 16;
834 smp_wmb(); /* node IDs must not be older than generation */
835 lu->generation = generation;
836
837 lu->command_block_agent_address =
838 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
839 << 32) | be32_to_cpu(response.command_block_agent.low);
840 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
841
842 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
843 lu->lun, lu->retries);
844
845 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
846 sbp2_set_busy_timeout(lu);
847
848 lu->workfn = sbp2_reconnect;
849 sbp2_agent_reset(lu);
850
851 /* This was a re-login. */
852 if (lu->has_sdev) {
853 sbp2_cancel_orbs(lu);
854 sbp2_conditionally_unblock(lu);
855
856 return;
857 }
858
859 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
860 ssleep(SBP2_INQUIRY_DELAY);
861
862 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
863 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
864 /*
865 * FIXME: We are unable to perform reconnects while in sbp2_login().
866 * Therefore __scsi_add_device() will get into trouble if a bus reset
867 * happens in parallel. It will either fail or leave us with an
868 * unusable sdev. As a workaround we check for this and retry the
869 * whole login and SCSI probing.
870 */
871
872 /* Reported error during __scsi_add_device() */
873 if (IS_ERR(sdev))
874 goto out_logout_login;
875
876 /* Unreported error during __scsi_add_device() */
877 smp_rmb(); /* get current card generation */
878 if (generation != device->card->generation) {
879 scsi_remove_device(sdev);
880 scsi_device_put(sdev);
881 goto out_logout_login;
882 }
883
884 /* No error during __scsi_add_device() */
885 lu->has_sdev = true;
886 scsi_device_put(sdev);
887 sbp2_allow_block(tgt);
888
889 return;
890
891 out_logout_login:
892 smp_rmb(); /* generation may have changed */
893 generation = device->generation;
894 smp_rmb(); /* node_id must not be older than generation */
895
896 sbp2_send_management_orb(lu, device->node_id, generation,
897 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
898 /*
899 * If a bus reset happened, sbp2_update will have requeued
900 * lu->work already. Reset the work from reconnect to login.
901 */
902 lu->workfn = sbp2_login;
903}
904
905static void sbp2_reconnect(struct work_struct *work)
906{
907 struct sbp2_logical_unit *lu =
908 container_of(work, struct sbp2_logical_unit, work.work);
909 struct sbp2_target *tgt = lu->tgt;
910 struct fw_device *device = target_parent_device(tgt);
911 int generation, node_id, local_node_id;
912
913 if (fw_device_is_shutdown(device))
914 return;
915
916 generation = device->generation;
917 smp_rmb(); /* node IDs must not be older than generation */
918 node_id = device->node_id;
919 local_node_id = device->card->node_id;
920
921 if (sbp2_send_management_orb(lu, node_id, generation,
922 SBP2_RECONNECT_REQUEST,
923 lu->login_id, NULL) < 0) {
924 /*
925 * If reconnect was impossible even though we are in the
926 * current generation, fall back and try to log in again.
927 *
928 * We could check for "Function rejected" status, but
929 * looking at the bus generation as simpler and more general.
930 */
931 smp_rmb(); /* get current card generation */
932 if (generation == device->card->generation ||
933 lu->retries++ >= 5) {
934 dev_err(tgt_dev(tgt), "failed to reconnect\n");
935 lu->retries = 0;
936 lu->workfn = sbp2_login;
937 }
938 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
939
940 return;
941 }
942
943 tgt->node_id = node_id;
944 tgt->address_high = local_node_id << 16;
945 smp_wmb(); /* node IDs must not be older than generation */
946 lu->generation = generation;
947
948 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
949 lu->lun, lu->retries);
950
951 sbp2_agent_reset(lu);
952 sbp2_cancel_orbs(lu);
953 sbp2_conditionally_unblock(lu);
954}
955
956static void sbp2_lu_workfn(struct work_struct *work)
957{
958 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
959 struct sbp2_logical_unit, work);
960 lu->workfn(work);
961}
962
963static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
964{
965 struct sbp2_logical_unit *lu;
966
967 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
968 if (!lu)
969 return -ENOMEM;
970
971 lu->address_handler.length = 0x100;
972 lu->address_handler.address_callback = sbp2_status_write;
973 lu->address_handler.callback_data = lu;
974
975 if (fw_core_add_address_handler(&lu->address_handler,
976 &fw_high_memory_region) < 0) {
977 kfree(lu);
978 return -ENOMEM;
979 }
980
981 lu->tgt = tgt;
982 lu->lun = lun_entry & 0xffff;
983 lu->login_id = INVALID_LOGIN_ID;
984 lu->retries = 0;
985 lu->has_sdev = false;
986 lu->blocked = false;
987 ++tgt->dont_block;
988 INIT_LIST_HEAD(&lu->orb_list);
989 lu->workfn = sbp2_login;
990 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
991
992 list_add_tail(&lu->link, &tgt->lu_list);
993 return 0;
994}
995
996static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
997 const u32 *leaf)
998{
999 if ((leaf[0] & 0xffff0000) == 0x00020000)
1000 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1001}
1002
1003static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1004 const u32 *directory)
1005{
1006 struct fw_csr_iterator ci;
1007 int key, value;
1008
1009 fw_csr_iterator_init(&ci, directory);
1010 while (fw_csr_iterator_next(&ci, &key, &value))
1011 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1012 sbp2_add_logical_unit(tgt, value) < 0)
1013 return -ENOMEM;
1014 return 0;
1015}
1016
1017static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1018 u32 *model, u32 *firmware_revision)
1019{
1020 struct fw_csr_iterator ci;
1021 int key, value;
1022
1023 fw_csr_iterator_init(&ci, directory);
1024 while (fw_csr_iterator_next(&ci, &key, &value)) {
1025 switch (key) {
1026
1027 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1028 tgt->management_agent_address =
1029 CSR_REGISTER_BASE + 4 * value;
1030 break;
1031
1032 case CSR_DIRECTORY_ID:
1033 tgt->directory_id = value;
1034 break;
1035
1036 case CSR_MODEL:
1037 *model = value;
1038 break;
1039
1040 case SBP2_CSR_FIRMWARE_REVISION:
1041 *firmware_revision = value;
1042 break;
1043
1044 case SBP2_CSR_UNIT_CHARACTERISTICS:
1045 /* the timeout value is stored in 500ms units */
1046 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1047 break;
1048
1049 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1050 if (sbp2_add_logical_unit(tgt, value) < 0)
1051 return -ENOMEM;
1052 break;
1053
1054 case SBP2_CSR_UNIT_UNIQUE_ID:
1055 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1056 break;
1057
1058 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1059 /* Adjust for the increment in the iterator */
1060 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1061 return -ENOMEM;
1062 break;
1063 }
1064 }
1065 return 0;
1066}
1067
1068/*
1069 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1070 * provided in the config rom. Most devices do provide a value, which
1071 * we'll use for login management orbs, but with some sane limits.
1072 */
1073static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1074{
1075 unsigned int timeout = tgt->mgt_orb_timeout;
1076
1077 if (timeout > 40000)
1078 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1079 timeout / 1000);
1080
1081 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1082}
1083
1084static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1085 u32 firmware_revision)
1086{
1087 int i;
1088 unsigned int w = sbp2_param_workarounds;
1089
1090 if (w)
1091 dev_notice(tgt_dev(tgt),
1092 "Please notify linux1394-devel@lists.sf.net "
1093 "if you need the workarounds parameter\n");
1094
1095 if (w & SBP2_WORKAROUND_OVERRIDE)
1096 goto out;
1097
1098 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1099
1100 if (sbp2_workarounds_table[i].firmware_revision !=
1101 (firmware_revision & 0xffffff00))
1102 continue;
1103
1104 if (sbp2_workarounds_table[i].model != model &&
1105 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1106 continue;
1107
1108 w |= sbp2_workarounds_table[i].workarounds;
1109 break;
1110 }
1111 out:
1112 if (w)
1113 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1114 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1115 w, firmware_revision, model);
1116 tgt->workarounds = w;
1117}
1118
1119static struct scsi_host_template scsi_driver_template;
1120static void sbp2_remove(struct fw_unit *unit);
1121
1122static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1123{
1124 struct fw_device *device = fw_parent_device(unit);
1125 struct sbp2_target *tgt;
1126 struct sbp2_logical_unit *lu;
1127 struct Scsi_Host *shost;
1128 u32 model, firmware_revision;
1129
1130 /* cannot (or should not) handle targets on the local node */
1131 if (device->is_local)
1132 return -ENODEV;
1133
1134 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1135 if (shost == NULL)
1136 return -ENOMEM;
1137
1138 tgt = (struct sbp2_target *)shost->hostdata;
1139 dev_set_drvdata(&unit->device, tgt);
1140 tgt->unit = unit;
1141 INIT_LIST_HEAD(&tgt->lu_list);
1142 spin_lock_init(&tgt->lock);
1143 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1144
1145 if (fw_device_enable_phys_dma(device) < 0)
1146 goto fail_shost_put;
1147
1148 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1149
1150 if (scsi_add_host_with_dma(shost, &unit->device,
1151 device->card->device) < 0)
1152 goto fail_shost_put;
1153
1154 /* implicit directory ID */
1155 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1156 + CSR_CONFIG_ROM) & 0xffffff;
1157
1158 firmware_revision = SBP2_ROM_VALUE_MISSING;
1159 model = SBP2_ROM_VALUE_MISSING;
1160
1161 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1162 &firmware_revision) < 0)
1163 goto fail_remove;
1164
1165 sbp2_clamp_management_orb_timeout(tgt);
1166 sbp2_init_workarounds(tgt, model, firmware_revision);
1167
1168 /*
1169 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1170 * and so on up to 4096 bytes. The SBP-2 max_payload field
1171 * specifies the max payload size as 2 ^ (max_payload + 2), so
1172 * if we set this to max_speed + 7, we get the right value.
1173 */
1174 tgt->max_payload = min3(device->max_speed + 7, 10U,
1175 device->card->max_receive - 1);
1176
1177 /* Do the login in a workqueue so we can easily reschedule retries. */
1178 list_for_each_entry(lu, &tgt->lu_list, link)
1179 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1180
1181 return 0;
1182
1183 fail_remove:
1184 sbp2_remove(unit);
1185 return -ENOMEM;
1186
1187 fail_shost_put:
1188 scsi_host_put(shost);
1189 return -ENOMEM;
1190}
1191
1192static void sbp2_update(struct fw_unit *unit)
1193{
1194 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1195 struct sbp2_logical_unit *lu;
1196
1197 fw_device_enable_phys_dma(fw_parent_device(unit));
1198
1199 /*
1200 * Fw-core serializes sbp2_update() against sbp2_remove().
1201 * Iteration over tgt->lu_list is therefore safe here.
1202 */
1203 list_for_each_entry(lu, &tgt->lu_list, link) {
1204 sbp2_conditionally_block(lu);
1205 lu->retries = 0;
1206 sbp2_queue_work(lu, 0);
1207 }
1208}
1209
1210static void sbp2_remove(struct fw_unit *unit)
1211{
1212 struct fw_device *device = fw_parent_device(unit);
1213 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1214 struct sbp2_logical_unit *lu, *next;
1215 struct Scsi_Host *shost =
1216 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1217 struct scsi_device *sdev;
1218
1219 /* prevent deadlocks */
1220 sbp2_unblock(tgt);
1221
1222 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1223 cancel_delayed_work_sync(&lu->work);
1224 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1225 if (sdev) {
1226 scsi_remove_device(sdev);
1227 scsi_device_put(sdev);
1228 }
1229 if (lu->login_id != INVALID_LOGIN_ID) {
1230 int generation, node_id;
1231 /*
1232 * tgt->node_id may be obsolete here if we failed
1233 * during initial login or after a bus reset where
1234 * the topology changed.
1235 */
1236 generation = device->generation;
1237 smp_rmb(); /* node_id vs. generation */
1238 node_id = device->node_id;
1239 sbp2_send_management_orb(lu, node_id, generation,
1240 SBP2_LOGOUT_REQUEST,
1241 lu->login_id, NULL);
1242 }
1243 fw_core_remove_address_handler(&lu->address_handler);
1244 list_del(&lu->link);
1245 kfree(lu);
1246 }
1247 scsi_remove_host(shost);
1248 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1249
1250 scsi_host_put(shost);
1251}
1252
1253#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1254#define SBP2_SW_VERSION_ENTRY 0x00010483
1255
1256static const struct ieee1394_device_id sbp2_id_table[] = {
1257 {
1258 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1259 IEEE1394_MATCH_VERSION,
1260 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1261 .version = SBP2_SW_VERSION_ENTRY,
1262 },
1263 { }
1264};
1265
1266static struct fw_driver sbp2_driver = {
1267 .driver = {
1268 .owner = THIS_MODULE,
1269 .name = KBUILD_MODNAME,
1270 .bus = &fw_bus_type,
1271 },
1272 .probe = sbp2_probe,
1273 .update = sbp2_update,
1274 .remove = sbp2_remove,
1275 .id_table = sbp2_id_table,
1276};
1277
1278static void sbp2_unmap_scatterlist(struct device *card_device,
1279 struct sbp2_command_orb *orb)
1280{
1281 scsi_dma_unmap(orb->cmd);
1282
1283 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1284 dma_unmap_single(card_device, orb->page_table_bus,
1285 sizeof(orb->page_table), DMA_TO_DEVICE);
1286}
1287
1288static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1289{
1290 int sam_status;
1291 int sfmt = (sbp2_status[0] >> 6) & 0x03;
1292
1293 if (sfmt == 2 || sfmt == 3) {
1294 /*
1295 * Reserved for future standardization (2) or
1296 * Status block format vendor-dependent (3)
1297 */
1298 return DID_ERROR << 16;
1299 }
1300
1301 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1302 sense_data[1] = 0x0;
1303 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1304 sense_data[3] = sbp2_status[4];
1305 sense_data[4] = sbp2_status[5];
1306 sense_data[5] = sbp2_status[6];
1307 sense_data[6] = sbp2_status[7];
1308 sense_data[7] = 10;
1309 sense_data[8] = sbp2_status[8];
1310 sense_data[9] = sbp2_status[9];
1311 sense_data[10] = sbp2_status[10];
1312 sense_data[11] = sbp2_status[11];
1313 sense_data[12] = sbp2_status[2];
1314 sense_data[13] = sbp2_status[3];
1315 sense_data[14] = sbp2_status[12];
1316 sense_data[15] = sbp2_status[13];
1317
1318 sam_status = sbp2_status[0] & 0x3f;
1319
1320 switch (sam_status) {
1321 case SAM_STAT_GOOD:
1322 case SAM_STAT_CHECK_CONDITION:
1323 case SAM_STAT_CONDITION_MET:
1324 case SAM_STAT_BUSY:
1325 case SAM_STAT_RESERVATION_CONFLICT:
1326 case SAM_STAT_COMMAND_TERMINATED:
1327 return DID_OK << 16 | sam_status;
1328
1329 default:
1330 return DID_ERROR << 16;
1331 }
1332}
1333
1334static void complete_command_orb(struct sbp2_orb *base_orb,
1335 struct sbp2_status *status)
1336{
1337 struct sbp2_command_orb *orb =
1338 container_of(base_orb, struct sbp2_command_orb, base);
1339 struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1340 int result;
1341
1342 if (status != NULL) {
1343 if (STATUS_GET_DEAD(*status))
1344 sbp2_agent_reset_no_wait(base_orb->lu);
1345
1346 switch (STATUS_GET_RESPONSE(*status)) {
1347 case SBP2_STATUS_REQUEST_COMPLETE:
1348 result = DID_OK << 16;
1349 break;
1350 case SBP2_STATUS_TRANSPORT_FAILURE:
1351 result = DID_BUS_BUSY << 16;
1352 break;
1353 case SBP2_STATUS_ILLEGAL_REQUEST:
1354 case SBP2_STATUS_VENDOR_DEPENDENT:
1355 default:
1356 result = DID_ERROR << 16;
1357 break;
1358 }
1359
1360 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1361 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1362 orb->cmd->sense_buffer);
1363 } else {
1364 /*
1365 * If the orb completes with status == NULL, something
1366 * went wrong, typically a bus reset happened mid-orb
1367 * or when sending the write (less likely).
1368 */
1369 result = DID_BUS_BUSY << 16;
1370 sbp2_conditionally_block(base_orb->lu);
1371 }
1372
1373 dma_unmap_single(device->card->device, orb->base.request_bus,
1374 sizeof(orb->request), DMA_TO_DEVICE);
1375 sbp2_unmap_scatterlist(device->card->device, orb);
1376
1377 orb->cmd->result = result;
1378 orb->cmd->scsi_done(orb->cmd);
1379}
1380
1381static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1382 struct fw_device *device, struct sbp2_logical_unit *lu)
1383{
1384 struct scatterlist *sg = scsi_sglist(orb->cmd);
1385 int i, n;
1386
1387 n = scsi_dma_map(orb->cmd);
1388 if (n <= 0)
1389 goto fail;
1390
1391 /*
1392 * Handle the special case where there is only one element in
1393 * the scatter list by converting it to an immediate block
1394 * request. This is also a workaround for broken devices such
1395 * as the second generation iPod which doesn't support page
1396 * tables.
1397 */
1398 if (n == 1) {
1399 orb->request.data_descriptor.high =
1400 cpu_to_be32(lu->tgt->address_high);
1401 orb->request.data_descriptor.low =
1402 cpu_to_be32(sg_dma_address(sg));
1403 orb->request.misc |=
1404 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1405 return 0;
1406 }
1407
1408 for_each_sg(sg, sg, n, i) {
1409 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1410 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1411 }
1412
1413 orb->page_table_bus =
1414 dma_map_single(device->card->device, orb->page_table,
1415 sizeof(orb->page_table), DMA_TO_DEVICE);
1416 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1417 goto fail_page_table;
1418
1419 /*
1420 * The data_descriptor pointer is the one case where we need
1421 * to fill in the node ID part of the address. All other
1422 * pointers assume that the data referenced reside on the
1423 * initiator (i.e. us), but data_descriptor can refer to data
1424 * on other nodes so we need to put our ID in descriptor.high.
1425 */
1426 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1427 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1428 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1429 COMMAND_ORB_DATA_SIZE(n));
1430
1431 return 0;
1432
1433 fail_page_table:
1434 scsi_dma_unmap(orb->cmd);
1435 fail:
1436 return -ENOMEM;
1437}
1438
1439/* SCSI stack integration */
1440
1441static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1442 struct scsi_cmnd *cmd)
1443{
1444 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1445 struct fw_device *device = target_parent_device(lu->tgt);
1446 struct sbp2_command_orb *orb;
1447 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1448
1449 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1450 if (orb == NULL)
1451 return SCSI_MLQUEUE_HOST_BUSY;
1452
1453 /* Initialize rcode to something not RCODE_COMPLETE. */
1454 orb->base.rcode = -1;
1455 kref_init(&orb->base.kref);
1456 orb->cmd = cmd;
1457 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1458 orb->request.misc = cpu_to_be32(
1459 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1460 COMMAND_ORB_SPEED(device->max_speed) |
1461 COMMAND_ORB_NOTIFY);
1462
1463 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1464 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1465
1466 generation = device->generation;
1467 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1468
1469 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1470 goto out;
1471
1472 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1473
1474 orb->base.callback = complete_command_orb;
1475 orb->base.request_bus =
1476 dma_map_single(device->card->device, &orb->request,
1477 sizeof(orb->request), DMA_TO_DEVICE);
1478 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1479 sbp2_unmap_scatterlist(device->card->device, orb);
1480 goto out;
1481 }
1482
1483 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1484 lu->command_block_agent_address + SBP2_ORB_POINTER);
1485 retval = 0;
1486 out:
1487 kref_put(&orb->base.kref, free_orb);
1488 return retval;
1489}
1490
1491static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1492{
1493 struct sbp2_logical_unit *lu = sdev->hostdata;
1494
1495 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1496 if (!lu)
1497 return -ENOSYS;
1498
1499 sdev->allow_restart = 1;
1500
1501 /*
1502 * SBP-2 does not require any alignment, but we set it anyway
1503 * for compatibility with earlier versions of this driver.
1504 */
1505 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1506
1507 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1508 sdev->inquiry_len = 36;
1509
1510 return 0;
1511}
1512
1513static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1514{
1515 struct sbp2_logical_unit *lu = sdev->hostdata;
1516
1517 sdev->use_10_for_rw = 1;
1518
1519 if (sbp2_param_exclusive_login)
1520 sdev->manage_start_stop = 1;
1521
1522 if (sdev->type == TYPE_ROM)
1523 sdev->use_10_for_ms = 1;
1524
1525 if (sdev->type == TYPE_DISK &&
1526 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1527 sdev->skip_ms_page_8 = 1;
1528
1529 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1530 sdev->fix_capacity = 1;
1531
1532 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1533 sdev->start_stop_pwr_cond = 1;
1534
1535 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1536 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1537
1538 return 0;
1539}
1540
1541/*
1542 * Called by scsi stack when something has really gone wrong. Usually
1543 * called when a command has timed-out for some reason.
1544 */
1545static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1546{
1547 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1548
1549 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1550 sbp2_agent_reset(lu);
1551 sbp2_cancel_orbs(lu);
1552
1553 return SUCCESS;
1554}
1555
1556/*
1557 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1558 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1559 *
1560 * This is the concatenation of target port identifier and logical unit
1561 * identifier as per SAM-2...SAM-4 annex A.
1562 */
1563static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1564 struct device_attribute *attr, char *buf)
1565{
1566 struct scsi_device *sdev = to_scsi_device(dev);
1567 struct sbp2_logical_unit *lu;
1568
1569 if (!sdev)
1570 return 0;
1571
1572 lu = sdev->hostdata;
1573
1574 return sprintf(buf, "%016llx:%06x:%04x\n",
1575 (unsigned long long)lu->tgt->guid,
1576 lu->tgt->directory_id, lu->lun);
1577}
1578
1579static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1580
1581static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1582 &dev_attr_ieee1394_id,
1583 NULL
1584};
1585
1586static struct scsi_host_template scsi_driver_template = {
1587 .module = THIS_MODULE,
1588 .name = "SBP-2 IEEE-1394",
1589 .proc_name = "sbp2",
1590 .queuecommand = sbp2_scsi_queuecommand,
1591 .slave_alloc = sbp2_scsi_slave_alloc,
1592 .slave_configure = sbp2_scsi_slave_configure,
1593 .eh_abort_handler = sbp2_scsi_abort,
1594 .this_id = -1,
1595 .sg_tablesize = SG_ALL,
1596 .max_segment_size = SBP2_MAX_SEG_SIZE,
1597 .can_queue = 1,
1598 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1599};
1600
1601MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1602MODULE_DESCRIPTION("SCSI over IEEE1394");
1603MODULE_LICENSE("GPL");
1604MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1605
1606/* Provide a module alias so root-on-sbp2 initrds don't break. */
1607MODULE_ALIAS("sbp2");
1608
1609static int __init sbp2_init(void)
1610{
1611 return driver_register(&sbp2_driver.driver);
1612}
1613
1614static void __exit sbp2_cleanup(void)
1615{
1616 driver_unregister(&sbp2_driver.driver);
1617}
1618
1619module_init(sbp2_init);
1620module_exit(sbp2_cleanup);