Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * SBP2 driver (SCSI over IEEE1394)
   3 *
   4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22 * The basic structure of this driver is based on the old storage driver,
  23 * drivers/ieee1394/sbp2.c, originally written by
  24 *     James Goodwin <jamesg@filanet.com>
  25 * with later contributions and ongoing maintenance from
  26 *     Ben Collins <bcollins@debian.org>,
  27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  28 * and many others.
  29 */
  30
  31#include <linux/blkdev.h>
  32#include <linux/bug.h>
  33#include <linux/completion.h>
  34#include <linux/delay.h>
  35#include <linux/device.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/firewire.h>
  38#include <linux/firewire-constants.h>
  39#include <linux/init.h>
  40#include <linux/jiffies.h>
  41#include <linux/kernel.h>
  42#include <linux/kref.h>
  43#include <linux/list.h>
  44#include <linux/mod_devicetable.h>
  45#include <linux/module.h>
  46#include <linux/moduleparam.h>
  47#include <linux/scatterlist.h>
  48#include <linux/slab.h>
  49#include <linux/spinlock.h>
  50#include <linux/string.h>
  51#include <linux/stringify.h>
  52#include <linux/workqueue.h>
  53
  54#include <asm/byteorder.h>
  55
  56#include <scsi/scsi.h>
  57#include <scsi/scsi_cmnd.h>
  58#include <scsi/scsi_device.h>
  59#include <scsi/scsi_host.h>
  60
  61/*
  62 * So far only bridges from Oxford Semiconductor are known to support
  63 * concurrent logins. Depending on firmware, four or two concurrent logins
  64 * are possible on OXFW911 and newer Oxsemi bridges.
  65 *
  66 * Concurrent logins are useful together with cluster filesystems.
  67 */
  68static bool sbp2_param_exclusive_login = 1;
  69module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  70MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  71		 "(default = Y, use N for concurrent initiators)");
  72
  73/*
  74 * Flags for firmware oddities
  75 *
  76 * - 128kB max transfer
  77 *   Limit transfer size. Necessary for some old bridges.
  78 *
  79 * - 36 byte inquiry
  80 *   When scsi_mod probes the device, let the inquiry command look like that
  81 *   from MS Windows.
  82 *
  83 * - skip mode page 8
  84 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  85 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  86 *
  87 * - fix capacity
  88 *   Tell sd_mod to correct the last sector number reported by read_capacity.
  89 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  90 *   Don't use this with devices which don't have this bug.
  91 *
  92 * - delay inquiry
  93 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  94 *
  95 * - power condition
  96 *   Set the power condition field in the START STOP UNIT commands sent by
  97 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  98 *   Some disks need this to spin down or to resume properly.
  99 *
 100 * - override internal blacklist
 101 *   Instead of adding to the built-in blacklist, use only the workarounds
 102 *   specified in the module load parameter.
 103 *   Useful if a blacklist entry interfered with a non-broken device.
 104 */
 105#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
 106#define SBP2_WORKAROUND_INQUIRY_36	0x2
 107#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
 108#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
 109#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
 110#define SBP2_INQUIRY_DELAY		12
 111#define SBP2_WORKAROUND_POWER_CONDITION	0x20
 112#define SBP2_WORKAROUND_OVERRIDE	0x100
 113
 114static int sbp2_param_workarounds;
 115module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 116MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 117	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 118	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 119	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 120	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 121	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 122	", set power condition in start stop unit = "
 123				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 124	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 125	", or a combination)");
 126
 127/*
 128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 129 * and one struct scsi_device per sbp2_logical_unit.
 130 */
 131struct sbp2_logical_unit {
 132	struct sbp2_target *tgt;
 133	struct list_head link;
 134	struct fw_address_handler address_handler;
 135	struct list_head orb_list;
 136
 137	u64 command_block_agent_address;
 138	u16 lun;
 139	int login_id;
 140
 141	/*
 142	 * The generation is updated once we've logged in or reconnected
 143	 * to the logical unit.  Thus, I/O to the device will automatically
 144	 * fail and get retried if it happens in a window where the device
 145	 * is not ready, e.g. after a bus reset but before we reconnect.
 146	 */
 147	int generation;
 148	int retries;
 149	work_func_t workfn;
 150	struct delayed_work work;
 151	bool has_sdev;
 152	bool blocked;
 153};
 154
 155static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 156{
 157	queue_delayed_work(fw_workqueue, &lu->work, delay);
 158}
 159
 160/*
 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 162 * and one struct Scsi_Host per sbp2_target.
 163 */
 164struct sbp2_target {
 165	struct fw_unit *unit;
 166	struct list_head lu_list;
 167
 168	u64 management_agent_address;
 169	u64 guid;
 170	int directory_id;
 171	int node_id;
 172	int address_high;
 173	unsigned int workarounds;
 174	unsigned int mgt_orb_timeout;
 175	unsigned int max_payload;
 176
 177	spinlock_t lock;
 178	int dont_block;	/* counter for each logical unit */
 179	int blocked;	/* ditto */
 180};
 181
 182static struct fw_device *target_parent_device(struct sbp2_target *tgt)
 183{
 184	return fw_parent_device(tgt->unit);
 185}
 186
 187static const struct device *tgt_dev(const struct sbp2_target *tgt)
 188{
 189	return &tgt->unit->device;
 190}
 191
 192static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
 193{
 194	return &lu->tgt->unit->device;
 195}
 196
 197/* Impossible login_id, to detect logout attempt before successful login */
 198#define INVALID_LOGIN_ID 0x10000
 199
 200#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
 201#define SBP2_ORB_NULL			0x80000000
 202#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
 203#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
 204
 205/*
 206 * There is no transport protocol limit to the CDB length,  but we implement
 207 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 208 */
 209#define SBP2_MAX_CDB_SIZE		16
 210
 211/*
 212 * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
 213 * for compatibility with earlier versions of this driver.
 214 */
 215#define SBP2_MAX_SEG_SIZE		0xfffc
 216
 217/* Unit directory keys */
 218#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
 219#define SBP2_CSR_FIRMWARE_REVISION	0x3c
 220#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
 221#define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
 222#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
 223
 224/* Management orb opcodes */
 225#define SBP2_LOGIN_REQUEST		0x0
 226#define SBP2_QUERY_LOGINS_REQUEST	0x1
 227#define SBP2_RECONNECT_REQUEST		0x3
 228#define SBP2_SET_PASSWORD_REQUEST	0x4
 229#define SBP2_LOGOUT_REQUEST		0x7
 230#define SBP2_ABORT_TASK_REQUEST		0xb
 231#define SBP2_ABORT_TASK_SET		0xc
 232#define SBP2_LOGICAL_UNIT_RESET		0xe
 233#define SBP2_TARGET_RESET_REQUEST	0xf
 234
 235/* Offsets for command block agent registers */
 236#define SBP2_AGENT_STATE		0x00
 237#define SBP2_AGENT_RESET		0x04
 238#define SBP2_ORB_POINTER		0x08
 239#define SBP2_DOORBELL			0x10
 240#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
 241
 242/* Status write response codes */
 243#define SBP2_STATUS_REQUEST_COMPLETE	0x0
 244#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
 245#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
 246#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
 247
 248#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
 249#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
 250#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
 251#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
 252#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
 253#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
 254#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
 255#define STATUS_GET_DATA(v)		((v).data)
 256
 257struct sbp2_status {
 258	u32 status;
 259	u32 orb_low;
 260	u8 data[24];
 261};
 262
 263struct sbp2_pointer {
 264	__be32 high;
 265	__be32 low;
 266};
 267
 268struct sbp2_orb {
 269	struct fw_transaction t;
 270	struct kref kref;
 271	dma_addr_t request_bus;
 272	int rcode;
 273	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 274	struct sbp2_logical_unit *lu;
 275	struct list_head link;
 276};
 277
 278#define MANAGEMENT_ORB_LUN(v)			((v))
 279#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
 280#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
 281#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
 282#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
 283#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
 284
 285#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
 286#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
 287
 288struct sbp2_management_orb {
 289	struct sbp2_orb base;
 290	struct {
 291		struct sbp2_pointer password;
 292		struct sbp2_pointer response;
 293		__be32 misc;
 294		__be32 length;
 295		struct sbp2_pointer status_fifo;
 296	} request;
 297	__be32 response[4];
 298	dma_addr_t response_bus;
 299	struct completion done;
 300	struct sbp2_status status;
 301};
 302
 303struct sbp2_login_response {
 304	__be32 misc;
 305	struct sbp2_pointer command_block_agent;
 306	__be32 reconnect_hold;
 307};
 308#define COMMAND_ORB_DATA_SIZE(v)	((v))
 309#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
 310#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
 311#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
 312#define COMMAND_ORB_SPEED(v)		((v) << 24)
 313#define COMMAND_ORB_DIRECTION		((1) << 27)
 314#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
 315#define COMMAND_ORB_NOTIFY		((1) << 31)
 316
 317struct sbp2_command_orb {
 318	struct sbp2_orb base;
 319	struct {
 320		struct sbp2_pointer next;
 321		struct sbp2_pointer data_descriptor;
 322		__be32 misc;
 323		u8 command_block[SBP2_MAX_CDB_SIZE];
 324	} request;
 325	struct scsi_cmnd *cmd;
 
 326
 327	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 328	dma_addr_t page_table_bus;
 329};
 330
 331#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 332#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 333
 334/*
 335 * List of devices with known bugs.
 336 *
 337 * The firmware_revision field, masked with 0xffff00, is the best
 338 * indicator for the type of bridge chip of a device.  It yields a few
 339 * false positives but this did not break correctly behaving devices
 340 * so far.
 341 */
 342static const struct {
 343	u32 firmware_revision;
 344	u32 model;
 345	unsigned int workarounds;
 346} sbp2_workarounds_table[] = {
 347	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 348		.firmware_revision	= 0x002800,
 349		.model			= 0x001010,
 350		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
 351					  SBP2_WORKAROUND_MODE_SENSE_8 |
 352					  SBP2_WORKAROUND_POWER_CONDITION,
 353	},
 354	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 355		.firmware_revision	= 0x002800,
 356		.model			= 0x000000,
 357		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 358	},
 359	/* Initio bridges, actually only needed for some older ones */ {
 360		.firmware_revision	= 0x000200,
 361		.model			= SBP2_ROM_VALUE_WILDCARD,
 362		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
 363	},
 364	/* PL-3507 bridge with Prolific firmware */ {
 365		.firmware_revision	= 0x012800,
 366		.model			= SBP2_ROM_VALUE_WILDCARD,
 367		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 368	},
 369	/* Symbios bridge */ {
 370		.firmware_revision	= 0xa0b800,
 371		.model			= SBP2_ROM_VALUE_WILDCARD,
 372		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 373	},
 374	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 375		.firmware_revision	= 0x002600,
 376		.model			= SBP2_ROM_VALUE_WILDCARD,
 377		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 378	},
 379	/*
 380	 * iPod 2nd generation: needs 128k max transfer size workaround
 381	 * iPod 3rd generation: needs fix capacity workaround
 382	 */
 383	{
 384		.firmware_revision	= 0x0a2700,
 385		.model			= 0x000000,
 386		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
 387					  SBP2_WORKAROUND_FIX_CAPACITY,
 388	},
 389	/* iPod 4th generation */ {
 390		.firmware_revision	= 0x0a2700,
 391		.model			= 0x000021,
 392		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 393	},
 394	/* iPod mini */ {
 395		.firmware_revision	= 0x0a2700,
 396		.model			= 0x000022,
 397		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 398	},
 399	/* iPod mini */ {
 400		.firmware_revision	= 0x0a2700,
 401		.model			= 0x000023,
 402		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 403	},
 404	/* iPod Photo */ {
 405		.firmware_revision	= 0x0a2700,
 406		.model			= 0x00007e,
 407		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 408	}
 409};
 410
 411static void free_orb(struct kref *kref)
 412{
 413	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 414
 415	kfree(orb);
 416}
 417
 418static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 419			      int tcode, int destination, int source,
 420			      int generation, unsigned long long offset,
 421			      void *payload, size_t length, void *callback_data)
 422{
 423	struct sbp2_logical_unit *lu = callback_data;
 424	struct sbp2_orb *orb;
 425	struct sbp2_status status;
 426	unsigned long flags;
 427
 428	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 429	    length < 8 || length > sizeof(status)) {
 430		fw_send_response(card, request, RCODE_TYPE_ERROR);
 431		return;
 432	}
 433
 434	status.status  = be32_to_cpup(payload);
 435	status.orb_low = be32_to_cpup(payload + 4);
 436	memset(status.data, 0, sizeof(status.data));
 437	if (length > 8)
 438		memcpy(status.data, payload + 8, length - 8);
 439
 440	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 441		dev_notice(lu_dev(lu),
 442			   "non-ORB related status write, not handled\n");
 443		fw_send_response(card, request, RCODE_COMPLETE);
 444		return;
 445	}
 446
 447	/* Lookup the orb corresponding to this status write. */
 448	spin_lock_irqsave(&lu->tgt->lock, flags);
 449	list_for_each_entry(orb, &lu->orb_list, link) {
 450		if (STATUS_GET_ORB_HIGH(status) == 0 &&
 451		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
 452			orb->rcode = RCODE_COMPLETE;
 453			list_del(&orb->link);
 454			break;
 455		}
 456	}
 457	spin_unlock_irqrestore(&lu->tgt->lock, flags);
 458
 459	if (&orb->link != &lu->orb_list) {
 460		orb->callback(orb, &status);
 461		kref_put(&orb->kref, free_orb); /* orb callback reference */
 462	} else {
 463		dev_err(lu_dev(lu), "status write for unknown ORB\n");
 464	}
 465
 466	fw_send_response(card, request, RCODE_COMPLETE);
 467}
 468
 469static void complete_transaction(struct fw_card *card, int rcode,
 470				 void *payload, size_t length, void *data)
 471{
 472	struct sbp2_orb *orb = data;
 473	unsigned long flags;
 474
 475	/*
 476	 * This is a little tricky.  We can get the status write for
 477	 * the orb before we get this callback.  The status write
 478	 * handler above will assume the orb pointer transaction was
 479	 * successful and set the rcode to RCODE_COMPLETE for the orb.
 480	 * So this callback only sets the rcode if it hasn't already
 481	 * been set and only does the cleanup if the transaction
 482	 * failed and we didn't already get a status write.
 483	 */
 484	spin_lock_irqsave(&orb->lu->tgt->lock, flags);
 485
 486	if (orb->rcode == -1)
 487		orb->rcode = rcode;
 488	if (orb->rcode != RCODE_COMPLETE) {
 489		list_del(&orb->link);
 490		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
 491
 492		orb->callback(orb, NULL);
 493		kref_put(&orb->kref, free_orb); /* orb callback reference */
 494	} else {
 495		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
 496	}
 497
 498	kref_put(&orb->kref, free_orb); /* transaction callback reference */
 499}
 500
 501static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 502			  int node_id, int generation, u64 offset)
 503{
 504	struct fw_device *device = target_parent_device(lu->tgt);
 505	struct sbp2_pointer orb_pointer;
 506	unsigned long flags;
 507
 508	orb_pointer.high = 0;
 509	orb_pointer.low = cpu_to_be32(orb->request_bus);
 510
 511	orb->lu = lu;
 512	spin_lock_irqsave(&lu->tgt->lock, flags);
 513	list_add_tail(&orb->link, &lu->orb_list);
 514	spin_unlock_irqrestore(&lu->tgt->lock, flags);
 515
 516	kref_get(&orb->kref); /* transaction callback reference */
 517	kref_get(&orb->kref); /* orb callback reference */
 518
 519	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 520			node_id, generation, device->max_speed, offset,
 521			&orb_pointer, 8, complete_transaction, orb);
 522}
 523
 524static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 525{
 526	struct fw_device *device = target_parent_device(lu->tgt);
 527	struct sbp2_orb *orb, *next;
 528	struct list_head list;
 
 529	int retval = -ENOENT;
 530
 531	INIT_LIST_HEAD(&list);
 532	spin_lock_irq(&lu->tgt->lock);
 533	list_splice_init(&lu->orb_list, &list);
 534	spin_unlock_irq(&lu->tgt->lock);
 535
 536	list_for_each_entry_safe(orb, next, &list, link) {
 537		retval = 0;
 538		if (fw_cancel_transaction(device->card, &orb->t) == 0)
 539			continue;
 540
 541		orb->rcode = RCODE_CANCELLED;
 542		orb->callback(orb, NULL);
 543		kref_put(&orb->kref, free_orb); /* orb callback reference */
 544	}
 545
 546	return retval;
 547}
 548
 549static void complete_management_orb(struct sbp2_orb *base_orb,
 550				    struct sbp2_status *status)
 551{
 552	struct sbp2_management_orb *orb =
 553		container_of(base_orb, struct sbp2_management_orb, base);
 554
 555	if (status)
 556		memcpy(&orb->status, status, sizeof(*status));
 557	complete(&orb->done);
 558}
 559
 560static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 561				    int generation, int function,
 562				    int lun_or_login_id, void *response)
 563{
 564	struct fw_device *device = target_parent_device(lu->tgt);
 565	struct sbp2_management_orb *orb;
 566	unsigned int timeout;
 567	int retval = -ENOMEM;
 568
 569	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 570		return 0;
 571
 572	orb = kzalloc(sizeof(*orb), GFP_NOIO);
 573	if (orb == NULL)
 574		return -ENOMEM;
 575
 576	kref_init(&orb->base.kref);
 577	orb->response_bus =
 578		dma_map_single(device->card->device, &orb->response,
 579			       sizeof(orb->response), DMA_FROM_DEVICE);
 580	if (dma_mapping_error(device->card->device, orb->response_bus))
 581		goto fail_mapping_response;
 582
 583	orb->request.response.high = 0;
 584	orb->request.response.low  = cpu_to_be32(orb->response_bus);
 585
 586	orb->request.misc = cpu_to_be32(
 587		MANAGEMENT_ORB_NOTIFY |
 588		MANAGEMENT_ORB_FUNCTION(function) |
 589		MANAGEMENT_ORB_LUN(lun_or_login_id));
 590	orb->request.length = cpu_to_be32(
 591		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 592
 593	orb->request.status_fifo.high =
 594		cpu_to_be32(lu->address_handler.offset >> 32);
 595	orb->request.status_fifo.low  =
 596		cpu_to_be32(lu->address_handler.offset);
 597
 598	if (function == SBP2_LOGIN_REQUEST) {
 599		/* Ask for 2^2 == 4 seconds reconnect grace period */
 600		orb->request.misc |= cpu_to_be32(
 601			MANAGEMENT_ORB_RECONNECT(2) |
 602			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 603		timeout = lu->tgt->mgt_orb_timeout;
 604	} else {
 605		timeout = SBP2_ORB_TIMEOUT;
 606	}
 607
 608	init_completion(&orb->done);
 609	orb->base.callback = complete_management_orb;
 610
 611	orb->base.request_bus =
 612		dma_map_single(device->card->device, &orb->request,
 613			       sizeof(orb->request), DMA_TO_DEVICE);
 614	if (dma_mapping_error(device->card->device, orb->base.request_bus))
 615		goto fail_mapping_request;
 616
 617	sbp2_send_orb(&orb->base, lu, node_id, generation,
 618		      lu->tgt->management_agent_address);
 619
 620	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 621
 622	retval = -EIO;
 623	if (sbp2_cancel_orbs(lu) == 0) {
 624		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
 625			orb->base.rcode);
 626		goto out;
 627	}
 628
 629	if (orb->base.rcode != RCODE_COMPLETE) {
 630		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
 631			orb->base.rcode);
 632		goto out;
 633	}
 634
 635	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 636	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
 637		dev_err(lu_dev(lu), "error status: %d:%d\n",
 638			 STATUS_GET_RESPONSE(orb->status),
 639			 STATUS_GET_SBP_STATUS(orb->status));
 640		goto out;
 641	}
 642
 643	retval = 0;
 644 out:
 645	dma_unmap_single(device->card->device, orb->base.request_bus,
 646			 sizeof(orb->request), DMA_TO_DEVICE);
 647 fail_mapping_request:
 648	dma_unmap_single(device->card->device, orb->response_bus,
 649			 sizeof(orb->response), DMA_FROM_DEVICE);
 650 fail_mapping_response:
 651	if (response)
 652		memcpy(response, orb->response, sizeof(orb->response));
 653	kref_put(&orb->base.kref, free_orb);
 654
 655	return retval;
 656}
 657
 658static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 659{
 660	struct fw_device *device = target_parent_device(lu->tgt);
 661	__be32 d = 0;
 662
 663	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 664			   lu->tgt->node_id, lu->generation, device->max_speed,
 665			   lu->command_block_agent_address + SBP2_AGENT_RESET,
 666			   &d, 4);
 667}
 668
 669static void complete_agent_reset_write_no_wait(struct fw_card *card,
 670		int rcode, void *payload, size_t length, void *data)
 671{
 672	kfree(data);
 673}
 674
 675static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 676{
 677	struct fw_device *device = target_parent_device(lu->tgt);
 678	struct fw_transaction *t;
 679	static __be32 d;
 680
 681	t = kmalloc(sizeof(*t), GFP_ATOMIC);
 682	if (t == NULL)
 683		return;
 684
 685	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 686			lu->tgt->node_id, lu->generation, device->max_speed,
 687			lu->command_block_agent_address + SBP2_AGENT_RESET,
 688			&d, 4, complete_agent_reset_write_no_wait, t);
 689}
 690
 691static inline void sbp2_allow_block(struct sbp2_target *tgt)
 692{
 693	spin_lock_irq(&tgt->lock);
 694	--tgt->dont_block;
 695	spin_unlock_irq(&tgt->lock);
 
 
 
 
 
 696}
 697
 698/*
 699 * Blocks lu->tgt if all of the following conditions are met:
 700 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 701 *     logical units have been finished (indicated by dont_block == 0).
 702 *   - lu->generation is stale.
 703 *
 704 * Note, scsi_block_requests() must be called while holding tgt->lock,
 705 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 706 * unblock the target.
 707 */
 708static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 709{
 710	struct sbp2_target *tgt = lu->tgt;
 711	struct fw_card *card = target_parent_device(tgt)->card;
 712	struct Scsi_Host *shost =
 713		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 714	unsigned long flags;
 715
 716	spin_lock_irqsave(&tgt->lock, flags);
 717	if (!tgt->dont_block && !lu->blocked &&
 718	    lu->generation != card->generation) {
 719		lu->blocked = true;
 720		if (++tgt->blocked == 1)
 721			scsi_block_requests(shost);
 722	}
 723	spin_unlock_irqrestore(&tgt->lock, flags);
 724}
 725
 726/*
 727 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 728 * Note, it is harmless to run scsi_unblock_requests() outside the
 729 * tgt->lock protected section.  On the other hand, running it inside
 730 * the section might clash with shost->host_lock.
 731 */
 732static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 733{
 734	struct sbp2_target *tgt = lu->tgt;
 735	struct fw_card *card = target_parent_device(tgt)->card;
 736	struct Scsi_Host *shost =
 737		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 
 738	bool unblock = false;
 739
 740	spin_lock_irq(&tgt->lock);
 741	if (lu->blocked && lu->generation == card->generation) {
 742		lu->blocked = false;
 743		unblock = --tgt->blocked == 0;
 744	}
 745	spin_unlock_irq(&tgt->lock);
 746
 747	if (unblock)
 748		scsi_unblock_requests(shost);
 749}
 750
 751/*
 752 * Prevents future blocking of tgt and unblocks it.
 753 * Note, it is harmless to run scsi_unblock_requests() outside the
 754 * tgt->lock protected section.  On the other hand, running it inside
 755 * the section might clash with shost->host_lock.
 756 */
 757static void sbp2_unblock(struct sbp2_target *tgt)
 758{
 
 759	struct Scsi_Host *shost =
 760		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 
 761
 762	spin_lock_irq(&tgt->lock);
 763	++tgt->dont_block;
 764	spin_unlock_irq(&tgt->lock);
 765
 766	scsi_unblock_requests(shost);
 767}
 768
 769static int sbp2_lun2int(u16 lun)
 770{
 771	struct scsi_lun eight_bytes_lun;
 772
 773	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 774	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 775	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 776
 777	return scsilun_to_int(&eight_bytes_lun);
 778}
 779
 780/*
 781 * Write retransmit retry values into the BUSY_TIMEOUT register.
 782 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 783 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 784 *   saner value after logging into the device.
 785 * - The dual-phase retry protocol is optional to implement, and if not
 786 *   supported, writes to the dual-phase portion of the register will be
 787 *   ignored. We try to write the original 1394-1995 default here.
 788 * - In the case of devices that are also SBP-3-compliant, all writes are
 789 *   ignored, as the register is read-only, but contains single-phase retry of
 790 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 791 *   write attempt is safe and yields more consistent behavior for all devices.
 792 *
 793 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 794 * and section 6.4 of the SBP-3 spec for further details.
 795 */
 796static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 797{
 798	struct fw_device *device = target_parent_device(lu->tgt);
 799	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 800
 801	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 802			   lu->tgt->node_id, lu->generation, device->max_speed,
 803			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 804}
 805
 806static void sbp2_reconnect(struct work_struct *work);
 807
 808static void sbp2_login(struct work_struct *work)
 809{
 810	struct sbp2_logical_unit *lu =
 811		container_of(work, struct sbp2_logical_unit, work.work);
 812	struct sbp2_target *tgt = lu->tgt;
 813	struct fw_device *device = target_parent_device(tgt);
 814	struct Scsi_Host *shost;
 815	struct scsi_device *sdev;
 816	struct sbp2_login_response response;
 817	int generation, node_id, local_node_id;
 818
 819	if (fw_device_is_shutdown(device))
 820		return;
 821
 822	generation    = device->generation;
 823	smp_rmb();    /* node IDs must not be older than generation */
 824	node_id       = device->node_id;
 825	local_node_id = device->card->node_id;
 826
 827	/* If this is a re-login attempt, log out, or we might be rejected. */
 828	if (lu->has_sdev)
 829		sbp2_send_management_orb(lu, device->node_id, generation,
 830				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 831
 832	if (sbp2_send_management_orb(lu, node_id, generation,
 833				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 834		if (lu->retries++ < 5) {
 835			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 836		} else {
 837			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
 838				lu->lun);
 839			/* Let any waiting I/O fail from now on. */
 840			sbp2_unblock(lu->tgt);
 841		}
 842		return;
 843	}
 844
 845	tgt->node_id	  = node_id;
 846	tgt->address_high = local_node_id << 16;
 847	smp_wmb();	  /* node IDs must not be older than generation */
 848	lu->generation	  = generation;
 849
 850	lu->command_block_agent_address =
 851		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 852		      << 32) | be32_to_cpu(response.command_block_agent.low);
 853	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 854
 855	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
 856		   lu->lun, lu->retries);
 857
 858	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 859	sbp2_set_busy_timeout(lu);
 860
 861	lu->workfn = sbp2_reconnect;
 862	sbp2_agent_reset(lu);
 863
 864	/* This was a re-login. */
 865	if (lu->has_sdev) {
 866		sbp2_cancel_orbs(lu);
 867		sbp2_conditionally_unblock(lu);
 868
 869		return;
 870	}
 871
 872	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 873		ssleep(SBP2_INQUIRY_DELAY);
 874
 875	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 876	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 877	/*
 878	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
 879	 * Therefore __scsi_add_device() will get into trouble if a bus reset
 880	 * happens in parallel.  It will either fail or leave us with an
 881	 * unusable sdev.  As a workaround we check for this and retry the
 882	 * whole login and SCSI probing.
 883	 */
 884
 885	/* Reported error during __scsi_add_device() */
 886	if (IS_ERR(sdev))
 887		goto out_logout_login;
 888
 889	/* Unreported error during __scsi_add_device() */
 890	smp_rmb(); /* get current card generation */
 891	if (generation != device->card->generation) {
 892		scsi_remove_device(sdev);
 893		scsi_device_put(sdev);
 894		goto out_logout_login;
 895	}
 896
 897	/* No error during __scsi_add_device() */
 898	lu->has_sdev = true;
 899	scsi_device_put(sdev);
 900	sbp2_allow_block(tgt);
 901
 902	return;
 903
 904 out_logout_login:
 905	smp_rmb(); /* generation may have changed */
 906	generation = device->generation;
 907	smp_rmb(); /* node_id must not be older than generation */
 908
 909	sbp2_send_management_orb(lu, device->node_id, generation,
 910				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 911	/*
 912	 * If a bus reset happened, sbp2_update will have requeued
 913	 * lu->work already.  Reset the work from reconnect to login.
 914	 */
 915	lu->workfn = sbp2_login;
 916}
 917
 918static void sbp2_reconnect(struct work_struct *work)
 919{
 920	struct sbp2_logical_unit *lu =
 921		container_of(work, struct sbp2_logical_unit, work.work);
 922	struct sbp2_target *tgt = lu->tgt;
 923	struct fw_device *device = target_parent_device(tgt);
 924	int generation, node_id, local_node_id;
 925
 926	if (fw_device_is_shutdown(device))
 927		return;
 928
 929	generation    = device->generation;
 930	smp_rmb();    /* node IDs must not be older than generation */
 931	node_id       = device->node_id;
 932	local_node_id = device->card->node_id;
 933
 934	if (sbp2_send_management_orb(lu, node_id, generation,
 935				     SBP2_RECONNECT_REQUEST,
 936				     lu->login_id, NULL) < 0) {
 937		/*
 938		 * If reconnect was impossible even though we are in the
 939		 * current generation, fall back and try to log in again.
 940		 *
 941		 * We could check for "Function rejected" status, but
 942		 * looking at the bus generation as simpler and more general.
 943		 */
 944		smp_rmb(); /* get current card generation */
 945		if (generation == device->card->generation ||
 946		    lu->retries++ >= 5) {
 947			dev_err(tgt_dev(tgt), "failed to reconnect\n");
 948			lu->retries = 0;
 949			lu->workfn = sbp2_login;
 950		}
 951		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 952
 953		return;
 954	}
 955
 956	tgt->node_id      = node_id;
 957	tgt->address_high = local_node_id << 16;
 958	smp_wmb();	  /* node IDs must not be older than generation */
 959	lu->generation	  = generation;
 960
 961	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
 962		   lu->lun, lu->retries);
 963
 964	sbp2_agent_reset(lu);
 965	sbp2_cancel_orbs(lu);
 966	sbp2_conditionally_unblock(lu);
 967}
 968
 969static void sbp2_lu_workfn(struct work_struct *work)
 970{
 971	struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
 972						struct sbp2_logical_unit, work);
 973	lu->workfn(work);
 974}
 975
 976static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 977{
 978	struct sbp2_logical_unit *lu;
 979
 980	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 981	if (!lu)
 982		return -ENOMEM;
 983
 984	lu->address_handler.length           = 0x100;
 985	lu->address_handler.address_callback = sbp2_status_write;
 986	lu->address_handler.callback_data    = lu;
 987
 988	if (fw_core_add_address_handler(&lu->address_handler,
 989					&fw_high_memory_region) < 0) {
 990		kfree(lu);
 991		return -ENOMEM;
 992	}
 993
 994	lu->tgt      = tgt;
 995	lu->lun      = lun_entry & 0xffff;
 996	lu->login_id = INVALID_LOGIN_ID;
 997	lu->retries  = 0;
 998	lu->has_sdev = false;
 999	lu->blocked  = false;
1000	++tgt->dont_block;
1001	INIT_LIST_HEAD(&lu->orb_list);
1002	lu->workfn = sbp2_login;
1003	INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
1004
1005	list_add_tail(&lu->link, &tgt->lu_list);
1006	return 0;
1007}
1008
1009static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1010				    const u32 *leaf)
1011{
1012	if ((leaf[0] & 0xffff0000) == 0x00020000)
1013		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1014}
1015
1016static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1017				      const u32 *directory)
1018{
1019	struct fw_csr_iterator ci;
1020	int key, value;
1021
1022	fw_csr_iterator_init(&ci, directory);
1023	while (fw_csr_iterator_next(&ci, &key, &value))
1024		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1025		    sbp2_add_logical_unit(tgt, value) < 0)
1026			return -ENOMEM;
1027	return 0;
1028}
1029
1030static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1031			      u32 *model, u32 *firmware_revision)
1032{
1033	struct fw_csr_iterator ci;
1034	int key, value;
1035
1036	fw_csr_iterator_init(&ci, directory);
1037	while (fw_csr_iterator_next(&ci, &key, &value)) {
1038		switch (key) {
1039
1040		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1041			tgt->management_agent_address =
1042					CSR_REGISTER_BASE + 4 * value;
1043			break;
1044
1045		case CSR_DIRECTORY_ID:
1046			tgt->directory_id = value;
1047			break;
1048
1049		case CSR_MODEL:
1050			*model = value;
1051			break;
1052
1053		case SBP2_CSR_FIRMWARE_REVISION:
1054			*firmware_revision = value;
1055			break;
1056
1057		case SBP2_CSR_UNIT_CHARACTERISTICS:
1058			/* the timeout value is stored in 500ms units */
1059			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1060			break;
1061
1062		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1063			if (sbp2_add_logical_unit(tgt, value) < 0)
1064				return -ENOMEM;
1065			break;
1066
1067		case SBP2_CSR_UNIT_UNIQUE_ID:
1068			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1069			break;
1070
1071		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1072			/* Adjust for the increment in the iterator */
1073			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1074				return -ENOMEM;
1075			break;
1076		}
1077	}
1078	return 0;
1079}
1080
1081/*
1082 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1083 * provided in the config rom. Most devices do provide a value, which
1084 * we'll use for login management orbs, but with some sane limits.
1085 */
1086static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1087{
1088	unsigned int timeout = tgt->mgt_orb_timeout;
1089
1090	if (timeout > 40000)
1091		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1092			   timeout / 1000);
1093
1094	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1095}
1096
1097static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1098				  u32 firmware_revision)
1099{
1100	int i;
1101	unsigned int w = sbp2_param_workarounds;
1102
1103	if (w)
1104		dev_notice(tgt_dev(tgt),
1105			   "Please notify linux1394-devel@lists.sf.net "
1106			   "if you need the workarounds parameter\n");
1107
1108	if (w & SBP2_WORKAROUND_OVERRIDE)
1109		goto out;
1110
1111	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1112
1113		if (sbp2_workarounds_table[i].firmware_revision !=
1114		    (firmware_revision & 0xffffff00))
1115			continue;
1116
1117		if (sbp2_workarounds_table[i].model != model &&
1118		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1119			continue;
1120
1121		w |= sbp2_workarounds_table[i].workarounds;
1122		break;
1123	}
1124 out:
1125	if (w)
1126		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1127			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1128			   w, firmware_revision, model);
1129	tgt->workarounds = w;
1130}
1131
1132static struct scsi_host_template scsi_driver_template;
1133static void sbp2_remove(struct fw_unit *unit);
1134
1135static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1136{
1137	struct fw_device *device = fw_parent_device(unit);
1138	struct sbp2_target *tgt;
1139	struct sbp2_logical_unit *lu;
1140	struct Scsi_Host *shost;
1141	u32 model, firmware_revision;
1142
1143	/* cannot (or should not) handle targets on the local node */
1144	if (device->is_local)
1145		return -ENODEV;
1146
1147	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1148		WARN_ON(dma_set_max_seg_size(device->card->device,
1149					     SBP2_MAX_SEG_SIZE));
1150
1151	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1152	if (shost == NULL)
1153		return -ENOMEM;
1154
1155	tgt = (struct sbp2_target *)shost->hostdata;
1156	dev_set_drvdata(&unit->device, tgt);
1157	tgt->unit = unit;
1158	INIT_LIST_HEAD(&tgt->lu_list);
1159	spin_lock_init(&tgt->lock);
1160	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1161
1162	if (fw_device_enable_phys_dma(device) < 0)
1163		goto fail_shost_put;
1164
1165	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1166
1167	if (scsi_add_host_with_dma(shost, &unit->device,
1168				   device->card->device) < 0)
1169		goto fail_shost_put;
1170
1171	/* implicit directory ID */
1172	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1173			     + CSR_CONFIG_ROM) & 0xffffff;
1174
1175	firmware_revision = SBP2_ROM_VALUE_MISSING;
1176	model		  = SBP2_ROM_VALUE_MISSING;
1177
1178	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1179			       &firmware_revision) < 0)
1180		goto fail_remove;
1181
1182	sbp2_clamp_management_orb_timeout(tgt);
1183	sbp2_init_workarounds(tgt, model, firmware_revision);
1184
1185	/*
1186	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1187	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1188	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1189	 * if we set this to max_speed + 7, we get the right value.
1190	 */
1191	tgt->max_payload = min3(device->max_speed + 7, 10U,
1192				device->card->max_receive - 1);
1193
1194	/* Do the login in a workqueue so we can easily reschedule retries. */
1195	list_for_each_entry(lu, &tgt->lu_list, link)
1196		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1197
1198	return 0;
1199
1200 fail_remove:
1201	sbp2_remove(unit);
1202	return -ENOMEM;
1203
1204 fail_shost_put:
1205	scsi_host_put(shost);
1206	return -ENOMEM;
1207}
1208
1209static void sbp2_update(struct fw_unit *unit)
1210{
1211	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1212	struct sbp2_logical_unit *lu;
1213
1214	fw_device_enable_phys_dma(fw_parent_device(unit));
1215
1216	/*
1217	 * Fw-core serializes sbp2_update() against sbp2_remove().
1218	 * Iteration over tgt->lu_list is therefore safe here.
1219	 */
1220	list_for_each_entry(lu, &tgt->lu_list, link) {
1221		sbp2_conditionally_block(lu);
1222		lu->retries = 0;
1223		sbp2_queue_work(lu, 0);
1224	}
1225}
1226
1227static void sbp2_remove(struct fw_unit *unit)
1228{
1229	struct fw_device *device = fw_parent_device(unit);
1230	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1231	struct sbp2_logical_unit *lu, *next;
1232	struct Scsi_Host *shost =
1233		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1234	struct scsi_device *sdev;
1235
1236	/* prevent deadlocks */
1237	sbp2_unblock(tgt);
1238
1239	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1240		cancel_delayed_work_sync(&lu->work);
1241		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1242		if (sdev) {
1243			scsi_remove_device(sdev);
1244			scsi_device_put(sdev);
1245		}
1246		if (lu->login_id != INVALID_LOGIN_ID) {
1247			int generation, node_id;
1248			/*
1249			 * tgt->node_id may be obsolete here if we failed
1250			 * during initial login or after a bus reset where
1251			 * the topology changed.
1252			 */
1253			generation = device->generation;
1254			smp_rmb(); /* node_id vs. generation */
1255			node_id    = device->node_id;
1256			sbp2_send_management_orb(lu, node_id, generation,
1257						 SBP2_LOGOUT_REQUEST,
1258						 lu->login_id, NULL);
1259		}
1260		fw_core_remove_address_handler(&lu->address_handler);
1261		list_del(&lu->link);
1262		kfree(lu);
1263	}
1264	scsi_remove_host(shost);
1265	dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1266
1267	scsi_host_put(shost);
1268}
1269
1270#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1271#define SBP2_SW_VERSION_ENTRY	0x00010483
1272
1273static const struct ieee1394_device_id sbp2_id_table[] = {
1274	{
1275		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1276				IEEE1394_MATCH_VERSION,
1277		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1278		.version      = SBP2_SW_VERSION_ENTRY,
1279	},
1280	{ }
1281};
1282
1283static struct fw_driver sbp2_driver = {
1284	.driver   = {
1285		.owner  = THIS_MODULE,
1286		.name   = KBUILD_MODNAME,
1287		.bus    = &fw_bus_type,
1288	},
1289	.probe    = sbp2_probe,
1290	.update   = sbp2_update,
1291	.remove   = sbp2_remove,
1292	.id_table = sbp2_id_table,
1293};
1294
1295static void sbp2_unmap_scatterlist(struct device *card_device,
1296				   struct sbp2_command_orb *orb)
1297{
1298	scsi_dma_unmap(orb->cmd);
1299
1300	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1301		dma_unmap_single(card_device, orb->page_table_bus,
1302				 sizeof(orb->page_table), DMA_TO_DEVICE);
1303}
1304
1305static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1306{
1307	int sam_status;
1308	int sfmt = (sbp2_status[0] >> 6) & 0x03;
1309
1310	if (sfmt == 2 || sfmt == 3) {
1311		/*
1312		 * Reserved for future standardization (2) or
1313		 * Status block format vendor-dependent (3)
1314		 */
1315		return DID_ERROR << 16;
1316	}
1317
1318	sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1319	sense_data[1] = 0x0;
1320	sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1321	sense_data[3] = sbp2_status[4];
1322	sense_data[4] = sbp2_status[5];
1323	sense_data[5] = sbp2_status[6];
1324	sense_data[6] = sbp2_status[7];
1325	sense_data[7] = 10;
1326	sense_data[8] = sbp2_status[8];
1327	sense_data[9] = sbp2_status[9];
1328	sense_data[10] = sbp2_status[10];
1329	sense_data[11] = sbp2_status[11];
1330	sense_data[12] = sbp2_status[2];
1331	sense_data[13] = sbp2_status[3];
1332	sense_data[14] = sbp2_status[12];
1333	sense_data[15] = sbp2_status[13];
1334
1335	sam_status = sbp2_status[0] & 0x3f;
1336
1337	switch (sam_status) {
1338	case SAM_STAT_GOOD:
1339	case SAM_STAT_CHECK_CONDITION:
1340	case SAM_STAT_CONDITION_MET:
1341	case SAM_STAT_BUSY:
1342	case SAM_STAT_RESERVATION_CONFLICT:
1343	case SAM_STAT_COMMAND_TERMINATED:
1344		return DID_OK << 16 | sam_status;
1345
1346	default:
1347		return DID_ERROR << 16;
1348	}
1349}
1350
1351static void complete_command_orb(struct sbp2_orb *base_orb,
1352				 struct sbp2_status *status)
1353{
1354	struct sbp2_command_orb *orb =
1355		container_of(base_orb, struct sbp2_command_orb, base);
1356	struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1357	int result;
1358
1359	if (status != NULL) {
1360		if (STATUS_GET_DEAD(*status))
1361			sbp2_agent_reset_no_wait(base_orb->lu);
1362
1363		switch (STATUS_GET_RESPONSE(*status)) {
1364		case SBP2_STATUS_REQUEST_COMPLETE:
1365			result = DID_OK << 16;
1366			break;
1367		case SBP2_STATUS_TRANSPORT_FAILURE:
1368			result = DID_BUS_BUSY << 16;
1369			break;
1370		case SBP2_STATUS_ILLEGAL_REQUEST:
1371		case SBP2_STATUS_VENDOR_DEPENDENT:
1372		default:
1373			result = DID_ERROR << 16;
1374			break;
1375		}
1376
1377		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379							   orb->cmd->sense_buffer);
1380	} else {
1381		/*
1382		 * If the orb completes with status == NULL, something
1383		 * went wrong, typically a bus reset happened mid-orb
1384		 * or when sending the write (less likely).
1385		 */
1386		result = DID_BUS_BUSY << 16;
1387		sbp2_conditionally_block(base_orb->lu);
1388	}
1389
1390	dma_unmap_single(device->card->device, orb->base.request_bus,
1391			 sizeof(orb->request), DMA_TO_DEVICE);
1392	sbp2_unmap_scatterlist(device->card->device, orb);
1393
1394	orb->cmd->result = result;
1395	orb->cmd->scsi_done(orb->cmd);
1396}
1397
1398static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399		struct fw_device *device, struct sbp2_logical_unit *lu)
1400{
1401	struct scatterlist *sg = scsi_sglist(orb->cmd);
1402	int i, n;
1403
1404	n = scsi_dma_map(orb->cmd);
1405	if (n <= 0)
1406		goto fail;
1407
1408	/*
1409	 * Handle the special case where there is only one element in
1410	 * the scatter list by converting it to an immediate block
1411	 * request. This is also a workaround for broken devices such
1412	 * as the second generation iPod which doesn't support page
1413	 * tables.
1414	 */
1415	if (n == 1) {
1416		orb->request.data_descriptor.high =
1417			cpu_to_be32(lu->tgt->address_high);
1418		orb->request.data_descriptor.low  =
1419			cpu_to_be32(sg_dma_address(sg));
1420		orb->request.misc |=
1421			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1422		return 0;
1423	}
1424
1425	for_each_sg(sg, sg, n, i) {
1426		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1427		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1428	}
1429
1430	orb->page_table_bus =
1431		dma_map_single(device->card->device, orb->page_table,
1432			       sizeof(orb->page_table), DMA_TO_DEVICE);
1433	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1434		goto fail_page_table;
1435
1436	/*
1437	 * The data_descriptor pointer is the one case where we need
1438	 * to fill in the node ID part of the address.  All other
1439	 * pointers assume that the data referenced reside on the
1440	 * initiator (i.e. us), but data_descriptor can refer to data
1441	 * on other nodes so we need to put our ID in descriptor.high.
1442	 */
1443	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1444	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1445	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1446					 COMMAND_ORB_DATA_SIZE(n));
1447
1448	return 0;
1449
1450 fail_page_table:
1451	scsi_dma_unmap(orb->cmd);
1452 fail:
1453	return -ENOMEM;
1454}
1455
1456/* SCSI stack integration */
1457
1458static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1459				  struct scsi_cmnd *cmd)
1460{
1461	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1462	struct fw_device *device = target_parent_device(lu->tgt);
1463	struct sbp2_command_orb *orb;
1464	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1465
 
 
 
 
 
 
 
 
 
 
 
1466	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1467	if (orb == NULL)
1468		return SCSI_MLQUEUE_HOST_BUSY;
1469
1470	/* Initialize rcode to something not RCODE_COMPLETE. */
1471	orb->base.rcode = -1;
1472	kref_init(&orb->base.kref);
 
1473	orb->cmd = cmd;
1474	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1475	orb->request.misc = cpu_to_be32(
1476		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1477		COMMAND_ORB_SPEED(device->max_speed) |
1478		COMMAND_ORB_NOTIFY);
1479
1480	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1481		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1482
1483	generation = device->generation;
1484	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1485
1486	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1487		goto out;
1488
1489	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1490
1491	orb->base.callback = complete_command_orb;
1492	orb->base.request_bus =
1493		dma_map_single(device->card->device, &orb->request,
1494			       sizeof(orb->request), DMA_TO_DEVICE);
1495	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1496		sbp2_unmap_scatterlist(device->card->device, orb);
1497		goto out;
1498	}
1499
1500	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1501		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1502	retval = 0;
1503 out:
1504	kref_put(&orb->base.kref, free_orb);
1505	return retval;
1506}
1507
1508static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1509{
1510	struct sbp2_logical_unit *lu = sdev->hostdata;
1511
1512	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1513	if (!lu)
1514		return -ENOSYS;
1515
1516	sdev->allow_restart = 1;
1517
1518	/*
1519	 * SBP-2 does not require any alignment, but we set it anyway
1520	 * for compatibility with earlier versions of this driver.
1521	 */
1522	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1523
1524	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1525		sdev->inquiry_len = 36;
1526
1527	return 0;
1528}
1529
1530static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1531{
1532	struct sbp2_logical_unit *lu = sdev->hostdata;
1533
1534	sdev->use_10_for_rw = 1;
1535
1536	if (sbp2_param_exclusive_login)
1537		sdev->manage_start_stop = 1;
1538
1539	if (sdev->type == TYPE_ROM)
1540		sdev->use_10_for_ms = 1;
1541
1542	if (sdev->type == TYPE_DISK &&
1543	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1544		sdev->skip_ms_page_8 = 1;
1545
1546	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1547		sdev->fix_capacity = 1;
1548
1549	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1550		sdev->start_stop_pwr_cond = 1;
1551
1552	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1553		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1554
1555	return 0;
1556}
1557
1558/*
1559 * Called by scsi stack when something has really gone wrong.  Usually
1560 * called when a command has timed-out for some reason.
1561 */
1562static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1563{
1564	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1565
1566	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1567	sbp2_agent_reset(lu);
1568	sbp2_cancel_orbs(lu);
1569
1570	return SUCCESS;
1571}
1572
1573/*
1574 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1575 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1576 *
1577 * This is the concatenation of target port identifier and logical unit
1578 * identifier as per SAM-2...SAM-4 annex A.
1579 */
1580static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1581			struct device_attribute *attr, char *buf)
1582{
1583	struct scsi_device *sdev = to_scsi_device(dev);
1584	struct sbp2_logical_unit *lu;
1585
1586	if (!sdev)
1587		return 0;
1588
1589	lu = sdev->hostdata;
1590
1591	return sprintf(buf, "%016llx:%06x:%04x\n",
1592			(unsigned long long)lu->tgt->guid,
1593			lu->tgt->directory_id, lu->lun);
1594}
1595
1596static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1597
1598static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1599	&dev_attr_ieee1394_id,
1600	NULL
1601};
1602
1603static struct scsi_host_template scsi_driver_template = {
1604	.module			= THIS_MODULE,
1605	.name			= "SBP-2 IEEE-1394",
1606	.proc_name		= "sbp2",
1607	.queuecommand		= sbp2_scsi_queuecommand,
1608	.slave_alloc		= sbp2_scsi_slave_alloc,
1609	.slave_configure	= sbp2_scsi_slave_configure,
1610	.eh_abort_handler	= sbp2_scsi_abort,
1611	.this_id		= -1,
1612	.sg_tablesize		= SG_ALL,
1613	.use_clustering		= ENABLE_CLUSTERING,
 
1614	.can_queue		= 1,
1615	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1616};
1617
1618MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1619MODULE_DESCRIPTION("SCSI over IEEE1394");
1620MODULE_LICENSE("GPL");
1621MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1622
1623/* Provide a module alias so root-on-sbp2 initrds don't break. */
1624MODULE_ALIAS("sbp2");
1625
1626static int __init sbp2_init(void)
1627{
1628	return driver_register(&sbp2_driver.driver);
1629}
1630
1631static void __exit sbp2_cleanup(void)
1632{
1633	driver_unregister(&sbp2_driver.driver);
1634}
1635
1636module_init(sbp2_init);
1637module_exit(sbp2_cleanup);
v3.15
   1/*
   2 * SBP2 driver (SCSI over IEEE1394)
   3 *
   4 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22 * The basic structure of this driver is based on the old storage driver,
  23 * drivers/ieee1394/sbp2.c, originally written by
  24 *     James Goodwin <jamesg@filanet.com>
  25 * with later contributions and ongoing maintenance from
  26 *     Ben Collins <bcollins@debian.org>,
  27 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
  28 * and many others.
  29 */
  30
  31#include <linux/blkdev.h>
  32#include <linux/bug.h>
  33#include <linux/completion.h>
  34#include <linux/delay.h>
  35#include <linux/device.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/firewire.h>
  38#include <linux/firewire-constants.h>
  39#include <linux/init.h>
  40#include <linux/jiffies.h>
  41#include <linux/kernel.h>
  42#include <linux/kref.h>
  43#include <linux/list.h>
  44#include <linux/mod_devicetable.h>
  45#include <linux/module.h>
  46#include <linux/moduleparam.h>
  47#include <linux/scatterlist.h>
  48#include <linux/slab.h>
  49#include <linux/spinlock.h>
  50#include <linux/string.h>
  51#include <linux/stringify.h>
  52#include <linux/workqueue.h>
  53
  54#include <asm/byteorder.h>
  55
  56#include <scsi/scsi.h>
  57#include <scsi/scsi_cmnd.h>
  58#include <scsi/scsi_device.h>
  59#include <scsi/scsi_host.h>
  60
  61/*
  62 * So far only bridges from Oxford Semiconductor are known to support
  63 * concurrent logins. Depending on firmware, four or two concurrent logins
  64 * are possible on OXFW911 and newer Oxsemi bridges.
  65 *
  66 * Concurrent logins are useful together with cluster filesystems.
  67 */
  68static bool sbp2_param_exclusive_login = 1;
  69module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  70MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  71		 "(default = Y, use N for concurrent initiators)");
  72
  73/*
  74 * Flags for firmware oddities
  75 *
  76 * - 128kB max transfer
  77 *   Limit transfer size. Necessary for some old bridges.
  78 *
  79 * - 36 byte inquiry
  80 *   When scsi_mod probes the device, let the inquiry command look like that
  81 *   from MS Windows.
  82 *
  83 * - skip mode page 8
  84 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
  85 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
  86 *
  87 * - fix capacity
  88 *   Tell sd_mod to correct the last sector number reported by read_capacity.
  89 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
  90 *   Don't use this with devices which don't have this bug.
  91 *
  92 * - delay inquiry
  93 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  94 *
  95 * - power condition
  96 *   Set the power condition field in the START STOP UNIT commands sent by
  97 *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  98 *   Some disks need this to spin down or to resume properly.
  99 *
 100 * - override internal blacklist
 101 *   Instead of adding to the built-in blacklist, use only the workarounds
 102 *   specified in the module load parameter.
 103 *   Useful if a blacklist entry interfered with a non-broken device.
 104 */
 105#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
 106#define SBP2_WORKAROUND_INQUIRY_36	0x2
 107#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
 108#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
 109#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
 110#define SBP2_INQUIRY_DELAY		12
 111#define SBP2_WORKAROUND_POWER_CONDITION	0x20
 112#define SBP2_WORKAROUND_OVERRIDE	0x100
 113
 114static int sbp2_param_workarounds;
 115module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
 116MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
 117	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
 118	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
 119	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
 120	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
 121	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
 122	", set power condition in start stop unit = "
 123				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
 124	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
 125	", or a combination)");
 126
 127/*
 128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 129 * and one struct scsi_device per sbp2_logical_unit.
 130 */
 131struct sbp2_logical_unit {
 132	struct sbp2_target *tgt;
 133	struct list_head link;
 134	struct fw_address_handler address_handler;
 135	struct list_head orb_list;
 136
 137	u64 command_block_agent_address;
 138	u16 lun;
 139	int login_id;
 140
 141	/*
 142	 * The generation is updated once we've logged in or reconnected
 143	 * to the logical unit.  Thus, I/O to the device will automatically
 144	 * fail and get retried if it happens in a window where the device
 145	 * is not ready, e.g. after a bus reset but before we reconnect.
 146	 */
 147	int generation;
 148	int retries;
 149	work_func_t workfn;
 150	struct delayed_work work;
 151	bool has_sdev;
 152	bool blocked;
 153};
 154
 155static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
 156{
 157	queue_delayed_work(fw_workqueue, &lu->work, delay);
 158}
 159
 160/*
 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 162 * and one struct Scsi_Host per sbp2_target.
 163 */
 164struct sbp2_target {
 165	struct fw_unit *unit;
 166	struct list_head lu_list;
 167
 168	u64 management_agent_address;
 169	u64 guid;
 170	int directory_id;
 171	int node_id;
 172	int address_high;
 173	unsigned int workarounds;
 174	unsigned int mgt_orb_timeout;
 175	unsigned int max_payload;
 176
 
 177	int dont_block;	/* counter for each logical unit */
 178	int blocked;	/* ditto */
 179};
 180
 181static struct fw_device *target_parent_device(struct sbp2_target *tgt)
 182{
 183	return fw_parent_device(tgt->unit);
 184}
 185
 186static const struct device *tgt_dev(const struct sbp2_target *tgt)
 187{
 188	return &tgt->unit->device;
 189}
 190
 191static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
 192{
 193	return &lu->tgt->unit->device;
 194}
 195
 196/* Impossible login_id, to detect logout attempt before successful login */
 197#define INVALID_LOGIN_ID 0x10000
 198
 199#define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
 200#define SBP2_ORB_NULL			0x80000000
 201#define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
 202#define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
 203
 204/*
 205 * There is no transport protocol limit to the CDB length,  but we implement
 206 * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
 207 */
 208#define SBP2_MAX_CDB_SIZE		16
 209
 210/*
 211 * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
 212 * for compatibility with earlier versions of this driver.
 213 */
 214#define SBP2_MAX_SEG_SIZE		0xfffc
 215
 216/* Unit directory keys */
 217#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
 218#define SBP2_CSR_FIRMWARE_REVISION	0x3c
 219#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
 220#define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
 221#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
 222
 223/* Management orb opcodes */
 224#define SBP2_LOGIN_REQUEST		0x0
 225#define SBP2_QUERY_LOGINS_REQUEST	0x1
 226#define SBP2_RECONNECT_REQUEST		0x3
 227#define SBP2_SET_PASSWORD_REQUEST	0x4
 228#define SBP2_LOGOUT_REQUEST		0x7
 229#define SBP2_ABORT_TASK_REQUEST		0xb
 230#define SBP2_ABORT_TASK_SET		0xc
 231#define SBP2_LOGICAL_UNIT_RESET		0xe
 232#define SBP2_TARGET_RESET_REQUEST	0xf
 233
 234/* Offsets for command block agent registers */
 235#define SBP2_AGENT_STATE		0x00
 236#define SBP2_AGENT_RESET		0x04
 237#define SBP2_ORB_POINTER		0x08
 238#define SBP2_DOORBELL			0x10
 239#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
 240
 241/* Status write response codes */
 242#define SBP2_STATUS_REQUEST_COMPLETE	0x0
 243#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
 244#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
 245#define SBP2_STATUS_VENDOR_DEPENDENT	0x3
 246
 247#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
 248#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
 249#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
 250#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
 251#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
 252#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
 253#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
 254#define STATUS_GET_DATA(v)		((v).data)
 255
 256struct sbp2_status {
 257	u32 status;
 258	u32 orb_low;
 259	u8 data[24];
 260};
 261
 262struct sbp2_pointer {
 263	__be32 high;
 264	__be32 low;
 265};
 266
 267struct sbp2_orb {
 268	struct fw_transaction t;
 269	struct kref kref;
 270	dma_addr_t request_bus;
 271	int rcode;
 272	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
 
 273	struct list_head link;
 274};
 275
 276#define MANAGEMENT_ORB_LUN(v)			((v))
 277#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
 278#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
 279#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
 280#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
 281#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
 282
 283#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
 284#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
 285
 286struct sbp2_management_orb {
 287	struct sbp2_orb base;
 288	struct {
 289		struct sbp2_pointer password;
 290		struct sbp2_pointer response;
 291		__be32 misc;
 292		__be32 length;
 293		struct sbp2_pointer status_fifo;
 294	} request;
 295	__be32 response[4];
 296	dma_addr_t response_bus;
 297	struct completion done;
 298	struct sbp2_status status;
 299};
 300
 301struct sbp2_login_response {
 302	__be32 misc;
 303	struct sbp2_pointer command_block_agent;
 304	__be32 reconnect_hold;
 305};
 306#define COMMAND_ORB_DATA_SIZE(v)	((v))
 307#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
 308#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
 309#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
 310#define COMMAND_ORB_SPEED(v)		((v) << 24)
 311#define COMMAND_ORB_DIRECTION		((1) << 27)
 312#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
 313#define COMMAND_ORB_NOTIFY		((1) << 31)
 314
 315struct sbp2_command_orb {
 316	struct sbp2_orb base;
 317	struct {
 318		struct sbp2_pointer next;
 319		struct sbp2_pointer data_descriptor;
 320		__be32 misc;
 321		u8 command_block[SBP2_MAX_CDB_SIZE];
 322	} request;
 323	struct scsi_cmnd *cmd;
 324	struct sbp2_logical_unit *lu;
 325
 326	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
 327	dma_addr_t page_table_bus;
 328};
 329
 330#define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
 331#define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
 332
 333/*
 334 * List of devices with known bugs.
 335 *
 336 * The firmware_revision field, masked with 0xffff00, is the best
 337 * indicator for the type of bridge chip of a device.  It yields a few
 338 * false positives but this did not break correctly behaving devices
 339 * so far.
 340 */
 341static const struct {
 342	u32 firmware_revision;
 343	u32 model;
 344	unsigned int workarounds;
 345} sbp2_workarounds_table[] = {
 346	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
 347		.firmware_revision	= 0x002800,
 348		.model			= 0x001010,
 349		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
 350					  SBP2_WORKAROUND_MODE_SENSE_8 |
 351					  SBP2_WORKAROUND_POWER_CONDITION,
 352	},
 353	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
 354		.firmware_revision	= 0x002800,
 355		.model			= 0x000000,
 356		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 357	},
 358	/* Initio bridges, actually only needed for some older ones */ {
 359		.firmware_revision	= 0x000200,
 360		.model			= SBP2_ROM_VALUE_WILDCARD,
 361		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
 362	},
 363	/* PL-3507 bridge with Prolific firmware */ {
 364		.firmware_revision	= 0x012800,
 365		.model			= SBP2_ROM_VALUE_WILDCARD,
 366		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
 367	},
 368	/* Symbios bridge */ {
 369		.firmware_revision	= 0xa0b800,
 370		.model			= SBP2_ROM_VALUE_WILDCARD,
 371		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 372	},
 373	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
 374		.firmware_revision	= 0x002600,
 375		.model			= SBP2_ROM_VALUE_WILDCARD,
 376		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
 377	},
 378	/*
 379	 * iPod 2nd generation: needs 128k max transfer size workaround
 380	 * iPod 3rd generation: needs fix capacity workaround
 381	 */
 382	{
 383		.firmware_revision	= 0x0a2700,
 384		.model			= 0x000000,
 385		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
 386					  SBP2_WORKAROUND_FIX_CAPACITY,
 387	},
 388	/* iPod 4th generation */ {
 389		.firmware_revision	= 0x0a2700,
 390		.model			= 0x000021,
 391		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 392	},
 393	/* iPod mini */ {
 394		.firmware_revision	= 0x0a2700,
 395		.model			= 0x000022,
 396		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 397	},
 398	/* iPod mini */ {
 399		.firmware_revision	= 0x0a2700,
 400		.model			= 0x000023,
 401		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 402	},
 403	/* iPod Photo */ {
 404		.firmware_revision	= 0x0a2700,
 405		.model			= 0x00007e,
 406		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
 407	}
 408};
 409
 410static void free_orb(struct kref *kref)
 411{
 412	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
 413
 414	kfree(orb);
 415}
 416
 417static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
 418			      int tcode, int destination, int source,
 419			      int generation, unsigned long long offset,
 420			      void *payload, size_t length, void *callback_data)
 421{
 422	struct sbp2_logical_unit *lu = callback_data;
 423	struct sbp2_orb *orb;
 424	struct sbp2_status status;
 425	unsigned long flags;
 426
 427	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
 428	    length < 8 || length > sizeof(status)) {
 429		fw_send_response(card, request, RCODE_TYPE_ERROR);
 430		return;
 431	}
 432
 433	status.status  = be32_to_cpup(payload);
 434	status.orb_low = be32_to_cpup(payload + 4);
 435	memset(status.data, 0, sizeof(status.data));
 436	if (length > 8)
 437		memcpy(status.data, payload + 8, length - 8);
 438
 439	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
 440		dev_notice(lu_dev(lu),
 441			   "non-ORB related status write, not handled\n");
 442		fw_send_response(card, request, RCODE_COMPLETE);
 443		return;
 444	}
 445
 446	/* Lookup the orb corresponding to this status write. */
 447	spin_lock_irqsave(&card->lock, flags);
 448	list_for_each_entry(orb, &lu->orb_list, link) {
 449		if (STATUS_GET_ORB_HIGH(status) == 0 &&
 450		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
 451			orb->rcode = RCODE_COMPLETE;
 452			list_del(&orb->link);
 453			break;
 454		}
 455	}
 456	spin_unlock_irqrestore(&card->lock, flags);
 457
 458	if (&orb->link != &lu->orb_list) {
 459		orb->callback(orb, &status);
 460		kref_put(&orb->kref, free_orb); /* orb callback reference */
 461	} else {
 462		dev_err(lu_dev(lu), "status write for unknown ORB\n");
 463	}
 464
 465	fw_send_response(card, request, RCODE_COMPLETE);
 466}
 467
 468static void complete_transaction(struct fw_card *card, int rcode,
 469				 void *payload, size_t length, void *data)
 470{
 471	struct sbp2_orb *orb = data;
 472	unsigned long flags;
 473
 474	/*
 475	 * This is a little tricky.  We can get the status write for
 476	 * the orb before we get this callback.  The status write
 477	 * handler above will assume the orb pointer transaction was
 478	 * successful and set the rcode to RCODE_COMPLETE for the orb.
 479	 * So this callback only sets the rcode if it hasn't already
 480	 * been set and only does the cleanup if the transaction
 481	 * failed and we didn't already get a status write.
 482	 */
 483	spin_lock_irqsave(&card->lock, flags);
 484
 485	if (orb->rcode == -1)
 486		orb->rcode = rcode;
 487	if (orb->rcode != RCODE_COMPLETE) {
 488		list_del(&orb->link);
 489		spin_unlock_irqrestore(&card->lock, flags);
 490
 491		orb->callback(orb, NULL);
 492		kref_put(&orb->kref, free_orb); /* orb callback reference */
 493	} else {
 494		spin_unlock_irqrestore(&card->lock, flags);
 495	}
 496
 497	kref_put(&orb->kref, free_orb); /* transaction callback reference */
 498}
 499
 500static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
 501			  int node_id, int generation, u64 offset)
 502{
 503	struct fw_device *device = target_parent_device(lu->tgt);
 504	struct sbp2_pointer orb_pointer;
 505	unsigned long flags;
 506
 507	orb_pointer.high = 0;
 508	orb_pointer.low = cpu_to_be32(orb->request_bus);
 509
 510	spin_lock_irqsave(&device->card->lock, flags);
 
 511	list_add_tail(&orb->link, &lu->orb_list);
 512	spin_unlock_irqrestore(&device->card->lock, flags);
 513
 514	kref_get(&orb->kref); /* transaction callback reference */
 515	kref_get(&orb->kref); /* orb callback reference */
 516
 517	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
 518			node_id, generation, device->max_speed, offset,
 519			&orb_pointer, 8, complete_transaction, orb);
 520}
 521
 522static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
 523{
 524	struct fw_device *device = target_parent_device(lu->tgt);
 525	struct sbp2_orb *orb, *next;
 526	struct list_head list;
 527	unsigned long flags;
 528	int retval = -ENOENT;
 529
 530	INIT_LIST_HEAD(&list);
 531	spin_lock_irqsave(&device->card->lock, flags);
 532	list_splice_init(&lu->orb_list, &list);
 533	spin_unlock_irqrestore(&device->card->lock, flags);
 534
 535	list_for_each_entry_safe(orb, next, &list, link) {
 536		retval = 0;
 537		if (fw_cancel_transaction(device->card, &orb->t) == 0)
 538			continue;
 539
 540		orb->rcode = RCODE_CANCELLED;
 541		orb->callback(orb, NULL);
 542		kref_put(&orb->kref, free_orb); /* orb callback reference */
 543	}
 544
 545	return retval;
 546}
 547
 548static void complete_management_orb(struct sbp2_orb *base_orb,
 549				    struct sbp2_status *status)
 550{
 551	struct sbp2_management_orb *orb =
 552		container_of(base_orb, struct sbp2_management_orb, base);
 553
 554	if (status)
 555		memcpy(&orb->status, status, sizeof(*status));
 556	complete(&orb->done);
 557}
 558
 559static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
 560				    int generation, int function,
 561				    int lun_or_login_id, void *response)
 562{
 563	struct fw_device *device = target_parent_device(lu->tgt);
 564	struct sbp2_management_orb *orb;
 565	unsigned int timeout;
 566	int retval = -ENOMEM;
 567
 568	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
 569		return 0;
 570
 571	orb = kzalloc(sizeof(*orb), GFP_NOIO);
 572	if (orb == NULL)
 573		return -ENOMEM;
 574
 575	kref_init(&orb->base.kref);
 576	orb->response_bus =
 577		dma_map_single(device->card->device, &orb->response,
 578			       sizeof(orb->response), DMA_FROM_DEVICE);
 579	if (dma_mapping_error(device->card->device, orb->response_bus))
 580		goto fail_mapping_response;
 581
 582	orb->request.response.high = 0;
 583	orb->request.response.low  = cpu_to_be32(orb->response_bus);
 584
 585	orb->request.misc = cpu_to_be32(
 586		MANAGEMENT_ORB_NOTIFY |
 587		MANAGEMENT_ORB_FUNCTION(function) |
 588		MANAGEMENT_ORB_LUN(lun_or_login_id));
 589	orb->request.length = cpu_to_be32(
 590		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
 591
 592	orb->request.status_fifo.high =
 593		cpu_to_be32(lu->address_handler.offset >> 32);
 594	orb->request.status_fifo.low  =
 595		cpu_to_be32(lu->address_handler.offset);
 596
 597	if (function == SBP2_LOGIN_REQUEST) {
 598		/* Ask for 2^2 == 4 seconds reconnect grace period */
 599		orb->request.misc |= cpu_to_be32(
 600			MANAGEMENT_ORB_RECONNECT(2) |
 601			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
 602		timeout = lu->tgt->mgt_orb_timeout;
 603	} else {
 604		timeout = SBP2_ORB_TIMEOUT;
 605	}
 606
 607	init_completion(&orb->done);
 608	orb->base.callback = complete_management_orb;
 609
 610	orb->base.request_bus =
 611		dma_map_single(device->card->device, &orb->request,
 612			       sizeof(orb->request), DMA_TO_DEVICE);
 613	if (dma_mapping_error(device->card->device, orb->base.request_bus))
 614		goto fail_mapping_request;
 615
 616	sbp2_send_orb(&orb->base, lu, node_id, generation,
 617		      lu->tgt->management_agent_address);
 618
 619	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
 620
 621	retval = -EIO;
 622	if (sbp2_cancel_orbs(lu) == 0) {
 623		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
 624			orb->base.rcode);
 625		goto out;
 626	}
 627
 628	if (orb->base.rcode != RCODE_COMPLETE) {
 629		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
 630			orb->base.rcode);
 631		goto out;
 632	}
 633
 634	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
 635	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
 636		dev_err(lu_dev(lu), "error status: %d:%d\n",
 637			 STATUS_GET_RESPONSE(orb->status),
 638			 STATUS_GET_SBP_STATUS(orb->status));
 639		goto out;
 640	}
 641
 642	retval = 0;
 643 out:
 644	dma_unmap_single(device->card->device, orb->base.request_bus,
 645			 sizeof(orb->request), DMA_TO_DEVICE);
 646 fail_mapping_request:
 647	dma_unmap_single(device->card->device, orb->response_bus,
 648			 sizeof(orb->response), DMA_FROM_DEVICE);
 649 fail_mapping_response:
 650	if (response)
 651		memcpy(response, orb->response, sizeof(orb->response));
 652	kref_put(&orb->base.kref, free_orb);
 653
 654	return retval;
 655}
 656
 657static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
 658{
 659	struct fw_device *device = target_parent_device(lu->tgt);
 660	__be32 d = 0;
 661
 662	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 663			   lu->tgt->node_id, lu->generation, device->max_speed,
 664			   lu->command_block_agent_address + SBP2_AGENT_RESET,
 665			   &d, 4);
 666}
 667
 668static void complete_agent_reset_write_no_wait(struct fw_card *card,
 669		int rcode, void *payload, size_t length, void *data)
 670{
 671	kfree(data);
 672}
 673
 674static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
 675{
 676	struct fw_device *device = target_parent_device(lu->tgt);
 677	struct fw_transaction *t;
 678	static __be32 d;
 679
 680	t = kmalloc(sizeof(*t), GFP_ATOMIC);
 681	if (t == NULL)
 682		return;
 683
 684	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
 685			lu->tgt->node_id, lu->generation, device->max_speed,
 686			lu->command_block_agent_address + SBP2_AGENT_RESET,
 687			&d, 4, complete_agent_reset_write_no_wait, t);
 688}
 689
 690static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
 691{
 692	/*
 693	 * We may access dont_block without taking card->lock here:
 694	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
 695	 * are currently serialized against each other.
 696	 * And a wrong result in sbp2_conditionally_block()'s access of
 697	 * dont_block is rather harmless, it simply misses its first chance.
 698	 */
 699	--lu->tgt->dont_block;
 700}
 701
 702/*
 703 * Blocks lu->tgt if all of the following conditions are met:
 704 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 705 *     logical units have been finished (indicated by dont_block == 0).
 706 *   - lu->generation is stale.
 707 *
 708 * Note, scsi_block_requests() must be called while holding card->lock,
 709 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 710 * unblock the target.
 711 */
 712static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
 713{
 714	struct sbp2_target *tgt = lu->tgt;
 715	struct fw_card *card = target_parent_device(tgt)->card;
 716	struct Scsi_Host *shost =
 717		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 718	unsigned long flags;
 719
 720	spin_lock_irqsave(&card->lock, flags);
 721	if (!tgt->dont_block && !lu->blocked &&
 722	    lu->generation != card->generation) {
 723		lu->blocked = true;
 724		if (++tgt->blocked == 1)
 725			scsi_block_requests(shost);
 726	}
 727	spin_unlock_irqrestore(&card->lock, flags);
 728}
 729
 730/*
 731 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 732 * Note, it is harmless to run scsi_unblock_requests() outside the
 733 * card->lock protected section.  On the other hand, running it inside
 734 * the section might clash with shost->host_lock.
 735 */
 736static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
 737{
 738	struct sbp2_target *tgt = lu->tgt;
 739	struct fw_card *card = target_parent_device(tgt)->card;
 740	struct Scsi_Host *shost =
 741		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 742	unsigned long flags;
 743	bool unblock = false;
 744
 745	spin_lock_irqsave(&card->lock, flags);
 746	if (lu->blocked && lu->generation == card->generation) {
 747		lu->blocked = false;
 748		unblock = --tgt->blocked == 0;
 749	}
 750	spin_unlock_irqrestore(&card->lock, flags);
 751
 752	if (unblock)
 753		scsi_unblock_requests(shost);
 754}
 755
 756/*
 757 * Prevents future blocking of tgt and unblocks it.
 758 * Note, it is harmless to run scsi_unblock_requests() outside the
 759 * card->lock protected section.  On the other hand, running it inside
 760 * the section might clash with shost->host_lock.
 761 */
 762static void sbp2_unblock(struct sbp2_target *tgt)
 763{
 764	struct fw_card *card = target_parent_device(tgt)->card;
 765	struct Scsi_Host *shost =
 766		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 767	unsigned long flags;
 768
 769	spin_lock_irqsave(&card->lock, flags);
 770	++tgt->dont_block;
 771	spin_unlock_irqrestore(&card->lock, flags);
 772
 773	scsi_unblock_requests(shost);
 774}
 775
 776static int sbp2_lun2int(u16 lun)
 777{
 778	struct scsi_lun eight_bytes_lun;
 779
 780	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
 781	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
 782	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
 783
 784	return scsilun_to_int(&eight_bytes_lun);
 785}
 786
 787/*
 788 * Write retransmit retry values into the BUSY_TIMEOUT register.
 789 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
 790 *   default retry_limit value is 0 (i.e. never retry transmission). We write a
 791 *   saner value after logging into the device.
 792 * - The dual-phase retry protocol is optional to implement, and if not
 793 *   supported, writes to the dual-phase portion of the register will be
 794 *   ignored. We try to write the original 1394-1995 default here.
 795 * - In the case of devices that are also SBP-3-compliant, all writes are
 796 *   ignored, as the register is read-only, but contains single-phase retry of
 797 *   15, which is what we're trying to set for all SBP-2 device anyway, so this
 798 *   write attempt is safe and yields more consistent behavior for all devices.
 799 *
 800 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
 801 * and section 6.4 of the SBP-3 spec for further details.
 802 */
 803static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
 804{
 805	struct fw_device *device = target_parent_device(lu->tgt);
 806	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
 807
 808	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
 809			   lu->tgt->node_id, lu->generation, device->max_speed,
 810			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
 811}
 812
 813static void sbp2_reconnect(struct work_struct *work);
 814
 815static void sbp2_login(struct work_struct *work)
 816{
 817	struct sbp2_logical_unit *lu =
 818		container_of(work, struct sbp2_logical_unit, work.work);
 819	struct sbp2_target *tgt = lu->tgt;
 820	struct fw_device *device = target_parent_device(tgt);
 821	struct Scsi_Host *shost;
 822	struct scsi_device *sdev;
 823	struct sbp2_login_response response;
 824	int generation, node_id, local_node_id;
 825
 826	if (fw_device_is_shutdown(device))
 827		return;
 828
 829	generation    = device->generation;
 830	smp_rmb();    /* node IDs must not be older than generation */
 831	node_id       = device->node_id;
 832	local_node_id = device->card->node_id;
 833
 834	/* If this is a re-login attempt, log out, or we might be rejected. */
 835	if (lu->has_sdev)
 836		sbp2_send_management_orb(lu, device->node_id, generation,
 837				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 838
 839	if (sbp2_send_management_orb(lu, node_id, generation,
 840				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
 841		if (lu->retries++ < 5) {
 842			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 843		} else {
 844			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
 845				lu->lun);
 846			/* Let any waiting I/O fail from now on. */
 847			sbp2_unblock(lu->tgt);
 848		}
 849		return;
 850	}
 851
 852	tgt->node_id	  = node_id;
 853	tgt->address_high = local_node_id << 16;
 854	smp_wmb();	  /* node IDs must not be older than generation */
 855	lu->generation	  = generation;
 856
 857	lu->command_block_agent_address =
 858		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
 859		      << 32) | be32_to_cpu(response.command_block_agent.low);
 860	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
 861
 862	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
 863		   lu->lun, lu->retries);
 864
 865	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
 866	sbp2_set_busy_timeout(lu);
 867
 868	lu->workfn = sbp2_reconnect;
 869	sbp2_agent_reset(lu);
 870
 871	/* This was a re-login. */
 872	if (lu->has_sdev) {
 873		sbp2_cancel_orbs(lu);
 874		sbp2_conditionally_unblock(lu);
 875
 876		return;
 877	}
 878
 879	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
 880		ssleep(SBP2_INQUIRY_DELAY);
 881
 882	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
 883	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
 884	/*
 885	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
 886	 * Therefore __scsi_add_device() will get into trouble if a bus reset
 887	 * happens in parallel.  It will either fail or leave us with an
 888	 * unusable sdev.  As a workaround we check for this and retry the
 889	 * whole login and SCSI probing.
 890	 */
 891
 892	/* Reported error during __scsi_add_device() */
 893	if (IS_ERR(sdev))
 894		goto out_logout_login;
 895
 896	/* Unreported error during __scsi_add_device() */
 897	smp_rmb(); /* get current card generation */
 898	if (generation != device->card->generation) {
 899		scsi_remove_device(sdev);
 900		scsi_device_put(sdev);
 901		goto out_logout_login;
 902	}
 903
 904	/* No error during __scsi_add_device() */
 905	lu->has_sdev = true;
 906	scsi_device_put(sdev);
 907	sbp2_allow_block(lu);
 908
 909	return;
 910
 911 out_logout_login:
 912	smp_rmb(); /* generation may have changed */
 913	generation = device->generation;
 914	smp_rmb(); /* node_id must not be older than generation */
 915
 916	sbp2_send_management_orb(lu, device->node_id, generation,
 917				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
 918	/*
 919	 * If a bus reset happened, sbp2_update will have requeued
 920	 * lu->work already.  Reset the work from reconnect to login.
 921	 */
 922	lu->workfn = sbp2_login;
 923}
 924
 925static void sbp2_reconnect(struct work_struct *work)
 926{
 927	struct sbp2_logical_unit *lu =
 928		container_of(work, struct sbp2_logical_unit, work.work);
 929	struct sbp2_target *tgt = lu->tgt;
 930	struct fw_device *device = target_parent_device(tgt);
 931	int generation, node_id, local_node_id;
 932
 933	if (fw_device_is_shutdown(device))
 934		return;
 935
 936	generation    = device->generation;
 937	smp_rmb();    /* node IDs must not be older than generation */
 938	node_id       = device->node_id;
 939	local_node_id = device->card->node_id;
 940
 941	if (sbp2_send_management_orb(lu, node_id, generation,
 942				     SBP2_RECONNECT_REQUEST,
 943				     lu->login_id, NULL) < 0) {
 944		/*
 945		 * If reconnect was impossible even though we are in the
 946		 * current generation, fall back and try to log in again.
 947		 *
 948		 * We could check for "Function rejected" status, but
 949		 * looking at the bus generation as simpler and more general.
 950		 */
 951		smp_rmb(); /* get current card generation */
 952		if (generation == device->card->generation ||
 953		    lu->retries++ >= 5) {
 954			dev_err(tgt_dev(tgt), "failed to reconnect\n");
 955			lu->retries = 0;
 956			lu->workfn = sbp2_login;
 957		}
 958		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
 959
 960		return;
 961	}
 962
 963	tgt->node_id      = node_id;
 964	tgt->address_high = local_node_id << 16;
 965	smp_wmb();	  /* node IDs must not be older than generation */
 966	lu->generation	  = generation;
 967
 968	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
 969		   lu->lun, lu->retries);
 970
 971	sbp2_agent_reset(lu);
 972	sbp2_cancel_orbs(lu);
 973	sbp2_conditionally_unblock(lu);
 974}
 975
 976static void sbp2_lu_workfn(struct work_struct *work)
 977{
 978	struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
 979						struct sbp2_logical_unit, work);
 980	lu->workfn(work);
 981}
 982
 983static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
 984{
 985	struct sbp2_logical_unit *lu;
 986
 987	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
 988	if (!lu)
 989		return -ENOMEM;
 990
 991	lu->address_handler.length           = 0x100;
 992	lu->address_handler.address_callback = sbp2_status_write;
 993	lu->address_handler.callback_data    = lu;
 994
 995	if (fw_core_add_address_handler(&lu->address_handler,
 996					&fw_high_memory_region) < 0) {
 997		kfree(lu);
 998		return -ENOMEM;
 999	}
1000
1001	lu->tgt      = tgt;
1002	lu->lun      = lun_entry & 0xffff;
1003	lu->login_id = INVALID_LOGIN_ID;
1004	lu->retries  = 0;
1005	lu->has_sdev = false;
1006	lu->blocked  = false;
1007	++tgt->dont_block;
1008	INIT_LIST_HEAD(&lu->orb_list);
1009	lu->workfn = sbp2_login;
1010	INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
1011
1012	list_add_tail(&lu->link, &tgt->lu_list);
1013	return 0;
1014}
1015
1016static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1017				    const u32 *leaf)
1018{
1019	if ((leaf[0] & 0xffff0000) == 0x00020000)
1020		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1021}
1022
1023static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1024				      const u32 *directory)
1025{
1026	struct fw_csr_iterator ci;
1027	int key, value;
1028
1029	fw_csr_iterator_init(&ci, directory);
1030	while (fw_csr_iterator_next(&ci, &key, &value))
1031		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1032		    sbp2_add_logical_unit(tgt, value) < 0)
1033			return -ENOMEM;
1034	return 0;
1035}
1036
1037static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1038			      u32 *model, u32 *firmware_revision)
1039{
1040	struct fw_csr_iterator ci;
1041	int key, value;
1042
1043	fw_csr_iterator_init(&ci, directory);
1044	while (fw_csr_iterator_next(&ci, &key, &value)) {
1045		switch (key) {
1046
1047		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1048			tgt->management_agent_address =
1049					CSR_REGISTER_BASE + 4 * value;
1050			break;
1051
1052		case CSR_DIRECTORY_ID:
1053			tgt->directory_id = value;
1054			break;
1055
1056		case CSR_MODEL:
1057			*model = value;
1058			break;
1059
1060		case SBP2_CSR_FIRMWARE_REVISION:
1061			*firmware_revision = value;
1062			break;
1063
1064		case SBP2_CSR_UNIT_CHARACTERISTICS:
1065			/* the timeout value is stored in 500ms units */
1066			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1067			break;
1068
1069		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1070			if (sbp2_add_logical_unit(tgt, value) < 0)
1071				return -ENOMEM;
1072			break;
1073
1074		case SBP2_CSR_UNIT_UNIQUE_ID:
1075			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1076			break;
1077
1078		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1079			/* Adjust for the increment in the iterator */
1080			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1081				return -ENOMEM;
1082			break;
1083		}
1084	}
1085	return 0;
1086}
1087
1088/*
1089 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1090 * provided in the config rom. Most devices do provide a value, which
1091 * we'll use for login management orbs, but with some sane limits.
1092 */
1093static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1094{
1095	unsigned int timeout = tgt->mgt_orb_timeout;
1096
1097	if (timeout > 40000)
1098		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1099			   timeout / 1000);
1100
1101	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1102}
1103
1104static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1105				  u32 firmware_revision)
1106{
1107	int i;
1108	unsigned int w = sbp2_param_workarounds;
1109
1110	if (w)
1111		dev_notice(tgt_dev(tgt),
1112			   "Please notify linux1394-devel@lists.sf.net "
1113			   "if you need the workarounds parameter\n");
1114
1115	if (w & SBP2_WORKAROUND_OVERRIDE)
1116		goto out;
1117
1118	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1119
1120		if (sbp2_workarounds_table[i].firmware_revision !=
1121		    (firmware_revision & 0xffffff00))
1122			continue;
1123
1124		if (sbp2_workarounds_table[i].model != model &&
1125		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1126			continue;
1127
1128		w |= sbp2_workarounds_table[i].workarounds;
1129		break;
1130	}
1131 out:
1132	if (w)
1133		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1134			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1135			   w, firmware_revision, model);
1136	tgt->workarounds = w;
1137}
1138
1139static struct scsi_host_template scsi_driver_template;
1140static void sbp2_remove(struct fw_unit *unit);
1141
1142static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1143{
1144	struct fw_device *device = fw_parent_device(unit);
1145	struct sbp2_target *tgt;
1146	struct sbp2_logical_unit *lu;
1147	struct Scsi_Host *shost;
1148	u32 model, firmware_revision;
1149
1150	/* cannot (or should not) handle targets on the local node */
1151	if (device->is_local)
1152		return -ENODEV;
1153
1154	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1155		WARN_ON(dma_set_max_seg_size(device->card->device,
1156					     SBP2_MAX_SEG_SIZE));
1157
1158	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1159	if (shost == NULL)
1160		return -ENOMEM;
1161
1162	tgt = (struct sbp2_target *)shost->hostdata;
1163	dev_set_drvdata(&unit->device, tgt);
1164	tgt->unit = unit;
1165	INIT_LIST_HEAD(&tgt->lu_list);
 
1166	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1167
1168	if (fw_device_enable_phys_dma(device) < 0)
1169		goto fail_shost_put;
1170
1171	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1172
1173	if (scsi_add_host_with_dma(shost, &unit->device,
1174				   device->card->device) < 0)
1175		goto fail_shost_put;
1176
1177	/* implicit directory ID */
1178	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1179			     + CSR_CONFIG_ROM) & 0xffffff;
1180
1181	firmware_revision = SBP2_ROM_VALUE_MISSING;
1182	model		  = SBP2_ROM_VALUE_MISSING;
1183
1184	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1185			       &firmware_revision) < 0)
1186		goto fail_remove;
1187
1188	sbp2_clamp_management_orb_timeout(tgt);
1189	sbp2_init_workarounds(tgt, model, firmware_revision);
1190
1191	/*
1192	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1193	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1194	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1195	 * if we set this to max_speed + 7, we get the right value.
1196	 */
1197	tgt->max_payload = min3(device->max_speed + 7, 10U,
1198				device->card->max_receive - 1);
1199
1200	/* Do the login in a workqueue so we can easily reschedule retries. */
1201	list_for_each_entry(lu, &tgt->lu_list, link)
1202		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1203
1204	return 0;
1205
1206 fail_remove:
1207	sbp2_remove(unit);
1208	return -ENOMEM;
1209
1210 fail_shost_put:
1211	scsi_host_put(shost);
1212	return -ENOMEM;
1213}
1214
1215static void sbp2_update(struct fw_unit *unit)
1216{
1217	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1218	struct sbp2_logical_unit *lu;
1219
1220	fw_device_enable_phys_dma(fw_parent_device(unit));
1221
1222	/*
1223	 * Fw-core serializes sbp2_update() against sbp2_remove().
1224	 * Iteration over tgt->lu_list is therefore safe here.
1225	 */
1226	list_for_each_entry(lu, &tgt->lu_list, link) {
1227		sbp2_conditionally_block(lu);
1228		lu->retries = 0;
1229		sbp2_queue_work(lu, 0);
1230	}
1231}
1232
1233static void sbp2_remove(struct fw_unit *unit)
1234{
1235	struct fw_device *device = fw_parent_device(unit);
1236	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1237	struct sbp2_logical_unit *lu, *next;
1238	struct Scsi_Host *shost =
1239		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1240	struct scsi_device *sdev;
1241
1242	/* prevent deadlocks */
1243	sbp2_unblock(tgt);
1244
1245	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1246		cancel_delayed_work_sync(&lu->work);
1247		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1248		if (sdev) {
1249			scsi_remove_device(sdev);
1250			scsi_device_put(sdev);
1251		}
1252		if (lu->login_id != INVALID_LOGIN_ID) {
1253			int generation, node_id;
1254			/*
1255			 * tgt->node_id may be obsolete here if we failed
1256			 * during initial login or after a bus reset where
1257			 * the topology changed.
1258			 */
1259			generation = device->generation;
1260			smp_rmb(); /* node_id vs. generation */
1261			node_id    = device->node_id;
1262			sbp2_send_management_orb(lu, node_id, generation,
1263						 SBP2_LOGOUT_REQUEST,
1264						 lu->login_id, NULL);
1265		}
1266		fw_core_remove_address_handler(&lu->address_handler);
1267		list_del(&lu->link);
1268		kfree(lu);
1269	}
1270	scsi_remove_host(shost);
1271	dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1272
1273	scsi_host_put(shost);
1274}
1275
1276#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1277#define SBP2_SW_VERSION_ENTRY	0x00010483
1278
1279static const struct ieee1394_device_id sbp2_id_table[] = {
1280	{
1281		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1282				IEEE1394_MATCH_VERSION,
1283		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1284		.version      = SBP2_SW_VERSION_ENTRY,
1285	},
1286	{ }
1287};
1288
1289static struct fw_driver sbp2_driver = {
1290	.driver   = {
1291		.owner  = THIS_MODULE,
1292		.name   = KBUILD_MODNAME,
1293		.bus    = &fw_bus_type,
1294	},
1295	.probe    = sbp2_probe,
1296	.update   = sbp2_update,
1297	.remove   = sbp2_remove,
1298	.id_table = sbp2_id_table,
1299};
1300
1301static void sbp2_unmap_scatterlist(struct device *card_device,
1302				   struct sbp2_command_orb *orb)
1303{
1304	scsi_dma_unmap(orb->cmd);
1305
1306	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1307		dma_unmap_single(card_device, orb->page_table_bus,
1308				 sizeof(orb->page_table), DMA_TO_DEVICE);
1309}
1310
1311static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1312{
1313	int sam_status;
1314	int sfmt = (sbp2_status[0] >> 6) & 0x03;
1315
1316	if (sfmt == 2 || sfmt == 3) {
1317		/*
1318		 * Reserved for future standardization (2) or
1319		 * Status block format vendor-dependent (3)
1320		 */
1321		return DID_ERROR << 16;
1322	}
1323
1324	sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1325	sense_data[1] = 0x0;
1326	sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1327	sense_data[3] = sbp2_status[4];
1328	sense_data[4] = sbp2_status[5];
1329	sense_data[5] = sbp2_status[6];
1330	sense_data[6] = sbp2_status[7];
1331	sense_data[7] = 10;
1332	sense_data[8] = sbp2_status[8];
1333	sense_data[9] = sbp2_status[9];
1334	sense_data[10] = sbp2_status[10];
1335	sense_data[11] = sbp2_status[11];
1336	sense_data[12] = sbp2_status[2];
1337	sense_data[13] = sbp2_status[3];
1338	sense_data[14] = sbp2_status[12];
1339	sense_data[15] = sbp2_status[13];
1340
1341	sam_status = sbp2_status[0] & 0x3f;
1342
1343	switch (sam_status) {
1344	case SAM_STAT_GOOD:
1345	case SAM_STAT_CHECK_CONDITION:
1346	case SAM_STAT_CONDITION_MET:
1347	case SAM_STAT_BUSY:
1348	case SAM_STAT_RESERVATION_CONFLICT:
1349	case SAM_STAT_COMMAND_TERMINATED:
1350		return DID_OK << 16 | sam_status;
1351
1352	default:
1353		return DID_ERROR << 16;
1354	}
1355}
1356
1357static void complete_command_orb(struct sbp2_orb *base_orb,
1358				 struct sbp2_status *status)
1359{
1360	struct sbp2_command_orb *orb =
1361		container_of(base_orb, struct sbp2_command_orb, base);
1362	struct fw_device *device = target_parent_device(orb->lu->tgt);
1363	int result;
1364
1365	if (status != NULL) {
1366		if (STATUS_GET_DEAD(*status))
1367			sbp2_agent_reset_no_wait(orb->lu);
1368
1369		switch (STATUS_GET_RESPONSE(*status)) {
1370		case SBP2_STATUS_REQUEST_COMPLETE:
1371			result = DID_OK << 16;
1372			break;
1373		case SBP2_STATUS_TRANSPORT_FAILURE:
1374			result = DID_BUS_BUSY << 16;
1375			break;
1376		case SBP2_STATUS_ILLEGAL_REQUEST:
1377		case SBP2_STATUS_VENDOR_DEPENDENT:
1378		default:
1379			result = DID_ERROR << 16;
1380			break;
1381		}
1382
1383		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1384			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1385							   orb->cmd->sense_buffer);
1386	} else {
1387		/*
1388		 * If the orb completes with status == NULL, something
1389		 * went wrong, typically a bus reset happened mid-orb
1390		 * or when sending the write (less likely).
1391		 */
1392		result = DID_BUS_BUSY << 16;
1393		sbp2_conditionally_block(orb->lu);
1394	}
1395
1396	dma_unmap_single(device->card->device, orb->base.request_bus,
1397			 sizeof(orb->request), DMA_TO_DEVICE);
1398	sbp2_unmap_scatterlist(device->card->device, orb);
1399
1400	orb->cmd->result = result;
1401	orb->cmd->scsi_done(orb->cmd);
1402}
1403
1404static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1405		struct fw_device *device, struct sbp2_logical_unit *lu)
1406{
1407	struct scatterlist *sg = scsi_sglist(orb->cmd);
1408	int i, n;
1409
1410	n = scsi_dma_map(orb->cmd);
1411	if (n <= 0)
1412		goto fail;
1413
1414	/*
1415	 * Handle the special case where there is only one element in
1416	 * the scatter list by converting it to an immediate block
1417	 * request. This is also a workaround for broken devices such
1418	 * as the second generation iPod which doesn't support page
1419	 * tables.
1420	 */
1421	if (n == 1) {
1422		orb->request.data_descriptor.high =
1423			cpu_to_be32(lu->tgt->address_high);
1424		orb->request.data_descriptor.low  =
1425			cpu_to_be32(sg_dma_address(sg));
1426		orb->request.misc |=
1427			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1428		return 0;
1429	}
1430
1431	for_each_sg(sg, sg, n, i) {
1432		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1433		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1434	}
1435
1436	orb->page_table_bus =
1437		dma_map_single(device->card->device, orb->page_table,
1438			       sizeof(orb->page_table), DMA_TO_DEVICE);
1439	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1440		goto fail_page_table;
1441
1442	/*
1443	 * The data_descriptor pointer is the one case where we need
1444	 * to fill in the node ID part of the address.  All other
1445	 * pointers assume that the data referenced reside on the
1446	 * initiator (i.e. us), but data_descriptor can refer to data
1447	 * on other nodes so we need to put our ID in descriptor.high.
1448	 */
1449	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1450	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1451	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1452					 COMMAND_ORB_DATA_SIZE(n));
1453
1454	return 0;
1455
1456 fail_page_table:
1457	scsi_dma_unmap(orb->cmd);
1458 fail:
1459	return -ENOMEM;
1460}
1461
1462/* SCSI stack integration */
1463
1464static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1465				  struct scsi_cmnd *cmd)
1466{
1467	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1468	struct fw_device *device = target_parent_device(lu->tgt);
1469	struct sbp2_command_orb *orb;
1470	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1471
1472	/*
1473	 * Bidirectional commands are not yet implemented, and unknown
1474	 * transfer direction not handled.
1475	 */
1476	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1477		dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1478		cmd->result = DID_ERROR << 16;
1479		cmd->scsi_done(cmd);
1480		return 0;
1481	}
1482
1483	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1484	if (orb == NULL)
1485		return SCSI_MLQUEUE_HOST_BUSY;
1486
1487	/* Initialize rcode to something not RCODE_COMPLETE. */
1488	orb->base.rcode = -1;
1489	kref_init(&orb->base.kref);
1490	orb->lu = lu;
1491	orb->cmd = cmd;
1492	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1493	orb->request.misc = cpu_to_be32(
1494		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1495		COMMAND_ORB_SPEED(device->max_speed) |
1496		COMMAND_ORB_NOTIFY);
1497
1498	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1499		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1500
1501	generation = device->generation;
1502	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1503
1504	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1505		goto out;
1506
1507	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1508
1509	orb->base.callback = complete_command_orb;
1510	orb->base.request_bus =
1511		dma_map_single(device->card->device, &orb->request,
1512			       sizeof(orb->request), DMA_TO_DEVICE);
1513	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1514		sbp2_unmap_scatterlist(device->card->device, orb);
1515		goto out;
1516	}
1517
1518	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1519		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1520	retval = 0;
1521 out:
1522	kref_put(&orb->base.kref, free_orb);
1523	return retval;
1524}
1525
1526static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1527{
1528	struct sbp2_logical_unit *lu = sdev->hostdata;
1529
1530	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1531	if (!lu)
1532		return -ENOSYS;
1533
1534	sdev->allow_restart = 1;
1535
1536	/*
1537	 * SBP-2 does not require any alignment, but we set it anyway
1538	 * for compatibility with earlier versions of this driver.
1539	 */
1540	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1541
1542	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1543		sdev->inquiry_len = 36;
1544
1545	return 0;
1546}
1547
1548static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1549{
1550	struct sbp2_logical_unit *lu = sdev->hostdata;
1551
1552	sdev->use_10_for_rw = 1;
1553
1554	if (sbp2_param_exclusive_login)
1555		sdev->manage_start_stop = 1;
1556
1557	if (sdev->type == TYPE_ROM)
1558		sdev->use_10_for_ms = 1;
1559
1560	if (sdev->type == TYPE_DISK &&
1561	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1562		sdev->skip_ms_page_8 = 1;
1563
1564	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1565		sdev->fix_capacity = 1;
1566
1567	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1568		sdev->start_stop_pwr_cond = 1;
1569
1570	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1571		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1572
1573	return 0;
1574}
1575
1576/*
1577 * Called by scsi stack when something has really gone wrong.  Usually
1578 * called when a command has timed-out for some reason.
1579 */
1580static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1581{
1582	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1583
1584	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1585	sbp2_agent_reset(lu);
1586	sbp2_cancel_orbs(lu);
1587
1588	return SUCCESS;
1589}
1590
1591/*
1592 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1593 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1594 *
1595 * This is the concatenation of target port identifier and logical unit
1596 * identifier as per SAM-2...SAM-4 annex A.
1597 */
1598static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1599			struct device_attribute *attr, char *buf)
1600{
1601	struct scsi_device *sdev = to_scsi_device(dev);
1602	struct sbp2_logical_unit *lu;
1603
1604	if (!sdev)
1605		return 0;
1606
1607	lu = sdev->hostdata;
1608
1609	return sprintf(buf, "%016llx:%06x:%04x\n",
1610			(unsigned long long)lu->tgt->guid,
1611			lu->tgt->directory_id, lu->lun);
1612}
1613
1614static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1615
1616static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1617	&dev_attr_ieee1394_id,
1618	NULL
1619};
1620
1621static struct scsi_host_template scsi_driver_template = {
1622	.module			= THIS_MODULE,
1623	.name			= "SBP-2 IEEE-1394",
1624	.proc_name		= "sbp2",
1625	.queuecommand		= sbp2_scsi_queuecommand,
1626	.slave_alloc		= sbp2_scsi_slave_alloc,
1627	.slave_configure	= sbp2_scsi_slave_configure,
1628	.eh_abort_handler	= sbp2_scsi_abort,
1629	.this_id		= -1,
1630	.sg_tablesize		= SG_ALL,
1631	.use_clustering		= ENABLE_CLUSTERING,
1632	.cmd_per_lun		= 1,
1633	.can_queue		= 1,
1634	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1635};
1636
1637MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1638MODULE_DESCRIPTION("SCSI over IEEE1394");
1639MODULE_LICENSE("GPL");
1640MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1641
1642/* Provide a module alias so root-on-sbp2 initrds don't break. */
1643MODULE_ALIAS("sbp2");
1644
1645static int __init sbp2_init(void)
1646{
1647	return driver_register(&sbp2_driver.driver);
1648}
1649
1650static void __exit sbp2_cleanup(void)
1651{
1652	driver_unregister(&sbp2_driver.driver);
1653}
1654
1655module_init(sbp2_init);
1656module_exit(sbp2_cleanup);