Loading...
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
30#define MIPS_MAX_HWEVENTS 4
31#define MIPS_TCS_PER_COUNTER 2
32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34struct cpu_hw_events {
35 /* Array of events on this cpu. */
36 struct perf_event *events[MIPS_MAX_HWEVENTS];
37
38 /*
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
41 */
42 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44 /*
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
48 */
49 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
50};
51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .saved_ctrl = {0},
53};
54
55/* The description of MIPS performance events. */
56struct mips_perf_event {
57 unsigned int event_id;
58 /*
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
61 * even numbers.
62 */
63 unsigned int cntr_mask;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
66 #define CNTR_ALL 0xffffffff
67#ifdef CONFIG_MIPS_MT_SMP
68 enum {
69 T = 0,
70 V = 1,
71 P = 2,
72 } range;
73#else
74 #define T
75 #define V
76 #define P
77#endif
78};
79
80static struct mips_perf_event raw_event;
81static DEFINE_MUTEX(raw_event_mutex);
82
83#define C(x) PERF_COUNT_HW_CACHE_##x
84
85struct mips_pmu {
86 u64 max_period;
87 u64 valid_count;
88 u64 overflow;
89 const char *name;
90 int irq;
91 u64 (*read_counter)(unsigned int idx);
92 void (*write_counter)(unsigned int idx, u64 val);
93 const struct mips_perf_event *(*map_raw_event)(u64 config);
94 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 const struct mips_perf_event (*cache_event_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 unsigned int num_counters;
100};
101
102static struct mips_pmu mipspmu;
103
104#define M_CONFIG1_PC (1 << 4)
105
106#define M_PERFCTL_EXL (1 << 0)
107#define M_PERFCTL_KERNEL (1 << 1)
108#define M_PERFCTL_SUPERVISOR (1 << 2)
109#define M_PERFCTL_USER (1 << 3)
110#define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
111#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
112#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
113
114#ifdef CONFIG_CPU_BMIPS5000
115#define M_PERFCTL_MT_EN(filter) 0
116#else /* !CONFIG_CPU_BMIPS5000 */
117#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
118#endif /* CONFIG_CPU_BMIPS5000 */
119
120#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
121#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
122#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
123#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
124#define M_PERFCTL_WIDE (1 << 30)
125#define M_PERFCTL_MORE (1 << 31)
126#define M_PERFCTL_TC (1 << 30)
127
128#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
129 M_PERFCTL_KERNEL | \
130 M_PERFCTL_USER | \
131 M_PERFCTL_SUPERVISOR | \
132 M_PERFCTL_INTERRUPT_ENABLE)
133
134#ifdef CONFIG_MIPS_MT_SMP
135#define M_PERFCTL_CONFIG_MASK 0x3fff801f
136#else
137#define M_PERFCTL_CONFIG_MASK 0x1f
138#endif
139#define M_PERFCTL_EVENT_MASK 0xfe0
140
141
142#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143static int cpu_has_mipsmt_pertccounters;
144
145static DEFINE_RWLOCK(pmuint_rwlock);
146
147#if defined(CONFIG_CPU_BMIPS5000)
148#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
149 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150#else
151/*
152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154 */
155#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
156 0 : smp_processor_id())
157#endif
158
159/* Copied from op_model_mipsxx.c */
160static unsigned int vpe_shift(void)
161{
162 if (num_possible_cpus() > 1)
163 return 1;
164
165 return 0;
166}
167
168static unsigned int counters_total_to_per_cpu(unsigned int counters)
169{
170 return counters >> vpe_shift();
171}
172
173#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174#define vpe_id() 0
175
176#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177
178static void resume_local_counters(void);
179static void pause_local_counters(void);
180static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181static int mipsxx_pmu_handle_shared_irq(void);
182
183static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184{
185 if (vpe_id() == 1)
186 idx = (idx + 2) & 3;
187 return idx;
188}
189
190static u64 mipsxx_pmu_read_counter(unsigned int idx)
191{
192 idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194 switch (idx) {
195 case 0:
196 /*
197 * The counters are unsigned, we must cast to truncate
198 * off the high bits.
199 */
200 return (u32)read_c0_perfcntr0();
201 case 1:
202 return (u32)read_c0_perfcntr1();
203 case 2:
204 return (u32)read_c0_perfcntr2();
205 case 3:
206 return (u32)read_c0_perfcntr3();
207 default:
208 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209 return 0;
210 }
211}
212
213static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214{
215 idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217 switch (idx) {
218 case 0:
219 return read_c0_perfcntr0_64();
220 case 1:
221 return read_c0_perfcntr1_64();
222 case 2:
223 return read_c0_perfcntr2_64();
224 case 3:
225 return read_c0_perfcntr3_64();
226 default:
227 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228 return 0;
229 }
230}
231
232static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233{
234 idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236 switch (idx) {
237 case 0:
238 write_c0_perfcntr0(val);
239 return;
240 case 1:
241 write_c0_perfcntr1(val);
242 return;
243 case 2:
244 write_c0_perfcntr2(val);
245 return;
246 case 3:
247 write_c0_perfcntr3(val);
248 return;
249 }
250}
251
252static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253{
254 idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256 switch (idx) {
257 case 0:
258 write_c0_perfcntr0_64(val);
259 return;
260 case 1:
261 write_c0_perfcntr1_64(val);
262 return;
263 case 2:
264 write_c0_perfcntr2_64(val);
265 return;
266 case 3:
267 write_c0_perfcntr3_64(val);
268 return;
269 }
270}
271
272static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273{
274 idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276 switch (idx) {
277 case 0:
278 return read_c0_perfctrl0();
279 case 1:
280 return read_c0_perfctrl1();
281 case 2:
282 return read_c0_perfctrl2();
283 case 3:
284 return read_c0_perfctrl3();
285 default:
286 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287 return 0;
288 }
289}
290
291static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292{
293 idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295 switch (idx) {
296 case 0:
297 write_c0_perfctrl0(val);
298 return;
299 case 1:
300 write_c0_perfctrl1(val);
301 return;
302 case 2:
303 write_c0_perfctrl2(val);
304 return;
305 case 3:
306 write_c0_perfctrl3(val);
307 return;
308 }
309}
310
311static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312 struct hw_perf_event *hwc)
313{
314 int i;
315
316 /*
317 * We only need to care the counter mask. The range has been
318 * checked definitely.
319 */
320 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323 /*
324 * Note that some MIPS perf events can be counted by both
325 * even and odd counters, wheresas many other are only by
326 * even _or_ odd counters. This introduces an issue that
327 * when the former kind of event takes the counter the
328 * latter kind of event wants to use, then the "counter
329 * allocation" for the latter event will fail. In fact if
330 * they can be dynamically swapped, they both feel happy.
331 * But here we leave this issue alone for now.
332 */
333 if (test_bit(i, &cntr_mask) &&
334 !test_and_set_bit(i, cpuc->used_mask))
335 return i;
336 }
337
338 return -EAGAIN;
339}
340
341static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342{
343 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
344
345 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349 /* Make sure interrupt enabled. */
350 M_PERFCTL_INTERRUPT_ENABLE;
351 if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352 /* enable the counter for the calling thread */
353 cpuc->saved_ctrl[idx] |=
354 (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
356 /*
357 * We do not actually let the counter run. Leave it until start().
358 */
359}
360
361static void mipsxx_pmu_disable_event(int idx)
362{
363 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
364 unsigned long flags;
365
366 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368 local_irq_save(flags);
369 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
371 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372 local_irq_restore(flags);
373}
374
375static int mipspmu_event_set_period(struct perf_event *event,
376 struct hw_perf_event *hwc,
377 int idx)
378{
379 u64 left = local64_read(&hwc->period_left);
380 u64 period = hwc->sample_period;
381 int ret = 0;
382
383 if (unlikely((left + period) & (1ULL << 63))) {
384 /* left underflowed by more than period. */
385 left = period;
386 local64_set(&hwc->period_left, left);
387 hwc->last_period = period;
388 ret = 1;
389 } else if (unlikely((left + period) <= period)) {
390 /* left underflowed by less than period. */
391 left += period;
392 local64_set(&hwc->period_left, left);
393 hwc->last_period = period;
394 ret = 1;
395 }
396
397 if (left > mipspmu.max_period) {
398 left = mipspmu.max_period;
399 local64_set(&hwc->period_left, left);
400 }
401
402 local64_set(&hwc->prev_count, mipspmu.overflow - left);
403
404 mipspmu.write_counter(idx, mipspmu.overflow - left);
405
406 perf_event_update_userpage(event);
407
408 return ret;
409}
410
411static void mipspmu_event_update(struct perf_event *event,
412 struct hw_perf_event *hwc,
413 int idx)
414{
415 u64 prev_raw_count, new_raw_count;
416 u64 delta;
417
418again:
419 prev_raw_count = local64_read(&hwc->prev_count);
420 new_raw_count = mipspmu.read_counter(idx);
421
422 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423 new_raw_count) != prev_raw_count)
424 goto again;
425
426 delta = new_raw_count - prev_raw_count;
427
428 local64_add(delta, &event->count);
429 local64_sub(delta, &hwc->period_left);
430}
431
432static void mipspmu_start(struct perf_event *event, int flags)
433{
434 struct hw_perf_event *hwc = &event->hw;
435
436 if (flags & PERF_EF_RELOAD)
437 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439 hwc->state = 0;
440
441 /* Set the period for the event. */
442 mipspmu_event_set_period(event, hwc, hwc->idx);
443
444 /* Enable the event. */
445 mipsxx_pmu_enable_event(hwc, hwc->idx);
446}
447
448static void mipspmu_stop(struct perf_event *event, int flags)
449{
450 struct hw_perf_event *hwc = &event->hw;
451
452 if (!(hwc->state & PERF_HES_STOPPED)) {
453 /* We are working on a local event. */
454 mipsxx_pmu_disable_event(hwc->idx);
455 barrier();
456 mipspmu_event_update(event, hwc, hwc->idx);
457 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458 }
459}
460
461static int mipspmu_add(struct perf_event *event, int flags)
462{
463 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
464 struct hw_perf_event *hwc = &event->hw;
465 int idx;
466 int err = 0;
467
468 perf_pmu_disable(event->pmu);
469
470 /* To look for a free counter for this event. */
471 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472 if (idx < 0) {
473 err = idx;
474 goto out;
475 }
476
477 /*
478 * If there is an event in the counter we are going to use then
479 * make sure it is disabled.
480 */
481 event->hw.idx = idx;
482 mipsxx_pmu_disable_event(idx);
483 cpuc->events[idx] = event;
484
485 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486 if (flags & PERF_EF_START)
487 mipspmu_start(event, PERF_EF_RELOAD);
488
489 /* Propagate our changes to the userspace mapping. */
490 perf_event_update_userpage(event);
491
492out:
493 perf_pmu_enable(event->pmu);
494 return err;
495}
496
497static void mipspmu_del(struct perf_event *event, int flags)
498{
499 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
500 struct hw_perf_event *hwc = &event->hw;
501 int idx = hwc->idx;
502
503 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504
505 mipspmu_stop(event, PERF_EF_UPDATE);
506 cpuc->events[idx] = NULL;
507 clear_bit(idx, cpuc->used_mask);
508
509 perf_event_update_userpage(event);
510}
511
512static void mipspmu_read(struct perf_event *event)
513{
514 struct hw_perf_event *hwc = &event->hw;
515
516 /* Don't read disabled counters! */
517 if (hwc->idx < 0)
518 return;
519
520 mipspmu_event_update(event, hwc, hwc->idx);
521}
522
523static void mipspmu_enable(struct pmu *pmu)
524{
525#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526 write_unlock(&pmuint_rwlock);
527#endif
528 resume_local_counters();
529}
530
531/*
532 * MIPS performance counters can be per-TC. The control registers can
533 * not be directly accessed across CPUs. Hence if we want to do global
534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
535 * can not make sure this function is called with interrupts enabled. So
536 * here we pause local counters and then grab a rwlock and leave the
537 * counters on other CPUs alone. If any counter interrupt raises while
538 * we own the write lock, simply pause local counters on that CPU and
539 * spin in the handler. Also we know we won't be switched to another
540 * CPU after pausing local counters and before grabbing the lock.
541 */
542static void mipspmu_disable(struct pmu *pmu)
543{
544 pause_local_counters();
545#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546 write_lock(&pmuint_rwlock);
547#endif
548}
549
550static atomic_t active_events = ATOMIC_INIT(0);
551static DEFINE_MUTEX(pmu_reserve_mutex);
552static int (*save_perf_irq)(void);
553
554static int mipspmu_get_irq(void)
555{
556 int err;
557
558 if (mipspmu.irq >= 0) {
559 /* Request my own irq handler. */
560 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561 IRQF_PERCPU | IRQF_NOBALANCING |
562 IRQF_NO_THREAD | IRQF_NO_SUSPEND |
563 IRQF_SHARED,
564 "mips_perf_pmu", &mipspmu);
565 if (err) {
566 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
567 mipspmu.irq);
568 }
569 } else if (cp0_perfcount_irq < 0) {
570 /*
571 * We are sharing the irq number with the timer interrupt.
572 */
573 save_perf_irq = perf_irq;
574 perf_irq = mipsxx_pmu_handle_shared_irq;
575 err = 0;
576 } else {
577 pr_warn("The platform hasn't properly defined its interrupt controller\n");
578 err = -ENOENT;
579 }
580
581 return err;
582}
583
584static void mipspmu_free_irq(void)
585{
586 if (mipspmu.irq >= 0)
587 free_irq(mipspmu.irq, &mipspmu);
588 else if (cp0_perfcount_irq < 0)
589 perf_irq = save_perf_irq;
590}
591
592/*
593 * mipsxx/rm9000/loongson2 have different performance counters, they have
594 * specific low-level init routines.
595 */
596static void reset_counters(void *arg);
597static int __hw_perf_event_init(struct perf_event *event);
598
599static void hw_perf_event_destroy(struct perf_event *event)
600{
601 if (atomic_dec_and_mutex_lock(&active_events,
602 &pmu_reserve_mutex)) {
603 /*
604 * We must not call the destroy function with interrupts
605 * disabled.
606 */
607 on_each_cpu(reset_counters,
608 (void *)(long)mipspmu.num_counters, 1);
609 mipspmu_free_irq();
610 mutex_unlock(&pmu_reserve_mutex);
611 }
612}
613
614static int mipspmu_event_init(struct perf_event *event)
615{
616 int err = 0;
617
618 /* does not support taken branch sampling */
619 if (has_branch_stack(event))
620 return -EOPNOTSUPP;
621
622 switch (event->attr.type) {
623 case PERF_TYPE_RAW:
624 case PERF_TYPE_HARDWARE:
625 case PERF_TYPE_HW_CACHE:
626 break;
627
628 default:
629 return -ENOENT;
630 }
631
632 if (event->cpu >= nr_cpumask_bits ||
633 (event->cpu >= 0 && !cpu_online(event->cpu)))
634 return -ENODEV;
635
636 if (!atomic_inc_not_zero(&active_events)) {
637 mutex_lock(&pmu_reserve_mutex);
638 if (atomic_read(&active_events) == 0)
639 err = mipspmu_get_irq();
640
641 if (!err)
642 atomic_inc(&active_events);
643 mutex_unlock(&pmu_reserve_mutex);
644 }
645
646 if (err)
647 return err;
648
649 return __hw_perf_event_init(event);
650}
651
652static struct pmu pmu = {
653 .pmu_enable = mipspmu_enable,
654 .pmu_disable = mipspmu_disable,
655 .event_init = mipspmu_event_init,
656 .add = mipspmu_add,
657 .del = mipspmu_del,
658 .start = mipspmu_start,
659 .stop = mipspmu_stop,
660 .read = mipspmu_read,
661};
662
663static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
664{
665/*
666 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
667 * event_id.
668 */
669#ifdef CONFIG_MIPS_MT_SMP
670 return ((unsigned int)pev->range << 24) |
671 (pev->cntr_mask & 0xffff00) |
672 (pev->event_id & 0xff);
673#else
674 return (pev->cntr_mask & 0xffff00) |
675 (pev->event_id & 0xff);
676#endif
677}
678
679static const struct mips_perf_event *mipspmu_map_general_event(int idx)
680{
681
682 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
683 return ERR_PTR(-EOPNOTSUPP);
684 return &(*mipspmu.general_event_map)[idx];
685}
686
687static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
688{
689 unsigned int cache_type, cache_op, cache_result;
690 const struct mips_perf_event *pev;
691
692 cache_type = (config >> 0) & 0xff;
693 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
694 return ERR_PTR(-EINVAL);
695
696 cache_op = (config >> 8) & 0xff;
697 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
698 return ERR_PTR(-EINVAL);
699
700 cache_result = (config >> 16) & 0xff;
701 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
702 return ERR_PTR(-EINVAL);
703
704 pev = &((*mipspmu.cache_event_map)
705 [cache_type]
706 [cache_op]
707 [cache_result]);
708
709 if (pev->cntr_mask == 0)
710 return ERR_PTR(-EOPNOTSUPP);
711
712 return pev;
713
714}
715
716static int validate_group(struct perf_event *event)
717{
718 struct perf_event *sibling, *leader = event->group_leader;
719 struct cpu_hw_events fake_cpuc;
720
721 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
722
723 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
724 return -EINVAL;
725
726 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
727 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
728 return -EINVAL;
729 }
730
731 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
732 return -EINVAL;
733
734 return 0;
735}
736
737/* This is needed by specific irq handlers in perf_event_*.c */
738static void handle_associated_event(struct cpu_hw_events *cpuc,
739 int idx, struct perf_sample_data *data,
740 struct pt_regs *regs)
741{
742 struct perf_event *event = cpuc->events[idx];
743 struct hw_perf_event *hwc = &event->hw;
744
745 mipspmu_event_update(event, hwc, idx);
746 data->period = event->hw.last_period;
747 if (!mipspmu_event_set_period(event, hwc, idx))
748 return;
749
750 if (perf_event_overflow(event, data, regs))
751 mipsxx_pmu_disable_event(idx);
752}
753
754
755static int __n_counters(void)
756{
757 if (!(read_c0_config1() & M_CONFIG1_PC))
758 return 0;
759 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
760 return 1;
761 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
762 return 2;
763 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
764 return 3;
765
766 return 4;
767}
768
769static int n_counters(void)
770{
771 int counters;
772
773 switch (current_cpu_type()) {
774 case CPU_R10000:
775 counters = 2;
776 break;
777
778 case CPU_R12000:
779 case CPU_R14000:
780 case CPU_R16000:
781 counters = 4;
782 break;
783
784 default:
785 counters = __n_counters();
786 }
787
788 return counters;
789}
790
791static void reset_counters(void *arg)
792{
793 int counters = (int)(long)arg;
794 switch (counters) {
795 case 4:
796 mipsxx_pmu_write_control(3, 0);
797 mipspmu.write_counter(3, 0);
798 case 3:
799 mipsxx_pmu_write_control(2, 0);
800 mipspmu.write_counter(2, 0);
801 case 2:
802 mipsxx_pmu_write_control(1, 0);
803 mipspmu.write_counter(1, 0);
804 case 1:
805 mipsxx_pmu_write_control(0, 0);
806 mipspmu.write_counter(0, 0);
807 }
808}
809
810/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
811static const struct mips_perf_event mipsxxcore_event_map
812 [PERF_COUNT_HW_MAX] = {
813 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
814 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
815 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
816 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
817};
818
819/* 74K/proAptiv core has different branch event code. */
820static const struct mips_perf_event mipsxxcore_event_map2
821 [PERF_COUNT_HW_MAX] = {
822 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
823 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
824 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
825 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
826};
827
828static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
829 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
830 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
831 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
832 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
833};
834
835static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
836 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
837 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
838 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
839 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
840 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
841 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
842 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
843};
844
845static const struct mips_perf_event bmips5000_event_map
846 [PERF_COUNT_HW_MAX] = {
847 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
848 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
849 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
850};
851
852static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
853 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
854 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
855 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
856 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
857 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
858 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
859};
860
861/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
862static const struct mips_perf_event mipsxxcore_cache_map
863 [PERF_COUNT_HW_CACHE_MAX]
864 [PERF_COUNT_HW_CACHE_OP_MAX]
865 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
866[C(L1D)] = {
867 /*
868 * Like some other architectures (e.g. ARM), the performance
869 * counters don't differentiate between read and write
870 * accesses/misses, so this isn't strictly correct, but it's the
871 * best we can do. Writes and reads get combined.
872 */
873 [C(OP_READ)] = {
874 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
875 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
876 },
877 [C(OP_WRITE)] = {
878 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
879 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
880 },
881},
882[C(L1I)] = {
883 [C(OP_READ)] = {
884 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
885 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
886 },
887 [C(OP_WRITE)] = {
888 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
889 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
890 },
891 [C(OP_PREFETCH)] = {
892 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
893 /*
894 * Note that MIPS has only "hit" events countable for
895 * the prefetch operation.
896 */
897 },
898},
899[C(LL)] = {
900 [C(OP_READ)] = {
901 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
902 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
903 },
904 [C(OP_WRITE)] = {
905 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
906 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
907 },
908},
909[C(DTLB)] = {
910 [C(OP_READ)] = {
911 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
912 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
913 },
914 [C(OP_WRITE)] = {
915 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
916 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
917 },
918},
919[C(ITLB)] = {
920 [C(OP_READ)] = {
921 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
922 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
923 },
924 [C(OP_WRITE)] = {
925 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
926 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
927 },
928},
929[C(BPU)] = {
930 /* Using the same code for *HW_BRANCH* */
931 [C(OP_READ)] = {
932 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
933 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
934 },
935 [C(OP_WRITE)] = {
936 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
937 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
938 },
939},
940};
941
942/* 74K/proAptiv core has completely different cache event map. */
943static const struct mips_perf_event mipsxxcore_cache_map2
944 [PERF_COUNT_HW_CACHE_MAX]
945 [PERF_COUNT_HW_CACHE_OP_MAX]
946 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
947[C(L1D)] = {
948 /*
949 * Like some other architectures (e.g. ARM), the performance
950 * counters don't differentiate between read and write
951 * accesses/misses, so this isn't strictly correct, but it's the
952 * best we can do. Writes and reads get combined.
953 */
954 [C(OP_READ)] = {
955 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
956 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
957 },
958 [C(OP_WRITE)] = {
959 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
960 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
961 },
962},
963[C(L1I)] = {
964 [C(OP_READ)] = {
965 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
966 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
967 },
968 [C(OP_WRITE)] = {
969 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
970 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
971 },
972 [C(OP_PREFETCH)] = {
973 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
974 /*
975 * Note that MIPS has only "hit" events countable for
976 * the prefetch operation.
977 */
978 },
979},
980[C(LL)] = {
981 [C(OP_READ)] = {
982 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
983 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
984 },
985 [C(OP_WRITE)] = {
986 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
987 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
988 },
989},
990/*
991 * 74K core does not have specific DTLB events. proAptiv core has
992 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
993 * not included here. One can use raw events if really needed.
994 */
995[C(ITLB)] = {
996 [C(OP_READ)] = {
997 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
998 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
999 },
1000 [C(OP_WRITE)] = {
1001 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1002 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1003 },
1004},
1005[C(BPU)] = {
1006 /* Using the same code for *HW_BRANCH* */
1007 [C(OP_READ)] = {
1008 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1009 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1010 },
1011 [C(OP_WRITE)] = {
1012 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1013 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1014 },
1015},
1016};
1017
1018static const struct mips_perf_event loongson3_cache_map
1019 [PERF_COUNT_HW_CACHE_MAX]
1020 [PERF_COUNT_HW_CACHE_OP_MAX]
1021 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1022[C(L1D)] = {
1023 /*
1024 * Like some other architectures (e.g. ARM), the performance
1025 * counters don't differentiate between read and write
1026 * accesses/misses, so this isn't strictly correct, but it's the
1027 * best we can do. Writes and reads get combined.
1028 */
1029 [C(OP_READ)] = {
1030 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1031 },
1032 [C(OP_WRITE)] = {
1033 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1034 },
1035},
1036[C(L1I)] = {
1037 [C(OP_READ)] = {
1038 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1039 },
1040 [C(OP_WRITE)] = {
1041 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1042 },
1043},
1044[C(DTLB)] = {
1045 [C(OP_READ)] = {
1046 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1047 },
1048 [C(OP_WRITE)] = {
1049 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1050 },
1051},
1052[C(ITLB)] = {
1053 [C(OP_READ)] = {
1054 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1055 },
1056 [C(OP_WRITE)] = {
1057 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1058 },
1059},
1060[C(BPU)] = {
1061 /* Using the same code for *HW_BRANCH* */
1062 [C(OP_READ)] = {
1063 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
1064 [C(RESULT_MISS)] = { 0x02, CNTR_ODD },
1065 },
1066 [C(OP_WRITE)] = {
1067 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN },
1068 [C(RESULT_MISS)] = { 0x02, CNTR_ODD },
1069 },
1070},
1071};
1072
1073/* BMIPS5000 */
1074static const struct mips_perf_event bmips5000_cache_map
1075 [PERF_COUNT_HW_CACHE_MAX]
1076 [PERF_COUNT_HW_CACHE_OP_MAX]
1077 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1078[C(L1D)] = {
1079 /*
1080 * Like some other architectures (e.g. ARM), the performance
1081 * counters don't differentiate between read and write
1082 * accesses/misses, so this isn't strictly correct, but it's the
1083 * best we can do. Writes and reads get combined.
1084 */
1085 [C(OP_READ)] = {
1086 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1087 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1088 },
1089 [C(OP_WRITE)] = {
1090 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1091 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1092 },
1093},
1094[C(L1I)] = {
1095 [C(OP_READ)] = {
1096 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1097 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1098 },
1099 [C(OP_WRITE)] = {
1100 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1101 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1102 },
1103 [C(OP_PREFETCH)] = {
1104 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1105 /*
1106 * Note that MIPS has only "hit" events countable for
1107 * the prefetch operation.
1108 */
1109 },
1110},
1111[C(LL)] = {
1112 [C(OP_READ)] = {
1113 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1114 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1115 },
1116 [C(OP_WRITE)] = {
1117 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1118 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1119 },
1120},
1121[C(BPU)] = {
1122 /* Using the same code for *HW_BRANCH* */
1123 [C(OP_READ)] = {
1124 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1125 },
1126 [C(OP_WRITE)] = {
1127 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1128 },
1129},
1130};
1131
1132
1133static const struct mips_perf_event octeon_cache_map
1134 [PERF_COUNT_HW_CACHE_MAX]
1135 [PERF_COUNT_HW_CACHE_OP_MAX]
1136 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1137[C(L1D)] = {
1138 [C(OP_READ)] = {
1139 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1140 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1141 },
1142 [C(OP_WRITE)] = {
1143 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1144 },
1145},
1146[C(L1I)] = {
1147 [C(OP_READ)] = {
1148 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1149 },
1150 [C(OP_PREFETCH)] = {
1151 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1152 },
1153},
1154[C(DTLB)] = {
1155 /*
1156 * Only general DTLB misses are counted use the same event for
1157 * read and write.
1158 */
1159 [C(OP_READ)] = {
1160 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1161 },
1162 [C(OP_WRITE)] = {
1163 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1164 },
1165},
1166[C(ITLB)] = {
1167 [C(OP_READ)] = {
1168 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1169 },
1170},
1171};
1172
1173static const struct mips_perf_event xlp_cache_map
1174 [PERF_COUNT_HW_CACHE_MAX]
1175 [PERF_COUNT_HW_CACHE_OP_MAX]
1176 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1177[C(L1D)] = {
1178 [C(OP_READ)] = {
1179 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1180 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1181 },
1182 [C(OP_WRITE)] = {
1183 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1184 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1185 },
1186},
1187[C(L1I)] = {
1188 [C(OP_READ)] = {
1189 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1190 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1191 },
1192},
1193[C(LL)] = {
1194 [C(OP_READ)] = {
1195 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1196 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1197 },
1198 [C(OP_WRITE)] = {
1199 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1200 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1201 },
1202},
1203[C(DTLB)] = {
1204 /*
1205 * Only general DTLB misses are counted use the same event for
1206 * read and write.
1207 */
1208 [C(OP_READ)] = {
1209 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1210 },
1211 [C(OP_WRITE)] = {
1212 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1213 },
1214},
1215[C(ITLB)] = {
1216 [C(OP_READ)] = {
1217 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1218 },
1219 [C(OP_WRITE)] = {
1220 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1221 },
1222},
1223[C(BPU)] = {
1224 [C(OP_READ)] = {
1225 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1226 },
1227},
1228};
1229
1230#ifdef CONFIG_MIPS_MT_SMP
1231static void check_and_calc_range(struct perf_event *event,
1232 const struct mips_perf_event *pev)
1233{
1234 struct hw_perf_event *hwc = &event->hw;
1235
1236 if (event->cpu >= 0) {
1237 if (pev->range > V) {
1238 /*
1239 * The user selected an event that is processor
1240 * wide, while expecting it to be VPE wide.
1241 */
1242 hwc->config_base |= M_TC_EN_ALL;
1243 } else {
1244 /*
1245 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1246 * for both CPUs.
1247 */
1248 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1249 hwc->config_base |= M_TC_EN_VPE;
1250 }
1251 } else
1252 hwc->config_base |= M_TC_EN_ALL;
1253}
1254#else
1255static void check_and_calc_range(struct perf_event *event,
1256 const struct mips_perf_event *pev)
1257{
1258}
1259#endif
1260
1261static int __hw_perf_event_init(struct perf_event *event)
1262{
1263 struct perf_event_attr *attr = &event->attr;
1264 struct hw_perf_event *hwc = &event->hw;
1265 const struct mips_perf_event *pev;
1266 int err;
1267
1268 /* Returning MIPS event descriptor for generic perf event. */
1269 if (PERF_TYPE_HARDWARE == event->attr.type) {
1270 if (event->attr.config >= PERF_COUNT_HW_MAX)
1271 return -EINVAL;
1272 pev = mipspmu_map_general_event(event->attr.config);
1273 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1274 pev = mipspmu_map_cache_event(event->attr.config);
1275 } else if (PERF_TYPE_RAW == event->attr.type) {
1276 /* We are working on the global raw event. */
1277 mutex_lock(&raw_event_mutex);
1278 pev = mipspmu.map_raw_event(event->attr.config);
1279 } else {
1280 /* The event type is not (yet) supported. */
1281 return -EOPNOTSUPP;
1282 }
1283
1284 if (IS_ERR(pev)) {
1285 if (PERF_TYPE_RAW == event->attr.type)
1286 mutex_unlock(&raw_event_mutex);
1287 return PTR_ERR(pev);
1288 }
1289
1290 /*
1291 * We allow max flexibility on how each individual counter shared
1292 * by the single CPU operates (the mode exclusion and the range).
1293 */
1294 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1295
1296 /* Calculate range bits and validate it. */
1297 if (num_possible_cpus() > 1)
1298 check_and_calc_range(event, pev);
1299
1300 hwc->event_base = mipspmu_perf_event_encode(pev);
1301 if (PERF_TYPE_RAW == event->attr.type)
1302 mutex_unlock(&raw_event_mutex);
1303
1304 if (!attr->exclude_user)
1305 hwc->config_base |= M_PERFCTL_USER;
1306 if (!attr->exclude_kernel) {
1307 hwc->config_base |= M_PERFCTL_KERNEL;
1308 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1309 hwc->config_base |= M_PERFCTL_EXL;
1310 }
1311 if (!attr->exclude_hv)
1312 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1313
1314 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1315 /*
1316 * The event can belong to another cpu. We do not assign a local
1317 * counter for it for now.
1318 */
1319 hwc->idx = -1;
1320 hwc->config = 0;
1321
1322 if (!hwc->sample_period) {
1323 hwc->sample_period = mipspmu.max_period;
1324 hwc->last_period = hwc->sample_period;
1325 local64_set(&hwc->period_left, hwc->sample_period);
1326 }
1327
1328 err = 0;
1329 if (event->group_leader != event)
1330 err = validate_group(event);
1331
1332 event->destroy = hw_perf_event_destroy;
1333
1334 if (err)
1335 event->destroy(event);
1336
1337 return err;
1338}
1339
1340static void pause_local_counters(void)
1341{
1342 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1343 int ctr = mipspmu.num_counters;
1344 unsigned long flags;
1345
1346 local_irq_save(flags);
1347 do {
1348 ctr--;
1349 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1350 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1351 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1352 } while (ctr > 0);
1353 local_irq_restore(flags);
1354}
1355
1356static void resume_local_counters(void)
1357{
1358 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1359 int ctr = mipspmu.num_counters;
1360
1361 do {
1362 ctr--;
1363 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1364 } while (ctr > 0);
1365}
1366
1367static int mipsxx_pmu_handle_shared_irq(void)
1368{
1369 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1370 struct perf_sample_data data;
1371 unsigned int counters = mipspmu.num_counters;
1372 u64 counter;
1373 int handled = IRQ_NONE;
1374 struct pt_regs *regs;
1375
1376 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1377 return handled;
1378 /*
1379 * First we pause the local counters, so that when we are locked
1380 * here, the counters are all paused. When it gets locked due to
1381 * perf_disable(), the timer interrupt handler will be delayed.
1382 *
1383 * See also mipsxx_pmu_start().
1384 */
1385 pause_local_counters();
1386#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1387 read_lock(&pmuint_rwlock);
1388#endif
1389
1390 regs = get_irq_regs();
1391
1392 perf_sample_data_init(&data, 0, 0);
1393
1394 switch (counters) {
1395#define HANDLE_COUNTER(n) \
1396 case n + 1: \
1397 if (test_bit(n, cpuc->used_mask)) { \
1398 counter = mipspmu.read_counter(n); \
1399 if (counter & mipspmu.overflow) { \
1400 handle_associated_event(cpuc, n, &data, regs); \
1401 handled = IRQ_HANDLED; \
1402 } \
1403 }
1404 HANDLE_COUNTER(3)
1405 HANDLE_COUNTER(2)
1406 HANDLE_COUNTER(1)
1407 HANDLE_COUNTER(0)
1408 }
1409
1410 /*
1411 * Do all the work for the pending perf events. We can do this
1412 * in here because the performance counter interrupt is a regular
1413 * interrupt, not NMI.
1414 */
1415 if (handled == IRQ_HANDLED)
1416 irq_work_run();
1417
1418#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1419 read_unlock(&pmuint_rwlock);
1420#endif
1421 resume_local_counters();
1422 return handled;
1423}
1424
1425static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1426{
1427 return mipsxx_pmu_handle_shared_irq();
1428}
1429
1430/* 24K */
1431#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1432 ((b) == 0 || (b) == 1 || (b) == 11)
1433
1434/* 34K */
1435#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1436 ((b) == 0 || (b) == 1 || (b) == 11)
1437#ifdef CONFIG_MIPS_MT_SMP
1438#define IS_RANGE_P_34K_EVENT(r, b) \
1439 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1440 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1441 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1442 ((b) >= 64 && (b) <= 67))
1443#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1444#endif
1445
1446/* 74K */
1447#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1448 ((b) == 0 || (b) == 1)
1449
1450/* proAptiv */
1451#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1452 ((b) == 0 || (b) == 1)
1453/* P5600 */
1454#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1455 ((b) == 0 || (b) == 1)
1456
1457/* 1004K */
1458#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1459 ((b) == 0 || (b) == 1 || (b) == 11)
1460#ifdef CONFIG_MIPS_MT_SMP
1461#define IS_RANGE_P_1004K_EVENT(r, b) \
1462 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1463 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1464 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1465 (r) == 188 || (b) == 61 || (b) == 62 || \
1466 ((b) >= 64 && (b) <= 67))
1467#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1468#endif
1469
1470/* interAptiv */
1471#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1472 ((b) == 0 || (b) == 1 || (b) == 11)
1473#ifdef CONFIG_MIPS_MT_SMP
1474/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1475#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1476 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1477 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1478 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1479 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1480 ((b) >= 64 && (b) <= 67))
1481#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1482#endif
1483
1484/* BMIPS5000 */
1485#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1486 ((b) == 0 || (b) == 1)
1487
1488
1489/*
1490 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1491 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1492 * indicate the even/odd bank selector. So, for example, when user wants to take
1493 * the Event Num of 15 for odd counters (by referring to the user manual), then
1494 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1495 * to be used.
1496 *
1497 * Some newer cores have even more events, in which case the user can use raw
1498 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1499 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1500 */
1501static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1502{
1503 /* currently most cores have 7-bit event numbers */
1504 unsigned int raw_id = config & 0xff;
1505 unsigned int base_id = raw_id & 0x7f;
1506
1507 switch (current_cpu_type()) {
1508 case CPU_24K:
1509 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1510 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1511 else
1512 raw_event.cntr_mask =
1513 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1514#ifdef CONFIG_MIPS_MT_SMP
1515 /*
1516 * This is actually doing nothing. Non-multithreading
1517 * CPUs will not check and calculate the range.
1518 */
1519 raw_event.range = P;
1520#endif
1521 break;
1522 case CPU_34K:
1523 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1524 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1525 else
1526 raw_event.cntr_mask =
1527 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1528#ifdef CONFIG_MIPS_MT_SMP
1529 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1530 raw_event.range = P;
1531 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1532 raw_event.range = V;
1533 else
1534 raw_event.range = T;
1535#endif
1536 break;
1537 case CPU_74K:
1538 case CPU_1074K:
1539 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1540 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1541 else
1542 raw_event.cntr_mask =
1543 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1544#ifdef CONFIG_MIPS_MT_SMP
1545 raw_event.range = P;
1546#endif
1547 break;
1548 case CPU_PROAPTIV:
1549 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1550 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1551 else
1552 raw_event.cntr_mask =
1553 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1554#ifdef CONFIG_MIPS_MT_SMP
1555 raw_event.range = P;
1556#endif
1557 break;
1558 case CPU_P5600:
1559 case CPU_I6400:
1560 /* 8-bit event numbers */
1561 raw_id = config & 0x1ff;
1562 base_id = raw_id & 0xff;
1563 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1564 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1565 else
1566 raw_event.cntr_mask =
1567 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1568#ifdef CONFIG_MIPS_MT_SMP
1569 raw_event.range = P;
1570#endif
1571 break;
1572 case CPU_1004K:
1573 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1574 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1575 else
1576 raw_event.cntr_mask =
1577 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1578#ifdef CONFIG_MIPS_MT_SMP
1579 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1580 raw_event.range = P;
1581 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1582 raw_event.range = V;
1583 else
1584 raw_event.range = T;
1585#endif
1586 break;
1587 case CPU_INTERAPTIV:
1588 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1589 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1590 else
1591 raw_event.cntr_mask =
1592 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1593#ifdef CONFIG_MIPS_MT_SMP
1594 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1595 raw_event.range = P;
1596 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1597 raw_event.range = V;
1598 else
1599 raw_event.range = T;
1600#endif
1601 break;
1602 case CPU_BMIPS5000:
1603 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1604 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1605 else
1606 raw_event.cntr_mask =
1607 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1608 break;
1609 case CPU_LOONGSON3:
1610 raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1611 break;
1612 }
1613
1614 raw_event.event_id = base_id;
1615
1616 return &raw_event;
1617}
1618
1619static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1620{
1621 unsigned int raw_id = config & 0xff;
1622 unsigned int base_id = raw_id & 0x7f;
1623
1624
1625 raw_event.cntr_mask = CNTR_ALL;
1626 raw_event.event_id = base_id;
1627
1628 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1629 if (base_id > 0x42)
1630 return ERR_PTR(-EOPNOTSUPP);
1631 } else {
1632 if (base_id > 0x3a)
1633 return ERR_PTR(-EOPNOTSUPP);
1634 }
1635
1636 switch (base_id) {
1637 case 0x00:
1638 case 0x0f:
1639 case 0x1e:
1640 case 0x1f:
1641 case 0x2f:
1642 case 0x34:
1643 case 0x3b ... 0x3f:
1644 return ERR_PTR(-EOPNOTSUPP);
1645 default:
1646 break;
1647 }
1648
1649 return &raw_event;
1650}
1651
1652static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1653{
1654 unsigned int raw_id = config & 0xff;
1655
1656 /* Only 1-63 are defined */
1657 if ((raw_id < 0x01) || (raw_id > 0x3f))
1658 return ERR_PTR(-EOPNOTSUPP);
1659
1660 raw_event.cntr_mask = CNTR_ALL;
1661 raw_event.event_id = raw_id;
1662
1663 return &raw_event;
1664}
1665
1666static int __init
1667init_hw_perf_events(void)
1668{
1669 int counters, irq;
1670 int counter_bits;
1671
1672 pr_info("Performance counters: ");
1673
1674 counters = n_counters();
1675 if (counters == 0) {
1676 pr_cont("No available PMU.\n");
1677 return -ENODEV;
1678 }
1679
1680#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1681 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1682 if (!cpu_has_mipsmt_pertccounters)
1683 counters = counters_total_to_per_cpu(counters);
1684#endif
1685
1686 if (get_c0_perfcount_int)
1687 irq = get_c0_perfcount_int();
1688 else if (cp0_perfcount_irq >= 0)
1689 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1690 else
1691 irq = -1;
1692
1693 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1694
1695 switch (current_cpu_type()) {
1696 case CPU_24K:
1697 mipspmu.name = "mips/24K";
1698 mipspmu.general_event_map = &mipsxxcore_event_map;
1699 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1700 break;
1701 case CPU_34K:
1702 mipspmu.name = "mips/34K";
1703 mipspmu.general_event_map = &mipsxxcore_event_map;
1704 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1705 break;
1706 case CPU_74K:
1707 mipspmu.name = "mips/74K";
1708 mipspmu.general_event_map = &mipsxxcore_event_map2;
1709 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1710 break;
1711 case CPU_PROAPTIV:
1712 mipspmu.name = "mips/proAptiv";
1713 mipspmu.general_event_map = &mipsxxcore_event_map2;
1714 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1715 break;
1716 case CPU_P5600:
1717 mipspmu.name = "mips/P5600";
1718 mipspmu.general_event_map = &mipsxxcore_event_map2;
1719 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1720 break;
1721 case CPU_I6400:
1722 mipspmu.name = "mips/I6400";
1723 mipspmu.general_event_map = &mipsxxcore_event_map2;
1724 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1725 break;
1726 case CPU_1004K:
1727 mipspmu.name = "mips/1004K";
1728 mipspmu.general_event_map = &mipsxxcore_event_map;
1729 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1730 break;
1731 case CPU_1074K:
1732 mipspmu.name = "mips/1074K";
1733 mipspmu.general_event_map = &mipsxxcore_event_map;
1734 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1735 break;
1736 case CPU_INTERAPTIV:
1737 mipspmu.name = "mips/interAptiv";
1738 mipspmu.general_event_map = &mipsxxcore_event_map;
1739 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1740 break;
1741 case CPU_LOONGSON1:
1742 mipspmu.name = "mips/loongson1";
1743 mipspmu.general_event_map = &mipsxxcore_event_map;
1744 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1745 break;
1746 case CPU_LOONGSON3:
1747 mipspmu.name = "mips/loongson3";
1748 mipspmu.general_event_map = &loongson3_event_map;
1749 mipspmu.cache_event_map = &loongson3_cache_map;
1750 break;
1751 case CPU_CAVIUM_OCTEON:
1752 case CPU_CAVIUM_OCTEON_PLUS:
1753 case CPU_CAVIUM_OCTEON2:
1754 mipspmu.name = "octeon";
1755 mipspmu.general_event_map = &octeon_event_map;
1756 mipspmu.cache_event_map = &octeon_cache_map;
1757 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1758 break;
1759 case CPU_BMIPS5000:
1760 mipspmu.name = "BMIPS5000";
1761 mipspmu.general_event_map = &bmips5000_event_map;
1762 mipspmu.cache_event_map = &bmips5000_cache_map;
1763 break;
1764 case CPU_XLP:
1765 mipspmu.name = "xlp";
1766 mipspmu.general_event_map = &xlp_event_map;
1767 mipspmu.cache_event_map = &xlp_cache_map;
1768 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1769 break;
1770 default:
1771 pr_cont("Either hardware does not support performance "
1772 "counters, or not yet implemented.\n");
1773 return -ENODEV;
1774 }
1775
1776 mipspmu.num_counters = counters;
1777 mipspmu.irq = irq;
1778
1779 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1780 mipspmu.max_period = (1ULL << 63) - 1;
1781 mipspmu.valid_count = (1ULL << 63) - 1;
1782 mipspmu.overflow = 1ULL << 63;
1783 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1784 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1785 counter_bits = 64;
1786 } else {
1787 mipspmu.max_period = (1ULL << 31) - 1;
1788 mipspmu.valid_count = (1ULL << 31) - 1;
1789 mipspmu.overflow = 1ULL << 31;
1790 mipspmu.read_counter = mipsxx_pmu_read_counter;
1791 mipspmu.write_counter = mipsxx_pmu_write_counter;
1792 counter_bits = 32;
1793 }
1794
1795 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1796
1797 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1798 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1799 irq < 0 ? " (share with timer interrupt)" : "");
1800
1801 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1802
1803 return 0;
1804}
1805early_initcall(init_hw_perf_events);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Linux performance counter support for MIPS.
4 *
5 * Copyright (C) 2010 MIPS Technologies, Inc.
6 * Copyright (C) 2011 Cavium Networks, Inc.
7 * Author: Deng-Cheng Zhu
8 *
9 * This code is based on the implementation for ARM, which is in turn
10 * based on the sparc64 perf event code and the x86 code. Performance
11 * counter access is based on the MIPS Oprofile code. And the callchain
12 * support references the code of MIPS stacktrace.c.
13 */
14
15#include <linux/cpumask.h>
16#include <linux/interrupt.h>
17#include <linux/smp.h>
18#include <linux/kernel.h>
19#include <linux/perf_event.h>
20#include <linux/uaccess.h>
21
22#include <asm/irq.h>
23#include <asm/irq_regs.h>
24#include <asm/stacktrace.h>
25#include <asm/time.h> /* For perf_irq */
26
27#define MIPS_MAX_HWEVENTS 4
28#define MIPS_TCS_PER_COUNTER 2
29#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
30
31struct cpu_hw_events {
32 /* Array of events on this cpu. */
33 struct perf_event *events[MIPS_MAX_HWEVENTS];
34
35 /*
36 * Set the bit (indexed by the counter number) when the counter
37 * is used for an event.
38 */
39 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
40
41 /*
42 * Software copy of the control register for each performance counter.
43 * MIPS CPUs vary in performance counters. They use this differently,
44 * and even may not use it.
45 */
46 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
47};
48DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 .saved_ctrl = {0},
50};
51
52/* The description of MIPS performance events. */
53struct mips_perf_event {
54 unsigned int event_id;
55 /*
56 * MIPS performance counters are indexed starting from 0.
57 * CNTR_EVEN indicates the indexes of the counters to be used are
58 * even numbers.
59 */
60 unsigned int cntr_mask;
61 #define CNTR_EVEN 0x55555555
62 #define CNTR_ODD 0xaaaaaaaa
63 #define CNTR_ALL 0xffffffff
64 enum {
65 T = 0,
66 V = 1,
67 P = 2,
68 } range;
69};
70
71static struct mips_perf_event raw_event;
72static DEFINE_MUTEX(raw_event_mutex);
73
74#define C(x) PERF_COUNT_HW_CACHE_##x
75
76struct mips_pmu {
77 u64 max_period;
78 u64 valid_count;
79 u64 overflow;
80 const char *name;
81 int irq;
82 u64 (*read_counter)(unsigned int idx);
83 void (*write_counter)(unsigned int idx, u64 val);
84 const struct mips_perf_event *(*map_raw_event)(u64 config);
85 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
86 const struct mips_perf_event (*cache_event_map)
87 [PERF_COUNT_HW_CACHE_MAX]
88 [PERF_COUNT_HW_CACHE_OP_MAX]
89 [PERF_COUNT_HW_CACHE_RESULT_MAX];
90 unsigned int num_counters;
91};
92
93static int counter_bits;
94static struct mips_pmu mipspmu;
95
96#define M_PERFCTL_EVENT(event) (((event) << MIPS_PERFCTRL_EVENT_S) & \
97 MIPS_PERFCTRL_EVENT)
98#define M_PERFCTL_VPEID(vpe) ((vpe) << MIPS_PERFCTRL_VPEID_S)
99
100#ifdef CONFIG_CPU_BMIPS5000
101#define M_PERFCTL_MT_EN(filter) 0
102#else /* !CONFIG_CPU_BMIPS5000 */
103#define M_PERFCTL_MT_EN(filter) (filter)
104#endif /* CONFIG_CPU_BMIPS5000 */
105
106#define M_TC_EN_ALL M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
107#define M_TC_EN_VPE M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
108#define M_TC_EN_TC M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
109
110#define M_PERFCTL_COUNT_EVENT_WHENEVER (MIPS_PERFCTRL_EXL | \
111 MIPS_PERFCTRL_K | \
112 MIPS_PERFCTRL_U | \
113 MIPS_PERFCTRL_S | \
114 MIPS_PERFCTRL_IE)
115
116#ifdef CONFIG_MIPS_MT_SMP
117#define M_PERFCTL_CONFIG_MASK 0x3fff801f
118#else
119#define M_PERFCTL_CONFIG_MASK 0x1f
120#endif
121
122#define CNTR_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
123
124#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
125static DEFINE_RWLOCK(pmuint_rwlock);
126
127#if defined(CONFIG_CPU_BMIPS5000)
128#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
129 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
130#else
131#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
132 0 : cpu_vpe_id(¤t_cpu_data))
133#endif
134
135/* Copied from op_model_mipsxx.c */
136static unsigned int vpe_shift(void)
137{
138 if (num_possible_cpus() > 1)
139 return 1;
140
141 return 0;
142}
143
144static unsigned int counters_total_to_per_cpu(unsigned int counters)
145{
146 return counters >> vpe_shift();
147}
148
149#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
150#define vpe_id() 0
151
152#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
153
154static void resume_local_counters(void);
155static void pause_local_counters(void);
156static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
157static int mipsxx_pmu_handle_shared_irq(void);
158
159/* 0: Not Loongson-3
160 * 1: Loongson-3A1000/3B1000/3B1500
161 * 2: Loongson-3A2000/3A3000
162 * 3: Loongson-3A4000+
163 */
164
165#define LOONGSON_PMU_TYPE0 0
166#define LOONGSON_PMU_TYPE1 1
167#define LOONGSON_PMU_TYPE2 2
168#define LOONGSON_PMU_TYPE3 3
169
170static inline int get_loongson3_pmu_type(void)
171{
172 if (boot_cpu_type() != CPU_LOONGSON64)
173 return LOONGSON_PMU_TYPE0;
174 if ((boot_cpu_data.processor_id & PRID_COMP_MASK) == PRID_COMP_LEGACY)
175 return LOONGSON_PMU_TYPE1;
176 if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64C)
177 return LOONGSON_PMU_TYPE2;
178 if ((boot_cpu_data.processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64G)
179 return LOONGSON_PMU_TYPE3;
180
181 return LOONGSON_PMU_TYPE0;
182}
183
184static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
185{
186 if (vpe_id() == 1)
187 idx = (idx + 2) & 3;
188 return idx;
189}
190
191static u64 mipsxx_pmu_read_counter(unsigned int idx)
192{
193 idx = mipsxx_pmu_swizzle_perf_idx(idx);
194
195 switch (idx) {
196 case 0:
197 /*
198 * The counters are unsigned, we must cast to truncate
199 * off the high bits.
200 */
201 return (u32)read_c0_perfcntr0();
202 case 1:
203 return (u32)read_c0_perfcntr1();
204 case 2:
205 return (u32)read_c0_perfcntr2();
206 case 3:
207 return (u32)read_c0_perfcntr3();
208 default:
209 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
210 return 0;
211 }
212}
213
214static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
215{
216 u64 mask = CNTR_BIT_MASK(counter_bits);
217 idx = mipsxx_pmu_swizzle_perf_idx(idx);
218
219 switch (idx) {
220 case 0:
221 return read_c0_perfcntr0_64() & mask;
222 case 1:
223 return read_c0_perfcntr1_64() & mask;
224 case 2:
225 return read_c0_perfcntr2_64() & mask;
226 case 3:
227 return read_c0_perfcntr3_64() & mask;
228 default:
229 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
230 return 0;
231 }
232}
233
234static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
235{
236 idx = mipsxx_pmu_swizzle_perf_idx(idx);
237
238 switch (idx) {
239 case 0:
240 write_c0_perfcntr0(val);
241 return;
242 case 1:
243 write_c0_perfcntr1(val);
244 return;
245 case 2:
246 write_c0_perfcntr2(val);
247 return;
248 case 3:
249 write_c0_perfcntr3(val);
250 return;
251 }
252}
253
254static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
255{
256 val &= CNTR_BIT_MASK(counter_bits);
257 idx = mipsxx_pmu_swizzle_perf_idx(idx);
258
259 switch (idx) {
260 case 0:
261 write_c0_perfcntr0_64(val);
262 return;
263 case 1:
264 write_c0_perfcntr1_64(val);
265 return;
266 case 2:
267 write_c0_perfcntr2_64(val);
268 return;
269 case 3:
270 write_c0_perfcntr3_64(val);
271 return;
272 }
273}
274
275static unsigned int mipsxx_pmu_read_control(unsigned int idx)
276{
277 idx = mipsxx_pmu_swizzle_perf_idx(idx);
278
279 switch (idx) {
280 case 0:
281 return read_c0_perfctrl0();
282 case 1:
283 return read_c0_perfctrl1();
284 case 2:
285 return read_c0_perfctrl2();
286 case 3:
287 return read_c0_perfctrl3();
288 default:
289 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
290 return 0;
291 }
292}
293
294static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
295{
296 idx = mipsxx_pmu_swizzle_perf_idx(idx);
297
298 switch (idx) {
299 case 0:
300 write_c0_perfctrl0(val);
301 return;
302 case 1:
303 write_c0_perfctrl1(val);
304 return;
305 case 2:
306 write_c0_perfctrl2(val);
307 return;
308 case 3:
309 write_c0_perfctrl3(val);
310 return;
311 }
312}
313
314static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
315 struct hw_perf_event *hwc)
316{
317 int i;
318 unsigned long cntr_mask;
319
320 /*
321 * We only need to care the counter mask. The range has been
322 * checked definitely.
323 */
324 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
325 cntr_mask = (hwc->event_base >> 10) & 0xffff;
326 else
327 cntr_mask = (hwc->event_base >> 8) & 0xffff;
328
329 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
330 /*
331 * Note that some MIPS perf events can be counted by both
332 * even and odd counters, wheresas many other are only by
333 * even _or_ odd counters. This introduces an issue that
334 * when the former kind of event takes the counter the
335 * latter kind of event wants to use, then the "counter
336 * allocation" for the latter event will fail. In fact if
337 * they can be dynamically swapped, they both feel happy.
338 * But here we leave this issue alone for now.
339 */
340 if (test_bit(i, &cntr_mask) &&
341 !test_and_set_bit(i, cpuc->used_mask))
342 return i;
343 }
344
345 return -EAGAIN;
346}
347
348static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
349{
350 struct perf_event *event = container_of(evt, struct perf_event, hw);
351 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
352 unsigned int range = evt->event_base >> 24;
353
354 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
355
356 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
357 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0x3ff) |
358 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
359 /* Make sure interrupt enabled. */
360 MIPS_PERFCTRL_IE;
361 else
362 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
363 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
364 /* Make sure interrupt enabled. */
365 MIPS_PERFCTRL_IE;
366
367 if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
368 /* enable the counter for the calling thread */
369 cpuc->saved_ctrl[idx] |=
370 (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
371 } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
372 /* The counter is processor wide. Set it up to count all TCs. */
373 pr_debug("Enabling perf counter for all TCs\n");
374 cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
375 } else {
376 unsigned int cpu, ctrl;
377
378 /*
379 * Set up the counter for a particular CPU when event->cpu is
380 * a valid CPU number. Otherwise set up the counter for the CPU
381 * scheduling this thread.
382 */
383 cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
384
385 ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
386 ctrl |= M_TC_EN_VPE;
387 cpuc->saved_ctrl[idx] |= ctrl;
388 pr_debug("Enabling perf counter for CPU%d\n", cpu);
389 }
390 /*
391 * We do not actually let the counter run. Leave it until start().
392 */
393}
394
395static void mipsxx_pmu_disable_event(int idx)
396{
397 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
398 unsigned long flags;
399
400 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
401
402 local_irq_save(flags);
403 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
404 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
405 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
406 local_irq_restore(flags);
407}
408
409static int mipspmu_event_set_period(struct perf_event *event,
410 struct hw_perf_event *hwc,
411 int idx)
412{
413 u64 left = local64_read(&hwc->period_left);
414 u64 period = hwc->sample_period;
415 int ret = 0;
416
417 if (unlikely((left + period) & (1ULL << 63))) {
418 /* left underflowed by more than period. */
419 left = period;
420 local64_set(&hwc->period_left, left);
421 hwc->last_period = period;
422 ret = 1;
423 } else if (unlikely((left + period) <= period)) {
424 /* left underflowed by less than period. */
425 left += period;
426 local64_set(&hwc->period_left, left);
427 hwc->last_period = period;
428 ret = 1;
429 }
430
431 if (left > mipspmu.max_period) {
432 left = mipspmu.max_period;
433 local64_set(&hwc->period_left, left);
434 }
435
436 local64_set(&hwc->prev_count, mipspmu.overflow - left);
437
438 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
439 mipsxx_pmu_write_control(idx,
440 M_PERFCTL_EVENT(hwc->event_base & 0x3ff));
441
442 mipspmu.write_counter(idx, mipspmu.overflow - left);
443
444 perf_event_update_userpage(event);
445
446 return ret;
447}
448
449static void mipspmu_event_update(struct perf_event *event,
450 struct hw_perf_event *hwc,
451 int idx)
452{
453 u64 prev_raw_count, new_raw_count;
454 u64 delta;
455
456again:
457 prev_raw_count = local64_read(&hwc->prev_count);
458 new_raw_count = mipspmu.read_counter(idx);
459
460 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
461 new_raw_count) != prev_raw_count)
462 goto again;
463
464 delta = new_raw_count - prev_raw_count;
465
466 local64_add(delta, &event->count);
467 local64_sub(delta, &hwc->period_left);
468}
469
470static void mipspmu_start(struct perf_event *event, int flags)
471{
472 struct hw_perf_event *hwc = &event->hw;
473
474 if (flags & PERF_EF_RELOAD)
475 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
476
477 hwc->state = 0;
478
479 /* Set the period for the event. */
480 mipspmu_event_set_period(event, hwc, hwc->idx);
481
482 /* Enable the event. */
483 mipsxx_pmu_enable_event(hwc, hwc->idx);
484}
485
486static void mipspmu_stop(struct perf_event *event, int flags)
487{
488 struct hw_perf_event *hwc = &event->hw;
489
490 if (!(hwc->state & PERF_HES_STOPPED)) {
491 /* We are working on a local event. */
492 mipsxx_pmu_disable_event(hwc->idx);
493 barrier();
494 mipspmu_event_update(event, hwc, hwc->idx);
495 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
496 }
497}
498
499static int mipspmu_add(struct perf_event *event, int flags)
500{
501 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
502 struct hw_perf_event *hwc = &event->hw;
503 int idx;
504 int err = 0;
505
506 perf_pmu_disable(event->pmu);
507
508 /* To look for a free counter for this event. */
509 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
510 if (idx < 0) {
511 err = idx;
512 goto out;
513 }
514
515 /*
516 * If there is an event in the counter we are going to use then
517 * make sure it is disabled.
518 */
519 event->hw.idx = idx;
520 mipsxx_pmu_disable_event(idx);
521 cpuc->events[idx] = event;
522
523 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
524 if (flags & PERF_EF_START)
525 mipspmu_start(event, PERF_EF_RELOAD);
526
527 /* Propagate our changes to the userspace mapping. */
528 perf_event_update_userpage(event);
529
530out:
531 perf_pmu_enable(event->pmu);
532 return err;
533}
534
535static void mipspmu_del(struct perf_event *event, int flags)
536{
537 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
538 struct hw_perf_event *hwc = &event->hw;
539 int idx = hwc->idx;
540
541 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
542
543 mipspmu_stop(event, PERF_EF_UPDATE);
544 cpuc->events[idx] = NULL;
545 clear_bit(idx, cpuc->used_mask);
546
547 perf_event_update_userpage(event);
548}
549
550static void mipspmu_read(struct perf_event *event)
551{
552 struct hw_perf_event *hwc = &event->hw;
553
554 /* Don't read disabled counters! */
555 if (hwc->idx < 0)
556 return;
557
558 mipspmu_event_update(event, hwc, hwc->idx);
559}
560
561static void mipspmu_enable(struct pmu *pmu)
562{
563#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
564 write_unlock(&pmuint_rwlock);
565#endif
566 resume_local_counters();
567}
568
569/*
570 * MIPS performance counters can be per-TC. The control registers can
571 * not be directly accessed across CPUs. Hence if we want to do global
572 * control, we need cross CPU calls. on_each_cpu() can help us, but we
573 * can not make sure this function is called with interrupts enabled. So
574 * here we pause local counters and then grab a rwlock and leave the
575 * counters on other CPUs alone. If any counter interrupt raises while
576 * we own the write lock, simply pause local counters on that CPU and
577 * spin in the handler. Also we know we won't be switched to another
578 * CPU after pausing local counters and before grabbing the lock.
579 */
580static void mipspmu_disable(struct pmu *pmu)
581{
582 pause_local_counters();
583#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
584 write_lock(&pmuint_rwlock);
585#endif
586}
587
588static atomic_t active_events = ATOMIC_INIT(0);
589static DEFINE_MUTEX(pmu_reserve_mutex);
590static int (*save_perf_irq)(void);
591
592static int mipspmu_get_irq(void)
593{
594 int err;
595
596 if (mipspmu.irq >= 0) {
597 /* Request my own irq handler. */
598 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
599 IRQF_PERCPU | IRQF_NOBALANCING |
600 IRQF_NO_THREAD | IRQF_NO_SUSPEND |
601 IRQF_SHARED,
602 "mips_perf_pmu", &mipspmu);
603 if (err) {
604 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
605 mipspmu.irq);
606 }
607 } else if (cp0_perfcount_irq < 0) {
608 /*
609 * We are sharing the irq number with the timer interrupt.
610 */
611 save_perf_irq = perf_irq;
612 perf_irq = mipsxx_pmu_handle_shared_irq;
613 err = 0;
614 } else {
615 pr_warn("The platform hasn't properly defined its interrupt controller\n");
616 err = -ENOENT;
617 }
618
619 return err;
620}
621
622static void mipspmu_free_irq(void)
623{
624 if (mipspmu.irq >= 0)
625 free_irq(mipspmu.irq, &mipspmu);
626 else if (cp0_perfcount_irq < 0)
627 perf_irq = save_perf_irq;
628}
629
630/*
631 * mipsxx/rm9000/loongson2 have different performance counters, they have
632 * specific low-level init routines.
633 */
634static void reset_counters(void *arg);
635static int __hw_perf_event_init(struct perf_event *event);
636
637static void hw_perf_event_destroy(struct perf_event *event)
638{
639 if (atomic_dec_and_mutex_lock(&active_events,
640 &pmu_reserve_mutex)) {
641 /*
642 * We must not call the destroy function with interrupts
643 * disabled.
644 */
645 on_each_cpu(reset_counters,
646 (void *)(long)mipspmu.num_counters, 1);
647 mipspmu_free_irq();
648 mutex_unlock(&pmu_reserve_mutex);
649 }
650}
651
652static int mipspmu_event_init(struct perf_event *event)
653{
654 int err = 0;
655
656 /* does not support taken branch sampling */
657 if (has_branch_stack(event))
658 return -EOPNOTSUPP;
659
660 switch (event->attr.type) {
661 case PERF_TYPE_RAW:
662 case PERF_TYPE_HARDWARE:
663 case PERF_TYPE_HW_CACHE:
664 break;
665
666 default:
667 return -ENOENT;
668 }
669
670 if (event->cpu >= 0 && !cpu_online(event->cpu))
671 return -ENODEV;
672
673 if (!atomic_inc_not_zero(&active_events)) {
674 mutex_lock(&pmu_reserve_mutex);
675 if (atomic_read(&active_events) == 0)
676 err = mipspmu_get_irq();
677
678 if (!err)
679 atomic_inc(&active_events);
680 mutex_unlock(&pmu_reserve_mutex);
681 }
682
683 if (err)
684 return err;
685
686 return __hw_perf_event_init(event);
687}
688
689static struct pmu pmu = {
690 .pmu_enable = mipspmu_enable,
691 .pmu_disable = mipspmu_disable,
692 .event_init = mipspmu_event_init,
693 .add = mipspmu_add,
694 .del = mipspmu_del,
695 .start = mipspmu_start,
696 .stop = mipspmu_stop,
697 .read = mipspmu_read,
698};
699
700static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
701{
702/*
703 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
704 * event_id.
705 */
706#ifdef CONFIG_MIPS_MT_SMP
707 if (num_possible_cpus() > 1)
708 return ((unsigned int)pev->range << 24) |
709 (pev->cntr_mask & 0xffff00) |
710 (pev->event_id & 0xff);
711 else
712#endif /* CONFIG_MIPS_MT_SMP */
713 {
714 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2)
715 return (pev->cntr_mask & 0xfffc00) |
716 (pev->event_id & 0x3ff);
717 else
718 return (pev->cntr_mask & 0xffff00) |
719 (pev->event_id & 0xff);
720 }
721}
722
723static const struct mips_perf_event *mipspmu_map_general_event(int idx)
724{
725
726 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
727 return ERR_PTR(-EOPNOTSUPP);
728 return &(*mipspmu.general_event_map)[idx];
729}
730
731static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
732{
733 unsigned int cache_type, cache_op, cache_result;
734 const struct mips_perf_event *pev;
735
736 cache_type = (config >> 0) & 0xff;
737 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
738 return ERR_PTR(-EINVAL);
739
740 cache_op = (config >> 8) & 0xff;
741 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
742 return ERR_PTR(-EINVAL);
743
744 cache_result = (config >> 16) & 0xff;
745 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
746 return ERR_PTR(-EINVAL);
747
748 pev = &((*mipspmu.cache_event_map)
749 [cache_type]
750 [cache_op]
751 [cache_result]);
752
753 if (pev->cntr_mask == 0)
754 return ERR_PTR(-EOPNOTSUPP);
755
756 return pev;
757
758}
759
760static int validate_group(struct perf_event *event)
761{
762 struct perf_event *sibling, *leader = event->group_leader;
763 struct cpu_hw_events fake_cpuc;
764
765 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
766
767 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
768 return -EINVAL;
769
770 for_each_sibling_event(sibling, leader) {
771 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
772 return -EINVAL;
773 }
774
775 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
776 return -EINVAL;
777
778 return 0;
779}
780
781/* This is needed by specific irq handlers in perf_event_*.c */
782static void handle_associated_event(struct cpu_hw_events *cpuc,
783 int idx, struct perf_sample_data *data,
784 struct pt_regs *regs)
785{
786 struct perf_event *event = cpuc->events[idx];
787 struct hw_perf_event *hwc = &event->hw;
788
789 mipspmu_event_update(event, hwc, idx);
790 data->period = event->hw.last_period;
791 if (!mipspmu_event_set_period(event, hwc, idx))
792 return;
793
794 if (perf_event_overflow(event, data, regs))
795 mipsxx_pmu_disable_event(idx);
796}
797
798
799static int __n_counters(void)
800{
801 if (!cpu_has_perf)
802 return 0;
803 if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
804 return 1;
805 if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
806 return 2;
807 if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
808 return 3;
809
810 return 4;
811}
812
813static int n_counters(void)
814{
815 int counters;
816
817 switch (current_cpu_type()) {
818 case CPU_R10000:
819 counters = 2;
820 break;
821
822 case CPU_R12000:
823 case CPU_R14000:
824 case CPU_R16000:
825 counters = 4;
826 break;
827
828 default:
829 counters = __n_counters();
830 }
831
832 return counters;
833}
834
835static void loongson3_reset_counters(void *arg)
836{
837 int counters = (int)(long)arg;
838
839 switch (counters) {
840 case 4:
841 mipsxx_pmu_write_control(3, 0);
842 mipspmu.write_counter(3, 0);
843 mipsxx_pmu_write_control(3, 127<<5);
844 mipspmu.write_counter(3, 0);
845 mipsxx_pmu_write_control(3, 191<<5);
846 mipspmu.write_counter(3, 0);
847 mipsxx_pmu_write_control(3, 255<<5);
848 mipspmu.write_counter(3, 0);
849 mipsxx_pmu_write_control(3, 319<<5);
850 mipspmu.write_counter(3, 0);
851 mipsxx_pmu_write_control(3, 383<<5);
852 mipspmu.write_counter(3, 0);
853 mipsxx_pmu_write_control(3, 575<<5);
854 mipspmu.write_counter(3, 0);
855 fallthrough;
856 case 3:
857 mipsxx_pmu_write_control(2, 0);
858 mipspmu.write_counter(2, 0);
859 mipsxx_pmu_write_control(2, 127<<5);
860 mipspmu.write_counter(2, 0);
861 mipsxx_pmu_write_control(2, 191<<5);
862 mipspmu.write_counter(2, 0);
863 mipsxx_pmu_write_control(2, 255<<5);
864 mipspmu.write_counter(2, 0);
865 mipsxx_pmu_write_control(2, 319<<5);
866 mipspmu.write_counter(2, 0);
867 mipsxx_pmu_write_control(2, 383<<5);
868 mipspmu.write_counter(2, 0);
869 mipsxx_pmu_write_control(2, 575<<5);
870 mipspmu.write_counter(2, 0);
871 fallthrough;
872 case 2:
873 mipsxx_pmu_write_control(1, 0);
874 mipspmu.write_counter(1, 0);
875 mipsxx_pmu_write_control(1, 127<<5);
876 mipspmu.write_counter(1, 0);
877 mipsxx_pmu_write_control(1, 191<<5);
878 mipspmu.write_counter(1, 0);
879 mipsxx_pmu_write_control(1, 255<<5);
880 mipspmu.write_counter(1, 0);
881 mipsxx_pmu_write_control(1, 319<<5);
882 mipspmu.write_counter(1, 0);
883 mipsxx_pmu_write_control(1, 383<<5);
884 mipspmu.write_counter(1, 0);
885 mipsxx_pmu_write_control(1, 575<<5);
886 mipspmu.write_counter(1, 0);
887 fallthrough;
888 case 1:
889 mipsxx_pmu_write_control(0, 0);
890 mipspmu.write_counter(0, 0);
891 mipsxx_pmu_write_control(0, 127<<5);
892 mipspmu.write_counter(0, 0);
893 mipsxx_pmu_write_control(0, 191<<5);
894 mipspmu.write_counter(0, 0);
895 mipsxx_pmu_write_control(0, 255<<5);
896 mipspmu.write_counter(0, 0);
897 mipsxx_pmu_write_control(0, 319<<5);
898 mipspmu.write_counter(0, 0);
899 mipsxx_pmu_write_control(0, 383<<5);
900 mipspmu.write_counter(0, 0);
901 mipsxx_pmu_write_control(0, 575<<5);
902 mipspmu.write_counter(0, 0);
903 break;
904 }
905}
906
907static void reset_counters(void *arg)
908{
909 int counters = (int)(long)arg;
910
911 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
912 loongson3_reset_counters(arg);
913 return;
914 }
915
916 switch (counters) {
917 case 4:
918 mipsxx_pmu_write_control(3, 0);
919 mipspmu.write_counter(3, 0);
920 fallthrough;
921 case 3:
922 mipsxx_pmu_write_control(2, 0);
923 mipspmu.write_counter(2, 0);
924 fallthrough;
925 case 2:
926 mipsxx_pmu_write_control(1, 0);
927 mipspmu.write_counter(1, 0);
928 fallthrough;
929 case 1:
930 mipsxx_pmu_write_control(0, 0);
931 mipspmu.write_counter(0, 0);
932 break;
933 }
934}
935
936/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
937static const struct mips_perf_event mipsxxcore_event_map
938 [PERF_COUNT_HW_MAX] = {
939 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
940 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
941 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
942 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
943};
944
945/* 74K/proAptiv core has different branch event code. */
946static const struct mips_perf_event mipsxxcore_event_map2
947 [PERF_COUNT_HW_MAX] = {
948 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
949 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
950 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
951 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
952};
953
954static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
955 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD },
956 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD },
957 /* These only count dcache, not icache */
958 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x45, CNTR_EVEN | CNTR_ODD },
959 [PERF_COUNT_HW_CACHE_MISSES] = { 0x48, CNTR_EVEN | CNTR_ODD },
960 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
961 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x16, CNTR_EVEN | CNTR_ODD },
962};
963
964static const struct mips_perf_event loongson3_event_map1[PERF_COUNT_HW_MAX] = {
965 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
966 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
967 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
968 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
969};
970
971static const struct mips_perf_event loongson3_event_map2[PERF_COUNT_HW_MAX] = {
972 [PERF_COUNT_HW_CPU_CYCLES] = { 0x80, CNTR_ALL },
973 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x81, CNTR_ALL },
974 [PERF_COUNT_HW_CACHE_MISSES] = { 0x18, CNTR_ALL },
975 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x94, CNTR_ALL },
976 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x9c, CNTR_ALL },
977};
978
979static const struct mips_perf_event loongson3_event_map3[PERF_COUNT_HW_MAX] = {
980 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_ALL },
981 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_ALL },
982 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x1c, CNTR_ALL },
983 [PERF_COUNT_HW_CACHE_MISSES] = { 0x1d, CNTR_ALL },
984 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_ALL },
985 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x08, CNTR_ALL },
986};
987
988static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
989 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
990 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
991 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
992 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
993 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
994 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
995 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
996};
997
998static const struct mips_perf_event bmips5000_event_map
999 [PERF_COUNT_HW_MAX] = {
1000 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
1001 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
1002 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
1003};
1004
1005static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
1006 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
1007 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
1008 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1009 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1010 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
1011 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
1012};
1013
1014/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
1015static const struct mips_perf_event mipsxxcore_cache_map
1016 [PERF_COUNT_HW_CACHE_MAX]
1017 [PERF_COUNT_HW_CACHE_OP_MAX]
1018 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1019[C(L1D)] = {
1020 /*
1021 * Like some other architectures (e.g. ARM), the performance
1022 * counters don't differentiate between read and write
1023 * accesses/misses, so this isn't strictly correct, but it's the
1024 * best we can do. Writes and reads get combined.
1025 */
1026 [C(OP_READ)] = {
1027 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
1028 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1029 },
1030 [C(OP_WRITE)] = {
1031 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
1032 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
1033 },
1034},
1035[C(L1I)] = {
1036 [C(OP_READ)] = {
1037 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
1038 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
1039 },
1040 [C(OP_WRITE)] = {
1041 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
1042 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
1043 },
1044 [C(OP_PREFETCH)] = {
1045 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
1046 /*
1047 * Note that MIPS has only "hit" events countable for
1048 * the prefetch operation.
1049 */
1050 },
1051},
1052[C(LL)] = {
1053 [C(OP_READ)] = {
1054 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
1055 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
1056 },
1057 [C(OP_WRITE)] = {
1058 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
1059 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
1060 },
1061},
1062[C(DTLB)] = {
1063 [C(OP_READ)] = {
1064 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
1065 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
1066 },
1067 [C(OP_WRITE)] = {
1068 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
1069 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
1070 },
1071},
1072[C(ITLB)] = {
1073 [C(OP_READ)] = {
1074 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
1075 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
1076 },
1077 [C(OP_WRITE)] = {
1078 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
1079 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
1080 },
1081},
1082[C(BPU)] = {
1083 /* Using the same code for *HW_BRANCH* */
1084 [C(OP_READ)] = {
1085 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
1086 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1087 },
1088 [C(OP_WRITE)] = {
1089 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
1090 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1091 },
1092},
1093};
1094
1095/* 74K/proAptiv core has completely different cache event map. */
1096static const struct mips_perf_event mipsxxcore_cache_map2
1097 [PERF_COUNT_HW_CACHE_MAX]
1098 [PERF_COUNT_HW_CACHE_OP_MAX]
1099 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1100[C(L1D)] = {
1101 /*
1102 * Like some other architectures (e.g. ARM), the performance
1103 * counters don't differentiate between read and write
1104 * accesses/misses, so this isn't strictly correct, but it's the
1105 * best we can do. Writes and reads get combined.
1106 */
1107 [C(OP_READ)] = {
1108 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
1109 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
1110 },
1111 [C(OP_WRITE)] = {
1112 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
1113 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
1114 },
1115},
1116[C(L1I)] = {
1117 [C(OP_READ)] = {
1118 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
1119 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
1120 },
1121 [C(OP_WRITE)] = {
1122 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
1123 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
1124 },
1125 [C(OP_PREFETCH)] = {
1126 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
1127 /*
1128 * Note that MIPS has only "hit" events countable for
1129 * the prefetch operation.
1130 */
1131 },
1132},
1133[C(LL)] = {
1134 [C(OP_READ)] = {
1135 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
1136 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
1137 },
1138 [C(OP_WRITE)] = {
1139 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
1140 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
1141 },
1142},
1143/*
1144 * 74K core does not have specific DTLB events. proAptiv core has
1145 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1146 * not included here. One can use raw events if really needed.
1147 */
1148[C(ITLB)] = {
1149 [C(OP_READ)] = {
1150 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1151 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1152 },
1153 [C(OP_WRITE)] = {
1154 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1155 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1156 },
1157},
1158[C(BPU)] = {
1159 /* Using the same code for *HW_BRANCH* */
1160 [C(OP_READ)] = {
1161 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1162 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1163 },
1164 [C(OP_WRITE)] = {
1165 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1166 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1167 },
1168},
1169};
1170
1171static const struct mips_perf_event i6x00_cache_map
1172 [PERF_COUNT_HW_CACHE_MAX]
1173 [PERF_COUNT_HW_CACHE_OP_MAX]
1174 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1175[C(L1D)] = {
1176 [C(OP_READ)] = {
1177 [C(RESULT_ACCESS)] = { 0x46, CNTR_EVEN | CNTR_ODD },
1178 [C(RESULT_MISS)] = { 0x49, CNTR_EVEN | CNTR_ODD },
1179 },
1180 [C(OP_WRITE)] = {
1181 [C(RESULT_ACCESS)] = { 0x47, CNTR_EVEN | CNTR_ODD },
1182 [C(RESULT_MISS)] = { 0x4a, CNTR_EVEN | CNTR_ODD },
1183 },
1184},
1185[C(L1I)] = {
1186 [C(OP_READ)] = {
1187 [C(RESULT_ACCESS)] = { 0x84, CNTR_EVEN | CNTR_ODD },
1188 [C(RESULT_MISS)] = { 0x85, CNTR_EVEN | CNTR_ODD },
1189 },
1190},
1191[C(DTLB)] = {
1192 /* Can't distinguish read & write */
1193 [C(OP_READ)] = {
1194 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
1195 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
1196 },
1197 [C(OP_WRITE)] = {
1198 [C(RESULT_ACCESS)] = { 0x40, CNTR_EVEN | CNTR_ODD },
1199 [C(RESULT_MISS)] = { 0x41, CNTR_EVEN | CNTR_ODD },
1200 },
1201},
1202[C(BPU)] = {
1203 /* Conditional branches / mispredicted */
1204 [C(OP_READ)] = {
1205 [C(RESULT_ACCESS)] = { 0x15, CNTR_EVEN | CNTR_ODD },
1206 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN | CNTR_ODD },
1207 },
1208},
1209};
1210
1211static const struct mips_perf_event loongson3_cache_map1
1212 [PERF_COUNT_HW_CACHE_MAX]
1213 [PERF_COUNT_HW_CACHE_OP_MAX]
1214 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1215[C(L1D)] = {
1216 /*
1217 * Like some other architectures (e.g. ARM), the performance
1218 * counters don't differentiate between read and write
1219 * accesses/misses, so this isn't strictly correct, but it's the
1220 * best we can do. Writes and reads get combined.
1221 */
1222 [C(OP_READ)] = {
1223 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1224 },
1225 [C(OP_WRITE)] = {
1226 [C(RESULT_MISS)] = { 0x04, CNTR_ODD },
1227 },
1228},
1229[C(L1I)] = {
1230 [C(OP_READ)] = {
1231 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1232 },
1233 [C(OP_WRITE)] = {
1234 [C(RESULT_MISS)] = { 0x04, CNTR_EVEN },
1235 },
1236},
1237[C(DTLB)] = {
1238 [C(OP_READ)] = {
1239 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1240 },
1241 [C(OP_WRITE)] = {
1242 [C(RESULT_MISS)] = { 0x09, CNTR_ODD },
1243 },
1244},
1245[C(ITLB)] = {
1246 [C(OP_READ)] = {
1247 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1248 },
1249 [C(OP_WRITE)] = {
1250 [C(RESULT_MISS)] = { 0x0c, CNTR_ODD },
1251 },
1252},
1253[C(BPU)] = {
1254 /* Using the same code for *HW_BRANCH* */
1255 [C(OP_READ)] = {
1256 [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN },
1257 [C(RESULT_MISS)] = { 0x01, CNTR_ODD },
1258 },
1259 [C(OP_WRITE)] = {
1260 [C(RESULT_ACCESS)] = { 0x01, CNTR_EVEN },
1261 [C(RESULT_MISS)] = { 0x01, CNTR_ODD },
1262 },
1263},
1264};
1265
1266static const struct mips_perf_event loongson3_cache_map2
1267 [PERF_COUNT_HW_CACHE_MAX]
1268 [PERF_COUNT_HW_CACHE_OP_MAX]
1269 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1270[C(L1D)] = {
1271 /*
1272 * Like some other architectures (e.g. ARM), the performance
1273 * counters don't differentiate between read and write
1274 * accesses/misses, so this isn't strictly correct, but it's the
1275 * best we can do. Writes and reads get combined.
1276 */
1277 [C(OP_READ)] = {
1278 [C(RESULT_ACCESS)] = { 0x156, CNTR_ALL },
1279 },
1280 [C(OP_WRITE)] = {
1281 [C(RESULT_ACCESS)] = { 0x155, CNTR_ALL },
1282 [C(RESULT_MISS)] = { 0x153, CNTR_ALL },
1283 },
1284},
1285[C(L1I)] = {
1286 [C(OP_READ)] = {
1287 [C(RESULT_MISS)] = { 0x18, CNTR_ALL },
1288 },
1289 [C(OP_WRITE)] = {
1290 [C(RESULT_MISS)] = { 0x18, CNTR_ALL },
1291 },
1292},
1293[C(LL)] = {
1294 [C(OP_READ)] = {
1295 [C(RESULT_ACCESS)] = { 0x1b6, CNTR_ALL },
1296 },
1297 [C(OP_WRITE)] = {
1298 [C(RESULT_ACCESS)] = { 0x1b7, CNTR_ALL },
1299 },
1300 [C(OP_PREFETCH)] = {
1301 [C(RESULT_ACCESS)] = { 0x1bf, CNTR_ALL },
1302 },
1303},
1304[C(DTLB)] = {
1305 [C(OP_READ)] = {
1306 [C(RESULT_MISS)] = { 0x92, CNTR_ALL },
1307 },
1308 [C(OP_WRITE)] = {
1309 [C(RESULT_MISS)] = { 0x92, CNTR_ALL },
1310 },
1311},
1312[C(ITLB)] = {
1313 [C(OP_READ)] = {
1314 [C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
1315 },
1316 [C(OP_WRITE)] = {
1317 [C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
1318 },
1319},
1320[C(BPU)] = {
1321 /* Using the same code for *HW_BRANCH* */
1322 [C(OP_READ)] = {
1323 [C(RESULT_ACCESS)] = { 0x94, CNTR_ALL },
1324 [C(RESULT_MISS)] = { 0x9c, CNTR_ALL },
1325 },
1326},
1327};
1328
1329static const struct mips_perf_event loongson3_cache_map3
1330 [PERF_COUNT_HW_CACHE_MAX]
1331 [PERF_COUNT_HW_CACHE_OP_MAX]
1332 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1333[C(L1D)] = {
1334 /*
1335 * Like some other architectures (e.g. ARM), the performance
1336 * counters don't differentiate between read and write
1337 * accesses/misses, so this isn't strictly correct, but it's the
1338 * best we can do. Writes and reads get combined.
1339 */
1340 [C(OP_READ)] = {
1341 [C(RESULT_ACCESS)] = { 0x1e, CNTR_ALL },
1342 [C(RESULT_MISS)] = { 0x1f, CNTR_ALL },
1343 },
1344 [C(OP_PREFETCH)] = {
1345 [C(RESULT_ACCESS)] = { 0xaa, CNTR_ALL },
1346 [C(RESULT_MISS)] = { 0xa9, CNTR_ALL },
1347 },
1348},
1349[C(L1I)] = {
1350 [C(OP_READ)] = {
1351 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ALL },
1352 [C(RESULT_MISS)] = { 0x1d, CNTR_ALL },
1353 },
1354},
1355[C(LL)] = {
1356 [C(OP_READ)] = {
1357 [C(RESULT_ACCESS)] = { 0x2e, CNTR_ALL },
1358 [C(RESULT_MISS)] = { 0x2f, CNTR_ALL },
1359 },
1360},
1361[C(DTLB)] = {
1362 [C(OP_READ)] = {
1363 [C(RESULT_ACCESS)] = { 0x14, CNTR_ALL },
1364 [C(RESULT_MISS)] = { 0x1b, CNTR_ALL },
1365 },
1366},
1367[C(ITLB)] = {
1368 [C(OP_READ)] = {
1369 [C(RESULT_MISS)] = { 0x1a, CNTR_ALL },
1370 },
1371},
1372[C(BPU)] = {
1373 /* Using the same code for *HW_BRANCH* */
1374 [C(OP_READ)] = {
1375 [C(RESULT_ACCESS)] = { 0x02, CNTR_ALL },
1376 [C(RESULT_MISS)] = { 0x08, CNTR_ALL },
1377 },
1378},
1379};
1380
1381/* BMIPS5000 */
1382static const struct mips_perf_event bmips5000_cache_map
1383 [PERF_COUNT_HW_CACHE_MAX]
1384 [PERF_COUNT_HW_CACHE_OP_MAX]
1385 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1386[C(L1D)] = {
1387 /*
1388 * Like some other architectures (e.g. ARM), the performance
1389 * counters don't differentiate between read and write
1390 * accesses/misses, so this isn't strictly correct, but it's the
1391 * best we can do. Writes and reads get combined.
1392 */
1393 [C(OP_READ)] = {
1394 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1395 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1396 },
1397 [C(OP_WRITE)] = {
1398 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1399 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1400 },
1401},
1402[C(L1I)] = {
1403 [C(OP_READ)] = {
1404 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1405 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1406 },
1407 [C(OP_WRITE)] = {
1408 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1409 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1410 },
1411 [C(OP_PREFETCH)] = {
1412 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1413 /*
1414 * Note that MIPS has only "hit" events countable for
1415 * the prefetch operation.
1416 */
1417 },
1418},
1419[C(LL)] = {
1420 [C(OP_READ)] = {
1421 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1422 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1423 },
1424 [C(OP_WRITE)] = {
1425 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1426 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1427 },
1428},
1429[C(BPU)] = {
1430 /* Using the same code for *HW_BRANCH* */
1431 [C(OP_READ)] = {
1432 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1433 },
1434 [C(OP_WRITE)] = {
1435 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1436 },
1437},
1438};
1439
1440static const struct mips_perf_event octeon_cache_map
1441 [PERF_COUNT_HW_CACHE_MAX]
1442 [PERF_COUNT_HW_CACHE_OP_MAX]
1443 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1444[C(L1D)] = {
1445 [C(OP_READ)] = {
1446 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1447 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1448 },
1449 [C(OP_WRITE)] = {
1450 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1451 },
1452},
1453[C(L1I)] = {
1454 [C(OP_READ)] = {
1455 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1456 },
1457 [C(OP_PREFETCH)] = {
1458 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1459 },
1460},
1461[C(DTLB)] = {
1462 /*
1463 * Only general DTLB misses are counted use the same event for
1464 * read and write.
1465 */
1466 [C(OP_READ)] = {
1467 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1468 },
1469 [C(OP_WRITE)] = {
1470 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1471 },
1472},
1473[C(ITLB)] = {
1474 [C(OP_READ)] = {
1475 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1476 },
1477},
1478};
1479
1480static const struct mips_perf_event xlp_cache_map
1481 [PERF_COUNT_HW_CACHE_MAX]
1482 [PERF_COUNT_HW_CACHE_OP_MAX]
1483 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1484[C(L1D)] = {
1485 [C(OP_READ)] = {
1486 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1487 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1488 },
1489 [C(OP_WRITE)] = {
1490 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1491 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1492 },
1493},
1494[C(L1I)] = {
1495 [C(OP_READ)] = {
1496 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1497 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1498 },
1499},
1500[C(LL)] = {
1501 [C(OP_READ)] = {
1502 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1503 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1504 },
1505 [C(OP_WRITE)] = {
1506 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1507 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1508 },
1509},
1510[C(DTLB)] = {
1511 /*
1512 * Only general DTLB misses are counted use the same event for
1513 * read and write.
1514 */
1515 [C(OP_READ)] = {
1516 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1517 },
1518 [C(OP_WRITE)] = {
1519 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1520 },
1521},
1522[C(ITLB)] = {
1523 [C(OP_READ)] = {
1524 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1525 },
1526 [C(OP_WRITE)] = {
1527 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1528 },
1529},
1530[C(BPU)] = {
1531 [C(OP_READ)] = {
1532 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1533 },
1534},
1535};
1536
1537static int __hw_perf_event_init(struct perf_event *event)
1538{
1539 struct perf_event_attr *attr = &event->attr;
1540 struct hw_perf_event *hwc = &event->hw;
1541 const struct mips_perf_event *pev;
1542 int err;
1543
1544 /* Returning MIPS event descriptor for generic perf event. */
1545 if (PERF_TYPE_HARDWARE == event->attr.type) {
1546 if (event->attr.config >= PERF_COUNT_HW_MAX)
1547 return -EINVAL;
1548 pev = mipspmu_map_general_event(event->attr.config);
1549 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1550 pev = mipspmu_map_cache_event(event->attr.config);
1551 } else if (PERF_TYPE_RAW == event->attr.type) {
1552 /* We are working on the global raw event. */
1553 mutex_lock(&raw_event_mutex);
1554 pev = mipspmu.map_raw_event(event->attr.config);
1555 } else {
1556 /* The event type is not (yet) supported. */
1557 return -EOPNOTSUPP;
1558 }
1559
1560 if (IS_ERR(pev)) {
1561 if (PERF_TYPE_RAW == event->attr.type)
1562 mutex_unlock(&raw_event_mutex);
1563 return PTR_ERR(pev);
1564 }
1565
1566 /*
1567 * We allow max flexibility on how each individual counter shared
1568 * by the single CPU operates (the mode exclusion and the range).
1569 */
1570 hwc->config_base = MIPS_PERFCTRL_IE;
1571
1572 hwc->event_base = mipspmu_perf_event_encode(pev);
1573 if (PERF_TYPE_RAW == event->attr.type)
1574 mutex_unlock(&raw_event_mutex);
1575
1576 if (!attr->exclude_user)
1577 hwc->config_base |= MIPS_PERFCTRL_U;
1578 if (!attr->exclude_kernel) {
1579 hwc->config_base |= MIPS_PERFCTRL_K;
1580 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1581 hwc->config_base |= MIPS_PERFCTRL_EXL;
1582 }
1583 if (!attr->exclude_hv)
1584 hwc->config_base |= MIPS_PERFCTRL_S;
1585
1586 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1587 /*
1588 * The event can belong to another cpu. We do not assign a local
1589 * counter for it for now.
1590 */
1591 hwc->idx = -1;
1592 hwc->config = 0;
1593
1594 if (!hwc->sample_period) {
1595 hwc->sample_period = mipspmu.max_period;
1596 hwc->last_period = hwc->sample_period;
1597 local64_set(&hwc->period_left, hwc->sample_period);
1598 }
1599
1600 err = 0;
1601 if (event->group_leader != event)
1602 err = validate_group(event);
1603
1604 event->destroy = hw_perf_event_destroy;
1605
1606 if (err)
1607 event->destroy(event);
1608
1609 return err;
1610}
1611
1612static void pause_local_counters(void)
1613{
1614 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1615 int ctr = mipspmu.num_counters;
1616 unsigned long flags;
1617
1618 local_irq_save(flags);
1619 do {
1620 ctr--;
1621 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1622 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1623 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1624 } while (ctr > 0);
1625 local_irq_restore(flags);
1626}
1627
1628static void resume_local_counters(void)
1629{
1630 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1631 int ctr = mipspmu.num_counters;
1632
1633 do {
1634 ctr--;
1635 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1636 } while (ctr > 0);
1637}
1638
1639static int mipsxx_pmu_handle_shared_irq(void)
1640{
1641 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1642 struct perf_sample_data data;
1643 unsigned int counters = mipspmu.num_counters;
1644 u64 counter;
1645 int n, handled = IRQ_NONE;
1646 struct pt_regs *regs;
1647
1648 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1649 return handled;
1650 /*
1651 * First we pause the local counters, so that when we are locked
1652 * here, the counters are all paused. When it gets locked due to
1653 * perf_disable(), the timer interrupt handler will be delayed.
1654 *
1655 * See also mipsxx_pmu_start().
1656 */
1657 pause_local_counters();
1658#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1659 read_lock(&pmuint_rwlock);
1660#endif
1661
1662 regs = get_irq_regs();
1663
1664 perf_sample_data_init(&data, 0, 0);
1665
1666 for (n = counters - 1; n >= 0; n--) {
1667 if (!test_bit(n, cpuc->used_mask))
1668 continue;
1669
1670 counter = mipspmu.read_counter(n);
1671 if (!(counter & mipspmu.overflow))
1672 continue;
1673
1674 handle_associated_event(cpuc, n, &data, regs);
1675 handled = IRQ_HANDLED;
1676 }
1677
1678#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1679 read_unlock(&pmuint_rwlock);
1680#endif
1681 resume_local_counters();
1682
1683 /*
1684 * Do all the work for the pending perf events. We can do this
1685 * in here because the performance counter interrupt is a regular
1686 * interrupt, not NMI.
1687 */
1688 if (handled == IRQ_HANDLED)
1689 irq_work_run();
1690
1691 return handled;
1692}
1693
1694static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1695{
1696 return mipsxx_pmu_handle_shared_irq();
1697}
1698
1699/* 24K */
1700#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1701 ((b) == 0 || (b) == 1 || (b) == 11)
1702
1703/* 34K */
1704#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1705 ((b) == 0 || (b) == 1 || (b) == 11)
1706#ifdef CONFIG_MIPS_MT_SMP
1707#define IS_RANGE_P_34K_EVENT(r, b) \
1708 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1709 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1710 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1711 ((b) >= 64 && (b) <= 67))
1712#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1713#endif
1714
1715/* 74K */
1716#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1717 ((b) == 0 || (b) == 1)
1718
1719/* proAptiv */
1720#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1721 ((b) == 0 || (b) == 1)
1722/* P5600 */
1723#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1724 ((b) == 0 || (b) == 1)
1725
1726/* 1004K */
1727#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1728 ((b) == 0 || (b) == 1 || (b) == 11)
1729#ifdef CONFIG_MIPS_MT_SMP
1730#define IS_RANGE_P_1004K_EVENT(r, b) \
1731 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1732 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1733 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1734 (r) == 188 || (b) == 61 || (b) == 62 || \
1735 ((b) >= 64 && (b) <= 67))
1736#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1737#endif
1738
1739/* interAptiv */
1740#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1741 ((b) == 0 || (b) == 1 || (b) == 11)
1742#ifdef CONFIG_MIPS_MT_SMP
1743/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1744#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1745 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1746 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1747 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1748 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1749 ((b) >= 64 && (b) <= 67))
1750#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1751#endif
1752
1753/* BMIPS5000 */
1754#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1755 ((b) == 0 || (b) == 1)
1756
1757
1758/*
1759 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1760 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1761 * indicate the even/odd bank selector. So, for example, when user wants to take
1762 * the Event Num of 15 for odd counters (by referring to the user manual), then
1763 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1764 * to be used.
1765 *
1766 * Some newer cores have even more events, in which case the user can use raw
1767 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1768 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1769 */
1770static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1771{
1772 /* currently most cores have 7-bit event numbers */
1773 int pmu_type;
1774 unsigned int raw_id = config & 0xff;
1775 unsigned int base_id = raw_id & 0x7f;
1776
1777 switch (current_cpu_type()) {
1778 case CPU_24K:
1779 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1780 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1781 else
1782 raw_event.cntr_mask =
1783 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1784#ifdef CONFIG_MIPS_MT_SMP
1785 /*
1786 * This is actually doing nothing. Non-multithreading
1787 * CPUs will not check and calculate the range.
1788 */
1789 raw_event.range = P;
1790#endif
1791 break;
1792 case CPU_34K:
1793 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1794 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1795 else
1796 raw_event.cntr_mask =
1797 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1798#ifdef CONFIG_MIPS_MT_SMP
1799 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1800 raw_event.range = P;
1801 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1802 raw_event.range = V;
1803 else
1804 raw_event.range = T;
1805#endif
1806 break;
1807 case CPU_74K:
1808 case CPU_1074K:
1809 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1810 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1811 else
1812 raw_event.cntr_mask =
1813 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1814#ifdef CONFIG_MIPS_MT_SMP
1815 raw_event.range = P;
1816#endif
1817 break;
1818 case CPU_PROAPTIV:
1819 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1820 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1821 else
1822 raw_event.cntr_mask =
1823 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1824#ifdef CONFIG_MIPS_MT_SMP
1825 raw_event.range = P;
1826#endif
1827 break;
1828 case CPU_P5600:
1829 case CPU_P6600:
1830 /* 8-bit event numbers */
1831 raw_id = config & 0x1ff;
1832 base_id = raw_id & 0xff;
1833 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1834 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1835 else
1836 raw_event.cntr_mask =
1837 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1838#ifdef CONFIG_MIPS_MT_SMP
1839 raw_event.range = P;
1840#endif
1841 break;
1842 case CPU_I6400:
1843 case CPU_I6500:
1844 /* 8-bit event numbers */
1845 base_id = config & 0xff;
1846 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1847 break;
1848 case CPU_1004K:
1849 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1850 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1851 else
1852 raw_event.cntr_mask =
1853 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1854#ifdef CONFIG_MIPS_MT_SMP
1855 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1856 raw_event.range = P;
1857 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1858 raw_event.range = V;
1859 else
1860 raw_event.range = T;
1861#endif
1862 break;
1863 case CPU_INTERAPTIV:
1864 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1865 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1866 else
1867 raw_event.cntr_mask =
1868 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1869#ifdef CONFIG_MIPS_MT_SMP
1870 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1871 raw_event.range = P;
1872 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1873 raw_event.range = V;
1874 else
1875 raw_event.range = T;
1876#endif
1877 break;
1878 case CPU_BMIPS5000:
1879 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1880 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1881 else
1882 raw_event.cntr_mask =
1883 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1884 break;
1885 case CPU_LOONGSON64:
1886 pmu_type = get_loongson3_pmu_type();
1887
1888 switch (pmu_type) {
1889 case LOONGSON_PMU_TYPE1:
1890 raw_event.cntr_mask =
1891 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1892 break;
1893 case LOONGSON_PMU_TYPE2:
1894 base_id = config & 0x3ff;
1895 raw_event.cntr_mask = CNTR_ALL;
1896
1897 if ((base_id >= 1 && base_id < 28) ||
1898 (base_id >= 64 && base_id < 90) ||
1899 (base_id >= 128 && base_id < 164) ||
1900 (base_id >= 192 && base_id < 200) ||
1901 (base_id >= 256 && base_id < 275) ||
1902 (base_id >= 320 && base_id < 361) ||
1903 (base_id >= 384 && base_id < 574))
1904 break;
1905
1906 return ERR_PTR(-EOPNOTSUPP);
1907 case LOONGSON_PMU_TYPE3:
1908 base_id = raw_id;
1909 raw_event.cntr_mask = CNTR_ALL;
1910 break;
1911 }
1912 break;
1913 }
1914
1915 raw_event.event_id = base_id;
1916
1917 return &raw_event;
1918}
1919
1920static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1921{
1922 unsigned int raw_id = config & 0xff;
1923 unsigned int base_id = raw_id & 0x7f;
1924
1925
1926 raw_event.cntr_mask = CNTR_ALL;
1927 raw_event.event_id = base_id;
1928
1929 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1930 if (base_id > 0x42)
1931 return ERR_PTR(-EOPNOTSUPP);
1932 } else {
1933 if (base_id > 0x3a)
1934 return ERR_PTR(-EOPNOTSUPP);
1935 }
1936
1937 switch (base_id) {
1938 case 0x00:
1939 case 0x0f:
1940 case 0x1e:
1941 case 0x1f:
1942 case 0x2f:
1943 case 0x34:
1944 case 0x3b ... 0x3f:
1945 return ERR_PTR(-EOPNOTSUPP);
1946 default:
1947 break;
1948 }
1949
1950 return &raw_event;
1951}
1952
1953static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1954{
1955 unsigned int raw_id = config & 0xff;
1956
1957 /* Only 1-63 are defined */
1958 if ((raw_id < 0x01) || (raw_id > 0x3f))
1959 return ERR_PTR(-EOPNOTSUPP);
1960
1961 raw_event.cntr_mask = CNTR_ALL;
1962 raw_event.event_id = raw_id;
1963
1964 return &raw_event;
1965}
1966
1967static int __init
1968init_hw_perf_events(void)
1969{
1970 int counters, irq, pmu_type;
1971
1972 pr_info("Performance counters: ");
1973
1974 counters = n_counters();
1975 if (counters == 0) {
1976 pr_cont("No available PMU.\n");
1977 return -ENODEV;
1978 }
1979
1980#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1981 if (!cpu_has_mipsmt_pertccounters)
1982 counters = counters_total_to_per_cpu(counters);
1983#endif
1984
1985 if (get_c0_perfcount_int)
1986 irq = get_c0_perfcount_int();
1987 else if (cp0_perfcount_irq >= 0)
1988 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1989 else
1990 irq = -1;
1991
1992 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1993
1994 switch (current_cpu_type()) {
1995 case CPU_24K:
1996 mipspmu.name = "mips/24K";
1997 mipspmu.general_event_map = &mipsxxcore_event_map;
1998 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1999 break;
2000 case CPU_34K:
2001 mipspmu.name = "mips/34K";
2002 mipspmu.general_event_map = &mipsxxcore_event_map;
2003 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2004 break;
2005 case CPU_74K:
2006 mipspmu.name = "mips/74K";
2007 mipspmu.general_event_map = &mipsxxcore_event_map2;
2008 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2009 break;
2010 case CPU_PROAPTIV:
2011 mipspmu.name = "mips/proAptiv";
2012 mipspmu.general_event_map = &mipsxxcore_event_map2;
2013 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2014 break;
2015 case CPU_P5600:
2016 mipspmu.name = "mips/P5600";
2017 mipspmu.general_event_map = &mipsxxcore_event_map2;
2018 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2019 break;
2020 case CPU_P6600:
2021 mipspmu.name = "mips/P6600";
2022 mipspmu.general_event_map = &mipsxxcore_event_map2;
2023 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
2024 break;
2025 case CPU_I6400:
2026 mipspmu.name = "mips/I6400";
2027 mipspmu.general_event_map = &i6x00_event_map;
2028 mipspmu.cache_event_map = &i6x00_cache_map;
2029 break;
2030 case CPU_I6500:
2031 mipspmu.name = "mips/I6500";
2032 mipspmu.general_event_map = &i6x00_event_map;
2033 mipspmu.cache_event_map = &i6x00_cache_map;
2034 break;
2035 case CPU_1004K:
2036 mipspmu.name = "mips/1004K";
2037 mipspmu.general_event_map = &mipsxxcore_event_map;
2038 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2039 break;
2040 case CPU_1074K:
2041 mipspmu.name = "mips/1074K";
2042 mipspmu.general_event_map = &mipsxxcore_event_map;
2043 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2044 break;
2045 case CPU_INTERAPTIV:
2046 mipspmu.name = "mips/interAptiv";
2047 mipspmu.general_event_map = &mipsxxcore_event_map;
2048 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2049 break;
2050 case CPU_LOONGSON32:
2051 mipspmu.name = "mips/loongson1";
2052 mipspmu.general_event_map = &mipsxxcore_event_map;
2053 mipspmu.cache_event_map = &mipsxxcore_cache_map;
2054 break;
2055 case CPU_LOONGSON64:
2056 mipspmu.name = "mips/loongson3";
2057 pmu_type = get_loongson3_pmu_type();
2058
2059 switch (pmu_type) {
2060 case LOONGSON_PMU_TYPE1:
2061 counters = 2;
2062 mipspmu.general_event_map = &loongson3_event_map1;
2063 mipspmu.cache_event_map = &loongson3_cache_map1;
2064 break;
2065 case LOONGSON_PMU_TYPE2:
2066 counters = 4;
2067 mipspmu.general_event_map = &loongson3_event_map2;
2068 mipspmu.cache_event_map = &loongson3_cache_map2;
2069 break;
2070 case LOONGSON_PMU_TYPE3:
2071 counters = 4;
2072 mipspmu.general_event_map = &loongson3_event_map3;
2073 mipspmu.cache_event_map = &loongson3_cache_map3;
2074 break;
2075 }
2076 break;
2077 case CPU_CAVIUM_OCTEON:
2078 case CPU_CAVIUM_OCTEON_PLUS:
2079 case CPU_CAVIUM_OCTEON2:
2080 mipspmu.name = "octeon";
2081 mipspmu.general_event_map = &octeon_event_map;
2082 mipspmu.cache_event_map = &octeon_cache_map;
2083 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
2084 break;
2085 case CPU_BMIPS5000:
2086 mipspmu.name = "BMIPS5000";
2087 mipspmu.general_event_map = &bmips5000_event_map;
2088 mipspmu.cache_event_map = &bmips5000_cache_map;
2089 break;
2090 case CPU_XLP:
2091 mipspmu.name = "xlp";
2092 mipspmu.general_event_map = &xlp_event_map;
2093 mipspmu.cache_event_map = &xlp_cache_map;
2094 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
2095 break;
2096 default:
2097 pr_cont("Either hardware does not support performance "
2098 "counters, or not yet implemented.\n");
2099 return -ENODEV;
2100 }
2101
2102 mipspmu.num_counters = counters;
2103 mipspmu.irq = irq;
2104
2105 if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
2106 if (get_loongson3_pmu_type() == LOONGSON_PMU_TYPE2) {
2107 counter_bits = 48;
2108 mipspmu.max_period = (1ULL << 47) - 1;
2109 mipspmu.valid_count = (1ULL << 47) - 1;
2110 mipspmu.overflow = 1ULL << 47;
2111 } else {
2112 counter_bits = 64;
2113 mipspmu.max_period = (1ULL << 63) - 1;
2114 mipspmu.valid_count = (1ULL << 63) - 1;
2115 mipspmu.overflow = 1ULL << 63;
2116 }
2117 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
2118 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
2119 } else {
2120 counter_bits = 32;
2121 mipspmu.max_period = (1ULL << 31) - 1;
2122 mipspmu.valid_count = (1ULL << 31) - 1;
2123 mipspmu.overflow = 1ULL << 31;
2124 mipspmu.read_counter = mipsxx_pmu_read_counter;
2125 mipspmu.write_counter = mipsxx_pmu_write_counter;
2126 }
2127
2128 on_each_cpu(reset_counters, (void *)(long)counters, 1);
2129
2130 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
2131 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
2132 irq < 0 ? " (share with timer interrupt)" : "");
2133
2134 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2135
2136 return 0;
2137}
2138early_initcall(init_hw_perf_events);