Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Linux performance counter support for MIPS.
   3 *
   4 * Copyright (C) 2010 MIPS Technologies, Inc.
   5 * Copyright (C) 2011 Cavium Networks, Inc.
   6 * Author: Deng-Cheng Zhu
   7 *
   8 * This code is based on the implementation for ARM, which is in turn
   9 * based on the sparc64 perf event code and the x86 code. Performance
  10 * counter access is based on the MIPS Oprofile code. And the callchain
  11 * support references the code of MIPS stacktrace.c.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#include <linux/cpumask.h>
  19#include <linux/interrupt.h>
  20#include <linux/smp.h>
  21#include <linux/kernel.h>
  22#include <linux/perf_event.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/irq.h>
  26#include <asm/irq_regs.h>
  27#include <asm/stacktrace.h>
  28#include <asm/time.h> /* For perf_irq */
  29
  30#define MIPS_MAX_HWEVENTS 4
  31#define MIPS_TCS_PER_COUNTER 2
  32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
  33
  34struct cpu_hw_events {
  35	/* Array of events on this cpu. */
  36	struct perf_event	*events[MIPS_MAX_HWEVENTS];
  37
  38	/*
  39	 * Set the bit (indexed by the counter number) when the counter
  40	 * is used for an event.
  41	 */
  42	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  43
  44	/*
  45	 * Software copy of the control register for each performance counter.
  46	 * MIPS CPUs vary in performance counters. They use this differently,
  47	 * and even may not use it.
  48	 */
  49	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
  50};
  51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  52	.saved_ctrl = {0},
  53};
  54
  55/* The description of MIPS performance events. */
  56struct mips_perf_event {
  57	unsigned int event_id;
  58	/*
  59	 * MIPS performance counters are indexed starting from 0.
  60	 * CNTR_EVEN indicates the indexes of the counters to be used are
  61	 * even numbers.
  62	 */
  63	unsigned int cntr_mask;
  64	#define CNTR_EVEN	0x55555555
  65	#define CNTR_ODD	0xaaaaaaaa
  66	#define CNTR_ALL	0xffffffff
  67#ifdef CONFIG_MIPS_MT_SMP
  68	enum {
  69		T  = 0,
  70		V  = 1,
  71		P  = 2,
  72	} range;
  73#else
  74	#define T
  75	#define V
  76	#define P
  77#endif
  78};
  79
  80static struct mips_perf_event raw_event;
  81static DEFINE_MUTEX(raw_event_mutex);
  82
 
  83#define C(x) PERF_COUNT_HW_CACHE_##x
  84
  85struct mips_pmu {
  86	u64		max_period;
  87	u64		valid_count;
  88	u64		overflow;
  89	const char	*name;
  90	int		irq;
  91	u64		(*read_counter)(unsigned int idx);
  92	void		(*write_counter)(unsigned int idx, u64 val);
  93	const struct mips_perf_event *(*map_raw_event)(u64 config);
  94	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  95	const struct mips_perf_event (*cache_event_map)
  96				[PERF_COUNT_HW_CACHE_MAX]
  97				[PERF_COUNT_HW_CACHE_OP_MAX]
  98				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  99	unsigned int	num_counters;
 100};
 101
 102static struct mips_pmu mipspmu;
 103
 104#define M_CONFIG1_PC	(1 << 4)
 105
 106#define M_PERFCTL_EXL			(1	<<  0)
 107#define M_PERFCTL_KERNEL		(1	<<  1)
 108#define M_PERFCTL_SUPERVISOR		(1	<<  2)
 109#define M_PERFCTL_USER			(1	<<  3)
 110#define M_PERFCTL_INTERRUPT_ENABLE	(1	<<  4)
 111#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
 112#define M_PERFCTL_VPEID(vpe)		((vpe)	  << 16)
 113
 114#ifdef CONFIG_CPU_BMIPS5000
 115#define M_PERFCTL_MT_EN(filter)		0
 116#else /* !CONFIG_CPU_BMIPS5000 */
 117#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
 118#endif /* CONFIG_CPU_BMIPS5000 */
 119
 120#define	   M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
 121#define	   M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
 122#define	   M_TC_EN_TC			M_PERFCTL_MT_EN(2)
 123#define M_PERFCTL_TCID(tcid)		((tcid)	  << 22)
 124#define M_PERFCTL_WIDE			(1	<< 30)
 125#define M_PERFCTL_MORE			(1	<< 31)
 126#define M_PERFCTL_TC			(1	<< 30)
 127
 128#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
 129					M_PERFCTL_KERNEL |		\
 130					M_PERFCTL_USER |		\
 131					M_PERFCTL_SUPERVISOR |		\
 132					M_PERFCTL_INTERRUPT_ENABLE)
 133
 134#ifdef CONFIG_MIPS_MT_SMP
 135#define M_PERFCTL_CONFIG_MASK		0x3fff801f
 136#else
 137#define M_PERFCTL_CONFIG_MASK		0x1f
 138#endif
 139#define M_PERFCTL_EVENT_MASK		0xfe0
 140
 141
 142#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 143static int cpu_has_mipsmt_pertccounters;
 144
 145static DEFINE_RWLOCK(pmuint_rwlock);
 146
 147#if defined(CONFIG_CPU_BMIPS5000)
 148#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 149			 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
 150#else
 151/*
 152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
 153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
 154 */
 
 155#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 156			 0 : smp_processor_id())
 
 
 
 157#endif
 158
 159/* Copied from op_model_mipsxx.c */
 160static unsigned int vpe_shift(void)
 161{
 162	if (num_possible_cpus() > 1)
 163		return 1;
 164
 165	return 0;
 166}
 167
 168static unsigned int counters_total_to_per_cpu(unsigned int counters)
 169{
 170	return counters >> vpe_shift();
 171}
 172
 173#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 174#define vpe_id()	0
 175
 176#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
 177
 178static void resume_local_counters(void);
 179static void pause_local_counters(void);
 180static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 181static int mipsxx_pmu_handle_shared_irq(void);
 182
 183static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 184{
 185	if (vpe_id() == 1)
 186		idx = (idx + 2) & 3;
 187	return idx;
 188}
 189
 190static u64 mipsxx_pmu_read_counter(unsigned int idx)
 191{
 192	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 193
 194	switch (idx) {
 195	case 0:
 196		/*
 197		 * The counters are unsigned, we must cast to truncate
 198		 * off the high bits.
 199		 */
 200		return (u32)read_c0_perfcntr0();
 201	case 1:
 202		return (u32)read_c0_perfcntr1();
 203	case 2:
 204		return (u32)read_c0_perfcntr2();
 205	case 3:
 206		return (u32)read_c0_perfcntr3();
 207	default:
 208		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 209		return 0;
 210	}
 211}
 212
 213static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 214{
 215	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 216
 217	switch (idx) {
 218	case 0:
 219		return read_c0_perfcntr0_64();
 220	case 1:
 221		return read_c0_perfcntr1_64();
 222	case 2:
 223		return read_c0_perfcntr2_64();
 224	case 3:
 225		return read_c0_perfcntr3_64();
 226	default:
 227		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 228		return 0;
 229	}
 230}
 231
 232static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 233{
 234	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 235
 236	switch (idx) {
 237	case 0:
 238		write_c0_perfcntr0(val);
 239		return;
 240	case 1:
 241		write_c0_perfcntr1(val);
 242		return;
 243	case 2:
 244		write_c0_perfcntr2(val);
 245		return;
 246	case 3:
 247		write_c0_perfcntr3(val);
 248		return;
 249	}
 250}
 251
 252static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 253{
 254	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 255
 256	switch (idx) {
 257	case 0:
 258		write_c0_perfcntr0_64(val);
 259		return;
 260	case 1:
 261		write_c0_perfcntr1_64(val);
 262		return;
 263	case 2:
 264		write_c0_perfcntr2_64(val);
 265		return;
 266	case 3:
 267		write_c0_perfcntr3_64(val);
 268		return;
 269	}
 270}
 271
 272static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 273{
 274	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 275
 276	switch (idx) {
 277	case 0:
 278		return read_c0_perfctrl0();
 279	case 1:
 280		return read_c0_perfctrl1();
 281	case 2:
 282		return read_c0_perfctrl2();
 283	case 3:
 284		return read_c0_perfctrl3();
 285	default:
 286		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 287		return 0;
 288	}
 289}
 290
 291static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 292{
 293	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 294
 295	switch (idx) {
 296	case 0:
 297		write_c0_perfctrl0(val);
 298		return;
 299	case 1:
 300		write_c0_perfctrl1(val);
 301		return;
 302	case 2:
 303		write_c0_perfctrl2(val);
 304		return;
 305	case 3:
 306		write_c0_perfctrl3(val);
 307		return;
 308	}
 309}
 310
 311static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 312				    struct hw_perf_event *hwc)
 313{
 314	int i;
 315
 316	/*
 317	 * We only need to care the counter mask. The range has been
 318	 * checked definitely.
 319	 */
 320	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 321
 322	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 323		/*
 324		 * Note that some MIPS perf events can be counted by both
 325		 * even and odd counters, wheresas many other are only by
 326		 * even _or_ odd counters. This introduces an issue that
 327		 * when the former kind of event takes the counter the
 328		 * latter kind of event wants to use, then the "counter
 329		 * allocation" for the latter event will fail. In fact if
 330		 * they can be dynamically swapped, they both feel happy.
 331		 * But here we leave this issue alone for now.
 332		 */
 333		if (test_bit(i, &cntr_mask) &&
 334			!test_and_set_bit(i, cpuc->used_mask))
 335			return i;
 336	}
 337
 338	return -EAGAIN;
 339}
 340
 341static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 342{
 343	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 344
 345	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 346
 347	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 348		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 349		/* Make sure interrupt enabled. */
 350		M_PERFCTL_INTERRUPT_ENABLE;
 351	if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
 352		/* enable the counter for the calling thread */
 353		cpuc->saved_ctrl[idx] |=
 354			(1 << (12 + vpe_id())) | M_PERFCTL_TC;
 355
 356	/*
 357	 * We do not actually let the counter run. Leave it until start().
 358	 */
 359}
 360
 361static void mipsxx_pmu_disable_event(int idx)
 362{
 363	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 364	unsigned long flags;
 365
 366	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 367
 368	local_irq_save(flags);
 369	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 370		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 371	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 372	local_irq_restore(flags);
 373}
 374
 375static int mipspmu_event_set_period(struct perf_event *event,
 376				    struct hw_perf_event *hwc,
 377				    int idx)
 378{
 379	u64 left = local64_read(&hwc->period_left);
 380	u64 period = hwc->sample_period;
 381	int ret = 0;
 382
 383	if (unlikely((left + period) & (1ULL << 63))) {
 384		/* left underflowed by more than period. */
 385		left = period;
 386		local64_set(&hwc->period_left, left);
 387		hwc->last_period = period;
 388		ret = 1;
 389	} else	if (unlikely((left + period) <= period)) {
 390		/* left underflowed by less than period. */
 391		left += period;
 392		local64_set(&hwc->period_left, left);
 393		hwc->last_period = period;
 394		ret = 1;
 395	}
 396
 397	if (left > mipspmu.max_period) {
 398		left = mipspmu.max_period;
 399		local64_set(&hwc->period_left, left);
 400	}
 401
 402	local64_set(&hwc->prev_count, mipspmu.overflow - left);
 403
 404	mipspmu.write_counter(idx, mipspmu.overflow - left);
 405
 406	perf_event_update_userpage(event);
 407
 408	return ret;
 409}
 410
 411static void mipspmu_event_update(struct perf_event *event,
 412				 struct hw_perf_event *hwc,
 413				 int idx)
 414{
 415	u64 prev_raw_count, new_raw_count;
 416	u64 delta;
 417
 418again:
 419	prev_raw_count = local64_read(&hwc->prev_count);
 420	new_raw_count = mipspmu.read_counter(idx);
 421
 422	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 423				new_raw_count) != prev_raw_count)
 424		goto again;
 425
 426	delta = new_raw_count - prev_raw_count;
 427
 428	local64_add(delta, &event->count);
 429	local64_sub(delta, &hwc->period_left);
 430}
 431
 432static void mipspmu_start(struct perf_event *event, int flags)
 433{
 434	struct hw_perf_event *hwc = &event->hw;
 435
 436	if (flags & PERF_EF_RELOAD)
 437		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 438
 439	hwc->state = 0;
 440
 441	/* Set the period for the event. */
 442	mipspmu_event_set_period(event, hwc, hwc->idx);
 443
 444	/* Enable the event. */
 445	mipsxx_pmu_enable_event(hwc, hwc->idx);
 446}
 447
 448static void mipspmu_stop(struct perf_event *event, int flags)
 449{
 450	struct hw_perf_event *hwc = &event->hw;
 451
 452	if (!(hwc->state & PERF_HES_STOPPED)) {
 453		/* We are working on a local event. */
 454		mipsxx_pmu_disable_event(hwc->idx);
 455		barrier();
 456		mipspmu_event_update(event, hwc, hwc->idx);
 457		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 458	}
 459}
 460
 461static int mipspmu_add(struct perf_event *event, int flags)
 462{
 463	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 464	struct hw_perf_event *hwc = &event->hw;
 465	int idx;
 466	int err = 0;
 467
 468	perf_pmu_disable(event->pmu);
 469
 470	/* To look for a free counter for this event. */
 471	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 472	if (idx < 0) {
 473		err = idx;
 474		goto out;
 475	}
 476
 477	/*
 478	 * If there is an event in the counter we are going to use then
 479	 * make sure it is disabled.
 480	 */
 481	event->hw.idx = idx;
 482	mipsxx_pmu_disable_event(idx);
 483	cpuc->events[idx] = event;
 484
 485	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 486	if (flags & PERF_EF_START)
 487		mipspmu_start(event, PERF_EF_RELOAD);
 488
 489	/* Propagate our changes to the userspace mapping. */
 490	perf_event_update_userpage(event);
 491
 492out:
 493	perf_pmu_enable(event->pmu);
 494	return err;
 495}
 496
 497static void mipspmu_del(struct perf_event *event, int flags)
 498{
 499	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 500	struct hw_perf_event *hwc = &event->hw;
 501	int idx = hwc->idx;
 502
 503	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 504
 505	mipspmu_stop(event, PERF_EF_UPDATE);
 506	cpuc->events[idx] = NULL;
 507	clear_bit(idx, cpuc->used_mask);
 508
 509	perf_event_update_userpage(event);
 510}
 511
 512static void mipspmu_read(struct perf_event *event)
 513{
 514	struct hw_perf_event *hwc = &event->hw;
 515
 516	/* Don't read disabled counters! */
 517	if (hwc->idx < 0)
 518		return;
 519
 520	mipspmu_event_update(event, hwc, hwc->idx);
 521}
 522
 523static void mipspmu_enable(struct pmu *pmu)
 524{
 525#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 526	write_unlock(&pmuint_rwlock);
 527#endif
 528	resume_local_counters();
 529}
 530
 531/*
 532 * MIPS performance counters can be per-TC. The control registers can
 533 * not be directly accessed across CPUs. Hence if we want to do global
 534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 535 * can not make sure this function is called with interrupts enabled. So
 536 * here we pause local counters and then grab a rwlock and leave the
 537 * counters on other CPUs alone. If any counter interrupt raises while
 538 * we own the write lock, simply pause local counters on that CPU and
 539 * spin in the handler. Also we know we won't be switched to another
 540 * CPU after pausing local counters and before grabbing the lock.
 541 */
 542static void mipspmu_disable(struct pmu *pmu)
 543{
 544	pause_local_counters();
 545#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
 546	write_lock(&pmuint_rwlock);
 547#endif
 548}
 549
 550static atomic_t active_events = ATOMIC_INIT(0);
 551static DEFINE_MUTEX(pmu_reserve_mutex);
 552static int (*save_perf_irq)(void);
 553
 554static int mipspmu_get_irq(void)
 555{
 556	int err;
 557
 558	if (mipspmu.irq >= 0) {
 559		/* Request my own irq handler. */
 560		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 561				  IRQF_PERCPU | IRQF_NOBALANCING |
 562				  IRQF_NO_THREAD | IRQF_NO_SUSPEND |
 563				  IRQF_SHARED,
 564				  "mips_perf_pmu", &mipspmu);
 565		if (err) {
 566			pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
 567				mipspmu.irq);
 568		}
 569	} else if (cp0_perfcount_irq < 0) {
 570		/*
 571		 * We are sharing the irq number with the timer interrupt.
 572		 */
 573		save_perf_irq = perf_irq;
 574		perf_irq = mipsxx_pmu_handle_shared_irq;
 575		err = 0;
 576	} else {
 577		pr_warn("The platform hasn't properly defined its interrupt controller\n");
 
 578		err = -ENOENT;
 579	}
 580
 581	return err;
 582}
 583
 584static void mipspmu_free_irq(void)
 585{
 586	if (mipspmu.irq >= 0)
 587		free_irq(mipspmu.irq, &mipspmu);
 588	else if (cp0_perfcount_irq < 0)
 589		perf_irq = save_perf_irq;
 590}
 591
 592/*
 593 * mipsxx/rm9000/loongson2 have different performance counters, they have
 594 * specific low-level init routines.
 595 */
 596static void reset_counters(void *arg);
 597static int __hw_perf_event_init(struct perf_event *event);
 598
 599static void hw_perf_event_destroy(struct perf_event *event)
 600{
 601	if (atomic_dec_and_mutex_lock(&active_events,
 602				&pmu_reserve_mutex)) {
 603		/*
 604		 * We must not call the destroy function with interrupts
 605		 * disabled.
 606		 */
 607		on_each_cpu(reset_counters,
 608			(void *)(long)mipspmu.num_counters, 1);
 609		mipspmu_free_irq();
 610		mutex_unlock(&pmu_reserve_mutex);
 611	}
 612}
 613
 614static int mipspmu_event_init(struct perf_event *event)
 615{
 616	int err = 0;
 617
 618	/* does not support taken branch sampling */
 619	if (has_branch_stack(event))
 620		return -EOPNOTSUPP;
 621
 622	switch (event->attr.type) {
 623	case PERF_TYPE_RAW:
 624	case PERF_TYPE_HARDWARE:
 625	case PERF_TYPE_HW_CACHE:
 626		break;
 627
 628	default:
 629		return -ENOENT;
 630	}
 631
 632	if (event->cpu >= nr_cpumask_bits ||
 633	    (event->cpu >= 0 && !cpu_online(event->cpu)))
 634		return -ENODEV;
 635
 636	if (!atomic_inc_not_zero(&active_events)) {
 637		mutex_lock(&pmu_reserve_mutex);
 638		if (atomic_read(&active_events) == 0)
 639			err = mipspmu_get_irq();
 640
 641		if (!err)
 642			atomic_inc(&active_events);
 643		mutex_unlock(&pmu_reserve_mutex);
 644	}
 645
 646	if (err)
 647		return err;
 648
 649	return __hw_perf_event_init(event);
 650}
 651
 652static struct pmu pmu = {
 653	.pmu_enable	= mipspmu_enable,
 654	.pmu_disable	= mipspmu_disable,
 655	.event_init	= mipspmu_event_init,
 656	.add		= mipspmu_add,
 657	.del		= mipspmu_del,
 658	.start		= mipspmu_start,
 659	.stop		= mipspmu_stop,
 660	.read		= mipspmu_read,
 661};
 662
 663static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 664{
 665/*
 666 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 667 * event_id.
 668 */
 669#ifdef CONFIG_MIPS_MT_SMP
 670	return ((unsigned int)pev->range << 24) |
 671		(pev->cntr_mask & 0xffff00) |
 672		(pev->event_id & 0xff);
 673#else
 674	return (pev->cntr_mask & 0xffff00) |
 675		(pev->event_id & 0xff);
 676#endif
 677}
 678
 679static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 680{
 
 681
 682	if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
 683		return ERR_PTR(-EOPNOTSUPP);
 684	return &(*mipspmu.general_event_map)[idx];
 
 
 685}
 686
 687static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 688{
 689	unsigned int cache_type, cache_op, cache_result;
 690	const struct mips_perf_event *pev;
 691
 692	cache_type = (config >> 0) & 0xff;
 693	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 694		return ERR_PTR(-EINVAL);
 695
 696	cache_op = (config >> 8) & 0xff;
 697	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 698		return ERR_PTR(-EINVAL);
 699
 700	cache_result = (config >> 16) & 0xff;
 701	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 702		return ERR_PTR(-EINVAL);
 703
 704	pev = &((*mipspmu.cache_event_map)
 705					[cache_type]
 706					[cache_op]
 707					[cache_result]);
 708
 709	if (pev->cntr_mask == 0)
 710		return ERR_PTR(-EOPNOTSUPP);
 711
 712	return pev;
 713
 714}
 715
 716static int validate_group(struct perf_event *event)
 717{
 718	struct perf_event *sibling, *leader = event->group_leader;
 719	struct cpu_hw_events fake_cpuc;
 720
 721	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 722
 723	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 724		return -EINVAL;
 725
 726	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 727		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 728			return -EINVAL;
 729	}
 730
 731	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 732		return -EINVAL;
 733
 734	return 0;
 735}
 736
 737/* This is needed by specific irq handlers in perf_event_*.c */
 738static void handle_associated_event(struct cpu_hw_events *cpuc,
 739				    int idx, struct perf_sample_data *data,
 740				    struct pt_regs *regs)
 741{
 742	struct perf_event *event = cpuc->events[idx];
 743	struct hw_perf_event *hwc = &event->hw;
 744
 745	mipspmu_event_update(event, hwc, idx);
 746	data->period = event->hw.last_period;
 747	if (!mipspmu_event_set_period(event, hwc, idx))
 748		return;
 749
 750	if (perf_event_overflow(event, data, regs))
 751		mipsxx_pmu_disable_event(idx);
 752}
 753
 754
 755static int __n_counters(void)
 756{
 757	if (!(read_c0_config1() & M_CONFIG1_PC))
 758		return 0;
 759	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
 760		return 1;
 761	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
 762		return 2;
 763	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
 764		return 3;
 765
 766	return 4;
 767}
 768
 769static int n_counters(void)
 770{
 771	int counters;
 772
 773	switch (current_cpu_type()) {
 774	case CPU_R10000:
 775		counters = 2;
 776		break;
 777
 778	case CPU_R12000:
 779	case CPU_R14000:
 780	case CPU_R16000:
 781		counters = 4;
 782		break;
 783
 784	default:
 785		counters = __n_counters();
 786	}
 787
 788	return counters;
 789}
 790
 791static void reset_counters(void *arg)
 792{
 793	int counters = (int)(long)arg;
 794	switch (counters) {
 795	case 4:
 796		mipsxx_pmu_write_control(3, 0);
 797		mipspmu.write_counter(3, 0);
 798	case 3:
 799		mipsxx_pmu_write_control(2, 0);
 800		mipspmu.write_counter(2, 0);
 801	case 2:
 802		mipsxx_pmu_write_control(1, 0);
 803		mipspmu.write_counter(1, 0);
 804	case 1:
 805		mipsxx_pmu_write_control(0, 0);
 806		mipspmu.write_counter(0, 0);
 807	}
 808}
 809
 810/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
 811static const struct mips_perf_event mipsxxcore_event_map
 812				[PERF_COUNT_HW_MAX] = {
 813	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 814	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 
 
 815	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 816	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 
 817};
 818
 819/* 74K/proAptiv core has different branch event code. */
 820static const struct mips_perf_event mipsxxcore_event_map2
 821				[PERF_COUNT_HW_MAX] = {
 822	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 823	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 
 
 824	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 825	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 826};
 827
 828static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
 829	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
 830	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
 831	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
 832	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
 833};
 834
 835static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 836	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 837	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 838	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 839	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL	 },
 840	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 841	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 842	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 843};
 844
 845static const struct mips_perf_event bmips5000_event_map
 846				[PERF_COUNT_HW_MAX] = {
 847	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
 848	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 849	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 850};
 851
 852static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
 853	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 854	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
 855	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
 856	[PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
 857	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
 858	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
 859};
 860
 861/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
 862static const struct mips_perf_event mipsxxcore_cache_map
 863				[PERF_COUNT_HW_CACHE_MAX]
 864				[PERF_COUNT_HW_CACHE_OP_MAX]
 865				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 866[C(L1D)] = {
 867	/*
 868	 * Like some other architectures (e.g. ARM), the performance
 869	 * counters don't differentiate between read and write
 870	 * accesses/misses, so this isn't strictly correct, but it's the
 871	 * best we can do. Writes and reads get combined.
 872	 */
 873	[C(OP_READ)] = {
 874		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 875		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 876	},
 877	[C(OP_WRITE)] = {
 878		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 879		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 880	},
 
 
 
 
 881},
 882[C(L1I)] = {
 883	[C(OP_READ)] = {
 884		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 885		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 886	},
 887	[C(OP_WRITE)] = {
 888		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 889		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 890	},
 891	[C(OP_PREFETCH)] = {
 892		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
 893		/*
 894		 * Note that MIPS has only "hit" events countable for
 895		 * the prefetch operation.
 896		 */
 
 897	},
 898},
 899[C(LL)] = {
 900	[C(OP_READ)] = {
 901		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 902		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 903	},
 904	[C(OP_WRITE)] = {
 905		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 906		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 907	},
 
 
 
 
 908},
 909[C(DTLB)] = {
 910	[C(OP_READ)] = {
 911		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 912		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 913	},
 914	[C(OP_WRITE)] = {
 915		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 916		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 917	},
 
 
 
 
 918},
 919[C(ITLB)] = {
 920	[C(OP_READ)] = {
 921		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 922		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 923	},
 924	[C(OP_WRITE)] = {
 925		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 926		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 927	},
 
 
 
 
 928},
 929[C(BPU)] = {
 930	/* Using the same code for *HW_BRANCH* */
 931	[C(OP_READ)] = {
 932		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 933		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 934	},
 935	[C(OP_WRITE)] = {
 936		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 937		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 938	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939},
 940};
 941
 942/* 74K/proAptiv core has completely different cache event map. */
 943static const struct mips_perf_event mipsxxcore_cache_map2
 944				[PERF_COUNT_HW_CACHE_MAX]
 945				[PERF_COUNT_HW_CACHE_OP_MAX]
 946				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 947[C(L1D)] = {
 948	/*
 949	 * Like some other architectures (e.g. ARM), the performance
 950	 * counters don't differentiate between read and write
 951	 * accesses/misses, so this isn't strictly correct, but it's the
 952	 * best we can do. Writes and reads get combined.
 953	 */
 954	[C(OP_READ)] = {
 955		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 956		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 957	},
 958	[C(OP_WRITE)] = {
 959		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 960		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 961	},
 
 
 
 
 962},
 963[C(L1I)] = {
 964	[C(OP_READ)] = {
 965		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 966		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 967	},
 968	[C(OP_WRITE)] = {
 969		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 970		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 971	},
 972	[C(OP_PREFETCH)] = {
 973		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
 974		/*
 975		 * Note that MIPS has only "hit" events countable for
 976		 * the prefetch operation.
 977		 */
 
 978	},
 979},
 980[C(LL)] = {
 981	[C(OP_READ)] = {
 982		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 983		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
 984	},
 985	[C(OP_WRITE)] = {
 986		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 987		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN, P },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988	},
 989},
 990/*
 991 * 74K core does not have specific DTLB events. proAptiv core has
 992 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
 993 * not included here. One can use raw events if really needed.
 994 */
 995[C(ITLB)] = {
 996	[C(OP_READ)] = {
 997		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
 998		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
 999	},
1000	[C(OP_WRITE)] = {
1001		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1002		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1003	},
 
 
 
 
1004},
1005[C(BPU)] = {
1006	/* Using the same code for *HW_BRANCH* */
1007	[C(OP_READ)] = {
1008		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1009		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1010	},
1011	[C(OP_WRITE)] = {
1012		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1013		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1014	},
1015},
1016};
1017
1018static const struct mips_perf_event loongson3_cache_map
1019				[PERF_COUNT_HW_CACHE_MAX]
1020				[PERF_COUNT_HW_CACHE_OP_MAX]
1021				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1022[C(L1D)] = {
1023	/*
1024	 * Like some other architectures (e.g. ARM), the performance
1025	 * counters don't differentiate between read and write
1026	 * accesses/misses, so this isn't strictly correct, but it's the
1027	 * best we can do. Writes and reads get combined.
1028	 */
1029	[C(OP_READ)] = {
1030		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1031	},
1032	[C(OP_WRITE)] = {
1033		[C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1034	},
1035},
1036[C(L1I)] = {
1037	[C(OP_READ)] = {
1038		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1039	},
1040	[C(OP_WRITE)] = {
1041		[C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1042	},
1043},
1044[C(DTLB)] = {
1045	[C(OP_READ)] = {
1046		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1047	},
1048	[C(OP_WRITE)] = {
1049		[C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1050	},
1051},
1052[C(ITLB)] = {
1053	[C(OP_READ)] = {
1054		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
 
1055	},
1056	[C(OP_WRITE)] = {
1057		[C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1058	},
1059},
1060[C(BPU)] = {
1061	/* Using the same code for *HW_BRANCH* */
1062	[C(OP_READ)] = {
1063		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1064		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1065	},
1066	[C(OP_WRITE)] = {
1067		[C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1068		[C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1069	},
1070},
1071};
1072
1073/* BMIPS5000 */
1074static const struct mips_perf_event bmips5000_cache_map
1075				[PERF_COUNT_HW_CACHE_MAX]
1076				[PERF_COUNT_HW_CACHE_OP_MAX]
1077				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1078[C(L1D)] = {
1079	/*
1080	 * Like some other architectures (e.g. ARM), the performance
1081	 * counters don't differentiate between read and write
1082	 * accesses/misses, so this isn't strictly correct, but it's the
1083	 * best we can do. Writes and reads get combined.
1084	 */
1085	[C(OP_READ)] = {
1086		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1087		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
1088	},
1089	[C(OP_WRITE)] = {
1090		[C(RESULT_ACCESS)]	= { 12, CNTR_EVEN, T },
1091		[C(RESULT_MISS)]	= { 12, CNTR_ODD, T },
 
 
 
 
1092	},
1093},
1094[C(L1I)] = {
1095	[C(OP_READ)] = {
1096		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1097		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1098	},
1099	[C(OP_WRITE)] = {
1100		[C(RESULT_ACCESS)]	= { 10, CNTR_EVEN, T },
1101		[C(RESULT_MISS)]	= { 10, CNTR_ODD, T },
1102	},
1103	[C(OP_PREFETCH)] = {
1104		[C(RESULT_ACCESS)]	= { 23, CNTR_EVEN, T },
1105		/*
1106		 * Note that MIPS has only "hit" events countable for
1107		 * the prefetch operation.
1108		 */
1109	},
1110},
1111[C(LL)] = {
1112	[C(OP_READ)] = {
1113		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1114		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1115	},
1116	[C(OP_WRITE)] = {
1117		[C(RESULT_ACCESS)]	= { 28, CNTR_EVEN, P },
1118		[C(RESULT_MISS)]	= { 28, CNTR_ODD, P },
1119	},
1120},
1121[C(BPU)] = {
1122	/* Using the same code for *HW_BRANCH* */
1123	[C(OP_READ)] = {
1124		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1125	},
1126	[C(OP_WRITE)] = {
1127		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
1128	},
1129},
1130};
1131
1132
1133static const struct mips_perf_event octeon_cache_map
1134				[PERF_COUNT_HW_CACHE_MAX]
1135				[PERF_COUNT_HW_CACHE_OP_MAX]
1136				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1137[C(L1D)] = {
1138	[C(OP_READ)] = {
1139		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1140		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1141	},
1142	[C(OP_WRITE)] = {
1143		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1144	},
1145},
1146[C(L1I)] = {
1147	[C(OP_READ)] = {
1148		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1149	},
1150	[C(OP_PREFETCH)] = {
1151		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
 
1152	},
1153},
1154[C(DTLB)] = {
1155	/*
1156	 * Only general DTLB misses are counted use the same event for
1157	 * read and write.
1158	 */
1159	[C(OP_READ)] = {
 
1160		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1161	},
1162	[C(OP_WRITE)] = {
 
1163		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1164	},
 
 
 
 
1165},
1166[C(ITLB)] = {
1167	[C(OP_READ)] = {
 
1168		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1169	},
1170},
1171};
1172
1173static const struct mips_perf_event xlp_cache_map
1174				[PERF_COUNT_HW_CACHE_MAX]
1175				[PERF_COUNT_HW_CACHE_OP_MAX]
1176				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1177[C(L1D)] = {
1178	[C(OP_READ)] = {
1179		[C(RESULT_ACCESS)]	= { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1180		[C(RESULT_MISS)]	= { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1181	},
1182	[C(OP_WRITE)] = {
1183		[C(RESULT_ACCESS)]	= { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1184		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1185	},
1186},
1187[C(L1I)] = {
1188	[C(OP_READ)] = {
1189		[C(RESULT_ACCESS)]	= { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1190		[C(RESULT_MISS)]	= { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1191	},
1192},
1193[C(LL)] = {
1194	[C(OP_READ)] = {
1195		[C(RESULT_ACCESS)]	= { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1196		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1197	},
1198	[C(OP_WRITE)] = {
1199		[C(RESULT_ACCESS)]	= { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1200		[C(RESULT_MISS)]	= { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1201	},
1202},
1203[C(DTLB)] = {
1204	/*
1205	 * Only general DTLB misses are counted use the same event for
1206	 * read and write.
1207	 */
1208	[C(OP_READ)] = {
1209		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1210	},
1211	[C(OP_WRITE)] = {
1212		[C(RESULT_MISS)]	= { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1213	},
1214},
1215[C(ITLB)] = {
 
1216	[C(OP_READ)] = {
1217		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
 
1218	},
1219	[C(OP_WRITE)] = {
1220		[C(RESULT_MISS)]	= { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
 
1221	},
1222},
1223[C(BPU)] = {
1224	[C(OP_READ)] = {
1225		[C(RESULT_MISS)]	= { 0x25, CNTR_ALL },
1226	},
1227},
1228};
1229
1230#ifdef CONFIG_MIPS_MT_SMP
1231static void check_and_calc_range(struct perf_event *event,
1232				 const struct mips_perf_event *pev)
1233{
1234	struct hw_perf_event *hwc = &event->hw;
1235
1236	if (event->cpu >= 0) {
1237		if (pev->range > V) {
1238			/*
1239			 * The user selected an event that is processor
1240			 * wide, while expecting it to be VPE wide.
1241			 */
1242			hwc->config_base |= M_TC_EN_ALL;
1243		} else {
1244			/*
1245			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1246			 * for both CPUs.
1247			 */
1248			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1249			hwc->config_base |= M_TC_EN_VPE;
1250		}
1251	} else
1252		hwc->config_base |= M_TC_EN_ALL;
1253}
1254#else
1255static void check_and_calc_range(struct perf_event *event,
1256				 const struct mips_perf_event *pev)
1257{
1258}
1259#endif
1260
1261static int __hw_perf_event_init(struct perf_event *event)
1262{
1263	struct perf_event_attr *attr = &event->attr;
1264	struct hw_perf_event *hwc = &event->hw;
1265	const struct mips_perf_event *pev;
1266	int err;
1267
1268	/* Returning MIPS event descriptor for generic perf event. */
1269	if (PERF_TYPE_HARDWARE == event->attr.type) {
1270		if (event->attr.config >= PERF_COUNT_HW_MAX)
1271			return -EINVAL;
1272		pev = mipspmu_map_general_event(event->attr.config);
1273	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1274		pev = mipspmu_map_cache_event(event->attr.config);
1275	} else if (PERF_TYPE_RAW == event->attr.type) {
1276		/* We are working on the global raw event. */
1277		mutex_lock(&raw_event_mutex);
1278		pev = mipspmu.map_raw_event(event->attr.config);
1279	} else {
1280		/* The event type is not (yet) supported. */
1281		return -EOPNOTSUPP;
1282	}
1283
1284	if (IS_ERR(pev)) {
1285		if (PERF_TYPE_RAW == event->attr.type)
1286			mutex_unlock(&raw_event_mutex);
1287		return PTR_ERR(pev);
1288	}
1289
1290	/*
1291	 * We allow max flexibility on how each individual counter shared
1292	 * by the single CPU operates (the mode exclusion and the range).
1293	 */
1294	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1295
1296	/* Calculate range bits and validate it. */
1297	if (num_possible_cpus() > 1)
1298		check_and_calc_range(event, pev);
1299
1300	hwc->event_base = mipspmu_perf_event_encode(pev);
1301	if (PERF_TYPE_RAW == event->attr.type)
1302		mutex_unlock(&raw_event_mutex);
1303
1304	if (!attr->exclude_user)
1305		hwc->config_base |= M_PERFCTL_USER;
1306	if (!attr->exclude_kernel) {
1307		hwc->config_base |= M_PERFCTL_KERNEL;
1308		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1309		hwc->config_base |= M_PERFCTL_EXL;
1310	}
1311	if (!attr->exclude_hv)
1312		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1313
1314	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1315	/*
1316	 * The event can belong to another cpu. We do not assign a local
1317	 * counter for it for now.
1318	 */
1319	hwc->idx = -1;
1320	hwc->config = 0;
1321
1322	if (!hwc->sample_period) {
1323		hwc->sample_period  = mipspmu.max_period;
1324		hwc->last_period    = hwc->sample_period;
1325		local64_set(&hwc->period_left, hwc->sample_period);
1326	}
1327
1328	err = 0;
1329	if (event->group_leader != event)
1330		err = validate_group(event);
1331
1332	event->destroy = hw_perf_event_destroy;
1333
1334	if (err)
1335		event->destroy(event);
1336
1337	return err;
1338}
1339
1340static void pause_local_counters(void)
1341{
1342	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1343	int ctr = mipspmu.num_counters;
1344	unsigned long flags;
1345
1346	local_irq_save(flags);
1347	do {
1348		ctr--;
1349		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1350		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1351					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1352	} while (ctr > 0);
1353	local_irq_restore(flags);
1354}
1355
1356static void resume_local_counters(void)
1357{
1358	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1359	int ctr = mipspmu.num_counters;
1360
1361	do {
1362		ctr--;
1363		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1364	} while (ctr > 0);
1365}
1366
1367static int mipsxx_pmu_handle_shared_irq(void)
1368{
1369	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1370	struct perf_sample_data data;
1371	unsigned int counters = mipspmu.num_counters;
1372	u64 counter;
1373	int handled = IRQ_NONE;
1374	struct pt_regs *regs;
1375
1376	if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1377		return handled;
1378	/*
1379	 * First we pause the local counters, so that when we are locked
1380	 * here, the counters are all paused. When it gets locked due to
1381	 * perf_disable(), the timer interrupt handler will be delayed.
1382	 *
1383	 * See also mipsxx_pmu_start().
1384	 */
1385	pause_local_counters();
1386#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1387	read_lock(&pmuint_rwlock);
1388#endif
1389
1390	regs = get_irq_regs();
1391
1392	perf_sample_data_init(&data, 0, 0);
1393
1394	switch (counters) {
1395#define HANDLE_COUNTER(n)						\
1396	case n + 1:							\
1397		if (test_bit(n, cpuc->used_mask)) {			\
1398			counter = mipspmu.read_counter(n);		\
1399			if (counter & mipspmu.overflow) {		\
1400				handle_associated_event(cpuc, n, &data, regs); \
1401				handled = IRQ_HANDLED;			\
1402			}						\
1403		}
1404	HANDLE_COUNTER(3)
1405	HANDLE_COUNTER(2)
1406	HANDLE_COUNTER(1)
1407	HANDLE_COUNTER(0)
1408	}
1409
1410	/*
1411	 * Do all the work for the pending perf events. We can do this
1412	 * in here because the performance counter interrupt is a regular
1413	 * interrupt, not NMI.
1414	 */
1415	if (handled == IRQ_HANDLED)
1416		irq_work_run();
1417
1418#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1419	read_unlock(&pmuint_rwlock);
1420#endif
1421	resume_local_counters();
1422	return handled;
1423}
1424
1425static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1426{
1427	return mipsxx_pmu_handle_shared_irq();
1428}
1429
1430/* 24K */
1431#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1432	((b) == 0 || (b) == 1 || (b) == 11)
1433
1434/* 34K */
1435#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1436	((b) == 0 || (b) == 1 || (b) == 11)
1437#ifdef CONFIG_MIPS_MT_SMP
1438#define IS_RANGE_P_34K_EVENT(r, b)					\
1439	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1440	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1441	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1442	 ((b) >= 64 && (b) <= 67))
1443#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1444#endif
1445
1446/* 74K */
1447#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1448	((b) == 0 || (b) == 1)
1449
1450/* proAptiv */
1451#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)				\
1452	((b) == 0 || (b) == 1)
1453/* P5600 */
1454#define IS_BOTH_COUNTERS_P5600_EVENT(b)					\
1455	((b) == 0 || (b) == 1)
1456
1457/* 1004K */
1458#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1459	((b) == 0 || (b) == 1 || (b) == 11)
1460#ifdef CONFIG_MIPS_MT_SMP
1461#define IS_RANGE_P_1004K_EVENT(r, b)					\
1462	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1463	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1464	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1465	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1466	 ((b) >= 64 && (b) <= 67))
1467#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1468#endif
1469
1470/* interAptiv */
1471#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)				\
1472	((b) == 0 || (b) == 1 || (b) == 11)
1473#ifdef CONFIG_MIPS_MT_SMP
1474/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1475#define IS_RANGE_P_INTERAPTIV_EVENT(r, b)				\
1476	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1477	 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||		\
1478	 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&		\
1479	 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||		\
1480	 ((b) >= 64 && (b) <= 67))
1481#define IS_RANGE_V_INTERAPTIV_EVENT(r)	((r) == 47 || (r) == 175)
1482#endif
1483
1484/* BMIPS5000 */
1485#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)				\
1486	((b) == 0 || (b) == 1)
1487
1488
1489/*
1490 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1491 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1492 * indicate the even/odd bank selector. So, for example, when user wants to take
1493 * the Event Num of 15 for odd counters (by referring to the user manual), then
1494 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1495 * to be used.
1496 *
1497 * Some newer cores have even more events, in which case the user can use raw
1498 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1499 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1500 */
1501static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1502{
1503	/* currently most cores have 7-bit event numbers */
1504	unsigned int raw_id = config & 0xff;
1505	unsigned int base_id = raw_id & 0x7f;
1506
 
 
1507	switch (current_cpu_type()) {
1508	case CPU_24K:
1509		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1510			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1511		else
1512			raw_event.cntr_mask =
1513				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1514#ifdef CONFIG_MIPS_MT_SMP
1515		/*
1516		 * This is actually doing nothing. Non-multithreading
1517		 * CPUs will not check and calculate the range.
1518		 */
1519		raw_event.range = P;
1520#endif
1521		break;
1522	case CPU_34K:
1523		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1524			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1525		else
1526			raw_event.cntr_mask =
1527				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1528#ifdef CONFIG_MIPS_MT_SMP
1529		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1530			raw_event.range = P;
1531		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1532			raw_event.range = V;
1533		else
1534			raw_event.range = T;
1535#endif
1536		break;
1537	case CPU_74K:
1538	case CPU_1074K:
1539		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1540			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1541		else
1542			raw_event.cntr_mask =
1543				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1544#ifdef CONFIG_MIPS_MT_SMP
1545		raw_event.range = P;
1546#endif
1547		break;
1548	case CPU_PROAPTIV:
1549		if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1550			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1551		else
1552			raw_event.cntr_mask =
1553				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1554#ifdef CONFIG_MIPS_MT_SMP
1555		raw_event.range = P;
1556#endif
1557		break;
1558	case CPU_P5600:
1559	case CPU_I6400:
1560		/* 8-bit event numbers */
1561		raw_id = config & 0x1ff;
1562		base_id = raw_id & 0xff;
1563		if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1564			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1565		else
1566			raw_event.cntr_mask =
1567				raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1568#ifdef CONFIG_MIPS_MT_SMP
1569		raw_event.range = P;
1570#endif
1571		break;
1572	case CPU_1004K:
1573		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1574			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1575		else
1576			raw_event.cntr_mask =
1577				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1578#ifdef CONFIG_MIPS_MT_SMP
1579		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1580			raw_event.range = P;
1581		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1582			raw_event.range = V;
1583		else
1584			raw_event.range = T;
1585#endif
1586		break;
1587	case CPU_INTERAPTIV:
1588		if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1589			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1590		else
1591			raw_event.cntr_mask =
1592				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1593#ifdef CONFIG_MIPS_MT_SMP
1594		if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1595			raw_event.range = P;
1596		else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1597			raw_event.range = V;
1598		else
1599			raw_event.range = T;
1600#endif
1601		break;
1602	case CPU_BMIPS5000:
1603		if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1604			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1605		else
1606			raw_event.cntr_mask =
1607				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1608		break;
1609	case CPU_LOONGSON3:
1610		raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1611	break;
1612	}
1613
1614	raw_event.event_id = base_id;
1615
1616	return &raw_event;
1617}
1618
1619static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1620{
1621	unsigned int raw_id = config & 0xff;
1622	unsigned int base_id = raw_id & 0x7f;
1623
1624
1625	raw_event.cntr_mask = CNTR_ALL;
1626	raw_event.event_id = base_id;
1627
1628	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1629		if (base_id > 0x42)
1630			return ERR_PTR(-EOPNOTSUPP);
1631	} else {
1632		if (base_id > 0x3a)
1633			return ERR_PTR(-EOPNOTSUPP);
1634	}
1635
1636	switch (base_id) {
1637	case 0x00:
1638	case 0x0f:
1639	case 0x1e:
1640	case 0x1f:
1641	case 0x2f:
1642	case 0x34:
1643	case 0x3b ... 0x3f:
1644		return ERR_PTR(-EOPNOTSUPP);
1645	default:
1646		break;
1647	}
1648
1649	return &raw_event;
1650}
1651
1652static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1653{
1654	unsigned int raw_id = config & 0xff;
1655
1656	/* Only 1-63 are defined */
1657	if ((raw_id < 0x01) || (raw_id > 0x3f))
1658		return ERR_PTR(-EOPNOTSUPP);
1659
1660	raw_event.cntr_mask = CNTR_ALL;
1661	raw_event.event_id = raw_id;
1662
1663	return &raw_event;
1664}
1665
1666static int __init
1667init_hw_perf_events(void)
1668{
1669	int counters, irq;
1670	int counter_bits;
1671
1672	pr_info("Performance counters: ");
1673
1674	counters = n_counters();
1675	if (counters == 0) {
1676		pr_cont("No available PMU.\n");
1677		return -ENODEV;
1678	}
1679
1680#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1681	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1682	if (!cpu_has_mipsmt_pertccounters)
1683		counters = counters_total_to_per_cpu(counters);
1684#endif
1685
1686	if (get_c0_perfcount_int)
1687		irq = get_c0_perfcount_int();
1688	else if (cp0_perfcount_irq >= 0)
1689		irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1690	else
1691		irq = -1;
 
 
 
 
 
 
 
 
 
 
1692
1693	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1694
1695	switch (current_cpu_type()) {
1696	case CPU_24K:
1697		mipspmu.name = "mips/24K";
1698		mipspmu.general_event_map = &mipsxxcore_event_map;
1699		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1700		break;
1701	case CPU_34K:
1702		mipspmu.name = "mips/34K";
1703		mipspmu.general_event_map = &mipsxxcore_event_map;
1704		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1705		break;
1706	case CPU_74K:
1707		mipspmu.name = "mips/74K";
1708		mipspmu.general_event_map = &mipsxxcore_event_map2;
1709		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1710		break;
1711	case CPU_PROAPTIV:
1712		mipspmu.name = "mips/proAptiv";
1713		mipspmu.general_event_map = &mipsxxcore_event_map2;
1714		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1715		break;
1716	case CPU_P5600:
1717		mipspmu.name = "mips/P5600";
1718		mipspmu.general_event_map = &mipsxxcore_event_map2;
1719		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1720		break;
1721	case CPU_I6400:
1722		mipspmu.name = "mips/I6400";
1723		mipspmu.general_event_map = &mipsxxcore_event_map2;
1724		mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1725		break;
1726	case CPU_1004K:
1727		mipspmu.name = "mips/1004K";
1728		mipspmu.general_event_map = &mipsxxcore_event_map;
1729		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1730		break;
1731	case CPU_1074K:
1732		mipspmu.name = "mips/1074K";
1733		mipspmu.general_event_map = &mipsxxcore_event_map;
1734		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1735		break;
1736	case CPU_INTERAPTIV:
1737		mipspmu.name = "mips/interAptiv";
1738		mipspmu.general_event_map = &mipsxxcore_event_map;
1739		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1740		break;
1741	case CPU_LOONGSON1:
1742		mipspmu.name = "mips/loongson1";
1743		mipspmu.general_event_map = &mipsxxcore_event_map;
1744		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1745		break;
1746	case CPU_LOONGSON3:
1747		mipspmu.name = "mips/loongson3";
1748		mipspmu.general_event_map = &loongson3_event_map;
1749		mipspmu.cache_event_map = &loongson3_cache_map;
1750		break;
1751	case CPU_CAVIUM_OCTEON:
1752	case CPU_CAVIUM_OCTEON_PLUS:
1753	case CPU_CAVIUM_OCTEON2:
1754		mipspmu.name = "octeon";
1755		mipspmu.general_event_map = &octeon_event_map;
1756		mipspmu.cache_event_map = &octeon_cache_map;
1757		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1758		break;
1759	case CPU_BMIPS5000:
1760		mipspmu.name = "BMIPS5000";
1761		mipspmu.general_event_map = &bmips5000_event_map;
1762		mipspmu.cache_event_map = &bmips5000_cache_map;
1763		break;
1764	case CPU_XLP:
1765		mipspmu.name = "xlp";
1766		mipspmu.general_event_map = &xlp_event_map;
1767		mipspmu.cache_event_map = &xlp_cache_map;
1768		mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1769		break;
1770	default:
1771		pr_cont("Either hardware does not support performance "
1772			"counters, or not yet implemented.\n");
1773		return -ENODEV;
1774	}
1775
1776	mipspmu.num_counters = counters;
1777	mipspmu.irq = irq;
1778
1779	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1780		mipspmu.max_period = (1ULL << 63) - 1;
1781		mipspmu.valid_count = (1ULL << 63) - 1;
1782		mipspmu.overflow = 1ULL << 63;
1783		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1784		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1785		counter_bits = 64;
1786	} else {
1787		mipspmu.max_period = (1ULL << 31) - 1;
1788		mipspmu.valid_count = (1ULL << 31) - 1;
1789		mipspmu.overflow = 1ULL << 31;
1790		mipspmu.read_counter = mipsxx_pmu_read_counter;
1791		mipspmu.write_counter = mipsxx_pmu_write_counter;
1792		counter_bits = 32;
1793	}
1794
1795	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1796
1797	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1798		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1799		irq < 0 ? " (share with timer interrupt)" : "");
1800
1801	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1802
1803	return 0;
1804}
1805early_initcall(init_hw_perf_events);
v3.5.6
   1/*
   2 * Linux performance counter support for MIPS.
   3 *
   4 * Copyright (C) 2010 MIPS Technologies, Inc.
   5 * Copyright (C) 2011 Cavium Networks, Inc.
   6 * Author: Deng-Cheng Zhu
   7 *
   8 * This code is based on the implementation for ARM, which is in turn
   9 * based on the sparc64 perf event code and the x86 code. Performance
  10 * counter access is based on the MIPS Oprofile code. And the callchain
  11 * support references the code of MIPS stacktrace.c.
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 */
  17
  18#include <linux/cpumask.h>
  19#include <linux/interrupt.h>
  20#include <linux/smp.h>
  21#include <linux/kernel.h>
  22#include <linux/perf_event.h>
  23#include <linux/uaccess.h>
  24
  25#include <asm/irq.h>
  26#include <asm/irq_regs.h>
  27#include <asm/stacktrace.h>
  28#include <asm/time.h> /* For perf_irq */
  29
  30#define MIPS_MAX_HWEVENTS 4
 
 
  31
  32struct cpu_hw_events {
  33	/* Array of events on this cpu. */
  34	struct perf_event	*events[MIPS_MAX_HWEVENTS];
  35
  36	/*
  37	 * Set the bit (indexed by the counter number) when the counter
  38	 * is used for an event.
  39	 */
  40	unsigned long		used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
  41
  42	/*
  43	 * Software copy of the control register for each performance counter.
  44	 * MIPS CPUs vary in performance counters. They use this differently,
  45	 * and even may not use it.
  46	 */
  47	unsigned int		saved_ctrl[MIPS_MAX_HWEVENTS];
  48};
  49DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  50	.saved_ctrl = {0},
  51};
  52
  53/* The description of MIPS performance events. */
  54struct mips_perf_event {
  55	unsigned int event_id;
  56	/*
  57	 * MIPS performance counters are indexed starting from 0.
  58	 * CNTR_EVEN indicates the indexes of the counters to be used are
  59	 * even numbers.
  60	 */
  61	unsigned int cntr_mask;
  62	#define CNTR_EVEN	0x55555555
  63	#define CNTR_ODD	0xaaaaaaaa
  64	#define CNTR_ALL	0xffffffff
  65#ifdef CONFIG_MIPS_MT_SMP
  66	enum {
  67		T  = 0,
  68		V  = 1,
  69		P  = 2,
  70	} range;
  71#else
  72	#define T
  73	#define V
  74	#define P
  75#endif
  76};
  77
  78static struct mips_perf_event raw_event;
  79static DEFINE_MUTEX(raw_event_mutex);
  80
  81#define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
  82#define C(x) PERF_COUNT_HW_CACHE_##x
  83
  84struct mips_pmu {
  85	u64		max_period;
  86	u64		valid_count;
  87	u64		overflow;
  88	const char	*name;
  89	int		irq;
  90	u64		(*read_counter)(unsigned int idx);
  91	void		(*write_counter)(unsigned int idx, u64 val);
  92	const struct mips_perf_event *(*map_raw_event)(u64 config);
  93	const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
  94	const struct mips_perf_event (*cache_event_map)
  95				[PERF_COUNT_HW_CACHE_MAX]
  96				[PERF_COUNT_HW_CACHE_OP_MAX]
  97				[PERF_COUNT_HW_CACHE_RESULT_MAX];
  98	unsigned int	num_counters;
  99};
 100
 101static struct mips_pmu mipspmu;
 102
 103#define M_CONFIG1_PC	(1 << 4)
 104
 105#define M_PERFCTL_EXL			(1      <<  0)
 106#define M_PERFCTL_KERNEL		(1      <<  1)
 107#define M_PERFCTL_SUPERVISOR		(1      <<  2)
 108#define M_PERFCTL_USER			(1      <<  3)
 109#define M_PERFCTL_INTERRUPT_ENABLE	(1      <<  4)
 110#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
 111#define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
 
 
 
 
 112#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
 113#define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
 114#define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
 115#define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
 116#define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
 117#define M_PERFCTL_WIDE			(1      << 30)
 118#define M_PERFCTL_MORE			(1      << 31)
 
 
 
 119
 120#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
 121					M_PERFCTL_KERNEL |		\
 122					M_PERFCTL_USER |		\
 123					M_PERFCTL_SUPERVISOR |		\
 124					M_PERFCTL_INTERRUPT_ENABLE)
 125
 126#ifdef CONFIG_MIPS_MT_SMP
 127#define M_PERFCTL_CONFIG_MASK		0x3fff801f
 128#else
 129#define M_PERFCTL_CONFIG_MASK		0x1f
 130#endif
 131#define M_PERFCTL_EVENT_MASK		0xfe0
 132
 133
 134#ifdef CONFIG_MIPS_MT_SMP
 135static int cpu_has_mipsmt_pertccounters;
 136
 137static DEFINE_RWLOCK(pmuint_rwlock);
 138
 
 
 
 
 139/*
 140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
 141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
 142 */
 143#if defined(CONFIG_HW_PERF_EVENTS)
 144#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 145			0 : smp_processor_id())
 146#else
 147#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
 148			0 : cpu_data[smp_processor_id()].vpe_id)
 149#endif
 150
 151/* Copied from op_model_mipsxx.c */
 152static unsigned int vpe_shift(void)
 153{
 154	if (num_possible_cpus() > 1)
 155		return 1;
 156
 157	return 0;
 158}
 159
 160static unsigned int counters_total_to_per_cpu(unsigned int counters)
 161{
 162	return counters >> vpe_shift();
 163}
 164
 165#else /* !CONFIG_MIPS_MT_SMP */
 166#define vpe_id()	0
 167
 168#endif /* CONFIG_MIPS_MT_SMP */
 169
 170static void resume_local_counters(void);
 171static void pause_local_counters(void);
 172static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
 173static int mipsxx_pmu_handle_shared_irq(void);
 174
 175static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
 176{
 177	if (vpe_id() == 1)
 178		idx = (idx + 2) & 3;
 179	return idx;
 180}
 181
 182static u64 mipsxx_pmu_read_counter(unsigned int idx)
 183{
 184	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 185
 186	switch (idx) {
 187	case 0:
 188		/*
 189		 * The counters are unsigned, we must cast to truncate
 190		 * off the high bits.
 191		 */
 192		return (u32)read_c0_perfcntr0();
 193	case 1:
 194		return (u32)read_c0_perfcntr1();
 195	case 2:
 196		return (u32)read_c0_perfcntr2();
 197	case 3:
 198		return (u32)read_c0_perfcntr3();
 199	default:
 200		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 201		return 0;
 202	}
 203}
 204
 205static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
 206{
 207	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 208
 209	switch (idx) {
 210	case 0:
 211		return read_c0_perfcntr0_64();
 212	case 1:
 213		return read_c0_perfcntr1_64();
 214	case 2:
 215		return read_c0_perfcntr2_64();
 216	case 3:
 217		return read_c0_perfcntr3_64();
 218	default:
 219		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 220		return 0;
 221	}
 222}
 223
 224static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
 225{
 226	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 227
 228	switch (idx) {
 229	case 0:
 230		write_c0_perfcntr0(val);
 231		return;
 232	case 1:
 233		write_c0_perfcntr1(val);
 234		return;
 235	case 2:
 236		write_c0_perfcntr2(val);
 237		return;
 238	case 3:
 239		write_c0_perfcntr3(val);
 240		return;
 241	}
 242}
 243
 244static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
 245{
 246	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 247
 248	switch (idx) {
 249	case 0:
 250		write_c0_perfcntr0_64(val);
 251		return;
 252	case 1:
 253		write_c0_perfcntr1_64(val);
 254		return;
 255	case 2:
 256		write_c0_perfcntr2_64(val);
 257		return;
 258	case 3:
 259		write_c0_perfcntr3_64(val);
 260		return;
 261	}
 262}
 263
 264static unsigned int mipsxx_pmu_read_control(unsigned int idx)
 265{
 266	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 267
 268	switch (idx) {
 269	case 0:
 270		return read_c0_perfctrl0();
 271	case 1:
 272		return read_c0_perfctrl1();
 273	case 2:
 274		return read_c0_perfctrl2();
 275	case 3:
 276		return read_c0_perfctrl3();
 277	default:
 278		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
 279		return 0;
 280	}
 281}
 282
 283static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
 284{
 285	idx = mipsxx_pmu_swizzle_perf_idx(idx);
 286
 287	switch (idx) {
 288	case 0:
 289		write_c0_perfctrl0(val);
 290		return;
 291	case 1:
 292		write_c0_perfctrl1(val);
 293		return;
 294	case 2:
 295		write_c0_perfctrl2(val);
 296		return;
 297	case 3:
 298		write_c0_perfctrl3(val);
 299		return;
 300	}
 301}
 302
 303static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
 304				    struct hw_perf_event *hwc)
 305{
 306	int i;
 307
 308	/*
 309	 * We only need to care the counter mask. The range has been
 310	 * checked definitely.
 311	 */
 312	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
 313
 314	for (i = mipspmu.num_counters - 1; i >= 0; i--) {
 315		/*
 316		 * Note that some MIPS perf events can be counted by both
 317		 * even and odd counters, wheresas many other are only by
 318		 * even _or_ odd counters. This introduces an issue that
 319		 * when the former kind of event takes the counter the
 320		 * latter kind of event wants to use, then the "counter
 321		 * allocation" for the latter event will fail. In fact if
 322		 * they can be dynamically swapped, they both feel happy.
 323		 * But here we leave this issue alone for now.
 324		 */
 325		if (test_bit(i, &cntr_mask) &&
 326			!test_and_set_bit(i, cpuc->used_mask))
 327			return i;
 328	}
 329
 330	return -EAGAIN;
 331}
 332
 333static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
 334{
 335	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 336
 337	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 338
 339	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
 340		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
 341		/* Make sure interrupt enabled. */
 342		M_PERFCTL_INTERRUPT_ENABLE;
 
 
 
 
 
 343	/*
 344	 * We do not actually let the counter run. Leave it until start().
 345	 */
 346}
 347
 348static void mipsxx_pmu_disable_event(int idx)
 349{
 350	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 351	unsigned long flags;
 352
 353	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 354
 355	local_irq_save(flags);
 356	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
 357		~M_PERFCTL_COUNT_EVENT_WHENEVER;
 358	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
 359	local_irq_restore(flags);
 360}
 361
 362static int mipspmu_event_set_period(struct perf_event *event,
 363				    struct hw_perf_event *hwc,
 364				    int idx)
 365{
 366	u64 left = local64_read(&hwc->period_left);
 367	u64 period = hwc->sample_period;
 368	int ret = 0;
 369
 370	if (unlikely((left + period) & (1ULL << 63))) {
 371		/* left underflowed by more than period. */
 372		left = period;
 373		local64_set(&hwc->period_left, left);
 374		hwc->last_period = period;
 375		ret = 1;
 376	} else	if (unlikely((left + period) <= period)) {
 377		/* left underflowed by less than period. */
 378		left += period;
 379		local64_set(&hwc->period_left, left);
 380		hwc->last_period = period;
 381		ret = 1;
 382	}
 383
 384	if (left > mipspmu.max_period) {
 385		left = mipspmu.max_period;
 386		local64_set(&hwc->period_left, left);
 387	}
 388
 389	local64_set(&hwc->prev_count, mipspmu.overflow - left);
 390
 391	mipspmu.write_counter(idx, mipspmu.overflow - left);
 392
 393	perf_event_update_userpage(event);
 394
 395	return ret;
 396}
 397
 398static void mipspmu_event_update(struct perf_event *event,
 399				 struct hw_perf_event *hwc,
 400				 int idx)
 401{
 402	u64 prev_raw_count, new_raw_count;
 403	u64 delta;
 404
 405again:
 406	prev_raw_count = local64_read(&hwc->prev_count);
 407	new_raw_count = mipspmu.read_counter(idx);
 408
 409	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 410				new_raw_count) != prev_raw_count)
 411		goto again;
 412
 413	delta = new_raw_count - prev_raw_count;
 414
 415	local64_add(delta, &event->count);
 416	local64_sub(delta, &hwc->period_left);
 417}
 418
 419static void mipspmu_start(struct perf_event *event, int flags)
 420{
 421	struct hw_perf_event *hwc = &event->hw;
 422
 423	if (flags & PERF_EF_RELOAD)
 424		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 425
 426	hwc->state = 0;
 427
 428	/* Set the period for the event. */
 429	mipspmu_event_set_period(event, hwc, hwc->idx);
 430
 431	/* Enable the event. */
 432	mipsxx_pmu_enable_event(hwc, hwc->idx);
 433}
 434
 435static void mipspmu_stop(struct perf_event *event, int flags)
 436{
 437	struct hw_perf_event *hwc = &event->hw;
 438
 439	if (!(hwc->state & PERF_HES_STOPPED)) {
 440		/* We are working on a local event. */
 441		mipsxx_pmu_disable_event(hwc->idx);
 442		barrier();
 443		mipspmu_event_update(event, hwc, hwc->idx);
 444		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 445	}
 446}
 447
 448static int mipspmu_add(struct perf_event *event, int flags)
 449{
 450	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 451	struct hw_perf_event *hwc = &event->hw;
 452	int idx;
 453	int err = 0;
 454
 455	perf_pmu_disable(event->pmu);
 456
 457	/* To look for a free counter for this event. */
 458	idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
 459	if (idx < 0) {
 460		err = idx;
 461		goto out;
 462	}
 463
 464	/*
 465	 * If there is an event in the counter we are going to use then
 466	 * make sure it is disabled.
 467	 */
 468	event->hw.idx = idx;
 469	mipsxx_pmu_disable_event(idx);
 470	cpuc->events[idx] = event;
 471
 472	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 473	if (flags & PERF_EF_START)
 474		mipspmu_start(event, PERF_EF_RELOAD);
 475
 476	/* Propagate our changes to the userspace mapping. */
 477	perf_event_update_userpage(event);
 478
 479out:
 480	perf_pmu_enable(event->pmu);
 481	return err;
 482}
 483
 484static void mipspmu_del(struct perf_event *event, int flags)
 485{
 486	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 487	struct hw_perf_event *hwc = &event->hw;
 488	int idx = hwc->idx;
 489
 490	WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
 491
 492	mipspmu_stop(event, PERF_EF_UPDATE);
 493	cpuc->events[idx] = NULL;
 494	clear_bit(idx, cpuc->used_mask);
 495
 496	perf_event_update_userpage(event);
 497}
 498
 499static void mipspmu_read(struct perf_event *event)
 500{
 501	struct hw_perf_event *hwc = &event->hw;
 502
 503	/* Don't read disabled counters! */
 504	if (hwc->idx < 0)
 505		return;
 506
 507	mipspmu_event_update(event, hwc, hwc->idx);
 508}
 509
 510static void mipspmu_enable(struct pmu *pmu)
 511{
 512#ifdef CONFIG_MIPS_MT_SMP
 513	write_unlock(&pmuint_rwlock);
 514#endif
 515	resume_local_counters();
 516}
 517
 518/*
 519 * MIPS performance counters can be per-TC. The control registers can
 520 * not be directly accessed accross CPUs. Hence if we want to do global
 521 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 522 * can not make sure this function is called with interrupts enabled. So
 523 * here we pause local counters and then grab a rwlock and leave the
 524 * counters on other CPUs alone. If any counter interrupt raises while
 525 * we own the write lock, simply pause local counters on that CPU and
 526 * spin in the handler. Also we know we won't be switched to another
 527 * CPU after pausing local counters and before grabbing the lock.
 528 */
 529static void mipspmu_disable(struct pmu *pmu)
 530{
 531	pause_local_counters();
 532#ifdef CONFIG_MIPS_MT_SMP
 533	write_lock(&pmuint_rwlock);
 534#endif
 535}
 536
 537static atomic_t active_events = ATOMIC_INIT(0);
 538static DEFINE_MUTEX(pmu_reserve_mutex);
 539static int (*save_perf_irq)(void);
 540
 541static int mipspmu_get_irq(void)
 542{
 543	int err;
 544
 545	if (mipspmu.irq >= 0) {
 546		/* Request my own irq handler. */
 547		err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
 548			IRQF_PERCPU | IRQF_NOBALANCING,
 549			"mips_perf_pmu", NULL);
 
 
 550		if (err) {
 551			pr_warning("Unable to request IRQ%d for MIPS "
 552			   "performance counters!\n", mipspmu.irq);
 553		}
 554	} else if (cp0_perfcount_irq < 0) {
 555		/*
 556		 * We are sharing the irq number with the timer interrupt.
 557		 */
 558		save_perf_irq = perf_irq;
 559		perf_irq = mipsxx_pmu_handle_shared_irq;
 560		err = 0;
 561	} else {
 562		pr_warning("The platform hasn't properly defined its "
 563			"interrupt controller.\n");
 564		err = -ENOENT;
 565	}
 566
 567	return err;
 568}
 569
 570static void mipspmu_free_irq(void)
 571{
 572	if (mipspmu.irq >= 0)
 573		free_irq(mipspmu.irq, NULL);
 574	else if (cp0_perfcount_irq < 0)
 575		perf_irq = save_perf_irq;
 576}
 577
 578/*
 579 * mipsxx/rm9000/loongson2 have different performance counters, they have
 580 * specific low-level init routines.
 581 */
 582static void reset_counters(void *arg);
 583static int __hw_perf_event_init(struct perf_event *event);
 584
 585static void hw_perf_event_destroy(struct perf_event *event)
 586{
 587	if (atomic_dec_and_mutex_lock(&active_events,
 588				&pmu_reserve_mutex)) {
 589		/*
 590		 * We must not call the destroy function with interrupts
 591		 * disabled.
 592		 */
 593		on_each_cpu(reset_counters,
 594			(void *)(long)mipspmu.num_counters, 1);
 595		mipspmu_free_irq();
 596		mutex_unlock(&pmu_reserve_mutex);
 597	}
 598}
 599
 600static int mipspmu_event_init(struct perf_event *event)
 601{
 602	int err = 0;
 603
 604	/* does not support taken branch sampling */
 605	if (has_branch_stack(event))
 606		return -EOPNOTSUPP;
 607
 608	switch (event->attr.type) {
 609	case PERF_TYPE_RAW:
 610	case PERF_TYPE_HARDWARE:
 611	case PERF_TYPE_HW_CACHE:
 612		break;
 613
 614	default:
 615		return -ENOENT;
 616	}
 617
 618	if (event->cpu >= nr_cpumask_bits ||
 619	    (event->cpu >= 0 && !cpu_online(event->cpu)))
 620		return -ENODEV;
 621
 622	if (!atomic_inc_not_zero(&active_events)) {
 623		mutex_lock(&pmu_reserve_mutex);
 624		if (atomic_read(&active_events) == 0)
 625			err = mipspmu_get_irq();
 626
 627		if (!err)
 628			atomic_inc(&active_events);
 629		mutex_unlock(&pmu_reserve_mutex);
 630	}
 631
 632	if (err)
 633		return err;
 634
 635	return __hw_perf_event_init(event);
 636}
 637
 638static struct pmu pmu = {
 639	.pmu_enable	= mipspmu_enable,
 640	.pmu_disable	= mipspmu_disable,
 641	.event_init	= mipspmu_event_init,
 642	.add		= mipspmu_add,
 643	.del		= mipspmu_del,
 644	.start		= mipspmu_start,
 645	.stop		= mipspmu_stop,
 646	.read		= mipspmu_read,
 647};
 648
 649static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
 650{
 651/*
 652 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
 653 * event_id.
 654 */
 655#ifdef CONFIG_MIPS_MT_SMP
 656	return ((unsigned int)pev->range << 24) |
 657		(pev->cntr_mask & 0xffff00) |
 658		(pev->event_id & 0xff);
 659#else
 660	return (pev->cntr_mask & 0xffff00) |
 661		(pev->event_id & 0xff);
 662#endif
 663}
 664
 665static const struct mips_perf_event *mipspmu_map_general_event(int idx)
 666{
 667	const struct mips_perf_event *pev;
 668
 669	pev = ((*mipspmu.general_event_map)[idx].event_id ==
 670		UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
 671		&(*mipspmu.general_event_map)[idx]);
 672
 673	return pev;
 674}
 675
 676static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
 677{
 678	unsigned int cache_type, cache_op, cache_result;
 679	const struct mips_perf_event *pev;
 680
 681	cache_type = (config >> 0) & 0xff;
 682	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 683		return ERR_PTR(-EINVAL);
 684
 685	cache_op = (config >> 8) & 0xff;
 686	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 687		return ERR_PTR(-EINVAL);
 688
 689	cache_result = (config >> 16) & 0xff;
 690	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 691		return ERR_PTR(-EINVAL);
 692
 693	pev = &((*mipspmu.cache_event_map)
 694					[cache_type]
 695					[cache_op]
 696					[cache_result]);
 697
 698	if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
 699		return ERR_PTR(-EOPNOTSUPP);
 700
 701	return pev;
 702
 703}
 704
 705static int validate_group(struct perf_event *event)
 706{
 707	struct perf_event *sibling, *leader = event->group_leader;
 708	struct cpu_hw_events fake_cpuc;
 709
 710	memset(&fake_cpuc, 0, sizeof(fake_cpuc));
 711
 712	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
 713		return -EINVAL;
 714
 715	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 716		if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
 717			return -EINVAL;
 718	}
 719
 720	if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
 721		return -EINVAL;
 722
 723	return 0;
 724}
 725
 726/* This is needed by specific irq handlers in perf_event_*.c */
 727static void handle_associated_event(struct cpu_hw_events *cpuc,
 728				    int idx, struct perf_sample_data *data,
 729				    struct pt_regs *regs)
 730{
 731	struct perf_event *event = cpuc->events[idx];
 732	struct hw_perf_event *hwc = &event->hw;
 733
 734	mipspmu_event_update(event, hwc, idx);
 735	data->period = event->hw.last_period;
 736	if (!mipspmu_event_set_period(event, hwc, idx))
 737		return;
 738
 739	if (perf_event_overflow(event, data, regs))
 740		mipsxx_pmu_disable_event(idx);
 741}
 742
 743
 744static int __n_counters(void)
 745{
 746	if (!(read_c0_config1() & M_CONFIG1_PC))
 747		return 0;
 748	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
 749		return 1;
 750	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
 751		return 2;
 752	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
 753		return 3;
 754
 755	return 4;
 756}
 757
 758static int n_counters(void)
 759{
 760	int counters;
 761
 762	switch (current_cpu_type()) {
 763	case CPU_R10000:
 764		counters = 2;
 765		break;
 766
 767	case CPU_R12000:
 768	case CPU_R14000:
 
 769		counters = 4;
 770		break;
 771
 772	default:
 773		counters = __n_counters();
 774	}
 775
 776	return counters;
 777}
 778
 779static void reset_counters(void *arg)
 780{
 781	int counters = (int)(long)arg;
 782	switch (counters) {
 783	case 4:
 784		mipsxx_pmu_write_control(3, 0);
 785		mipspmu.write_counter(3, 0);
 786	case 3:
 787		mipsxx_pmu_write_control(2, 0);
 788		mipspmu.write_counter(2, 0);
 789	case 2:
 790		mipsxx_pmu_write_control(1, 0);
 791		mipspmu.write_counter(1, 0);
 792	case 1:
 793		mipsxx_pmu_write_control(0, 0);
 794		mipspmu.write_counter(0, 0);
 795	}
 796}
 797
 798/* 24K/34K/1004K cores can share the same event map. */
 799static const struct mips_perf_event mipsxxcore_event_map
 800				[PERF_COUNT_HW_MAX] = {
 801	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 802	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 803	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
 804	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
 805	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
 806	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
 807	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
 808};
 809
 810/* 74K core has different branch event code. */
 811static const struct mips_perf_event mipsxx74Kcore_event_map
 812				[PERF_COUNT_HW_MAX] = {
 813	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
 814	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
 815	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
 816	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
 817	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
 818	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
 819	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
 820};
 821
 822static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
 823	[PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
 824	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
 825	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
 826	[PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
 827	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
 828	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
 829	[PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
 830};
 831
 832/* 24K/34K/1004K cores can share the same cache event map. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833static const struct mips_perf_event mipsxxcore_cache_map
 834				[PERF_COUNT_HW_CACHE_MAX]
 835				[PERF_COUNT_HW_CACHE_OP_MAX]
 836				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 837[C(L1D)] = {
 838	/*
 839	 * Like some other architectures (e.g. ARM), the performance
 840	 * counters don't differentiate between read and write
 841	 * accesses/misses, so this isn't strictly correct, but it's the
 842	 * best we can do. Writes and reads get combined.
 843	 */
 844	[C(OP_READ)] = {
 845		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 846		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 847	},
 848	[C(OP_WRITE)] = {
 849		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
 850		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
 851	},
 852	[C(OP_PREFETCH)] = {
 853		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 854		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 855	},
 856},
 857[C(L1I)] = {
 858	[C(OP_READ)] = {
 859		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 860		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 861	},
 862	[C(OP_WRITE)] = {
 863		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
 864		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
 865	},
 866	[C(OP_PREFETCH)] = {
 867		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
 868		/*
 869		 * Note that MIPS has only "hit" events countable for
 870		 * the prefetch operation.
 871		 */
 872		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 873	},
 874},
 875[C(LL)] = {
 876	[C(OP_READ)] = {
 877		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 878		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 879	},
 880	[C(OP_WRITE)] = {
 881		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
 882		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
 883	},
 884	[C(OP_PREFETCH)] = {
 885		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 886		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 887	},
 888},
 889[C(DTLB)] = {
 890	[C(OP_READ)] = {
 891		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 892		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 893	},
 894	[C(OP_WRITE)] = {
 895		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 896		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 897	},
 898	[C(OP_PREFETCH)] = {
 899		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 900		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 901	},
 902},
 903[C(ITLB)] = {
 904	[C(OP_READ)] = {
 905		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 906		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 907	},
 908	[C(OP_WRITE)] = {
 909		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
 910		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
 911	},
 912	[C(OP_PREFETCH)] = {
 913		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 914		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 915	},
 916},
 917[C(BPU)] = {
 918	/* Using the same code for *HW_BRANCH* */
 919	[C(OP_READ)] = {
 920		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 921		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 922	},
 923	[C(OP_WRITE)] = {
 924		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
 925		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
 926	},
 927	[C(OP_PREFETCH)] = {
 928		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 929		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 930	},
 931},
 932[C(NODE)] = {
 933	[C(OP_READ)] = {
 934		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 935		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 936	},
 937	[C(OP_WRITE)] = {
 938		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 939		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 940	},
 941	[C(OP_PREFETCH)] = {
 942		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 943		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 944	},
 945},
 946};
 947
 948/* 74K core has completely different cache event map. */
 949static const struct mips_perf_event mipsxx74Kcore_cache_map
 950				[PERF_COUNT_HW_CACHE_MAX]
 951				[PERF_COUNT_HW_CACHE_OP_MAX]
 952				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
 953[C(L1D)] = {
 954	/*
 955	 * Like some other architectures (e.g. ARM), the performance
 956	 * counters don't differentiate between read and write
 957	 * accesses/misses, so this isn't strictly correct, but it's the
 958	 * best we can do. Writes and reads get combined.
 959	 */
 960	[C(OP_READ)] = {
 961		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 962		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 963	},
 964	[C(OP_WRITE)] = {
 965		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
 966		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
 967	},
 968	[C(OP_PREFETCH)] = {
 969		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 970		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 971	},
 972},
 973[C(L1I)] = {
 974	[C(OP_READ)] = {
 975		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 976		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 977	},
 978	[C(OP_WRITE)] = {
 979		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
 980		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
 981	},
 982	[C(OP_PREFETCH)] = {
 983		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
 984		/*
 985		 * Note that MIPS has only "hit" events countable for
 986		 * the prefetch operation.
 987		 */
 988		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 989	},
 990},
 991[C(LL)] = {
 992	[C(OP_READ)] = {
 993		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 994		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
 995	},
 996	[C(OP_WRITE)] = {
 997		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
 998		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
 999	},
1000	[C(OP_PREFETCH)] = {
1001		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1002		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1003	},
1004},
1005[C(DTLB)] = {
1006	/* 74K core does not have specific DTLB events. */
1007	[C(OP_READ)] = {
1008		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1009		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1010	},
1011	[C(OP_WRITE)] = {
1012		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1013		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1014	},
1015	[C(OP_PREFETCH)] = {
1016		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1017		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1018	},
1019},
 
 
 
 
 
1020[C(ITLB)] = {
1021	[C(OP_READ)] = {
1022		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1023		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1024	},
1025	[C(OP_WRITE)] = {
1026		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
1027		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
1028	},
1029	[C(OP_PREFETCH)] = {
1030		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1031		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1032	},
1033},
1034[C(BPU)] = {
1035	/* Using the same code for *HW_BRANCH* */
1036	[C(OP_READ)] = {
1037		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1038		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1039	},
1040	[C(OP_WRITE)] = {
1041		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
1042		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
1043	},
1044	[C(OP_PREFETCH)] = {
1045		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1046		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047	},
1048},
1049[C(NODE)] = {
1050	[C(OP_READ)] = {
1051		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1052		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1053	},
1054	[C(OP_WRITE)] = {
1055		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1056		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
1057	},
1058	[C(OP_PREFETCH)] = {
1059		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1060		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1061	},
1062},
1063};
1064
1065
1066static const struct mips_perf_event octeon_cache_map
1067				[PERF_COUNT_HW_CACHE_MAX]
1068				[PERF_COUNT_HW_CACHE_OP_MAX]
1069				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1070[C(L1D)] = {
 
 
 
 
 
 
1071	[C(OP_READ)] = {
1072		[C(RESULT_ACCESS)]	= { 0x2b, CNTR_ALL },
1073		[C(RESULT_MISS)]	= { 0x2e, CNTR_ALL },
1074	},
1075	[C(OP_WRITE)] = {
1076		[C(RESULT_ACCESS)]	= { 0x30, CNTR_ALL },
1077		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1078	},
1079	[C(OP_PREFETCH)] = {
1080		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1081		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1082	},
1083},
1084[C(L1I)] = {
1085	[C(OP_READ)] = {
1086		[C(RESULT_ACCESS)]	= { 0x18, CNTR_ALL },
1087		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1088	},
1089	[C(OP_WRITE)] = {
1090		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1091		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1092	},
1093	[C(OP_PREFETCH)] = {
1094		[C(RESULT_ACCESS)]	= { 0x19, CNTR_ALL },
1095		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
1096	},
1097},
1098[C(LL)] = {
1099	[C(OP_READ)] = {
1100		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1101		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1102	},
1103	[C(OP_WRITE)] = {
1104		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1105		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
1106	},
1107	[C(OP_PREFETCH)] = {
1108		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1109		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1110	},
1111},
1112[C(DTLB)] = {
1113	/*
1114	 * Only general DTLB misses are counted use the same event for
1115	 * read and write.
1116	 */
1117	[C(OP_READ)] = {
1118		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1119		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1120	},
1121	[C(OP_WRITE)] = {
1122		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1123		[C(RESULT_MISS)]	= { 0x35, CNTR_ALL },
1124	},
1125	[C(OP_PREFETCH)] = {
1126		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1127		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1128	},
1129},
1130[C(ITLB)] = {
1131	[C(OP_READ)] = {
1132		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1133		[C(RESULT_MISS)]	= { 0x37, CNTR_ALL },
1134	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135	[C(OP_WRITE)] = {
1136		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1137		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1138	},
1139	[C(OP_PREFETCH)] = {
1140		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1141		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
 
 
 
 
 
 
 
1142	},
1143},
1144[C(BPU)] = {
1145	/* Using the same code for *HW_BRANCH* */
1146	[C(OP_READ)] = {
1147		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1148		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1149	},
1150	[C(OP_WRITE)] = {
1151		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1152		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1153	},
1154	[C(OP_PREFETCH)] = {
1155		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
1156		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
 
1157	},
1158},
1159};
1160
1161#ifdef CONFIG_MIPS_MT_SMP
1162static void check_and_calc_range(struct perf_event *event,
1163				 const struct mips_perf_event *pev)
1164{
1165	struct hw_perf_event *hwc = &event->hw;
1166
1167	if (event->cpu >= 0) {
1168		if (pev->range > V) {
1169			/*
1170			 * The user selected an event that is processor
1171			 * wide, while expecting it to be VPE wide.
1172			 */
1173			hwc->config_base |= M_TC_EN_ALL;
1174		} else {
1175			/*
1176			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177			 * for both CPUs.
1178			 */
1179			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180			hwc->config_base |= M_TC_EN_VPE;
1181		}
1182	} else
1183		hwc->config_base |= M_TC_EN_ALL;
1184}
1185#else
1186static void check_and_calc_range(struct perf_event *event,
1187				 const struct mips_perf_event *pev)
1188{
1189}
1190#endif
1191
1192static int __hw_perf_event_init(struct perf_event *event)
1193{
1194	struct perf_event_attr *attr = &event->attr;
1195	struct hw_perf_event *hwc = &event->hw;
1196	const struct mips_perf_event *pev;
1197	int err;
1198
1199	/* Returning MIPS event descriptor for generic perf event. */
1200	if (PERF_TYPE_HARDWARE == event->attr.type) {
1201		if (event->attr.config >= PERF_COUNT_HW_MAX)
1202			return -EINVAL;
1203		pev = mipspmu_map_general_event(event->attr.config);
1204	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205		pev = mipspmu_map_cache_event(event->attr.config);
1206	} else if (PERF_TYPE_RAW == event->attr.type) {
1207		/* We are working on the global raw event. */
1208		mutex_lock(&raw_event_mutex);
1209		pev = mipspmu.map_raw_event(event->attr.config);
1210	} else {
1211		/* The event type is not (yet) supported. */
1212		return -EOPNOTSUPP;
1213	}
1214
1215	if (IS_ERR(pev)) {
1216		if (PERF_TYPE_RAW == event->attr.type)
1217			mutex_unlock(&raw_event_mutex);
1218		return PTR_ERR(pev);
1219	}
1220
1221	/*
1222	 * We allow max flexibility on how each individual counter shared
1223	 * by the single CPU operates (the mode exclusion and the range).
1224	 */
1225	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1226
1227	/* Calculate range bits and validate it. */
1228	if (num_possible_cpus() > 1)
1229		check_and_calc_range(event, pev);
1230
1231	hwc->event_base = mipspmu_perf_event_encode(pev);
1232	if (PERF_TYPE_RAW == event->attr.type)
1233		mutex_unlock(&raw_event_mutex);
1234
1235	if (!attr->exclude_user)
1236		hwc->config_base |= M_PERFCTL_USER;
1237	if (!attr->exclude_kernel) {
1238		hwc->config_base |= M_PERFCTL_KERNEL;
1239		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240		hwc->config_base |= M_PERFCTL_EXL;
1241	}
1242	if (!attr->exclude_hv)
1243		hwc->config_base |= M_PERFCTL_SUPERVISOR;
1244
1245	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1246	/*
1247	 * The event can belong to another cpu. We do not assign a local
1248	 * counter for it for now.
1249	 */
1250	hwc->idx = -1;
1251	hwc->config = 0;
1252
1253	if (!hwc->sample_period) {
1254		hwc->sample_period  = mipspmu.max_period;
1255		hwc->last_period    = hwc->sample_period;
1256		local64_set(&hwc->period_left, hwc->sample_period);
1257	}
1258
1259	err = 0;
1260	if (event->group_leader != event)
1261		err = validate_group(event);
1262
1263	event->destroy = hw_perf_event_destroy;
1264
1265	if (err)
1266		event->destroy(event);
1267
1268	return err;
1269}
1270
1271static void pause_local_counters(void)
1272{
1273	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274	int ctr = mipspmu.num_counters;
1275	unsigned long flags;
1276
1277	local_irq_save(flags);
1278	do {
1279		ctr--;
1280		cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282					 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283	} while (ctr > 0);
1284	local_irq_restore(flags);
1285}
1286
1287static void resume_local_counters(void)
1288{
1289	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290	int ctr = mipspmu.num_counters;
1291
1292	do {
1293		ctr--;
1294		mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295	} while (ctr > 0);
1296}
1297
1298static int mipsxx_pmu_handle_shared_irq(void)
1299{
1300	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301	struct perf_sample_data data;
1302	unsigned int counters = mipspmu.num_counters;
1303	u64 counter;
1304	int handled = IRQ_NONE;
1305	struct pt_regs *regs;
1306
1307	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1308		return handled;
1309	/*
1310	 * First we pause the local counters, so that when we are locked
1311	 * here, the counters are all paused. When it gets locked due to
1312	 * perf_disable(), the timer interrupt handler will be delayed.
1313	 *
1314	 * See also mipsxx_pmu_start().
1315	 */
1316	pause_local_counters();
1317#ifdef CONFIG_MIPS_MT_SMP
1318	read_lock(&pmuint_rwlock);
1319#endif
1320
1321	regs = get_irq_regs();
1322
1323	perf_sample_data_init(&data, 0, 0);
1324
1325	switch (counters) {
1326#define HANDLE_COUNTER(n)						\
1327	case n + 1:							\
1328		if (test_bit(n, cpuc->used_mask)) {			\
1329			counter = mipspmu.read_counter(n);		\
1330			if (counter & mipspmu.overflow) {		\
1331				handle_associated_event(cpuc, n, &data, regs); \
1332				handled = IRQ_HANDLED;			\
1333			}						\
1334		}
1335	HANDLE_COUNTER(3)
1336	HANDLE_COUNTER(2)
1337	HANDLE_COUNTER(1)
1338	HANDLE_COUNTER(0)
1339	}
1340
1341	/*
1342	 * Do all the work for the pending perf events. We can do this
1343	 * in here because the performance counter interrupt is a regular
1344	 * interrupt, not NMI.
1345	 */
1346	if (handled == IRQ_HANDLED)
1347		irq_work_run();
1348
1349#ifdef CONFIG_MIPS_MT_SMP
1350	read_unlock(&pmuint_rwlock);
1351#endif
1352	resume_local_counters();
1353	return handled;
1354}
1355
1356static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1357{
1358	return mipsxx_pmu_handle_shared_irq();
1359}
1360
1361/* 24K */
1362#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
1363	((b) == 0 || (b) == 1 || (b) == 11)
1364
1365/* 34K */
1366#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
1367	((b) == 0 || (b) == 1 || (b) == 11)
1368#ifdef CONFIG_MIPS_MT_SMP
1369#define IS_RANGE_P_34K_EVENT(r, b)					\
1370	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1371	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
1372	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
1373	 ((b) >= 64 && (b) <= 67))
1374#define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
1375#endif
1376
1377/* 74K */
1378#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
1379	((b) == 0 || (b) == 1)
1380
 
 
 
 
 
 
 
1381/* 1004K */
1382#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
1383	((b) == 0 || (b) == 1 || (b) == 11)
1384#ifdef CONFIG_MIPS_MT_SMP
1385#define IS_RANGE_P_1004K_EVENT(r, b)					\
1386	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
1387	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
1388	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
1389	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
1390	 ((b) >= 64 && (b) <= 67))
1391#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
1392#endif
1393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394/*
1395 * User can use 0-255 raw events, where 0-127 for the events of even
1396 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1397 * indicate the parity. So, for example, when user wants to take the
1398 * Event Num of 15 for odd counters (by referring to the user manual),
1399 * then 128 needs to be added to 15 as the input for the event config,
1400 * i.e., 143 (0x8F) to be used.
 
 
 
 
1401 */
1402static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1403{
 
1404	unsigned int raw_id = config & 0xff;
1405	unsigned int base_id = raw_id & 0x7f;
1406
1407	raw_event.event_id = base_id;
1408
1409	switch (current_cpu_type()) {
1410	case CPU_24K:
1411		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1412			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1413		else
1414			raw_event.cntr_mask =
1415				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1416#ifdef CONFIG_MIPS_MT_SMP
1417		/*
1418		 * This is actually doing nothing. Non-multithreading
1419		 * CPUs will not check and calculate the range.
1420		 */
1421		raw_event.range = P;
1422#endif
1423		break;
1424	case CPU_34K:
1425		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1426			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1427		else
1428			raw_event.cntr_mask =
1429				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1430#ifdef CONFIG_MIPS_MT_SMP
1431		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1432			raw_event.range = P;
1433		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1434			raw_event.range = V;
1435		else
1436			raw_event.range = T;
1437#endif
1438		break;
1439	case CPU_74K:
 
1440		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1441			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1442		else
1443			raw_event.cntr_mask =
1444				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1445#ifdef CONFIG_MIPS_MT_SMP
1446		raw_event.range = P;
1447#endif
1448		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449	case CPU_1004K:
1450		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1451			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1452		else
1453			raw_event.cntr_mask =
1454				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1455#ifdef CONFIG_MIPS_MT_SMP
1456		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1457			raw_event.range = P;
1458		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1459			raw_event.range = V;
1460		else
1461			raw_event.range = T;
1462#endif
1463		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464	}
1465
 
 
1466	return &raw_event;
1467}
1468
1469static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1470{
1471	unsigned int raw_id = config & 0xff;
1472	unsigned int base_id = raw_id & 0x7f;
1473
1474
1475	raw_event.cntr_mask = CNTR_ALL;
1476	raw_event.event_id = base_id;
1477
1478	if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1479		if (base_id > 0x42)
1480			return ERR_PTR(-EOPNOTSUPP);
1481	} else {
1482		if (base_id > 0x3a)
1483			return ERR_PTR(-EOPNOTSUPP);
1484	}
1485
1486	switch (base_id) {
1487	case 0x00:
1488	case 0x0f:
1489	case 0x1e:
1490	case 0x1f:
1491	case 0x2f:
1492	case 0x34:
1493	case 0x3b ... 0x3f:
1494		return ERR_PTR(-EOPNOTSUPP);
1495	default:
1496		break;
1497	}
1498
1499	return &raw_event;
1500}
1501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502static int __init
1503init_hw_perf_events(void)
1504{
1505	int counters, irq;
1506	int counter_bits;
1507
1508	pr_info("Performance counters: ");
1509
1510	counters = n_counters();
1511	if (counters == 0) {
1512		pr_cont("No available PMU.\n");
1513		return -ENODEV;
1514	}
1515
1516#ifdef CONFIG_MIPS_MT_SMP
1517	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1518	if (!cpu_has_mipsmt_pertccounters)
1519		counters = counters_total_to_per_cpu(counters);
1520#endif
1521
1522#ifdef MSC01E_INT_BASE
1523	if (cpu_has_veic) {
1524		/*
1525		 * Using platform specific interrupt controller defines.
1526		 */
1527		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1528	} else {
1529#endif
1530		if ((cp0_perfcount_irq >= 0) &&
1531				(cp0_compare_irq != cp0_perfcount_irq))
1532			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1533		else
1534			irq = -1;
1535#ifdef MSC01E_INT_BASE
1536	}
1537#endif
1538
1539	mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1540
1541	switch (current_cpu_type()) {
1542	case CPU_24K:
1543		mipspmu.name = "mips/24K";
1544		mipspmu.general_event_map = &mipsxxcore_event_map;
1545		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1546		break;
1547	case CPU_34K:
1548		mipspmu.name = "mips/34K";
1549		mipspmu.general_event_map = &mipsxxcore_event_map;
1550		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1551		break;
1552	case CPU_74K:
1553		mipspmu.name = "mips/74K";
1554		mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1555		mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556		break;
1557	case CPU_1004K:
1558		mipspmu.name = "mips/1004K";
1559		mipspmu.general_event_map = &mipsxxcore_event_map;
1560		mipspmu.cache_event_map = &mipsxxcore_cache_map;
1561		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562	case CPU_CAVIUM_OCTEON:
1563	case CPU_CAVIUM_OCTEON_PLUS:
1564	case CPU_CAVIUM_OCTEON2:
1565		mipspmu.name = "octeon";
1566		mipspmu.general_event_map = &octeon_event_map;
1567		mipspmu.cache_event_map = &octeon_cache_map;
1568		mipspmu.map_raw_event = octeon_pmu_map_raw_event;
 
 
 
 
 
 
 
 
 
 
 
1569		break;
1570	default:
1571		pr_cont("Either hardware does not support performance "
1572			"counters, or not yet implemented.\n");
1573		return -ENODEV;
1574	}
1575
1576	mipspmu.num_counters = counters;
1577	mipspmu.irq = irq;
1578
1579	if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1580		mipspmu.max_period = (1ULL << 63) - 1;
1581		mipspmu.valid_count = (1ULL << 63) - 1;
1582		mipspmu.overflow = 1ULL << 63;
1583		mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1584		mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1585		counter_bits = 64;
1586	} else {
1587		mipspmu.max_period = (1ULL << 31) - 1;
1588		mipspmu.valid_count = (1ULL << 31) - 1;
1589		mipspmu.overflow = 1ULL << 31;
1590		mipspmu.read_counter = mipsxx_pmu_read_counter;
1591		mipspmu.write_counter = mipsxx_pmu_write_counter;
1592		counter_bits = 32;
1593	}
1594
1595	on_each_cpu(reset_counters, (void *)(long)counters, 1);
1596
1597	pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1598		"CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1599		irq < 0 ? " (share with timer interrupt)" : "");
1600
1601	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1602
1603	return 0;
1604}
1605early_initcall(init_hw_perf_events);