Loading...
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include <kvm/iodev.h>
20
21#include <linux/kvm_host.h>
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/percpu.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/syscore_ops.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47#include <linux/srcu.h>
48#include <linux/hugetlb.h>
49#include <linux/slab.h>
50#include <linux/sort.h>
51#include <linux/bsearch.h>
52
53#include <asm/processor.h>
54#include <asm/io.h>
55#include <asm/ioctl.h>
56#include <asm/uaccess.h>
57#include <asm/pgtable.h>
58
59#include "coalesced_mmio.h"
60#include "async_pf.h"
61#include "vfio.h"
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/kvm.h>
65
66MODULE_AUTHOR("Qumranet");
67MODULE_LICENSE("GPL");
68
69/* Architectures should define their poll value according to the halt latency */
70static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73/* Default doubles per-vcpu halt_poll_ns. */
74static unsigned int halt_poll_ns_grow = 2;
75module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
76
77/* Default resets per-vcpu halt_poll_ns . */
78static unsigned int halt_poll_ns_shrink;
79module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
80
81/*
82 * Ordering of locks:
83 *
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85 */
86
87DEFINE_SPINLOCK(kvm_lock);
88static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89LIST_HEAD(vm_list);
90
91static cpumask_var_t cpus_hardware_enabled;
92static int kvm_usage_count;
93static atomic_t hardware_enable_failed;
94
95struct kmem_cache *kvm_vcpu_cache;
96EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100struct dentry *kvm_debugfs_dir;
101EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 unsigned long arg);
105#ifdef CONFIG_KVM_COMPAT
106static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 unsigned long arg);
108#endif
109static int hardware_enable_all(void);
110static void hardware_disable_all(void);
111
112static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117__visible bool kvm_rebooting;
118EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120static bool largepages_enabled = true;
121
122bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123{
124 if (pfn_valid(pfn))
125 return PageReserved(pfn_to_page(pfn));
126
127 return true;
128}
129
130/*
131 * Switches to specified vcpu, until a matching vcpu_put()
132 */
133int vcpu_load(struct kvm_vcpu *vcpu)
134{
135 int cpu;
136
137 if (mutex_lock_killable(&vcpu->mutex))
138 return -EINTR;
139 cpu = get_cpu();
140 preempt_notifier_register(&vcpu->preempt_notifier);
141 kvm_arch_vcpu_load(vcpu, cpu);
142 put_cpu();
143 return 0;
144}
145
146void vcpu_put(struct kvm_vcpu *vcpu)
147{
148 preempt_disable();
149 kvm_arch_vcpu_put(vcpu);
150 preempt_notifier_unregister(&vcpu->preempt_notifier);
151 preempt_enable();
152 mutex_unlock(&vcpu->mutex);
153}
154
155static void ack_flush(void *_completed)
156{
157}
158
159bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160{
161 int i, cpu, me;
162 cpumask_var_t cpus;
163 bool called = true;
164 struct kvm_vcpu *vcpu;
165
166 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168 me = get_cpu();
169 kvm_for_each_vcpu(i, vcpu, kvm) {
170 kvm_make_request(req, vcpu);
171 cpu = vcpu->cpu;
172
173 /* Set ->requests bit before we read ->mode. */
174 smp_mb__after_atomic();
175
176 if (cpus != NULL && cpu != -1 && cpu != me &&
177 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 cpumask_set_cpu(cpu, cpus);
179 }
180 if (unlikely(cpus == NULL))
181 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 else if (!cpumask_empty(cpus))
183 smp_call_function_many(cpus, ack_flush, NULL, 1);
184 else
185 called = false;
186 put_cpu();
187 free_cpumask_var(cpus);
188 return called;
189}
190
191#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192void kvm_flush_remote_tlbs(struct kvm *kvm)
193{
194 /*
195 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
196 * kvm_make_all_cpus_request.
197 */
198 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
199
200 /*
201 * We want to publish modifications to the page tables before reading
202 * mode. Pairs with a memory barrier in arch-specific code.
203 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
204 * and smp_mb in walk_shadow_page_lockless_begin/end.
205 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
206 *
207 * There is already an smp_mb__after_atomic() before
208 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
209 * barrier here.
210 */
211 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
212 ++kvm->stat.remote_tlb_flush;
213 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
214}
215EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
216#endif
217
218void kvm_reload_remote_mmus(struct kvm *kvm)
219{
220 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
221}
222
223int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
224{
225 struct page *page;
226 int r;
227
228 mutex_init(&vcpu->mutex);
229 vcpu->cpu = -1;
230 vcpu->kvm = kvm;
231 vcpu->vcpu_id = id;
232 vcpu->pid = NULL;
233 init_swait_queue_head(&vcpu->wq);
234 kvm_async_pf_vcpu_init(vcpu);
235
236 vcpu->pre_pcpu = -1;
237 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
238
239 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
240 if (!page) {
241 r = -ENOMEM;
242 goto fail;
243 }
244 vcpu->run = page_address(page);
245
246 kvm_vcpu_set_in_spin_loop(vcpu, false);
247 kvm_vcpu_set_dy_eligible(vcpu, false);
248 vcpu->preempted = false;
249
250 r = kvm_arch_vcpu_init(vcpu);
251 if (r < 0)
252 goto fail_free_run;
253 return 0;
254
255fail_free_run:
256 free_page((unsigned long)vcpu->run);
257fail:
258 return r;
259}
260EXPORT_SYMBOL_GPL(kvm_vcpu_init);
261
262void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
263{
264 put_pid(vcpu->pid);
265 kvm_arch_vcpu_uninit(vcpu);
266 free_page((unsigned long)vcpu->run);
267}
268EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
269
270#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
271static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
272{
273 return container_of(mn, struct kvm, mmu_notifier);
274}
275
276static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
277 struct mm_struct *mm,
278 unsigned long address)
279{
280 struct kvm *kvm = mmu_notifier_to_kvm(mn);
281 int need_tlb_flush, idx;
282
283 /*
284 * When ->invalidate_page runs, the linux pte has been zapped
285 * already but the page is still allocated until
286 * ->invalidate_page returns. So if we increase the sequence
287 * here the kvm page fault will notice if the spte can't be
288 * established because the page is going to be freed. If
289 * instead the kvm page fault establishes the spte before
290 * ->invalidate_page runs, kvm_unmap_hva will release it
291 * before returning.
292 *
293 * The sequence increase only need to be seen at spin_unlock
294 * time, and not at spin_lock time.
295 *
296 * Increasing the sequence after the spin_unlock would be
297 * unsafe because the kvm page fault could then establish the
298 * pte after kvm_unmap_hva returned, without noticing the page
299 * is going to be freed.
300 */
301 idx = srcu_read_lock(&kvm->srcu);
302 spin_lock(&kvm->mmu_lock);
303
304 kvm->mmu_notifier_seq++;
305 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
306 /* we've to flush the tlb before the pages can be freed */
307 if (need_tlb_flush)
308 kvm_flush_remote_tlbs(kvm);
309
310 spin_unlock(&kvm->mmu_lock);
311
312 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
313
314 srcu_read_unlock(&kvm->srcu, idx);
315}
316
317static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
318 struct mm_struct *mm,
319 unsigned long address,
320 pte_t pte)
321{
322 struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 int idx;
324
325 idx = srcu_read_lock(&kvm->srcu);
326 spin_lock(&kvm->mmu_lock);
327 kvm->mmu_notifier_seq++;
328 kvm_set_spte_hva(kvm, address, pte);
329 spin_unlock(&kvm->mmu_lock);
330 srcu_read_unlock(&kvm->srcu, idx);
331}
332
333static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
334 struct mm_struct *mm,
335 unsigned long start,
336 unsigned long end)
337{
338 struct kvm *kvm = mmu_notifier_to_kvm(mn);
339 int need_tlb_flush = 0, idx;
340
341 idx = srcu_read_lock(&kvm->srcu);
342 spin_lock(&kvm->mmu_lock);
343 /*
344 * The count increase must become visible at unlock time as no
345 * spte can be established without taking the mmu_lock and
346 * count is also read inside the mmu_lock critical section.
347 */
348 kvm->mmu_notifier_count++;
349 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
350 need_tlb_flush |= kvm->tlbs_dirty;
351 /* we've to flush the tlb before the pages can be freed */
352 if (need_tlb_flush)
353 kvm_flush_remote_tlbs(kvm);
354
355 spin_unlock(&kvm->mmu_lock);
356 srcu_read_unlock(&kvm->srcu, idx);
357}
358
359static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
360 struct mm_struct *mm,
361 unsigned long start,
362 unsigned long end)
363{
364 struct kvm *kvm = mmu_notifier_to_kvm(mn);
365
366 spin_lock(&kvm->mmu_lock);
367 /*
368 * This sequence increase will notify the kvm page fault that
369 * the page that is going to be mapped in the spte could have
370 * been freed.
371 */
372 kvm->mmu_notifier_seq++;
373 smp_wmb();
374 /*
375 * The above sequence increase must be visible before the
376 * below count decrease, which is ensured by the smp_wmb above
377 * in conjunction with the smp_rmb in mmu_notifier_retry().
378 */
379 kvm->mmu_notifier_count--;
380 spin_unlock(&kvm->mmu_lock);
381
382 BUG_ON(kvm->mmu_notifier_count < 0);
383}
384
385static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
386 struct mm_struct *mm,
387 unsigned long start,
388 unsigned long end)
389{
390 struct kvm *kvm = mmu_notifier_to_kvm(mn);
391 int young, idx;
392
393 idx = srcu_read_lock(&kvm->srcu);
394 spin_lock(&kvm->mmu_lock);
395
396 young = kvm_age_hva(kvm, start, end);
397 if (young)
398 kvm_flush_remote_tlbs(kvm);
399
400 spin_unlock(&kvm->mmu_lock);
401 srcu_read_unlock(&kvm->srcu, idx);
402
403 return young;
404}
405
406static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
407 struct mm_struct *mm,
408 unsigned long start,
409 unsigned long end)
410{
411 struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 int young, idx;
413
414 idx = srcu_read_lock(&kvm->srcu);
415 spin_lock(&kvm->mmu_lock);
416 /*
417 * Even though we do not flush TLB, this will still adversely
418 * affect performance on pre-Haswell Intel EPT, where there is
419 * no EPT Access Bit to clear so that we have to tear down EPT
420 * tables instead. If we find this unacceptable, we can always
421 * add a parameter to kvm_age_hva so that it effectively doesn't
422 * do anything on clear_young.
423 *
424 * Also note that currently we never issue secondary TLB flushes
425 * from clear_young, leaving this job up to the regular system
426 * cadence. If we find this inaccurate, we might come up with a
427 * more sophisticated heuristic later.
428 */
429 young = kvm_age_hva(kvm, start, end);
430 spin_unlock(&kvm->mmu_lock);
431 srcu_read_unlock(&kvm->srcu, idx);
432
433 return young;
434}
435
436static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
437 struct mm_struct *mm,
438 unsigned long address)
439{
440 struct kvm *kvm = mmu_notifier_to_kvm(mn);
441 int young, idx;
442
443 idx = srcu_read_lock(&kvm->srcu);
444 spin_lock(&kvm->mmu_lock);
445 young = kvm_test_age_hva(kvm, address);
446 spin_unlock(&kvm->mmu_lock);
447 srcu_read_unlock(&kvm->srcu, idx);
448
449 return young;
450}
451
452static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
453 struct mm_struct *mm)
454{
455 struct kvm *kvm = mmu_notifier_to_kvm(mn);
456 int idx;
457
458 idx = srcu_read_lock(&kvm->srcu);
459 kvm_arch_flush_shadow_all(kvm);
460 srcu_read_unlock(&kvm->srcu, idx);
461}
462
463static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
464 .invalidate_page = kvm_mmu_notifier_invalidate_page,
465 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
466 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
467 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
468 .clear_young = kvm_mmu_notifier_clear_young,
469 .test_young = kvm_mmu_notifier_test_young,
470 .change_pte = kvm_mmu_notifier_change_pte,
471 .release = kvm_mmu_notifier_release,
472};
473
474static int kvm_init_mmu_notifier(struct kvm *kvm)
475{
476 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
477 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
478}
479
480#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
481
482static int kvm_init_mmu_notifier(struct kvm *kvm)
483{
484 return 0;
485}
486
487#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
488
489static struct kvm_memslots *kvm_alloc_memslots(void)
490{
491 int i;
492 struct kvm_memslots *slots;
493
494 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
495 if (!slots)
496 return NULL;
497
498 /*
499 * Init kvm generation close to the maximum to easily test the
500 * code of handling generation number wrap-around.
501 */
502 slots->generation = -150;
503 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
504 slots->id_to_index[i] = slots->memslots[i].id = i;
505
506 return slots;
507}
508
509static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
510{
511 if (!memslot->dirty_bitmap)
512 return;
513
514 kvfree(memslot->dirty_bitmap);
515 memslot->dirty_bitmap = NULL;
516}
517
518/*
519 * Free any memory in @free but not in @dont.
520 */
521static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
522 struct kvm_memory_slot *dont)
523{
524 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
525 kvm_destroy_dirty_bitmap(free);
526
527 kvm_arch_free_memslot(kvm, free, dont);
528
529 free->npages = 0;
530}
531
532static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
533{
534 struct kvm_memory_slot *memslot;
535
536 if (!slots)
537 return;
538
539 kvm_for_each_memslot(memslot, slots)
540 kvm_free_memslot(kvm, memslot, NULL);
541
542 kvfree(slots);
543}
544
545static struct kvm *kvm_create_vm(unsigned long type)
546{
547 int r, i;
548 struct kvm *kvm = kvm_arch_alloc_vm();
549
550 if (!kvm)
551 return ERR_PTR(-ENOMEM);
552
553 spin_lock_init(&kvm->mmu_lock);
554 atomic_inc(¤t->mm->mm_count);
555 kvm->mm = current->mm;
556 kvm_eventfd_init(kvm);
557 mutex_init(&kvm->lock);
558 mutex_init(&kvm->irq_lock);
559 mutex_init(&kvm->slots_lock);
560 atomic_set(&kvm->users_count, 1);
561 INIT_LIST_HEAD(&kvm->devices);
562
563 r = kvm_arch_init_vm(kvm, type);
564 if (r)
565 goto out_err_no_disable;
566
567 r = hardware_enable_all();
568 if (r)
569 goto out_err_no_disable;
570
571#ifdef CONFIG_HAVE_KVM_IRQFD
572 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
573#endif
574
575 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
576
577 r = -ENOMEM;
578 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
579 kvm->memslots[i] = kvm_alloc_memslots();
580 if (!kvm->memslots[i])
581 goto out_err_no_srcu;
582 }
583
584 if (init_srcu_struct(&kvm->srcu))
585 goto out_err_no_srcu;
586 if (init_srcu_struct(&kvm->irq_srcu))
587 goto out_err_no_irq_srcu;
588 for (i = 0; i < KVM_NR_BUSES; i++) {
589 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
590 GFP_KERNEL);
591 if (!kvm->buses[i])
592 goto out_err;
593 }
594
595 r = kvm_init_mmu_notifier(kvm);
596 if (r)
597 goto out_err;
598
599 spin_lock(&kvm_lock);
600 list_add(&kvm->vm_list, &vm_list);
601 spin_unlock(&kvm_lock);
602
603 preempt_notifier_inc();
604
605 return kvm;
606
607out_err:
608 cleanup_srcu_struct(&kvm->irq_srcu);
609out_err_no_irq_srcu:
610 cleanup_srcu_struct(&kvm->srcu);
611out_err_no_srcu:
612 hardware_disable_all();
613out_err_no_disable:
614 for (i = 0; i < KVM_NR_BUSES; i++)
615 kfree(kvm->buses[i]);
616 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
617 kvm_free_memslots(kvm, kvm->memslots[i]);
618 kvm_arch_free_vm(kvm);
619 mmdrop(current->mm);
620 return ERR_PTR(r);
621}
622
623/*
624 * Avoid using vmalloc for a small buffer.
625 * Should not be used when the size is statically known.
626 */
627void *kvm_kvzalloc(unsigned long size)
628{
629 if (size > PAGE_SIZE)
630 return vzalloc(size);
631 else
632 return kzalloc(size, GFP_KERNEL);
633}
634
635static void kvm_destroy_devices(struct kvm *kvm)
636{
637 struct kvm_device *dev, *tmp;
638
639 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
640 list_del(&dev->vm_node);
641 dev->ops->destroy(dev);
642 }
643}
644
645static void kvm_destroy_vm(struct kvm *kvm)
646{
647 int i;
648 struct mm_struct *mm = kvm->mm;
649
650 kvm_arch_sync_events(kvm);
651 spin_lock(&kvm_lock);
652 list_del(&kvm->vm_list);
653 spin_unlock(&kvm_lock);
654 kvm_free_irq_routing(kvm);
655 for (i = 0; i < KVM_NR_BUSES; i++)
656 kvm_io_bus_destroy(kvm->buses[i]);
657 kvm_coalesced_mmio_free(kvm);
658#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
659 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
660#else
661 kvm_arch_flush_shadow_all(kvm);
662#endif
663 kvm_arch_destroy_vm(kvm);
664 kvm_destroy_devices(kvm);
665 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
666 kvm_free_memslots(kvm, kvm->memslots[i]);
667 cleanup_srcu_struct(&kvm->irq_srcu);
668 cleanup_srcu_struct(&kvm->srcu);
669 kvm_arch_free_vm(kvm);
670 preempt_notifier_dec();
671 hardware_disable_all();
672 mmdrop(mm);
673}
674
675void kvm_get_kvm(struct kvm *kvm)
676{
677 atomic_inc(&kvm->users_count);
678}
679EXPORT_SYMBOL_GPL(kvm_get_kvm);
680
681void kvm_put_kvm(struct kvm *kvm)
682{
683 if (atomic_dec_and_test(&kvm->users_count))
684 kvm_destroy_vm(kvm);
685}
686EXPORT_SYMBOL_GPL(kvm_put_kvm);
687
688
689static int kvm_vm_release(struct inode *inode, struct file *filp)
690{
691 struct kvm *kvm = filp->private_data;
692
693 kvm_irqfd_release(kvm);
694
695 kvm_put_kvm(kvm);
696 return 0;
697}
698
699/*
700 * Allocation size is twice as large as the actual dirty bitmap size.
701 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
702 */
703static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
704{
705 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
706
707 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
708 if (!memslot->dirty_bitmap)
709 return -ENOMEM;
710
711 return 0;
712}
713
714/*
715 * Insert memslot and re-sort memslots based on their GFN,
716 * so binary search could be used to lookup GFN.
717 * Sorting algorithm takes advantage of having initially
718 * sorted array and known changed memslot position.
719 */
720static void update_memslots(struct kvm_memslots *slots,
721 struct kvm_memory_slot *new)
722{
723 int id = new->id;
724 int i = slots->id_to_index[id];
725 struct kvm_memory_slot *mslots = slots->memslots;
726
727 WARN_ON(mslots[i].id != id);
728 if (!new->npages) {
729 WARN_ON(!mslots[i].npages);
730 if (mslots[i].npages)
731 slots->used_slots--;
732 } else {
733 if (!mslots[i].npages)
734 slots->used_slots++;
735 }
736
737 while (i < KVM_MEM_SLOTS_NUM - 1 &&
738 new->base_gfn <= mslots[i + 1].base_gfn) {
739 if (!mslots[i + 1].npages)
740 break;
741 mslots[i] = mslots[i + 1];
742 slots->id_to_index[mslots[i].id] = i;
743 i++;
744 }
745
746 /*
747 * The ">=" is needed when creating a slot with base_gfn == 0,
748 * so that it moves before all those with base_gfn == npages == 0.
749 *
750 * On the other hand, if new->npages is zero, the above loop has
751 * already left i pointing to the beginning of the empty part of
752 * mslots, and the ">=" would move the hole backwards in this
753 * case---which is wrong. So skip the loop when deleting a slot.
754 */
755 if (new->npages) {
756 while (i > 0 &&
757 new->base_gfn >= mslots[i - 1].base_gfn) {
758 mslots[i] = mslots[i - 1];
759 slots->id_to_index[mslots[i].id] = i;
760 i--;
761 }
762 } else
763 WARN_ON_ONCE(i != slots->used_slots);
764
765 mslots[i] = *new;
766 slots->id_to_index[mslots[i].id] = i;
767}
768
769static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
770{
771 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
772
773#ifdef __KVM_HAVE_READONLY_MEM
774 valid_flags |= KVM_MEM_READONLY;
775#endif
776
777 if (mem->flags & ~valid_flags)
778 return -EINVAL;
779
780 return 0;
781}
782
783static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
784 int as_id, struct kvm_memslots *slots)
785{
786 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
787
788 /*
789 * Set the low bit in the generation, which disables SPTE caching
790 * until the end of synchronize_srcu_expedited.
791 */
792 WARN_ON(old_memslots->generation & 1);
793 slots->generation = old_memslots->generation + 1;
794
795 rcu_assign_pointer(kvm->memslots[as_id], slots);
796 synchronize_srcu_expedited(&kvm->srcu);
797
798 /*
799 * Increment the new memslot generation a second time. This prevents
800 * vm exits that race with memslot updates from caching a memslot
801 * generation that will (potentially) be valid forever.
802 */
803 slots->generation++;
804
805 kvm_arch_memslots_updated(kvm, slots);
806
807 return old_memslots;
808}
809
810/*
811 * Allocate some memory and give it an address in the guest physical address
812 * space.
813 *
814 * Discontiguous memory is allowed, mostly for framebuffers.
815 *
816 * Must be called holding kvm->slots_lock for write.
817 */
818int __kvm_set_memory_region(struct kvm *kvm,
819 const struct kvm_userspace_memory_region *mem)
820{
821 int r;
822 gfn_t base_gfn;
823 unsigned long npages;
824 struct kvm_memory_slot *slot;
825 struct kvm_memory_slot old, new;
826 struct kvm_memslots *slots = NULL, *old_memslots;
827 int as_id, id;
828 enum kvm_mr_change change;
829
830 r = check_memory_region_flags(mem);
831 if (r)
832 goto out;
833
834 r = -EINVAL;
835 as_id = mem->slot >> 16;
836 id = (u16)mem->slot;
837
838 /* General sanity checks */
839 if (mem->memory_size & (PAGE_SIZE - 1))
840 goto out;
841 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
842 goto out;
843 /* We can read the guest memory with __xxx_user() later on. */
844 if ((id < KVM_USER_MEM_SLOTS) &&
845 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
846 !access_ok(VERIFY_WRITE,
847 (void __user *)(unsigned long)mem->userspace_addr,
848 mem->memory_size)))
849 goto out;
850 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
851 goto out;
852 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
853 goto out;
854
855 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
856 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
857 npages = mem->memory_size >> PAGE_SHIFT;
858
859 if (npages > KVM_MEM_MAX_NR_PAGES)
860 goto out;
861
862 new = old = *slot;
863
864 new.id = id;
865 new.base_gfn = base_gfn;
866 new.npages = npages;
867 new.flags = mem->flags;
868
869 if (npages) {
870 if (!old.npages)
871 change = KVM_MR_CREATE;
872 else { /* Modify an existing slot. */
873 if ((mem->userspace_addr != old.userspace_addr) ||
874 (npages != old.npages) ||
875 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
876 goto out;
877
878 if (base_gfn != old.base_gfn)
879 change = KVM_MR_MOVE;
880 else if (new.flags != old.flags)
881 change = KVM_MR_FLAGS_ONLY;
882 else { /* Nothing to change. */
883 r = 0;
884 goto out;
885 }
886 }
887 } else {
888 if (!old.npages)
889 goto out;
890
891 change = KVM_MR_DELETE;
892 new.base_gfn = 0;
893 new.flags = 0;
894 }
895
896 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
897 /* Check for overlaps */
898 r = -EEXIST;
899 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
900 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
901 (slot->id == id))
902 continue;
903 if (!((base_gfn + npages <= slot->base_gfn) ||
904 (base_gfn >= slot->base_gfn + slot->npages)))
905 goto out;
906 }
907 }
908
909 /* Free page dirty bitmap if unneeded */
910 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
911 new.dirty_bitmap = NULL;
912
913 r = -ENOMEM;
914 if (change == KVM_MR_CREATE) {
915 new.userspace_addr = mem->userspace_addr;
916
917 if (kvm_arch_create_memslot(kvm, &new, npages))
918 goto out_free;
919 }
920
921 /* Allocate page dirty bitmap if needed */
922 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
923 if (kvm_create_dirty_bitmap(&new) < 0)
924 goto out_free;
925 }
926
927 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
928 if (!slots)
929 goto out_free;
930 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
931
932 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
933 slot = id_to_memslot(slots, id);
934 slot->flags |= KVM_MEMSLOT_INVALID;
935
936 old_memslots = install_new_memslots(kvm, as_id, slots);
937
938 /* slot was deleted or moved, clear iommu mapping */
939 kvm_iommu_unmap_pages(kvm, &old);
940 /* From this point no new shadow pages pointing to a deleted,
941 * or moved, memslot will be created.
942 *
943 * validation of sp->gfn happens in:
944 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
945 * - kvm_is_visible_gfn (mmu_check_roots)
946 */
947 kvm_arch_flush_shadow_memslot(kvm, slot);
948
949 /*
950 * We can re-use the old_memslots from above, the only difference
951 * from the currently installed memslots is the invalid flag. This
952 * will get overwritten by update_memslots anyway.
953 */
954 slots = old_memslots;
955 }
956
957 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
958 if (r)
959 goto out_slots;
960
961 /* actual memory is freed via old in kvm_free_memslot below */
962 if (change == KVM_MR_DELETE) {
963 new.dirty_bitmap = NULL;
964 memset(&new.arch, 0, sizeof(new.arch));
965 }
966
967 update_memslots(slots, &new);
968 old_memslots = install_new_memslots(kvm, as_id, slots);
969
970 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
971
972 kvm_free_memslot(kvm, &old, &new);
973 kvfree(old_memslots);
974
975 /*
976 * IOMMU mapping: New slots need to be mapped. Old slots need to be
977 * un-mapped and re-mapped if their base changes. Since base change
978 * unmapping is handled above with slot deletion, mapping alone is
979 * needed here. Anything else the iommu might care about for existing
980 * slots (size changes, userspace addr changes and read-only flag
981 * changes) is disallowed above, so any other attribute changes getting
982 * here can be skipped.
983 */
984 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
985 r = kvm_iommu_map_pages(kvm, &new);
986 return r;
987 }
988
989 return 0;
990
991out_slots:
992 kvfree(slots);
993out_free:
994 kvm_free_memslot(kvm, &new, &old);
995out:
996 return r;
997}
998EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
999
1000int kvm_set_memory_region(struct kvm *kvm,
1001 const struct kvm_userspace_memory_region *mem)
1002{
1003 int r;
1004
1005 mutex_lock(&kvm->slots_lock);
1006 r = __kvm_set_memory_region(kvm, mem);
1007 mutex_unlock(&kvm->slots_lock);
1008 return r;
1009}
1010EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1011
1012static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1013 struct kvm_userspace_memory_region *mem)
1014{
1015 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1016 return -EINVAL;
1017
1018 return kvm_set_memory_region(kvm, mem);
1019}
1020
1021int kvm_get_dirty_log(struct kvm *kvm,
1022 struct kvm_dirty_log *log, int *is_dirty)
1023{
1024 struct kvm_memslots *slots;
1025 struct kvm_memory_slot *memslot;
1026 int r, i, as_id, id;
1027 unsigned long n;
1028 unsigned long any = 0;
1029
1030 r = -EINVAL;
1031 as_id = log->slot >> 16;
1032 id = (u16)log->slot;
1033 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1034 goto out;
1035
1036 slots = __kvm_memslots(kvm, as_id);
1037 memslot = id_to_memslot(slots, id);
1038 r = -ENOENT;
1039 if (!memslot->dirty_bitmap)
1040 goto out;
1041
1042 n = kvm_dirty_bitmap_bytes(memslot);
1043
1044 for (i = 0; !any && i < n/sizeof(long); ++i)
1045 any = memslot->dirty_bitmap[i];
1046
1047 r = -EFAULT;
1048 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1049 goto out;
1050
1051 if (any)
1052 *is_dirty = 1;
1053
1054 r = 0;
1055out:
1056 return r;
1057}
1058EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1059
1060#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061/**
1062 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063 * are dirty write protect them for next write.
1064 * @kvm: pointer to kvm instance
1065 * @log: slot id and address to which we copy the log
1066 * @is_dirty: flag set if any page is dirty
1067 *
1068 * We need to keep it in mind that VCPU threads can write to the bitmap
1069 * concurrently. So, to avoid losing track of dirty pages we keep the
1070 * following order:
1071 *
1072 * 1. Take a snapshot of the bit and clear it if needed.
1073 * 2. Write protect the corresponding page.
1074 * 3. Copy the snapshot to the userspace.
1075 * 4. Upon return caller flushes TLB's if needed.
1076 *
1077 * Between 2 and 4, the guest may write to the page using the remaining TLB
1078 * entry. This is not a problem because the page is reported dirty using
1079 * the snapshot taken before and step 4 ensures that writes done after
1080 * exiting to userspace will be logged for the next call.
1081 *
1082 */
1083int kvm_get_dirty_log_protect(struct kvm *kvm,
1084 struct kvm_dirty_log *log, bool *is_dirty)
1085{
1086 struct kvm_memslots *slots;
1087 struct kvm_memory_slot *memslot;
1088 int r, i, as_id, id;
1089 unsigned long n;
1090 unsigned long *dirty_bitmap;
1091 unsigned long *dirty_bitmap_buffer;
1092
1093 r = -EINVAL;
1094 as_id = log->slot >> 16;
1095 id = (u16)log->slot;
1096 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097 goto out;
1098
1099 slots = __kvm_memslots(kvm, as_id);
1100 memslot = id_to_memslot(slots, id);
1101
1102 dirty_bitmap = memslot->dirty_bitmap;
1103 r = -ENOENT;
1104 if (!dirty_bitmap)
1105 goto out;
1106
1107 n = kvm_dirty_bitmap_bytes(memslot);
1108
1109 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1110 memset(dirty_bitmap_buffer, 0, n);
1111
1112 spin_lock(&kvm->mmu_lock);
1113 *is_dirty = false;
1114 for (i = 0; i < n / sizeof(long); i++) {
1115 unsigned long mask;
1116 gfn_t offset;
1117
1118 if (!dirty_bitmap[i])
1119 continue;
1120
1121 *is_dirty = true;
1122
1123 mask = xchg(&dirty_bitmap[i], 0);
1124 dirty_bitmap_buffer[i] = mask;
1125
1126 if (mask) {
1127 offset = i * BITS_PER_LONG;
1128 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1129 offset, mask);
1130 }
1131 }
1132
1133 spin_unlock(&kvm->mmu_lock);
1134
1135 r = -EFAULT;
1136 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1137 goto out;
1138
1139 r = 0;
1140out:
1141 return r;
1142}
1143EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1144#endif
1145
1146bool kvm_largepages_enabled(void)
1147{
1148 return largepages_enabled;
1149}
1150
1151void kvm_disable_largepages(void)
1152{
1153 largepages_enabled = false;
1154}
1155EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1156
1157struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1158{
1159 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1160}
1161EXPORT_SYMBOL_GPL(gfn_to_memslot);
1162
1163struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1164{
1165 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1166}
1167
1168bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169{
1170 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1171
1172 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1173 memslot->flags & KVM_MEMSLOT_INVALID)
1174 return false;
1175
1176 return true;
1177}
1178EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1179
1180unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1181{
1182 struct vm_area_struct *vma;
1183 unsigned long addr, size;
1184
1185 size = PAGE_SIZE;
1186
1187 addr = gfn_to_hva(kvm, gfn);
1188 if (kvm_is_error_hva(addr))
1189 return PAGE_SIZE;
1190
1191 down_read(¤t->mm->mmap_sem);
1192 vma = find_vma(current->mm, addr);
1193 if (!vma)
1194 goto out;
1195
1196 size = vma_kernel_pagesize(vma);
1197
1198out:
1199 up_read(¤t->mm->mmap_sem);
1200
1201 return size;
1202}
1203
1204static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1205{
1206 return slot->flags & KVM_MEM_READONLY;
1207}
1208
1209static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210 gfn_t *nr_pages, bool write)
1211{
1212 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1213 return KVM_HVA_ERR_BAD;
1214
1215 if (memslot_is_readonly(slot) && write)
1216 return KVM_HVA_ERR_RO_BAD;
1217
1218 if (nr_pages)
1219 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1220
1221 return __gfn_to_hva_memslot(slot, gfn);
1222}
1223
1224static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1225 gfn_t *nr_pages)
1226{
1227 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1228}
1229
1230unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1231 gfn_t gfn)
1232{
1233 return gfn_to_hva_many(slot, gfn, NULL);
1234}
1235EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1236
1237unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1238{
1239 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1240}
1241EXPORT_SYMBOL_GPL(gfn_to_hva);
1242
1243unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1244{
1245 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1246}
1247EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1248
1249/*
1250 * If writable is set to false, the hva returned by this function is only
1251 * allowed to be read.
1252 */
1253unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1254 gfn_t gfn, bool *writable)
1255{
1256 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1257
1258 if (!kvm_is_error_hva(hva) && writable)
1259 *writable = !memslot_is_readonly(slot);
1260
1261 return hva;
1262}
1263
1264unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1265{
1266 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1267
1268 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1269}
1270
1271unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1272{
1273 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274
1275 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1276}
1277
1278static int get_user_page_nowait(unsigned long start, int write,
1279 struct page **page)
1280{
1281 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1282
1283 if (write)
1284 flags |= FOLL_WRITE;
1285
1286 return __get_user_pages(current, current->mm, start, 1, flags, page,
1287 NULL, NULL);
1288}
1289
1290static inline int check_user_page_hwpoison(unsigned long addr)
1291{
1292 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1293
1294 rc = __get_user_pages(current, current->mm, addr, 1,
1295 flags, NULL, NULL, NULL);
1296 return rc == -EHWPOISON;
1297}
1298
1299/*
1300 * The atomic path to get the writable pfn which will be stored in @pfn,
1301 * true indicates success, otherwise false is returned.
1302 */
1303static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1304 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1305{
1306 struct page *page[1];
1307 int npages;
1308
1309 if (!(async || atomic))
1310 return false;
1311
1312 /*
1313 * Fast pin a writable pfn only if it is a write fault request
1314 * or the caller allows to map a writable pfn for a read fault
1315 * request.
1316 */
1317 if (!(write_fault || writable))
1318 return false;
1319
1320 npages = __get_user_pages_fast(addr, 1, 1, page);
1321 if (npages == 1) {
1322 *pfn = page_to_pfn(page[0]);
1323
1324 if (writable)
1325 *writable = true;
1326 return true;
1327 }
1328
1329 return false;
1330}
1331
1332/*
1333 * The slow path to get the pfn of the specified host virtual address,
1334 * 1 indicates success, -errno is returned if error is detected.
1335 */
1336static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1337 bool *writable, kvm_pfn_t *pfn)
1338{
1339 struct page *page[1];
1340 int npages = 0;
1341
1342 might_sleep();
1343
1344 if (writable)
1345 *writable = write_fault;
1346
1347 if (async) {
1348 down_read(¤t->mm->mmap_sem);
1349 npages = get_user_page_nowait(addr, write_fault, page);
1350 up_read(¤t->mm->mmap_sem);
1351 } else
1352 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1353 write_fault, 0, page,
1354 FOLL_TOUCH|FOLL_HWPOISON);
1355 if (npages != 1)
1356 return npages;
1357
1358 /* map read fault as writable if possible */
1359 if (unlikely(!write_fault) && writable) {
1360 struct page *wpage[1];
1361
1362 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1363 if (npages == 1) {
1364 *writable = true;
1365 put_page(page[0]);
1366 page[0] = wpage[0];
1367 }
1368
1369 npages = 1;
1370 }
1371 *pfn = page_to_pfn(page[0]);
1372 return npages;
1373}
1374
1375static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1376{
1377 if (unlikely(!(vma->vm_flags & VM_READ)))
1378 return false;
1379
1380 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1381 return false;
1382
1383 return true;
1384}
1385
1386/*
1387 * Pin guest page in memory and return its pfn.
1388 * @addr: host virtual address which maps memory to the guest
1389 * @atomic: whether this function can sleep
1390 * @async: whether this function need to wait IO complete if the
1391 * host page is not in the memory
1392 * @write_fault: whether we should get a writable host page
1393 * @writable: whether it allows to map a writable host page for !@write_fault
1394 *
1395 * The function will map a writable host page for these two cases:
1396 * 1): @write_fault = true
1397 * 2): @write_fault = false && @writable, @writable will tell the caller
1398 * whether the mapping is writable.
1399 */
1400static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1401 bool write_fault, bool *writable)
1402{
1403 struct vm_area_struct *vma;
1404 kvm_pfn_t pfn = 0;
1405 int npages;
1406
1407 /* we can do it either atomically or asynchronously, not both */
1408 BUG_ON(atomic && async);
1409
1410 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1411 return pfn;
1412
1413 if (atomic)
1414 return KVM_PFN_ERR_FAULT;
1415
1416 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1417 if (npages == 1)
1418 return pfn;
1419
1420 down_read(¤t->mm->mmap_sem);
1421 if (npages == -EHWPOISON ||
1422 (!async && check_user_page_hwpoison(addr))) {
1423 pfn = KVM_PFN_ERR_HWPOISON;
1424 goto exit;
1425 }
1426
1427 vma = find_vma_intersection(current->mm, addr, addr + 1);
1428
1429 if (vma == NULL)
1430 pfn = KVM_PFN_ERR_FAULT;
1431 else if ((vma->vm_flags & VM_PFNMAP)) {
1432 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1433 vma->vm_pgoff;
1434 BUG_ON(!kvm_is_reserved_pfn(pfn));
1435 } else {
1436 if (async && vma_is_valid(vma, write_fault))
1437 *async = true;
1438 pfn = KVM_PFN_ERR_FAULT;
1439 }
1440exit:
1441 up_read(¤t->mm->mmap_sem);
1442 return pfn;
1443}
1444
1445kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1446 bool atomic, bool *async, bool write_fault,
1447 bool *writable)
1448{
1449 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1450
1451 if (addr == KVM_HVA_ERR_RO_BAD) {
1452 if (writable)
1453 *writable = false;
1454 return KVM_PFN_ERR_RO_FAULT;
1455 }
1456
1457 if (kvm_is_error_hva(addr)) {
1458 if (writable)
1459 *writable = false;
1460 return KVM_PFN_NOSLOT;
1461 }
1462
1463 /* Do not map writable pfn in the readonly memslot. */
1464 if (writable && memslot_is_readonly(slot)) {
1465 *writable = false;
1466 writable = NULL;
1467 }
1468
1469 return hva_to_pfn(addr, atomic, async, write_fault,
1470 writable);
1471}
1472EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1473
1474kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1475 bool *writable)
1476{
1477 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1478 write_fault, writable);
1479}
1480EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1481
1482kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1483{
1484 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1485}
1486EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1487
1488kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1489{
1490 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1491}
1492EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1493
1494kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1495{
1496 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1497}
1498EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1499
1500kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1501{
1502 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1503}
1504EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1505
1506kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1507{
1508 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1509}
1510EXPORT_SYMBOL_GPL(gfn_to_pfn);
1511
1512kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1513{
1514 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1515}
1516EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1517
1518int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1519 struct page **pages, int nr_pages)
1520{
1521 unsigned long addr;
1522 gfn_t entry;
1523
1524 addr = gfn_to_hva_many(slot, gfn, &entry);
1525 if (kvm_is_error_hva(addr))
1526 return -1;
1527
1528 if (entry < nr_pages)
1529 return 0;
1530
1531 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1532}
1533EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1534
1535static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1536{
1537 if (is_error_noslot_pfn(pfn))
1538 return KVM_ERR_PTR_BAD_PAGE;
1539
1540 if (kvm_is_reserved_pfn(pfn)) {
1541 WARN_ON(1);
1542 return KVM_ERR_PTR_BAD_PAGE;
1543 }
1544
1545 return pfn_to_page(pfn);
1546}
1547
1548struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1549{
1550 kvm_pfn_t pfn;
1551
1552 pfn = gfn_to_pfn(kvm, gfn);
1553
1554 return kvm_pfn_to_page(pfn);
1555}
1556EXPORT_SYMBOL_GPL(gfn_to_page);
1557
1558struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1559{
1560 kvm_pfn_t pfn;
1561
1562 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1563
1564 return kvm_pfn_to_page(pfn);
1565}
1566EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1567
1568void kvm_release_page_clean(struct page *page)
1569{
1570 WARN_ON(is_error_page(page));
1571
1572 kvm_release_pfn_clean(page_to_pfn(page));
1573}
1574EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1575
1576void kvm_release_pfn_clean(kvm_pfn_t pfn)
1577{
1578 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1579 put_page(pfn_to_page(pfn));
1580}
1581EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1582
1583void kvm_release_page_dirty(struct page *page)
1584{
1585 WARN_ON(is_error_page(page));
1586
1587 kvm_release_pfn_dirty(page_to_pfn(page));
1588}
1589EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1590
1591static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1592{
1593 kvm_set_pfn_dirty(pfn);
1594 kvm_release_pfn_clean(pfn);
1595}
1596
1597void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1598{
1599 if (!kvm_is_reserved_pfn(pfn)) {
1600 struct page *page = pfn_to_page(pfn);
1601
1602 if (!PageReserved(page))
1603 SetPageDirty(page);
1604 }
1605}
1606EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1607
1608void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1609{
1610 if (!kvm_is_reserved_pfn(pfn))
1611 mark_page_accessed(pfn_to_page(pfn));
1612}
1613EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1614
1615void kvm_get_pfn(kvm_pfn_t pfn)
1616{
1617 if (!kvm_is_reserved_pfn(pfn))
1618 get_page(pfn_to_page(pfn));
1619}
1620EXPORT_SYMBOL_GPL(kvm_get_pfn);
1621
1622static int next_segment(unsigned long len, int offset)
1623{
1624 if (len > PAGE_SIZE - offset)
1625 return PAGE_SIZE - offset;
1626 else
1627 return len;
1628}
1629
1630static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1631 void *data, int offset, int len)
1632{
1633 int r;
1634 unsigned long addr;
1635
1636 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1637 if (kvm_is_error_hva(addr))
1638 return -EFAULT;
1639 r = __copy_from_user(data, (void __user *)addr + offset, len);
1640 if (r)
1641 return -EFAULT;
1642 return 0;
1643}
1644
1645int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1646 int len)
1647{
1648 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1649
1650 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1651}
1652EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1653
1654int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1655 int offset, int len)
1656{
1657 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1658
1659 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1660}
1661EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1662
1663int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1664{
1665 gfn_t gfn = gpa >> PAGE_SHIFT;
1666 int seg;
1667 int offset = offset_in_page(gpa);
1668 int ret;
1669
1670 while ((seg = next_segment(len, offset)) != 0) {
1671 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1672 if (ret < 0)
1673 return ret;
1674 offset = 0;
1675 len -= seg;
1676 data += seg;
1677 ++gfn;
1678 }
1679 return 0;
1680}
1681EXPORT_SYMBOL_GPL(kvm_read_guest);
1682
1683int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1684{
1685 gfn_t gfn = gpa >> PAGE_SHIFT;
1686 int seg;
1687 int offset = offset_in_page(gpa);
1688 int ret;
1689
1690 while ((seg = next_segment(len, offset)) != 0) {
1691 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1692 if (ret < 0)
1693 return ret;
1694 offset = 0;
1695 len -= seg;
1696 data += seg;
1697 ++gfn;
1698 }
1699 return 0;
1700}
1701EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1702
1703static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1704 void *data, int offset, unsigned long len)
1705{
1706 int r;
1707 unsigned long addr;
1708
1709 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1710 if (kvm_is_error_hva(addr))
1711 return -EFAULT;
1712 pagefault_disable();
1713 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1714 pagefault_enable();
1715 if (r)
1716 return -EFAULT;
1717 return 0;
1718}
1719
1720int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1721 unsigned long len)
1722{
1723 gfn_t gfn = gpa >> PAGE_SHIFT;
1724 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1725 int offset = offset_in_page(gpa);
1726
1727 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1728}
1729EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1730
1731int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1732 void *data, unsigned long len)
1733{
1734 gfn_t gfn = gpa >> PAGE_SHIFT;
1735 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1736 int offset = offset_in_page(gpa);
1737
1738 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1739}
1740EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1741
1742static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1743 const void *data, int offset, int len)
1744{
1745 int r;
1746 unsigned long addr;
1747
1748 addr = gfn_to_hva_memslot(memslot, gfn);
1749 if (kvm_is_error_hva(addr))
1750 return -EFAULT;
1751 r = __copy_to_user((void __user *)addr + offset, data, len);
1752 if (r)
1753 return -EFAULT;
1754 mark_page_dirty_in_slot(memslot, gfn);
1755 return 0;
1756}
1757
1758int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1759 const void *data, int offset, int len)
1760{
1761 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1762
1763 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1764}
1765EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1766
1767int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1768 const void *data, int offset, int len)
1769{
1770 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1771
1772 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1773}
1774EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1775
1776int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1777 unsigned long len)
1778{
1779 gfn_t gfn = gpa >> PAGE_SHIFT;
1780 int seg;
1781 int offset = offset_in_page(gpa);
1782 int ret;
1783
1784 while ((seg = next_segment(len, offset)) != 0) {
1785 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1786 if (ret < 0)
1787 return ret;
1788 offset = 0;
1789 len -= seg;
1790 data += seg;
1791 ++gfn;
1792 }
1793 return 0;
1794}
1795EXPORT_SYMBOL_GPL(kvm_write_guest);
1796
1797int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1798 unsigned long len)
1799{
1800 gfn_t gfn = gpa >> PAGE_SHIFT;
1801 int seg;
1802 int offset = offset_in_page(gpa);
1803 int ret;
1804
1805 while ((seg = next_segment(len, offset)) != 0) {
1806 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1807 if (ret < 0)
1808 return ret;
1809 offset = 0;
1810 len -= seg;
1811 data += seg;
1812 ++gfn;
1813 }
1814 return 0;
1815}
1816EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1817
1818int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1819 gpa_t gpa, unsigned long len)
1820{
1821 struct kvm_memslots *slots = kvm_memslots(kvm);
1822 int offset = offset_in_page(gpa);
1823 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1824 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1825 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1826 gfn_t nr_pages_avail;
1827
1828 ghc->gpa = gpa;
1829 ghc->generation = slots->generation;
1830 ghc->len = len;
1831 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1832 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1833 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1834 ghc->hva += offset;
1835 } else {
1836 /*
1837 * If the requested region crosses two memslots, we still
1838 * verify that the entire region is valid here.
1839 */
1840 while (start_gfn <= end_gfn) {
1841 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1842 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1843 &nr_pages_avail);
1844 if (kvm_is_error_hva(ghc->hva))
1845 return -EFAULT;
1846 start_gfn += nr_pages_avail;
1847 }
1848 /* Use the slow path for cross page reads and writes. */
1849 ghc->memslot = NULL;
1850 }
1851 return 0;
1852}
1853EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1854
1855int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1856 void *data, unsigned long len)
1857{
1858 struct kvm_memslots *slots = kvm_memslots(kvm);
1859 int r;
1860
1861 BUG_ON(len > ghc->len);
1862
1863 if (slots->generation != ghc->generation)
1864 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1865
1866 if (unlikely(!ghc->memslot))
1867 return kvm_write_guest(kvm, ghc->gpa, data, len);
1868
1869 if (kvm_is_error_hva(ghc->hva))
1870 return -EFAULT;
1871
1872 r = __copy_to_user((void __user *)ghc->hva, data, len);
1873 if (r)
1874 return -EFAULT;
1875 mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1876
1877 return 0;
1878}
1879EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1880
1881int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1882 void *data, unsigned long len)
1883{
1884 struct kvm_memslots *slots = kvm_memslots(kvm);
1885 int r;
1886
1887 BUG_ON(len > ghc->len);
1888
1889 if (slots->generation != ghc->generation)
1890 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1891
1892 if (unlikely(!ghc->memslot))
1893 return kvm_read_guest(kvm, ghc->gpa, data, len);
1894
1895 if (kvm_is_error_hva(ghc->hva))
1896 return -EFAULT;
1897
1898 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1899 if (r)
1900 return -EFAULT;
1901
1902 return 0;
1903}
1904EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1905
1906int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1907{
1908 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1909
1910 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1911}
1912EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1913
1914int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1915{
1916 gfn_t gfn = gpa >> PAGE_SHIFT;
1917 int seg;
1918 int offset = offset_in_page(gpa);
1919 int ret;
1920
1921 while ((seg = next_segment(len, offset)) != 0) {
1922 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1923 if (ret < 0)
1924 return ret;
1925 offset = 0;
1926 len -= seg;
1927 ++gfn;
1928 }
1929 return 0;
1930}
1931EXPORT_SYMBOL_GPL(kvm_clear_guest);
1932
1933static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1934 gfn_t gfn)
1935{
1936 if (memslot && memslot->dirty_bitmap) {
1937 unsigned long rel_gfn = gfn - memslot->base_gfn;
1938
1939 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1940 }
1941}
1942
1943void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1944{
1945 struct kvm_memory_slot *memslot;
1946
1947 memslot = gfn_to_memslot(kvm, gfn);
1948 mark_page_dirty_in_slot(memslot, gfn);
1949}
1950EXPORT_SYMBOL_GPL(mark_page_dirty);
1951
1952void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1953{
1954 struct kvm_memory_slot *memslot;
1955
1956 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1957 mark_page_dirty_in_slot(memslot, gfn);
1958}
1959EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1960
1961static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1962{
1963 unsigned int old, val, grow;
1964
1965 old = val = vcpu->halt_poll_ns;
1966 grow = READ_ONCE(halt_poll_ns_grow);
1967 /* 10us base */
1968 if (val == 0 && grow)
1969 val = 10000;
1970 else
1971 val *= grow;
1972
1973 if (val > halt_poll_ns)
1974 val = halt_poll_ns;
1975
1976 vcpu->halt_poll_ns = val;
1977 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1978}
1979
1980static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1981{
1982 unsigned int old, val, shrink;
1983
1984 old = val = vcpu->halt_poll_ns;
1985 shrink = READ_ONCE(halt_poll_ns_shrink);
1986 if (shrink == 0)
1987 val = 0;
1988 else
1989 val /= shrink;
1990
1991 vcpu->halt_poll_ns = val;
1992 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1993}
1994
1995static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1996{
1997 if (kvm_arch_vcpu_runnable(vcpu)) {
1998 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1999 return -EINTR;
2000 }
2001 if (kvm_cpu_has_pending_timer(vcpu))
2002 return -EINTR;
2003 if (signal_pending(current))
2004 return -EINTR;
2005
2006 return 0;
2007}
2008
2009/*
2010 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2011 */
2012void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2013{
2014 ktime_t start, cur;
2015 DECLARE_SWAITQUEUE(wait);
2016 bool waited = false;
2017 u64 block_ns;
2018
2019 start = cur = ktime_get();
2020 if (vcpu->halt_poll_ns) {
2021 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2022
2023 ++vcpu->stat.halt_attempted_poll;
2024 do {
2025 /*
2026 * This sets KVM_REQ_UNHALT if an interrupt
2027 * arrives.
2028 */
2029 if (kvm_vcpu_check_block(vcpu) < 0) {
2030 ++vcpu->stat.halt_successful_poll;
2031 goto out;
2032 }
2033 cur = ktime_get();
2034 } while (single_task_running() && ktime_before(cur, stop));
2035 }
2036
2037 kvm_arch_vcpu_blocking(vcpu);
2038
2039 for (;;) {
2040 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2041
2042 if (kvm_vcpu_check_block(vcpu) < 0)
2043 break;
2044
2045 waited = true;
2046 schedule();
2047 }
2048
2049 finish_swait(&vcpu->wq, &wait);
2050 cur = ktime_get();
2051
2052 kvm_arch_vcpu_unblocking(vcpu);
2053out:
2054 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2055
2056 if (halt_poll_ns) {
2057 if (block_ns <= vcpu->halt_poll_ns)
2058 ;
2059 /* we had a long block, shrink polling */
2060 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2061 shrink_halt_poll_ns(vcpu);
2062 /* we had a short halt and our poll time is too small */
2063 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2064 block_ns < halt_poll_ns)
2065 grow_halt_poll_ns(vcpu);
2066 } else
2067 vcpu->halt_poll_ns = 0;
2068
2069 trace_kvm_vcpu_wakeup(block_ns, waited);
2070}
2071EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2072
2073#ifndef CONFIG_S390
2074/*
2075 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2076 */
2077void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2078{
2079 int me;
2080 int cpu = vcpu->cpu;
2081 struct swait_queue_head *wqp;
2082
2083 wqp = kvm_arch_vcpu_wq(vcpu);
2084 if (swait_active(wqp)) {
2085 swake_up(wqp);
2086 ++vcpu->stat.halt_wakeup;
2087 }
2088
2089 me = get_cpu();
2090 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2091 if (kvm_arch_vcpu_should_kick(vcpu))
2092 smp_send_reschedule(cpu);
2093 put_cpu();
2094}
2095EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2096#endif /* !CONFIG_S390 */
2097
2098int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2099{
2100 struct pid *pid;
2101 struct task_struct *task = NULL;
2102 int ret = 0;
2103
2104 rcu_read_lock();
2105 pid = rcu_dereference(target->pid);
2106 if (pid)
2107 task = get_pid_task(pid, PIDTYPE_PID);
2108 rcu_read_unlock();
2109 if (!task)
2110 return ret;
2111 ret = yield_to(task, 1);
2112 put_task_struct(task);
2113
2114 return ret;
2115}
2116EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2117
2118/*
2119 * Helper that checks whether a VCPU is eligible for directed yield.
2120 * Most eligible candidate to yield is decided by following heuristics:
2121 *
2122 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2123 * (preempted lock holder), indicated by @in_spin_loop.
2124 * Set at the beiginning and cleared at the end of interception/PLE handler.
2125 *
2126 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2127 * chance last time (mostly it has become eligible now since we have probably
2128 * yielded to lockholder in last iteration. This is done by toggling
2129 * @dy_eligible each time a VCPU checked for eligibility.)
2130 *
2131 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2132 * to preempted lock-holder could result in wrong VCPU selection and CPU
2133 * burning. Giving priority for a potential lock-holder increases lock
2134 * progress.
2135 *
2136 * Since algorithm is based on heuristics, accessing another VCPU data without
2137 * locking does not harm. It may result in trying to yield to same VCPU, fail
2138 * and continue with next VCPU and so on.
2139 */
2140static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2141{
2142#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2143 bool eligible;
2144
2145 eligible = !vcpu->spin_loop.in_spin_loop ||
2146 vcpu->spin_loop.dy_eligible;
2147
2148 if (vcpu->spin_loop.in_spin_loop)
2149 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2150
2151 return eligible;
2152#else
2153 return true;
2154#endif
2155}
2156
2157void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2158{
2159 struct kvm *kvm = me->kvm;
2160 struct kvm_vcpu *vcpu;
2161 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2162 int yielded = 0;
2163 int try = 3;
2164 int pass;
2165 int i;
2166
2167 kvm_vcpu_set_in_spin_loop(me, true);
2168 /*
2169 * We boost the priority of a VCPU that is runnable but not
2170 * currently running, because it got preempted by something
2171 * else and called schedule in __vcpu_run. Hopefully that
2172 * VCPU is holding the lock that we need and will release it.
2173 * We approximate round-robin by starting at the last boosted VCPU.
2174 */
2175 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2176 kvm_for_each_vcpu(i, vcpu, kvm) {
2177 if (!pass && i <= last_boosted_vcpu) {
2178 i = last_boosted_vcpu;
2179 continue;
2180 } else if (pass && i > last_boosted_vcpu)
2181 break;
2182 if (!ACCESS_ONCE(vcpu->preempted))
2183 continue;
2184 if (vcpu == me)
2185 continue;
2186 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2187 continue;
2188 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2189 continue;
2190
2191 yielded = kvm_vcpu_yield_to(vcpu);
2192 if (yielded > 0) {
2193 kvm->last_boosted_vcpu = i;
2194 break;
2195 } else if (yielded < 0) {
2196 try--;
2197 if (!try)
2198 break;
2199 }
2200 }
2201 }
2202 kvm_vcpu_set_in_spin_loop(me, false);
2203
2204 /* Ensure vcpu is not eligible during next spinloop */
2205 kvm_vcpu_set_dy_eligible(me, false);
2206}
2207EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2208
2209static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2210{
2211 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2212 struct page *page;
2213
2214 if (vmf->pgoff == 0)
2215 page = virt_to_page(vcpu->run);
2216#ifdef CONFIG_X86
2217 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2218 page = virt_to_page(vcpu->arch.pio_data);
2219#endif
2220#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2221 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2222 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2223#endif
2224 else
2225 return kvm_arch_vcpu_fault(vcpu, vmf);
2226 get_page(page);
2227 vmf->page = page;
2228 return 0;
2229}
2230
2231static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2232 .fault = kvm_vcpu_fault,
2233};
2234
2235static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2236{
2237 vma->vm_ops = &kvm_vcpu_vm_ops;
2238 return 0;
2239}
2240
2241static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2242{
2243 struct kvm_vcpu *vcpu = filp->private_data;
2244
2245 kvm_put_kvm(vcpu->kvm);
2246 return 0;
2247}
2248
2249static struct file_operations kvm_vcpu_fops = {
2250 .release = kvm_vcpu_release,
2251 .unlocked_ioctl = kvm_vcpu_ioctl,
2252#ifdef CONFIG_KVM_COMPAT
2253 .compat_ioctl = kvm_vcpu_compat_ioctl,
2254#endif
2255 .mmap = kvm_vcpu_mmap,
2256 .llseek = noop_llseek,
2257};
2258
2259/*
2260 * Allocates an inode for the vcpu.
2261 */
2262static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2263{
2264 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2265}
2266
2267/*
2268 * Creates some virtual cpus. Good luck creating more than one.
2269 */
2270static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2271{
2272 int r;
2273 struct kvm_vcpu *vcpu;
2274
2275 if (id >= KVM_MAX_VCPUS)
2276 return -EINVAL;
2277
2278 vcpu = kvm_arch_vcpu_create(kvm, id);
2279 if (IS_ERR(vcpu))
2280 return PTR_ERR(vcpu);
2281
2282 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2283
2284 r = kvm_arch_vcpu_setup(vcpu);
2285 if (r)
2286 goto vcpu_destroy;
2287
2288 mutex_lock(&kvm->lock);
2289 if (!kvm_vcpu_compatible(vcpu)) {
2290 r = -EINVAL;
2291 goto unlock_vcpu_destroy;
2292 }
2293 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2294 r = -EINVAL;
2295 goto unlock_vcpu_destroy;
2296 }
2297 if (kvm_get_vcpu_by_id(kvm, id)) {
2298 r = -EEXIST;
2299 goto unlock_vcpu_destroy;
2300 }
2301
2302 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2303
2304 /* Now it's all set up, let userspace reach it */
2305 kvm_get_kvm(kvm);
2306 r = create_vcpu_fd(vcpu);
2307 if (r < 0) {
2308 kvm_put_kvm(kvm);
2309 goto unlock_vcpu_destroy;
2310 }
2311
2312 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2313
2314 /*
2315 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2316 * before kvm->online_vcpu's incremented value.
2317 */
2318 smp_wmb();
2319 atomic_inc(&kvm->online_vcpus);
2320
2321 mutex_unlock(&kvm->lock);
2322 kvm_arch_vcpu_postcreate(vcpu);
2323 return r;
2324
2325unlock_vcpu_destroy:
2326 mutex_unlock(&kvm->lock);
2327vcpu_destroy:
2328 kvm_arch_vcpu_destroy(vcpu);
2329 return r;
2330}
2331
2332static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2333{
2334 if (sigset) {
2335 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2336 vcpu->sigset_active = 1;
2337 vcpu->sigset = *sigset;
2338 } else
2339 vcpu->sigset_active = 0;
2340 return 0;
2341}
2342
2343static long kvm_vcpu_ioctl(struct file *filp,
2344 unsigned int ioctl, unsigned long arg)
2345{
2346 struct kvm_vcpu *vcpu = filp->private_data;
2347 void __user *argp = (void __user *)arg;
2348 int r;
2349 struct kvm_fpu *fpu = NULL;
2350 struct kvm_sregs *kvm_sregs = NULL;
2351
2352 if (vcpu->kvm->mm != current->mm)
2353 return -EIO;
2354
2355 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2356 return -EINVAL;
2357
2358#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2359 /*
2360 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2361 * so vcpu_load() would break it.
2362 */
2363 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2364 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2365#endif
2366
2367
2368 r = vcpu_load(vcpu);
2369 if (r)
2370 return r;
2371 switch (ioctl) {
2372 case KVM_RUN:
2373 r = -EINVAL;
2374 if (arg)
2375 goto out;
2376 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2377 /* The thread running this VCPU changed. */
2378 struct pid *oldpid = vcpu->pid;
2379 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2380
2381 rcu_assign_pointer(vcpu->pid, newpid);
2382 if (oldpid)
2383 synchronize_rcu();
2384 put_pid(oldpid);
2385 }
2386 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2387 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2388 break;
2389 case KVM_GET_REGS: {
2390 struct kvm_regs *kvm_regs;
2391
2392 r = -ENOMEM;
2393 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2394 if (!kvm_regs)
2395 goto out;
2396 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2397 if (r)
2398 goto out_free1;
2399 r = -EFAULT;
2400 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2401 goto out_free1;
2402 r = 0;
2403out_free1:
2404 kfree(kvm_regs);
2405 break;
2406 }
2407 case KVM_SET_REGS: {
2408 struct kvm_regs *kvm_regs;
2409
2410 r = -ENOMEM;
2411 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2412 if (IS_ERR(kvm_regs)) {
2413 r = PTR_ERR(kvm_regs);
2414 goto out;
2415 }
2416 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2417 kfree(kvm_regs);
2418 break;
2419 }
2420 case KVM_GET_SREGS: {
2421 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2422 r = -ENOMEM;
2423 if (!kvm_sregs)
2424 goto out;
2425 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2426 if (r)
2427 goto out;
2428 r = -EFAULT;
2429 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2430 goto out;
2431 r = 0;
2432 break;
2433 }
2434 case KVM_SET_SREGS: {
2435 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2436 if (IS_ERR(kvm_sregs)) {
2437 r = PTR_ERR(kvm_sregs);
2438 kvm_sregs = NULL;
2439 goto out;
2440 }
2441 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2442 break;
2443 }
2444 case KVM_GET_MP_STATE: {
2445 struct kvm_mp_state mp_state;
2446
2447 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2448 if (r)
2449 goto out;
2450 r = -EFAULT;
2451 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2452 goto out;
2453 r = 0;
2454 break;
2455 }
2456 case KVM_SET_MP_STATE: {
2457 struct kvm_mp_state mp_state;
2458
2459 r = -EFAULT;
2460 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2461 goto out;
2462 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2463 break;
2464 }
2465 case KVM_TRANSLATE: {
2466 struct kvm_translation tr;
2467
2468 r = -EFAULT;
2469 if (copy_from_user(&tr, argp, sizeof(tr)))
2470 goto out;
2471 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2472 if (r)
2473 goto out;
2474 r = -EFAULT;
2475 if (copy_to_user(argp, &tr, sizeof(tr)))
2476 goto out;
2477 r = 0;
2478 break;
2479 }
2480 case KVM_SET_GUEST_DEBUG: {
2481 struct kvm_guest_debug dbg;
2482
2483 r = -EFAULT;
2484 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2485 goto out;
2486 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2487 break;
2488 }
2489 case KVM_SET_SIGNAL_MASK: {
2490 struct kvm_signal_mask __user *sigmask_arg = argp;
2491 struct kvm_signal_mask kvm_sigmask;
2492 sigset_t sigset, *p;
2493
2494 p = NULL;
2495 if (argp) {
2496 r = -EFAULT;
2497 if (copy_from_user(&kvm_sigmask, argp,
2498 sizeof(kvm_sigmask)))
2499 goto out;
2500 r = -EINVAL;
2501 if (kvm_sigmask.len != sizeof(sigset))
2502 goto out;
2503 r = -EFAULT;
2504 if (copy_from_user(&sigset, sigmask_arg->sigset,
2505 sizeof(sigset)))
2506 goto out;
2507 p = &sigset;
2508 }
2509 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2510 break;
2511 }
2512 case KVM_GET_FPU: {
2513 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2514 r = -ENOMEM;
2515 if (!fpu)
2516 goto out;
2517 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2518 if (r)
2519 goto out;
2520 r = -EFAULT;
2521 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2522 goto out;
2523 r = 0;
2524 break;
2525 }
2526 case KVM_SET_FPU: {
2527 fpu = memdup_user(argp, sizeof(*fpu));
2528 if (IS_ERR(fpu)) {
2529 r = PTR_ERR(fpu);
2530 fpu = NULL;
2531 goto out;
2532 }
2533 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2534 break;
2535 }
2536 default:
2537 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2538 }
2539out:
2540 vcpu_put(vcpu);
2541 kfree(fpu);
2542 kfree(kvm_sregs);
2543 return r;
2544}
2545
2546#ifdef CONFIG_KVM_COMPAT
2547static long kvm_vcpu_compat_ioctl(struct file *filp,
2548 unsigned int ioctl, unsigned long arg)
2549{
2550 struct kvm_vcpu *vcpu = filp->private_data;
2551 void __user *argp = compat_ptr(arg);
2552 int r;
2553
2554 if (vcpu->kvm->mm != current->mm)
2555 return -EIO;
2556
2557 switch (ioctl) {
2558 case KVM_SET_SIGNAL_MASK: {
2559 struct kvm_signal_mask __user *sigmask_arg = argp;
2560 struct kvm_signal_mask kvm_sigmask;
2561 compat_sigset_t csigset;
2562 sigset_t sigset;
2563
2564 if (argp) {
2565 r = -EFAULT;
2566 if (copy_from_user(&kvm_sigmask, argp,
2567 sizeof(kvm_sigmask)))
2568 goto out;
2569 r = -EINVAL;
2570 if (kvm_sigmask.len != sizeof(csigset))
2571 goto out;
2572 r = -EFAULT;
2573 if (copy_from_user(&csigset, sigmask_arg->sigset,
2574 sizeof(csigset)))
2575 goto out;
2576 sigset_from_compat(&sigset, &csigset);
2577 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2578 } else
2579 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2580 break;
2581 }
2582 default:
2583 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2584 }
2585
2586out:
2587 return r;
2588}
2589#endif
2590
2591static int kvm_device_ioctl_attr(struct kvm_device *dev,
2592 int (*accessor)(struct kvm_device *dev,
2593 struct kvm_device_attr *attr),
2594 unsigned long arg)
2595{
2596 struct kvm_device_attr attr;
2597
2598 if (!accessor)
2599 return -EPERM;
2600
2601 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2602 return -EFAULT;
2603
2604 return accessor(dev, &attr);
2605}
2606
2607static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2608 unsigned long arg)
2609{
2610 struct kvm_device *dev = filp->private_data;
2611
2612 switch (ioctl) {
2613 case KVM_SET_DEVICE_ATTR:
2614 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2615 case KVM_GET_DEVICE_ATTR:
2616 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2617 case KVM_HAS_DEVICE_ATTR:
2618 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2619 default:
2620 if (dev->ops->ioctl)
2621 return dev->ops->ioctl(dev, ioctl, arg);
2622
2623 return -ENOTTY;
2624 }
2625}
2626
2627static int kvm_device_release(struct inode *inode, struct file *filp)
2628{
2629 struct kvm_device *dev = filp->private_data;
2630 struct kvm *kvm = dev->kvm;
2631
2632 kvm_put_kvm(kvm);
2633 return 0;
2634}
2635
2636static const struct file_operations kvm_device_fops = {
2637 .unlocked_ioctl = kvm_device_ioctl,
2638#ifdef CONFIG_KVM_COMPAT
2639 .compat_ioctl = kvm_device_ioctl,
2640#endif
2641 .release = kvm_device_release,
2642};
2643
2644struct kvm_device *kvm_device_from_filp(struct file *filp)
2645{
2646 if (filp->f_op != &kvm_device_fops)
2647 return NULL;
2648
2649 return filp->private_data;
2650}
2651
2652static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2653#ifdef CONFIG_KVM_MPIC
2654 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2655 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2656#endif
2657
2658#ifdef CONFIG_KVM_XICS
2659 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2660#endif
2661};
2662
2663int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2664{
2665 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2666 return -ENOSPC;
2667
2668 if (kvm_device_ops_table[type] != NULL)
2669 return -EEXIST;
2670
2671 kvm_device_ops_table[type] = ops;
2672 return 0;
2673}
2674
2675void kvm_unregister_device_ops(u32 type)
2676{
2677 if (kvm_device_ops_table[type] != NULL)
2678 kvm_device_ops_table[type] = NULL;
2679}
2680
2681static int kvm_ioctl_create_device(struct kvm *kvm,
2682 struct kvm_create_device *cd)
2683{
2684 struct kvm_device_ops *ops = NULL;
2685 struct kvm_device *dev;
2686 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2687 int ret;
2688
2689 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2690 return -ENODEV;
2691
2692 ops = kvm_device_ops_table[cd->type];
2693 if (ops == NULL)
2694 return -ENODEV;
2695
2696 if (test)
2697 return 0;
2698
2699 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2700 if (!dev)
2701 return -ENOMEM;
2702
2703 dev->ops = ops;
2704 dev->kvm = kvm;
2705
2706 ret = ops->create(dev, cd->type);
2707 if (ret < 0) {
2708 kfree(dev);
2709 return ret;
2710 }
2711
2712 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2713 if (ret < 0) {
2714 ops->destroy(dev);
2715 return ret;
2716 }
2717
2718 list_add(&dev->vm_node, &kvm->devices);
2719 kvm_get_kvm(kvm);
2720 cd->fd = ret;
2721 return 0;
2722}
2723
2724static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2725{
2726 switch (arg) {
2727 case KVM_CAP_USER_MEMORY:
2728 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2729 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2730 case KVM_CAP_INTERNAL_ERROR_DATA:
2731#ifdef CONFIG_HAVE_KVM_MSI
2732 case KVM_CAP_SIGNAL_MSI:
2733#endif
2734#ifdef CONFIG_HAVE_KVM_IRQFD
2735 case KVM_CAP_IRQFD:
2736 case KVM_CAP_IRQFD_RESAMPLE:
2737#endif
2738 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2739 case KVM_CAP_CHECK_EXTENSION_VM:
2740 return 1;
2741#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2742 case KVM_CAP_IRQ_ROUTING:
2743 return KVM_MAX_IRQ_ROUTES;
2744#endif
2745#if KVM_ADDRESS_SPACE_NUM > 1
2746 case KVM_CAP_MULTI_ADDRESS_SPACE:
2747 return KVM_ADDRESS_SPACE_NUM;
2748#endif
2749 default:
2750 break;
2751 }
2752 return kvm_vm_ioctl_check_extension(kvm, arg);
2753}
2754
2755static long kvm_vm_ioctl(struct file *filp,
2756 unsigned int ioctl, unsigned long arg)
2757{
2758 struct kvm *kvm = filp->private_data;
2759 void __user *argp = (void __user *)arg;
2760 int r;
2761
2762 if (kvm->mm != current->mm)
2763 return -EIO;
2764 switch (ioctl) {
2765 case KVM_CREATE_VCPU:
2766 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2767 break;
2768 case KVM_SET_USER_MEMORY_REGION: {
2769 struct kvm_userspace_memory_region kvm_userspace_mem;
2770
2771 r = -EFAULT;
2772 if (copy_from_user(&kvm_userspace_mem, argp,
2773 sizeof(kvm_userspace_mem)))
2774 goto out;
2775
2776 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2777 break;
2778 }
2779 case KVM_GET_DIRTY_LOG: {
2780 struct kvm_dirty_log log;
2781
2782 r = -EFAULT;
2783 if (copy_from_user(&log, argp, sizeof(log)))
2784 goto out;
2785 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2786 break;
2787 }
2788#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2789 case KVM_REGISTER_COALESCED_MMIO: {
2790 struct kvm_coalesced_mmio_zone zone;
2791
2792 r = -EFAULT;
2793 if (copy_from_user(&zone, argp, sizeof(zone)))
2794 goto out;
2795 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2796 break;
2797 }
2798 case KVM_UNREGISTER_COALESCED_MMIO: {
2799 struct kvm_coalesced_mmio_zone zone;
2800
2801 r = -EFAULT;
2802 if (copy_from_user(&zone, argp, sizeof(zone)))
2803 goto out;
2804 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2805 break;
2806 }
2807#endif
2808 case KVM_IRQFD: {
2809 struct kvm_irqfd data;
2810
2811 r = -EFAULT;
2812 if (copy_from_user(&data, argp, sizeof(data)))
2813 goto out;
2814 r = kvm_irqfd(kvm, &data);
2815 break;
2816 }
2817 case KVM_IOEVENTFD: {
2818 struct kvm_ioeventfd data;
2819
2820 r = -EFAULT;
2821 if (copy_from_user(&data, argp, sizeof(data)))
2822 goto out;
2823 r = kvm_ioeventfd(kvm, &data);
2824 break;
2825 }
2826#ifdef CONFIG_HAVE_KVM_MSI
2827 case KVM_SIGNAL_MSI: {
2828 struct kvm_msi msi;
2829
2830 r = -EFAULT;
2831 if (copy_from_user(&msi, argp, sizeof(msi)))
2832 goto out;
2833 r = kvm_send_userspace_msi(kvm, &msi);
2834 break;
2835 }
2836#endif
2837#ifdef __KVM_HAVE_IRQ_LINE
2838 case KVM_IRQ_LINE_STATUS:
2839 case KVM_IRQ_LINE: {
2840 struct kvm_irq_level irq_event;
2841
2842 r = -EFAULT;
2843 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2844 goto out;
2845
2846 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2847 ioctl == KVM_IRQ_LINE_STATUS);
2848 if (r)
2849 goto out;
2850
2851 r = -EFAULT;
2852 if (ioctl == KVM_IRQ_LINE_STATUS) {
2853 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2854 goto out;
2855 }
2856
2857 r = 0;
2858 break;
2859 }
2860#endif
2861#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2862 case KVM_SET_GSI_ROUTING: {
2863 struct kvm_irq_routing routing;
2864 struct kvm_irq_routing __user *urouting;
2865 struct kvm_irq_routing_entry *entries;
2866
2867 r = -EFAULT;
2868 if (copy_from_user(&routing, argp, sizeof(routing)))
2869 goto out;
2870 r = -EINVAL;
2871 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2872 goto out;
2873 if (routing.flags)
2874 goto out;
2875 r = -ENOMEM;
2876 entries = vmalloc(routing.nr * sizeof(*entries));
2877 if (!entries)
2878 goto out;
2879 r = -EFAULT;
2880 urouting = argp;
2881 if (copy_from_user(entries, urouting->entries,
2882 routing.nr * sizeof(*entries)))
2883 goto out_free_irq_routing;
2884 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2885 routing.flags);
2886out_free_irq_routing:
2887 vfree(entries);
2888 break;
2889 }
2890#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2891 case KVM_CREATE_DEVICE: {
2892 struct kvm_create_device cd;
2893
2894 r = -EFAULT;
2895 if (copy_from_user(&cd, argp, sizeof(cd)))
2896 goto out;
2897
2898 r = kvm_ioctl_create_device(kvm, &cd);
2899 if (r)
2900 goto out;
2901
2902 r = -EFAULT;
2903 if (copy_to_user(argp, &cd, sizeof(cd)))
2904 goto out;
2905
2906 r = 0;
2907 break;
2908 }
2909 case KVM_CHECK_EXTENSION:
2910 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2911 break;
2912 default:
2913 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2914 }
2915out:
2916 return r;
2917}
2918
2919#ifdef CONFIG_KVM_COMPAT
2920struct compat_kvm_dirty_log {
2921 __u32 slot;
2922 __u32 padding1;
2923 union {
2924 compat_uptr_t dirty_bitmap; /* one bit per page */
2925 __u64 padding2;
2926 };
2927};
2928
2929static long kvm_vm_compat_ioctl(struct file *filp,
2930 unsigned int ioctl, unsigned long arg)
2931{
2932 struct kvm *kvm = filp->private_data;
2933 int r;
2934
2935 if (kvm->mm != current->mm)
2936 return -EIO;
2937 switch (ioctl) {
2938 case KVM_GET_DIRTY_LOG: {
2939 struct compat_kvm_dirty_log compat_log;
2940 struct kvm_dirty_log log;
2941
2942 r = -EFAULT;
2943 if (copy_from_user(&compat_log, (void __user *)arg,
2944 sizeof(compat_log)))
2945 goto out;
2946 log.slot = compat_log.slot;
2947 log.padding1 = compat_log.padding1;
2948 log.padding2 = compat_log.padding2;
2949 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2950
2951 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2952 break;
2953 }
2954 default:
2955 r = kvm_vm_ioctl(filp, ioctl, arg);
2956 }
2957
2958out:
2959 return r;
2960}
2961#endif
2962
2963static struct file_operations kvm_vm_fops = {
2964 .release = kvm_vm_release,
2965 .unlocked_ioctl = kvm_vm_ioctl,
2966#ifdef CONFIG_KVM_COMPAT
2967 .compat_ioctl = kvm_vm_compat_ioctl,
2968#endif
2969 .llseek = noop_llseek,
2970};
2971
2972static int kvm_dev_ioctl_create_vm(unsigned long type)
2973{
2974 int r;
2975 struct kvm *kvm;
2976
2977 kvm = kvm_create_vm(type);
2978 if (IS_ERR(kvm))
2979 return PTR_ERR(kvm);
2980#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2981 r = kvm_coalesced_mmio_init(kvm);
2982 if (r < 0) {
2983 kvm_put_kvm(kvm);
2984 return r;
2985 }
2986#endif
2987 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2988 if (r < 0)
2989 kvm_put_kvm(kvm);
2990
2991 return r;
2992}
2993
2994static long kvm_dev_ioctl(struct file *filp,
2995 unsigned int ioctl, unsigned long arg)
2996{
2997 long r = -EINVAL;
2998
2999 switch (ioctl) {
3000 case KVM_GET_API_VERSION:
3001 if (arg)
3002 goto out;
3003 r = KVM_API_VERSION;
3004 break;
3005 case KVM_CREATE_VM:
3006 r = kvm_dev_ioctl_create_vm(arg);
3007 break;
3008 case KVM_CHECK_EXTENSION:
3009 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3010 break;
3011 case KVM_GET_VCPU_MMAP_SIZE:
3012 if (arg)
3013 goto out;
3014 r = PAGE_SIZE; /* struct kvm_run */
3015#ifdef CONFIG_X86
3016 r += PAGE_SIZE; /* pio data page */
3017#endif
3018#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3019 r += PAGE_SIZE; /* coalesced mmio ring page */
3020#endif
3021 break;
3022 case KVM_TRACE_ENABLE:
3023 case KVM_TRACE_PAUSE:
3024 case KVM_TRACE_DISABLE:
3025 r = -EOPNOTSUPP;
3026 break;
3027 default:
3028 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3029 }
3030out:
3031 return r;
3032}
3033
3034static struct file_operations kvm_chardev_ops = {
3035 .unlocked_ioctl = kvm_dev_ioctl,
3036 .compat_ioctl = kvm_dev_ioctl,
3037 .llseek = noop_llseek,
3038};
3039
3040static struct miscdevice kvm_dev = {
3041 KVM_MINOR,
3042 "kvm",
3043 &kvm_chardev_ops,
3044};
3045
3046static void hardware_enable_nolock(void *junk)
3047{
3048 int cpu = raw_smp_processor_id();
3049 int r;
3050
3051 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3052 return;
3053
3054 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3055
3056 r = kvm_arch_hardware_enable();
3057
3058 if (r) {
3059 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3060 atomic_inc(&hardware_enable_failed);
3061 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3062 }
3063}
3064
3065static void hardware_enable(void)
3066{
3067 raw_spin_lock(&kvm_count_lock);
3068 if (kvm_usage_count)
3069 hardware_enable_nolock(NULL);
3070 raw_spin_unlock(&kvm_count_lock);
3071}
3072
3073static void hardware_disable_nolock(void *junk)
3074{
3075 int cpu = raw_smp_processor_id();
3076
3077 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3078 return;
3079 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3080 kvm_arch_hardware_disable();
3081}
3082
3083static void hardware_disable(void)
3084{
3085 raw_spin_lock(&kvm_count_lock);
3086 if (kvm_usage_count)
3087 hardware_disable_nolock(NULL);
3088 raw_spin_unlock(&kvm_count_lock);
3089}
3090
3091static void hardware_disable_all_nolock(void)
3092{
3093 BUG_ON(!kvm_usage_count);
3094
3095 kvm_usage_count--;
3096 if (!kvm_usage_count)
3097 on_each_cpu(hardware_disable_nolock, NULL, 1);
3098}
3099
3100static void hardware_disable_all(void)
3101{
3102 raw_spin_lock(&kvm_count_lock);
3103 hardware_disable_all_nolock();
3104 raw_spin_unlock(&kvm_count_lock);
3105}
3106
3107static int hardware_enable_all(void)
3108{
3109 int r = 0;
3110
3111 raw_spin_lock(&kvm_count_lock);
3112
3113 kvm_usage_count++;
3114 if (kvm_usage_count == 1) {
3115 atomic_set(&hardware_enable_failed, 0);
3116 on_each_cpu(hardware_enable_nolock, NULL, 1);
3117
3118 if (atomic_read(&hardware_enable_failed)) {
3119 hardware_disable_all_nolock();
3120 r = -EBUSY;
3121 }
3122 }
3123
3124 raw_spin_unlock(&kvm_count_lock);
3125
3126 return r;
3127}
3128
3129static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3130 void *v)
3131{
3132 val &= ~CPU_TASKS_FROZEN;
3133 switch (val) {
3134 case CPU_DYING:
3135 hardware_disable();
3136 break;
3137 case CPU_STARTING:
3138 hardware_enable();
3139 break;
3140 }
3141 return NOTIFY_OK;
3142}
3143
3144static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3145 void *v)
3146{
3147 /*
3148 * Some (well, at least mine) BIOSes hang on reboot if
3149 * in vmx root mode.
3150 *
3151 * And Intel TXT required VMX off for all cpu when system shutdown.
3152 */
3153 pr_info("kvm: exiting hardware virtualization\n");
3154 kvm_rebooting = true;
3155 on_each_cpu(hardware_disable_nolock, NULL, 1);
3156 return NOTIFY_OK;
3157}
3158
3159static struct notifier_block kvm_reboot_notifier = {
3160 .notifier_call = kvm_reboot,
3161 .priority = 0,
3162};
3163
3164static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3165{
3166 int i;
3167
3168 for (i = 0; i < bus->dev_count; i++) {
3169 struct kvm_io_device *pos = bus->range[i].dev;
3170
3171 kvm_iodevice_destructor(pos);
3172 }
3173 kfree(bus);
3174}
3175
3176static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3177 const struct kvm_io_range *r2)
3178{
3179 gpa_t addr1 = r1->addr;
3180 gpa_t addr2 = r2->addr;
3181
3182 if (addr1 < addr2)
3183 return -1;
3184
3185 /* If r2->len == 0, match the exact address. If r2->len != 0,
3186 * accept any overlapping write. Any order is acceptable for
3187 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3188 * we process all of them.
3189 */
3190 if (r2->len) {
3191 addr1 += r1->len;
3192 addr2 += r2->len;
3193 }
3194
3195 if (addr1 > addr2)
3196 return 1;
3197
3198 return 0;
3199}
3200
3201static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3202{
3203 return kvm_io_bus_cmp(p1, p2);
3204}
3205
3206static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3207 gpa_t addr, int len)
3208{
3209 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3210 .addr = addr,
3211 .len = len,
3212 .dev = dev,
3213 };
3214
3215 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3216 kvm_io_bus_sort_cmp, NULL);
3217
3218 return 0;
3219}
3220
3221static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3222 gpa_t addr, int len)
3223{
3224 struct kvm_io_range *range, key;
3225 int off;
3226
3227 key = (struct kvm_io_range) {
3228 .addr = addr,
3229 .len = len,
3230 };
3231
3232 range = bsearch(&key, bus->range, bus->dev_count,
3233 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3234 if (range == NULL)
3235 return -ENOENT;
3236
3237 off = range - bus->range;
3238
3239 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3240 off--;
3241
3242 return off;
3243}
3244
3245static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3246 struct kvm_io_range *range, const void *val)
3247{
3248 int idx;
3249
3250 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3251 if (idx < 0)
3252 return -EOPNOTSUPP;
3253
3254 while (idx < bus->dev_count &&
3255 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3256 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3257 range->len, val))
3258 return idx;
3259 idx++;
3260 }
3261
3262 return -EOPNOTSUPP;
3263}
3264
3265/* kvm_io_bus_write - called under kvm->slots_lock */
3266int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3267 int len, const void *val)
3268{
3269 struct kvm_io_bus *bus;
3270 struct kvm_io_range range;
3271 int r;
3272
3273 range = (struct kvm_io_range) {
3274 .addr = addr,
3275 .len = len,
3276 };
3277
3278 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3279 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3280 return r < 0 ? r : 0;
3281}
3282
3283/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3284int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3285 gpa_t addr, int len, const void *val, long cookie)
3286{
3287 struct kvm_io_bus *bus;
3288 struct kvm_io_range range;
3289
3290 range = (struct kvm_io_range) {
3291 .addr = addr,
3292 .len = len,
3293 };
3294
3295 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3296
3297 /* First try the device referenced by cookie. */
3298 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3299 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3300 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3301 val))
3302 return cookie;
3303
3304 /*
3305 * cookie contained garbage; fall back to search and return the
3306 * correct cookie value.
3307 */
3308 return __kvm_io_bus_write(vcpu, bus, &range, val);
3309}
3310
3311static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3312 struct kvm_io_range *range, void *val)
3313{
3314 int idx;
3315
3316 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3317 if (idx < 0)
3318 return -EOPNOTSUPP;
3319
3320 while (idx < bus->dev_count &&
3321 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3322 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3323 range->len, val))
3324 return idx;
3325 idx++;
3326 }
3327
3328 return -EOPNOTSUPP;
3329}
3330EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3331
3332/* kvm_io_bus_read - called under kvm->slots_lock */
3333int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3334 int len, void *val)
3335{
3336 struct kvm_io_bus *bus;
3337 struct kvm_io_range range;
3338 int r;
3339
3340 range = (struct kvm_io_range) {
3341 .addr = addr,
3342 .len = len,
3343 };
3344
3345 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3346 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3347 return r < 0 ? r : 0;
3348}
3349
3350
3351/* Caller must hold slots_lock. */
3352int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3353 int len, struct kvm_io_device *dev)
3354{
3355 struct kvm_io_bus *new_bus, *bus;
3356
3357 bus = kvm->buses[bus_idx];
3358 /* exclude ioeventfd which is limited by maximum fd */
3359 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3360 return -ENOSPC;
3361
3362 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3363 sizeof(struct kvm_io_range)), GFP_KERNEL);
3364 if (!new_bus)
3365 return -ENOMEM;
3366 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3367 sizeof(struct kvm_io_range)));
3368 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3369 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3370 synchronize_srcu_expedited(&kvm->srcu);
3371 kfree(bus);
3372
3373 return 0;
3374}
3375
3376/* Caller must hold slots_lock. */
3377int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3378 struct kvm_io_device *dev)
3379{
3380 int i, r;
3381 struct kvm_io_bus *new_bus, *bus;
3382
3383 bus = kvm->buses[bus_idx];
3384 r = -ENOENT;
3385 for (i = 0; i < bus->dev_count; i++)
3386 if (bus->range[i].dev == dev) {
3387 r = 0;
3388 break;
3389 }
3390
3391 if (r)
3392 return r;
3393
3394 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3395 sizeof(struct kvm_io_range)), GFP_KERNEL);
3396 if (!new_bus)
3397 return -ENOMEM;
3398
3399 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3400 new_bus->dev_count--;
3401 memcpy(new_bus->range + i, bus->range + i + 1,
3402 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3403
3404 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3405 synchronize_srcu_expedited(&kvm->srcu);
3406 kfree(bus);
3407 return r;
3408}
3409
3410static struct notifier_block kvm_cpu_notifier = {
3411 .notifier_call = kvm_cpu_hotplug,
3412};
3413
3414static int vm_stat_get(void *_offset, u64 *val)
3415{
3416 unsigned offset = (long)_offset;
3417 struct kvm *kvm;
3418
3419 *val = 0;
3420 spin_lock(&kvm_lock);
3421 list_for_each_entry(kvm, &vm_list, vm_list)
3422 *val += *(u32 *)((void *)kvm + offset);
3423 spin_unlock(&kvm_lock);
3424 return 0;
3425}
3426
3427DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3428
3429static int vcpu_stat_get(void *_offset, u64 *val)
3430{
3431 unsigned offset = (long)_offset;
3432 struct kvm *kvm;
3433 struct kvm_vcpu *vcpu;
3434 int i;
3435
3436 *val = 0;
3437 spin_lock(&kvm_lock);
3438 list_for_each_entry(kvm, &vm_list, vm_list)
3439 kvm_for_each_vcpu(i, vcpu, kvm)
3440 *val += *(u32 *)((void *)vcpu + offset);
3441
3442 spin_unlock(&kvm_lock);
3443 return 0;
3444}
3445
3446DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3447
3448static const struct file_operations *stat_fops[] = {
3449 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3450 [KVM_STAT_VM] = &vm_stat_fops,
3451};
3452
3453static int kvm_init_debug(void)
3454{
3455 int r = -EEXIST;
3456 struct kvm_stats_debugfs_item *p;
3457
3458 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3459 if (kvm_debugfs_dir == NULL)
3460 goto out;
3461
3462 for (p = debugfs_entries; p->name; ++p) {
3463 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3464 (void *)(long)p->offset,
3465 stat_fops[p->kind]))
3466 goto out_dir;
3467 }
3468
3469 return 0;
3470
3471out_dir:
3472 debugfs_remove_recursive(kvm_debugfs_dir);
3473out:
3474 return r;
3475}
3476
3477static int kvm_suspend(void)
3478{
3479 if (kvm_usage_count)
3480 hardware_disable_nolock(NULL);
3481 return 0;
3482}
3483
3484static void kvm_resume(void)
3485{
3486 if (kvm_usage_count) {
3487 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3488 hardware_enable_nolock(NULL);
3489 }
3490}
3491
3492static struct syscore_ops kvm_syscore_ops = {
3493 .suspend = kvm_suspend,
3494 .resume = kvm_resume,
3495};
3496
3497static inline
3498struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3499{
3500 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3501}
3502
3503static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3504{
3505 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3506
3507 if (vcpu->preempted)
3508 vcpu->preempted = false;
3509
3510 kvm_arch_sched_in(vcpu, cpu);
3511
3512 kvm_arch_vcpu_load(vcpu, cpu);
3513}
3514
3515static void kvm_sched_out(struct preempt_notifier *pn,
3516 struct task_struct *next)
3517{
3518 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3519
3520 if (current->state == TASK_RUNNING)
3521 vcpu->preempted = true;
3522 kvm_arch_vcpu_put(vcpu);
3523}
3524
3525int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3526 struct module *module)
3527{
3528 int r;
3529 int cpu;
3530
3531 r = kvm_arch_init(opaque);
3532 if (r)
3533 goto out_fail;
3534
3535 /*
3536 * kvm_arch_init makes sure there's at most one caller
3537 * for architectures that support multiple implementations,
3538 * like intel and amd on x86.
3539 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3540 * conflicts in case kvm is already setup for another implementation.
3541 */
3542 r = kvm_irqfd_init();
3543 if (r)
3544 goto out_irqfd;
3545
3546 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3547 r = -ENOMEM;
3548 goto out_free_0;
3549 }
3550
3551 r = kvm_arch_hardware_setup();
3552 if (r < 0)
3553 goto out_free_0a;
3554
3555 for_each_online_cpu(cpu) {
3556 smp_call_function_single(cpu,
3557 kvm_arch_check_processor_compat,
3558 &r, 1);
3559 if (r < 0)
3560 goto out_free_1;
3561 }
3562
3563 r = register_cpu_notifier(&kvm_cpu_notifier);
3564 if (r)
3565 goto out_free_2;
3566 register_reboot_notifier(&kvm_reboot_notifier);
3567
3568 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3569 if (!vcpu_align)
3570 vcpu_align = __alignof__(struct kvm_vcpu);
3571 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3572 0, NULL);
3573 if (!kvm_vcpu_cache) {
3574 r = -ENOMEM;
3575 goto out_free_3;
3576 }
3577
3578 r = kvm_async_pf_init();
3579 if (r)
3580 goto out_free;
3581
3582 kvm_chardev_ops.owner = module;
3583 kvm_vm_fops.owner = module;
3584 kvm_vcpu_fops.owner = module;
3585
3586 r = misc_register(&kvm_dev);
3587 if (r) {
3588 pr_err("kvm: misc device register failed\n");
3589 goto out_unreg;
3590 }
3591
3592 register_syscore_ops(&kvm_syscore_ops);
3593
3594 kvm_preempt_ops.sched_in = kvm_sched_in;
3595 kvm_preempt_ops.sched_out = kvm_sched_out;
3596
3597 r = kvm_init_debug();
3598 if (r) {
3599 pr_err("kvm: create debugfs files failed\n");
3600 goto out_undebugfs;
3601 }
3602
3603 r = kvm_vfio_ops_init();
3604 WARN_ON(r);
3605
3606 return 0;
3607
3608out_undebugfs:
3609 unregister_syscore_ops(&kvm_syscore_ops);
3610 misc_deregister(&kvm_dev);
3611out_unreg:
3612 kvm_async_pf_deinit();
3613out_free:
3614 kmem_cache_destroy(kvm_vcpu_cache);
3615out_free_3:
3616 unregister_reboot_notifier(&kvm_reboot_notifier);
3617 unregister_cpu_notifier(&kvm_cpu_notifier);
3618out_free_2:
3619out_free_1:
3620 kvm_arch_hardware_unsetup();
3621out_free_0a:
3622 free_cpumask_var(cpus_hardware_enabled);
3623out_free_0:
3624 kvm_irqfd_exit();
3625out_irqfd:
3626 kvm_arch_exit();
3627out_fail:
3628 return r;
3629}
3630EXPORT_SYMBOL_GPL(kvm_init);
3631
3632void kvm_exit(void)
3633{
3634 debugfs_remove_recursive(kvm_debugfs_dir);
3635 misc_deregister(&kvm_dev);
3636 kmem_cache_destroy(kvm_vcpu_cache);
3637 kvm_async_pf_deinit();
3638 unregister_syscore_ops(&kvm_syscore_ops);
3639 unregister_reboot_notifier(&kvm_reboot_notifier);
3640 unregister_cpu_notifier(&kvm_cpu_notifier);
3641 on_each_cpu(hardware_disable_nolock, NULL, 1);
3642 kvm_arch_hardware_unsetup();
3643 kvm_arch_exit();
3644 kvm_irqfd_exit();
3645 free_cpumask_var(cpus_hardware_enabled);
3646 kvm_vfio_ops_exit();
3647}
3648EXPORT_SYMBOL_GPL(kvm_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16#include <kvm/iodev.h>
17
18#include <linux/kvm_host.h>
19#include <linux/kvm.h>
20#include <linux/module.h>
21#include <linux/errno.h>
22#include <linux/percpu.h>
23#include <linux/mm.h>
24#include <linux/miscdevice.h>
25#include <linux/vmalloc.h>
26#include <linux/reboot.h>
27#include <linux/debugfs.h>
28#include <linux/highmem.h>
29#include <linux/file.h>
30#include <linux/syscore_ops.h>
31#include <linux/cpu.h>
32#include <linux/sched/signal.h>
33#include <linux/sched/mm.h>
34#include <linux/sched/stat.h>
35#include <linux/cpumask.h>
36#include <linux/smp.h>
37#include <linux/anon_inodes.h>
38#include <linux/profile.h>
39#include <linux/kvm_para.h>
40#include <linux/pagemap.h>
41#include <linux/mman.h>
42#include <linux/swap.h>
43#include <linux/bitops.h>
44#include <linux/spinlock.h>
45#include <linux/compat.h>
46#include <linux/srcu.h>
47#include <linux/hugetlb.h>
48#include <linux/slab.h>
49#include <linux/sort.h>
50#include <linux/bsearch.h>
51#include <linux/io.h>
52#include <linux/lockdep.h>
53#include <linux/kthread.h>
54
55#include <asm/processor.h>
56#include <asm/ioctl.h>
57#include <linux/uaccess.h>
58#include <asm/pgtable.h>
59
60#include "coalesced_mmio.h"
61#include "async_pf.h"
62#include "vfio.h"
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/kvm.h>
66
67/* Worst case buffer size needed for holding an integer. */
68#define ITOA_MAX_LEN 12
69
70MODULE_AUTHOR("Qumranet");
71MODULE_LICENSE("GPL");
72
73/* Architectures should define their poll value according to the halt latency */
74unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75module_param(halt_poll_ns, uint, 0644);
76EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78/* Default doubles per-vcpu halt_poll_ns. */
79unsigned int halt_poll_ns_grow = 2;
80module_param(halt_poll_ns_grow, uint, 0644);
81EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83/* The start value to grow halt_poll_ns from */
84unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85module_param(halt_poll_ns_grow_start, uint, 0644);
86EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88/* Default resets per-vcpu halt_poll_ns . */
89unsigned int halt_poll_ns_shrink;
90module_param(halt_poll_ns_shrink, uint, 0644);
91EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93/*
94 * Ordering of locks:
95 *
96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97 */
98
99DEFINE_MUTEX(kvm_lock);
100static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101LIST_HEAD(vm_list);
102
103static cpumask_var_t cpus_hardware_enabled;
104static int kvm_usage_count;
105static atomic_t hardware_enable_failed;
106
107struct kmem_cache *kvm_vcpu_cache;
108EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109
110static __read_mostly struct preempt_ops kvm_preempt_ops;
111
112struct dentry *kvm_debugfs_dir;
113EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115static int kvm_debugfs_num_entries;
116static const struct file_operations *stat_fops_per_vm[];
117
118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119 unsigned long arg);
120#ifdef CONFIG_KVM_COMPAT
121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg);
123#define KVM_COMPAT(c) .compat_ioctl = (c)
124#else
125/*
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
131 */
132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
134
135static int kvm_no_compat_open(struct inode *inode, struct file *file)
136{
137 return is_compat_task() ? -ENODEV : 0;
138}
139#define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
141#endif
142static int hardware_enable_all(void);
143static void hardware_disable_all(void);
144
145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149__visible bool kvm_rebooting;
150EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152static bool largepages_enabled = true;
153
154#define KVM_EVENT_CREATE_VM 0
155#define KVM_EVENT_DESTROY_VM 1
156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157static unsigned long long kvm_createvm_count;
158static unsigned long long kvm_active_vms;
159
160__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161 unsigned long start, unsigned long end, bool blockable)
162{
163 return 0;
164}
165
166bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167{
168 /*
169 * The metadata used by is_zone_device_page() to determine whether or
170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171 * the device has been pinned, e.g. by get_user_pages(). WARN if the
172 * page_count() is zero to help detect bad usage of this helper.
173 */
174 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175 return false;
176
177 return is_zone_device_page(pfn_to_page(pfn));
178}
179
180bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181{
182 /*
183 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184 * perspective they are "normal" pages, albeit with slightly different
185 * usage rules.
186 */
187 if (pfn_valid(pfn))
188 return PageReserved(pfn_to_page(pfn)) &&
189 !kvm_is_zone_device_pfn(pfn);
190
191 return true;
192}
193
194/*
195 * Switches to specified vcpu, until a matching vcpu_put()
196 */
197void vcpu_load(struct kvm_vcpu *vcpu)
198{
199 int cpu = get_cpu();
200 preempt_notifier_register(&vcpu->preempt_notifier);
201 kvm_arch_vcpu_load(vcpu, cpu);
202 put_cpu();
203}
204EXPORT_SYMBOL_GPL(vcpu_load);
205
206void vcpu_put(struct kvm_vcpu *vcpu)
207{
208 preempt_disable();
209 kvm_arch_vcpu_put(vcpu);
210 preempt_notifier_unregister(&vcpu->preempt_notifier);
211 preempt_enable();
212}
213EXPORT_SYMBOL_GPL(vcpu_put);
214
215/* TODO: merge with kvm_arch_vcpu_should_kick */
216static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
217{
218 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
219
220 /*
221 * We need to wait for the VCPU to reenable interrupts and get out of
222 * READING_SHADOW_PAGE_TABLES mode.
223 */
224 if (req & KVM_REQUEST_WAIT)
225 return mode != OUTSIDE_GUEST_MODE;
226
227 /*
228 * Need to kick a running VCPU, but otherwise there is nothing to do.
229 */
230 return mode == IN_GUEST_MODE;
231}
232
233static void ack_flush(void *_completed)
234{
235}
236
237static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
238{
239 if (unlikely(!cpus))
240 cpus = cpu_online_mask;
241
242 if (cpumask_empty(cpus))
243 return false;
244
245 smp_call_function_many(cpus, ack_flush, NULL, wait);
246 return true;
247}
248
249bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
250 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
251{
252 int i, cpu, me;
253 struct kvm_vcpu *vcpu;
254 bool called;
255
256 me = get_cpu();
257
258 kvm_for_each_vcpu(i, vcpu, kvm) {
259 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
260 continue;
261
262 kvm_make_request(req, vcpu);
263 cpu = vcpu->cpu;
264
265 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266 continue;
267
268 if (tmp != NULL && cpu != -1 && cpu != me &&
269 kvm_request_needs_ipi(vcpu, req))
270 __cpumask_set_cpu(cpu, tmp);
271 }
272
273 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
274 put_cpu();
275
276 return called;
277}
278
279bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
280{
281 cpumask_var_t cpus;
282 bool called;
283
284 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
285
286 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
287
288 free_cpumask_var(cpus);
289 return called;
290}
291
292#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
293void kvm_flush_remote_tlbs(struct kvm *kvm)
294{
295 /*
296 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
297 * kvm_make_all_cpus_request.
298 */
299 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
300
301 /*
302 * We want to publish modifications to the page tables before reading
303 * mode. Pairs with a memory barrier in arch-specific code.
304 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
305 * and smp_mb in walk_shadow_page_lockless_begin/end.
306 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
307 *
308 * There is already an smp_mb__after_atomic() before
309 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
310 * barrier here.
311 */
312 if (!kvm_arch_flush_remote_tlb(kvm)
313 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
314 ++kvm->stat.remote_tlb_flush;
315 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
316}
317EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
318#endif
319
320void kvm_reload_remote_mmus(struct kvm *kvm)
321{
322 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
323}
324
325int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
326{
327 struct page *page;
328 int r;
329
330 mutex_init(&vcpu->mutex);
331 vcpu->cpu = -1;
332 vcpu->kvm = kvm;
333 vcpu->vcpu_id = id;
334 vcpu->pid = NULL;
335 init_swait_queue_head(&vcpu->wq);
336 kvm_async_pf_vcpu_init(vcpu);
337
338 vcpu->pre_pcpu = -1;
339 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340
341 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
342 if (!page) {
343 r = -ENOMEM;
344 goto fail;
345 }
346 vcpu->run = page_address(page);
347
348 kvm_vcpu_set_in_spin_loop(vcpu, false);
349 kvm_vcpu_set_dy_eligible(vcpu, false);
350 vcpu->preempted = false;
351 vcpu->ready = false;
352
353 r = kvm_arch_vcpu_init(vcpu);
354 if (r < 0)
355 goto fail_free_run;
356 return 0;
357
358fail_free_run:
359 free_page((unsigned long)vcpu->run);
360fail:
361 return r;
362}
363EXPORT_SYMBOL_GPL(kvm_vcpu_init);
364
365void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
366{
367 /*
368 * no need for rcu_read_lock as VCPU_RUN is the only place that
369 * will change the vcpu->pid pointer and on uninit all file
370 * descriptors are already gone.
371 */
372 put_pid(rcu_dereference_protected(vcpu->pid, 1));
373 kvm_arch_vcpu_uninit(vcpu);
374 free_page((unsigned long)vcpu->run);
375}
376EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
377
378#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
379static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
380{
381 return container_of(mn, struct kvm, mmu_notifier);
382}
383
384static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
385 struct mm_struct *mm,
386 unsigned long address,
387 pte_t pte)
388{
389 struct kvm *kvm = mmu_notifier_to_kvm(mn);
390 int idx;
391
392 idx = srcu_read_lock(&kvm->srcu);
393 spin_lock(&kvm->mmu_lock);
394 kvm->mmu_notifier_seq++;
395
396 if (kvm_set_spte_hva(kvm, address, pte))
397 kvm_flush_remote_tlbs(kvm);
398
399 spin_unlock(&kvm->mmu_lock);
400 srcu_read_unlock(&kvm->srcu, idx);
401}
402
403static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
404 const struct mmu_notifier_range *range)
405{
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 int need_tlb_flush = 0, idx;
408 int ret;
409
410 idx = srcu_read_lock(&kvm->srcu);
411 spin_lock(&kvm->mmu_lock);
412 /*
413 * The count increase must become visible at unlock time as no
414 * spte can be established without taking the mmu_lock and
415 * count is also read inside the mmu_lock critical section.
416 */
417 kvm->mmu_notifier_count++;
418 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
419 need_tlb_flush |= kvm->tlbs_dirty;
420 /* we've to flush the tlb before the pages can be freed */
421 if (need_tlb_flush)
422 kvm_flush_remote_tlbs(kvm);
423
424 spin_unlock(&kvm->mmu_lock);
425
426 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
427 range->end,
428 mmu_notifier_range_blockable(range));
429
430 srcu_read_unlock(&kvm->srcu, idx);
431
432 return ret;
433}
434
435static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
436 const struct mmu_notifier_range *range)
437{
438 struct kvm *kvm = mmu_notifier_to_kvm(mn);
439
440 spin_lock(&kvm->mmu_lock);
441 /*
442 * This sequence increase will notify the kvm page fault that
443 * the page that is going to be mapped in the spte could have
444 * been freed.
445 */
446 kvm->mmu_notifier_seq++;
447 smp_wmb();
448 /*
449 * The above sequence increase must be visible before the
450 * below count decrease, which is ensured by the smp_wmb above
451 * in conjunction with the smp_rmb in mmu_notifier_retry().
452 */
453 kvm->mmu_notifier_count--;
454 spin_unlock(&kvm->mmu_lock);
455
456 BUG_ON(kvm->mmu_notifier_count < 0);
457}
458
459static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
460 struct mm_struct *mm,
461 unsigned long start,
462 unsigned long end)
463{
464 struct kvm *kvm = mmu_notifier_to_kvm(mn);
465 int young, idx;
466
467 idx = srcu_read_lock(&kvm->srcu);
468 spin_lock(&kvm->mmu_lock);
469
470 young = kvm_age_hva(kvm, start, end);
471 if (young)
472 kvm_flush_remote_tlbs(kvm);
473
474 spin_unlock(&kvm->mmu_lock);
475 srcu_read_unlock(&kvm->srcu, idx);
476
477 return young;
478}
479
480static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
481 struct mm_struct *mm,
482 unsigned long start,
483 unsigned long end)
484{
485 struct kvm *kvm = mmu_notifier_to_kvm(mn);
486 int young, idx;
487
488 idx = srcu_read_lock(&kvm->srcu);
489 spin_lock(&kvm->mmu_lock);
490 /*
491 * Even though we do not flush TLB, this will still adversely
492 * affect performance on pre-Haswell Intel EPT, where there is
493 * no EPT Access Bit to clear so that we have to tear down EPT
494 * tables instead. If we find this unacceptable, we can always
495 * add a parameter to kvm_age_hva so that it effectively doesn't
496 * do anything on clear_young.
497 *
498 * Also note that currently we never issue secondary TLB flushes
499 * from clear_young, leaving this job up to the regular system
500 * cadence. If we find this inaccurate, we might come up with a
501 * more sophisticated heuristic later.
502 */
503 young = kvm_age_hva(kvm, start, end);
504 spin_unlock(&kvm->mmu_lock);
505 srcu_read_unlock(&kvm->srcu, idx);
506
507 return young;
508}
509
510static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
511 struct mm_struct *mm,
512 unsigned long address)
513{
514 struct kvm *kvm = mmu_notifier_to_kvm(mn);
515 int young, idx;
516
517 idx = srcu_read_lock(&kvm->srcu);
518 spin_lock(&kvm->mmu_lock);
519 young = kvm_test_age_hva(kvm, address);
520 spin_unlock(&kvm->mmu_lock);
521 srcu_read_unlock(&kvm->srcu, idx);
522
523 return young;
524}
525
526static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
527 struct mm_struct *mm)
528{
529 struct kvm *kvm = mmu_notifier_to_kvm(mn);
530 int idx;
531
532 idx = srcu_read_lock(&kvm->srcu);
533 kvm_arch_flush_shadow_all(kvm);
534 srcu_read_unlock(&kvm->srcu, idx);
535}
536
537static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
538 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
539 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
540 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
541 .clear_young = kvm_mmu_notifier_clear_young,
542 .test_young = kvm_mmu_notifier_test_young,
543 .change_pte = kvm_mmu_notifier_change_pte,
544 .release = kvm_mmu_notifier_release,
545};
546
547static int kvm_init_mmu_notifier(struct kvm *kvm)
548{
549 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
550 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
551}
552
553#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
554
555static int kvm_init_mmu_notifier(struct kvm *kvm)
556{
557 return 0;
558}
559
560#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
561
562static struct kvm_memslots *kvm_alloc_memslots(void)
563{
564 int i;
565 struct kvm_memslots *slots;
566
567 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
568 if (!slots)
569 return NULL;
570
571 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
572 slots->id_to_index[i] = slots->memslots[i].id = i;
573
574 return slots;
575}
576
577static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
578{
579 if (!memslot->dirty_bitmap)
580 return;
581
582 kvfree(memslot->dirty_bitmap);
583 memslot->dirty_bitmap = NULL;
584}
585
586/*
587 * Free any memory in @free but not in @dont.
588 */
589static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
590 struct kvm_memory_slot *dont)
591{
592 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
593 kvm_destroy_dirty_bitmap(free);
594
595 kvm_arch_free_memslot(kvm, free, dont);
596
597 free->npages = 0;
598}
599
600static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
601{
602 struct kvm_memory_slot *memslot;
603
604 if (!slots)
605 return;
606
607 kvm_for_each_memslot(memslot, slots)
608 kvm_free_memslot(kvm, memslot, NULL);
609
610 kvfree(slots);
611}
612
613static void kvm_destroy_vm_debugfs(struct kvm *kvm)
614{
615 int i;
616
617 if (!kvm->debugfs_dentry)
618 return;
619
620 debugfs_remove_recursive(kvm->debugfs_dentry);
621
622 if (kvm->debugfs_stat_data) {
623 for (i = 0; i < kvm_debugfs_num_entries; i++)
624 kfree(kvm->debugfs_stat_data[i]);
625 kfree(kvm->debugfs_stat_data);
626 }
627}
628
629static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
630{
631 char dir_name[ITOA_MAX_LEN * 2];
632 struct kvm_stat_data *stat_data;
633 struct kvm_stats_debugfs_item *p;
634
635 if (!debugfs_initialized())
636 return 0;
637
638 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
639 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
640
641 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
642 sizeof(*kvm->debugfs_stat_data),
643 GFP_KERNEL_ACCOUNT);
644 if (!kvm->debugfs_stat_data)
645 return -ENOMEM;
646
647 for (p = debugfs_entries; p->name; p++) {
648 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
649 if (!stat_data)
650 return -ENOMEM;
651
652 stat_data->kvm = kvm;
653 stat_data->offset = p->offset;
654 stat_data->mode = p->mode ? p->mode : 0644;
655 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
656 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
657 stat_data, stat_fops_per_vm[p->kind]);
658 }
659 return 0;
660}
661
662/*
663 * Called after the VM is otherwise initialized, but just before adding it to
664 * the vm_list.
665 */
666int __weak kvm_arch_post_init_vm(struct kvm *kvm)
667{
668 return 0;
669}
670
671/*
672 * Called just after removing the VM from the vm_list, but before doing any
673 * other destruction.
674 */
675void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
676{
677}
678
679static struct kvm *kvm_create_vm(unsigned long type)
680{
681 struct kvm *kvm = kvm_arch_alloc_vm();
682 int r = -ENOMEM;
683 int i;
684
685 if (!kvm)
686 return ERR_PTR(-ENOMEM);
687
688 spin_lock_init(&kvm->mmu_lock);
689 mmgrab(current->mm);
690 kvm->mm = current->mm;
691 kvm_eventfd_init(kvm);
692 mutex_init(&kvm->lock);
693 mutex_init(&kvm->irq_lock);
694 mutex_init(&kvm->slots_lock);
695 INIT_LIST_HEAD(&kvm->devices);
696
697 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
698
699 if (init_srcu_struct(&kvm->srcu))
700 goto out_err_no_srcu;
701 if (init_srcu_struct(&kvm->irq_srcu))
702 goto out_err_no_irq_srcu;
703
704 refcount_set(&kvm->users_count, 1);
705 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
706 struct kvm_memslots *slots = kvm_alloc_memslots();
707
708 if (!slots)
709 goto out_err_no_arch_destroy_vm;
710 /* Generations must be different for each address space. */
711 slots->generation = i;
712 rcu_assign_pointer(kvm->memslots[i], slots);
713 }
714
715 for (i = 0; i < KVM_NR_BUSES; i++) {
716 rcu_assign_pointer(kvm->buses[i],
717 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
718 if (!kvm->buses[i])
719 goto out_err_no_arch_destroy_vm;
720 }
721
722 r = kvm_arch_init_vm(kvm, type);
723 if (r)
724 goto out_err_no_arch_destroy_vm;
725
726 r = hardware_enable_all();
727 if (r)
728 goto out_err_no_disable;
729
730#ifdef CONFIG_HAVE_KVM_IRQFD
731 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732#endif
733
734 r = kvm_init_mmu_notifier(kvm);
735 if (r)
736 goto out_err_no_mmu_notifier;
737
738 r = kvm_arch_post_init_vm(kvm);
739 if (r)
740 goto out_err;
741
742 mutex_lock(&kvm_lock);
743 list_add(&kvm->vm_list, &vm_list);
744 mutex_unlock(&kvm_lock);
745
746 preempt_notifier_inc();
747
748 return kvm;
749
750out_err:
751#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752 if (kvm->mmu_notifier.ops)
753 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754#endif
755out_err_no_mmu_notifier:
756 hardware_disable_all();
757out_err_no_disable:
758 kvm_arch_destroy_vm(kvm);
759out_err_no_arch_destroy_vm:
760 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761 for (i = 0; i < KVM_NR_BUSES; i++)
762 kfree(kvm_get_bus(kvm, i));
763 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765 cleanup_srcu_struct(&kvm->irq_srcu);
766out_err_no_irq_srcu:
767 cleanup_srcu_struct(&kvm->srcu);
768out_err_no_srcu:
769 kvm_arch_free_vm(kvm);
770 mmdrop(current->mm);
771 return ERR_PTR(r);
772}
773
774static void kvm_destroy_devices(struct kvm *kvm)
775{
776 struct kvm_device *dev, *tmp;
777
778 /*
779 * We do not need to take the kvm->lock here, because nobody else
780 * has a reference to the struct kvm at this point and therefore
781 * cannot access the devices list anyhow.
782 */
783 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784 list_del(&dev->vm_node);
785 dev->ops->destroy(dev);
786 }
787}
788
789static void kvm_destroy_vm(struct kvm *kvm)
790{
791 int i;
792 struct mm_struct *mm = kvm->mm;
793
794 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795 kvm_destroy_vm_debugfs(kvm);
796 kvm_arch_sync_events(kvm);
797 mutex_lock(&kvm_lock);
798 list_del(&kvm->vm_list);
799 mutex_unlock(&kvm_lock);
800 kvm_arch_pre_destroy_vm(kvm);
801
802 kvm_free_irq_routing(kvm);
803 for (i = 0; i < KVM_NR_BUSES; i++) {
804 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805
806 if (bus)
807 kvm_io_bus_destroy(bus);
808 kvm->buses[i] = NULL;
809 }
810 kvm_coalesced_mmio_free(kvm);
811#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813#else
814 kvm_arch_flush_shadow_all(kvm);
815#endif
816 kvm_arch_destroy_vm(kvm);
817 kvm_destroy_devices(kvm);
818 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820 cleanup_srcu_struct(&kvm->irq_srcu);
821 cleanup_srcu_struct(&kvm->srcu);
822 kvm_arch_free_vm(kvm);
823 preempt_notifier_dec();
824 hardware_disable_all();
825 mmdrop(mm);
826}
827
828void kvm_get_kvm(struct kvm *kvm)
829{
830 refcount_inc(&kvm->users_count);
831}
832EXPORT_SYMBOL_GPL(kvm_get_kvm);
833
834void kvm_put_kvm(struct kvm *kvm)
835{
836 if (refcount_dec_and_test(&kvm->users_count))
837 kvm_destroy_vm(kvm);
838}
839EXPORT_SYMBOL_GPL(kvm_put_kvm);
840
841
842static int kvm_vm_release(struct inode *inode, struct file *filp)
843{
844 struct kvm *kvm = filp->private_data;
845
846 kvm_irqfd_release(kvm);
847
848 kvm_put_kvm(kvm);
849 return 0;
850}
851
852/*
853 * Allocation size is twice as large as the actual dirty bitmap size.
854 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
855 */
856static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
857{
858 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
859
860 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
861 if (!memslot->dirty_bitmap)
862 return -ENOMEM;
863
864 return 0;
865}
866
867/*
868 * Insert memslot and re-sort memslots based on their GFN,
869 * so binary search could be used to lookup GFN.
870 * Sorting algorithm takes advantage of having initially
871 * sorted array and known changed memslot position.
872 */
873static void update_memslots(struct kvm_memslots *slots,
874 struct kvm_memory_slot *new,
875 enum kvm_mr_change change)
876{
877 int id = new->id;
878 int i = slots->id_to_index[id];
879 struct kvm_memory_slot *mslots = slots->memslots;
880
881 WARN_ON(mslots[i].id != id);
882 switch (change) {
883 case KVM_MR_CREATE:
884 slots->used_slots++;
885 WARN_ON(mslots[i].npages || !new->npages);
886 break;
887 case KVM_MR_DELETE:
888 slots->used_slots--;
889 WARN_ON(new->npages || !mslots[i].npages);
890 break;
891 default:
892 break;
893 }
894
895 while (i < KVM_MEM_SLOTS_NUM - 1 &&
896 new->base_gfn <= mslots[i + 1].base_gfn) {
897 if (!mslots[i + 1].npages)
898 break;
899 mslots[i] = mslots[i + 1];
900 slots->id_to_index[mslots[i].id] = i;
901 i++;
902 }
903
904 /*
905 * The ">=" is needed when creating a slot with base_gfn == 0,
906 * so that it moves before all those with base_gfn == npages == 0.
907 *
908 * On the other hand, if new->npages is zero, the above loop has
909 * already left i pointing to the beginning of the empty part of
910 * mslots, and the ">=" would move the hole backwards in this
911 * case---which is wrong. So skip the loop when deleting a slot.
912 */
913 if (new->npages) {
914 while (i > 0 &&
915 new->base_gfn >= mslots[i - 1].base_gfn) {
916 mslots[i] = mslots[i - 1];
917 slots->id_to_index[mslots[i].id] = i;
918 i--;
919 }
920 } else
921 WARN_ON_ONCE(i != slots->used_slots);
922
923 mslots[i] = *new;
924 slots->id_to_index[mslots[i].id] = i;
925}
926
927static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
928{
929 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
930
931#ifdef __KVM_HAVE_READONLY_MEM
932 valid_flags |= KVM_MEM_READONLY;
933#endif
934
935 if (mem->flags & ~valid_flags)
936 return -EINVAL;
937
938 return 0;
939}
940
941static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
942 int as_id, struct kvm_memslots *slots)
943{
944 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
945 u64 gen = old_memslots->generation;
946
947 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
948 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
949
950 rcu_assign_pointer(kvm->memslots[as_id], slots);
951 synchronize_srcu_expedited(&kvm->srcu);
952
953 /*
954 * Increment the new memslot generation a second time, dropping the
955 * update in-progress flag and incrementing then generation based on
956 * the number of address spaces. This provides a unique and easily
957 * identifiable generation number while the memslots are in flux.
958 */
959 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
960
961 /*
962 * Generations must be unique even across address spaces. We do not need
963 * a global counter for that, instead the generation space is evenly split
964 * across address spaces. For example, with two address spaces, address
965 * space 0 will use generations 0, 2, 4, ... while address space 1 will
966 * use generations 1, 3, 5, ...
967 */
968 gen += KVM_ADDRESS_SPACE_NUM;
969
970 kvm_arch_memslots_updated(kvm, gen);
971
972 slots->generation = gen;
973
974 return old_memslots;
975}
976
977/*
978 * Allocate some memory and give it an address in the guest physical address
979 * space.
980 *
981 * Discontiguous memory is allowed, mostly for framebuffers.
982 *
983 * Must be called holding kvm->slots_lock for write.
984 */
985int __kvm_set_memory_region(struct kvm *kvm,
986 const struct kvm_userspace_memory_region *mem)
987{
988 int r;
989 gfn_t base_gfn;
990 unsigned long npages;
991 struct kvm_memory_slot *slot;
992 struct kvm_memory_slot old, new;
993 struct kvm_memslots *slots = NULL, *old_memslots;
994 int as_id, id;
995 enum kvm_mr_change change;
996
997 r = check_memory_region_flags(mem);
998 if (r)
999 goto out;
1000
1001 r = -EINVAL;
1002 as_id = mem->slot >> 16;
1003 id = (u16)mem->slot;
1004
1005 /* General sanity checks */
1006 if (mem->memory_size & (PAGE_SIZE - 1))
1007 goto out;
1008 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1009 goto out;
1010 /* We can read the guest memory with __xxx_user() later on. */
1011 if ((id < KVM_USER_MEM_SLOTS) &&
1012 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1013 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1014 mem->memory_size)))
1015 goto out;
1016 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1017 goto out;
1018 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1019 goto out;
1020
1021 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1022 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1023 npages = mem->memory_size >> PAGE_SHIFT;
1024
1025 if (npages > KVM_MEM_MAX_NR_PAGES)
1026 goto out;
1027
1028 new = old = *slot;
1029
1030 new.id = id;
1031 new.base_gfn = base_gfn;
1032 new.npages = npages;
1033 new.flags = mem->flags;
1034
1035 if (npages) {
1036 if (!old.npages)
1037 change = KVM_MR_CREATE;
1038 else { /* Modify an existing slot. */
1039 if ((mem->userspace_addr != old.userspace_addr) ||
1040 (npages != old.npages) ||
1041 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1042 goto out;
1043
1044 if (base_gfn != old.base_gfn)
1045 change = KVM_MR_MOVE;
1046 else if (new.flags != old.flags)
1047 change = KVM_MR_FLAGS_ONLY;
1048 else { /* Nothing to change. */
1049 r = 0;
1050 goto out;
1051 }
1052 }
1053 } else {
1054 if (!old.npages)
1055 goto out;
1056
1057 change = KVM_MR_DELETE;
1058 new.base_gfn = 0;
1059 new.flags = 0;
1060 }
1061
1062 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1063 /* Check for overlaps */
1064 r = -EEXIST;
1065 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1066 if (slot->id == id)
1067 continue;
1068 if (!((base_gfn + npages <= slot->base_gfn) ||
1069 (base_gfn >= slot->base_gfn + slot->npages)))
1070 goto out;
1071 }
1072 }
1073
1074 /* Free page dirty bitmap if unneeded */
1075 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1076 new.dirty_bitmap = NULL;
1077
1078 r = -ENOMEM;
1079 if (change == KVM_MR_CREATE) {
1080 new.userspace_addr = mem->userspace_addr;
1081
1082 if (kvm_arch_create_memslot(kvm, &new, npages))
1083 goto out_free;
1084 }
1085
1086 /* Allocate page dirty bitmap if needed */
1087 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1088 if (kvm_create_dirty_bitmap(&new) < 0)
1089 goto out_free;
1090 }
1091
1092 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1093 if (!slots)
1094 goto out_free;
1095 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1096
1097 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1098 slot = id_to_memslot(slots, id);
1099 slot->flags |= KVM_MEMSLOT_INVALID;
1100
1101 old_memslots = install_new_memslots(kvm, as_id, slots);
1102
1103 /* From this point no new shadow pages pointing to a deleted,
1104 * or moved, memslot will be created.
1105 *
1106 * validation of sp->gfn happens in:
1107 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1108 * - kvm_is_visible_gfn (mmu_check_roots)
1109 */
1110 kvm_arch_flush_shadow_memslot(kvm, slot);
1111
1112 /*
1113 * We can re-use the old_memslots from above, the only difference
1114 * from the currently installed memslots is the invalid flag. This
1115 * will get overwritten by update_memslots anyway.
1116 */
1117 slots = old_memslots;
1118 }
1119
1120 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1121 if (r)
1122 goto out_slots;
1123
1124 /* actual memory is freed via old in kvm_free_memslot below */
1125 if (change == KVM_MR_DELETE) {
1126 new.dirty_bitmap = NULL;
1127 memset(&new.arch, 0, sizeof(new.arch));
1128 }
1129
1130 update_memslots(slots, &new, change);
1131 old_memslots = install_new_memslots(kvm, as_id, slots);
1132
1133 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1134
1135 kvm_free_memslot(kvm, &old, &new);
1136 kvfree(old_memslots);
1137 return 0;
1138
1139out_slots:
1140 kvfree(slots);
1141out_free:
1142 kvm_free_memslot(kvm, &new, &old);
1143out:
1144 return r;
1145}
1146EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1147
1148int kvm_set_memory_region(struct kvm *kvm,
1149 const struct kvm_userspace_memory_region *mem)
1150{
1151 int r;
1152
1153 mutex_lock(&kvm->slots_lock);
1154 r = __kvm_set_memory_region(kvm, mem);
1155 mutex_unlock(&kvm->slots_lock);
1156 return r;
1157}
1158EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1159
1160static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1161 struct kvm_userspace_memory_region *mem)
1162{
1163 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1164 return -EINVAL;
1165
1166 return kvm_set_memory_region(kvm, mem);
1167}
1168
1169int kvm_get_dirty_log(struct kvm *kvm,
1170 struct kvm_dirty_log *log, int *is_dirty)
1171{
1172 struct kvm_memslots *slots;
1173 struct kvm_memory_slot *memslot;
1174 int i, as_id, id;
1175 unsigned long n;
1176 unsigned long any = 0;
1177
1178 as_id = log->slot >> 16;
1179 id = (u16)log->slot;
1180 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1181 return -EINVAL;
1182
1183 slots = __kvm_memslots(kvm, as_id);
1184 memslot = id_to_memslot(slots, id);
1185 if (!memslot->dirty_bitmap)
1186 return -ENOENT;
1187
1188 n = kvm_dirty_bitmap_bytes(memslot);
1189
1190 for (i = 0; !any && i < n/sizeof(long); ++i)
1191 any = memslot->dirty_bitmap[i];
1192
1193 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1194 return -EFAULT;
1195
1196 if (any)
1197 *is_dirty = 1;
1198 return 0;
1199}
1200EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1201
1202#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1203/**
1204 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1205 * and reenable dirty page tracking for the corresponding pages.
1206 * @kvm: pointer to kvm instance
1207 * @log: slot id and address to which we copy the log
1208 * @flush: true if TLB flush is needed by caller
1209 *
1210 * We need to keep it in mind that VCPU threads can write to the bitmap
1211 * concurrently. So, to avoid losing track of dirty pages we keep the
1212 * following order:
1213 *
1214 * 1. Take a snapshot of the bit and clear it if needed.
1215 * 2. Write protect the corresponding page.
1216 * 3. Copy the snapshot to the userspace.
1217 * 4. Upon return caller flushes TLB's if needed.
1218 *
1219 * Between 2 and 4, the guest may write to the page using the remaining TLB
1220 * entry. This is not a problem because the page is reported dirty using
1221 * the snapshot taken before and step 4 ensures that writes done after
1222 * exiting to userspace will be logged for the next call.
1223 *
1224 */
1225int kvm_get_dirty_log_protect(struct kvm *kvm,
1226 struct kvm_dirty_log *log, bool *flush)
1227{
1228 struct kvm_memslots *slots;
1229 struct kvm_memory_slot *memslot;
1230 int i, as_id, id;
1231 unsigned long n;
1232 unsigned long *dirty_bitmap;
1233 unsigned long *dirty_bitmap_buffer;
1234
1235 as_id = log->slot >> 16;
1236 id = (u16)log->slot;
1237 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1238 return -EINVAL;
1239
1240 slots = __kvm_memslots(kvm, as_id);
1241 memslot = id_to_memslot(slots, id);
1242
1243 dirty_bitmap = memslot->dirty_bitmap;
1244 if (!dirty_bitmap)
1245 return -ENOENT;
1246
1247 n = kvm_dirty_bitmap_bytes(memslot);
1248 *flush = false;
1249 if (kvm->manual_dirty_log_protect) {
1250 /*
1251 * Unlike kvm_get_dirty_log, we always return false in *flush,
1252 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
1253 * is some code duplication between this function and
1254 * kvm_get_dirty_log, but hopefully all architecture
1255 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1256 * can be eliminated.
1257 */
1258 dirty_bitmap_buffer = dirty_bitmap;
1259 } else {
1260 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1261 memset(dirty_bitmap_buffer, 0, n);
1262
1263 spin_lock(&kvm->mmu_lock);
1264 for (i = 0; i < n / sizeof(long); i++) {
1265 unsigned long mask;
1266 gfn_t offset;
1267
1268 if (!dirty_bitmap[i])
1269 continue;
1270
1271 *flush = true;
1272 mask = xchg(&dirty_bitmap[i], 0);
1273 dirty_bitmap_buffer[i] = mask;
1274
1275 offset = i * BITS_PER_LONG;
1276 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1277 offset, mask);
1278 }
1279 spin_unlock(&kvm->mmu_lock);
1280 }
1281
1282 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1283 return -EFAULT;
1284 return 0;
1285}
1286EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1287
1288/**
1289 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1290 * and reenable dirty page tracking for the corresponding pages.
1291 * @kvm: pointer to kvm instance
1292 * @log: slot id and address from which to fetch the bitmap of dirty pages
1293 * @flush: true if TLB flush is needed by caller
1294 */
1295int kvm_clear_dirty_log_protect(struct kvm *kvm,
1296 struct kvm_clear_dirty_log *log, bool *flush)
1297{
1298 struct kvm_memslots *slots;
1299 struct kvm_memory_slot *memslot;
1300 int as_id, id;
1301 gfn_t offset;
1302 unsigned long i, n;
1303 unsigned long *dirty_bitmap;
1304 unsigned long *dirty_bitmap_buffer;
1305
1306 as_id = log->slot >> 16;
1307 id = (u16)log->slot;
1308 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1309 return -EINVAL;
1310
1311 if (log->first_page & 63)
1312 return -EINVAL;
1313
1314 slots = __kvm_memslots(kvm, as_id);
1315 memslot = id_to_memslot(slots, id);
1316
1317 dirty_bitmap = memslot->dirty_bitmap;
1318 if (!dirty_bitmap)
1319 return -ENOENT;
1320
1321 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1322
1323 if (log->first_page > memslot->npages ||
1324 log->num_pages > memslot->npages - log->first_page ||
1325 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1326 return -EINVAL;
1327
1328 *flush = false;
1329 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1330 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1331 return -EFAULT;
1332
1333 spin_lock(&kvm->mmu_lock);
1334 for (offset = log->first_page, i = offset / BITS_PER_LONG,
1335 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1336 i++, offset += BITS_PER_LONG) {
1337 unsigned long mask = *dirty_bitmap_buffer++;
1338 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1339 if (!mask)
1340 continue;
1341
1342 mask &= atomic_long_fetch_andnot(mask, p);
1343
1344 /*
1345 * mask contains the bits that really have been cleared. This
1346 * never includes any bits beyond the length of the memslot (if
1347 * the length is not aligned to 64 pages), therefore it is not
1348 * a problem if userspace sets them in log->dirty_bitmap.
1349 */
1350 if (mask) {
1351 *flush = true;
1352 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1353 offset, mask);
1354 }
1355 }
1356 spin_unlock(&kvm->mmu_lock);
1357
1358 return 0;
1359}
1360EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1361#endif
1362
1363bool kvm_largepages_enabled(void)
1364{
1365 return largepages_enabled;
1366}
1367
1368void kvm_disable_largepages(void)
1369{
1370 largepages_enabled = false;
1371}
1372EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1373
1374struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1375{
1376 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1377}
1378EXPORT_SYMBOL_GPL(gfn_to_memslot);
1379
1380struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1381{
1382 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1383}
1384
1385bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1386{
1387 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1388
1389 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1390 memslot->flags & KVM_MEMSLOT_INVALID)
1391 return false;
1392
1393 return true;
1394}
1395EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1396
1397unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1398{
1399 struct vm_area_struct *vma;
1400 unsigned long addr, size;
1401
1402 size = PAGE_SIZE;
1403
1404 addr = gfn_to_hva(kvm, gfn);
1405 if (kvm_is_error_hva(addr))
1406 return PAGE_SIZE;
1407
1408 down_read(¤t->mm->mmap_sem);
1409 vma = find_vma(current->mm, addr);
1410 if (!vma)
1411 goto out;
1412
1413 size = vma_kernel_pagesize(vma);
1414
1415out:
1416 up_read(¤t->mm->mmap_sem);
1417
1418 return size;
1419}
1420
1421static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1422{
1423 return slot->flags & KVM_MEM_READONLY;
1424}
1425
1426static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1427 gfn_t *nr_pages, bool write)
1428{
1429 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1430 return KVM_HVA_ERR_BAD;
1431
1432 if (memslot_is_readonly(slot) && write)
1433 return KVM_HVA_ERR_RO_BAD;
1434
1435 if (nr_pages)
1436 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1437
1438 return __gfn_to_hva_memslot(slot, gfn);
1439}
1440
1441static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1442 gfn_t *nr_pages)
1443{
1444 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1445}
1446
1447unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1448 gfn_t gfn)
1449{
1450 return gfn_to_hva_many(slot, gfn, NULL);
1451}
1452EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1453
1454unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1455{
1456 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1457}
1458EXPORT_SYMBOL_GPL(gfn_to_hva);
1459
1460unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1461{
1462 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1463}
1464EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1465
1466/*
1467 * Return the hva of a @gfn and the R/W attribute if possible.
1468 *
1469 * @slot: the kvm_memory_slot which contains @gfn
1470 * @gfn: the gfn to be translated
1471 * @writable: used to return the read/write attribute of the @slot if the hva
1472 * is valid and @writable is not NULL
1473 */
1474unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1475 gfn_t gfn, bool *writable)
1476{
1477 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1478
1479 if (!kvm_is_error_hva(hva) && writable)
1480 *writable = !memslot_is_readonly(slot);
1481
1482 return hva;
1483}
1484
1485unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1486{
1487 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1488
1489 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1490}
1491
1492unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1493{
1494 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1495
1496 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1497}
1498
1499static inline int check_user_page_hwpoison(unsigned long addr)
1500{
1501 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1502
1503 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1504 return rc == -EHWPOISON;
1505}
1506
1507/*
1508 * The fast path to get the writable pfn which will be stored in @pfn,
1509 * true indicates success, otherwise false is returned. It's also the
1510 * only part that runs if we can are in atomic context.
1511 */
1512static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1513 bool *writable, kvm_pfn_t *pfn)
1514{
1515 struct page *page[1];
1516 int npages;
1517
1518 /*
1519 * Fast pin a writable pfn only if it is a write fault request
1520 * or the caller allows to map a writable pfn for a read fault
1521 * request.
1522 */
1523 if (!(write_fault || writable))
1524 return false;
1525
1526 npages = __get_user_pages_fast(addr, 1, 1, page);
1527 if (npages == 1) {
1528 *pfn = page_to_pfn(page[0]);
1529
1530 if (writable)
1531 *writable = true;
1532 return true;
1533 }
1534
1535 return false;
1536}
1537
1538/*
1539 * The slow path to get the pfn of the specified host virtual address,
1540 * 1 indicates success, -errno is returned if error is detected.
1541 */
1542static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1543 bool *writable, kvm_pfn_t *pfn)
1544{
1545 unsigned int flags = FOLL_HWPOISON;
1546 struct page *page;
1547 int npages = 0;
1548
1549 might_sleep();
1550
1551 if (writable)
1552 *writable = write_fault;
1553
1554 if (write_fault)
1555 flags |= FOLL_WRITE;
1556 if (async)
1557 flags |= FOLL_NOWAIT;
1558
1559 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1560 if (npages != 1)
1561 return npages;
1562
1563 /* map read fault as writable if possible */
1564 if (unlikely(!write_fault) && writable) {
1565 struct page *wpage;
1566
1567 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1568 *writable = true;
1569 put_page(page);
1570 page = wpage;
1571 }
1572 }
1573 *pfn = page_to_pfn(page);
1574 return npages;
1575}
1576
1577static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1578{
1579 if (unlikely(!(vma->vm_flags & VM_READ)))
1580 return false;
1581
1582 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1583 return false;
1584
1585 return true;
1586}
1587
1588static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1589 unsigned long addr, bool *async,
1590 bool write_fault, bool *writable,
1591 kvm_pfn_t *p_pfn)
1592{
1593 unsigned long pfn;
1594 int r;
1595
1596 r = follow_pfn(vma, addr, &pfn);
1597 if (r) {
1598 /*
1599 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1600 * not call the fault handler, so do it here.
1601 */
1602 bool unlocked = false;
1603 r = fixup_user_fault(current, current->mm, addr,
1604 (write_fault ? FAULT_FLAG_WRITE : 0),
1605 &unlocked);
1606 if (unlocked)
1607 return -EAGAIN;
1608 if (r)
1609 return r;
1610
1611 r = follow_pfn(vma, addr, &pfn);
1612 if (r)
1613 return r;
1614
1615 }
1616
1617 if (writable)
1618 *writable = true;
1619
1620 /*
1621 * Get a reference here because callers of *hva_to_pfn* and
1622 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1623 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1624 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1625 * simply do nothing for reserved pfns.
1626 *
1627 * Whoever called remap_pfn_range is also going to call e.g.
1628 * unmap_mapping_range before the underlying pages are freed,
1629 * causing a call to our MMU notifier.
1630 */
1631 kvm_get_pfn(pfn);
1632
1633 *p_pfn = pfn;
1634 return 0;
1635}
1636
1637/*
1638 * Pin guest page in memory and return its pfn.
1639 * @addr: host virtual address which maps memory to the guest
1640 * @atomic: whether this function can sleep
1641 * @async: whether this function need to wait IO complete if the
1642 * host page is not in the memory
1643 * @write_fault: whether we should get a writable host page
1644 * @writable: whether it allows to map a writable host page for !@write_fault
1645 *
1646 * The function will map a writable host page for these two cases:
1647 * 1): @write_fault = true
1648 * 2): @write_fault = false && @writable, @writable will tell the caller
1649 * whether the mapping is writable.
1650 */
1651static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1652 bool write_fault, bool *writable)
1653{
1654 struct vm_area_struct *vma;
1655 kvm_pfn_t pfn = 0;
1656 int npages, r;
1657
1658 /* we can do it either atomically or asynchronously, not both */
1659 BUG_ON(atomic && async);
1660
1661 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1662 return pfn;
1663
1664 if (atomic)
1665 return KVM_PFN_ERR_FAULT;
1666
1667 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1668 if (npages == 1)
1669 return pfn;
1670
1671 down_read(¤t->mm->mmap_sem);
1672 if (npages == -EHWPOISON ||
1673 (!async && check_user_page_hwpoison(addr))) {
1674 pfn = KVM_PFN_ERR_HWPOISON;
1675 goto exit;
1676 }
1677
1678retry:
1679 vma = find_vma_intersection(current->mm, addr, addr + 1);
1680
1681 if (vma == NULL)
1682 pfn = KVM_PFN_ERR_FAULT;
1683 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1684 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1685 if (r == -EAGAIN)
1686 goto retry;
1687 if (r < 0)
1688 pfn = KVM_PFN_ERR_FAULT;
1689 } else {
1690 if (async && vma_is_valid(vma, write_fault))
1691 *async = true;
1692 pfn = KVM_PFN_ERR_FAULT;
1693 }
1694exit:
1695 up_read(¤t->mm->mmap_sem);
1696 return pfn;
1697}
1698
1699kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1700 bool atomic, bool *async, bool write_fault,
1701 bool *writable)
1702{
1703 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1704
1705 if (addr == KVM_HVA_ERR_RO_BAD) {
1706 if (writable)
1707 *writable = false;
1708 return KVM_PFN_ERR_RO_FAULT;
1709 }
1710
1711 if (kvm_is_error_hva(addr)) {
1712 if (writable)
1713 *writable = false;
1714 return KVM_PFN_NOSLOT;
1715 }
1716
1717 /* Do not map writable pfn in the readonly memslot. */
1718 if (writable && memslot_is_readonly(slot)) {
1719 *writable = false;
1720 writable = NULL;
1721 }
1722
1723 return hva_to_pfn(addr, atomic, async, write_fault,
1724 writable);
1725}
1726EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1727
1728kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1729 bool *writable)
1730{
1731 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1732 write_fault, writable);
1733}
1734EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1735
1736kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1737{
1738 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1739}
1740EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1741
1742kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1743{
1744 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1745}
1746EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1747
1748kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1749{
1750 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1751}
1752EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1753
1754kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1755{
1756 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1757}
1758EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1759
1760kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1761{
1762 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1763}
1764EXPORT_SYMBOL_GPL(gfn_to_pfn);
1765
1766kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1767{
1768 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769}
1770EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1771
1772int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1773 struct page **pages, int nr_pages)
1774{
1775 unsigned long addr;
1776 gfn_t entry = 0;
1777
1778 addr = gfn_to_hva_many(slot, gfn, &entry);
1779 if (kvm_is_error_hva(addr))
1780 return -1;
1781
1782 if (entry < nr_pages)
1783 return 0;
1784
1785 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1786}
1787EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1788
1789static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1790{
1791 if (is_error_noslot_pfn(pfn))
1792 return KVM_ERR_PTR_BAD_PAGE;
1793
1794 if (kvm_is_reserved_pfn(pfn)) {
1795 WARN_ON(1);
1796 return KVM_ERR_PTR_BAD_PAGE;
1797 }
1798
1799 return pfn_to_page(pfn);
1800}
1801
1802struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1803{
1804 kvm_pfn_t pfn;
1805
1806 pfn = gfn_to_pfn(kvm, gfn);
1807
1808 return kvm_pfn_to_page(pfn);
1809}
1810EXPORT_SYMBOL_GPL(gfn_to_page);
1811
1812static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1813 struct kvm_host_map *map)
1814{
1815 kvm_pfn_t pfn;
1816 void *hva = NULL;
1817 struct page *page = KVM_UNMAPPED_PAGE;
1818
1819 if (!map)
1820 return -EINVAL;
1821
1822 pfn = gfn_to_pfn_memslot(slot, gfn);
1823 if (is_error_noslot_pfn(pfn))
1824 return -EINVAL;
1825
1826 if (pfn_valid(pfn)) {
1827 page = pfn_to_page(pfn);
1828 hva = kmap(page);
1829#ifdef CONFIG_HAS_IOMEM
1830 } else {
1831 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1832#endif
1833 }
1834
1835 if (!hva)
1836 return -EFAULT;
1837
1838 map->page = page;
1839 map->hva = hva;
1840 map->pfn = pfn;
1841 map->gfn = gfn;
1842
1843 return 0;
1844}
1845
1846int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1847{
1848 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1849}
1850EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1851
1852void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1853 bool dirty)
1854{
1855 if (!map)
1856 return;
1857
1858 if (!map->hva)
1859 return;
1860
1861 if (map->page != KVM_UNMAPPED_PAGE)
1862 kunmap(map->page);
1863#ifdef CONFIG_HAS_IOMEM
1864 else
1865 memunmap(map->hva);
1866#endif
1867
1868 if (dirty) {
1869 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1870 kvm_release_pfn_dirty(map->pfn);
1871 } else {
1872 kvm_release_pfn_clean(map->pfn);
1873 }
1874
1875 map->hva = NULL;
1876 map->page = NULL;
1877}
1878EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1879
1880struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1881{
1882 kvm_pfn_t pfn;
1883
1884 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1885
1886 return kvm_pfn_to_page(pfn);
1887}
1888EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1889
1890void kvm_release_page_clean(struct page *page)
1891{
1892 WARN_ON(is_error_page(page));
1893
1894 kvm_release_pfn_clean(page_to_pfn(page));
1895}
1896EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1897
1898void kvm_release_pfn_clean(kvm_pfn_t pfn)
1899{
1900 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1901 put_page(pfn_to_page(pfn));
1902}
1903EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1904
1905void kvm_release_page_dirty(struct page *page)
1906{
1907 WARN_ON(is_error_page(page));
1908
1909 kvm_release_pfn_dirty(page_to_pfn(page));
1910}
1911EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1912
1913void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1914{
1915 kvm_set_pfn_dirty(pfn);
1916 kvm_release_pfn_clean(pfn);
1917}
1918EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1919
1920void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1921{
1922 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1923 struct page *page = pfn_to_page(pfn);
1924
1925 SetPageDirty(page);
1926 }
1927}
1928EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1929
1930void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1931{
1932 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1933 mark_page_accessed(pfn_to_page(pfn));
1934}
1935EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1936
1937void kvm_get_pfn(kvm_pfn_t pfn)
1938{
1939 if (!kvm_is_reserved_pfn(pfn))
1940 get_page(pfn_to_page(pfn));
1941}
1942EXPORT_SYMBOL_GPL(kvm_get_pfn);
1943
1944static int next_segment(unsigned long len, int offset)
1945{
1946 if (len > PAGE_SIZE - offset)
1947 return PAGE_SIZE - offset;
1948 else
1949 return len;
1950}
1951
1952static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1953 void *data, int offset, int len)
1954{
1955 int r;
1956 unsigned long addr;
1957
1958 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1959 if (kvm_is_error_hva(addr))
1960 return -EFAULT;
1961 r = __copy_from_user(data, (void __user *)addr + offset, len);
1962 if (r)
1963 return -EFAULT;
1964 return 0;
1965}
1966
1967int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1968 int len)
1969{
1970 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1971
1972 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1973}
1974EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1975
1976int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1977 int offset, int len)
1978{
1979 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1980
1981 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1982}
1983EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1984
1985int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1986{
1987 gfn_t gfn = gpa >> PAGE_SHIFT;
1988 int seg;
1989 int offset = offset_in_page(gpa);
1990 int ret;
1991
1992 while ((seg = next_segment(len, offset)) != 0) {
1993 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1994 if (ret < 0)
1995 return ret;
1996 offset = 0;
1997 len -= seg;
1998 data += seg;
1999 ++gfn;
2000 }
2001 return 0;
2002}
2003EXPORT_SYMBOL_GPL(kvm_read_guest);
2004
2005int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2006{
2007 gfn_t gfn = gpa >> PAGE_SHIFT;
2008 int seg;
2009 int offset = offset_in_page(gpa);
2010 int ret;
2011
2012 while ((seg = next_segment(len, offset)) != 0) {
2013 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2014 if (ret < 0)
2015 return ret;
2016 offset = 0;
2017 len -= seg;
2018 data += seg;
2019 ++gfn;
2020 }
2021 return 0;
2022}
2023EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2024
2025static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2026 void *data, int offset, unsigned long len)
2027{
2028 int r;
2029 unsigned long addr;
2030
2031 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2032 if (kvm_is_error_hva(addr))
2033 return -EFAULT;
2034 pagefault_disable();
2035 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2036 pagefault_enable();
2037 if (r)
2038 return -EFAULT;
2039 return 0;
2040}
2041
2042int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2043 unsigned long len)
2044{
2045 gfn_t gfn = gpa >> PAGE_SHIFT;
2046 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2047 int offset = offset_in_page(gpa);
2048
2049 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2050}
2051EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2052
2053int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2054 void *data, unsigned long len)
2055{
2056 gfn_t gfn = gpa >> PAGE_SHIFT;
2057 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2058 int offset = offset_in_page(gpa);
2059
2060 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2061}
2062EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2063
2064static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2065 const void *data, int offset, int len)
2066{
2067 int r;
2068 unsigned long addr;
2069
2070 addr = gfn_to_hva_memslot(memslot, gfn);
2071 if (kvm_is_error_hva(addr))
2072 return -EFAULT;
2073 r = __copy_to_user((void __user *)addr + offset, data, len);
2074 if (r)
2075 return -EFAULT;
2076 mark_page_dirty_in_slot(memslot, gfn);
2077 return 0;
2078}
2079
2080int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2081 const void *data, int offset, int len)
2082{
2083 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2084
2085 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2086}
2087EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2088
2089int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2090 const void *data, int offset, int len)
2091{
2092 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2093
2094 return __kvm_write_guest_page(slot, gfn, data, offset, len);
2095}
2096EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2097
2098int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2099 unsigned long len)
2100{
2101 gfn_t gfn = gpa >> PAGE_SHIFT;
2102 int seg;
2103 int offset = offset_in_page(gpa);
2104 int ret;
2105
2106 while ((seg = next_segment(len, offset)) != 0) {
2107 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2108 if (ret < 0)
2109 return ret;
2110 offset = 0;
2111 len -= seg;
2112 data += seg;
2113 ++gfn;
2114 }
2115 return 0;
2116}
2117EXPORT_SYMBOL_GPL(kvm_write_guest);
2118
2119int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2120 unsigned long len)
2121{
2122 gfn_t gfn = gpa >> PAGE_SHIFT;
2123 int seg;
2124 int offset = offset_in_page(gpa);
2125 int ret;
2126
2127 while ((seg = next_segment(len, offset)) != 0) {
2128 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2129 if (ret < 0)
2130 return ret;
2131 offset = 0;
2132 len -= seg;
2133 data += seg;
2134 ++gfn;
2135 }
2136 return 0;
2137}
2138EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2139
2140static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2141 struct gfn_to_hva_cache *ghc,
2142 gpa_t gpa, unsigned long len)
2143{
2144 int offset = offset_in_page(gpa);
2145 gfn_t start_gfn = gpa >> PAGE_SHIFT;
2146 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2147 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2148 gfn_t nr_pages_avail;
2149 int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2150
2151 ghc->gpa = gpa;
2152 ghc->generation = slots->generation;
2153 ghc->len = len;
2154 ghc->hva = KVM_HVA_ERR_BAD;
2155
2156 /*
2157 * If the requested region crosses two memslots, we still
2158 * verify that the entire region is valid here.
2159 */
2160 while (!r && start_gfn <= end_gfn) {
2161 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2162 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2163 &nr_pages_avail);
2164 if (kvm_is_error_hva(ghc->hva))
2165 r = -EFAULT;
2166 start_gfn += nr_pages_avail;
2167 }
2168
2169 /* Use the slow path for cross page reads and writes. */
2170 if (!r && nr_pages_needed == 1)
2171 ghc->hva += offset;
2172 else
2173 ghc->memslot = NULL;
2174
2175 return r;
2176}
2177
2178int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2179 gpa_t gpa, unsigned long len)
2180{
2181 struct kvm_memslots *slots = kvm_memslots(kvm);
2182 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2183}
2184EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2185
2186int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2187 void *data, unsigned int offset,
2188 unsigned long len)
2189{
2190 struct kvm_memslots *slots = kvm_memslots(kvm);
2191 int r;
2192 gpa_t gpa = ghc->gpa + offset;
2193
2194 BUG_ON(len + offset > ghc->len);
2195
2196 if (slots->generation != ghc->generation)
2197 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2198
2199 if (unlikely(!ghc->memslot))
2200 return kvm_write_guest(kvm, gpa, data, len);
2201
2202 if (kvm_is_error_hva(ghc->hva))
2203 return -EFAULT;
2204
2205 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2206 if (r)
2207 return -EFAULT;
2208 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2209
2210 return 0;
2211}
2212EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2213
2214int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2215 void *data, unsigned long len)
2216{
2217 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2218}
2219EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2220
2221int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2222 void *data, unsigned long len)
2223{
2224 struct kvm_memslots *slots = kvm_memslots(kvm);
2225 int r;
2226
2227 BUG_ON(len > ghc->len);
2228
2229 if (slots->generation != ghc->generation)
2230 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2231
2232 if (unlikely(!ghc->memslot))
2233 return kvm_read_guest(kvm, ghc->gpa, data, len);
2234
2235 if (kvm_is_error_hva(ghc->hva))
2236 return -EFAULT;
2237
2238 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2239 if (r)
2240 return -EFAULT;
2241
2242 return 0;
2243}
2244EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2245
2246int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2247{
2248 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2249
2250 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2251}
2252EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2253
2254int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2255{
2256 gfn_t gfn = gpa >> PAGE_SHIFT;
2257 int seg;
2258 int offset = offset_in_page(gpa);
2259 int ret;
2260
2261 while ((seg = next_segment(len, offset)) != 0) {
2262 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2263 if (ret < 0)
2264 return ret;
2265 offset = 0;
2266 len -= seg;
2267 ++gfn;
2268 }
2269 return 0;
2270}
2271EXPORT_SYMBOL_GPL(kvm_clear_guest);
2272
2273static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2274 gfn_t gfn)
2275{
2276 if (memslot && memslot->dirty_bitmap) {
2277 unsigned long rel_gfn = gfn - memslot->base_gfn;
2278
2279 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2280 }
2281}
2282
2283void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2284{
2285 struct kvm_memory_slot *memslot;
2286
2287 memslot = gfn_to_memslot(kvm, gfn);
2288 mark_page_dirty_in_slot(memslot, gfn);
2289}
2290EXPORT_SYMBOL_GPL(mark_page_dirty);
2291
2292void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2293{
2294 struct kvm_memory_slot *memslot;
2295
2296 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2297 mark_page_dirty_in_slot(memslot, gfn);
2298}
2299EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2300
2301void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2302{
2303 if (!vcpu->sigset_active)
2304 return;
2305
2306 /*
2307 * This does a lockless modification of ->real_blocked, which is fine
2308 * because, only current can change ->real_blocked and all readers of
2309 * ->real_blocked don't care as long ->real_blocked is always a subset
2310 * of ->blocked.
2311 */
2312 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2313}
2314
2315void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2316{
2317 if (!vcpu->sigset_active)
2318 return;
2319
2320 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2321 sigemptyset(¤t->real_blocked);
2322}
2323
2324static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2325{
2326 unsigned int old, val, grow, grow_start;
2327
2328 old = val = vcpu->halt_poll_ns;
2329 grow_start = READ_ONCE(halt_poll_ns_grow_start);
2330 grow = READ_ONCE(halt_poll_ns_grow);
2331 if (!grow)
2332 goto out;
2333
2334 val *= grow;
2335 if (val < grow_start)
2336 val = grow_start;
2337
2338 if (val > halt_poll_ns)
2339 val = halt_poll_ns;
2340
2341 vcpu->halt_poll_ns = val;
2342out:
2343 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2344}
2345
2346static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2347{
2348 unsigned int old, val, shrink;
2349
2350 old = val = vcpu->halt_poll_ns;
2351 shrink = READ_ONCE(halt_poll_ns_shrink);
2352 if (shrink == 0)
2353 val = 0;
2354 else
2355 val /= shrink;
2356
2357 vcpu->halt_poll_ns = val;
2358 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2359}
2360
2361static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2362{
2363 int ret = -EINTR;
2364 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2365
2366 if (kvm_arch_vcpu_runnable(vcpu)) {
2367 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2368 goto out;
2369 }
2370 if (kvm_cpu_has_pending_timer(vcpu))
2371 goto out;
2372 if (signal_pending(current))
2373 goto out;
2374
2375 ret = 0;
2376out:
2377 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2378 return ret;
2379}
2380
2381/*
2382 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2383 */
2384void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2385{
2386 ktime_t start, cur;
2387 DECLARE_SWAITQUEUE(wait);
2388 bool waited = false;
2389 u64 block_ns;
2390
2391 kvm_arch_vcpu_blocking(vcpu);
2392
2393 start = cur = ktime_get();
2394 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2395 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2396
2397 ++vcpu->stat.halt_attempted_poll;
2398 do {
2399 /*
2400 * This sets KVM_REQ_UNHALT if an interrupt
2401 * arrives.
2402 */
2403 if (kvm_vcpu_check_block(vcpu) < 0) {
2404 ++vcpu->stat.halt_successful_poll;
2405 if (!vcpu_valid_wakeup(vcpu))
2406 ++vcpu->stat.halt_poll_invalid;
2407 goto out;
2408 }
2409 cur = ktime_get();
2410 } while (single_task_running() && ktime_before(cur, stop));
2411 }
2412
2413 for (;;) {
2414 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2415
2416 if (kvm_vcpu_check_block(vcpu) < 0)
2417 break;
2418
2419 waited = true;
2420 schedule();
2421 }
2422
2423 finish_swait(&vcpu->wq, &wait);
2424 cur = ktime_get();
2425out:
2426 kvm_arch_vcpu_unblocking(vcpu);
2427 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2428
2429 if (!kvm_arch_no_poll(vcpu)) {
2430 if (!vcpu_valid_wakeup(vcpu)) {
2431 shrink_halt_poll_ns(vcpu);
2432 } else if (halt_poll_ns) {
2433 if (block_ns <= vcpu->halt_poll_ns)
2434 ;
2435 /* we had a long block, shrink polling */
2436 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2437 shrink_halt_poll_ns(vcpu);
2438 /* we had a short halt and our poll time is too small */
2439 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2440 block_ns < halt_poll_ns)
2441 grow_halt_poll_ns(vcpu);
2442 } else {
2443 vcpu->halt_poll_ns = 0;
2444 }
2445 }
2446
2447 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2448 kvm_arch_vcpu_block_finish(vcpu);
2449}
2450EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2451
2452bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2453{
2454 struct swait_queue_head *wqp;
2455
2456 wqp = kvm_arch_vcpu_wq(vcpu);
2457 if (swq_has_sleeper(wqp)) {
2458 swake_up_one(wqp);
2459 WRITE_ONCE(vcpu->ready, true);
2460 ++vcpu->stat.halt_wakeup;
2461 return true;
2462 }
2463
2464 return false;
2465}
2466EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2467
2468#ifndef CONFIG_S390
2469/*
2470 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2471 */
2472void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2473{
2474 int me;
2475 int cpu = vcpu->cpu;
2476
2477 if (kvm_vcpu_wake_up(vcpu))
2478 return;
2479
2480 me = get_cpu();
2481 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2482 if (kvm_arch_vcpu_should_kick(vcpu))
2483 smp_send_reschedule(cpu);
2484 put_cpu();
2485}
2486EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2487#endif /* !CONFIG_S390 */
2488
2489int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2490{
2491 struct pid *pid;
2492 struct task_struct *task = NULL;
2493 int ret = 0;
2494
2495 rcu_read_lock();
2496 pid = rcu_dereference(target->pid);
2497 if (pid)
2498 task = get_pid_task(pid, PIDTYPE_PID);
2499 rcu_read_unlock();
2500 if (!task)
2501 return ret;
2502 ret = yield_to(task, 1);
2503 put_task_struct(task);
2504
2505 return ret;
2506}
2507EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2508
2509/*
2510 * Helper that checks whether a VCPU is eligible for directed yield.
2511 * Most eligible candidate to yield is decided by following heuristics:
2512 *
2513 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2514 * (preempted lock holder), indicated by @in_spin_loop.
2515 * Set at the beiginning and cleared at the end of interception/PLE handler.
2516 *
2517 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2518 * chance last time (mostly it has become eligible now since we have probably
2519 * yielded to lockholder in last iteration. This is done by toggling
2520 * @dy_eligible each time a VCPU checked for eligibility.)
2521 *
2522 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2523 * to preempted lock-holder could result in wrong VCPU selection and CPU
2524 * burning. Giving priority for a potential lock-holder increases lock
2525 * progress.
2526 *
2527 * Since algorithm is based on heuristics, accessing another VCPU data without
2528 * locking does not harm. It may result in trying to yield to same VCPU, fail
2529 * and continue with next VCPU and so on.
2530 */
2531static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2532{
2533#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2534 bool eligible;
2535
2536 eligible = !vcpu->spin_loop.in_spin_loop ||
2537 vcpu->spin_loop.dy_eligible;
2538
2539 if (vcpu->spin_loop.in_spin_loop)
2540 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2541
2542 return eligible;
2543#else
2544 return true;
2545#endif
2546}
2547
2548/*
2549 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2550 * a vcpu_load/vcpu_put pair. However, for most architectures
2551 * kvm_arch_vcpu_runnable does not require vcpu_load.
2552 */
2553bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2554{
2555 return kvm_arch_vcpu_runnable(vcpu);
2556}
2557
2558static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2559{
2560 if (kvm_arch_dy_runnable(vcpu))
2561 return true;
2562
2563#ifdef CONFIG_KVM_ASYNC_PF
2564 if (!list_empty_careful(&vcpu->async_pf.done))
2565 return true;
2566#endif
2567
2568 return false;
2569}
2570
2571void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2572{
2573 struct kvm *kvm = me->kvm;
2574 struct kvm_vcpu *vcpu;
2575 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2576 int yielded = 0;
2577 int try = 3;
2578 int pass;
2579 int i;
2580
2581 kvm_vcpu_set_in_spin_loop(me, true);
2582 /*
2583 * We boost the priority of a VCPU that is runnable but not
2584 * currently running, because it got preempted by something
2585 * else and called schedule in __vcpu_run. Hopefully that
2586 * VCPU is holding the lock that we need and will release it.
2587 * We approximate round-robin by starting at the last boosted VCPU.
2588 */
2589 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2590 kvm_for_each_vcpu(i, vcpu, kvm) {
2591 if (!pass && i <= last_boosted_vcpu) {
2592 i = last_boosted_vcpu;
2593 continue;
2594 } else if (pass && i > last_boosted_vcpu)
2595 break;
2596 if (!READ_ONCE(vcpu->ready))
2597 continue;
2598 if (vcpu == me)
2599 continue;
2600 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2601 continue;
2602 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2603 !kvm_arch_vcpu_in_kernel(vcpu))
2604 continue;
2605 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2606 continue;
2607
2608 yielded = kvm_vcpu_yield_to(vcpu);
2609 if (yielded > 0) {
2610 kvm->last_boosted_vcpu = i;
2611 break;
2612 } else if (yielded < 0) {
2613 try--;
2614 if (!try)
2615 break;
2616 }
2617 }
2618 }
2619 kvm_vcpu_set_in_spin_loop(me, false);
2620
2621 /* Ensure vcpu is not eligible during next spinloop */
2622 kvm_vcpu_set_dy_eligible(me, false);
2623}
2624EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2625
2626static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2627{
2628 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2629 struct page *page;
2630
2631 if (vmf->pgoff == 0)
2632 page = virt_to_page(vcpu->run);
2633#ifdef CONFIG_X86
2634 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2635 page = virt_to_page(vcpu->arch.pio_data);
2636#endif
2637#ifdef CONFIG_KVM_MMIO
2638 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2639 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2640#endif
2641 else
2642 return kvm_arch_vcpu_fault(vcpu, vmf);
2643 get_page(page);
2644 vmf->page = page;
2645 return 0;
2646}
2647
2648static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2649 .fault = kvm_vcpu_fault,
2650};
2651
2652static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2653{
2654 vma->vm_ops = &kvm_vcpu_vm_ops;
2655 return 0;
2656}
2657
2658static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2659{
2660 struct kvm_vcpu *vcpu = filp->private_data;
2661
2662 debugfs_remove_recursive(vcpu->debugfs_dentry);
2663 kvm_put_kvm(vcpu->kvm);
2664 return 0;
2665}
2666
2667static struct file_operations kvm_vcpu_fops = {
2668 .release = kvm_vcpu_release,
2669 .unlocked_ioctl = kvm_vcpu_ioctl,
2670 .mmap = kvm_vcpu_mmap,
2671 .llseek = noop_llseek,
2672 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2673};
2674
2675/*
2676 * Allocates an inode for the vcpu.
2677 */
2678static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2679{
2680 char name[8 + 1 + ITOA_MAX_LEN + 1];
2681
2682 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2683 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2684}
2685
2686static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2687{
2688#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2689 char dir_name[ITOA_MAX_LEN * 2];
2690
2691 if (!debugfs_initialized())
2692 return;
2693
2694 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2695 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2696 vcpu->kvm->debugfs_dentry);
2697
2698 kvm_arch_create_vcpu_debugfs(vcpu);
2699#endif
2700}
2701
2702/*
2703 * Creates some virtual cpus. Good luck creating more than one.
2704 */
2705static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2706{
2707 int r;
2708 struct kvm_vcpu *vcpu;
2709
2710 if (id >= KVM_MAX_VCPU_ID)
2711 return -EINVAL;
2712
2713 mutex_lock(&kvm->lock);
2714 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2715 mutex_unlock(&kvm->lock);
2716 return -EINVAL;
2717 }
2718
2719 kvm->created_vcpus++;
2720 mutex_unlock(&kvm->lock);
2721
2722 vcpu = kvm_arch_vcpu_create(kvm, id);
2723 if (IS_ERR(vcpu)) {
2724 r = PTR_ERR(vcpu);
2725 goto vcpu_decrement;
2726 }
2727
2728 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2729
2730 r = kvm_arch_vcpu_setup(vcpu);
2731 if (r)
2732 goto vcpu_destroy;
2733
2734 kvm_create_vcpu_debugfs(vcpu);
2735
2736 mutex_lock(&kvm->lock);
2737 if (kvm_get_vcpu_by_id(kvm, id)) {
2738 r = -EEXIST;
2739 goto unlock_vcpu_destroy;
2740 }
2741
2742 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2743
2744 /* Now it's all set up, let userspace reach it */
2745 kvm_get_kvm(kvm);
2746 r = create_vcpu_fd(vcpu);
2747 if (r < 0) {
2748 kvm_put_kvm(kvm);
2749 goto unlock_vcpu_destroy;
2750 }
2751
2752 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2753
2754 /*
2755 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2756 * before kvm->online_vcpu's incremented value.
2757 */
2758 smp_wmb();
2759 atomic_inc(&kvm->online_vcpus);
2760
2761 mutex_unlock(&kvm->lock);
2762 kvm_arch_vcpu_postcreate(vcpu);
2763 return r;
2764
2765unlock_vcpu_destroy:
2766 mutex_unlock(&kvm->lock);
2767 debugfs_remove_recursive(vcpu->debugfs_dentry);
2768vcpu_destroy:
2769 kvm_arch_vcpu_destroy(vcpu);
2770vcpu_decrement:
2771 mutex_lock(&kvm->lock);
2772 kvm->created_vcpus--;
2773 mutex_unlock(&kvm->lock);
2774 return r;
2775}
2776
2777static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2778{
2779 if (sigset) {
2780 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2781 vcpu->sigset_active = 1;
2782 vcpu->sigset = *sigset;
2783 } else
2784 vcpu->sigset_active = 0;
2785 return 0;
2786}
2787
2788static long kvm_vcpu_ioctl(struct file *filp,
2789 unsigned int ioctl, unsigned long arg)
2790{
2791 struct kvm_vcpu *vcpu = filp->private_data;
2792 void __user *argp = (void __user *)arg;
2793 int r;
2794 struct kvm_fpu *fpu = NULL;
2795 struct kvm_sregs *kvm_sregs = NULL;
2796
2797 if (vcpu->kvm->mm != current->mm)
2798 return -EIO;
2799
2800 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2801 return -EINVAL;
2802
2803 /*
2804 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2805 * execution; mutex_lock() would break them.
2806 */
2807 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2808 if (r != -ENOIOCTLCMD)
2809 return r;
2810
2811 if (mutex_lock_killable(&vcpu->mutex))
2812 return -EINTR;
2813 switch (ioctl) {
2814 case KVM_RUN: {
2815 struct pid *oldpid;
2816 r = -EINVAL;
2817 if (arg)
2818 goto out;
2819 oldpid = rcu_access_pointer(vcpu->pid);
2820 if (unlikely(oldpid != task_pid(current))) {
2821 /* The thread running this VCPU changed. */
2822 struct pid *newpid;
2823
2824 r = kvm_arch_vcpu_run_pid_change(vcpu);
2825 if (r)
2826 break;
2827
2828 newpid = get_task_pid(current, PIDTYPE_PID);
2829 rcu_assign_pointer(vcpu->pid, newpid);
2830 if (oldpid)
2831 synchronize_rcu();
2832 put_pid(oldpid);
2833 }
2834 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2835 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2836 break;
2837 }
2838 case KVM_GET_REGS: {
2839 struct kvm_regs *kvm_regs;
2840
2841 r = -ENOMEM;
2842 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2843 if (!kvm_regs)
2844 goto out;
2845 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2846 if (r)
2847 goto out_free1;
2848 r = -EFAULT;
2849 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2850 goto out_free1;
2851 r = 0;
2852out_free1:
2853 kfree(kvm_regs);
2854 break;
2855 }
2856 case KVM_SET_REGS: {
2857 struct kvm_regs *kvm_regs;
2858
2859 r = -ENOMEM;
2860 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2861 if (IS_ERR(kvm_regs)) {
2862 r = PTR_ERR(kvm_regs);
2863 goto out;
2864 }
2865 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2866 kfree(kvm_regs);
2867 break;
2868 }
2869 case KVM_GET_SREGS: {
2870 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2871 GFP_KERNEL_ACCOUNT);
2872 r = -ENOMEM;
2873 if (!kvm_sregs)
2874 goto out;
2875 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2876 if (r)
2877 goto out;
2878 r = -EFAULT;
2879 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2880 goto out;
2881 r = 0;
2882 break;
2883 }
2884 case KVM_SET_SREGS: {
2885 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2886 if (IS_ERR(kvm_sregs)) {
2887 r = PTR_ERR(kvm_sregs);
2888 kvm_sregs = NULL;
2889 goto out;
2890 }
2891 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2892 break;
2893 }
2894 case KVM_GET_MP_STATE: {
2895 struct kvm_mp_state mp_state;
2896
2897 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2898 if (r)
2899 goto out;
2900 r = -EFAULT;
2901 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2902 goto out;
2903 r = 0;
2904 break;
2905 }
2906 case KVM_SET_MP_STATE: {
2907 struct kvm_mp_state mp_state;
2908
2909 r = -EFAULT;
2910 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2911 goto out;
2912 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2913 break;
2914 }
2915 case KVM_TRANSLATE: {
2916 struct kvm_translation tr;
2917
2918 r = -EFAULT;
2919 if (copy_from_user(&tr, argp, sizeof(tr)))
2920 goto out;
2921 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2922 if (r)
2923 goto out;
2924 r = -EFAULT;
2925 if (copy_to_user(argp, &tr, sizeof(tr)))
2926 goto out;
2927 r = 0;
2928 break;
2929 }
2930 case KVM_SET_GUEST_DEBUG: {
2931 struct kvm_guest_debug dbg;
2932
2933 r = -EFAULT;
2934 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2935 goto out;
2936 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2937 break;
2938 }
2939 case KVM_SET_SIGNAL_MASK: {
2940 struct kvm_signal_mask __user *sigmask_arg = argp;
2941 struct kvm_signal_mask kvm_sigmask;
2942 sigset_t sigset, *p;
2943
2944 p = NULL;
2945 if (argp) {
2946 r = -EFAULT;
2947 if (copy_from_user(&kvm_sigmask, argp,
2948 sizeof(kvm_sigmask)))
2949 goto out;
2950 r = -EINVAL;
2951 if (kvm_sigmask.len != sizeof(sigset))
2952 goto out;
2953 r = -EFAULT;
2954 if (copy_from_user(&sigset, sigmask_arg->sigset,
2955 sizeof(sigset)))
2956 goto out;
2957 p = &sigset;
2958 }
2959 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2960 break;
2961 }
2962 case KVM_GET_FPU: {
2963 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2964 r = -ENOMEM;
2965 if (!fpu)
2966 goto out;
2967 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2968 if (r)
2969 goto out;
2970 r = -EFAULT;
2971 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2972 goto out;
2973 r = 0;
2974 break;
2975 }
2976 case KVM_SET_FPU: {
2977 fpu = memdup_user(argp, sizeof(*fpu));
2978 if (IS_ERR(fpu)) {
2979 r = PTR_ERR(fpu);
2980 fpu = NULL;
2981 goto out;
2982 }
2983 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2984 break;
2985 }
2986 default:
2987 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2988 }
2989out:
2990 mutex_unlock(&vcpu->mutex);
2991 kfree(fpu);
2992 kfree(kvm_sregs);
2993 return r;
2994}
2995
2996#ifdef CONFIG_KVM_COMPAT
2997static long kvm_vcpu_compat_ioctl(struct file *filp,
2998 unsigned int ioctl, unsigned long arg)
2999{
3000 struct kvm_vcpu *vcpu = filp->private_data;
3001 void __user *argp = compat_ptr(arg);
3002 int r;
3003
3004 if (vcpu->kvm->mm != current->mm)
3005 return -EIO;
3006
3007 switch (ioctl) {
3008 case KVM_SET_SIGNAL_MASK: {
3009 struct kvm_signal_mask __user *sigmask_arg = argp;
3010 struct kvm_signal_mask kvm_sigmask;
3011 sigset_t sigset;
3012
3013 if (argp) {
3014 r = -EFAULT;
3015 if (copy_from_user(&kvm_sigmask, argp,
3016 sizeof(kvm_sigmask)))
3017 goto out;
3018 r = -EINVAL;
3019 if (kvm_sigmask.len != sizeof(compat_sigset_t))
3020 goto out;
3021 r = -EFAULT;
3022 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3023 goto out;
3024 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3025 } else
3026 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3027 break;
3028 }
3029 default:
3030 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3031 }
3032
3033out:
3034 return r;
3035}
3036#endif
3037
3038static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3039{
3040 struct kvm_device *dev = filp->private_data;
3041
3042 if (dev->ops->mmap)
3043 return dev->ops->mmap(dev, vma);
3044
3045 return -ENODEV;
3046}
3047
3048static int kvm_device_ioctl_attr(struct kvm_device *dev,
3049 int (*accessor)(struct kvm_device *dev,
3050 struct kvm_device_attr *attr),
3051 unsigned long arg)
3052{
3053 struct kvm_device_attr attr;
3054
3055 if (!accessor)
3056 return -EPERM;
3057
3058 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3059 return -EFAULT;
3060
3061 return accessor(dev, &attr);
3062}
3063
3064static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3065 unsigned long arg)
3066{
3067 struct kvm_device *dev = filp->private_data;
3068
3069 if (dev->kvm->mm != current->mm)
3070 return -EIO;
3071
3072 switch (ioctl) {
3073 case KVM_SET_DEVICE_ATTR:
3074 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3075 case KVM_GET_DEVICE_ATTR:
3076 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3077 case KVM_HAS_DEVICE_ATTR:
3078 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3079 default:
3080 if (dev->ops->ioctl)
3081 return dev->ops->ioctl(dev, ioctl, arg);
3082
3083 return -ENOTTY;
3084 }
3085}
3086
3087static int kvm_device_release(struct inode *inode, struct file *filp)
3088{
3089 struct kvm_device *dev = filp->private_data;
3090 struct kvm *kvm = dev->kvm;
3091
3092 if (dev->ops->release) {
3093 mutex_lock(&kvm->lock);
3094 list_del(&dev->vm_node);
3095 dev->ops->release(dev);
3096 mutex_unlock(&kvm->lock);
3097 }
3098
3099 kvm_put_kvm(kvm);
3100 return 0;
3101}
3102
3103static const struct file_operations kvm_device_fops = {
3104 .unlocked_ioctl = kvm_device_ioctl,
3105 .release = kvm_device_release,
3106 KVM_COMPAT(kvm_device_ioctl),
3107 .mmap = kvm_device_mmap,
3108};
3109
3110struct kvm_device *kvm_device_from_filp(struct file *filp)
3111{
3112 if (filp->f_op != &kvm_device_fops)
3113 return NULL;
3114
3115 return filp->private_data;
3116}
3117
3118static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3119#ifdef CONFIG_KVM_MPIC
3120 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
3121 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
3122#endif
3123};
3124
3125int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3126{
3127 if (type >= ARRAY_SIZE(kvm_device_ops_table))
3128 return -ENOSPC;
3129
3130 if (kvm_device_ops_table[type] != NULL)
3131 return -EEXIST;
3132
3133 kvm_device_ops_table[type] = ops;
3134 return 0;
3135}
3136
3137void kvm_unregister_device_ops(u32 type)
3138{
3139 if (kvm_device_ops_table[type] != NULL)
3140 kvm_device_ops_table[type] = NULL;
3141}
3142
3143static int kvm_ioctl_create_device(struct kvm *kvm,
3144 struct kvm_create_device *cd)
3145{
3146 struct kvm_device_ops *ops = NULL;
3147 struct kvm_device *dev;
3148 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3149 int type;
3150 int ret;
3151
3152 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3153 return -ENODEV;
3154
3155 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3156 ops = kvm_device_ops_table[type];
3157 if (ops == NULL)
3158 return -ENODEV;
3159
3160 if (test)
3161 return 0;
3162
3163 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3164 if (!dev)
3165 return -ENOMEM;
3166
3167 dev->ops = ops;
3168 dev->kvm = kvm;
3169
3170 mutex_lock(&kvm->lock);
3171 ret = ops->create(dev, type);
3172 if (ret < 0) {
3173 mutex_unlock(&kvm->lock);
3174 kfree(dev);
3175 return ret;
3176 }
3177 list_add(&dev->vm_node, &kvm->devices);
3178 mutex_unlock(&kvm->lock);
3179
3180 if (ops->init)
3181 ops->init(dev);
3182
3183 kvm_get_kvm(kvm);
3184 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3185 if (ret < 0) {
3186 kvm_put_kvm(kvm);
3187 mutex_lock(&kvm->lock);
3188 list_del(&dev->vm_node);
3189 mutex_unlock(&kvm->lock);
3190 ops->destroy(dev);
3191 return ret;
3192 }
3193
3194 cd->fd = ret;
3195 return 0;
3196}
3197
3198static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3199{
3200 switch (arg) {
3201 case KVM_CAP_USER_MEMORY:
3202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3203 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3204 case KVM_CAP_INTERNAL_ERROR_DATA:
3205#ifdef CONFIG_HAVE_KVM_MSI
3206 case KVM_CAP_SIGNAL_MSI:
3207#endif
3208#ifdef CONFIG_HAVE_KVM_IRQFD
3209 case KVM_CAP_IRQFD:
3210 case KVM_CAP_IRQFD_RESAMPLE:
3211#endif
3212 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3213 case KVM_CAP_CHECK_EXTENSION_VM:
3214 case KVM_CAP_ENABLE_CAP_VM:
3215#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3216 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3217#endif
3218 return 1;
3219#ifdef CONFIG_KVM_MMIO
3220 case KVM_CAP_COALESCED_MMIO:
3221 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3222 case KVM_CAP_COALESCED_PIO:
3223 return 1;
3224#endif
3225#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3226 case KVM_CAP_IRQ_ROUTING:
3227 return KVM_MAX_IRQ_ROUTES;
3228#endif
3229#if KVM_ADDRESS_SPACE_NUM > 1
3230 case KVM_CAP_MULTI_ADDRESS_SPACE:
3231 return KVM_ADDRESS_SPACE_NUM;
3232#endif
3233 case KVM_CAP_NR_MEMSLOTS:
3234 return KVM_USER_MEM_SLOTS;
3235 default:
3236 break;
3237 }
3238 return kvm_vm_ioctl_check_extension(kvm, arg);
3239}
3240
3241int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3242 struct kvm_enable_cap *cap)
3243{
3244 return -EINVAL;
3245}
3246
3247static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3248 struct kvm_enable_cap *cap)
3249{
3250 switch (cap->cap) {
3251#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3252 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3253 if (cap->flags || (cap->args[0] & ~1))
3254 return -EINVAL;
3255 kvm->manual_dirty_log_protect = cap->args[0];
3256 return 0;
3257#endif
3258 default:
3259 return kvm_vm_ioctl_enable_cap(kvm, cap);
3260 }
3261}
3262
3263static long kvm_vm_ioctl(struct file *filp,
3264 unsigned int ioctl, unsigned long arg)
3265{
3266 struct kvm *kvm = filp->private_data;
3267 void __user *argp = (void __user *)arg;
3268 int r;
3269
3270 if (kvm->mm != current->mm)
3271 return -EIO;
3272 switch (ioctl) {
3273 case KVM_CREATE_VCPU:
3274 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3275 break;
3276 case KVM_ENABLE_CAP: {
3277 struct kvm_enable_cap cap;
3278
3279 r = -EFAULT;
3280 if (copy_from_user(&cap, argp, sizeof(cap)))
3281 goto out;
3282 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3283 break;
3284 }
3285 case KVM_SET_USER_MEMORY_REGION: {
3286 struct kvm_userspace_memory_region kvm_userspace_mem;
3287
3288 r = -EFAULT;
3289 if (copy_from_user(&kvm_userspace_mem, argp,
3290 sizeof(kvm_userspace_mem)))
3291 goto out;
3292
3293 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3294 break;
3295 }
3296 case KVM_GET_DIRTY_LOG: {
3297 struct kvm_dirty_log log;
3298
3299 r = -EFAULT;
3300 if (copy_from_user(&log, argp, sizeof(log)))
3301 goto out;
3302 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3303 break;
3304 }
3305#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3306 case KVM_CLEAR_DIRTY_LOG: {
3307 struct kvm_clear_dirty_log log;
3308
3309 r = -EFAULT;
3310 if (copy_from_user(&log, argp, sizeof(log)))
3311 goto out;
3312 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3313 break;
3314 }
3315#endif
3316#ifdef CONFIG_KVM_MMIO
3317 case KVM_REGISTER_COALESCED_MMIO: {
3318 struct kvm_coalesced_mmio_zone zone;
3319
3320 r = -EFAULT;
3321 if (copy_from_user(&zone, argp, sizeof(zone)))
3322 goto out;
3323 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3324 break;
3325 }
3326 case KVM_UNREGISTER_COALESCED_MMIO: {
3327 struct kvm_coalesced_mmio_zone zone;
3328
3329 r = -EFAULT;
3330 if (copy_from_user(&zone, argp, sizeof(zone)))
3331 goto out;
3332 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3333 break;
3334 }
3335#endif
3336 case KVM_IRQFD: {
3337 struct kvm_irqfd data;
3338
3339 r = -EFAULT;
3340 if (copy_from_user(&data, argp, sizeof(data)))
3341 goto out;
3342 r = kvm_irqfd(kvm, &data);
3343 break;
3344 }
3345 case KVM_IOEVENTFD: {
3346 struct kvm_ioeventfd data;
3347
3348 r = -EFAULT;
3349 if (copy_from_user(&data, argp, sizeof(data)))
3350 goto out;
3351 r = kvm_ioeventfd(kvm, &data);
3352 break;
3353 }
3354#ifdef CONFIG_HAVE_KVM_MSI
3355 case KVM_SIGNAL_MSI: {
3356 struct kvm_msi msi;
3357
3358 r = -EFAULT;
3359 if (copy_from_user(&msi, argp, sizeof(msi)))
3360 goto out;
3361 r = kvm_send_userspace_msi(kvm, &msi);
3362 break;
3363 }
3364#endif
3365#ifdef __KVM_HAVE_IRQ_LINE
3366 case KVM_IRQ_LINE_STATUS:
3367 case KVM_IRQ_LINE: {
3368 struct kvm_irq_level irq_event;
3369
3370 r = -EFAULT;
3371 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3372 goto out;
3373
3374 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3375 ioctl == KVM_IRQ_LINE_STATUS);
3376 if (r)
3377 goto out;
3378
3379 r = -EFAULT;
3380 if (ioctl == KVM_IRQ_LINE_STATUS) {
3381 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3382 goto out;
3383 }
3384
3385 r = 0;
3386 break;
3387 }
3388#endif
3389#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3390 case KVM_SET_GSI_ROUTING: {
3391 struct kvm_irq_routing routing;
3392 struct kvm_irq_routing __user *urouting;
3393 struct kvm_irq_routing_entry *entries = NULL;
3394
3395 r = -EFAULT;
3396 if (copy_from_user(&routing, argp, sizeof(routing)))
3397 goto out;
3398 r = -EINVAL;
3399 if (!kvm_arch_can_set_irq_routing(kvm))
3400 goto out;
3401 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3402 goto out;
3403 if (routing.flags)
3404 goto out;
3405 if (routing.nr) {
3406 r = -ENOMEM;
3407 entries = vmalloc(array_size(sizeof(*entries),
3408 routing.nr));
3409 if (!entries)
3410 goto out;
3411 r = -EFAULT;
3412 urouting = argp;
3413 if (copy_from_user(entries, urouting->entries,
3414 routing.nr * sizeof(*entries)))
3415 goto out_free_irq_routing;
3416 }
3417 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3418 routing.flags);
3419out_free_irq_routing:
3420 vfree(entries);
3421 break;
3422 }
3423#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3424 case KVM_CREATE_DEVICE: {
3425 struct kvm_create_device cd;
3426
3427 r = -EFAULT;
3428 if (copy_from_user(&cd, argp, sizeof(cd)))
3429 goto out;
3430
3431 r = kvm_ioctl_create_device(kvm, &cd);
3432 if (r)
3433 goto out;
3434
3435 r = -EFAULT;
3436 if (copy_to_user(argp, &cd, sizeof(cd)))
3437 goto out;
3438
3439 r = 0;
3440 break;
3441 }
3442 case KVM_CHECK_EXTENSION:
3443 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3444 break;
3445 default:
3446 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3447 }
3448out:
3449 return r;
3450}
3451
3452#ifdef CONFIG_KVM_COMPAT
3453struct compat_kvm_dirty_log {
3454 __u32 slot;
3455 __u32 padding1;
3456 union {
3457 compat_uptr_t dirty_bitmap; /* one bit per page */
3458 __u64 padding2;
3459 };
3460};
3461
3462static long kvm_vm_compat_ioctl(struct file *filp,
3463 unsigned int ioctl, unsigned long arg)
3464{
3465 struct kvm *kvm = filp->private_data;
3466 int r;
3467
3468 if (kvm->mm != current->mm)
3469 return -EIO;
3470 switch (ioctl) {
3471 case KVM_GET_DIRTY_LOG: {
3472 struct compat_kvm_dirty_log compat_log;
3473 struct kvm_dirty_log log;
3474
3475 if (copy_from_user(&compat_log, (void __user *)arg,
3476 sizeof(compat_log)))
3477 return -EFAULT;
3478 log.slot = compat_log.slot;
3479 log.padding1 = compat_log.padding1;
3480 log.padding2 = compat_log.padding2;
3481 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3482
3483 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3484 break;
3485 }
3486 default:
3487 r = kvm_vm_ioctl(filp, ioctl, arg);
3488 }
3489 return r;
3490}
3491#endif
3492
3493static struct file_operations kvm_vm_fops = {
3494 .release = kvm_vm_release,
3495 .unlocked_ioctl = kvm_vm_ioctl,
3496 .llseek = noop_llseek,
3497 KVM_COMPAT(kvm_vm_compat_ioctl),
3498};
3499
3500static int kvm_dev_ioctl_create_vm(unsigned long type)
3501{
3502 int r;
3503 struct kvm *kvm;
3504 struct file *file;
3505
3506 kvm = kvm_create_vm(type);
3507 if (IS_ERR(kvm))
3508 return PTR_ERR(kvm);
3509#ifdef CONFIG_KVM_MMIO
3510 r = kvm_coalesced_mmio_init(kvm);
3511 if (r < 0)
3512 goto put_kvm;
3513#endif
3514 r = get_unused_fd_flags(O_CLOEXEC);
3515 if (r < 0)
3516 goto put_kvm;
3517
3518 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3519 if (IS_ERR(file)) {
3520 put_unused_fd(r);
3521 r = PTR_ERR(file);
3522 goto put_kvm;
3523 }
3524
3525 /*
3526 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3527 * already set, with ->release() being kvm_vm_release(). In error
3528 * cases it will be called by the final fput(file) and will take
3529 * care of doing kvm_put_kvm(kvm).
3530 */
3531 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3532 put_unused_fd(r);
3533 fput(file);
3534 return -ENOMEM;
3535 }
3536 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3537
3538 fd_install(r, file);
3539 return r;
3540
3541put_kvm:
3542 kvm_put_kvm(kvm);
3543 return r;
3544}
3545
3546static long kvm_dev_ioctl(struct file *filp,
3547 unsigned int ioctl, unsigned long arg)
3548{
3549 long r = -EINVAL;
3550
3551 switch (ioctl) {
3552 case KVM_GET_API_VERSION:
3553 if (arg)
3554 goto out;
3555 r = KVM_API_VERSION;
3556 break;
3557 case KVM_CREATE_VM:
3558 r = kvm_dev_ioctl_create_vm(arg);
3559 break;
3560 case KVM_CHECK_EXTENSION:
3561 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3562 break;
3563 case KVM_GET_VCPU_MMAP_SIZE:
3564 if (arg)
3565 goto out;
3566 r = PAGE_SIZE; /* struct kvm_run */
3567#ifdef CONFIG_X86
3568 r += PAGE_SIZE; /* pio data page */
3569#endif
3570#ifdef CONFIG_KVM_MMIO
3571 r += PAGE_SIZE; /* coalesced mmio ring page */
3572#endif
3573 break;
3574 case KVM_TRACE_ENABLE:
3575 case KVM_TRACE_PAUSE:
3576 case KVM_TRACE_DISABLE:
3577 r = -EOPNOTSUPP;
3578 break;
3579 default:
3580 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3581 }
3582out:
3583 return r;
3584}
3585
3586static struct file_operations kvm_chardev_ops = {
3587 .unlocked_ioctl = kvm_dev_ioctl,
3588 .llseek = noop_llseek,
3589 KVM_COMPAT(kvm_dev_ioctl),
3590};
3591
3592static struct miscdevice kvm_dev = {
3593 KVM_MINOR,
3594 "kvm",
3595 &kvm_chardev_ops,
3596};
3597
3598static void hardware_enable_nolock(void *junk)
3599{
3600 int cpu = raw_smp_processor_id();
3601 int r;
3602
3603 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3604 return;
3605
3606 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3607
3608 r = kvm_arch_hardware_enable();
3609
3610 if (r) {
3611 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3612 atomic_inc(&hardware_enable_failed);
3613 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3614 }
3615}
3616
3617static int kvm_starting_cpu(unsigned int cpu)
3618{
3619 raw_spin_lock(&kvm_count_lock);
3620 if (kvm_usage_count)
3621 hardware_enable_nolock(NULL);
3622 raw_spin_unlock(&kvm_count_lock);
3623 return 0;
3624}
3625
3626static void hardware_disable_nolock(void *junk)
3627{
3628 int cpu = raw_smp_processor_id();
3629
3630 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3631 return;
3632 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3633 kvm_arch_hardware_disable();
3634}
3635
3636static int kvm_dying_cpu(unsigned int cpu)
3637{
3638 raw_spin_lock(&kvm_count_lock);
3639 if (kvm_usage_count)
3640 hardware_disable_nolock(NULL);
3641 raw_spin_unlock(&kvm_count_lock);
3642 return 0;
3643}
3644
3645static void hardware_disable_all_nolock(void)
3646{
3647 BUG_ON(!kvm_usage_count);
3648
3649 kvm_usage_count--;
3650 if (!kvm_usage_count)
3651 on_each_cpu(hardware_disable_nolock, NULL, 1);
3652}
3653
3654static void hardware_disable_all(void)
3655{
3656 raw_spin_lock(&kvm_count_lock);
3657 hardware_disable_all_nolock();
3658 raw_spin_unlock(&kvm_count_lock);
3659}
3660
3661static int hardware_enable_all(void)
3662{
3663 int r = 0;
3664
3665 raw_spin_lock(&kvm_count_lock);
3666
3667 kvm_usage_count++;
3668 if (kvm_usage_count == 1) {
3669 atomic_set(&hardware_enable_failed, 0);
3670 on_each_cpu(hardware_enable_nolock, NULL, 1);
3671
3672 if (atomic_read(&hardware_enable_failed)) {
3673 hardware_disable_all_nolock();
3674 r = -EBUSY;
3675 }
3676 }
3677
3678 raw_spin_unlock(&kvm_count_lock);
3679
3680 return r;
3681}
3682
3683static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3684 void *v)
3685{
3686 /*
3687 * Some (well, at least mine) BIOSes hang on reboot if
3688 * in vmx root mode.
3689 *
3690 * And Intel TXT required VMX off for all cpu when system shutdown.
3691 */
3692 pr_info("kvm: exiting hardware virtualization\n");
3693 kvm_rebooting = true;
3694 on_each_cpu(hardware_disable_nolock, NULL, 1);
3695 return NOTIFY_OK;
3696}
3697
3698static struct notifier_block kvm_reboot_notifier = {
3699 .notifier_call = kvm_reboot,
3700 .priority = 0,
3701};
3702
3703static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3704{
3705 int i;
3706
3707 for (i = 0; i < bus->dev_count; i++) {
3708 struct kvm_io_device *pos = bus->range[i].dev;
3709
3710 kvm_iodevice_destructor(pos);
3711 }
3712 kfree(bus);
3713}
3714
3715static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3716 const struct kvm_io_range *r2)
3717{
3718 gpa_t addr1 = r1->addr;
3719 gpa_t addr2 = r2->addr;
3720
3721 if (addr1 < addr2)
3722 return -1;
3723
3724 /* If r2->len == 0, match the exact address. If r2->len != 0,
3725 * accept any overlapping write. Any order is acceptable for
3726 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3727 * we process all of them.
3728 */
3729 if (r2->len) {
3730 addr1 += r1->len;
3731 addr2 += r2->len;
3732 }
3733
3734 if (addr1 > addr2)
3735 return 1;
3736
3737 return 0;
3738}
3739
3740static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3741{
3742 return kvm_io_bus_cmp(p1, p2);
3743}
3744
3745static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3746 gpa_t addr, int len)
3747{
3748 struct kvm_io_range *range, key;
3749 int off;
3750
3751 key = (struct kvm_io_range) {
3752 .addr = addr,
3753 .len = len,
3754 };
3755
3756 range = bsearch(&key, bus->range, bus->dev_count,
3757 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3758 if (range == NULL)
3759 return -ENOENT;
3760
3761 off = range - bus->range;
3762
3763 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3764 off--;
3765
3766 return off;
3767}
3768
3769static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3770 struct kvm_io_range *range, const void *val)
3771{
3772 int idx;
3773
3774 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3775 if (idx < 0)
3776 return -EOPNOTSUPP;
3777
3778 while (idx < bus->dev_count &&
3779 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3780 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3781 range->len, val))
3782 return idx;
3783 idx++;
3784 }
3785
3786 return -EOPNOTSUPP;
3787}
3788
3789/* kvm_io_bus_write - called under kvm->slots_lock */
3790int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3791 int len, const void *val)
3792{
3793 struct kvm_io_bus *bus;
3794 struct kvm_io_range range;
3795 int r;
3796
3797 range = (struct kvm_io_range) {
3798 .addr = addr,
3799 .len = len,
3800 };
3801
3802 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3803 if (!bus)
3804 return -ENOMEM;
3805 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3806 return r < 0 ? r : 0;
3807}
3808EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3809
3810/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3811int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3812 gpa_t addr, int len, const void *val, long cookie)
3813{
3814 struct kvm_io_bus *bus;
3815 struct kvm_io_range range;
3816
3817 range = (struct kvm_io_range) {
3818 .addr = addr,
3819 .len = len,
3820 };
3821
3822 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3823 if (!bus)
3824 return -ENOMEM;
3825
3826 /* First try the device referenced by cookie. */
3827 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3828 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3829 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3830 val))
3831 return cookie;
3832
3833 /*
3834 * cookie contained garbage; fall back to search and return the
3835 * correct cookie value.
3836 */
3837 return __kvm_io_bus_write(vcpu, bus, &range, val);
3838}
3839
3840static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3841 struct kvm_io_range *range, void *val)
3842{
3843 int idx;
3844
3845 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3846 if (idx < 0)
3847 return -EOPNOTSUPP;
3848
3849 while (idx < bus->dev_count &&
3850 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3851 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3852 range->len, val))
3853 return idx;
3854 idx++;
3855 }
3856
3857 return -EOPNOTSUPP;
3858}
3859
3860/* kvm_io_bus_read - called under kvm->slots_lock */
3861int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3862 int len, void *val)
3863{
3864 struct kvm_io_bus *bus;
3865 struct kvm_io_range range;
3866 int r;
3867
3868 range = (struct kvm_io_range) {
3869 .addr = addr,
3870 .len = len,
3871 };
3872
3873 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3874 if (!bus)
3875 return -ENOMEM;
3876 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3877 return r < 0 ? r : 0;
3878}
3879
3880/* Caller must hold slots_lock. */
3881int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3882 int len, struct kvm_io_device *dev)
3883{
3884 int i;
3885 struct kvm_io_bus *new_bus, *bus;
3886 struct kvm_io_range range;
3887
3888 bus = kvm_get_bus(kvm, bus_idx);
3889 if (!bus)
3890 return -ENOMEM;
3891
3892 /* exclude ioeventfd which is limited by maximum fd */
3893 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3894 return -ENOSPC;
3895
3896 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3897 GFP_KERNEL_ACCOUNT);
3898 if (!new_bus)
3899 return -ENOMEM;
3900
3901 range = (struct kvm_io_range) {
3902 .addr = addr,
3903 .len = len,
3904 .dev = dev,
3905 };
3906
3907 for (i = 0; i < bus->dev_count; i++)
3908 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3909 break;
3910
3911 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3912 new_bus->dev_count++;
3913 new_bus->range[i] = range;
3914 memcpy(new_bus->range + i + 1, bus->range + i,
3915 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3916 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3917 synchronize_srcu_expedited(&kvm->srcu);
3918 kfree(bus);
3919
3920 return 0;
3921}
3922
3923/* Caller must hold slots_lock. */
3924void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3925 struct kvm_io_device *dev)
3926{
3927 int i;
3928 struct kvm_io_bus *new_bus, *bus;
3929
3930 bus = kvm_get_bus(kvm, bus_idx);
3931 if (!bus)
3932 return;
3933
3934 for (i = 0; i < bus->dev_count; i++)
3935 if (bus->range[i].dev == dev) {
3936 break;
3937 }
3938
3939 if (i == bus->dev_count)
3940 return;
3941
3942 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3943 GFP_KERNEL_ACCOUNT);
3944 if (!new_bus) {
3945 pr_err("kvm: failed to shrink bus, removing it completely\n");
3946 goto broken;
3947 }
3948
3949 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3950 new_bus->dev_count--;
3951 memcpy(new_bus->range + i, bus->range + i + 1,
3952 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3953
3954broken:
3955 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3956 synchronize_srcu_expedited(&kvm->srcu);
3957 kfree(bus);
3958 return;
3959}
3960
3961struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3962 gpa_t addr)
3963{
3964 struct kvm_io_bus *bus;
3965 int dev_idx, srcu_idx;
3966 struct kvm_io_device *iodev = NULL;
3967
3968 srcu_idx = srcu_read_lock(&kvm->srcu);
3969
3970 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3971 if (!bus)
3972 goto out_unlock;
3973
3974 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3975 if (dev_idx < 0)
3976 goto out_unlock;
3977
3978 iodev = bus->range[dev_idx].dev;
3979
3980out_unlock:
3981 srcu_read_unlock(&kvm->srcu, srcu_idx);
3982
3983 return iodev;
3984}
3985EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3986
3987static int kvm_debugfs_open(struct inode *inode, struct file *file,
3988 int (*get)(void *, u64 *), int (*set)(void *, u64),
3989 const char *fmt)
3990{
3991 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3992 inode->i_private;
3993
3994 /* The debugfs files are a reference to the kvm struct which
3995 * is still valid when kvm_destroy_vm is called.
3996 * To avoid the race between open and the removal of the debugfs
3997 * directory we test against the users count.
3998 */
3999 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4000 return -ENOENT;
4001
4002 if (simple_attr_open(inode, file, get,
4003 stat_data->mode & S_IWUGO ? set : NULL,
4004 fmt)) {
4005 kvm_put_kvm(stat_data->kvm);
4006 return -ENOMEM;
4007 }
4008
4009 return 0;
4010}
4011
4012static int kvm_debugfs_release(struct inode *inode, struct file *file)
4013{
4014 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4015 inode->i_private;
4016
4017 simple_attr_release(inode, file);
4018 kvm_put_kvm(stat_data->kvm);
4019
4020 return 0;
4021}
4022
4023static int vm_stat_get_per_vm(void *data, u64 *val)
4024{
4025 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4026
4027 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4028
4029 return 0;
4030}
4031
4032static int vm_stat_clear_per_vm(void *data, u64 val)
4033{
4034 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4035
4036 if (val)
4037 return -EINVAL;
4038
4039 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4040
4041 return 0;
4042}
4043
4044static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4045{
4046 __simple_attr_check_format("%llu\n", 0ull);
4047 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4048 vm_stat_clear_per_vm, "%llu\n");
4049}
4050
4051static const struct file_operations vm_stat_get_per_vm_fops = {
4052 .owner = THIS_MODULE,
4053 .open = vm_stat_get_per_vm_open,
4054 .release = kvm_debugfs_release,
4055 .read = simple_attr_read,
4056 .write = simple_attr_write,
4057 .llseek = no_llseek,
4058};
4059
4060static int vcpu_stat_get_per_vm(void *data, u64 *val)
4061{
4062 int i;
4063 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4064 struct kvm_vcpu *vcpu;
4065
4066 *val = 0;
4067
4068 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4069 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4070
4071 return 0;
4072}
4073
4074static int vcpu_stat_clear_per_vm(void *data, u64 val)
4075{
4076 int i;
4077 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4078 struct kvm_vcpu *vcpu;
4079
4080 if (val)
4081 return -EINVAL;
4082
4083 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4084 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4085
4086 return 0;
4087}
4088
4089static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4090{
4091 __simple_attr_check_format("%llu\n", 0ull);
4092 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4093 vcpu_stat_clear_per_vm, "%llu\n");
4094}
4095
4096static const struct file_operations vcpu_stat_get_per_vm_fops = {
4097 .owner = THIS_MODULE,
4098 .open = vcpu_stat_get_per_vm_open,
4099 .release = kvm_debugfs_release,
4100 .read = simple_attr_read,
4101 .write = simple_attr_write,
4102 .llseek = no_llseek,
4103};
4104
4105static const struct file_operations *stat_fops_per_vm[] = {
4106 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4107 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
4108};
4109
4110static int vm_stat_get(void *_offset, u64 *val)
4111{
4112 unsigned offset = (long)_offset;
4113 struct kvm *kvm;
4114 struct kvm_stat_data stat_tmp = {.offset = offset};
4115 u64 tmp_val;
4116
4117 *val = 0;
4118 mutex_lock(&kvm_lock);
4119 list_for_each_entry(kvm, &vm_list, vm_list) {
4120 stat_tmp.kvm = kvm;
4121 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4122 *val += tmp_val;
4123 }
4124 mutex_unlock(&kvm_lock);
4125 return 0;
4126}
4127
4128static int vm_stat_clear(void *_offset, u64 val)
4129{
4130 unsigned offset = (long)_offset;
4131 struct kvm *kvm;
4132 struct kvm_stat_data stat_tmp = {.offset = offset};
4133
4134 if (val)
4135 return -EINVAL;
4136
4137 mutex_lock(&kvm_lock);
4138 list_for_each_entry(kvm, &vm_list, vm_list) {
4139 stat_tmp.kvm = kvm;
4140 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4141 }
4142 mutex_unlock(&kvm_lock);
4143
4144 return 0;
4145}
4146
4147DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4148
4149static int vcpu_stat_get(void *_offset, u64 *val)
4150{
4151 unsigned offset = (long)_offset;
4152 struct kvm *kvm;
4153 struct kvm_stat_data stat_tmp = {.offset = offset};
4154 u64 tmp_val;
4155
4156 *val = 0;
4157 mutex_lock(&kvm_lock);
4158 list_for_each_entry(kvm, &vm_list, vm_list) {
4159 stat_tmp.kvm = kvm;
4160 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4161 *val += tmp_val;
4162 }
4163 mutex_unlock(&kvm_lock);
4164 return 0;
4165}
4166
4167static int vcpu_stat_clear(void *_offset, u64 val)
4168{
4169 unsigned offset = (long)_offset;
4170 struct kvm *kvm;
4171 struct kvm_stat_data stat_tmp = {.offset = offset};
4172
4173 if (val)
4174 return -EINVAL;
4175
4176 mutex_lock(&kvm_lock);
4177 list_for_each_entry(kvm, &vm_list, vm_list) {
4178 stat_tmp.kvm = kvm;
4179 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4180 }
4181 mutex_unlock(&kvm_lock);
4182
4183 return 0;
4184}
4185
4186DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4187 "%llu\n");
4188
4189static const struct file_operations *stat_fops[] = {
4190 [KVM_STAT_VCPU] = &vcpu_stat_fops,
4191 [KVM_STAT_VM] = &vm_stat_fops,
4192};
4193
4194static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4195{
4196 struct kobj_uevent_env *env;
4197 unsigned long long created, active;
4198
4199 if (!kvm_dev.this_device || !kvm)
4200 return;
4201
4202 mutex_lock(&kvm_lock);
4203 if (type == KVM_EVENT_CREATE_VM) {
4204 kvm_createvm_count++;
4205 kvm_active_vms++;
4206 } else if (type == KVM_EVENT_DESTROY_VM) {
4207 kvm_active_vms--;
4208 }
4209 created = kvm_createvm_count;
4210 active = kvm_active_vms;
4211 mutex_unlock(&kvm_lock);
4212
4213 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4214 if (!env)
4215 return;
4216
4217 add_uevent_var(env, "CREATED=%llu", created);
4218 add_uevent_var(env, "COUNT=%llu", active);
4219
4220 if (type == KVM_EVENT_CREATE_VM) {
4221 add_uevent_var(env, "EVENT=create");
4222 kvm->userspace_pid = task_pid_nr(current);
4223 } else if (type == KVM_EVENT_DESTROY_VM) {
4224 add_uevent_var(env, "EVENT=destroy");
4225 }
4226 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4227
4228 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4229 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4230
4231 if (p) {
4232 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4233 if (!IS_ERR(tmp))
4234 add_uevent_var(env, "STATS_PATH=%s", tmp);
4235 kfree(p);
4236 }
4237 }
4238 /* no need for checks, since we are adding at most only 5 keys */
4239 env->envp[env->envp_idx++] = NULL;
4240 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4241 kfree(env);
4242}
4243
4244static void kvm_init_debug(void)
4245{
4246 struct kvm_stats_debugfs_item *p;
4247
4248 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4249
4250 kvm_debugfs_num_entries = 0;
4251 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4252 int mode = p->mode ? p->mode : 0644;
4253 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4254 (void *)(long)p->offset,
4255 stat_fops[p->kind]);
4256 }
4257}
4258
4259static int kvm_suspend(void)
4260{
4261 if (kvm_usage_count)
4262 hardware_disable_nolock(NULL);
4263 return 0;
4264}
4265
4266static void kvm_resume(void)
4267{
4268 if (kvm_usage_count) {
4269#ifdef CONFIG_LOCKDEP
4270 WARN_ON(lockdep_is_held(&kvm_count_lock));
4271#endif
4272 hardware_enable_nolock(NULL);
4273 }
4274}
4275
4276static struct syscore_ops kvm_syscore_ops = {
4277 .suspend = kvm_suspend,
4278 .resume = kvm_resume,
4279};
4280
4281static inline
4282struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4283{
4284 return container_of(pn, struct kvm_vcpu, preempt_notifier);
4285}
4286
4287static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4288{
4289 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4290
4291 WRITE_ONCE(vcpu->preempted, false);
4292 WRITE_ONCE(vcpu->ready, false);
4293
4294 kvm_arch_sched_in(vcpu, cpu);
4295
4296 kvm_arch_vcpu_load(vcpu, cpu);
4297}
4298
4299static void kvm_sched_out(struct preempt_notifier *pn,
4300 struct task_struct *next)
4301{
4302 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4303
4304 if (current->state == TASK_RUNNING) {
4305 WRITE_ONCE(vcpu->preempted, true);
4306 WRITE_ONCE(vcpu->ready, true);
4307 }
4308 kvm_arch_vcpu_put(vcpu);
4309}
4310
4311static void check_processor_compat(void *rtn)
4312{
4313 *(int *)rtn = kvm_arch_check_processor_compat();
4314}
4315
4316int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4317 struct module *module)
4318{
4319 int r;
4320 int cpu;
4321
4322 r = kvm_arch_init(opaque);
4323 if (r)
4324 goto out_fail;
4325
4326 /*
4327 * kvm_arch_init makes sure there's at most one caller
4328 * for architectures that support multiple implementations,
4329 * like intel and amd on x86.
4330 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4331 * conflicts in case kvm is already setup for another implementation.
4332 */
4333 r = kvm_irqfd_init();
4334 if (r)
4335 goto out_irqfd;
4336
4337 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4338 r = -ENOMEM;
4339 goto out_free_0;
4340 }
4341
4342 r = kvm_arch_hardware_setup();
4343 if (r < 0)
4344 goto out_free_0a;
4345
4346 for_each_online_cpu(cpu) {
4347 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4348 if (r < 0)
4349 goto out_free_1;
4350 }
4351
4352 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4353 kvm_starting_cpu, kvm_dying_cpu);
4354 if (r)
4355 goto out_free_2;
4356 register_reboot_notifier(&kvm_reboot_notifier);
4357
4358 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4359 if (!vcpu_align)
4360 vcpu_align = __alignof__(struct kvm_vcpu);
4361 kvm_vcpu_cache =
4362 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4363 SLAB_ACCOUNT,
4364 offsetof(struct kvm_vcpu, arch),
4365 sizeof_field(struct kvm_vcpu, arch),
4366 NULL);
4367 if (!kvm_vcpu_cache) {
4368 r = -ENOMEM;
4369 goto out_free_3;
4370 }
4371
4372 r = kvm_async_pf_init();
4373 if (r)
4374 goto out_free;
4375
4376 kvm_chardev_ops.owner = module;
4377 kvm_vm_fops.owner = module;
4378 kvm_vcpu_fops.owner = module;
4379
4380 r = misc_register(&kvm_dev);
4381 if (r) {
4382 pr_err("kvm: misc device register failed\n");
4383 goto out_unreg;
4384 }
4385
4386 register_syscore_ops(&kvm_syscore_ops);
4387
4388 kvm_preempt_ops.sched_in = kvm_sched_in;
4389 kvm_preempt_ops.sched_out = kvm_sched_out;
4390
4391 kvm_init_debug();
4392
4393 r = kvm_vfio_ops_init();
4394 WARN_ON(r);
4395
4396 return 0;
4397
4398out_unreg:
4399 kvm_async_pf_deinit();
4400out_free:
4401 kmem_cache_destroy(kvm_vcpu_cache);
4402out_free_3:
4403 unregister_reboot_notifier(&kvm_reboot_notifier);
4404 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4405out_free_2:
4406out_free_1:
4407 kvm_arch_hardware_unsetup();
4408out_free_0a:
4409 free_cpumask_var(cpus_hardware_enabled);
4410out_free_0:
4411 kvm_irqfd_exit();
4412out_irqfd:
4413 kvm_arch_exit();
4414out_fail:
4415 return r;
4416}
4417EXPORT_SYMBOL_GPL(kvm_init);
4418
4419void kvm_exit(void)
4420{
4421 debugfs_remove_recursive(kvm_debugfs_dir);
4422 misc_deregister(&kvm_dev);
4423 kmem_cache_destroy(kvm_vcpu_cache);
4424 kvm_async_pf_deinit();
4425 unregister_syscore_ops(&kvm_syscore_ops);
4426 unregister_reboot_notifier(&kvm_reboot_notifier);
4427 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4428 on_each_cpu(hardware_disable_nolock, NULL, 1);
4429 kvm_arch_hardware_unsetup();
4430 kvm_arch_exit();
4431 kvm_irqfd_exit();
4432 free_cpumask_var(cpus_hardware_enabled);
4433 kvm_vfio_ops_exit();
4434}
4435EXPORT_SYMBOL_GPL(kvm_exit);
4436
4437struct kvm_vm_worker_thread_context {
4438 struct kvm *kvm;
4439 struct task_struct *parent;
4440 struct completion init_done;
4441 kvm_vm_thread_fn_t thread_fn;
4442 uintptr_t data;
4443 int err;
4444};
4445
4446static int kvm_vm_worker_thread(void *context)
4447{
4448 /*
4449 * The init_context is allocated on the stack of the parent thread, so
4450 * we have to locally copy anything that is needed beyond initialization
4451 */
4452 struct kvm_vm_worker_thread_context *init_context = context;
4453 struct kvm *kvm = init_context->kvm;
4454 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4455 uintptr_t data = init_context->data;
4456 int err;
4457
4458 err = kthread_park(current);
4459 /* kthread_park(current) is never supposed to return an error */
4460 WARN_ON(err != 0);
4461 if (err)
4462 goto init_complete;
4463
4464 err = cgroup_attach_task_all(init_context->parent, current);
4465 if (err) {
4466 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4467 __func__, err);
4468 goto init_complete;
4469 }
4470
4471 set_user_nice(current, task_nice(init_context->parent));
4472
4473init_complete:
4474 init_context->err = err;
4475 complete(&init_context->init_done);
4476 init_context = NULL;
4477
4478 if (err)
4479 return err;
4480
4481 /* Wait to be woken up by the spawner before proceeding. */
4482 kthread_parkme();
4483
4484 if (!kthread_should_stop())
4485 err = thread_fn(kvm, data);
4486
4487 return err;
4488}
4489
4490int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4491 uintptr_t data, const char *name,
4492 struct task_struct **thread_ptr)
4493{
4494 struct kvm_vm_worker_thread_context init_context = {};
4495 struct task_struct *thread;
4496
4497 *thread_ptr = NULL;
4498 init_context.kvm = kvm;
4499 init_context.parent = current;
4500 init_context.thread_fn = thread_fn;
4501 init_context.data = data;
4502 init_completion(&init_context.init_done);
4503
4504 thread = kthread_run(kvm_vm_worker_thread, &init_context,
4505 "%s-%d", name, task_pid_nr(current));
4506 if (IS_ERR(thread))
4507 return PTR_ERR(thread);
4508
4509 /* kthread_run is never supposed to return NULL */
4510 WARN_ON(thread == NULL);
4511
4512 wait_for_completion(&init_context.init_done);
4513
4514 if (!init_context.err)
4515 *thread_ptr = thread;
4516
4517 return init_context.err;
4518}