Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
 
 
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
 
 
 
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/ioctl.h>
  56#include <asm/uaccess.h>
  57#include <asm/pgtable.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
 
 
 
  66MODULE_AUTHOR("Qumranet");
  67MODULE_LICENSE("GPL");
  68
  69/* Architectures should define their poll value according to the halt latency */
  70static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  71module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
 
  72
  73/* Default doubles per-vcpu halt_poll_ns. */
  74static unsigned int halt_poll_ns_grow = 2;
  75module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
 
 
 
 
 
 
  76
  77/* Default resets per-vcpu halt_poll_ns . */
  78static unsigned int halt_poll_ns_shrink;
  79module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
 
  80
  81/*
  82 * Ordering of locks:
  83 *
  84 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  85 */
  86
  87DEFINE_SPINLOCK(kvm_lock);
  88static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  89LIST_HEAD(vm_list);
  90
  91static cpumask_var_t cpus_hardware_enabled;
  92static int kvm_usage_count;
  93static atomic_t hardware_enable_failed;
  94
  95struct kmem_cache *kvm_vcpu_cache;
  96EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  97
  98static __read_mostly struct preempt_ops kvm_preempt_ops;
  99
 100struct dentry *kvm_debugfs_dir;
 101EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 102
 
 
 
 103static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 104			   unsigned long arg);
 105#ifdef CONFIG_KVM_COMPAT
 106static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 107				  unsigned long arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108#endif
 109static int hardware_enable_all(void);
 110static void hardware_disable_all(void);
 111
 112static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 113
 114static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
 115static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 116
 117__visible bool kvm_rebooting;
 118EXPORT_SYMBOL_GPL(kvm_rebooting);
 119
 120static bool largepages_enabled = true;
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 123{
 
 
 
 
 
 124	if (pfn_valid(pfn))
 125		return PageReserved(pfn_to_page(pfn));
 
 126
 127	return true;
 128}
 129
 130/*
 131 * Switches to specified vcpu, until a matching vcpu_put()
 132 */
 133int vcpu_load(struct kvm_vcpu *vcpu)
 134{
 135	int cpu;
 136
 137	if (mutex_lock_killable(&vcpu->mutex))
 138		return -EINTR;
 139	cpu = get_cpu();
 140	preempt_notifier_register(&vcpu->preempt_notifier);
 141	kvm_arch_vcpu_load(vcpu, cpu);
 142	put_cpu();
 143	return 0;
 144}
 
 145
 146void vcpu_put(struct kvm_vcpu *vcpu)
 147{
 148	preempt_disable();
 149	kvm_arch_vcpu_put(vcpu);
 150	preempt_notifier_unregister(&vcpu->preempt_notifier);
 151	preempt_enable();
 152	mutex_unlock(&vcpu->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153}
 154
 155static void ack_flush(void *_completed)
 156{
 157}
 158
 159bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 160{
 161	int i, cpu, me;
 162	cpumask_var_t cpus;
 163	bool called = true;
 164	struct kvm_vcpu *vcpu;
 165
 166	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 167
 168	me = get_cpu();
 
 169	kvm_for_each_vcpu(i, vcpu, kvm) {
 
 
 
 170		kvm_make_request(req, vcpu);
 171		cpu = vcpu->cpu;
 172
 173		/* Set ->requests bit before we read ->mode. */
 174		smp_mb__after_atomic();
 175
 176		if (cpus != NULL && cpu != -1 && cpu != me &&
 177		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 178			cpumask_set_cpu(cpu, cpus);
 179	}
 180	if (unlikely(cpus == NULL))
 181		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 182	else if (!cpumask_empty(cpus))
 183		smp_call_function_many(cpus, ack_flush, NULL, 1);
 184	else
 185		called = false;
 186	put_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 187	free_cpumask_var(cpus);
 188	return called;
 189}
 190
 191#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 192void kvm_flush_remote_tlbs(struct kvm *kvm)
 193{
 194	/*
 195	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 196	 * kvm_make_all_cpus_request.
 197	 */
 198	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 199
 200	/*
 201	 * We want to publish modifications to the page tables before reading
 202	 * mode. Pairs with a memory barrier in arch-specific code.
 203	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 204	 * and smp_mb in walk_shadow_page_lockless_begin/end.
 205	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 206	 *
 207	 * There is already an smp_mb__after_atomic() before
 208	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 209	 * barrier here.
 210	 */
 211	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 
 212		++kvm->stat.remote_tlb_flush;
 213	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 214}
 215EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 216#endif
 217
 218void kvm_reload_remote_mmus(struct kvm *kvm)
 219{
 220	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 221}
 222
 223int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 224{
 225	struct page *page;
 226	int r;
 227
 228	mutex_init(&vcpu->mutex);
 229	vcpu->cpu = -1;
 230	vcpu->kvm = kvm;
 231	vcpu->vcpu_id = id;
 232	vcpu->pid = NULL;
 233	init_swait_queue_head(&vcpu->wq);
 234	kvm_async_pf_vcpu_init(vcpu);
 235
 236	vcpu->pre_pcpu = -1;
 237	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 238
 239	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 240	if (!page) {
 241		r = -ENOMEM;
 242		goto fail;
 243	}
 244	vcpu->run = page_address(page);
 245
 246	kvm_vcpu_set_in_spin_loop(vcpu, false);
 247	kvm_vcpu_set_dy_eligible(vcpu, false);
 248	vcpu->preempted = false;
 
 249
 250	r = kvm_arch_vcpu_init(vcpu);
 251	if (r < 0)
 252		goto fail_free_run;
 253	return 0;
 254
 255fail_free_run:
 256	free_page((unsigned long)vcpu->run);
 257fail:
 258	return r;
 259}
 260EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 261
 262void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 263{
 264	put_pid(vcpu->pid);
 
 
 
 
 
 265	kvm_arch_vcpu_uninit(vcpu);
 266	free_page((unsigned long)vcpu->run);
 267}
 268EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 269
 270#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 271static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 272{
 273	return container_of(mn, struct kvm, mmu_notifier);
 274}
 275
 276static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 277					     struct mm_struct *mm,
 278					     unsigned long address)
 279{
 280	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 281	int need_tlb_flush, idx;
 282
 283	/*
 284	 * When ->invalidate_page runs, the linux pte has been zapped
 285	 * already but the page is still allocated until
 286	 * ->invalidate_page returns. So if we increase the sequence
 287	 * here the kvm page fault will notice if the spte can't be
 288	 * established because the page is going to be freed. If
 289	 * instead the kvm page fault establishes the spte before
 290	 * ->invalidate_page runs, kvm_unmap_hva will release it
 291	 * before returning.
 292	 *
 293	 * The sequence increase only need to be seen at spin_unlock
 294	 * time, and not at spin_lock time.
 295	 *
 296	 * Increasing the sequence after the spin_unlock would be
 297	 * unsafe because the kvm page fault could then establish the
 298	 * pte after kvm_unmap_hva returned, without noticing the page
 299	 * is going to be freed.
 300	 */
 301	idx = srcu_read_lock(&kvm->srcu);
 302	spin_lock(&kvm->mmu_lock);
 303
 304	kvm->mmu_notifier_seq++;
 305	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 306	/* we've to flush the tlb before the pages can be freed */
 307	if (need_tlb_flush)
 308		kvm_flush_remote_tlbs(kvm);
 309
 310	spin_unlock(&kvm->mmu_lock);
 311
 312	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
 313
 314	srcu_read_unlock(&kvm->srcu, idx);
 315}
 316
 317static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 318					struct mm_struct *mm,
 319					unsigned long address,
 320					pte_t pte)
 321{
 322	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 323	int idx;
 324
 325	idx = srcu_read_lock(&kvm->srcu);
 326	spin_lock(&kvm->mmu_lock);
 327	kvm->mmu_notifier_seq++;
 328	kvm_set_spte_hva(kvm, address, pte);
 
 
 
 329	spin_unlock(&kvm->mmu_lock);
 330	srcu_read_unlock(&kvm->srcu, idx);
 331}
 332
 333static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 334						    struct mm_struct *mm,
 335						    unsigned long start,
 336						    unsigned long end)
 337{
 338	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 339	int need_tlb_flush = 0, idx;
 
 340
 341	idx = srcu_read_lock(&kvm->srcu);
 342	spin_lock(&kvm->mmu_lock);
 343	/*
 344	 * The count increase must become visible at unlock time as no
 345	 * spte can be established without taking the mmu_lock and
 346	 * count is also read inside the mmu_lock critical section.
 347	 */
 348	kvm->mmu_notifier_count++;
 349	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 350	need_tlb_flush |= kvm->tlbs_dirty;
 351	/* we've to flush the tlb before the pages can be freed */
 352	if (need_tlb_flush)
 353		kvm_flush_remote_tlbs(kvm);
 354
 355	spin_unlock(&kvm->mmu_lock);
 
 
 
 
 
 356	srcu_read_unlock(&kvm->srcu, idx);
 
 
 357}
 358
 359static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 360						  struct mm_struct *mm,
 361						  unsigned long start,
 362						  unsigned long end)
 363{
 364	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 365
 366	spin_lock(&kvm->mmu_lock);
 367	/*
 368	 * This sequence increase will notify the kvm page fault that
 369	 * the page that is going to be mapped in the spte could have
 370	 * been freed.
 371	 */
 372	kvm->mmu_notifier_seq++;
 373	smp_wmb();
 374	/*
 375	 * The above sequence increase must be visible before the
 376	 * below count decrease, which is ensured by the smp_wmb above
 377	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 378	 */
 379	kvm->mmu_notifier_count--;
 380	spin_unlock(&kvm->mmu_lock);
 381
 382	BUG_ON(kvm->mmu_notifier_count < 0);
 383}
 384
 385static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 386					      struct mm_struct *mm,
 387					      unsigned long start,
 388					      unsigned long end)
 389{
 390	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 391	int young, idx;
 392
 393	idx = srcu_read_lock(&kvm->srcu);
 394	spin_lock(&kvm->mmu_lock);
 395
 396	young = kvm_age_hva(kvm, start, end);
 397	if (young)
 398		kvm_flush_remote_tlbs(kvm);
 399
 400	spin_unlock(&kvm->mmu_lock);
 401	srcu_read_unlock(&kvm->srcu, idx);
 402
 403	return young;
 404}
 405
 406static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 407					struct mm_struct *mm,
 408					unsigned long start,
 409					unsigned long end)
 410{
 411	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 412	int young, idx;
 413
 414	idx = srcu_read_lock(&kvm->srcu);
 415	spin_lock(&kvm->mmu_lock);
 416	/*
 417	 * Even though we do not flush TLB, this will still adversely
 418	 * affect performance on pre-Haswell Intel EPT, where there is
 419	 * no EPT Access Bit to clear so that we have to tear down EPT
 420	 * tables instead. If we find this unacceptable, we can always
 421	 * add a parameter to kvm_age_hva so that it effectively doesn't
 422	 * do anything on clear_young.
 423	 *
 424	 * Also note that currently we never issue secondary TLB flushes
 425	 * from clear_young, leaving this job up to the regular system
 426	 * cadence. If we find this inaccurate, we might come up with a
 427	 * more sophisticated heuristic later.
 428	 */
 429	young = kvm_age_hva(kvm, start, end);
 430	spin_unlock(&kvm->mmu_lock);
 431	srcu_read_unlock(&kvm->srcu, idx);
 432
 433	return young;
 434}
 435
 436static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 437				       struct mm_struct *mm,
 438				       unsigned long address)
 439{
 440	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 441	int young, idx;
 442
 443	idx = srcu_read_lock(&kvm->srcu);
 444	spin_lock(&kvm->mmu_lock);
 445	young = kvm_test_age_hva(kvm, address);
 446	spin_unlock(&kvm->mmu_lock);
 447	srcu_read_unlock(&kvm->srcu, idx);
 448
 449	return young;
 450}
 451
 452static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 453				     struct mm_struct *mm)
 454{
 455	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 456	int idx;
 457
 458	idx = srcu_read_lock(&kvm->srcu);
 459	kvm_arch_flush_shadow_all(kvm);
 460	srcu_read_unlock(&kvm->srcu, idx);
 461}
 462
 463static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 464	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
 465	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 466	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 467	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 468	.clear_young		= kvm_mmu_notifier_clear_young,
 469	.test_young		= kvm_mmu_notifier_test_young,
 470	.change_pte		= kvm_mmu_notifier_change_pte,
 471	.release		= kvm_mmu_notifier_release,
 472};
 473
 474static int kvm_init_mmu_notifier(struct kvm *kvm)
 475{
 476	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 477	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 478}
 479
 480#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 481
 482static int kvm_init_mmu_notifier(struct kvm *kvm)
 483{
 484	return 0;
 485}
 486
 487#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 488
 489static struct kvm_memslots *kvm_alloc_memslots(void)
 490{
 491	int i;
 492	struct kvm_memslots *slots;
 493
 494	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 495	if (!slots)
 496		return NULL;
 497
 498	/*
 499	 * Init kvm generation close to the maximum to easily test the
 500	 * code of handling generation number wrap-around.
 501	 */
 502	slots->generation = -150;
 503	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 504		slots->id_to_index[i] = slots->memslots[i].id = i;
 505
 506	return slots;
 507}
 508
 509static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 510{
 511	if (!memslot->dirty_bitmap)
 512		return;
 513
 514	kvfree(memslot->dirty_bitmap);
 515	memslot->dirty_bitmap = NULL;
 516}
 517
 518/*
 519 * Free any memory in @free but not in @dont.
 520 */
 521static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 522			      struct kvm_memory_slot *dont)
 523{
 524	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 525		kvm_destroy_dirty_bitmap(free);
 526
 527	kvm_arch_free_memslot(kvm, free, dont);
 528
 529	free->npages = 0;
 530}
 531
 532static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 533{
 534	struct kvm_memory_slot *memslot;
 535
 536	if (!slots)
 537		return;
 538
 539	kvm_for_each_memslot(memslot, slots)
 540		kvm_free_memslot(kvm, memslot, NULL);
 541
 542	kvfree(slots);
 543}
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545static struct kvm *kvm_create_vm(unsigned long type)
 546{
 547	int r, i;
 548	struct kvm *kvm = kvm_arch_alloc_vm();
 
 
 549
 550	if (!kvm)
 551		return ERR_PTR(-ENOMEM);
 552
 553	spin_lock_init(&kvm->mmu_lock);
 554	atomic_inc(&current->mm->mm_count);
 555	kvm->mm = current->mm;
 556	kvm_eventfd_init(kvm);
 557	mutex_init(&kvm->lock);
 558	mutex_init(&kvm->irq_lock);
 559	mutex_init(&kvm->slots_lock);
 560	atomic_set(&kvm->users_count, 1);
 561	INIT_LIST_HEAD(&kvm->devices);
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563	r = kvm_arch_init_vm(kvm, type);
 564	if (r)
 565		goto out_err_no_disable;
 566
 567	r = hardware_enable_all();
 568	if (r)
 569		goto out_err_no_disable;
 570
 571#ifdef CONFIG_HAVE_KVM_IRQFD
 572	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 573#endif
 574
 575	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 576
 577	r = -ENOMEM;
 578	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 579		kvm->memslots[i] = kvm_alloc_memslots();
 580		if (!kvm->memslots[i])
 581			goto out_err_no_srcu;
 582	}
 583
 584	if (init_srcu_struct(&kvm->srcu))
 585		goto out_err_no_srcu;
 586	if (init_srcu_struct(&kvm->irq_srcu))
 587		goto out_err_no_irq_srcu;
 588	for (i = 0; i < KVM_NR_BUSES; i++) {
 589		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 590					GFP_KERNEL);
 591		if (!kvm->buses[i])
 592			goto out_err;
 593	}
 594
 595	r = kvm_init_mmu_notifier(kvm);
 596	if (r)
 
 
 
 
 597		goto out_err;
 598
 599	spin_lock(&kvm_lock);
 600	list_add(&kvm->vm_list, &vm_list);
 601	spin_unlock(&kvm_lock);
 602
 603	preempt_notifier_inc();
 604
 605	return kvm;
 606
 607out_err:
 608	cleanup_srcu_struct(&kvm->irq_srcu);
 609out_err_no_irq_srcu:
 610	cleanup_srcu_struct(&kvm->srcu);
 611out_err_no_srcu:
 
 612	hardware_disable_all();
 613out_err_no_disable:
 
 
 
 614	for (i = 0; i < KVM_NR_BUSES; i++)
 615		kfree(kvm->buses[i]);
 616	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 617		kvm_free_memslots(kvm, kvm->memslots[i]);
 
 
 
 
 618	kvm_arch_free_vm(kvm);
 619	mmdrop(current->mm);
 620	return ERR_PTR(r);
 621}
 622
 623/*
 624 * Avoid using vmalloc for a small buffer.
 625 * Should not be used when the size is statically known.
 626 */
 627void *kvm_kvzalloc(unsigned long size)
 628{
 629	if (size > PAGE_SIZE)
 630		return vzalloc(size);
 631	else
 632		return kzalloc(size, GFP_KERNEL);
 633}
 634
 635static void kvm_destroy_devices(struct kvm *kvm)
 636{
 637	struct kvm_device *dev, *tmp;
 638
 
 
 
 
 
 639	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 640		list_del(&dev->vm_node);
 641		dev->ops->destroy(dev);
 642	}
 643}
 644
 645static void kvm_destroy_vm(struct kvm *kvm)
 646{
 647	int i;
 648	struct mm_struct *mm = kvm->mm;
 649
 
 
 650	kvm_arch_sync_events(kvm);
 651	spin_lock(&kvm_lock);
 652	list_del(&kvm->vm_list);
 653	spin_unlock(&kvm_lock);
 
 
 654	kvm_free_irq_routing(kvm);
 655	for (i = 0; i < KVM_NR_BUSES; i++)
 656		kvm_io_bus_destroy(kvm->buses[i]);
 
 
 
 
 
 657	kvm_coalesced_mmio_free(kvm);
 658#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 659	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 660#else
 661	kvm_arch_flush_shadow_all(kvm);
 662#endif
 663	kvm_arch_destroy_vm(kvm);
 664	kvm_destroy_devices(kvm);
 665	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 666		kvm_free_memslots(kvm, kvm->memslots[i]);
 667	cleanup_srcu_struct(&kvm->irq_srcu);
 668	cleanup_srcu_struct(&kvm->srcu);
 669	kvm_arch_free_vm(kvm);
 670	preempt_notifier_dec();
 671	hardware_disable_all();
 672	mmdrop(mm);
 673}
 674
 675void kvm_get_kvm(struct kvm *kvm)
 676{
 677	atomic_inc(&kvm->users_count);
 678}
 679EXPORT_SYMBOL_GPL(kvm_get_kvm);
 680
 681void kvm_put_kvm(struct kvm *kvm)
 682{
 683	if (atomic_dec_and_test(&kvm->users_count))
 684		kvm_destroy_vm(kvm);
 685}
 686EXPORT_SYMBOL_GPL(kvm_put_kvm);
 687
 688
 689static int kvm_vm_release(struct inode *inode, struct file *filp)
 690{
 691	struct kvm *kvm = filp->private_data;
 692
 693	kvm_irqfd_release(kvm);
 694
 695	kvm_put_kvm(kvm);
 696	return 0;
 697}
 698
 699/*
 700 * Allocation size is twice as large as the actual dirty bitmap size.
 701 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 702 */
 703static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 704{
 705	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 706
 707	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
 708	if (!memslot->dirty_bitmap)
 709		return -ENOMEM;
 710
 711	return 0;
 712}
 713
 714/*
 715 * Insert memslot and re-sort memslots based on their GFN,
 716 * so binary search could be used to lookup GFN.
 717 * Sorting algorithm takes advantage of having initially
 718 * sorted array and known changed memslot position.
 719 */
 720static void update_memslots(struct kvm_memslots *slots,
 721			    struct kvm_memory_slot *new)
 
 722{
 723	int id = new->id;
 724	int i = slots->id_to_index[id];
 725	struct kvm_memory_slot *mslots = slots->memslots;
 726
 727	WARN_ON(mslots[i].id != id);
 728	if (!new->npages) {
 729		WARN_ON(!mslots[i].npages);
 730		if (mslots[i].npages)
 731			slots->used_slots--;
 732	} else {
 733		if (!mslots[i].npages)
 734			slots->used_slots++;
 
 
 
 
 735	}
 736
 737	while (i < KVM_MEM_SLOTS_NUM - 1 &&
 738	       new->base_gfn <= mslots[i + 1].base_gfn) {
 739		if (!mslots[i + 1].npages)
 740			break;
 741		mslots[i] = mslots[i + 1];
 742		slots->id_to_index[mslots[i].id] = i;
 743		i++;
 744	}
 745
 746	/*
 747	 * The ">=" is needed when creating a slot with base_gfn == 0,
 748	 * so that it moves before all those with base_gfn == npages == 0.
 749	 *
 750	 * On the other hand, if new->npages is zero, the above loop has
 751	 * already left i pointing to the beginning of the empty part of
 752	 * mslots, and the ">=" would move the hole backwards in this
 753	 * case---which is wrong.  So skip the loop when deleting a slot.
 754	 */
 755	if (new->npages) {
 756		while (i > 0 &&
 757		       new->base_gfn >= mslots[i - 1].base_gfn) {
 758			mslots[i] = mslots[i - 1];
 759			slots->id_to_index[mslots[i].id] = i;
 760			i--;
 761		}
 762	} else
 763		WARN_ON_ONCE(i != slots->used_slots);
 764
 765	mslots[i] = *new;
 766	slots->id_to_index[mslots[i].id] = i;
 767}
 768
 769static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 770{
 771	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 772
 773#ifdef __KVM_HAVE_READONLY_MEM
 774	valid_flags |= KVM_MEM_READONLY;
 775#endif
 776
 777	if (mem->flags & ~valid_flags)
 778		return -EINVAL;
 779
 780	return 0;
 781}
 782
 783static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 784		int as_id, struct kvm_memslots *slots)
 785{
 786	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 
 787
 788	/*
 789	 * Set the low bit in the generation, which disables SPTE caching
 790	 * until the end of synchronize_srcu_expedited.
 791	 */
 792	WARN_ON(old_memslots->generation & 1);
 793	slots->generation = old_memslots->generation + 1;
 794
 795	rcu_assign_pointer(kvm->memslots[as_id], slots);
 796	synchronize_srcu_expedited(&kvm->srcu);
 797
 798	/*
 799	 * Increment the new memslot generation a second time. This prevents
 800	 * vm exits that race with memslot updates from caching a memslot
 801	 * generation that will (potentially) be valid forever.
 
 
 
 
 
 
 
 
 
 
 802	 */
 803	slots->generation++;
 804
 805	kvm_arch_memslots_updated(kvm, slots);
 
 
 806
 807	return old_memslots;
 808}
 809
 810/*
 811 * Allocate some memory and give it an address in the guest physical address
 812 * space.
 813 *
 814 * Discontiguous memory is allowed, mostly for framebuffers.
 815 *
 816 * Must be called holding kvm->slots_lock for write.
 817 */
 818int __kvm_set_memory_region(struct kvm *kvm,
 819			    const struct kvm_userspace_memory_region *mem)
 820{
 821	int r;
 822	gfn_t base_gfn;
 823	unsigned long npages;
 824	struct kvm_memory_slot *slot;
 825	struct kvm_memory_slot old, new;
 826	struct kvm_memslots *slots = NULL, *old_memslots;
 827	int as_id, id;
 828	enum kvm_mr_change change;
 829
 830	r = check_memory_region_flags(mem);
 831	if (r)
 832		goto out;
 833
 834	r = -EINVAL;
 835	as_id = mem->slot >> 16;
 836	id = (u16)mem->slot;
 837
 838	/* General sanity checks */
 839	if (mem->memory_size & (PAGE_SIZE - 1))
 840		goto out;
 841	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 842		goto out;
 843	/* We can read the guest memory with __xxx_user() later on. */
 844	if ((id < KVM_USER_MEM_SLOTS) &&
 845	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 846	     !access_ok(VERIFY_WRITE,
 847			(void __user *)(unsigned long)mem->userspace_addr,
 848			mem->memory_size)))
 849		goto out;
 850	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 851		goto out;
 852	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 853		goto out;
 854
 855	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 856	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 857	npages = mem->memory_size >> PAGE_SHIFT;
 858
 859	if (npages > KVM_MEM_MAX_NR_PAGES)
 860		goto out;
 861
 862	new = old = *slot;
 863
 864	new.id = id;
 865	new.base_gfn = base_gfn;
 866	new.npages = npages;
 867	new.flags = mem->flags;
 868
 869	if (npages) {
 870		if (!old.npages)
 871			change = KVM_MR_CREATE;
 872		else { /* Modify an existing slot. */
 873			if ((mem->userspace_addr != old.userspace_addr) ||
 874			    (npages != old.npages) ||
 875			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 876				goto out;
 877
 878			if (base_gfn != old.base_gfn)
 879				change = KVM_MR_MOVE;
 880			else if (new.flags != old.flags)
 881				change = KVM_MR_FLAGS_ONLY;
 882			else { /* Nothing to change. */
 883				r = 0;
 884				goto out;
 885			}
 886		}
 887	} else {
 888		if (!old.npages)
 889			goto out;
 890
 891		change = KVM_MR_DELETE;
 892		new.base_gfn = 0;
 893		new.flags = 0;
 894	}
 895
 896	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 897		/* Check for overlaps */
 898		r = -EEXIST;
 899		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 900			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 901			    (slot->id == id))
 902				continue;
 903			if (!((base_gfn + npages <= slot->base_gfn) ||
 904			      (base_gfn >= slot->base_gfn + slot->npages)))
 905				goto out;
 906		}
 907	}
 908
 909	/* Free page dirty bitmap if unneeded */
 910	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 911		new.dirty_bitmap = NULL;
 912
 913	r = -ENOMEM;
 914	if (change == KVM_MR_CREATE) {
 915		new.userspace_addr = mem->userspace_addr;
 916
 917		if (kvm_arch_create_memslot(kvm, &new, npages))
 918			goto out_free;
 919	}
 920
 921	/* Allocate page dirty bitmap if needed */
 922	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 923		if (kvm_create_dirty_bitmap(&new) < 0)
 924			goto out_free;
 925	}
 926
 927	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
 928	if (!slots)
 929		goto out_free;
 930	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
 931
 932	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
 933		slot = id_to_memslot(slots, id);
 934		slot->flags |= KVM_MEMSLOT_INVALID;
 935
 936		old_memslots = install_new_memslots(kvm, as_id, slots);
 937
 938		/* slot was deleted or moved, clear iommu mapping */
 939		kvm_iommu_unmap_pages(kvm, &old);
 940		/* From this point no new shadow pages pointing to a deleted,
 941		 * or moved, memslot will be created.
 942		 *
 943		 * validation of sp->gfn happens in:
 944		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 945		 *	- kvm_is_visible_gfn (mmu_check_roots)
 946		 */
 947		kvm_arch_flush_shadow_memslot(kvm, slot);
 948
 949		/*
 950		 * We can re-use the old_memslots from above, the only difference
 951		 * from the currently installed memslots is the invalid flag.  This
 952		 * will get overwritten by update_memslots anyway.
 953		 */
 954		slots = old_memslots;
 955	}
 956
 957	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
 958	if (r)
 959		goto out_slots;
 960
 961	/* actual memory is freed via old in kvm_free_memslot below */
 962	if (change == KVM_MR_DELETE) {
 963		new.dirty_bitmap = NULL;
 964		memset(&new.arch, 0, sizeof(new.arch));
 965	}
 966
 967	update_memslots(slots, &new);
 968	old_memslots = install_new_memslots(kvm, as_id, slots);
 969
 970	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
 971
 972	kvm_free_memslot(kvm, &old, &new);
 973	kvfree(old_memslots);
 974
 975	/*
 976	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
 977	 * un-mapped and re-mapped if their base changes.  Since base change
 978	 * unmapping is handled above with slot deletion, mapping alone is
 979	 * needed here.  Anything else the iommu might care about for existing
 980	 * slots (size changes, userspace addr changes and read-only flag
 981	 * changes) is disallowed above, so any other attribute changes getting
 982	 * here can be skipped.
 983	 */
 984	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 985		r = kvm_iommu_map_pages(kvm, &new);
 986		return r;
 987	}
 988
 989	return 0;
 990
 991out_slots:
 992	kvfree(slots);
 993out_free:
 994	kvm_free_memslot(kvm, &new, &old);
 995out:
 996	return r;
 997}
 998EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 999
1000int kvm_set_memory_region(struct kvm *kvm,
1001			  const struct kvm_userspace_memory_region *mem)
1002{
1003	int r;
1004
1005	mutex_lock(&kvm->slots_lock);
1006	r = __kvm_set_memory_region(kvm, mem);
1007	mutex_unlock(&kvm->slots_lock);
1008	return r;
1009}
1010EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1011
1012static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1013					  struct kvm_userspace_memory_region *mem)
1014{
1015	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1016		return -EINVAL;
1017
1018	return kvm_set_memory_region(kvm, mem);
1019}
1020
1021int kvm_get_dirty_log(struct kvm *kvm,
1022			struct kvm_dirty_log *log, int *is_dirty)
1023{
1024	struct kvm_memslots *slots;
1025	struct kvm_memory_slot *memslot;
1026	int r, i, as_id, id;
1027	unsigned long n;
1028	unsigned long any = 0;
1029
1030	r = -EINVAL;
1031	as_id = log->slot >> 16;
1032	id = (u16)log->slot;
1033	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1034		goto out;
1035
1036	slots = __kvm_memslots(kvm, as_id);
1037	memslot = id_to_memslot(slots, id);
1038	r = -ENOENT;
1039	if (!memslot->dirty_bitmap)
1040		goto out;
1041
1042	n = kvm_dirty_bitmap_bytes(memslot);
1043
1044	for (i = 0; !any && i < n/sizeof(long); ++i)
1045		any = memslot->dirty_bitmap[i];
1046
1047	r = -EFAULT;
1048	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1049		goto out;
1050
1051	if (any)
1052		*is_dirty = 1;
1053
1054	r = 0;
1055out:
1056	return r;
1057}
1058EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1059
1060#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061/**
1062 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063 *	are dirty write protect them for next write.
1064 * @kvm:	pointer to kvm instance
1065 * @log:	slot id and address to which we copy the log
1066 * @is_dirty:	flag set if any page is dirty
1067 *
1068 * We need to keep it in mind that VCPU threads can write to the bitmap
1069 * concurrently. So, to avoid losing track of dirty pages we keep the
1070 * following order:
1071 *
1072 *    1. Take a snapshot of the bit and clear it if needed.
1073 *    2. Write protect the corresponding page.
1074 *    3. Copy the snapshot to the userspace.
1075 *    4. Upon return caller flushes TLB's if needed.
1076 *
1077 * Between 2 and 4, the guest may write to the page using the remaining TLB
1078 * entry.  This is not a problem because the page is reported dirty using
1079 * the snapshot taken before and step 4 ensures that writes done after
1080 * exiting to userspace will be logged for the next call.
1081 *
1082 */
1083int kvm_get_dirty_log_protect(struct kvm *kvm,
1084			struct kvm_dirty_log *log, bool *is_dirty)
1085{
1086	struct kvm_memslots *slots;
1087	struct kvm_memory_slot *memslot;
1088	int r, i, as_id, id;
1089	unsigned long n;
1090	unsigned long *dirty_bitmap;
1091	unsigned long *dirty_bitmap_buffer;
1092
1093	r = -EINVAL;
1094	as_id = log->slot >> 16;
1095	id = (u16)log->slot;
1096	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097		goto out;
1098
1099	slots = __kvm_memslots(kvm, as_id);
1100	memslot = id_to_memslot(slots, id);
1101
1102	dirty_bitmap = memslot->dirty_bitmap;
1103	r = -ENOENT;
1104	if (!dirty_bitmap)
1105		goto out;
1106
1107	n = kvm_dirty_bitmap_bytes(memslot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108
1109	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1110	memset(dirty_bitmap_buffer, 0, n);
 
 
1111
1112	spin_lock(&kvm->mmu_lock);
1113	*is_dirty = false;
1114	for (i = 0; i < n / sizeof(long); i++) {
1115		unsigned long mask;
1116		gfn_t offset;
1117
1118		if (!dirty_bitmap[i])
1119			continue;
 
1120
1121		*is_dirty = true;
 
 
 
 
 
1122
1123		mask = xchg(&dirty_bitmap[i], 0);
1124		dirty_bitmap_buffer[i] = mask;
 
 
 
1125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126		if (mask) {
1127			offset = i * BITS_PER_LONG;
1128			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1129								offset, mask);
1130		}
1131	}
1132
1133	spin_unlock(&kvm->mmu_lock);
1134
1135	r = -EFAULT;
1136	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1137		goto out;
1138
1139	r = 0;
1140out:
1141	return r;
1142}
1143EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1144#endif
1145
1146bool kvm_largepages_enabled(void)
1147{
1148	return largepages_enabled;
1149}
1150
1151void kvm_disable_largepages(void)
1152{
1153	largepages_enabled = false;
1154}
1155EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1156
1157struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1158{
1159	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1160}
1161EXPORT_SYMBOL_GPL(gfn_to_memslot);
1162
1163struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1164{
1165	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1166}
1167
1168bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169{
1170	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1171
1172	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1173	      memslot->flags & KVM_MEMSLOT_INVALID)
1174		return false;
1175
1176	return true;
1177}
1178EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1179
1180unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1181{
1182	struct vm_area_struct *vma;
1183	unsigned long addr, size;
1184
1185	size = PAGE_SIZE;
1186
1187	addr = gfn_to_hva(kvm, gfn);
1188	if (kvm_is_error_hva(addr))
1189		return PAGE_SIZE;
1190
1191	down_read(&current->mm->mmap_sem);
1192	vma = find_vma(current->mm, addr);
1193	if (!vma)
1194		goto out;
1195
1196	size = vma_kernel_pagesize(vma);
1197
1198out:
1199	up_read(&current->mm->mmap_sem);
1200
1201	return size;
1202}
1203
1204static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1205{
1206	return slot->flags & KVM_MEM_READONLY;
1207}
1208
1209static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210				       gfn_t *nr_pages, bool write)
1211{
1212	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1213		return KVM_HVA_ERR_BAD;
1214
1215	if (memslot_is_readonly(slot) && write)
1216		return KVM_HVA_ERR_RO_BAD;
1217
1218	if (nr_pages)
1219		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1220
1221	return __gfn_to_hva_memslot(slot, gfn);
1222}
1223
1224static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1225				     gfn_t *nr_pages)
1226{
1227	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1228}
1229
1230unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1231					gfn_t gfn)
1232{
1233	return gfn_to_hva_many(slot, gfn, NULL);
1234}
1235EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1236
1237unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1238{
1239	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1240}
1241EXPORT_SYMBOL_GPL(gfn_to_hva);
1242
1243unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1244{
1245	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1246}
1247EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1248
1249/*
1250 * If writable is set to false, the hva returned by this function is only
1251 * allowed to be read.
 
 
 
 
1252 */
1253unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1254				      gfn_t gfn, bool *writable)
1255{
1256	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1257
1258	if (!kvm_is_error_hva(hva) && writable)
1259		*writable = !memslot_is_readonly(slot);
1260
1261	return hva;
1262}
1263
1264unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1265{
1266	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1267
1268	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1269}
1270
1271unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1272{
1273	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274
1275	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1276}
1277
1278static int get_user_page_nowait(unsigned long start, int write,
1279		struct page **page)
1280{
1281	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1282
1283	if (write)
1284		flags |= FOLL_WRITE;
1285
1286	return __get_user_pages(current, current->mm, start, 1, flags, page,
1287			NULL, NULL);
1288}
1289
1290static inline int check_user_page_hwpoison(unsigned long addr)
1291{
1292	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1293
1294	rc = __get_user_pages(current, current->mm, addr, 1,
1295			      flags, NULL, NULL, NULL);
1296	return rc == -EHWPOISON;
1297}
1298
1299/*
1300 * The atomic path to get the writable pfn which will be stored in @pfn,
1301 * true indicates success, otherwise false is returned.
 
1302 */
1303static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1304			    bool write_fault, bool *writable, kvm_pfn_t *pfn)
1305{
1306	struct page *page[1];
1307	int npages;
1308
1309	if (!(async || atomic))
1310		return false;
1311
1312	/*
1313	 * Fast pin a writable pfn only if it is a write fault request
1314	 * or the caller allows to map a writable pfn for a read fault
1315	 * request.
1316	 */
1317	if (!(write_fault || writable))
1318		return false;
1319
1320	npages = __get_user_pages_fast(addr, 1, 1, page);
1321	if (npages == 1) {
1322		*pfn = page_to_pfn(page[0]);
1323
1324		if (writable)
1325			*writable = true;
1326		return true;
1327	}
1328
1329	return false;
1330}
1331
1332/*
1333 * The slow path to get the pfn of the specified host virtual address,
1334 * 1 indicates success, -errno is returned if error is detected.
1335 */
1336static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1337			   bool *writable, kvm_pfn_t *pfn)
1338{
1339	struct page *page[1];
 
1340	int npages = 0;
1341
1342	might_sleep();
1343
1344	if (writable)
1345		*writable = write_fault;
1346
1347	if (async) {
1348		down_read(&current->mm->mmap_sem);
1349		npages = get_user_page_nowait(addr, write_fault, page);
1350		up_read(&current->mm->mmap_sem);
1351	} else
1352		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1353						   write_fault, 0, page,
1354						   FOLL_TOUCH|FOLL_HWPOISON);
1355	if (npages != 1)
1356		return npages;
1357
1358	/* map read fault as writable if possible */
1359	if (unlikely(!write_fault) && writable) {
1360		struct page *wpage[1];
1361
1362		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1363		if (npages == 1) {
1364			*writable = true;
1365			put_page(page[0]);
1366			page[0] = wpage[0];
1367		}
1368
1369		npages = 1;
1370	}
1371	*pfn = page_to_pfn(page[0]);
1372	return npages;
1373}
1374
1375static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1376{
1377	if (unlikely(!(vma->vm_flags & VM_READ)))
1378		return false;
1379
1380	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1381		return false;
1382
1383	return true;
1384}
1385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386/*
1387 * Pin guest page in memory and return its pfn.
1388 * @addr: host virtual address which maps memory to the guest
1389 * @atomic: whether this function can sleep
1390 * @async: whether this function need to wait IO complete if the
1391 *         host page is not in the memory
1392 * @write_fault: whether we should get a writable host page
1393 * @writable: whether it allows to map a writable host page for !@write_fault
1394 *
1395 * The function will map a writable host page for these two cases:
1396 * 1): @write_fault = true
1397 * 2): @write_fault = false && @writable, @writable will tell the caller
1398 *     whether the mapping is writable.
1399 */
1400static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1401			bool write_fault, bool *writable)
1402{
1403	struct vm_area_struct *vma;
1404	kvm_pfn_t pfn = 0;
1405	int npages;
1406
1407	/* we can do it either atomically or asynchronously, not both */
1408	BUG_ON(atomic && async);
1409
1410	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1411		return pfn;
1412
1413	if (atomic)
1414		return KVM_PFN_ERR_FAULT;
1415
1416	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1417	if (npages == 1)
1418		return pfn;
1419
1420	down_read(&current->mm->mmap_sem);
1421	if (npages == -EHWPOISON ||
1422	      (!async && check_user_page_hwpoison(addr))) {
1423		pfn = KVM_PFN_ERR_HWPOISON;
1424		goto exit;
1425	}
1426
 
1427	vma = find_vma_intersection(current->mm, addr, addr + 1);
1428
1429	if (vma == NULL)
1430		pfn = KVM_PFN_ERR_FAULT;
1431	else if ((vma->vm_flags & VM_PFNMAP)) {
1432		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1433			vma->vm_pgoff;
1434		BUG_ON(!kvm_is_reserved_pfn(pfn));
 
 
1435	} else {
1436		if (async && vma_is_valid(vma, write_fault))
1437			*async = true;
1438		pfn = KVM_PFN_ERR_FAULT;
1439	}
1440exit:
1441	up_read(&current->mm->mmap_sem);
1442	return pfn;
1443}
1444
1445kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1446			       bool atomic, bool *async, bool write_fault,
1447			       bool *writable)
1448{
1449	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1450
1451	if (addr == KVM_HVA_ERR_RO_BAD) {
1452		if (writable)
1453			*writable = false;
1454		return KVM_PFN_ERR_RO_FAULT;
1455	}
1456
1457	if (kvm_is_error_hva(addr)) {
1458		if (writable)
1459			*writable = false;
1460		return KVM_PFN_NOSLOT;
1461	}
1462
1463	/* Do not map writable pfn in the readonly memslot. */
1464	if (writable && memslot_is_readonly(slot)) {
1465		*writable = false;
1466		writable = NULL;
1467	}
1468
1469	return hva_to_pfn(addr, atomic, async, write_fault,
1470			  writable);
1471}
1472EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1473
1474kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1475		      bool *writable)
1476{
1477	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1478				    write_fault, writable);
1479}
1480EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1481
1482kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1483{
1484	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1485}
1486EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1487
1488kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1489{
1490	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1491}
1492EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1493
1494kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1495{
1496	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1497}
1498EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1499
1500kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1501{
1502	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1503}
1504EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1505
1506kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1507{
1508	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1509}
1510EXPORT_SYMBOL_GPL(gfn_to_pfn);
1511
1512kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1513{
1514	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1515}
1516EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1517
1518int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1519			    struct page **pages, int nr_pages)
1520{
1521	unsigned long addr;
1522	gfn_t entry;
1523
1524	addr = gfn_to_hva_many(slot, gfn, &entry);
1525	if (kvm_is_error_hva(addr))
1526		return -1;
1527
1528	if (entry < nr_pages)
1529		return 0;
1530
1531	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1532}
1533EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1534
1535static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1536{
1537	if (is_error_noslot_pfn(pfn))
1538		return KVM_ERR_PTR_BAD_PAGE;
1539
1540	if (kvm_is_reserved_pfn(pfn)) {
1541		WARN_ON(1);
1542		return KVM_ERR_PTR_BAD_PAGE;
1543	}
1544
1545	return pfn_to_page(pfn);
1546}
1547
1548struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1549{
1550	kvm_pfn_t pfn;
1551
1552	pfn = gfn_to_pfn(kvm, gfn);
1553
1554	return kvm_pfn_to_page(pfn);
1555}
1556EXPORT_SYMBOL_GPL(gfn_to_page);
1557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1558struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1559{
1560	kvm_pfn_t pfn;
1561
1562	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1563
1564	return kvm_pfn_to_page(pfn);
1565}
1566EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1567
1568void kvm_release_page_clean(struct page *page)
1569{
1570	WARN_ON(is_error_page(page));
1571
1572	kvm_release_pfn_clean(page_to_pfn(page));
1573}
1574EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1575
1576void kvm_release_pfn_clean(kvm_pfn_t pfn)
1577{
1578	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1579		put_page(pfn_to_page(pfn));
1580}
1581EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1582
1583void kvm_release_page_dirty(struct page *page)
1584{
1585	WARN_ON(is_error_page(page));
1586
1587	kvm_release_pfn_dirty(page_to_pfn(page));
1588}
1589EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1590
1591static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1592{
1593	kvm_set_pfn_dirty(pfn);
1594	kvm_release_pfn_clean(pfn);
1595}
 
1596
1597void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1598{
1599	if (!kvm_is_reserved_pfn(pfn)) {
1600		struct page *page = pfn_to_page(pfn);
1601
1602		if (!PageReserved(page))
1603			SetPageDirty(page);
1604	}
1605}
1606EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1607
1608void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1609{
1610	if (!kvm_is_reserved_pfn(pfn))
1611		mark_page_accessed(pfn_to_page(pfn));
1612}
1613EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1614
1615void kvm_get_pfn(kvm_pfn_t pfn)
1616{
1617	if (!kvm_is_reserved_pfn(pfn))
1618		get_page(pfn_to_page(pfn));
1619}
1620EXPORT_SYMBOL_GPL(kvm_get_pfn);
1621
1622static int next_segment(unsigned long len, int offset)
1623{
1624	if (len > PAGE_SIZE - offset)
1625		return PAGE_SIZE - offset;
1626	else
1627		return len;
1628}
1629
1630static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1631				 void *data, int offset, int len)
1632{
1633	int r;
1634	unsigned long addr;
1635
1636	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1637	if (kvm_is_error_hva(addr))
1638		return -EFAULT;
1639	r = __copy_from_user(data, (void __user *)addr + offset, len);
1640	if (r)
1641		return -EFAULT;
1642	return 0;
1643}
1644
1645int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1646			int len)
1647{
1648	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1649
1650	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1651}
1652EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1653
1654int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1655			     int offset, int len)
1656{
1657	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1658
1659	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1660}
1661EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1662
1663int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1664{
1665	gfn_t gfn = gpa >> PAGE_SHIFT;
1666	int seg;
1667	int offset = offset_in_page(gpa);
1668	int ret;
1669
1670	while ((seg = next_segment(len, offset)) != 0) {
1671		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1672		if (ret < 0)
1673			return ret;
1674		offset = 0;
1675		len -= seg;
1676		data += seg;
1677		++gfn;
1678	}
1679	return 0;
1680}
1681EXPORT_SYMBOL_GPL(kvm_read_guest);
1682
1683int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1684{
1685	gfn_t gfn = gpa >> PAGE_SHIFT;
1686	int seg;
1687	int offset = offset_in_page(gpa);
1688	int ret;
1689
1690	while ((seg = next_segment(len, offset)) != 0) {
1691		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1692		if (ret < 0)
1693			return ret;
1694		offset = 0;
1695		len -= seg;
1696		data += seg;
1697		++gfn;
1698	}
1699	return 0;
1700}
1701EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1702
1703static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1704			           void *data, int offset, unsigned long len)
1705{
1706	int r;
1707	unsigned long addr;
1708
1709	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1710	if (kvm_is_error_hva(addr))
1711		return -EFAULT;
1712	pagefault_disable();
1713	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1714	pagefault_enable();
1715	if (r)
1716		return -EFAULT;
1717	return 0;
1718}
1719
1720int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1721			  unsigned long len)
1722{
1723	gfn_t gfn = gpa >> PAGE_SHIFT;
1724	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1725	int offset = offset_in_page(gpa);
1726
1727	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1728}
1729EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1730
1731int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1732			       void *data, unsigned long len)
1733{
1734	gfn_t gfn = gpa >> PAGE_SHIFT;
1735	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1736	int offset = offset_in_page(gpa);
1737
1738	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1739}
1740EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1741
1742static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1743			          const void *data, int offset, int len)
1744{
1745	int r;
1746	unsigned long addr;
1747
1748	addr = gfn_to_hva_memslot(memslot, gfn);
1749	if (kvm_is_error_hva(addr))
1750		return -EFAULT;
1751	r = __copy_to_user((void __user *)addr + offset, data, len);
1752	if (r)
1753		return -EFAULT;
1754	mark_page_dirty_in_slot(memslot, gfn);
1755	return 0;
1756}
1757
1758int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1759			 const void *data, int offset, int len)
1760{
1761	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1762
1763	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1764}
1765EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1766
1767int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1768			      const void *data, int offset, int len)
1769{
1770	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1771
1772	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1773}
1774EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1775
1776int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1777		    unsigned long len)
1778{
1779	gfn_t gfn = gpa >> PAGE_SHIFT;
1780	int seg;
1781	int offset = offset_in_page(gpa);
1782	int ret;
1783
1784	while ((seg = next_segment(len, offset)) != 0) {
1785		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1786		if (ret < 0)
1787			return ret;
1788		offset = 0;
1789		len -= seg;
1790		data += seg;
1791		++gfn;
1792	}
1793	return 0;
1794}
1795EXPORT_SYMBOL_GPL(kvm_write_guest);
1796
1797int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1798		         unsigned long len)
1799{
1800	gfn_t gfn = gpa >> PAGE_SHIFT;
1801	int seg;
1802	int offset = offset_in_page(gpa);
1803	int ret;
1804
1805	while ((seg = next_segment(len, offset)) != 0) {
1806		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1807		if (ret < 0)
1808			return ret;
1809		offset = 0;
1810		len -= seg;
1811		data += seg;
1812		++gfn;
1813	}
1814	return 0;
1815}
1816EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1817
1818int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1819			      gpa_t gpa, unsigned long len)
 
1820{
1821	struct kvm_memslots *slots = kvm_memslots(kvm);
1822	int offset = offset_in_page(gpa);
1823	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1824	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1825	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1826	gfn_t nr_pages_avail;
 
1827
1828	ghc->gpa = gpa;
1829	ghc->generation = slots->generation;
1830	ghc->len = len;
1831	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1832	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1833	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834		ghc->hva += offset;
1835	} else {
1836		/*
1837		 * If the requested region crosses two memslots, we still
1838		 * verify that the entire region is valid here.
1839		 */
1840		while (start_gfn <= end_gfn) {
1841			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1842			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1843						   &nr_pages_avail);
1844			if (kvm_is_error_hva(ghc->hva))
1845				return -EFAULT;
1846			start_gfn += nr_pages_avail;
1847		}
1848		/* Use the slow path for cross page reads and writes. */
1849		ghc->memslot = NULL;
1850	}
1851	return 0;
 
 
 
 
 
 
 
1852}
1853EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1854
1855int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1856			   void *data, unsigned long len)
 
1857{
1858	struct kvm_memslots *slots = kvm_memslots(kvm);
1859	int r;
 
1860
1861	BUG_ON(len > ghc->len);
1862
1863	if (slots->generation != ghc->generation)
1864		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1865
1866	if (unlikely(!ghc->memslot))
1867		return kvm_write_guest(kvm, ghc->gpa, data, len);
1868
1869	if (kvm_is_error_hva(ghc->hva))
1870		return -EFAULT;
1871
1872	r = __copy_to_user((void __user *)ghc->hva, data, len);
1873	if (r)
1874		return -EFAULT;
1875	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1876
1877	return 0;
1878}
 
 
 
 
 
 
 
1879EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1880
1881int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1882			   void *data, unsigned long len)
1883{
1884	struct kvm_memslots *slots = kvm_memslots(kvm);
1885	int r;
1886
1887	BUG_ON(len > ghc->len);
1888
1889	if (slots->generation != ghc->generation)
1890		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1891
1892	if (unlikely(!ghc->memslot))
1893		return kvm_read_guest(kvm, ghc->gpa, data, len);
1894
1895	if (kvm_is_error_hva(ghc->hva))
1896		return -EFAULT;
1897
1898	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1899	if (r)
1900		return -EFAULT;
1901
1902	return 0;
1903}
1904EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1905
1906int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1907{
1908	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1909
1910	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1911}
1912EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1913
1914int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1915{
1916	gfn_t gfn = gpa >> PAGE_SHIFT;
1917	int seg;
1918	int offset = offset_in_page(gpa);
1919	int ret;
1920
1921	while ((seg = next_segment(len, offset)) != 0) {
1922		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1923		if (ret < 0)
1924			return ret;
1925		offset = 0;
1926		len -= seg;
1927		++gfn;
1928	}
1929	return 0;
1930}
1931EXPORT_SYMBOL_GPL(kvm_clear_guest);
1932
1933static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1934				    gfn_t gfn)
1935{
1936	if (memslot && memslot->dirty_bitmap) {
1937		unsigned long rel_gfn = gfn - memslot->base_gfn;
1938
1939		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1940	}
1941}
1942
1943void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1944{
1945	struct kvm_memory_slot *memslot;
1946
1947	memslot = gfn_to_memslot(kvm, gfn);
1948	mark_page_dirty_in_slot(memslot, gfn);
1949}
1950EXPORT_SYMBOL_GPL(mark_page_dirty);
1951
1952void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1953{
1954	struct kvm_memory_slot *memslot;
1955
1956	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1957	mark_page_dirty_in_slot(memslot, gfn);
1958}
1959EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1962{
1963	unsigned int old, val, grow;
1964
1965	old = val = vcpu->halt_poll_ns;
 
1966	grow = READ_ONCE(halt_poll_ns_grow);
1967	/* 10us base */
1968	if (val == 0 && grow)
1969		val = 10000;
1970	else
1971		val *= grow;
 
1972
1973	if (val > halt_poll_ns)
1974		val = halt_poll_ns;
1975
1976	vcpu->halt_poll_ns = val;
 
1977	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1978}
1979
1980static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1981{
1982	unsigned int old, val, shrink;
1983
1984	old = val = vcpu->halt_poll_ns;
1985	shrink = READ_ONCE(halt_poll_ns_shrink);
1986	if (shrink == 0)
1987		val = 0;
1988	else
1989		val /= shrink;
1990
1991	vcpu->halt_poll_ns = val;
1992	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1993}
1994
1995static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1996{
 
 
 
1997	if (kvm_arch_vcpu_runnable(vcpu)) {
1998		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1999		return -EINTR;
2000	}
2001	if (kvm_cpu_has_pending_timer(vcpu))
2002		return -EINTR;
2003	if (signal_pending(current))
2004		return -EINTR;
2005
2006	return 0;
 
 
 
2007}
2008
2009/*
2010 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2011 */
2012void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2013{
2014	ktime_t start, cur;
2015	DECLARE_SWAITQUEUE(wait);
2016	bool waited = false;
2017	u64 block_ns;
2018
 
 
2019	start = cur = ktime_get();
2020	if (vcpu->halt_poll_ns) {
2021		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2022
2023		++vcpu->stat.halt_attempted_poll;
2024		do {
2025			/*
2026			 * This sets KVM_REQ_UNHALT if an interrupt
2027			 * arrives.
2028			 */
2029			if (kvm_vcpu_check_block(vcpu) < 0) {
2030				++vcpu->stat.halt_successful_poll;
 
 
2031				goto out;
2032			}
2033			cur = ktime_get();
2034		} while (single_task_running() && ktime_before(cur, stop));
2035	}
2036
2037	kvm_arch_vcpu_blocking(vcpu);
2038
2039	for (;;) {
2040		prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2041
2042		if (kvm_vcpu_check_block(vcpu) < 0)
2043			break;
2044
2045		waited = true;
2046		schedule();
2047	}
2048
2049	finish_swait(&vcpu->wq, &wait);
2050	cur = ktime_get();
2051
2052	kvm_arch_vcpu_unblocking(vcpu);
2053out:
 
2054	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2055
2056	if (halt_poll_ns) {
2057		if (block_ns <= vcpu->halt_poll_ns)
2058			;
2059		/* we had a long block, shrink polling */
2060		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2061			shrink_halt_poll_ns(vcpu);
2062		/* we had a short halt and our poll time is too small */
2063		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2064			block_ns < halt_poll_ns)
2065			grow_halt_poll_ns(vcpu);
2066	} else
2067		vcpu->halt_poll_ns = 0;
 
 
 
 
 
 
 
 
2068
2069	trace_kvm_vcpu_wakeup(block_ns, waited);
 
2070}
2071EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073#ifndef CONFIG_S390
2074/*
2075 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2076 */
2077void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2078{
2079	int me;
2080	int cpu = vcpu->cpu;
2081	struct swait_queue_head *wqp;
2082
2083	wqp = kvm_arch_vcpu_wq(vcpu);
2084	if (swait_active(wqp)) {
2085		swake_up(wqp);
2086		++vcpu->stat.halt_wakeup;
2087	}
2088
2089	me = get_cpu();
2090	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2091		if (kvm_arch_vcpu_should_kick(vcpu))
2092			smp_send_reschedule(cpu);
2093	put_cpu();
2094}
2095EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2096#endif /* !CONFIG_S390 */
2097
2098int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2099{
2100	struct pid *pid;
2101	struct task_struct *task = NULL;
2102	int ret = 0;
2103
2104	rcu_read_lock();
2105	pid = rcu_dereference(target->pid);
2106	if (pid)
2107		task = get_pid_task(pid, PIDTYPE_PID);
2108	rcu_read_unlock();
2109	if (!task)
2110		return ret;
2111	ret = yield_to(task, 1);
2112	put_task_struct(task);
2113
2114	return ret;
2115}
2116EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2117
2118/*
2119 * Helper that checks whether a VCPU is eligible for directed yield.
2120 * Most eligible candidate to yield is decided by following heuristics:
2121 *
2122 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2123 *  (preempted lock holder), indicated by @in_spin_loop.
2124 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2125 *
2126 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2127 *  chance last time (mostly it has become eligible now since we have probably
2128 *  yielded to lockholder in last iteration. This is done by toggling
2129 *  @dy_eligible each time a VCPU checked for eligibility.)
2130 *
2131 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2132 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2133 *  burning. Giving priority for a potential lock-holder increases lock
2134 *  progress.
2135 *
2136 *  Since algorithm is based on heuristics, accessing another VCPU data without
2137 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2138 *  and continue with next VCPU and so on.
2139 */
2140static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2141{
2142#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2143	bool eligible;
2144
2145	eligible = !vcpu->spin_loop.in_spin_loop ||
2146		    vcpu->spin_loop.dy_eligible;
2147
2148	if (vcpu->spin_loop.in_spin_loop)
2149		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2150
2151	return eligible;
2152#else
2153	return true;
2154#endif
2155}
2156
2157void kvm_vcpu_on_spin(struct kvm_vcpu *me)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158{
2159	struct kvm *kvm = me->kvm;
2160	struct kvm_vcpu *vcpu;
2161	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2162	int yielded = 0;
2163	int try = 3;
2164	int pass;
2165	int i;
2166
2167	kvm_vcpu_set_in_spin_loop(me, true);
2168	/*
2169	 * We boost the priority of a VCPU that is runnable but not
2170	 * currently running, because it got preempted by something
2171	 * else and called schedule in __vcpu_run.  Hopefully that
2172	 * VCPU is holding the lock that we need and will release it.
2173	 * We approximate round-robin by starting at the last boosted VCPU.
2174	 */
2175	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2176		kvm_for_each_vcpu(i, vcpu, kvm) {
2177			if (!pass && i <= last_boosted_vcpu) {
2178				i = last_boosted_vcpu;
2179				continue;
2180			} else if (pass && i > last_boosted_vcpu)
2181				break;
2182			if (!ACCESS_ONCE(vcpu->preempted))
2183				continue;
2184			if (vcpu == me)
2185				continue;
2186			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
 
 
 
2187				continue;
2188			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2189				continue;
2190
2191			yielded = kvm_vcpu_yield_to(vcpu);
2192			if (yielded > 0) {
2193				kvm->last_boosted_vcpu = i;
2194				break;
2195			} else if (yielded < 0) {
2196				try--;
2197				if (!try)
2198					break;
2199			}
2200		}
2201	}
2202	kvm_vcpu_set_in_spin_loop(me, false);
2203
2204	/* Ensure vcpu is not eligible during next spinloop */
2205	kvm_vcpu_set_dy_eligible(me, false);
2206}
2207EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2208
2209static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2210{
2211	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2212	struct page *page;
2213
2214	if (vmf->pgoff == 0)
2215		page = virt_to_page(vcpu->run);
2216#ifdef CONFIG_X86
2217	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2218		page = virt_to_page(vcpu->arch.pio_data);
2219#endif
2220#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2221	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2222		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2223#endif
2224	else
2225		return kvm_arch_vcpu_fault(vcpu, vmf);
2226	get_page(page);
2227	vmf->page = page;
2228	return 0;
2229}
2230
2231static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2232	.fault = kvm_vcpu_fault,
2233};
2234
2235static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2236{
2237	vma->vm_ops = &kvm_vcpu_vm_ops;
2238	return 0;
2239}
2240
2241static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2242{
2243	struct kvm_vcpu *vcpu = filp->private_data;
2244
 
2245	kvm_put_kvm(vcpu->kvm);
2246	return 0;
2247}
2248
2249static struct file_operations kvm_vcpu_fops = {
2250	.release        = kvm_vcpu_release,
2251	.unlocked_ioctl = kvm_vcpu_ioctl,
2252#ifdef CONFIG_KVM_COMPAT
2253	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2254#endif
2255	.mmap           = kvm_vcpu_mmap,
2256	.llseek		= noop_llseek,
 
2257};
2258
2259/*
2260 * Allocates an inode for the vcpu.
2261 */
2262static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2263{
2264	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2265}
2266
2267/*
2268 * Creates some virtual cpus.  Good luck creating more than one.
2269 */
2270static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2271{
2272	int r;
2273	struct kvm_vcpu *vcpu;
2274
2275	if (id >= KVM_MAX_VCPUS)
 
 
 
 
 
2276		return -EINVAL;
 
 
 
 
2277
2278	vcpu = kvm_arch_vcpu_create(kvm, id);
2279	if (IS_ERR(vcpu))
2280		return PTR_ERR(vcpu);
 
 
2281
2282	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2283
2284	r = kvm_arch_vcpu_setup(vcpu);
2285	if (r)
2286		goto vcpu_destroy;
2287
 
 
2288	mutex_lock(&kvm->lock);
2289	if (!kvm_vcpu_compatible(vcpu)) {
2290		r = -EINVAL;
2291		goto unlock_vcpu_destroy;
2292	}
2293	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2294		r = -EINVAL;
2295		goto unlock_vcpu_destroy;
2296	}
2297	if (kvm_get_vcpu_by_id(kvm, id)) {
2298		r = -EEXIST;
2299		goto unlock_vcpu_destroy;
2300	}
2301
2302	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2303
2304	/* Now it's all set up, let userspace reach it */
2305	kvm_get_kvm(kvm);
2306	r = create_vcpu_fd(vcpu);
2307	if (r < 0) {
2308		kvm_put_kvm(kvm);
2309		goto unlock_vcpu_destroy;
2310	}
2311
2312	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2313
2314	/*
2315	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2316	 * before kvm->online_vcpu's incremented value.
2317	 */
2318	smp_wmb();
2319	atomic_inc(&kvm->online_vcpus);
2320
2321	mutex_unlock(&kvm->lock);
2322	kvm_arch_vcpu_postcreate(vcpu);
2323	return r;
2324
2325unlock_vcpu_destroy:
2326	mutex_unlock(&kvm->lock);
 
2327vcpu_destroy:
2328	kvm_arch_vcpu_destroy(vcpu);
 
 
 
 
2329	return r;
2330}
2331
2332static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2333{
2334	if (sigset) {
2335		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2336		vcpu->sigset_active = 1;
2337		vcpu->sigset = *sigset;
2338	} else
2339		vcpu->sigset_active = 0;
2340	return 0;
2341}
2342
2343static long kvm_vcpu_ioctl(struct file *filp,
2344			   unsigned int ioctl, unsigned long arg)
2345{
2346	struct kvm_vcpu *vcpu = filp->private_data;
2347	void __user *argp = (void __user *)arg;
2348	int r;
2349	struct kvm_fpu *fpu = NULL;
2350	struct kvm_sregs *kvm_sregs = NULL;
2351
2352	if (vcpu->kvm->mm != current->mm)
2353		return -EIO;
2354
2355	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2356		return -EINVAL;
2357
2358#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2359	/*
2360	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2361	 * so vcpu_load() would break it.
2362	 */
2363	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2364		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2365#endif
2366
2367
2368	r = vcpu_load(vcpu);
2369	if (r)
2370		return r;
 
 
 
2371	switch (ioctl) {
2372	case KVM_RUN:
 
2373		r = -EINVAL;
2374		if (arg)
2375			goto out;
2376		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 
2377			/* The thread running this VCPU changed. */
2378			struct pid *oldpid = vcpu->pid;
2379			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2380
 
 
 
 
 
2381			rcu_assign_pointer(vcpu->pid, newpid);
2382			if (oldpid)
2383				synchronize_rcu();
2384			put_pid(oldpid);
2385		}
2386		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2387		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2388		break;
 
2389	case KVM_GET_REGS: {
2390		struct kvm_regs *kvm_regs;
2391
2392		r = -ENOMEM;
2393		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2394		if (!kvm_regs)
2395			goto out;
2396		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2397		if (r)
2398			goto out_free1;
2399		r = -EFAULT;
2400		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2401			goto out_free1;
2402		r = 0;
2403out_free1:
2404		kfree(kvm_regs);
2405		break;
2406	}
2407	case KVM_SET_REGS: {
2408		struct kvm_regs *kvm_regs;
2409
2410		r = -ENOMEM;
2411		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2412		if (IS_ERR(kvm_regs)) {
2413			r = PTR_ERR(kvm_regs);
2414			goto out;
2415		}
2416		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2417		kfree(kvm_regs);
2418		break;
2419	}
2420	case KVM_GET_SREGS: {
2421		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
 
2422		r = -ENOMEM;
2423		if (!kvm_sregs)
2424			goto out;
2425		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2426		if (r)
2427			goto out;
2428		r = -EFAULT;
2429		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2430			goto out;
2431		r = 0;
2432		break;
2433	}
2434	case KVM_SET_SREGS: {
2435		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2436		if (IS_ERR(kvm_sregs)) {
2437			r = PTR_ERR(kvm_sregs);
2438			kvm_sregs = NULL;
2439			goto out;
2440		}
2441		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2442		break;
2443	}
2444	case KVM_GET_MP_STATE: {
2445		struct kvm_mp_state mp_state;
2446
2447		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2448		if (r)
2449			goto out;
2450		r = -EFAULT;
2451		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2452			goto out;
2453		r = 0;
2454		break;
2455	}
2456	case KVM_SET_MP_STATE: {
2457		struct kvm_mp_state mp_state;
2458
2459		r = -EFAULT;
2460		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2461			goto out;
2462		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2463		break;
2464	}
2465	case KVM_TRANSLATE: {
2466		struct kvm_translation tr;
2467
2468		r = -EFAULT;
2469		if (copy_from_user(&tr, argp, sizeof(tr)))
2470			goto out;
2471		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2472		if (r)
2473			goto out;
2474		r = -EFAULT;
2475		if (copy_to_user(argp, &tr, sizeof(tr)))
2476			goto out;
2477		r = 0;
2478		break;
2479	}
2480	case KVM_SET_GUEST_DEBUG: {
2481		struct kvm_guest_debug dbg;
2482
2483		r = -EFAULT;
2484		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2485			goto out;
2486		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2487		break;
2488	}
2489	case KVM_SET_SIGNAL_MASK: {
2490		struct kvm_signal_mask __user *sigmask_arg = argp;
2491		struct kvm_signal_mask kvm_sigmask;
2492		sigset_t sigset, *p;
2493
2494		p = NULL;
2495		if (argp) {
2496			r = -EFAULT;
2497			if (copy_from_user(&kvm_sigmask, argp,
2498					   sizeof(kvm_sigmask)))
2499				goto out;
2500			r = -EINVAL;
2501			if (kvm_sigmask.len != sizeof(sigset))
2502				goto out;
2503			r = -EFAULT;
2504			if (copy_from_user(&sigset, sigmask_arg->sigset,
2505					   sizeof(sigset)))
2506				goto out;
2507			p = &sigset;
2508		}
2509		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2510		break;
2511	}
2512	case KVM_GET_FPU: {
2513		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2514		r = -ENOMEM;
2515		if (!fpu)
2516			goto out;
2517		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2518		if (r)
2519			goto out;
2520		r = -EFAULT;
2521		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2522			goto out;
2523		r = 0;
2524		break;
2525	}
2526	case KVM_SET_FPU: {
2527		fpu = memdup_user(argp, sizeof(*fpu));
2528		if (IS_ERR(fpu)) {
2529			r = PTR_ERR(fpu);
2530			fpu = NULL;
2531			goto out;
2532		}
2533		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2534		break;
2535	}
2536	default:
2537		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2538	}
2539out:
2540	vcpu_put(vcpu);
2541	kfree(fpu);
2542	kfree(kvm_sregs);
2543	return r;
2544}
2545
2546#ifdef CONFIG_KVM_COMPAT
2547static long kvm_vcpu_compat_ioctl(struct file *filp,
2548				  unsigned int ioctl, unsigned long arg)
2549{
2550	struct kvm_vcpu *vcpu = filp->private_data;
2551	void __user *argp = compat_ptr(arg);
2552	int r;
2553
2554	if (vcpu->kvm->mm != current->mm)
2555		return -EIO;
2556
2557	switch (ioctl) {
2558	case KVM_SET_SIGNAL_MASK: {
2559		struct kvm_signal_mask __user *sigmask_arg = argp;
2560		struct kvm_signal_mask kvm_sigmask;
2561		compat_sigset_t csigset;
2562		sigset_t sigset;
2563
2564		if (argp) {
2565			r = -EFAULT;
2566			if (copy_from_user(&kvm_sigmask, argp,
2567					   sizeof(kvm_sigmask)))
2568				goto out;
2569			r = -EINVAL;
2570			if (kvm_sigmask.len != sizeof(csigset))
2571				goto out;
2572			r = -EFAULT;
2573			if (copy_from_user(&csigset, sigmask_arg->sigset,
2574					   sizeof(csigset)))
2575				goto out;
2576			sigset_from_compat(&sigset, &csigset);
2577			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2578		} else
2579			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2580		break;
2581	}
2582	default:
2583		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2584	}
2585
2586out:
2587	return r;
2588}
2589#endif
2590
 
 
 
 
 
 
 
 
 
 
2591static int kvm_device_ioctl_attr(struct kvm_device *dev,
2592				 int (*accessor)(struct kvm_device *dev,
2593						 struct kvm_device_attr *attr),
2594				 unsigned long arg)
2595{
2596	struct kvm_device_attr attr;
2597
2598	if (!accessor)
2599		return -EPERM;
2600
2601	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2602		return -EFAULT;
2603
2604	return accessor(dev, &attr);
2605}
2606
2607static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2608			     unsigned long arg)
2609{
2610	struct kvm_device *dev = filp->private_data;
2611
 
 
 
2612	switch (ioctl) {
2613	case KVM_SET_DEVICE_ATTR:
2614		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2615	case KVM_GET_DEVICE_ATTR:
2616		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2617	case KVM_HAS_DEVICE_ATTR:
2618		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2619	default:
2620		if (dev->ops->ioctl)
2621			return dev->ops->ioctl(dev, ioctl, arg);
2622
2623		return -ENOTTY;
2624	}
2625}
2626
2627static int kvm_device_release(struct inode *inode, struct file *filp)
2628{
2629	struct kvm_device *dev = filp->private_data;
2630	struct kvm *kvm = dev->kvm;
2631
 
 
 
 
 
 
 
2632	kvm_put_kvm(kvm);
2633	return 0;
2634}
2635
2636static const struct file_operations kvm_device_fops = {
2637	.unlocked_ioctl = kvm_device_ioctl,
2638#ifdef CONFIG_KVM_COMPAT
2639	.compat_ioctl = kvm_device_ioctl,
2640#endif
2641	.release = kvm_device_release,
 
 
2642};
2643
2644struct kvm_device *kvm_device_from_filp(struct file *filp)
2645{
2646	if (filp->f_op != &kvm_device_fops)
2647		return NULL;
2648
2649	return filp->private_data;
2650}
2651
2652static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2653#ifdef CONFIG_KVM_MPIC
2654	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2655	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2656#endif
2657
2658#ifdef CONFIG_KVM_XICS
2659	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2660#endif
2661};
2662
2663int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2664{
2665	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2666		return -ENOSPC;
2667
2668	if (kvm_device_ops_table[type] != NULL)
2669		return -EEXIST;
2670
2671	kvm_device_ops_table[type] = ops;
2672	return 0;
2673}
2674
2675void kvm_unregister_device_ops(u32 type)
2676{
2677	if (kvm_device_ops_table[type] != NULL)
2678		kvm_device_ops_table[type] = NULL;
2679}
2680
2681static int kvm_ioctl_create_device(struct kvm *kvm,
2682				   struct kvm_create_device *cd)
2683{
2684	struct kvm_device_ops *ops = NULL;
2685	struct kvm_device *dev;
2686	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
 
2687	int ret;
2688
2689	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2690		return -ENODEV;
2691
2692	ops = kvm_device_ops_table[cd->type];
 
2693	if (ops == NULL)
2694		return -ENODEV;
2695
2696	if (test)
2697		return 0;
2698
2699	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2700	if (!dev)
2701		return -ENOMEM;
2702
2703	dev->ops = ops;
2704	dev->kvm = kvm;
2705
2706	ret = ops->create(dev, cd->type);
 
2707	if (ret < 0) {
 
2708		kfree(dev);
2709		return ret;
2710	}
 
 
 
 
 
2711
 
2712	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2713	if (ret < 0) {
 
 
 
 
2714		ops->destroy(dev);
2715		return ret;
2716	}
2717
2718	list_add(&dev->vm_node, &kvm->devices);
2719	kvm_get_kvm(kvm);
2720	cd->fd = ret;
2721	return 0;
2722}
2723
2724static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2725{
2726	switch (arg) {
2727	case KVM_CAP_USER_MEMORY:
2728	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2729	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2730	case KVM_CAP_INTERNAL_ERROR_DATA:
2731#ifdef CONFIG_HAVE_KVM_MSI
2732	case KVM_CAP_SIGNAL_MSI:
2733#endif
2734#ifdef CONFIG_HAVE_KVM_IRQFD
2735	case KVM_CAP_IRQFD:
2736	case KVM_CAP_IRQFD_RESAMPLE:
2737#endif
2738	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2739	case KVM_CAP_CHECK_EXTENSION_VM:
 
 
 
 
2740		return 1;
 
 
 
 
 
 
2741#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2742	case KVM_CAP_IRQ_ROUTING:
2743		return KVM_MAX_IRQ_ROUTES;
2744#endif
2745#if KVM_ADDRESS_SPACE_NUM > 1
2746	case KVM_CAP_MULTI_ADDRESS_SPACE:
2747		return KVM_ADDRESS_SPACE_NUM;
2748#endif
 
 
2749	default:
2750		break;
2751	}
2752	return kvm_vm_ioctl_check_extension(kvm, arg);
2753}
2754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2755static long kvm_vm_ioctl(struct file *filp,
2756			   unsigned int ioctl, unsigned long arg)
2757{
2758	struct kvm *kvm = filp->private_data;
2759	void __user *argp = (void __user *)arg;
2760	int r;
2761
2762	if (kvm->mm != current->mm)
2763		return -EIO;
2764	switch (ioctl) {
2765	case KVM_CREATE_VCPU:
2766		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2767		break;
 
 
 
 
 
 
 
 
 
2768	case KVM_SET_USER_MEMORY_REGION: {
2769		struct kvm_userspace_memory_region kvm_userspace_mem;
2770
2771		r = -EFAULT;
2772		if (copy_from_user(&kvm_userspace_mem, argp,
2773						sizeof(kvm_userspace_mem)))
2774			goto out;
2775
2776		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2777		break;
2778	}
2779	case KVM_GET_DIRTY_LOG: {
2780		struct kvm_dirty_log log;
2781
2782		r = -EFAULT;
2783		if (copy_from_user(&log, argp, sizeof(log)))
2784			goto out;
2785		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2786		break;
2787	}
2788#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
 
 
 
 
 
 
 
 
 
 
 
2789	case KVM_REGISTER_COALESCED_MMIO: {
2790		struct kvm_coalesced_mmio_zone zone;
2791
2792		r = -EFAULT;
2793		if (copy_from_user(&zone, argp, sizeof(zone)))
2794			goto out;
2795		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2796		break;
2797	}
2798	case KVM_UNREGISTER_COALESCED_MMIO: {
2799		struct kvm_coalesced_mmio_zone zone;
2800
2801		r = -EFAULT;
2802		if (copy_from_user(&zone, argp, sizeof(zone)))
2803			goto out;
2804		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2805		break;
2806	}
2807#endif
2808	case KVM_IRQFD: {
2809		struct kvm_irqfd data;
2810
2811		r = -EFAULT;
2812		if (copy_from_user(&data, argp, sizeof(data)))
2813			goto out;
2814		r = kvm_irqfd(kvm, &data);
2815		break;
2816	}
2817	case KVM_IOEVENTFD: {
2818		struct kvm_ioeventfd data;
2819
2820		r = -EFAULT;
2821		if (copy_from_user(&data, argp, sizeof(data)))
2822			goto out;
2823		r = kvm_ioeventfd(kvm, &data);
2824		break;
2825	}
2826#ifdef CONFIG_HAVE_KVM_MSI
2827	case KVM_SIGNAL_MSI: {
2828		struct kvm_msi msi;
2829
2830		r = -EFAULT;
2831		if (copy_from_user(&msi, argp, sizeof(msi)))
2832			goto out;
2833		r = kvm_send_userspace_msi(kvm, &msi);
2834		break;
2835	}
2836#endif
2837#ifdef __KVM_HAVE_IRQ_LINE
2838	case KVM_IRQ_LINE_STATUS:
2839	case KVM_IRQ_LINE: {
2840		struct kvm_irq_level irq_event;
2841
2842		r = -EFAULT;
2843		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2844			goto out;
2845
2846		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2847					ioctl == KVM_IRQ_LINE_STATUS);
2848		if (r)
2849			goto out;
2850
2851		r = -EFAULT;
2852		if (ioctl == KVM_IRQ_LINE_STATUS) {
2853			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2854				goto out;
2855		}
2856
2857		r = 0;
2858		break;
2859	}
2860#endif
2861#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2862	case KVM_SET_GSI_ROUTING: {
2863		struct kvm_irq_routing routing;
2864		struct kvm_irq_routing __user *urouting;
2865		struct kvm_irq_routing_entry *entries;
2866
2867		r = -EFAULT;
2868		if (copy_from_user(&routing, argp, sizeof(routing)))
2869			goto out;
2870		r = -EINVAL;
2871		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2872			goto out;
2873		if (routing.flags)
2874			goto out;
2875		r = -ENOMEM;
2876		entries = vmalloc(routing.nr * sizeof(*entries));
2877		if (!entries)
2878			goto out;
2879		r = -EFAULT;
2880		urouting = argp;
2881		if (copy_from_user(entries, urouting->entries,
2882				   routing.nr * sizeof(*entries)))
2883			goto out_free_irq_routing;
 
 
 
 
 
 
 
2884		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2885					routing.flags);
2886out_free_irq_routing:
2887		vfree(entries);
2888		break;
2889	}
2890#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2891	case KVM_CREATE_DEVICE: {
2892		struct kvm_create_device cd;
2893
2894		r = -EFAULT;
2895		if (copy_from_user(&cd, argp, sizeof(cd)))
2896			goto out;
2897
2898		r = kvm_ioctl_create_device(kvm, &cd);
2899		if (r)
2900			goto out;
2901
2902		r = -EFAULT;
2903		if (copy_to_user(argp, &cd, sizeof(cd)))
2904			goto out;
2905
2906		r = 0;
2907		break;
2908	}
2909	case KVM_CHECK_EXTENSION:
2910		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2911		break;
2912	default:
2913		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2914	}
2915out:
2916	return r;
2917}
2918
2919#ifdef CONFIG_KVM_COMPAT
2920struct compat_kvm_dirty_log {
2921	__u32 slot;
2922	__u32 padding1;
2923	union {
2924		compat_uptr_t dirty_bitmap; /* one bit per page */
2925		__u64 padding2;
2926	};
2927};
2928
2929static long kvm_vm_compat_ioctl(struct file *filp,
2930			   unsigned int ioctl, unsigned long arg)
2931{
2932	struct kvm *kvm = filp->private_data;
2933	int r;
2934
2935	if (kvm->mm != current->mm)
2936		return -EIO;
2937	switch (ioctl) {
2938	case KVM_GET_DIRTY_LOG: {
2939		struct compat_kvm_dirty_log compat_log;
2940		struct kvm_dirty_log log;
2941
2942		r = -EFAULT;
2943		if (copy_from_user(&compat_log, (void __user *)arg,
2944				   sizeof(compat_log)))
2945			goto out;
2946		log.slot	 = compat_log.slot;
2947		log.padding1	 = compat_log.padding1;
2948		log.padding2	 = compat_log.padding2;
2949		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2950
2951		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2952		break;
2953	}
2954	default:
2955		r = kvm_vm_ioctl(filp, ioctl, arg);
2956	}
2957
2958out:
2959	return r;
2960}
2961#endif
2962
2963static struct file_operations kvm_vm_fops = {
2964	.release        = kvm_vm_release,
2965	.unlocked_ioctl = kvm_vm_ioctl,
2966#ifdef CONFIG_KVM_COMPAT
2967	.compat_ioctl   = kvm_vm_compat_ioctl,
2968#endif
2969	.llseek		= noop_llseek,
 
2970};
2971
2972static int kvm_dev_ioctl_create_vm(unsigned long type)
2973{
2974	int r;
2975	struct kvm *kvm;
 
2976
2977	kvm = kvm_create_vm(type);
2978	if (IS_ERR(kvm))
2979		return PTR_ERR(kvm);
2980#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2981	r = kvm_coalesced_mmio_init(kvm);
2982	if (r < 0) {
2983		kvm_put_kvm(kvm);
2984		return r;
2985	}
2986#endif
2987	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2988	if (r < 0)
2989		kvm_put_kvm(kvm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990
 
 
2991	return r;
2992}
2993
2994static long kvm_dev_ioctl(struct file *filp,
2995			  unsigned int ioctl, unsigned long arg)
2996{
2997	long r = -EINVAL;
2998
2999	switch (ioctl) {
3000	case KVM_GET_API_VERSION:
3001		if (arg)
3002			goto out;
3003		r = KVM_API_VERSION;
3004		break;
3005	case KVM_CREATE_VM:
3006		r = kvm_dev_ioctl_create_vm(arg);
3007		break;
3008	case KVM_CHECK_EXTENSION:
3009		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3010		break;
3011	case KVM_GET_VCPU_MMAP_SIZE:
3012		if (arg)
3013			goto out;
3014		r = PAGE_SIZE;     /* struct kvm_run */
3015#ifdef CONFIG_X86
3016		r += PAGE_SIZE;    /* pio data page */
3017#endif
3018#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3019		r += PAGE_SIZE;    /* coalesced mmio ring page */
3020#endif
3021		break;
3022	case KVM_TRACE_ENABLE:
3023	case KVM_TRACE_PAUSE:
3024	case KVM_TRACE_DISABLE:
3025		r = -EOPNOTSUPP;
3026		break;
3027	default:
3028		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3029	}
3030out:
3031	return r;
3032}
3033
3034static struct file_operations kvm_chardev_ops = {
3035	.unlocked_ioctl = kvm_dev_ioctl,
3036	.compat_ioctl   = kvm_dev_ioctl,
3037	.llseek		= noop_llseek,
 
3038};
3039
3040static struct miscdevice kvm_dev = {
3041	KVM_MINOR,
3042	"kvm",
3043	&kvm_chardev_ops,
3044};
3045
3046static void hardware_enable_nolock(void *junk)
3047{
3048	int cpu = raw_smp_processor_id();
3049	int r;
3050
3051	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3052		return;
3053
3054	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3055
3056	r = kvm_arch_hardware_enable();
3057
3058	if (r) {
3059		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3060		atomic_inc(&hardware_enable_failed);
3061		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3062	}
3063}
3064
3065static void hardware_enable(void)
3066{
3067	raw_spin_lock(&kvm_count_lock);
3068	if (kvm_usage_count)
3069		hardware_enable_nolock(NULL);
3070	raw_spin_unlock(&kvm_count_lock);
 
3071}
3072
3073static void hardware_disable_nolock(void *junk)
3074{
3075	int cpu = raw_smp_processor_id();
3076
3077	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3078		return;
3079	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3080	kvm_arch_hardware_disable();
3081}
3082
3083static void hardware_disable(void)
3084{
3085	raw_spin_lock(&kvm_count_lock);
3086	if (kvm_usage_count)
3087		hardware_disable_nolock(NULL);
3088	raw_spin_unlock(&kvm_count_lock);
 
3089}
3090
3091static void hardware_disable_all_nolock(void)
3092{
3093	BUG_ON(!kvm_usage_count);
3094
3095	kvm_usage_count--;
3096	if (!kvm_usage_count)
3097		on_each_cpu(hardware_disable_nolock, NULL, 1);
3098}
3099
3100static void hardware_disable_all(void)
3101{
3102	raw_spin_lock(&kvm_count_lock);
3103	hardware_disable_all_nolock();
3104	raw_spin_unlock(&kvm_count_lock);
3105}
3106
3107static int hardware_enable_all(void)
3108{
3109	int r = 0;
3110
3111	raw_spin_lock(&kvm_count_lock);
3112
3113	kvm_usage_count++;
3114	if (kvm_usage_count == 1) {
3115		atomic_set(&hardware_enable_failed, 0);
3116		on_each_cpu(hardware_enable_nolock, NULL, 1);
3117
3118		if (atomic_read(&hardware_enable_failed)) {
3119			hardware_disable_all_nolock();
3120			r = -EBUSY;
3121		}
3122	}
3123
3124	raw_spin_unlock(&kvm_count_lock);
3125
3126	return r;
3127}
3128
3129static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3130			   void *v)
3131{
3132	val &= ~CPU_TASKS_FROZEN;
3133	switch (val) {
3134	case CPU_DYING:
3135		hardware_disable();
3136		break;
3137	case CPU_STARTING:
3138		hardware_enable();
3139		break;
3140	}
3141	return NOTIFY_OK;
3142}
3143
3144static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3145		      void *v)
3146{
3147	/*
3148	 * Some (well, at least mine) BIOSes hang on reboot if
3149	 * in vmx root mode.
3150	 *
3151	 * And Intel TXT required VMX off for all cpu when system shutdown.
3152	 */
3153	pr_info("kvm: exiting hardware virtualization\n");
3154	kvm_rebooting = true;
3155	on_each_cpu(hardware_disable_nolock, NULL, 1);
3156	return NOTIFY_OK;
3157}
3158
3159static struct notifier_block kvm_reboot_notifier = {
3160	.notifier_call = kvm_reboot,
3161	.priority = 0,
3162};
3163
3164static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3165{
3166	int i;
3167
3168	for (i = 0; i < bus->dev_count; i++) {
3169		struct kvm_io_device *pos = bus->range[i].dev;
3170
3171		kvm_iodevice_destructor(pos);
3172	}
3173	kfree(bus);
3174}
3175
3176static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3177				 const struct kvm_io_range *r2)
3178{
3179	gpa_t addr1 = r1->addr;
3180	gpa_t addr2 = r2->addr;
3181
3182	if (addr1 < addr2)
3183		return -1;
3184
3185	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3186	 * accept any overlapping write.  Any order is acceptable for
3187	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3188	 * we process all of them.
3189	 */
3190	if (r2->len) {
3191		addr1 += r1->len;
3192		addr2 += r2->len;
3193	}
3194
3195	if (addr1 > addr2)
3196		return 1;
3197
3198	return 0;
3199}
3200
3201static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3202{
3203	return kvm_io_bus_cmp(p1, p2);
3204}
3205
3206static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3207			  gpa_t addr, int len)
3208{
3209	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3210		.addr = addr,
3211		.len = len,
3212		.dev = dev,
3213	};
3214
3215	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3216		kvm_io_bus_sort_cmp, NULL);
3217
3218	return 0;
3219}
3220
3221static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3222			     gpa_t addr, int len)
3223{
3224	struct kvm_io_range *range, key;
3225	int off;
3226
3227	key = (struct kvm_io_range) {
3228		.addr = addr,
3229		.len = len,
3230	};
3231
3232	range = bsearch(&key, bus->range, bus->dev_count,
3233			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3234	if (range == NULL)
3235		return -ENOENT;
3236
3237	off = range - bus->range;
3238
3239	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3240		off--;
3241
3242	return off;
3243}
3244
3245static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3246			      struct kvm_io_range *range, const void *val)
3247{
3248	int idx;
3249
3250	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3251	if (idx < 0)
3252		return -EOPNOTSUPP;
3253
3254	while (idx < bus->dev_count &&
3255		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3256		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3257					range->len, val))
3258			return idx;
3259		idx++;
3260	}
3261
3262	return -EOPNOTSUPP;
3263}
3264
3265/* kvm_io_bus_write - called under kvm->slots_lock */
3266int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3267		     int len, const void *val)
3268{
3269	struct kvm_io_bus *bus;
3270	struct kvm_io_range range;
3271	int r;
3272
3273	range = (struct kvm_io_range) {
3274		.addr = addr,
3275		.len = len,
3276	};
3277
3278	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
 
 
3279	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3280	return r < 0 ? r : 0;
3281}
 
3282
3283/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3284int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3285			    gpa_t addr, int len, const void *val, long cookie)
3286{
3287	struct kvm_io_bus *bus;
3288	struct kvm_io_range range;
3289
3290	range = (struct kvm_io_range) {
3291		.addr = addr,
3292		.len = len,
3293	};
3294
3295	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
 
 
3296
3297	/* First try the device referenced by cookie. */
3298	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3299	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3300		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3301					val))
3302			return cookie;
3303
3304	/*
3305	 * cookie contained garbage; fall back to search and return the
3306	 * correct cookie value.
3307	 */
3308	return __kvm_io_bus_write(vcpu, bus, &range, val);
3309}
3310
3311static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3312			     struct kvm_io_range *range, void *val)
3313{
3314	int idx;
3315
3316	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3317	if (idx < 0)
3318		return -EOPNOTSUPP;
3319
3320	while (idx < bus->dev_count &&
3321		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3322		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3323				       range->len, val))
3324			return idx;
3325		idx++;
3326	}
3327
3328	return -EOPNOTSUPP;
3329}
3330EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3331
3332/* kvm_io_bus_read - called under kvm->slots_lock */
3333int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3334		    int len, void *val)
3335{
3336	struct kvm_io_bus *bus;
3337	struct kvm_io_range range;
3338	int r;
3339
3340	range = (struct kvm_io_range) {
3341		.addr = addr,
3342		.len = len,
3343	};
3344
3345	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
 
 
3346	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3347	return r < 0 ? r : 0;
3348}
3349
3350
3351/* Caller must hold slots_lock. */
3352int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3353			    int len, struct kvm_io_device *dev)
3354{
 
3355	struct kvm_io_bus *new_bus, *bus;
 
 
 
 
 
3356
3357	bus = kvm->buses[bus_idx];
3358	/* exclude ioeventfd which is limited by maximum fd */
3359	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3360		return -ENOSPC;
3361
3362	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3363			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3364	if (!new_bus)
3365		return -ENOMEM;
3366	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3367	       sizeof(struct kvm_io_range)));
3368	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
3369	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3370	synchronize_srcu_expedited(&kvm->srcu);
3371	kfree(bus);
3372
3373	return 0;
3374}
3375
3376/* Caller must hold slots_lock. */
3377int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3378			      struct kvm_io_device *dev)
3379{
3380	int i, r;
3381	struct kvm_io_bus *new_bus, *bus;
3382
3383	bus = kvm->buses[bus_idx];
3384	r = -ENOENT;
 
 
3385	for (i = 0; i < bus->dev_count; i++)
3386		if (bus->range[i].dev == dev) {
3387			r = 0;
3388			break;
3389		}
3390
3391	if (r)
3392		return r;
3393
3394	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3395			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3396	if (!new_bus)
3397		return -ENOMEM;
 
 
3398
3399	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3400	new_bus->dev_count--;
3401	memcpy(new_bus->range + i, bus->range + i + 1,
3402	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3403
 
3404	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3405	synchronize_srcu_expedited(&kvm->srcu);
3406	kfree(bus);
3407	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408}
3409
3410static struct notifier_block kvm_cpu_notifier = {
3411	.notifier_call = kvm_cpu_hotplug,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3412};
3413
3414static int vm_stat_get(void *_offset, u64 *val)
3415{
3416	unsigned offset = (long)_offset;
3417	struct kvm *kvm;
 
 
3418
3419	*val = 0;
3420	spin_lock(&kvm_lock);
3421	list_for_each_entry(kvm, &vm_list, vm_list)
3422		*val += *(u32 *)((void *)kvm + offset);
3423	spin_unlock(&kvm_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3424	return 0;
3425}
3426
3427DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3428
3429static int vcpu_stat_get(void *_offset, u64 *val)
3430{
3431	unsigned offset = (long)_offset;
3432	struct kvm *kvm;
3433	struct kvm_vcpu *vcpu;
3434	int i;
3435
3436	*val = 0;
3437	spin_lock(&kvm_lock);
3438	list_for_each_entry(kvm, &vm_list, vm_list)
3439		kvm_for_each_vcpu(i, vcpu, kvm)
3440			*val += *(u32 *)((void *)vcpu + offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3441
3442	spin_unlock(&kvm_lock);
3443	return 0;
3444}
3445
3446DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
 
3447
3448static const struct file_operations *stat_fops[] = {
3449	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3450	[KVM_STAT_VM]   = &vm_stat_fops,
3451};
3452
3453static int kvm_init_debug(void)
3454{
3455	int r = -EEXIST;
3456	struct kvm_stats_debugfs_item *p;
3457
3458	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3459	if (kvm_debugfs_dir == NULL)
3460		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3461
3462	for (p = debugfs_entries; p->name; ++p) {
3463		if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3464					 (void *)(long)p->offset,
3465					 stat_fops[p->kind]))
3466			goto out_dir;
 
 
 
 
 
 
 
 
 
 
 
 
3467	}
 
 
 
 
 
3468
3469	return 0;
 
 
3470
3471out_dir:
3472	debugfs_remove_recursive(kvm_debugfs_dir);
3473out:
3474	return r;
 
 
 
 
 
3475}
3476
3477static int kvm_suspend(void)
3478{
3479	if (kvm_usage_count)
3480		hardware_disable_nolock(NULL);
3481	return 0;
3482}
3483
3484static void kvm_resume(void)
3485{
3486	if (kvm_usage_count) {
3487		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
 
 
3488		hardware_enable_nolock(NULL);
3489	}
3490}
3491
3492static struct syscore_ops kvm_syscore_ops = {
3493	.suspend = kvm_suspend,
3494	.resume = kvm_resume,
3495};
3496
3497static inline
3498struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3499{
3500	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3501}
3502
3503static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3504{
3505	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3506
3507	if (vcpu->preempted)
3508		vcpu->preempted = false;
3509
3510	kvm_arch_sched_in(vcpu, cpu);
3511
3512	kvm_arch_vcpu_load(vcpu, cpu);
3513}
3514
3515static void kvm_sched_out(struct preempt_notifier *pn,
3516			  struct task_struct *next)
3517{
3518	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3519
3520	if (current->state == TASK_RUNNING)
3521		vcpu->preempted = true;
 
 
3522	kvm_arch_vcpu_put(vcpu);
3523}
3524
 
 
 
 
 
3525int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3526		  struct module *module)
3527{
3528	int r;
3529	int cpu;
3530
3531	r = kvm_arch_init(opaque);
3532	if (r)
3533		goto out_fail;
3534
3535	/*
3536	 * kvm_arch_init makes sure there's at most one caller
3537	 * for architectures that support multiple implementations,
3538	 * like intel and amd on x86.
3539	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3540	 * conflicts in case kvm is already setup for another implementation.
3541	 */
3542	r = kvm_irqfd_init();
3543	if (r)
3544		goto out_irqfd;
3545
3546	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3547		r = -ENOMEM;
3548		goto out_free_0;
3549	}
3550
3551	r = kvm_arch_hardware_setup();
3552	if (r < 0)
3553		goto out_free_0a;
3554
3555	for_each_online_cpu(cpu) {
3556		smp_call_function_single(cpu,
3557				kvm_arch_check_processor_compat,
3558				&r, 1);
3559		if (r < 0)
3560			goto out_free_1;
3561	}
3562
3563	r = register_cpu_notifier(&kvm_cpu_notifier);
 
3564	if (r)
3565		goto out_free_2;
3566	register_reboot_notifier(&kvm_reboot_notifier);
3567
3568	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3569	if (!vcpu_align)
3570		vcpu_align = __alignof__(struct kvm_vcpu);
3571	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3572					   0, NULL);
 
 
 
 
3573	if (!kvm_vcpu_cache) {
3574		r = -ENOMEM;
3575		goto out_free_3;
3576	}
3577
3578	r = kvm_async_pf_init();
3579	if (r)
3580		goto out_free;
3581
3582	kvm_chardev_ops.owner = module;
3583	kvm_vm_fops.owner = module;
3584	kvm_vcpu_fops.owner = module;
3585
3586	r = misc_register(&kvm_dev);
3587	if (r) {
3588		pr_err("kvm: misc device register failed\n");
3589		goto out_unreg;
3590	}
3591
3592	register_syscore_ops(&kvm_syscore_ops);
3593
3594	kvm_preempt_ops.sched_in = kvm_sched_in;
3595	kvm_preempt_ops.sched_out = kvm_sched_out;
3596
3597	r = kvm_init_debug();
3598	if (r) {
3599		pr_err("kvm: create debugfs files failed\n");
3600		goto out_undebugfs;
3601	}
3602
3603	r = kvm_vfio_ops_init();
3604	WARN_ON(r);
3605
3606	return 0;
3607
3608out_undebugfs:
3609	unregister_syscore_ops(&kvm_syscore_ops);
3610	misc_deregister(&kvm_dev);
3611out_unreg:
3612	kvm_async_pf_deinit();
3613out_free:
3614	kmem_cache_destroy(kvm_vcpu_cache);
3615out_free_3:
3616	unregister_reboot_notifier(&kvm_reboot_notifier);
3617	unregister_cpu_notifier(&kvm_cpu_notifier);
3618out_free_2:
3619out_free_1:
3620	kvm_arch_hardware_unsetup();
3621out_free_0a:
3622	free_cpumask_var(cpus_hardware_enabled);
3623out_free_0:
3624	kvm_irqfd_exit();
3625out_irqfd:
3626	kvm_arch_exit();
3627out_fail:
3628	return r;
3629}
3630EXPORT_SYMBOL_GPL(kvm_init);
3631
3632void kvm_exit(void)
3633{
3634	debugfs_remove_recursive(kvm_debugfs_dir);
3635	misc_deregister(&kvm_dev);
3636	kmem_cache_destroy(kvm_vcpu_cache);
3637	kvm_async_pf_deinit();
3638	unregister_syscore_ops(&kvm_syscore_ops);
3639	unregister_reboot_notifier(&kvm_reboot_notifier);
3640	unregister_cpu_notifier(&kvm_cpu_notifier);
3641	on_each_cpu(hardware_disable_nolock, NULL, 1);
3642	kvm_arch_hardware_unsetup();
3643	kvm_arch_exit();
3644	kvm_irqfd_exit();
3645	free_cpumask_var(cpus_hardware_enabled);
3646	kvm_vfio_ops_exit();
3647}
3648EXPORT_SYMBOL_GPL(kvm_exit);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
 
 
 
 
  14 */
  15
  16#include <kvm/iodev.h>
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kvm.h>
  20#include <linux/module.h>
  21#include <linux/errno.h>
  22#include <linux/percpu.h>
  23#include <linux/mm.h>
  24#include <linux/miscdevice.h>
  25#include <linux/vmalloc.h>
  26#include <linux/reboot.h>
  27#include <linux/debugfs.h>
  28#include <linux/highmem.h>
  29#include <linux/file.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/cpu.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/mm.h>
  34#include <linux/sched/stat.h>
  35#include <linux/cpumask.h>
  36#include <linux/smp.h>
  37#include <linux/anon_inodes.h>
  38#include <linux/profile.h>
  39#include <linux/kvm_para.h>
  40#include <linux/pagemap.h>
  41#include <linux/mman.h>
  42#include <linux/swap.h>
  43#include <linux/bitops.h>
  44#include <linux/spinlock.h>
  45#include <linux/compat.h>
  46#include <linux/srcu.h>
  47#include <linux/hugetlb.h>
  48#include <linux/slab.h>
  49#include <linux/sort.h>
  50#include <linux/bsearch.h>
  51#include <linux/io.h>
  52#include <linux/lockdep.h>
  53#include <linux/kthread.h>
  54
  55#include <asm/processor.h>
 
  56#include <asm/ioctl.h>
  57#include <linux/uaccess.h>
  58#include <asm/pgtable.h>
  59
  60#include "coalesced_mmio.h"
  61#include "async_pf.h"
  62#include "vfio.h"
  63
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/kvm.h>
  66
  67/* Worst case buffer size needed for holding an integer. */
  68#define ITOA_MAX_LEN 12
  69
  70MODULE_AUTHOR("Qumranet");
  71MODULE_LICENSE("GPL");
  72
  73/* Architectures should define their poll value according to the halt latency */
  74unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  75module_param(halt_poll_ns, uint, 0644);
  76EXPORT_SYMBOL_GPL(halt_poll_ns);
  77
  78/* Default doubles per-vcpu halt_poll_ns. */
  79unsigned int halt_poll_ns_grow = 2;
  80module_param(halt_poll_ns_grow, uint, 0644);
  81EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  82
  83/* The start value to grow halt_poll_ns from */
  84unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  85module_param(halt_poll_ns_grow_start, uint, 0644);
  86EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  87
  88/* Default resets per-vcpu halt_poll_ns . */
  89unsigned int halt_poll_ns_shrink;
  90module_param(halt_poll_ns_shrink, uint, 0644);
  91EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  92
  93/*
  94 * Ordering of locks:
  95 *
  96 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  97 */
  98
  99DEFINE_MUTEX(kvm_lock);
 100static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 101LIST_HEAD(vm_list);
 102
 103static cpumask_var_t cpus_hardware_enabled;
 104static int kvm_usage_count;
 105static atomic_t hardware_enable_failed;
 106
 107struct kmem_cache *kvm_vcpu_cache;
 108EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 109
 110static __read_mostly struct preempt_ops kvm_preempt_ops;
 111
 112struct dentry *kvm_debugfs_dir;
 113EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 114
 115static int kvm_debugfs_num_entries;
 116static const struct file_operations *stat_fops_per_vm[];
 117
 118static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 119			   unsigned long arg);
 120#ifdef CONFIG_KVM_COMPAT
 121static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 122				  unsigned long arg);
 123#define KVM_COMPAT(c)	.compat_ioctl	= (c)
 124#else
 125/*
 126 * For architectures that don't implement a compat infrastructure,
 127 * adopt a double line of defense:
 128 * - Prevent a compat task from opening /dev/kvm
 129 * - If the open has been done by a 64bit task, and the KVM fd
 130 *   passed to a compat task, let the ioctls fail.
 131 */
 132static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 133				unsigned long arg) { return -EINVAL; }
 134
 135static int kvm_no_compat_open(struct inode *inode, struct file *file)
 136{
 137	return is_compat_task() ? -ENODEV : 0;
 138}
 139#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
 140			.open		= kvm_no_compat_open
 141#endif
 142static int hardware_enable_all(void);
 143static void hardware_disable_all(void);
 144
 145static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 146
 
 147static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 148
 149__visible bool kvm_rebooting;
 150EXPORT_SYMBOL_GPL(kvm_rebooting);
 151
 152static bool largepages_enabled = true;
 153
 154#define KVM_EVENT_CREATE_VM 0
 155#define KVM_EVENT_DESTROY_VM 1
 156static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 157static unsigned long long kvm_createvm_count;
 158static unsigned long long kvm_active_vms;
 159
 160__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 161		unsigned long start, unsigned long end, bool blockable)
 162{
 163	return 0;
 164}
 165
 166bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
 167{
 168	/*
 169	 * The metadata used by is_zone_device_page() to determine whether or
 170	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
 171	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
 172	 * page_count() is zero to help detect bad usage of this helper.
 173	 */
 174	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
 175		return false;
 176
 177	return is_zone_device_page(pfn_to_page(pfn));
 178}
 179
 180bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 181{
 182	/*
 183	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
 184	 * perspective they are "normal" pages, albeit with slightly different
 185	 * usage rules.
 186	 */
 187	if (pfn_valid(pfn))
 188		return PageReserved(pfn_to_page(pfn)) &&
 189		       !kvm_is_zone_device_pfn(pfn);
 190
 191	return true;
 192}
 193
 194/*
 195 * Switches to specified vcpu, until a matching vcpu_put()
 196 */
 197void vcpu_load(struct kvm_vcpu *vcpu)
 198{
 199	int cpu = get_cpu();
 
 
 
 
 200	preempt_notifier_register(&vcpu->preempt_notifier);
 201	kvm_arch_vcpu_load(vcpu, cpu);
 202	put_cpu();
 
 203}
 204EXPORT_SYMBOL_GPL(vcpu_load);
 205
 206void vcpu_put(struct kvm_vcpu *vcpu)
 207{
 208	preempt_disable();
 209	kvm_arch_vcpu_put(vcpu);
 210	preempt_notifier_unregister(&vcpu->preempt_notifier);
 211	preempt_enable();
 212}
 213EXPORT_SYMBOL_GPL(vcpu_put);
 214
 215/* TODO: merge with kvm_arch_vcpu_should_kick */
 216static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 217{
 218	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 219
 220	/*
 221	 * We need to wait for the VCPU to reenable interrupts and get out of
 222	 * READING_SHADOW_PAGE_TABLES mode.
 223	 */
 224	if (req & KVM_REQUEST_WAIT)
 225		return mode != OUTSIDE_GUEST_MODE;
 226
 227	/*
 228	 * Need to kick a running VCPU, but otherwise there is nothing to do.
 229	 */
 230	return mode == IN_GUEST_MODE;
 231}
 232
 233static void ack_flush(void *_completed)
 234{
 235}
 236
 237static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 238{
 239	if (unlikely(!cpus))
 240		cpus = cpu_online_mask;
 241
 242	if (cpumask_empty(cpus))
 243		return false;
 244
 245	smp_call_function_many(cpus, ack_flush, NULL, wait);
 246	return true;
 247}
 248
 249bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 250				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 251{
 252	int i, cpu, me;
 
 
 253	struct kvm_vcpu *vcpu;
 254	bool called;
 
 255
 256	me = get_cpu();
 257
 258	kvm_for_each_vcpu(i, vcpu, kvm) {
 259		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
 260			continue;
 261
 262		kvm_make_request(req, vcpu);
 263		cpu = vcpu->cpu;
 264
 265		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 266			continue;
 267
 268		if (tmp != NULL && cpu != -1 && cpu != me &&
 269		    kvm_request_needs_ipi(vcpu, req))
 270			__cpumask_set_cpu(cpu, tmp);
 271	}
 272
 273	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 
 
 
 
 274	put_cpu();
 275
 276	return called;
 277}
 278
 279bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 280{
 281	cpumask_var_t cpus;
 282	bool called;
 283
 284	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 285
 286	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
 287
 288	free_cpumask_var(cpus);
 289	return called;
 290}
 291
 292#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 293void kvm_flush_remote_tlbs(struct kvm *kvm)
 294{
 295	/*
 296	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 297	 * kvm_make_all_cpus_request.
 298	 */
 299	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 300
 301	/*
 302	 * We want to publish modifications to the page tables before reading
 303	 * mode. Pairs with a memory barrier in arch-specific code.
 304	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 305	 * and smp_mb in walk_shadow_page_lockless_begin/end.
 306	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 307	 *
 308	 * There is already an smp_mb__after_atomic() before
 309	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 310	 * barrier here.
 311	 */
 312	if (!kvm_arch_flush_remote_tlb(kvm)
 313	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 314		++kvm->stat.remote_tlb_flush;
 315	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 316}
 317EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 318#endif
 319
 320void kvm_reload_remote_mmus(struct kvm *kvm)
 321{
 322	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 323}
 324
 325int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 326{
 327	struct page *page;
 328	int r;
 329
 330	mutex_init(&vcpu->mutex);
 331	vcpu->cpu = -1;
 332	vcpu->kvm = kvm;
 333	vcpu->vcpu_id = id;
 334	vcpu->pid = NULL;
 335	init_swait_queue_head(&vcpu->wq);
 336	kvm_async_pf_vcpu_init(vcpu);
 337
 338	vcpu->pre_pcpu = -1;
 339	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 340
 341	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 342	if (!page) {
 343		r = -ENOMEM;
 344		goto fail;
 345	}
 346	vcpu->run = page_address(page);
 347
 348	kvm_vcpu_set_in_spin_loop(vcpu, false);
 349	kvm_vcpu_set_dy_eligible(vcpu, false);
 350	vcpu->preempted = false;
 351	vcpu->ready = false;
 352
 353	r = kvm_arch_vcpu_init(vcpu);
 354	if (r < 0)
 355		goto fail_free_run;
 356	return 0;
 357
 358fail_free_run:
 359	free_page((unsigned long)vcpu->run);
 360fail:
 361	return r;
 362}
 363EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 364
 365void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 366{
 367	/*
 368	 * no need for rcu_read_lock as VCPU_RUN is the only place that
 369	 * will change the vcpu->pid pointer and on uninit all file
 370	 * descriptors are already gone.
 371	 */
 372	put_pid(rcu_dereference_protected(vcpu->pid, 1));
 373	kvm_arch_vcpu_uninit(vcpu);
 374	free_page((unsigned long)vcpu->run);
 375}
 376EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 377
 378#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 379static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 380{
 381	return container_of(mn, struct kvm, mmu_notifier);
 382}
 383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 385					struct mm_struct *mm,
 386					unsigned long address,
 387					pte_t pte)
 388{
 389	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 390	int idx;
 391
 392	idx = srcu_read_lock(&kvm->srcu);
 393	spin_lock(&kvm->mmu_lock);
 394	kvm->mmu_notifier_seq++;
 395
 396	if (kvm_set_spte_hva(kvm, address, pte))
 397		kvm_flush_remote_tlbs(kvm);
 398
 399	spin_unlock(&kvm->mmu_lock);
 400	srcu_read_unlock(&kvm->srcu, idx);
 401}
 402
 403static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 404					const struct mmu_notifier_range *range)
 
 
 405{
 406	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 407	int need_tlb_flush = 0, idx;
 408	int ret;
 409
 410	idx = srcu_read_lock(&kvm->srcu);
 411	spin_lock(&kvm->mmu_lock);
 412	/*
 413	 * The count increase must become visible at unlock time as no
 414	 * spte can be established without taking the mmu_lock and
 415	 * count is also read inside the mmu_lock critical section.
 416	 */
 417	kvm->mmu_notifier_count++;
 418	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
 419	need_tlb_flush |= kvm->tlbs_dirty;
 420	/* we've to flush the tlb before the pages can be freed */
 421	if (need_tlb_flush)
 422		kvm_flush_remote_tlbs(kvm);
 423
 424	spin_unlock(&kvm->mmu_lock);
 425
 426	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
 427					range->end,
 428					mmu_notifier_range_blockable(range));
 429
 430	srcu_read_unlock(&kvm->srcu, idx);
 431
 432	return ret;
 433}
 434
 435static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 436					const struct mmu_notifier_range *range)
 
 
 437{
 438	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 439
 440	spin_lock(&kvm->mmu_lock);
 441	/*
 442	 * This sequence increase will notify the kvm page fault that
 443	 * the page that is going to be mapped in the spte could have
 444	 * been freed.
 445	 */
 446	kvm->mmu_notifier_seq++;
 447	smp_wmb();
 448	/*
 449	 * The above sequence increase must be visible before the
 450	 * below count decrease, which is ensured by the smp_wmb above
 451	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 452	 */
 453	kvm->mmu_notifier_count--;
 454	spin_unlock(&kvm->mmu_lock);
 455
 456	BUG_ON(kvm->mmu_notifier_count < 0);
 457}
 458
 459static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 460					      struct mm_struct *mm,
 461					      unsigned long start,
 462					      unsigned long end)
 463{
 464	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 465	int young, idx;
 466
 467	idx = srcu_read_lock(&kvm->srcu);
 468	spin_lock(&kvm->mmu_lock);
 469
 470	young = kvm_age_hva(kvm, start, end);
 471	if (young)
 472		kvm_flush_remote_tlbs(kvm);
 473
 474	spin_unlock(&kvm->mmu_lock);
 475	srcu_read_unlock(&kvm->srcu, idx);
 476
 477	return young;
 478}
 479
 480static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 481					struct mm_struct *mm,
 482					unsigned long start,
 483					unsigned long end)
 484{
 485	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 486	int young, idx;
 487
 488	idx = srcu_read_lock(&kvm->srcu);
 489	spin_lock(&kvm->mmu_lock);
 490	/*
 491	 * Even though we do not flush TLB, this will still adversely
 492	 * affect performance on pre-Haswell Intel EPT, where there is
 493	 * no EPT Access Bit to clear so that we have to tear down EPT
 494	 * tables instead. If we find this unacceptable, we can always
 495	 * add a parameter to kvm_age_hva so that it effectively doesn't
 496	 * do anything on clear_young.
 497	 *
 498	 * Also note that currently we never issue secondary TLB flushes
 499	 * from clear_young, leaving this job up to the regular system
 500	 * cadence. If we find this inaccurate, we might come up with a
 501	 * more sophisticated heuristic later.
 502	 */
 503	young = kvm_age_hva(kvm, start, end);
 504	spin_unlock(&kvm->mmu_lock);
 505	srcu_read_unlock(&kvm->srcu, idx);
 506
 507	return young;
 508}
 509
 510static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 511				       struct mm_struct *mm,
 512				       unsigned long address)
 513{
 514	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 515	int young, idx;
 516
 517	idx = srcu_read_lock(&kvm->srcu);
 518	spin_lock(&kvm->mmu_lock);
 519	young = kvm_test_age_hva(kvm, address);
 520	spin_unlock(&kvm->mmu_lock);
 521	srcu_read_unlock(&kvm->srcu, idx);
 522
 523	return young;
 524}
 525
 526static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 527				     struct mm_struct *mm)
 528{
 529	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 530	int idx;
 531
 532	idx = srcu_read_lock(&kvm->srcu);
 533	kvm_arch_flush_shadow_all(kvm);
 534	srcu_read_unlock(&kvm->srcu, idx);
 535}
 536
 537static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 
 538	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 539	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 540	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 541	.clear_young		= kvm_mmu_notifier_clear_young,
 542	.test_young		= kvm_mmu_notifier_test_young,
 543	.change_pte		= kvm_mmu_notifier_change_pte,
 544	.release		= kvm_mmu_notifier_release,
 545};
 546
 547static int kvm_init_mmu_notifier(struct kvm *kvm)
 548{
 549	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 550	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 551}
 552
 553#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 554
 555static int kvm_init_mmu_notifier(struct kvm *kvm)
 556{
 557	return 0;
 558}
 559
 560#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 561
 562static struct kvm_memslots *kvm_alloc_memslots(void)
 563{
 564	int i;
 565	struct kvm_memslots *slots;
 566
 567	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
 568	if (!slots)
 569		return NULL;
 570
 
 
 
 
 
 571	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 572		slots->id_to_index[i] = slots->memslots[i].id = i;
 573
 574	return slots;
 575}
 576
 577static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 578{
 579	if (!memslot->dirty_bitmap)
 580		return;
 581
 582	kvfree(memslot->dirty_bitmap);
 583	memslot->dirty_bitmap = NULL;
 584}
 585
 586/*
 587 * Free any memory in @free but not in @dont.
 588 */
 589static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 590			      struct kvm_memory_slot *dont)
 591{
 592	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 593		kvm_destroy_dirty_bitmap(free);
 594
 595	kvm_arch_free_memslot(kvm, free, dont);
 596
 597	free->npages = 0;
 598}
 599
 600static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 601{
 602	struct kvm_memory_slot *memslot;
 603
 604	if (!slots)
 605		return;
 606
 607	kvm_for_each_memslot(memslot, slots)
 608		kvm_free_memslot(kvm, memslot, NULL);
 609
 610	kvfree(slots);
 611}
 612
 613static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 614{
 615	int i;
 616
 617	if (!kvm->debugfs_dentry)
 618		return;
 619
 620	debugfs_remove_recursive(kvm->debugfs_dentry);
 621
 622	if (kvm->debugfs_stat_data) {
 623		for (i = 0; i < kvm_debugfs_num_entries; i++)
 624			kfree(kvm->debugfs_stat_data[i]);
 625		kfree(kvm->debugfs_stat_data);
 626	}
 627}
 628
 629static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 630{
 631	char dir_name[ITOA_MAX_LEN * 2];
 632	struct kvm_stat_data *stat_data;
 633	struct kvm_stats_debugfs_item *p;
 634
 635	if (!debugfs_initialized())
 636		return 0;
 637
 638	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 639	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 640
 641	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 642					 sizeof(*kvm->debugfs_stat_data),
 643					 GFP_KERNEL_ACCOUNT);
 644	if (!kvm->debugfs_stat_data)
 645		return -ENOMEM;
 646
 647	for (p = debugfs_entries; p->name; p++) {
 648		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 649		if (!stat_data)
 650			return -ENOMEM;
 651
 652		stat_data->kvm = kvm;
 653		stat_data->offset = p->offset;
 654		stat_data->mode = p->mode ? p->mode : 0644;
 655		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 656		debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
 657				    stat_data, stat_fops_per_vm[p->kind]);
 658	}
 659	return 0;
 660}
 661
 662/*
 663 * Called after the VM is otherwise initialized, but just before adding it to
 664 * the vm_list.
 665 */
 666int __weak kvm_arch_post_init_vm(struct kvm *kvm)
 667{
 668	return 0;
 669}
 670
 671/*
 672 * Called just after removing the VM from the vm_list, but before doing any
 673 * other destruction.
 674 */
 675void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
 676{
 677}
 678
 679static struct kvm *kvm_create_vm(unsigned long type)
 680{
 
 681	struct kvm *kvm = kvm_arch_alloc_vm();
 682	int r = -ENOMEM;
 683	int i;
 684
 685	if (!kvm)
 686		return ERR_PTR(-ENOMEM);
 687
 688	spin_lock_init(&kvm->mmu_lock);
 689	mmgrab(current->mm);
 690	kvm->mm = current->mm;
 691	kvm_eventfd_init(kvm);
 692	mutex_init(&kvm->lock);
 693	mutex_init(&kvm->irq_lock);
 694	mutex_init(&kvm->slots_lock);
 
 695	INIT_LIST_HEAD(&kvm->devices);
 696
 697	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 698
 699	if (init_srcu_struct(&kvm->srcu))
 700		goto out_err_no_srcu;
 701	if (init_srcu_struct(&kvm->irq_srcu))
 702		goto out_err_no_irq_srcu;
 703
 704	refcount_set(&kvm->users_count, 1);
 705	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 706		struct kvm_memslots *slots = kvm_alloc_memslots();
 707
 708		if (!slots)
 709			goto out_err_no_arch_destroy_vm;
 710		/* Generations must be different for each address space. */
 711		slots->generation = i;
 712		rcu_assign_pointer(kvm->memslots[i], slots);
 713	}
 714
 715	for (i = 0; i < KVM_NR_BUSES; i++) {
 716		rcu_assign_pointer(kvm->buses[i],
 717			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
 718		if (!kvm->buses[i])
 719			goto out_err_no_arch_destroy_vm;
 720	}
 721
 722	r = kvm_arch_init_vm(kvm, type);
 723	if (r)
 724		goto out_err_no_arch_destroy_vm;
 725
 726	r = hardware_enable_all();
 727	if (r)
 728		goto out_err_no_disable;
 729
 730#ifdef CONFIG_HAVE_KVM_IRQFD
 731	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 732#endif
 733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734	r = kvm_init_mmu_notifier(kvm);
 735	if (r)
 736		goto out_err_no_mmu_notifier;
 737
 738	r = kvm_arch_post_init_vm(kvm);
 739	if (r)
 740		goto out_err;
 741
 742	mutex_lock(&kvm_lock);
 743	list_add(&kvm->vm_list, &vm_list);
 744	mutex_unlock(&kvm_lock);
 745
 746	preempt_notifier_inc();
 747
 748	return kvm;
 749
 750out_err:
 751#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 752	if (kvm->mmu_notifier.ops)
 753		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
 754#endif
 755out_err_no_mmu_notifier:
 756	hardware_disable_all();
 757out_err_no_disable:
 758	kvm_arch_destroy_vm(kvm);
 759out_err_no_arch_destroy_vm:
 760	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
 761	for (i = 0; i < KVM_NR_BUSES; i++)
 762		kfree(kvm_get_bus(kvm, i));
 763	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 764		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 765	cleanup_srcu_struct(&kvm->irq_srcu);
 766out_err_no_irq_srcu:
 767	cleanup_srcu_struct(&kvm->srcu);
 768out_err_no_srcu:
 769	kvm_arch_free_vm(kvm);
 770	mmdrop(current->mm);
 771	return ERR_PTR(r);
 772}
 773
 
 
 
 
 
 
 
 
 
 
 
 
 774static void kvm_destroy_devices(struct kvm *kvm)
 775{
 776	struct kvm_device *dev, *tmp;
 777
 778	/*
 779	 * We do not need to take the kvm->lock here, because nobody else
 780	 * has a reference to the struct kvm at this point and therefore
 781	 * cannot access the devices list anyhow.
 782	 */
 783	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 784		list_del(&dev->vm_node);
 785		dev->ops->destroy(dev);
 786	}
 787}
 788
 789static void kvm_destroy_vm(struct kvm *kvm)
 790{
 791	int i;
 792	struct mm_struct *mm = kvm->mm;
 793
 794	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 795	kvm_destroy_vm_debugfs(kvm);
 796	kvm_arch_sync_events(kvm);
 797	mutex_lock(&kvm_lock);
 798	list_del(&kvm->vm_list);
 799	mutex_unlock(&kvm_lock);
 800	kvm_arch_pre_destroy_vm(kvm);
 801
 802	kvm_free_irq_routing(kvm);
 803	for (i = 0; i < KVM_NR_BUSES; i++) {
 804		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 805
 806		if (bus)
 807			kvm_io_bus_destroy(bus);
 808		kvm->buses[i] = NULL;
 809	}
 810	kvm_coalesced_mmio_free(kvm);
 811#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 812	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 813#else
 814	kvm_arch_flush_shadow_all(kvm);
 815#endif
 816	kvm_arch_destroy_vm(kvm);
 817	kvm_destroy_devices(kvm);
 818	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 819		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 820	cleanup_srcu_struct(&kvm->irq_srcu);
 821	cleanup_srcu_struct(&kvm->srcu);
 822	kvm_arch_free_vm(kvm);
 823	preempt_notifier_dec();
 824	hardware_disable_all();
 825	mmdrop(mm);
 826}
 827
 828void kvm_get_kvm(struct kvm *kvm)
 829{
 830	refcount_inc(&kvm->users_count);
 831}
 832EXPORT_SYMBOL_GPL(kvm_get_kvm);
 833
 834void kvm_put_kvm(struct kvm *kvm)
 835{
 836	if (refcount_dec_and_test(&kvm->users_count))
 837		kvm_destroy_vm(kvm);
 838}
 839EXPORT_SYMBOL_GPL(kvm_put_kvm);
 840
 841
 842static int kvm_vm_release(struct inode *inode, struct file *filp)
 843{
 844	struct kvm *kvm = filp->private_data;
 845
 846	kvm_irqfd_release(kvm);
 847
 848	kvm_put_kvm(kvm);
 849	return 0;
 850}
 851
 852/*
 853 * Allocation size is twice as large as the actual dirty bitmap size.
 854 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 855 */
 856static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 857{
 858	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 859
 860	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
 861	if (!memslot->dirty_bitmap)
 862		return -ENOMEM;
 863
 864	return 0;
 865}
 866
 867/*
 868 * Insert memslot and re-sort memslots based on their GFN,
 869 * so binary search could be used to lookup GFN.
 870 * Sorting algorithm takes advantage of having initially
 871 * sorted array and known changed memslot position.
 872 */
 873static void update_memslots(struct kvm_memslots *slots,
 874			    struct kvm_memory_slot *new,
 875			    enum kvm_mr_change change)
 876{
 877	int id = new->id;
 878	int i = slots->id_to_index[id];
 879	struct kvm_memory_slot *mslots = slots->memslots;
 880
 881	WARN_ON(mslots[i].id != id);
 882	switch (change) {
 883	case KVM_MR_CREATE:
 884		slots->used_slots++;
 885		WARN_ON(mslots[i].npages || !new->npages);
 886		break;
 887	case KVM_MR_DELETE:
 888		slots->used_slots--;
 889		WARN_ON(new->npages || !mslots[i].npages);
 890		break;
 891	default:
 892		break;
 893	}
 894
 895	while (i < KVM_MEM_SLOTS_NUM - 1 &&
 896	       new->base_gfn <= mslots[i + 1].base_gfn) {
 897		if (!mslots[i + 1].npages)
 898			break;
 899		mslots[i] = mslots[i + 1];
 900		slots->id_to_index[mslots[i].id] = i;
 901		i++;
 902	}
 903
 904	/*
 905	 * The ">=" is needed when creating a slot with base_gfn == 0,
 906	 * so that it moves before all those with base_gfn == npages == 0.
 907	 *
 908	 * On the other hand, if new->npages is zero, the above loop has
 909	 * already left i pointing to the beginning of the empty part of
 910	 * mslots, and the ">=" would move the hole backwards in this
 911	 * case---which is wrong.  So skip the loop when deleting a slot.
 912	 */
 913	if (new->npages) {
 914		while (i > 0 &&
 915		       new->base_gfn >= mslots[i - 1].base_gfn) {
 916			mslots[i] = mslots[i - 1];
 917			slots->id_to_index[mslots[i].id] = i;
 918			i--;
 919		}
 920	} else
 921		WARN_ON_ONCE(i != slots->used_slots);
 922
 923	mslots[i] = *new;
 924	slots->id_to_index[mslots[i].id] = i;
 925}
 926
 927static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 928{
 929	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 930
 931#ifdef __KVM_HAVE_READONLY_MEM
 932	valid_flags |= KVM_MEM_READONLY;
 933#endif
 934
 935	if (mem->flags & ~valid_flags)
 936		return -EINVAL;
 937
 938	return 0;
 939}
 940
 941static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 942		int as_id, struct kvm_memslots *slots)
 943{
 944	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 945	u64 gen = old_memslots->generation;
 946
 947	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
 948	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
 
 
 
 
 949
 950	rcu_assign_pointer(kvm->memslots[as_id], slots);
 951	synchronize_srcu_expedited(&kvm->srcu);
 952
 953	/*
 954	 * Increment the new memslot generation a second time, dropping the
 955	 * update in-progress flag and incrementing then generation based on
 956	 * the number of address spaces.  This provides a unique and easily
 957	 * identifiable generation number while the memslots are in flux.
 958	 */
 959	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
 960
 961	/*
 962	 * Generations must be unique even across address spaces.  We do not need
 963	 * a global counter for that, instead the generation space is evenly split
 964	 * across address spaces.  For example, with two address spaces, address
 965	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
 966	 * use generations 1, 3, 5, ...
 967	 */
 968	gen += KVM_ADDRESS_SPACE_NUM;
 969
 970	kvm_arch_memslots_updated(kvm, gen);
 971
 972	slots->generation = gen;
 973
 974	return old_memslots;
 975}
 976
 977/*
 978 * Allocate some memory and give it an address in the guest physical address
 979 * space.
 980 *
 981 * Discontiguous memory is allowed, mostly for framebuffers.
 982 *
 983 * Must be called holding kvm->slots_lock for write.
 984 */
 985int __kvm_set_memory_region(struct kvm *kvm,
 986			    const struct kvm_userspace_memory_region *mem)
 987{
 988	int r;
 989	gfn_t base_gfn;
 990	unsigned long npages;
 991	struct kvm_memory_slot *slot;
 992	struct kvm_memory_slot old, new;
 993	struct kvm_memslots *slots = NULL, *old_memslots;
 994	int as_id, id;
 995	enum kvm_mr_change change;
 996
 997	r = check_memory_region_flags(mem);
 998	if (r)
 999		goto out;
1000
1001	r = -EINVAL;
1002	as_id = mem->slot >> 16;
1003	id = (u16)mem->slot;
1004
1005	/* General sanity checks */
1006	if (mem->memory_size & (PAGE_SIZE - 1))
1007		goto out;
1008	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1009		goto out;
1010	/* We can read the guest memory with __xxx_user() later on. */
1011	if ((id < KVM_USER_MEM_SLOTS) &&
1012	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1013	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
 
1014			mem->memory_size)))
1015		goto out;
1016	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1017		goto out;
1018	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1019		goto out;
1020
1021	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1022	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1023	npages = mem->memory_size >> PAGE_SHIFT;
1024
1025	if (npages > KVM_MEM_MAX_NR_PAGES)
1026		goto out;
1027
1028	new = old = *slot;
1029
1030	new.id = id;
1031	new.base_gfn = base_gfn;
1032	new.npages = npages;
1033	new.flags = mem->flags;
1034
1035	if (npages) {
1036		if (!old.npages)
1037			change = KVM_MR_CREATE;
1038		else { /* Modify an existing slot. */
1039			if ((mem->userspace_addr != old.userspace_addr) ||
1040			    (npages != old.npages) ||
1041			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1042				goto out;
1043
1044			if (base_gfn != old.base_gfn)
1045				change = KVM_MR_MOVE;
1046			else if (new.flags != old.flags)
1047				change = KVM_MR_FLAGS_ONLY;
1048			else { /* Nothing to change. */
1049				r = 0;
1050				goto out;
1051			}
1052		}
1053	} else {
1054		if (!old.npages)
1055			goto out;
1056
1057		change = KVM_MR_DELETE;
1058		new.base_gfn = 0;
1059		new.flags = 0;
1060	}
1061
1062	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1063		/* Check for overlaps */
1064		r = -EEXIST;
1065		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1066			if (slot->id == id)
 
1067				continue;
1068			if (!((base_gfn + npages <= slot->base_gfn) ||
1069			      (base_gfn >= slot->base_gfn + slot->npages)))
1070				goto out;
1071		}
1072	}
1073
1074	/* Free page dirty bitmap if unneeded */
1075	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1076		new.dirty_bitmap = NULL;
1077
1078	r = -ENOMEM;
1079	if (change == KVM_MR_CREATE) {
1080		new.userspace_addr = mem->userspace_addr;
1081
1082		if (kvm_arch_create_memslot(kvm, &new, npages))
1083			goto out_free;
1084	}
1085
1086	/* Allocate page dirty bitmap if needed */
1087	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1088		if (kvm_create_dirty_bitmap(&new) < 0)
1089			goto out_free;
1090	}
1091
1092	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1093	if (!slots)
1094		goto out_free;
1095	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1096
1097	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1098		slot = id_to_memslot(slots, id);
1099		slot->flags |= KVM_MEMSLOT_INVALID;
1100
1101		old_memslots = install_new_memslots(kvm, as_id, slots);
1102
 
 
1103		/* From this point no new shadow pages pointing to a deleted,
1104		 * or moved, memslot will be created.
1105		 *
1106		 * validation of sp->gfn happens in:
1107		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1108		 *	- kvm_is_visible_gfn (mmu_check_roots)
1109		 */
1110		kvm_arch_flush_shadow_memslot(kvm, slot);
1111
1112		/*
1113		 * We can re-use the old_memslots from above, the only difference
1114		 * from the currently installed memslots is the invalid flag.  This
1115		 * will get overwritten by update_memslots anyway.
1116		 */
1117		slots = old_memslots;
1118	}
1119
1120	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1121	if (r)
1122		goto out_slots;
1123
1124	/* actual memory is freed via old in kvm_free_memslot below */
1125	if (change == KVM_MR_DELETE) {
1126		new.dirty_bitmap = NULL;
1127		memset(&new.arch, 0, sizeof(new.arch));
1128	}
1129
1130	update_memslots(slots, &new, change);
1131	old_memslots = install_new_memslots(kvm, as_id, slots);
1132
1133	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1134
1135	kvm_free_memslot(kvm, &old, &new);
1136	kvfree(old_memslots);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137	return 0;
1138
1139out_slots:
1140	kvfree(slots);
1141out_free:
1142	kvm_free_memslot(kvm, &new, &old);
1143out:
1144	return r;
1145}
1146EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1147
1148int kvm_set_memory_region(struct kvm *kvm,
1149			  const struct kvm_userspace_memory_region *mem)
1150{
1151	int r;
1152
1153	mutex_lock(&kvm->slots_lock);
1154	r = __kvm_set_memory_region(kvm, mem);
1155	mutex_unlock(&kvm->slots_lock);
1156	return r;
1157}
1158EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1159
1160static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1161					  struct kvm_userspace_memory_region *mem)
1162{
1163	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1164		return -EINVAL;
1165
1166	return kvm_set_memory_region(kvm, mem);
1167}
1168
1169int kvm_get_dirty_log(struct kvm *kvm,
1170			struct kvm_dirty_log *log, int *is_dirty)
1171{
1172	struct kvm_memslots *slots;
1173	struct kvm_memory_slot *memslot;
1174	int i, as_id, id;
1175	unsigned long n;
1176	unsigned long any = 0;
1177
 
1178	as_id = log->slot >> 16;
1179	id = (u16)log->slot;
1180	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1181		return -EINVAL;
1182
1183	slots = __kvm_memslots(kvm, as_id);
1184	memslot = id_to_memslot(slots, id);
 
1185	if (!memslot->dirty_bitmap)
1186		return -ENOENT;
1187
1188	n = kvm_dirty_bitmap_bytes(memslot);
1189
1190	for (i = 0; !any && i < n/sizeof(long); ++i)
1191		any = memslot->dirty_bitmap[i];
1192
 
1193	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1194		return -EFAULT;
1195
1196	if (any)
1197		*is_dirty = 1;
1198	return 0;
 
 
 
1199}
1200EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1201
1202#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1203/**
1204 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1205 *	and reenable dirty page tracking for the corresponding pages.
1206 * @kvm:	pointer to kvm instance
1207 * @log:	slot id and address to which we copy the log
1208 * @flush:	true if TLB flush is needed by caller
1209 *
1210 * We need to keep it in mind that VCPU threads can write to the bitmap
1211 * concurrently. So, to avoid losing track of dirty pages we keep the
1212 * following order:
1213 *
1214 *    1. Take a snapshot of the bit and clear it if needed.
1215 *    2. Write protect the corresponding page.
1216 *    3. Copy the snapshot to the userspace.
1217 *    4. Upon return caller flushes TLB's if needed.
1218 *
1219 * Between 2 and 4, the guest may write to the page using the remaining TLB
1220 * entry.  This is not a problem because the page is reported dirty using
1221 * the snapshot taken before and step 4 ensures that writes done after
1222 * exiting to userspace will be logged for the next call.
1223 *
1224 */
1225int kvm_get_dirty_log_protect(struct kvm *kvm,
1226			struct kvm_dirty_log *log, bool *flush)
1227{
1228	struct kvm_memslots *slots;
1229	struct kvm_memory_slot *memslot;
1230	int i, as_id, id;
1231	unsigned long n;
1232	unsigned long *dirty_bitmap;
1233	unsigned long *dirty_bitmap_buffer;
1234
 
1235	as_id = log->slot >> 16;
1236	id = (u16)log->slot;
1237	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1238		return -EINVAL;
1239
1240	slots = __kvm_memslots(kvm, as_id);
1241	memslot = id_to_memslot(slots, id);
1242
1243	dirty_bitmap = memslot->dirty_bitmap;
 
1244	if (!dirty_bitmap)
1245		return -ENOENT;
1246
1247	n = kvm_dirty_bitmap_bytes(memslot);
1248	*flush = false;
1249	if (kvm->manual_dirty_log_protect) {
1250		/*
1251		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1252		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1253		 * is some code duplication between this function and
1254		 * kvm_get_dirty_log, but hopefully all architecture
1255		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1256		 * can be eliminated.
1257		 */
1258		dirty_bitmap_buffer = dirty_bitmap;
1259	} else {
1260		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1261		memset(dirty_bitmap_buffer, 0, n);
1262
1263		spin_lock(&kvm->mmu_lock);
1264		for (i = 0; i < n / sizeof(long); i++) {
1265			unsigned long mask;
1266			gfn_t offset;
1267
1268			if (!dirty_bitmap[i])
1269				continue;
 
 
 
1270
1271			*flush = true;
1272			mask = xchg(&dirty_bitmap[i], 0);
1273			dirty_bitmap_buffer[i] = mask;
1274
1275			offset = i * BITS_PER_LONG;
1276			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1277								offset, mask);
1278		}
1279		spin_unlock(&kvm->mmu_lock);
1280	}
1281
1282	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1283		return -EFAULT;
1284	return 0;
1285}
1286EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1287
1288/**
1289 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1290 *	and reenable dirty page tracking for the corresponding pages.
1291 * @kvm:	pointer to kvm instance
1292 * @log:	slot id and address from which to fetch the bitmap of dirty pages
1293 * @flush:	true if TLB flush is needed by caller
1294 */
1295int kvm_clear_dirty_log_protect(struct kvm *kvm,
1296				struct kvm_clear_dirty_log *log, bool *flush)
1297{
1298	struct kvm_memslots *slots;
1299	struct kvm_memory_slot *memslot;
1300	int as_id, id;
1301	gfn_t offset;
1302	unsigned long i, n;
1303	unsigned long *dirty_bitmap;
1304	unsigned long *dirty_bitmap_buffer;
1305
1306	as_id = log->slot >> 16;
1307	id = (u16)log->slot;
1308	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1309		return -EINVAL;
1310
1311	if (log->first_page & 63)
1312		return -EINVAL;
1313
1314	slots = __kvm_memslots(kvm, as_id);
1315	memslot = id_to_memslot(slots, id);
1316
1317	dirty_bitmap = memslot->dirty_bitmap;
1318	if (!dirty_bitmap)
1319		return -ENOENT;
1320
1321	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1322
1323	if (log->first_page > memslot->npages ||
1324	    log->num_pages > memslot->npages - log->first_page ||
1325	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1326	    return -EINVAL;
1327
1328	*flush = false;
1329	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1330	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1331		return -EFAULT;
1332
1333	spin_lock(&kvm->mmu_lock);
1334	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1335		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1336	     i++, offset += BITS_PER_LONG) {
1337		unsigned long mask = *dirty_bitmap_buffer++;
1338		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1339		if (!mask)
1340			continue;
1341
1342		mask &= atomic_long_fetch_andnot(mask, p);
1343
1344		/*
1345		 * mask contains the bits that really have been cleared.  This
1346		 * never includes any bits beyond the length of the memslot (if
1347		 * the length is not aligned to 64 pages), therefore it is not
1348		 * a problem if userspace sets them in log->dirty_bitmap.
1349		*/
1350		if (mask) {
1351			*flush = true;
1352			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1353								offset, mask);
1354		}
1355	}
 
1356	spin_unlock(&kvm->mmu_lock);
1357
1358	return 0;
 
 
 
 
 
 
1359}
1360EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1361#endif
1362
1363bool kvm_largepages_enabled(void)
1364{
1365	return largepages_enabled;
1366}
1367
1368void kvm_disable_largepages(void)
1369{
1370	largepages_enabled = false;
1371}
1372EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1373
1374struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1375{
1376	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1377}
1378EXPORT_SYMBOL_GPL(gfn_to_memslot);
1379
1380struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1381{
1382	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1383}
1384
1385bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1386{
1387	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1388
1389	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1390	      memslot->flags & KVM_MEMSLOT_INVALID)
1391		return false;
1392
1393	return true;
1394}
1395EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1396
1397unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1398{
1399	struct vm_area_struct *vma;
1400	unsigned long addr, size;
1401
1402	size = PAGE_SIZE;
1403
1404	addr = gfn_to_hva(kvm, gfn);
1405	if (kvm_is_error_hva(addr))
1406		return PAGE_SIZE;
1407
1408	down_read(&current->mm->mmap_sem);
1409	vma = find_vma(current->mm, addr);
1410	if (!vma)
1411		goto out;
1412
1413	size = vma_kernel_pagesize(vma);
1414
1415out:
1416	up_read(&current->mm->mmap_sem);
1417
1418	return size;
1419}
1420
1421static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1422{
1423	return slot->flags & KVM_MEM_READONLY;
1424}
1425
1426static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1427				       gfn_t *nr_pages, bool write)
1428{
1429	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1430		return KVM_HVA_ERR_BAD;
1431
1432	if (memslot_is_readonly(slot) && write)
1433		return KVM_HVA_ERR_RO_BAD;
1434
1435	if (nr_pages)
1436		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1437
1438	return __gfn_to_hva_memslot(slot, gfn);
1439}
1440
1441static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1442				     gfn_t *nr_pages)
1443{
1444	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1445}
1446
1447unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1448					gfn_t gfn)
1449{
1450	return gfn_to_hva_many(slot, gfn, NULL);
1451}
1452EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1453
1454unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1455{
1456	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1457}
1458EXPORT_SYMBOL_GPL(gfn_to_hva);
1459
1460unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1461{
1462	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1463}
1464EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1465
1466/*
1467 * Return the hva of a @gfn and the R/W attribute if possible.
1468 *
1469 * @slot: the kvm_memory_slot which contains @gfn
1470 * @gfn: the gfn to be translated
1471 * @writable: used to return the read/write attribute of the @slot if the hva
1472 * is valid and @writable is not NULL
1473 */
1474unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1475				      gfn_t gfn, bool *writable)
1476{
1477	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1478
1479	if (!kvm_is_error_hva(hva) && writable)
1480		*writable = !memslot_is_readonly(slot);
1481
1482	return hva;
1483}
1484
1485unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1486{
1487	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1488
1489	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1490}
1491
1492unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1493{
1494	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1495
1496	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1497}
1498
 
 
 
 
 
 
 
 
 
 
 
 
1499static inline int check_user_page_hwpoison(unsigned long addr)
1500{
1501	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1502
1503	rc = get_user_pages(addr, 1, flags, NULL, NULL);
 
1504	return rc == -EHWPOISON;
1505}
1506
1507/*
1508 * The fast path to get the writable pfn which will be stored in @pfn,
1509 * true indicates success, otherwise false is returned.  It's also the
1510 * only part that runs if we can are in atomic context.
1511 */
1512static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1513			    bool *writable, kvm_pfn_t *pfn)
1514{
1515	struct page *page[1];
1516	int npages;
1517
 
 
 
1518	/*
1519	 * Fast pin a writable pfn only if it is a write fault request
1520	 * or the caller allows to map a writable pfn for a read fault
1521	 * request.
1522	 */
1523	if (!(write_fault || writable))
1524		return false;
1525
1526	npages = __get_user_pages_fast(addr, 1, 1, page);
1527	if (npages == 1) {
1528		*pfn = page_to_pfn(page[0]);
1529
1530		if (writable)
1531			*writable = true;
1532		return true;
1533	}
1534
1535	return false;
1536}
1537
1538/*
1539 * The slow path to get the pfn of the specified host virtual address,
1540 * 1 indicates success, -errno is returned if error is detected.
1541 */
1542static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1543			   bool *writable, kvm_pfn_t *pfn)
1544{
1545	unsigned int flags = FOLL_HWPOISON;
1546	struct page *page;
1547	int npages = 0;
1548
1549	might_sleep();
1550
1551	if (writable)
1552		*writable = write_fault;
1553
1554	if (write_fault)
1555		flags |= FOLL_WRITE;
1556	if (async)
1557		flags |= FOLL_NOWAIT;
1558
1559	npages = get_user_pages_unlocked(addr, 1, &page, flags);
 
 
1560	if (npages != 1)
1561		return npages;
1562
1563	/* map read fault as writable if possible */
1564	if (unlikely(!write_fault) && writable) {
1565		struct page *wpage;
1566
1567		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
 
1568			*writable = true;
1569			put_page(page);
1570			page = wpage;
1571		}
 
 
1572	}
1573	*pfn = page_to_pfn(page);
1574	return npages;
1575}
1576
1577static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1578{
1579	if (unlikely(!(vma->vm_flags & VM_READ)))
1580		return false;
1581
1582	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1583		return false;
1584
1585	return true;
1586}
1587
1588static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1589			       unsigned long addr, bool *async,
1590			       bool write_fault, bool *writable,
1591			       kvm_pfn_t *p_pfn)
1592{
1593	unsigned long pfn;
1594	int r;
1595
1596	r = follow_pfn(vma, addr, &pfn);
1597	if (r) {
1598		/*
1599		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1600		 * not call the fault handler, so do it here.
1601		 */
1602		bool unlocked = false;
1603		r = fixup_user_fault(current, current->mm, addr,
1604				     (write_fault ? FAULT_FLAG_WRITE : 0),
1605				     &unlocked);
1606		if (unlocked)
1607			return -EAGAIN;
1608		if (r)
1609			return r;
1610
1611		r = follow_pfn(vma, addr, &pfn);
1612		if (r)
1613			return r;
1614
1615	}
1616
1617	if (writable)
1618		*writable = true;
1619
1620	/*
1621	 * Get a reference here because callers of *hva_to_pfn* and
1622	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1623	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1624	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1625	 * simply do nothing for reserved pfns.
1626	 *
1627	 * Whoever called remap_pfn_range is also going to call e.g.
1628	 * unmap_mapping_range before the underlying pages are freed,
1629	 * causing a call to our MMU notifier.
1630	 */ 
1631	kvm_get_pfn(pfn);
1632
1633	*p_pfn = pfn;
1634	return 0;
1635}
1636
1637/*
1638 * Pin guest page in memory and return its pfn.
1639 * @addr: host virtual address which maps memory to the guest
1640 * @atomic: whether this function can sleep
1641 * @async: whether this function need to wait IO complete if the
1642 *         host page is not in the memory
1643 * @write_fault: whether we should get a writable host page
1644 * @writable: whether it allows to map a writable host page for !@write_fault
1645 *
1646 * The function will map a writable host page for these two cases:
1647 * 1): @write_fault = true
1648 * 2): @write_fault = false && @writable, @writable will tell the caller
1649 *     whether the mapping is writable.
1650 */
1651static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1652			bool write_fault, bool *writable)
1653{
1654	struct vm_area_struct *vma;
1655	kvm_pfn_t pfn = 0;
1656	int npages, r;
1657
1658	/* we can do it either atomically or asynchronously, not both */
1659	BUG_ON(atomic && async);
1660
1661	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1662		return pfn;
1663
1664	if (atomic)
1665		return KVM_PFN_ERR_FAULT;
1666
1667	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1668	if (npages == 1)
1669		return pfn;
1670
1671	down_read(&current->mm->mmap_sem);
1672	if (npages == -EHWPOISON ||
1673	      (!async && check_user_page_hwpoison(addr))) {
1674		pfn = KVM_PFN_ERR_HWPOISON;
1675		goto exit;
1676	}
1677
1678retry:
1679	vma = find_vma_intersection(current->mm, addr, addr + 1);
1680
1681	if (vma == NULL)
1682		pfn = KVM_PFN_ERR_FAULT;
1683	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1684		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1685		if (r == -EAGAIN)
1686			goto retry;
1687		if (r < 0)
1688			pfn = KVM_PFN_ERR_FAULT;
1689	} else {
1690		if (async && vma_is_valid(vma, write_fault))
1691			*async = true;
1692		pfn = KVM_PFN_ERR_FAULT;
1693	}
1694exit:
1695	up_read(&current->mm->mmap_sem);
1696	return pfn;
1697}
1698
1699kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1700			       bool atomic, bool *async, bool write_fault,
1701			       bool *writable)
1702{
1703	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1704
1705	if (addr == KVM_HVA_ERR_RO_BAD) {
1706		if (writable)
1707			*writable = false;
1708		return KVM_PFN_ERR_RO_FAULT;
1709	}
1710
1711	if (kvm_is_error_hva(addr)) {
1712		if (writable)
1713			*writable = false;
1714		return KVM_PFN_NOSLOT;
1715	}
1716
1717	/* Do not map writable pfn in the readonly memslot. */
1718	if (writable && memslot_is_readonly(slot)) {
1719		*writable = false;
1720		writable = NULL;
1721	}
1722
1723	return hva_to_pfn(addr, atomic, async, write_fault,
1724			  writable);
1725}
1726EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1727
1728kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1729		      bool *writable)
1730{
1731	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1732				    write_fault, writable);
1733}
1734EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1735
1736kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1737{
1738	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1739}
1740EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1741
1742kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1743{
1744	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1745}
1746EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1747
1748kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1749{
1750	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1751}
1752EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1753
1754kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1755{
1756	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1757}
1758EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1759
1760kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1761{
1762	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1763}
1764EXPORT_SYMBOL_GPL(gfn_to_pfn);
1765
1766kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1767{
1768	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769}
1770EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1771
1772int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1773			    struct page **pages, int nr_pages)
1774{
1775	unsigned long addr;
1776	gfn_t entry = 0;
1777
1778	addr = gfn_to_hva_many(slot, gfn, &entry);
1779	if (kvm_is_error_hva(addr))
1780		return -1;
1781
1782	if (entry < nr_pages)
1783		return 0;
1784
1785	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1786}
1787EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1788
1789static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1790{
1791	if (is_error_noslot_pfn(pfn))
1792		return KVM_ERR_PTR_BAD_PAGE;
1793
1794	if (kvm_is_reserved_pfn(pfn)) {
1795		WARN_ON(1);
1796		return KVM_ERR_PTR_BAD_PAGE;
1797	}
1798
1799	return pfn_to_page(pfn);
1800}
1801
1802struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1803{
1804	kvm_pfn_t pfn;
1805
1806	pfn = gfn_to_pfn(kvm, gfn);
1807
1808	return kvm_pfn_to_page(pfn);
1809}
1810EXPORT_SYMBOL_GPL(gfn_to_page);
1811
1812static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1813			 struct kvm_host_map *map)
1814{
1815	kvm_pfn_t pfn;
1816	void *hva = NULL;
1817	struct page *page = KVM_UNMAPPED_PAGE;
1818
1819	if (!map)
1820		return -EINVAL;
1821
1822	pfn = gfn_to_pfn_memslot(slot, gfn);
1823	if (is_error_noslot_pfn(pfn))
1824		return -EINVAL;
1825
1826	if (pfn_valid(pfn)) {
1827		page = pfn_to_page(pfn);
1828		hva = kmap(page);
1829#ifdef CONFIG_HAS_IOMEM
1830	} else {
1831		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1832#endif
1833	}
1834
1835	if (!hva)
1836		return -EFAULT;
1837
1838	map->page = page;
1839	map->hva = hva;
1840	map->pfn = pfn;
1841	map->gfn = gfn;
1842
1843	return 0;
1844}
1845
1846int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1847{
1848	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1849}
1850EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1851
1852void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1853		    bool dirty)
1854{
1855	if (!map)
1856		return;
1857
1858	if (!map->hva)
1859		return;
1860
1861	if (map->page != KVM_UNMAPPED_PAGE)
1862		kunmap(map->page);
1863#ifdef CONFIG_HAS_IOMEM
1864	else
1865		memunmap(map->hva);
1866#endif
1867
1868	if (dirty) {
1869		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1870		kvm_release_pfn_dirty(map->pfn);
1871	} else {
1872		kvm_release_pfn_clean(map->pfn);
1873	}
1874
1875	map->hva = NULL;
1876	map->page = NULL;
1877}
1878EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1879
1880struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1881{
1882	kvm_pfn_t pfn;
1883
1884	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1885
1886	return kvm_pfn_to_page(pfn);
1887}
1888EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1889
1890void kvm_release_page_clean(struct page *page)
1891{
1892	WARN_ON(is_error_page(page));
1893
1894	kvm_release_pfn_clean(page_to_pfn(page));
1895}
1896EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1897
1898void kvm_release_pfn_clean(kvm_pfn_t pfn)
1899{
1900	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1901		put_page(pfn_to_page(pfn));
1902}
1903EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1904
1905void kvm_release_page_dirty(struct page *page)
1906{
1907	WARN_ON(is_error_page(page));
1908
1909	kvm_release_pfn_dirty(page_to_pfn(page));
1910}
1911EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1912
1913void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1914{
1915	kvm_set_pfn_dirty(pfn);
1916	kvm_release_pfn_clean(pfn);
1917}
1918EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1919
1920void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1921{
1922	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
1923		struct page *page = pfn_to_page(pfn);
1924
1925		SetPageDirty(page);
 
1926	}
1927}
1928EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1929
1930void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1931{
1932	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1933		mark_page_accessed(pfn_to_page(pfn));
1934}
1935EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1936
1937void kvm_get_pfn(kvm_pfn_t pfn)
1938{
1939	if (!kvm_is_reserved_pfn(pfn))
1940		get_page(pfn_to_page(pfn));
1941}
1942EXPORT_SYMBOL_GPL(kvm_get_pfn);
1943
1944static int next_segment(unsigned long len, int offset)
1945{
1946	if (len > PAGE_SIZE - offset)
1947		return PAGE_SIZE - offset;
1948	else
1949		return len;
1950}
1951
1952static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1953				 void *data, int offset, int len)
1954{
1955	int r;
1956	unsigned long addr;
1957
1958	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1959	if (kvm_is_error_hva(addr))
1960		return -EFAULT;
1961	r = __copy_from_user(data, (void __user *)addr + offset, len);
1962	if (r)
1963		return -EFAULT;
1964	return 0;
1965}
1966
1967int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1968			int len)
1969{
1970	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1971
1972	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1973}
1974EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1975
1976int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1977			     int offset, int len)
1978{
1979	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1980
1981	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1982}
1983EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1984
1985int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1986{
1987	gfn_t gfn = gpa >> PAGE_SHIFT;
1988	int seg;
1989	int offset = offset_in_page(gpa);
1990	int ret;
1991
1992	while ((seg = next_segment(len, offset)) != 0) {
1993		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1994		if (ret < 0)
1995			return ret;
1996		offset = 0;
1997		len -= seg;
1998		data += seg;
1999		++gfn;
2000	}
2001	return 0;
2002}
2003EXPORT_SYMBOL_GPL(kvm_read_guest);
2004
2005int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2006{
2007	gfn_t gfn = gpa >> PAGE_SHIFT;
2008	int seg;
2009	int offset = offset_in_page(gpa);
2010	int ret;
2011
2012	while ((seg = next_segment(len, offset)) != 0) {
2013		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2014		if (ret < 0)
2015			return ret;
2016		offset = 0;
2017		len -= seg;
2018		data += seg;
2019		++gfn;
2020	}
2021	return 0;
2022}
2023EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2024
2025static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2026			           void *data, int offset, unsigned long len)
2027{
2028	int r;
2029	unsigned long addr;
2030
2031	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2032	if (kvm_is_error_hva(addr))
2033		return -EFAULT;
2034	pagefault_disable();
2035	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2036	pagefault_enable();
2037	if (r)
2038		return -EFAULT;
2039	return 0;
2040}
2041
2042int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2043			  unsigned long len)
2044{
2045	gfn_t gfn = gpa >> PAGE_SHIFT;
2046	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2047	int offset = offset_in_page(gpa);
2048
2049	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2050}
2051EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2052
2053int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2054			       void *data, unsigned long len)
2055{
2056	gfn_t gfn = gpa >> PAGE_SHIFT;
2057	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2058	int offset = offset_in_page(gpa);
2059
2060	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2061}
2062EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2063
2064static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2065			          const void *data, int offset, int len)
2066{
2067	int r;
2068	unsigned long addr;
2069
2070	addr = gfn_to_hva_memslot(memslot, gfn);
2071	if (kvm_is_error_hva(addr))
2072		return -EFAULT;
2073	r = __copy_to_user((void __user *)addr + offset, data, len);
2074	if (r)
2075		return -EFAULT;
2076	mark_page_dirty_in_slot(memslot, gfn);
2077	return 0;
2078}
2079
2080int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2081			 const void *data, int offset, int len)
2082{
2083	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2084
2085	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2086}
2087EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2088
2089int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2090			      const void *data, int offset, int len)
2091{
2092	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2093
2094	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2095}
2096EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2097
2098int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2099		    unsigned long len)
2100{
2101	gfn_t gfn = gpa >> PAGE_SHIFT;
2102	int seg;
2103	int offset = offset_in_page(gpa);
2104	int ret;
2105
2106	while ((seg = next_segment(len, offset)) != 0) {
2107		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2108		if (ret < 0)
2109			return ret;
2110		offset = 0;
2111		len -= seg;
2112		data += seg;
2113		++gfn;
2114	}
2115	return 0;
2116}
2117EXPORT_SYMBOL_GPL(kvm_write_guest);
2118
2119int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2120		         unsigned long len)
2121{
2122	gfn_t gfn = gpa >> PAGE_SHIFT;
2123	int seg;
2124	int offset = offset_in_page(gpa);
2125	int ret;
2126
2127	while ((seg = next_segment(len, offset)) != 0) {
2128		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2129		if (ret < 0)
2130			return ret;
2131		offset = 0;
2132		len -= seg;
2133		data += seg;
2134		++gfn;
2135	}
2136	return 0;
2137}
2138EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2139
2140static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2141				       struct gfn_to_hva_cache *ghc,
2142				       gpa_t gpa, unsigned long len)
2143{
 
2144	int offset = offset_in_page(gpa);
2145	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2146	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2147	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2148	gfn_t nr_pages_avail;
2149	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2150
2151	ghc->gpa = gpa;
2152	ghc->generation = slots->generation;
2153	ghc->len = len;
2154	ghc->hva = KVM_HVA_ERR_BAD;
2155
2156	/*
2157	 * If the requested region crosses two memslots, we still
2158	 * verify that the entire region is valid here.
2159	 */
2160	while (!r && start_gfn <= end_gfn) {
2161		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2162		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2163					   &nr_pages_avail);
2164		if (kvm_is_error_hva(ghc->hva))
2165			r = -EFAULT;
2166		start_gfn += nr_pages_avail;
2167	}
2168
2169	/* Use the slow path for cross page reads and writes. */
2170	if (!r && nr_pages_needed == 1)
2171		ghc->hva += offset;
2172	else
 
 
 
 
 
 
 
 
 
 
 
 
 
2173		ghc->memslot = NULL;
2174
2175	return r;
2176}
2177
2178int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2179			      gpa_t gpa, unsigned long len)
2180{
2181	struct kvm_memslots *slots = kvm_memslots(kvm);
2182	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2183}
2184EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2185
2186int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2187				  void *data, unsigned int offset,
2188				  unsigned long len)
2189{
2190	struct kvm_memslots *slots = kvm_memslots(kvm);
2191	int r;
2192	gpa_t gpa = ghc->gpa + offset;
2193
2194	BUG_ON(len + offset > ghc->len);
2195
2196	if (slots->generation != ghc->generation)
2197		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2198
2199	if (unlikely(!ghc->memslot))
2200		return kvm_write_guest(kvm, gpa, data, len);
2201
2202	if (kvm_is_error_hva(ghc->hva))
2203		return -EFAULT;
2204
2205	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2206	if (r)
2207		return -EFAULT;
2208	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2209
2210	return 0;
2211}
2212EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2213
2214int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2215			   void *data, unsigned long len)
2216{
2217	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2218}
2219EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2220
2221int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2222			   void *data, unsigned long len)
2223{
2224	struct kvm_memslots *slots = kvm_memslots(kvm);
2225	int r;
2226
2227	BUG_ON(len > ghc->len);
2228
2229	if (slots->generation != ghc->generation)
2230		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2231
2232	if (unlikely(!ghc->memslot))
2233		return kvm_read_guest(kvm, ghc->gpa, data, len);
2234
2235	if (kvm_is_error_hva(ghc->hva))
2236		return -EFAULT;
2237
2238	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2239	if (r)
2240		return -EFAULT;
2241
2242	return 0;
2243}
2244EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2245
2246int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2247{
2248	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2249
2250	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2251}
2252EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2253
2254int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2255{
2256	gfn_t gfn = gpa >> PAGE_SHIFT;
2257	int seg;
2258	int offset = offset_in_page(gpa);
2259	int ret;
2260
2261	while ((seg = next_segment(len, offset)) != 0) {
2262		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2263		if (ret < 0)
2264			return ret;
2265		offset = 0;
2266		len -= seg;
2267		++gfn;
2268	}
2269	return 0;
2270}
2271EXPORT_SYMBOL_GPL(kvm_clear_guest);
2272
2273static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2274				    gfn_t gfn)
2275{
2276	if (memslot && memslot->dirty_bitmap) {
2277		unsigned long rel_gfn = gfn - memslot->base_gfn;
2278
2279		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2280	}
2281}
2282
2283void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2284{
2285	struct kvm_memory_slot *memslot;
2286
2287	memslot = gfn_to_memslot(kvm, gfn);
2288	mark_page_dirty_in_slot(memslot, gfn);
2289}
2290EXPORT_SYMBOL_GPL(mark_page_dirty);
2291
2292void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2293{
2294	struct kvm_memory_slot *memslot;
2295
2296	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2297	mark_page_dirty_in_slot(memslot, gfn);
2298}
2299EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2300
2301void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2302{
2303	if (!vcpu->sigset_active)
2304		return;
2305
2306	/*
2307	 * This does a lockless modification of ->real_blocked, which is fine
2308	 * because, only current can change ->real_blocked and all readers of
2309	 * ->real_blocked don't care as long ->real_blocked is always a subset
2310	 * of ->blocked.
2311	 */
2312	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2313}
2314
2315void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2316{
2317	if (!vcpu->sigset_active)
2318		return;
2319
2320	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2321	sigemptyset(&current->real_blocked);
2322}
2323
2324static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2325{
2326	unsigned int old, val, grow, grow_start;
2327
2328	old = val = vcpu->halt_poll_ns;
2329	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2330	grow = READ_ONCE(halt_poll_ns_grow);
2331	if (!grow)
2332		goto out;
2333
2334	val *= grow;
2335	if (val < grow_start)
2336		val = grow_start;
2337
2338	if (val > halt_poll_ns)
2339		val = halt_poll_ns;
2340
2341	vcpu->halt_poll_ns = val;
2342out:
2343	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2344}
2345
2346static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2347{
2348	unsigned int old, val, shrink;
2349
2350	old = val = vcpu->halt_poll_ns;
2351	shrink = READ_ONCE(halt_poll_ns_shrink);
2352	if (shrink == 0)
2353		val = 0;
2354	else
2355		val /= shrink;
2356
2357	vcpu->halt_poll_ns = val;
2358	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2359}
2360
2361static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2362{
2363	int ret = -EINTR;
2364	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2365
2366	if (kvm_arch_vcpu_runnable(vcpu)) {
2367		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2368		goto out;
2369	}
2370	if (kvm_cpu_has_pending_timer(vcpu))
2371		goto out;
2372	if (signal_pending(current))
2373		goto out;
2374
2375	ret = 0;
2376out:
2377	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2378	return ret;
2379}
2380
2381/*
2382 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2383 */
2384void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2385{
2386	ktime_t start, cur;
2387	DECLARE_SWAITQUEUE(wait);
2388	bool waited = false;
2389	u64 block_ns;
2390
2391	kvm_arch_vcpu_blocking(vcpu);
2392
2393	start = cur = ktime_get();
2394	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2395		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2396
2397		++vcpu->stat.halt_attempted_poll;
2398		do {
2399			/*
2400			 * This sets KVM_REQ_UNHALT if an interrupt
2401			 * arrives.
2402			 */
2403			if (kvm_vcpu_check_block(vcpu) < 0) {
2404				++vcpu->stat.halt_successful_poll;
2405				if (!vcpu_valid_wakeup(vcpu))
2406					++vcpu->stat.halt_poll_invalid;
2407				goto out;
2408			}
2409			cur = ktime_get();
2410		} while (single_task_running() && ktime_before(cur, stop));
2411	}
2412
 
 
2413	for (;;) {
2414		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2415
2416		if (kvm_vcpu_check_block(vcpu) < 0)
2417			break;
2418
2419		waited = true;
2420		schedule();
2421	}
2422
2423	finish_swait(&vcpu->wq, &wait);
2424	cur = ktime_get();
 
 
2425out:
2426	kvm_arch_vcpu_unblocking(vcpu);
2427	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2428
2429	if (!kvm_arch_no_poll(vcpu)) {
2430		if (!vcpu_valid_wakeup(vcpu)) {
 
 
 
2431			shrink_halt_poll_ns(vcpu);
2432		} else if (halt_poll_ns) {
2433			if (block_ns <= vcpu->halt_poll_ns)
2434				;
2435			/* we had a long block, shrink polling */
2436			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2437				shrink_halt_poll_ns(vcpu);
2438			/* we had a short halt and our poll time is too small */
2439			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2440				block_ns < halt_poll_ns)
2441				grow_halt_poll_ns(vcpu);
2442		} else {
2443			vcpu->halt_poll_ns = 0;
2444		}
2445	}
2446
2447	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2448	kvm_arch_vcpu_block_finish(vcpu);
2449}
2450EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2451
2452bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2453{
2454	struct swait_queue_head *wqp;
2455
2456	wqp = kvm_arch_vcpu_wq(vcpu);
2457	if (swq_has_sleeper(wqp)) {
2458		swake_up_one(wqp);
2459		WRITE_ONCE(vcpu->ready, true);
2460		++vcpu->stat.halt_wakeup;
2461		return true;
2462	}
2463
2464	return false;
2465}
2466EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2467
2468#ifndef CONFIG_S390
2469/*
2470 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2471 */
2472void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2473{
2474	int me;
2475	int cpu = vcpu->cpu;
 
2476
2477	if (kvm_vcpu_wake_up(vcpu))
2478		return;
 
 
 
2479
2480	me = get_cpu();
2481	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2482		if (kvm_arch_vcpu_should_kick(vcpu))
2483			smp_send_reschedule(cpu);
2484	put_cpu();
2485}
2486EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2487#endif /* !CONFIG_S390 */
2488
2489int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2490{
2491	struct pid *pid;
2492	struct task_struct *task = NULL;
2493	int ret = 0;
2494
2495	rcu_read_lock();
2496	pid = rcu_dereference(target->pid);
2497	if (pid)
2498		task = get_pid_task(pid, PIDTYPE_PID);
2499	rcu_read_unlock();
2500	if (!task)
2501		return ret;
2502	ret = yield_to(task, 1);
2503	put_task_struct(task);
2504
2505	return ret;
2506}
2507EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2508
2509/*
2510 * Helper that checks whether a VCPU is eligible for directed yield.
2511 * Most eligible candidate to yield is decided by following heuristics:
2512 *
2513 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2514 *  (preempted lock holder), indicated by @in_spin_loop.
2515 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2516 *
2517 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2518 *  chance last time (mostly it has become eligible now since we have probably
2519 *  yielded to lockholder in last iteration. This is done by toggling
2520 *  @dy_eligible each time a VCPU checked for eligibility.)
2521 *
2522 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2523 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2524 *  burning. Giving priority for a potential lock-holder increases lock
2525 *  progress.
2526 *
2527 *  Since algorithm is based on heuristics, accessing another VCPU data without
2528 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2529 *  and continue with next VCPU and so on.
2530 */
2531static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2532{
2533#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2534	bool eligible;
2535
2536	eligible = !vcpu->spin_loop.in_spin_loop ||
2537		    vcpu->spin_loop.dy_eligible;
2538
2539	if (vcpu->spin_loop.in_spin_loop)
2540		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2541
2542	return eligible;
2543#else
2544	return true;
2545#endif
2546}
2547
2548/*
2549 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2550 * a vcpu_load/vcpu_put pair.  However, for most architectures
2551 * kvm_arch_vcpu_runnable does not require vcpu_load.
2552 */
2553bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2554{
2555	return kvm_arch_vcpu_runnable(vcpu);
2556}
2557
2558static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2559{
2560	if (kvm_arch_dy_runnable(vcpu))
2561		return true;
2562
2563#ifdef CONFIG_KVM_ASYNC_PF
2564	if (!list_empty_careful(&vcpu->async_pf.done))
2565		return true;
2566#endif
2567
2568	return false;
2569}
2570
2571void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2572{
2573	struct kvm *kvm = me->kvm;
2574	struct kvm_vcpu *vcpu;
2575	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2576	int yielded = 0;
2577	int try = 3;
2578	int pass;
2579	int i;
2580
2581	kvm_vcpu_set_in_spin_loop(me, true);
2582	/*
2583	 * We boost the priority of a VCPU that is runnable but not
2584	 * currently running, because it got preempted by something
2585	 * else and called schedule in __vcpu_run.  Hopefully that
2586	 * VCPU is holding the lock that we need and will release it.
2587	 * We approximate round-robin by starting at the last boosted VCPU.
2588	 */
2589	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2590		kvm_for_each_vcpu(i, vcpu, kvm) {
2591			if (!pass && i <= last_boosted_vcpu) {
2592				i = last_boosted_vcpu;
2593				continue;
2594			} else if (pass && i > last_boosted_vcpu)
2595				break;
2596			if (!READ_ONCE(vcpu->ready))
2597				continue;
2598			if (vcpu == me)
2599				continue;
2600			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2601				continue;
2602			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2603				!kvm_arch_vcpu_in_kernel(vcpu))
2604				continue;
2605			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2606				continue;
2607
2608			yielded = kvm_vcpu_yield_to(vcpu);
2609			if (yielded > 0) {
2610				kvm->last_boosted_vcpu = i;
2611				break;
2612			} else if (yielded < 0) {
2613				try--;
2614				if (!try)
2615					break;
2616			}
2617		}
2618	}
2619	kvm_vcpu_set_in_spin_loop(me, false);
2620
2621	/* Ensure vcpu is not eligible during next spinloop */
2622	kvm_vcpu_set_dy_eligible(me, false);
2623}
2624EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2625
2626static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2627{
2628	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2629	struct page *page;
2630
2631	if (vmf->pgoff == 0)
2632		page = virt_to_page(vcpu->run);
2633#ifdef CONFIG_X86
2634	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2635		page = virt_to_page(vcpu->arch.pio_data);
2636#endif
2637#ifdef CONFIG_KVM_MMIO
2638	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2639		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2640#endif
2641	else
2642		return kvm_arch_vcpu_fault(vcpu, vmf);
2643	get_page(page);
2644	vmf->page = page;
2645	return 0;
2646}
2647
2648static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2649	.fault = kvm_vcpu_fault,
2650};
2651
2652static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2653{
2654	vma->vm_ops = &kvm_vcpu_vm_ops;
2655	return 0;
2656}
2657
2658static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2659{
2660	struct kvm_vcpu *vcpu = filp->private_data;
2661
2662	debugfs_remove_recursive(vcpu->debugfs_dentry);
2663	kvm_put_kvm(vcpu->kvm);
2664	return 0;
2665}
2666
2667static struct file_operations kvm_vcpu_fops = {
2668	.release        = kvm_vcpu_release,
2669	.unlocked_ioctl = kvm_vcpu_ioctl,
 
 
 
2670	.mmap           = kvm_vcpu_mmap,
2671	.llseek		= noop_llseek,
2672	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2673};
2674
2675/*
2676 * Allocates an inode for the vcpu.
2677 */
2678static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2679{
2680	char name[8 + 1 + ITOA_MAX_LEN + 1];
2681
2682	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2683	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2684}
2685
2686static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2687{
2688#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2689	char dir_name[ITOA_MAX_LEN * 2];
2690
2691	if (!debugfs_initialized())
2692		return;
2693
2694	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2695	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2696						  vcpu->kvm->debugfs_dentry);
2697
2698	kvm_arch_create_vcpu_debugfs(vcpu);
2699#endif
2700}
2701
2702/*
2703 * Creates some virtual cpus.  Good luck creating more than one.
2704 */
2705static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2706{
2707	int r;
2708	struct kvm_vcpu *vcpu;
2709
2710	if (id >= KVM_MAX_VCPU_ID)
2711		return -EINVAL;
2712
2713	mutex_lock(&kvm->lock);
2714	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2715		mutex_unlock(&kvm->lock);
2716		return -EINVAL;
2717	}
2718
2719	kvm->created_vcpus++;
2720	mutex_unlock(&kvm->lock);
2721
2722	vcpu = kvm_arch_vcpu_create(kvm, id);
2723	if (IS_ERR(vcpu)) {
2724		r = PTR_ERR(vcpu);
2725		goto vcpu_decrement;
2726	}
2727
2728	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2729
2730	r = kvm_arch_vcpu_setup(vcpu);
2731	if (r)
2732		goto vcpu_destroy;
2733
2734	kvm_create_vcpu_debugfs(vcpu);
2735
2736	mutex_lock(&kvm->lock);
 
 
 
 
 
 
 
 
2737	if (kvm_get_vcpu_by_id(kvm, id)) {
2738		r = -EEXIST;
2739		goto unlock_vcpu_destroy;
2740	}
2741
2742	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2743
2744	/* Now it's all set up, let userspace reach it */
2745	kvm_get_kvm(kvm);
2746	r = create_vcpu_fd(vcpu);
2747	if (r < 0) {
2748		kvm_put_kvm(kvm);
2749		goto unlock_vcpu_destroy;
2750	}
2751
2752	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2753
2754	/*
2755	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2756	 * before kvm->online_vcpu's incremented value.
2757	 */
2758	smp_wmb();
2759	atomic_inc(&kvm->online_vcpus);
2760
2761	mutex_unlock(&kvm->lock);
2762	kvm_arch_vcpu_postcreate(vcpu);
2763	return r;
2764
2765unlock_vcpu_destroy:
2766	mutex_unlock(&kvm->lock);
2767	debugfs_remove_recursive(vcpu->debugfs_dentry);
2768vcpu_destroy:
2769	kvm_arch_vcpu_destroy(vcpu);
2770vcpu_decrement:
2771	mutex_lock(&kvm->lock);
2772	kvm->created_vcpus--;
2773	mutex_unlock(&kvm->lock);
2774	return r;
2775}
2776
2777static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2778{
2779	if (sigset) {
2780		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2781		vcpu->sigset_active = 1;
2782		vcpu->sigset = *sigset;
2783	} else
2784		vcpu->sigset_active = 0;
2785	return 0;
2786}
2787
2788static long kvm_vcpu_ioctl(struct file *filp,
2789			   unsigned int ioctl, unsigned long arg)
2790{
2791	struct kvm_vcpu *vcpu = filp->private_data;
2792	void __user *argp = (void __user *)arg;
2793	int r;
2794	struct kvm_fpu *fpu = NULL;
2795	struct kvm_sregs *kvm_sregs = NULL;
2796
2797	if (vcpu->kvm->mm != current->mm)
2798		return -EIO;
2799
2800	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2801		return -EINVAL;
2802
 
2803	/*
2804	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2805	 * execution; mutex_lock() would break them.
2806	 */
2807	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2808	if (r != -ENOIOCTLCMD)
 
 
 
 
 
2809		return r;
2810
2811	if (mutex_lock_killable(&vcpu->mutex))
2812		return -EINTR;
2813	switch (ioctl) {
2814	case KVM_RUN: {
2815		struct pid *oldpid;
2816		r = -EINVAL;
2817		if (arg)
2818			goto out;
2819		oldpid = rcu_access_pointer(vcpu->pid);
2820		if (unlikely(oldpid != task_pid(current))) {
2821			/* The thread running this VCPU changed. */
2822			struct pid *newpid;
 
2823
2824			r = kvm_arch_vcpu_run_pid_change(vcpu);
2825			if (r)
2826				break;
2827
2828			newpid = get_task_pid(current, PIDTYPE_PID);
2829			rcu_assign_pointer(vcpu->pid, newpid);
2830			if (oldpid)
2831				synchronize_rcu();
2832			put_pid(oldpid);
2833		}
2834		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2835		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2836		break;
2837	}
2838	case KVM_GET_REGS: {
2839		struct kvm_regs *kvm_regs;
2840
2841		r = -ENOMEM;
2842		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2843		if (!kvm_regs)
2844			goto out;
2845		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2846		if (r)
2847			goto out_free1;
2848		r = -EFAULT;
2849		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2850			goto out_free1;
2851		r = 0;
2852out_free1:
2853		kfree(kvm_regs);
2854		break;
2855	}
2856	case KVM_SET_REGS: {
2857		struct kvm_regs *kvm_regs;
2858
2859		r = -ENOMEM;
2860		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2861		if (IS_ERR(kvm_regs)) {
2862			r = PTR_ERR(kvm_regs);
2863			goto out;
2864		}
2865		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2866		kfree(kvm_regs);
2867		break;
2868	}
2869	case KVM_GET_SREGS: {
2870		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2871				    GFP_KERNEL_ACCOUNT);
2872		r = -ENOMEM;
2873		if (!kvm_sregs)
2874			goto out;
2875		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2876		if (r)
2877			goto out;
2878		r = -EFAULT;
2879		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2880			goto out;
2881		r = 0;
2882		break;
2883	}
2884	case KVM_SET_SREGS: {
2885		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2886		if (IS_ERR(kvm_sregs)) {
2887			r = PTR_ERR(kvm_sregs);
2888			kvm_sregs = NULL;
2889			goto out;
2890		}
2891		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2892		break;
2893	}
2894	case KVM_GET_MP_STATE: {
2895		struct kvm_mp_state mp_state;
2896
2897		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2898		if (r)
2899			goto out;
2900		r = -EFAULT;
2901		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2902			goto out;
2903		r = 0;
2904		break;
2905	}
2906	case KVM_SET_MP_STATE: {
2907		struct kvm_mp_state mp_state;
2908
2909		r = -EFAULT;
2910		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2911			goto out;
2912		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2913		break;
2914	}
2915	case KVM_TRANSLATE: {
2916		struct kvm_translation tr;
2917
2918		r = -EFAULT;
2919		if (copy_from_user(&tr, argp, sizeof(tr)))
2920			goto out;
2921		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2922		if (r)
2923			goto out;
2924		r = -EFAULT;
2925		if (copy_to_user(argp, &tr, sizeof(tr)))
2926			goto out;
2927		r = 0;
2928		break;
2929	}
2930	case KVM_SET_GUEST_DEBUG: {
2931		struct kvm_guest_debug dbg;
2932
2933		r = -EFAULT;
2934		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2935			goto out;
2936		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2937		break;
2938	}
2939	case KVM_SET_SIGNAL_MASK: {
2940		struct kvm_signal_mask __user *sigmask_arg = argp;
2941		struct kvm_signal_mask kvm_sigmask;
2942		sigset_t sigset, *p;
2943
2944		p = NULL;
2945		if (argp) {
2946			r = -EFAULT;
2947			if (copy_from_user(&kvm_sigmask, argp,
2948					   sizeof(kvm_sigmask)))
2949				goto out;
2950			r = -EINVAL;
2951			if (kvm_sigmask.len != sizeof(sigset))
2952				goto out;
2953			r = -EFAULT;
2954			if (copy_from_user(&sigset, sigmask_arg->sigset,
2955					   sizeof(sigset)))
2956				goto out;
2957			p = &sigset;
2958		}
2959		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2960		break;
2961	}
2962	case KVM_GET_FPU: {
2963		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2964		r = -ENOMEM;
2965		if (!fpu)
2966			goto out;
2967		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2968		if (r)
2969			goto out;
2970		r = -EFAULT;
2971		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2972			goto out;
2973		r = 0;
2974		break;
2975	}
2976	case KVM_SET_FPU: {
2977		fpu = memdup_user(argp, sizeof(*fpu));
2978		if (IS_ERR(fpu)) {
2979			r = PTR_ERR(fpu);
2980			fpu = NULL;
2981			goto out;
2982		}
2983		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2984		break;
2985	}
2986	default:
2987		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2988	}
2989out:
2990	mutex_unlock(&vcpu->mutex);
2991	kfree(fpu);
2992	kfree(kvm_sregs);
2993	return r;
2994}
2995
2996#ifdef CONFIG_KVM_COMPAT
2997static long kvm_vcpu_compat_ioctl(struct file *filp,
2998				  unsigned int ioctl, unsigned long arg)
2999{
3000	struct kvm_vcpu *vcpu = filp->private_data;
3001	void __user *argp = compat_ptr(arg);
3002	int r;
3003
3004	if (vcpu->kvm->mm != current->mm)
3005		return -EIO;
3006
3007	switch (ioctl) {
3008	case KVM_SET_SIGNAL_MASK: {
3009		struct kvm_signal_mask __user *sigmask_arg = argp;
3010		struct kvm_signal_mask kvm_sigmask;
 
3011		sigset_t sigset;
3012
3013		if (argp) {
3014			r = -EFAULT;
3015			if (copy_from_user(&kvm_sigmask, argp,
3016					   sizeof(kvm_sigmask)))
3017				goto out;
3018			r = -EINVAL;
3019			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3020				goto out;
3021			r = -EFAULT;
3022			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
 
3023				goto out;
 
3024			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3025		} else
3026			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3027		break;
3028	}
3029	default:
3030		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3031	}
3032
3033out:
3034	return r;
3035}
3036#endif
3037
3038static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3039{
3040	struct kvm_device *dev = filp->private_data;
3041
3042	if (dev->ops->mmap)
3043		return dev->ops->mmap(dev, vma);
3044
3045	return -ENODEV;
3046}
3047
3048static int kvm_device_ioctl_attr(struct kvm_device *dev,
3049				 int (*accessor)(struct kvm_device *dev,
3050						 struct kvm_device_attr *attr),
3051				 unsigned long arg)
3052{
3053	struct kvm_device_attr attr;
3054
3055	if (!accessor)
3056		return -EPERM;
3057
3058	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3059		return -EFAULT;
3060
3061	return accessor(dev, &attr);
3062}
3063
3064static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3065			     unsigned long arg)
3066{
3067	struct kvm_device *dev = filp->private_data;
3068
3069	if (dev->kvm->mm != current->mm)
3070		return -EIO;
3071
3072	switch (ioctl) {
3073	case KVM_SET_DEVICE_ATTR:
3074		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3075	case KVM_GET_DEVICE_ATTR:
3076		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3077	case KVM_HAS_DEVICE_ATTR:
3078		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3079	default:
3080		if (dev->ops->ioctl)
3081			return dev->ops->ioctl(dev, ioctl, arg);
3082
3083		return -ENOTTY;
3084	}
3085}
3086
3087static int kvm_device_release(struct inode *inode, struct file *filp)
3088{
3089	struct kvm_device *dev = filp->private_data;
3090	struct kvm *kvm = dev->kvm;
3091
3092	if (dev->ops->release) {
3093		mutex_lock(&kvm->lock);
3094		list_del(&dev->vm_node);
3095		dev->ops->release(dev);
3096		mutex_unlock(&kvm->lock);
3097	}
3098
3099	kvm_put_kvm(kvm);
3100	return 0;
3101}
3102
3103static const struct file_operations kvm_device_fops = {
3104	.unlocked_ioctl = kvm_device_ioctl,
 
 
 
3105	.release = kvm_device_release,
3106	KVM_COMPAT(kvm_device_ioctl),
3107	.mmap = kvm_device_mmap,
3108};
3109
3110struct kvm_device *kvm_device_from_filp(struct file *filp)
3111{
3112	if (filp->f_op != &kvm_device_fops)
3113		return NULL;
3114
3115	return filp->private_data;
3116}
3117
3118static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3119#ifdef CONFIG_KVM_MPIC
3120	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3121	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3122#endif
 
 
 
 
3123};
3124
3125int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3126{
3127	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3128		return -ENOSPC;
3129
3130	if (kvm_device_ops_table[type] != NULL)
3131		return -EEXIST;
3132
3133	kvm_device_ops_table[type] = ops;
3134	return 0;
3135}
3136
3137void kvm_unregister_device_ops(u32 type)
3138{
3139	if (kvm_device_ops_table[type] != NULL)
3140		kvm_device_ops_table[type] = NULL;
3141}
3142
3143static int kvm_ioctl_create_device(struct kvm *kvm,
3144				   struct kvm_create_device *cd)
3145{
3146	struct kvm_device_ops *ops = NULL;
3147	struct kvm_device *dev;
3148	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3149	int type;
3150	int ret;
3151
3152	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3153		return -ENODEV;
3154
3155	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3156	ops = kvm_device_ops_table[type];
3157	if (ops == NULL)
3158		return -ENODEV;
3159
3160	if (test)
3161		return 0;
3162
3163	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3164	if (!dev)
3165		return -ENOMEM;
3166
3167	dev->ops = ops;
3168	dev->kvm = kvm;
3169
3170	mutex_lock(&kvm->lock);
3171	ret = ops->create(dev, type);
3172	if (ret < 0) {
3173		mutex_unlock(&kvm->lock);
3174		kfree(dev);
3175		return ret;
3176	}
3177	list_add(&dev->vm_node, &kvm->devices);
3178	mutex_unlock(&kvm->lock);
3179
3180	if (ops->init)
3181		ops->init(dev);
3182
3183	kvm_get_kvm(kvm);
3184	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3185	if (ret < 0) {
3186		kvm_put_kvm(kvm);
3187		mutex_lock(&kvm->lock);
3188		list_del(&dev->vm_node);
3189		mutex_unlock(&kvm->lock);
3190		ops->destroy(dev);
3191		return ret;
3192	}
3193
 
 
3194	cd->fd = ret;
3195	return 0;
3196}
3197
3198static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3199{
3200	switch (arg) {
3201	case KVM_CAP_USER_MEMORY:
3202	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3203	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3204	case KVM_CAP_INTERNAL_ERROR_DATA:
3205#ifdef CONFIG_HAVE_KVM_MSI
3206	case KVM_CAP_SIGNAL_MSI:
3207#endif
3208#ifdef CONFIG_HAVE_KVM_IRQFD
3209	case KVM_CAP_IRQFD:
3210	case KVM_CAP_IRQFD_RESAMPLE:
3211#endif
3212	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3213	case KVM_CAP_CHECK_EXTENSION_VM:
3214	case KVM_CAP_ENABLE_CAP_VM:
3215#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3216	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3217#endif
3218		return 1;
3219#ifdef CONFIG_KVM_MMIO
3220	case KVM_CAP_COALESCED_MMIO:
3221		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3222	case KVM_CAP_COALESCED_PIO:
3223		return 1;
3224#endif
3225#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3226	case KVM_CAP_IRQ_ROUTING:
3227		return KVM_MAX_IRQ_ROUTES;
3228#endif
3229#if KVM_ADDRESS_SPACE_NUM > 1
3230	case KVM_CAP_MULTI_ADDRESS_SPACE:
3231		return KVM_ADDRESS_SPACE_NUM;
3232#endif
3233	case KVM_CAP_NR_MEMSLOTS:
3234		return KVM_USER_MEM_SLOTS;
3235	default:
3236		break;
3237	}
3238	return kvm_vm_ioctl_check_extension(kvm, arg);
3239}
3240
3241int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3242						  struct kvm_enable_cap *cap)
3243{
3244	return -EINVAL;
3245}
3246
3247static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3248					   struct kvm_enable_cap *cap)
3249{
3250	switch (cap->cap) {
3251#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3252	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3253		if (cap->flags || (cap->args[0] & ~1))
3254			return -EINVAL;
3255		kvm->manual_dirty_log_protect = cap->args[0];
3256		return 0;
3257#endif
3258	default:
3259		return kvm_vm_ioctl_enable_cap(kvm, cap);
3260	}
3261}
3262
3263static long kvm_vm_ioctl(struct file *filp,
3264			   unsigned int ioctl, unsigned long arg)
3265{
3266	struct kvm *kvm = filp->private_data;
3267	void __user *argp = (void __user *)arg;
3268	int r;
3269
3270	if (kvm->mm != current->mm)
3271		return -EIO;
3272	switch (ioctl) {
3273	case KVM_CREATE_VCPU:
3274		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3275		break;
3276	case KVM_ENABLE_CAP: {
3277		struct kvm_enable_cap cap;
3278
3279		r = -EFAULT;
3280		if (copy_from_user(&cap, argp, sizeof(cap)))
3281			goto out;
3282		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3283		break;
3284	}
3285	case KVM_SET_USER_MEMORY_REGION: {
3286		struct kvm_userspace_memory_region kvm_userspace_mem;
3287
3288		r = -EFAULT;
3289		if (copy_from_user(&kvm_userspace_mem, argp,
3290						sizeof(kvm_userspace_mem)))
3291			goto out;
3292
3293		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3294		break;
3295	}
3296	case KVM_GET_DIRTY_LOG: {
3297		struct kvm_dirty_log log;
3298
3299		r = -EFAULT;
3300		if (copy_from_user(&log, argp, sizeof(log)))
3301			goto out;
3302		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3303		break;
3304	}
3305#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3306	case KVM_CLEAR_DIRTY_LOG: {
3307		struct kvm_clear_dirty_log log;
3308
3309		r = -EFAULT;
3310		if (copy_from_user(&log, argp, sizeof(log)))
3311			goto out;
3312		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3313		break;
3314	}
3315#endif
3316#ifdef CONFIG_KVM_MMIO
3317	case KVM_REGISTER_COALESCED_MMIO: {
3318		struct kvm_coalesced_mmio_zone zone;
3319
3320		r = -EFAULT;
3321		if (copy_from_user(&zone, argp, sizeof(zone)))
3322			goto out;
3323		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3324		break;
3325	}
3326	case KVM_UNREGISTER_COALESCED_MMIO: {
3327		struct kvm_coalesced_mmio_zone zone;
3328
3329		r = -EFAULT;
3330		if (copy_from_user(&zone, argp, sizeof(zone)))
3331			goto out;
3332		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3333		break;
3334	}
3335#endif
3336	case KVM_IRQFD: {
3337		struct kvm_irqfd data;
3338
3339		r = -EFAULT;
3340		if (copy_from_user(&data, argp, sizeof(data)))
3341			goto out;
3342		r = kvm_irqfd(kvm, &data);
3343		break;
3344	}
3345	case KVM_IOEVENTFD: {
3346		struct kvm_ioeventfd data;
3347
3348		r = -EFAULT;
3349		if (copy_from_user(&data, argp, sizeof(data)))
3350			goto out;
3351		r = kvm_ioeventfd(kvm, &data);
3352		break;
3353	}
3354#ifdef CONFIG_HAVE_KVM_MSI
3355	case KVM_SIGNAL_MSI: {
3356		struct kvm_msi msi;
3357
3358		r = -EFAULT;
3359		if (copy_from_user(&msi, argp, sizeof(msi)))
3360			goto out;
3361		r = kvm_send_userspace_msi(kvm, &msi);
3362		break;
3363	}
3364#endif
3365#ifdef __KVM_HAVE_IRQ_LINE
3366	case KVM_IRQ_LINE_STATUS:
3367	case KVM_IRQ_LINE: {
3368		struct kvm_irq_level irq_event;
3369
3370		r = -EFAULT;
3371		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3372			goto out;
3373
3374		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3375					ioctl == KVM_IRQ_LINE_STATUS);
3376		if (r)
3377			goto out;
3378
3379		r = -EFAULT;
3380		if (ioctl == KVM_IRQ_LINE_STATUS) {
3381			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3382				goto out;
3383		}
3384
3385		r = 0;
3386		break;
3387	}
3388#endif
3389#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3390	case KVM_SET_GSI_ROUTING: {
3391		struct kvm_irq_routing routing;
3392		struct kvm_irq_routing __user *urouting;
3393		struct kvm_irq_routing_entry *entries = NULL;
3394
3395		r = -EFAULT;
3396		if (copy_from_user(&routing, argp, sizeof(routing)))
3397			goto out;
3398		r = -EINVAL;
3399		if (!kvm_arch_can_set_irq_routing(kvm))
3400			goto out;
3401		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3402			goto out;
3403		if (routing.flags)
 
 
3404			goto out;
3405		if (routing.nr) {
3406			r = -ENOMEM;
3407			entries = vmalloc(array_size(sizeof(*entries),
3408						     routing.nr));
3409			if (!entries)
3410				goto out;
3411			r = -EFAULT;
3412			urouting = argp;
3413			if (copy_from_user(entries, urouting->entries,
3414					   routing.nr * sizeof(*entries)))
3415				goto out_free_irq_routing;
3416		}
3417		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3418					routing.flags);
3419out_free_irq_routing:
3420		vfree(entries);
3421		break;
3422	}
3423#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3424	case KVM_CREATE_DEVICE: {
3425		struct kvm_create_device cd;
3426
3427		r = -EFAULT;
3428		if (copy_from_user(&cd, argp, sizeof(cd)))
3429			goto out;
3430
3431		r = kvm_ioctl_create_device(kvm, &cd);
3432		if (r)
3433			goto out;
3434
3435		r = -EFAULT;
3436		if (copy_to_user(argp, &cd, sizeof(cd)))
3437			goto out;
3438
3439		r = 0;
3440		break;
3441	}
3442	case KVM_CHECK_EXTENSION:
3443		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3444		break;
3445	default:
3446		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3447	}
3448out:
3449	return r;
3450}
3451
3452#ifdef CONFIG_KVM_COMPAT
3453struct compat_kvm_dirty_log {
3454	__u32 slot;
3455	__u32 padding1;
3456	union {
3457		compat_uptr_t dirty_bitmap; /* one bit per page */
3458		__u64 padding2;
3459	};
3460};
3461
3462static long kvm_vm_compat_ioctl(struct file *filp,
3463			   unsigned int ioctl, unsigned long arg)
3464{
3465	struct kvm *kvm = filp->private_data;
3466	int r;
3467
3468	if (kvm->mm != current->mm)
3469		return -EIO;
3470	switch (ioctl) {
3471	case KVM_GET_DIRTY_LOG: {
3472		struct compat_kvm_dirty_log compat_log;
3473		struct kvm_dirty_log log;
3474
 
3475		if (copy_from_user(&compat_log, (void __user *)arg,
3476				   sizeof(compat_log)))
3477			return -EFAULT;
3478		log.slot	 = compat_log.slot;
3479		log.padding1	 = compat_log.padding1;
3480		log.padding2	 = compat_log.padding2;
3481		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3482
3483		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3484		break;
3485	}
3486	default:
3487		r = kvm_vm_ioctl(filp, ioctl, arg);
3488	}
 
 
3489	return r;
3490}
3491#endif
3492
3493static struct file_operations kvm_vm_fops = {
3494	.release        = kvm_vm_release,
3495	.unlocked_ioctl = kvm_vm_ioctl,
 
 
 
3496	.llseek		= noop_llseek,
3497	KVM_COMPAT(kvm_vm_compat_ioctl),
3498};
3499
3500static int kvm_dev_ioctl_create_vm(unsigned long type)
3501{
3502	int r;
3503	struct kvm *kvm;
3504	struct file *file;
3505
3506	kvm = kvm_create_vm(type);
3507	if (IS_ERR(kvm))
3508		return PTR_ERR(kvm);
3509#ifdef CONFIG_KVM_MMIO
3510	r = kvm_coalesced_mmio_init(kvm);
3511	if (r < 0)
3512		goto put_kvm;
 
 
3513#endif
3514	r = get_unused_fd_flags(O_CLOEXEC);
3515	if (r < 0)
3516		goto put_kvm;
3517
3518	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3519	if (IS_ERR(file)) {
3520		put_unused_fd(r);
3521		r = PTR_ERR(file);
3522		goto put_kvm;
3523	}
3524
3525	/*
3526	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3527	 * already set, with ->release() being kvm_vm_release().  In error
3528	 * cases it will be called by the final fput(file) and will take
3529	 * care of doing kvm_put_kvm(kvm).
3530	 */
3531	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3532		put_unused_fd(r);
3533		fput(file);
3534		return -ENOMEM;
3535	}
3536	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3537
3538	fd_install(r, file);
3539	return r;
3540
3541put_kvm:
3542	kvm_put_kvm(kvm);
3543	return r;
3544}
3545
3546static long kvm_dev_ioctl(struct file *filp,
3547			  unsigned int ioctl, unsigned long arg)
3548{
3549	long r = -EINVAL;
3550
3551	switch (ioctl) {
3552	case KVM_GET_API_VERSION:
3553		if (arg)
3554			goto out;
3555		r = KVM_API_VERSION;
3556		break;
3557	case KVM_CREATE_VM:
3558		r = kvm_dev_ioctl_create_vm(arg);
3559		break;
3560	case KVM_CHECK_EXTENSION:
3561		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3562		break;
3563	case KVM_GET_VCPU_MMAP_SIZE:
3564		if (arg)
3565			goto out;
3566		r = PAGE_SIZE;     /* struct kvm_run */
3567#ifdef CONFIG_X86
3568		r += PAGE_SIZE;    /* pio data page */
3569#endif
3570#ifdef CONFIG_KVM_MMIO
3571		r += PAGE_SIZE;    /* coalesced mmio ring page */
3572#endif
3573		break;
3574	case KVM_TRACE_ENABLE:
3575	case KVM_TRACE_PAUSE:
3576	case KVM_TRACE_DISABLE:
3577		r = -EOPNOTSUPP;
3578		break;
3579	default:
3580		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3581	}
3582out:
3583	return r;
3584}
3585
3586static struct file_operations kvm_chardev_ops = {
3587	.unlocked_ioctl = kvm_dev_ioctl,
 
3588	.llseek		= noop_llseek,
3589	KVM_COMPAT(kvm_dev_ioctl),
3590};
3591
3592static struct miscdevice kvm_dev = {
3593	KVM_MINOR,
3594	"kvm",
3595	&kvm_chardev_ops,
3596};
3597
3598static void hardware_enable_nolock(void *junk)
3599{
3600	int cpu = raw_smp_processor_id();
3601	int r;
3602
3603	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3604		return;
3605
3606	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3607
3608	r = kvm_arch_hardware_enable();
3609
3610	if (r) {
3611		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3612		atomic_inc(&hardware_enable_failed);
3613		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3614	}
3615}
3616
3617static int kvm_starting_cpu(unsigned int cpu)
3618{
3619	raw_spin_lock(&kvm_count_lock);
3620	if (kvm_usage_count)
3621		hardware_enable_nolock(NULL);
3622	raw_spin_unlock(&kvm_count_lock);
3623	return 0;
3624}
3625
3626static void hardware_disable_nolock(void *junk)
3627{
3628	int cpu = raw_smp_processor_id();
3629
3630	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3631		return;
3632	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3633	kvm_arch_hardware_disable();
3634}
3635
3636static int kvm_dying_cpu(unsigned int cpu)
3637{
3638	raw_spin_lock(&kvm_count_lock);
3639	if (kvm_usage_count)
3640		hardware_disable_nolock(NULL);
3641	raw_spin_unlock(&kvm_count_lock);
3642	return 0;
3643}
3644
3645static void hardware_disable_all_nolock(void)
3646{
3647	BUG_ON(!kvm_usage_count);
3648
3649	kvm_usage_count--;
3650	if (!kvm_usage_count)
3651		on_each_cpu(hardware_disable_nolock, NULL, 1);
3652}
3653
3654static void hardware_disable_all(void)
3655{
3656	raw_spin_lock(&kvm_count_lock);
3657	hardware_disable_all_nolock();
3658	raw_spin_unlock(&kvm_count_lock);
3659}
3660
3661static int hardware_enable_all(void)
3662{
3663	int r = 0;
3664
3665	raw_spin_lock(&kvm_count_lock);
3666
3667	kvm_usage_count++;
3668	if (kvm_usage_count == 1) {
3669		atomic_set(&hardware_enable_failed, 0);
3670		on_each_cpu(hardware_enable_nolock, NULL, 1);
3671
3672		if (atomic_read(&hardware_enable_failed)) {
3673			hardware_disable_all_nolock();
3674			r = -EBUSY;
3675		}
3676	}
3677
3678	raw_spin_unlock(&kvm_count_lock);
3679
3680	return r;
3681}
3682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3683static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3684		      void *v)
3685{
3686	/*
3687	 * Some (well, at least mine) BIOSes hang on reboot if
3688	 * in vmx root mode.
3689	 *
3690	 * And Intel TXT required VMX off for all cpu when system shutdown.
3691	 */
3692	pr_info("kvm: exiting hardware virtualization\n");
3693	kvm_rebooting = true;
3694	on_each_cpu(hardware_disable_nolock, NULL, 1);
3695	return NOTIFY_OK;
3696}
3697
3698static struct notifier_block kvm_reboot_notifier = {
3699	.notifier_call = kvm_reboot,
3700	.priority = 0,
3701};
3702
3703static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3704{
3705	int i;
3706
3707	for (i = 0; i < bus->dev_count; i++) {
3708		struct kvm_io_device *pos = bus->range[i].dev;
3709
3710		kvm_iodevice_destructor(pos);
3711	}
3712	kfree(bus);
3713}
3714
3715static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3716				 const struct kvm_io_range *r2)
3717{
3718	gpa_t addr1 = r1->addr;
3719	gpa_t addr2 = r2->addr;
3720
3721	if (addr1 < addr2)
3722		return -1;
3723
3724	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3725	 * accept any overlapping write.  Any order is acceptable for
3726	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3727	 * we process all of them.
3728	 */
3729	if (r2->len) {
3730		addr1 += r1->len;
3731		addr2 += r2->len;
3732	}
3733
3734	if (addr1 > addr2)
3735		return 1;
3736
3737	return 0;
3738}
3739
3740static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3741{
3742	return kvm_io_bus_cmp(p1, p2);
3743}
3744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3745static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3746			     gpa_t addr, int len)
3747{
3748	struct kvm_io_range *range, key;
3749	int off;
3750
3751	key = (struct kvm_io_range) {
3752		.addr = addr,
3753		.len = len,
3754	};
3755
3756	range = bsearch(&key, bus->range, bus->dev_count,
3757			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3758	if (range == NULL)
3759		return -ENOENT;
3760
3761	off = range - bus->range;
3762
3763	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3764		off--;
3765
3766	return off;
3767}
3768
3769static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3770			      struct kvm_io_range *range, const void *val)
3771{
3772	int idx;
3773
3774	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3775	if (idx < 0)
3776		return -EOPNOTSUPP;
3777
3778	while (idx < bus->dev_count &&
3779		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3780		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3781					range->len, val))
3782			return idx;
3783		idx++;
3784	}
3785
3786	return -EOPNOTSUPP;
3787}
3788
3789/* kvm_io_bus_write - called under kvm->slots_lock */
3790int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3791		     int len, const void *val)
3792{
3793	struct kvm_io_bus *bus;
3794	struct kvm_io_range range;
3795	int r;
3796
3797	range = (struct kvm_io_range) {
3798		.addr = addr,
3799		.len = len,
3800	};
3801
3802	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3803	if (!bus)
3804		return -ENOMEM;
3805	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3806	return r < 0 ? r : 0;
3807}
3808EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3809
3810/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3811int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3812			    gpa_t addr, int len, const void *val, long cookie)
3813{
3814	struct kvm_io_bus *bus;
3815	struct kvm_io_range range;
3816
3817	range = (struct kvm_io_range) {
3818		.addr = addr,
3819		.len = len,
3820	};
3821
3822	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3823	if (!bus)
3824		return -ENOMEM;
3825
3826	/* First try the device referenced by cookie. */
3827	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3828	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3829		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3830					val))
3831			return cookie;
3832
3833	/*
3834	 * cookie contained garbage; fall back to search and return the
3835	 * correct cookie value.
3836	 */
3837	return __kvm_io_bus_write(vcpu, bus, &range, val);
3838}
3839
3840static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3841			     struct kvm_io_range *range, void *val)
3842{
3843	int idx;
3844
3845	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3846	if (idx < 0)
3847		return -EOPNOTSUPP;
3848
3849	while (idx < bus->dev_count &&
3850		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3851		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3852				       range->len, val))
3853			return idx;
3854		idx++;
3855	}
3856
3857	return -EOPNOTSUPP;
3858}
 
3859
3860/* kvm_io_bus_read - called under kvm->slots_lock */
3861int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3862		    int len, void *val)
3863{
3864	struct kvm_io_bus *bus;
3865	struct kvm_io_range range;
3866	int r;
3867
3868	range = (struct kvm_io_range) {
3869		.addr = addr,
3870		.len = len,
3871	};
3872
3873	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3874	if (!bus)
3875		return -ENOMEM;
3876	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3877	return r < 0 ? r : 0;
3878}
3879
 
3880/* Caller must hold slots_lock. */
3881int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3882			    int len, struct kvm_io_device *dev)
3883{
3884	int i;
3885	struct kvm_io_bus *new_bus, *bus;
3886	struct kvm_io_range range;
3887
3888	bus = kvm_get_bus(kvm, bus_idx);
3889	if (!bus)
3890		return -ENOMEM;
3891
 
3892	/* exclude ioeventfd which is limited by maximum fd */
3893	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3894		return -ENOSPC;
3895
3896	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3897			  GFP_KERNEL_ACCOUNT);
3898	if (!new_bus)
3899		return -ENOMEM;
3900
3901	range = (struct kvm_io_range) {
3902		.addr = addr,
3903		.len = len,
3904		.dev = dev,
3905	};
3906
3907	for (i = 0; i < bus->dev_count; i++)
3908		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3909			break;
3910
3911	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3912	new_bus->dev_count++;
3913	new_bus->range[i] = range;
3914	memcpy(new_bus->range + i + 1, bus->range + i,
3915		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3916	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3917	synchronize_srcu_expedited(&kvm->srcu);
3918	kfree(bus);
3919
3920	return 0;
3921}
3922
3923/* Caller must hold slots_lock. */
3924void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3925			       struct kvm_io_device *dev)
3926{
3927	int i;
3928	struct kvm_io_bus *new_bus, *bus;
3929
3930	bus = kvm_get_bus(kvm, bus_idx);
3931	if (!bus)
3932		return;
3933
3934	for (i = 0; i < bus->dev_count; i++)
3935		if (bus->range[i].dev == dev) {
 
3936			break;
3937		}
3938
3939	if (i == bus->dev_count)
3940		return;
3941
3942	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3943			  GFP_KERNEL_ACCOUNT);
3944	if (!new_bus)  {
3945		pr_err("kvm: failed to shrink bus, removing it completely\n");
3946		goto broken;
3947	}
3948
3949	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3950	new_bus->dev_count--;
3951	memcpy(new_bus->range + i, bus->range + i + 1,
3952	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3953
3954broken:
3955	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3956	synchronize_srcu_expedited(&kvm->srcu);
3957	kfree(bus);
3958	return;
3959}
3960
3961struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3962					 gpa_t addr)
3963{
3964	struct kvm_io_bus *bus;
3965	int dev_idx, srcu_idx;
3966	struct kvm_io_device *iodev = NULL;
3967
3968	srcu_idx = srcu_read_lock(&kvm->srcu);
3969
3970	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3971	if (!bus)
3972		goto out_unlock;
3973
3974	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3975	if (dev_idx < 0)
3976		goto out_unlock;
3977
3978	iodev = bus->range[dev_idx].dev;
3979
3980out_unlock:
3981	srcu_read_unlock(&kvm->srcu, srcu_idx);
3982
3983	return iodev;
3984}
3985EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3986
3987static int kvm_debugfs_open(struct inode *inode, struct file *file,
3988			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3989			   const char *fmt)
3990{
3991	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3992					  inode->i_private;
3993
3994	/* The debugfs files are a reference to the kvm struct which
3995	 * is still valid when kvm_destroy_vm is called.
3996	 * To avoid the race between open and the removal of the debugfs
3997	 * directory we test against the users count.
3998	 */
3999	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4000		return -ENOENT;
4001
4002	if (simple_attr_open(inode, file, get,
4003			     stat_data->mode & S_IWUGO ? set : NULL,
4004			     fmt)) {
4005		kvm_put_kvm(stat_data->kvm);
4006		return -ENOMEM;
4007	}
4008
4009	return 0;
4010}
4011
4012static int kvm_debugfs_release(struct inode *inode, struct file *file)
4013{
4014	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4015					  inode->i_private;
4016
4017	simple_attr_release(inode, file);
4018	kvm_put_kvm(stat_data->kvm);
4019
4020	return 0;
4021}
4022
4023static int vm_stat_get_per_vm(void *data, u64 *val)
4024{
4025	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4026
4027	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4028
4029	return 0;
4030}
4031
4032static int vm_stat_clear_per_vm(void *data, u64 val)
4033{
4034	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4035
4036	if (val)
4037		return -EINVAL;
4038
4039	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4040
4041	return 0;
4042}
4043
4044static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4045{
4046	__simple_attr_check_format("%llu\n", 0ull);
4047	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4048				vm_stat_clear_per_vm, "%llu\n");
4049}
4050
4051static const struct file_operations vm_stat_get_per_vm_fops = {
4052	.owner   = THIS_MODULE,
4053	.open    = vm_stat_get_per_vm_open,
4054	.release = kvm_debugfs_release,
4055	.read    = simple_attr_read,
4056	.write   = simple_attr_write,
4057	.llseek  = no_llseek,
4058};
4059
4060static int vcpu_stat_get_per_vm(void *data, u64 *val)
4061{
4062	int i;
4063	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4064	struct kvm_vcpu *vcpu;
4065
4066	*val = 0;
4067
4068	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4069		*val += *(u64 *)((void *)vcpu + stat_data->offset);
4070
4071	return 0;
4072}
4073
4074static int vcpu_stat_clear_per_vm(void *data, u64 val)
4075{
4076	int i;
4077	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4078	struct kvm_vcpu *vcpu;
4079
4080	if (val)
4081		return -EINVAL;
4082
4083	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4084		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4085
4086	return 0;
4087}
4088
4089static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4090{
4091	__simple_attr_check_format("%llu\n", 0ull);
4092	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4093				 vcpu_stat_clear_per_vm, "%llu\n");
4094}
4095
4096static const struct file_operations vcpu_stat_get_per_vm_fops = {
4097	.owner   = THIS_MODULE,
4098	.open    = vcpu_stat_get_per_vm_open,
4099	.release = kvm_debugfs_release,
4100	.read    = simple_attr_read,
4101	.write   = simple_attr_write,
4102	.llseek  = no_llseek,
4103};
4104
4105static const struct file_operations *stat_fops_per_vm[] = {
4106	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4107	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4108};
4109
4110static int vm_stat_get(void *_offset, u64 *val)
4111{
4112	unsigned offset = (long)_offset;
4113	struct kvm *kvm;
4114	struct kvm_stat_data stat_tmp = {.offset = offset};
4115	u64 tmp_val;
4116
4117	*val = 0;
4118	mutex_lock(&kvm_lock);
4119	list_for_each_entry(kvm, &vm_list, vm_list) {
4120		stat_tmp.kvm = kvm;
4121		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4122		*val += tmp_val;
4123	}
4124	mutex_unlock(&kvm_lock);
4125	return 0;
4126}
4127
4128static int vm_stat_clear(void *_offset, u64 val)
4129{
4130	unsigned offset = (long)_offset;
4131	struct kvm *kvm;
4132	struct kvm_stat_data stat_tmp = {.offset = offset};
4133
4134	if (val)
4135		return -EINVAL;
4136
4137	mutex_lock(&kvm_lock);
4138	list_for_each_entry(kvm, &vm_list, vm_list) {
4139		stat_tmp.kvm = kvm;
4140		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4141	}
4142	mutex_unlock(&kvm_lock);
4143
4144	return 0;
4145}
4146
4147DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4148
4149static int vcpu_stat_get(void *_offset, u64 *val)
4150{
4151	unsigned offset = (long)_offset;
4152	struct kvm *kvm;
4153	struct kvm_stat_data stat_tmp = {.offset = offset};
4154	u64 tmp_val;
4155
4156	*val = 0;
4157	mutex_lock(&kvm_lock);
4158	list_for_each_entry(kvm, &vm_list, vm_list) {
4159		stat_tmp.kvm = kvm;
4160		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4161		*val += tmp_val;
4162	}
4163	mutex_unlock(&kvm_lock);
4164	return 0;
4165}
4166
4167static int vcpu_stat_clear(void *_offset, u64 val)
4168{
4169	unsigned offset = (long)_offset;
4170	struct kvm *kvm;
4171	struct kvm_stat_data stat_tmp = {.offset = offset};
4172
4173	if (val)
4174		return -EINVAL;
4175
4176	mutex_lock(&kvm_lock);
4177	list_for_each_entry(kvm, &vm_list, vm_list) {
4178		stat_tmp.kvm = kvm;
4179		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4180	}
4181	mutex_unlock(&kvm_lock);
4182
 
4183	return 0;
4184}
4185
4186DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4187			"%llu\n");
4188
4189static const struct file_operations *stat_fops[] = {
4190	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4191	[KVM_STAT_VM]   = &vm_stat_fops,
4192};
4193
4194static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4195{
4196	struct kobj_uevent_env *env;
4197	unsigned long long created, active;
4198
4199	if (!kvm_dev.this_device || !kvm)
4200		return;
4201
4202	mutex_lock(&kvm_lock);
4203	if (type == KVM_EVENT_CREATE_VM) {
4204		kvm_createvm_count++;
4205		kvm_active_vms++;
4206	} else if (type == KVM_EVENT_DESTROY_VM) {
4207		kvm_active_vms--;
4208	}
4209	created = kvm_createvm_count;
4210	active = kvm_active_vms;
4211	mutex_unlock(&kvm_lock);
4212
4213	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4214	if (!env)
4215		return;
4216
4217	add_uevent_var(env, "CREATED=%llu", created);
4218	add_uevent_var(env, "COUNT=%llu", active);
4219
4220	if (type == KVM_EVENT_CREATE_VM) {
4221		add_uevent_var(env, "EVENT=create");
4222		kvm->userspace_pid = task_pid_nr(current);
4223	} else if (type == KVM_EVENT_DESTROY_VM) {
4224		add_uevent_var(env, "EVENT=destroy");
4225	}
4226	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4227
4228	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4229		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4230
4231		if (p) {
4232			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4233			if (!IS_ERR(tmp))
4234				add_uevent_var(env, "STATS_PATH=%s", tmp);
4235			kfree(p);
4236		}
4237	}
4238	/* no need for checks, since we are adding at most only 5 keys */
4239	env->envp[env->envp_idx++] = NULL;
4240	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4241	kfree(env);
4242}
4243
4244static void kvm_init_debug(void)
4245{
4246	struct kvm_stats_debugfs_item *p;
4247
4248	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4249
4250	kvm_debugfs_num_entries = 0;
4251	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4252		int mode = p->mode ? p->mode : 0644;
4253		debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4254				    (void *)(long)p->offset,
4255				    stat_fops[p->kind]);
4256	}
4257}
4258
4259static int kvm_suspend(void)
4260{
4261	if (kvm_usage_count)
4262		hardware_disable_nolock(NULL);
4263	return 0;
4264}
4265
4266static void kvm_resume(void)
4267{
4268	if (kvm_usage_count) {
4269#ifdef CONFIG_LOCKDEP
4270		WARN_ON(lockdep_is_held(&kvm_count_lock));
4271#endif
4272		hardware_enable_nolock(NULL);
4273	}
4274}
4275
4276static struct syscore_ops kvm_syscore_ops = {
4277	.suspend = kvm_suspend,
4278	.resume = kvm_resume,
4279};
4280
4281static inline
4282struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4283{
4284	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4285}
4286
4287static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4288{
4289	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4290
4291	WRITE_ONCE(vcpu->preempted, false);
4292	WRITE_ONCE(vcpu->ready, false);
4293
4294	kvm_arch_sched_in(vcpu, cpu);
4295
4296	kvm_arch_vcpu_load(vcpu, cpu);
4297}
4298
4299static void kvm_sched_out(struct preempt_notifier *pn,
4300			  struct task_struct *next)
4301{
4302	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4303
4304	if (current->state == TASK_RUNNING) {
4305		WRITE_ONCE(vcpu->preempted, true);
4306		WRITE_ONCE(vcpu->ready, true);
4307	}
4308	kvm_arch_vcpu_put(vcpu);
4309}
4310
4311static void check_processor_compat(void *rtn)
4312{
4313	*(int *)rtn = kvm_arch_check_processor_compat();
4314}
4315
4316int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4317		  struct module *module)
4318{
4319	int r;
4320	int cpu;
4321
4322	r = kvm_arch_init(opaque);
4323	if (r)
4324		goto out_fail;
4325
4326	/*
4327	 * kvm_arch_init makes sure there's at most one caller
4328	 * for architectures that support multiple implementations,
4329	 * like intel and amd on x86.
4330	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4331	 * conflicts in case kvm is already setup for another implementation.
4332	 */
4333	r = kvm_irqfd_init();
4334	if (r)
4335		goto out_irqfd;
4336
4337	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4338		r = -ENOMEM;
4339		goto out_free_0;
4340	}
4341
4342	r = kvm_arch_hardware_setup();
4343	if (r < 0)
4344		goto out_free_0a;
4345
4346	for_each_online_cpu(cpu) {
4347		smp_call_function_single(cpu, check_processor_compat, &r, 1);
 
 
4348		if (r < 0)
4349			goto out_free_1;
4350	}
4351
4352	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4353				      kvm_starting_cpu, kvm_dying_cpu);
4354	if (r)
4355		goto out_free_2;
4356	register_reboot_notifier(&kvm_reboot_notifier);
4357
4358	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4359	if (!vcpu_align)
4360		vcpu_align = __alignof__(struct kvm_vcpu);
4361	kvm_vcpu_cache =
4362		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4363					   SLAB_ACCOUNT,
4364					   offsetof(struct kvm_vcpu, arch),
4365					   sizeof_field(struct kvm_vcpu, arch),
4366					   NULL);
4367	if (!kvm_vcpu_cache) {
4368		r = -ENOMEM;
4369		goto out_free_3;
4370	}
4371
4372	r = kvm_async_pf_init();
4373	if (r)
4374		goto out_free;
4375
4376	kvm_chardev_ops.owner = module;
4377	kvm_vm_fops.owner = module;
4378	kvm_vcpu_fops.owner = module;
4379
4380	r = misc_register(&kvm_dev);
4381	if (r) {
4382		pr_err("kvm: misc device register failed\n");
4383		goto out_unreg;
4384	}
4385
4386	register_syscore_ops(&kvm_syscore_ops);
4387
4388	kvm_preempt_ops.sched_in = kvm_sched_in;
4389	kvm_preempt_ops.sched_out = kvm_sched_out;
4390
4391	kvm_init_debug();
 
 
 
 
4392
4393	r = kvm_vfio_ops_init();
4394	WARN_ON(r);
4395
4396	return 0;
4397
 
 
 
4398out_unreg:
4399	kvm_async_pf_deinit();
4400out_free:
4401	kmem_cache_destroy(kvm_vcpu_cache);
4402out_free_3:
4403	unregister_reboot_notifier(&kvm_reboot_notifier);
4404	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4405out_free_2:
4406out_free_1:
4407	kvm_arch_hardware_unsetup();
4408out_free_0a:
4409	free_cpumask_var(cpus_hardware_enabled);
4410out_free_0:
4411	kvm_irqfd_exit();
4412out_irqfd:
4413	kvm_arch_exit();
4414out_fail:
4415	return r;
4416}
4417EXPORT_SYMBOL_GPL(kvm_init);
4418
4419void kvm_exit(void)
4420{
4421	debugfs_remove_recursive(kvm_debugfs_dir);
4422	misc_deregister(&kvm_dev);
4423	kmem_cache_destroy(kvm_vcpu_cache);
4424	kvm_async_pf_deinit();
4425	unregister_syscore_ops(&kvm_syscore_ops);
4426	unregister_reboot_notifier(&kvm_reboot_notifier);
4427	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4428	on_each_cpu(hardware_disable_nolock, NULL, 1);
4429	kvm_arch_hardware_unsetup();
4430	kvm_arch_exit();
4431	kvm_irqfd_exit();
4432	free_cpumask_var(cpus_hardware_enabled);
4433	kvm_vfio_ops_exit();
4434}
4435EXPORT_SYMBOL_GPL(kvm_exit);
4436
4437struct kvm_vm_worker_thread_context {
4438	struct kvm *kvm;
4439	struct task_struct *parent;
4440	struct completion init_done;
4441	kvm_vm_thread_fn_t thread_fn;
4442	uintptr_t data;
4443	int err;
4444};
4445
4446static int kvm_vm_worker_thread(void *context)
4447{
4448	/*
4449	 * The init_context is allocated on the stack of the parent thread, so
4450	 * we have to locally copy anything that is needed beyond initialization
4451	 */
4452	struct kvm_vm_worker_thread_context *init_context = context;
4453	struct kvm *kvm = init_context->kvm;
4454	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4455	uintptr_t data = init_context->data;
4456	int err;
4457
4458	err = kthread_park(current);
4459	/* kthread_park(current) is never supposed to return an error */
4460	WARN_ON(err != 0);
4461	if (err)
4462		goto init_complete;
4463
4464	err = cgroup_attach_task_all(init_context->parent, current);
4465	if (err) {
4466		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4467			__func__, err);
4468		goto init_complete;
4469	}
4470
4471	set_user_nice(current, task_nice(init_context->parent));
4472
4473init_complete:
4474	init_context->err = err;
4475	complete(&init_context->init_done);
4476	init_context = NULL;
4477
4478	if (err)
4479		return err;
4480
4481	/* Wait to be woken up by the spawner before proceeding. */
4482	kthread_parkme();
4483
4484	if (!kthread_should_stop())
4485		err = thread_fn(kvm, data);
4486
4487	return err;
4488}
4489
4490int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4491				uintptr_t data, const char *name,
4492				struct task_struct **thread_ptr)
4493{
4494	struct kvm_vm_worker_thread_context init_context = {};
4495	struct task_struct *thread;
4496
4497	*thread_ptr = NULL;
4498	init_context.kvm = kvm;
4499	init_context.parent = current;
4500	init_context.thread_fn = thread_fn;
4501	init_context.data = data;
4502	init_completion(&init_context.init_done);
4503
4504	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4505			     "%s-%d", name, task_pid_nr(current));
4506	if (IS_ERR(thread))
4507		return PTR_ERR(thread);
4508
4509	/* kthread_run is never supposed to return NULL */
4510	WARN_ON(thread == NULL);
4511
4512	wait_for_completion(&init_context.init_done);
4513
4514	if (!init_context.err)
4515		*thread_ptr = thread;
4516
4517	return init_context.err;
4518}