Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Implementation of the SID table type.
  3 *
  4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
 
 
 
  5 */
 
  6#include <linux/kernel.h>
  7#include <linux/slab.h>
 
  8#include <linux/spinlock.h>
  9#include <linux/errno.h>
 10#include "flask.h"
 11#include "security.h"
 12#include "sidtab.h"
 13
 14#define SIDTAB_HASH(sid) \
 15(sid & SIDTAB_HASH_MASK)
 16
 17int sidtab_init(struct sidtab *s)
 18{
 19	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 20
 21	s->htable = kmalloc(sizeof(*(s->htable)) * SIDTAB_SIZE, GFP_ATOMIC);
 22	if (!s->htable)
 23		return -ENOMEM;
 24	for (i = 0; i < SIDTAB_SIZE; i++)
 25		s->htable[i] = NULL;
 26	s->nel = 0;
 27	s->next_sid = 1;
 28	s->shutdown = 0;
 29	spin_lock_init(&s->lock);
 30	return 0;
 31}
 32
 33int sidtab_insert(struct sidtab *s, u32 sid, struct context *context)
 34{
 35	int hvalue, rc = 0;
 36	struct sidtab_node *prev, *cur, *newnode;
 37
 38	if (!s) {
 39		rc = -ENOMEM;
 40		goto out;
 41	}
 
 
 
 
 42
 43	hvalue = SIDTAB_HASH(sid);
 44	prev = NULL;
 45	cur = s->htable[hvalue];
 46	while (cur && sid > cur->sid) {
 47		prev = cur;
 48		cur = cur->next;
 
 
 
 
 
 
 49	}
 
 
 
 
 
 
 50
 51	if (cur && sid == cur->sid) {
 52		rc = -EEXIST;
 53		goto out;
 
 
 54	}
 
 
 
 
 
 
 
 
 
 
 55
 56	newnode = kmalloc(sizeof(*newnode), GFP_ATOMIC);
 57	if (newnode == NULL) {
 58		rc = -ENOMEM;
 59		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60	}
 61	newnode->sid = sid;
 62	if (context_cpy(&newnode->context, context)) {
 63		kfree(newnode);
 64		rc = -ENOMEM;
 65		goto out;
 
 66	}
 
 
 67
 68	if (prev) {
 69		newnode->next = prev->next;
 70		wmb();
 71		prev->next = newnode;
 72	} else {
 73		newnode->next = s->htable[hvalue];
 74		wmb();
 75		s->htable[hvalue] = newnode;
 76	}
 77
 78	s->nel++;
 79	if (sid >= s->next_sid)
 80		s->next_sid = sid + 1;
 81out:
 82	return rc;
 83}
 84
 85static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
 86{
 87	int hvalue;
 88	struct sidtab_node *cur;
 89
 90	if (!s)
 91		return NULL;
 
 92
 93	hvalue = SIDTAB_HASH(sid);
 94	cur = s->htable[hvalue];
 95	while (cur && sid > cur->sid)
 96		cur = cur->next;
 97
 98	if (force && cur && sid == cur->sid && cur->context.len)
 99		return &cur->context;
100
101	if (cur == NULL || sid != cur->sid || cur->context.len) {
102		/* Remap invalid SIDs to the unlabeled SID. */
103		sid = SECINITSID_UNLABELED;
104		hvalue = SIDTAB_HASH(sid);
105		cur = s->htable[hvalue];
106		while (cur && sid > cur->sid)
107			cur = cur->next;
108		if (!cur || sid != cur->sid)
109			return NULL;
110	}
111
112	return &cur->context;
113}
114
115struct context *sidtab_search(struct sidtab *s, u32 sid)
116{
117	return sidtab_search_core(s, sid, 0);
118}
119
120struct context *sidtab_search_force(struct sidtab *s, u32 sid)
121{
122	return sidtab_search_core(s, sid, 1);
123}
124
125int sidtab_map(struct sidtab *s,
126	       int (*apply) (u32 sid,
127			     struct context *context,
128			     void *args),
129	       void *args)
130{
131	int i, rc = 0;
132	struct sidtab_node *cur;
133
134	if (!s)
135		goto out;
136
137	for (i = 0; i < SIDTAB_SIZE; i++) {
138		cur = s->htable[i];
139		while (cur) {
140			rc = apply(cur->sid, &cur->context, args);
141			if (rc)
142				goto out;
143			cur = cur->next;
 
 
 
 
 
 
 
 
 
 
 
144		}
145	}
146out:
147	return rc;
148}
149
150static void sidtab_update_cache(struct sidtab *s, struct sidtab_node *n, int loc)
151{
152	BUG_ON(loc >= SIDTAB_CACHE_LEN);
153
154	while (loc > 0) {
155		s->cache[loc] = s->cache[loc - 1];
156		loc--;
157	}
158	s->cache[0] = n;
159}
160
161static inline u32 sidtab_search_context(struct sidtab *s,
162						  struct context *context)
163{
164	int i;
165	struct sidtab_node *cur;
166
167	for (i = 0; i < SIDTAB_SIZE; i++) {
168		cur = s->htable[i];
169		while (cur) {
170			if (context_cmp(&cur->context, context)) {
171				sidtab_update_cache(s, cur, SIDTAB_CACHE_LEN - 1);
172				return cur->sid;
173			}
174			cur = cur->next;
175		}
176	}
177	return 0;
178}
179
180static inline u32 sidtab_search_cache(struct sidtab *s, struct context *context)
 
181{
182	int i;
183	struct sidtab_node *node;
 
 
 
 
 
184
185	for (i = 0; i < SIDTAB_CACHE_LEN; i++) {
186		node = s->cache[i];
187		if (unlikely(!node))
188			return 0;
189		if (context_cmp(&node->context, context)) {
190			sidtab_update_cache(s, node, i);
191			return node->sid;
192		}
193	}
194	return 0;
195}
196
197int sidtab_context_to_sid(struct sidtab *s,
198			  struct context *context,
199			  u32 *out_sid)
200{
201	u32 sid;
202	int ret = 0;
203	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
205	*out_sid = SECSID_NULL;
 
206
207	sid  = sidtab_search_cache(s, context);
208	if (!sid)
209		sid = sidtab_search_context(s, context);
210	if (!sid) {
211		spin_lock_irqsave(&s->lock, flags);
212		/* Rescan now that we hold the lock. */
213		sid = sidtab_search_context(s, context);
214		if (sid)
215			goto unlock_out;
216		/* No SID exists for the context.  Allocate a new one. */
217		if (s->next_sid == UINT_MAX || s->shutdown) {
218			ret = -ENOMEM;
219			goto unlock_out;
220		}
221		sid = s->next_sid++;
222		if (context->len)
223			printk(KERN_INFO
224		       "SELinux:  Context %s is not valid (left unmapped).\n",
225			       context->str);
226		ret = sidtab_insert(s, sid, context);
227		if (ret)
228			s->next_sid--;
229unlock_out:
230		spin_unlock_irqrestore(&s->lock, flags);
231	}
232
233	if (ret)
234		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
236	*out_sid = sid;
237	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238}
239
240void sidtab_hash_eval(struct sidtab *h, char *tag)
241{
242	int i, chain_len, slots_used, max_chain_len;
243	struct sidtab_node *cur;
244
245	slots_used = 0;
246	max_chain_len = 0;
247	for (i = 0; i < SIDTAB_SIZE; i++) {
248		cur = h->htable[i];
249		if (cur) {
250			slots_used++;
251			chain_len = 0;
252			while (cur) {
253				chain_len++;
254				cur = cur->next;
255			}
256
257			if (chain_len > max_chain_len)
258				max_chain_len = chain_len;
 
259		}
260	}
261
262	printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, longest "
263	       "chain length %d\n", tag, h->nel, slots_used, SIDTAB_SIZE,
264	       max_chain_len);
 
 
265}
266
267void sidtab_destroy(struct sidtab *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268{
269	int i;
270	struct sidtab_node *cur, *temp;
 
271
272	if (!s)
273		return;
274
275	for (i = 0; i < SIDTAB_SIZE; i++) {
276		cur = s->htable[i];
277		while (cur) {
278			temp = cur;
279			cur = cur->next;
280			context_destroy(&temp->context);
281			kfree(temp);
282		}
283		s->htable[i] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284	}
285	kfree(s->htable);
286	s->htable = NULL;
287	s->nel = 0;
288	s->next_sid = 1;
289}
290
291void sidtab_set(struct sidtab *dst, struct sidtab *src)
292{
293	unsigned long flags;
294	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
296	spin_lock_irqsave(&src->lock, flags);
297	dst->htable = src->htable;
298	dst->nel = src->nel;
299	dst->next_sid = src->next_sid;
300	dst->shutdown = 0;
301	for (i = 0; i < SIDTAB_CACHE_LEN; i++)
302		dst->cache[i] = NULL;
303	spin_unlock_irqrestore(&src->lock, flags);
304}
305
306void sidtab_shutdown(struct sidtab *s)
307{
308	unsigned long flags;
309
310	spin_lock_irqsave(&s->lock, flags);
311	s->shutdown = 1;
312	spin_unlock_irqrestore(&s->lock, flags);
 
 
 
 
 
 
313}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 12#include <linux/slab.h>
 13#include <linux/sched.h>
 14#include <linux/spinlock.h>
 15#include <asm/barrier.h>
 16#include "flask.h"
 17#include "security.h"
 18#include "sidtab.h"
 19
 
 
 
 20int sidtab_init(struct sidtab *s)
 21{
 22	u32 i;
 23
 24	memset(s->roots, 0, sizeof(s->roots));
 25
 26	/* max count is SIDTAB_MAX so valid index is always < SIDTAB_MAX */
 27	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++)
 28		s->rcache[i] = SIDTAB_MAX;
 29
 30	for (i = 0; i < SECINITSID_NUM; i++)
 31		s->isids[i].set = 0;
 32
 33	s->count = 0;
 34	s->convert = NULL;
 35
 
 
 
 
 
 
 
 
 36	spin_lock_init(&s->lock);
 37	return 0;
 38}
 39
 40int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 41{
 42	struct sidtab_isid_entry *entry;
 43	int rc;
 44
 45	if (sid == 0 || sid > SECINITSID_NUM)
 46		return -EINVAL;
 47
 48	entry = &s->isids[sid - 1];
 49
 50	rc = context_cpy(&entry->context, context);
 51	if (rc)
 52		return rc;
 53
 54	entry->set = 1;
 55	return 0;
 56}
 57
 58static u32 sidtab_level_from_count(u32 count)
 59{
 60	u32 capacity = SIDTAB_LEAF_ENTRIES;
 61	u32 level = 0;
 62
 63	while (count > capacity) {
 64		capacity <<= SIDTAB_INNER_SHIFT;
 65		++level;
 66	}
 67	return level;
 68}
 69
 70static int sidtab_alloc_roots(struct sidtab *s, u32 level)
 71{
 72	u32 l;
 73
 74	if (!s->roots[0].ptr_leaf) {
 75		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
 76					       GFP_ATOMIC);
 77		if (!s->roots[0].ptr_leaf)
 78			return -ENOMEM;
 79	}
 80	for (l = 1; l <= level; ++l)
 81		if (!s->roots[l].ptr_inner) {
 82			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
 83							GFP_ATOMIC);
 84			if (!s->roots[l].ptr_inner)
 85				return -ENOMEM;
 86			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
 87		}
 88	return 0;
 89}
 90
 91static struct context *sidtab_do_lookup(struct sidtab *s, u32 index, int alloc)
 92{
 93	union sidtab_entry_inner *entry;
 94	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
 95
 96	/* find the level of the subtree we need */
 97	level = sidtab_level_from_count(index + 1);
 98	capacity_shift = level * SIDTAB_INNER_SHIFT;
 99
100	/* allocate roots if needed */
101	if (alloc && sidtab_alloc_roots(s, level) != 0)
102		return NULL;
103
104	/* lookup inside the subtree */
105	entry = &s->roots[level];
106	while (level != 0) {
107		capacity_shift -= SIDTAB_INNER_SHIFT;
108		--level;
109
110		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
111		leaf_index &= ((u32)1 << capacity_shift) - 1;
112
113		if (!entry->ptr_inner) {
114			if (alloc)
115				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
116							   GFP_ATOMIC);
117			if (!entry->ptr_inner)
118				return NULL;
119		}
120	}
121	if (!entry->ptr_leaf) {
122		if (alloc)
123			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
124						  GFP_ATOMIC);
125		if (!entry->ptr_leaf)
126			return NULL;
127	}
128	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES].context;
129}
130
131static struct context *sidtab_lookup(struct sidtab *s, u32 index)
132{
133	/* read entries only after reading count */
134	u32 count = smp_load_acquire(&s->count);
 
 
 
 
 
135
136	if (index >= count)
137		return NULL;
138
139	return sidtab_do_lookup(s, index, 0);
 
140}
141
142static struct context *sidtab_lookup_initial(struct sidtab *s, u32 sid)
143{
144	return s->isids[sid - 1].set ? &s->isids[sid - 1].context : NULL;
145}
146
147static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
148{
149	struct context *context;
150
151	if (sid != 0) {
152		if (sid > SECINITSID_NUM)
153			context = sidtab_lookup(s, sid - (SECINITSID_NUM + 1));
154		else
155			context = sidtab_lookup_initial(s, sid);
156		if (context && (!context->len || force))
157			return context;
 
 
 
 
 
 
 
 
 
 
158	}
159
160	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
161}
162
163struct context *sidtab_search(struct sidtab *s, u32 sid)
164{
165	return sidtab_search_core(s, sid, 0);
166}
167
168struct context *sidtab_search_force(struct sidtab *s, u32 sid)
169{
170	return sidtab_search_core(s, sid, 1);
171}
172
173static int sidtab_find_context(union sidtab_entry_inner entry,
174			       u32 *pos, u32 count, u32 level,
175			       struct context *context, u32 *index)
176{
177	int rc;
178	u32 i;
179
180	if (level != 0) {
181		struct sidtab_node_inner *node = entry.ptr_inner;
182
183		i = 0;
184		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
185			rc = sidtab_find_context(node->entries[i],
186						 pos, count, level - 1,
187						 context, index);
188			if (rc == 0)
189				return 0;
190			i++;
191		}
192	} else {
193		struct sidtab_node_leaf *node = entry.ptr_leaf;
194
195		i = 0;
196		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
197			if (context_cmp(&node->entries[i].context, context)) {
198				*index = *pos;
199				return 0;
200			}
201			(*pos)++;
202			i++;
203		}
204	}
205	return -ENOENT;
 
206}
207
208static void sidtab_rcache_update(struct sidtab *s, u32 index, u32 pos)
209{
210	while (pos > 0) {
211		WRITE_ONCE(s->rcache[pos], READ_ONCE(s->rcache[pos - 1]));
212		--pos;
 
 
213	}
214	WRITE_ONCE(s->rcache[0], index);
215}
216
217static void sidtab_rcache_push(struct sidtab *s, u32 index)
 
218{
219	sidtab_rcache_update(s, index, SIDTAB_RCACHE_SIZE - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
220}
221
222static int sidtab_rcache_search(struct sidtab *s, struct context *context,
223				u32 *index)
224{
225	u32 i;
226
227	for (i = 0; i < SIDTAB_RCACHE_SIZE; i++) {
228		u32 v = READ_ONCE(s->rcache[i]);
229
230		if (v >= SIDTAB_MAX)
231			continue;
232
233		if (context_cmp(sidtab_do_lookup(s, v, 0), context)) {
234			sidtab_rcache_update(s, v, i);
235			*index = v;
236			return 0;
 
 
 
237		}
238	}
239	return -ENOENT;
240}
241
242static int sidtab_reverse_lookup(struct sidtab *s, struct context *context,
243				 u32 *index)
 
244{
 
 
245	unsigned long flags;
246	u32 count, count_locked, level, pos;
247	struct sidtab_convert_params *convert;
248	struct context *dst, *dst_convert;
249	int rc;
250
251	rc = sidtab_rcache_search(s, context, index);
252	if (rc == 0)
253		return 0;
254
255	/* read entries only after reading count */
256	count = smp_load_acquire(&s->count);
257	level = sidtab_level_from_count(count);
258
259	pos = 0;
260	rc = sidtab_find_context(s->roots[level], &pos, count, level,
261				 context, index);
262	if (rc == 0) {
263		sidtab_rcache_push(s, *index);
264		return 0;
265	}
266
267	/* lock-free search failed: lock, re-search, and insert if not found */
268	spin_lock_irqsave(&s->lock, flags);
269
270	convert = s->convert;
271	count_locked = s->count;
272	level = sidtab_level_from_count(count_locked);
273
274	/* if count has changed before we acquired the lock, then catch up */
275	while (count < count_locked) {
276		if (context_cmp(sidtab_do_lookup(s, count, 0), context)) {
277			sidtab_rcache_push(s, count);
278			*index = count;
279			rc = 0;
280			goto out_unlock;
281		}
282		++count;
 
 
 
 
 
 
 
 
 
 
 
283	}
284
285	/* bail out if we already reached max entries */
286	rc = -EOVERFLOW;
287	if (count >= SIDTAB_MAX)
288		goto out_unlock;
289
290	/* insert context into new entry */
291	rc = -ENOMEM;
292	dst = sidtab_do_lookup(s, count, 1);
293	if (!dst)
294		goto out_unlock;
295
296	rc = context_cpy(dst, context);
297	if (rc)
298		goto out_unlock;
299
300	/*
301	 * if we are building a new sidtab, we need to convert the context
302	 * and insert it there as well
303	 */
304	if (convert) {
305		rc = -ENOMEM;
306		dst_convert = sidtab_do_lookup(convert->target, count, 1);
307		if (!dst_convert) {
308			context_destroy(dst);
309			goto out_unlock;
310		}
311
312		rc = convert->func(context, dst_convert, convert->args);
313		if (rc) {
314			context_destroy(dst);
315			goto out_unlock;
316		}
317
318		/* at this point we know the insert won't fail */
319		convert->target->count = count + 1;
320	}
321
322	if (context->len)
323		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
324			context->str);
325
326	sidtab_rcache_push(s, count);
327	*index = count;
328
329	/* write entries before writing new count */
330	smp_store_release(&s->count, count + 1);
331
332	rc = 0;
333out_unlock:
334	spin_unlock_irqrestore(&s->lock, flags);
335	return rc;
336}
337
338int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
339{
340	int rc;
341	u32 i;
342
343	for (i = 0; i < SECINITSID_NUM; i++) {
344		struct sidtab_isid_entry *entry = &s->isids[i];
 
 
 
 
 
 
 
 
 
345
346		if (entry->set && context_cmp(context, &entry->context)) {
347			*sid = i + 1;
348			return 0;
349		}
350	}
351
352	rc = sidtab_reverse_lookup(s, context, sid);
353	if (rc)
354		return rc;
355	*sid += SECINITSID_NUM + 1;
356	return 0;
357}
358
359static int sidtab_convert_tree(union sidtab_entry_inner *edst,
360			       union sidtab_entry_inner *esrc,
361			       u32 *pos, u32 count, u32 level,
362			       struct sidtab_convert_params *convert)
363{
364	int rc;
365	u32 i;
366
367	if (level != 0) {
368		if (!edst->ptr_inner) {
369			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
370						  GFP_KERNEL);
371			if (!edst->ptr_inner)
372				return -ENOMEM;
373		}
374		i = 0;
375		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
376			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
377						 &esrc->ptr_inner->entries[i],
378						 pos, count, level - 1,
379						 convert);
380			if (rc)
381				return rc;
382			i++;
383		}
384	} else {
385		if (!edst->ptr_leaf) {
386			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
387						 GFP_KERNEL);
388			if (!edst->ptr_leaf)
389				return -ENOMEM;
390		}
391		i = 0;
392		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
393			rc = convert->func(&esrc->ptr_leaf->entries[i].context,
394					   &edst->ptr_leaf->entries[i].context,
395					   convert->args);
396			if (rc)
397				return rc;
398			(*pos)++;
399			i++;
400		}
401		cond_resched();
402	}
403	return 0;
404}
405
406int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
407{
408	unsigned long flags;
409	u32 count, level, pos;
410	int rc;
411
412	spin_lock_irqsave(&s->lock, flags);
 
413
414	/* concurrent policy loads are not allowed */
415	if (s->convert) {
416		spin_unlock_irqrestore(&s->lock, flags);
417		return -EBUSY;
418	}
419
420	count = s->count;
421	level = sidtab_level_from_count(count);
422
423	/* allocate last leaf in the new sidtab (to avoid race with
424	 * live convert)
425	 */
426	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
427	if (rc) {
428		spin_unlock_irqrestore(&s->lock, flags);
429		return rc;
430	}
431
432	/* set count in case no new entries are added during conversion */
433	params->target->count = count;
434
435	/* enable live convert of new entries */
436	s->convert = params;
437
438	/* we can safely do the rest of the conversion outside the lock */
439	spin_unlock_irqrestore(&s->lock, flags);
440
441	pr_info("SELinux:  Converting %u SID table entries...\n", count);
442
443	/* convert all entries not covered by live convert */
444	pos = 0;
445	rc = sidtab_convert_tree(&params->target->roots[level],
446				 &s->roots[level], &pos, count, level, params);
447	if (rc) {
448		/* we need to keep the old table - disable live convert */
449		spin_lock_irqsave(&s->lock, flags);
450		s->convert = NULL;
451		spin_unlock_irqrestore(&s->lock, flags);
452	}
453	return rc;
 
 
 
454}
455
456static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
457{
458	u32 i;
459
460	if (level != 0) {
461		struct sidtab_node_inner *node = entry.ptr_inner;
462
463		if (!node)
464			return;
465
466		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
467			sidtab_destroy_tree(node->entries[i], level - 1);
468		kfree(node);
469	} else {
470		struct sidtab_node_leaf *node = entry.ptr_leaf;
471
472		if (!node)
473			return;
474
475		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
476			context_destroy(&node->entries[i].context);
477		kfree(node);
478	}
 
 
 
 
479}
480
481void sidtab_destroy(struct sidtab *s)
482{
483	u32 i, level;
484
485	for (i = 0; i < SECINITSID_NUM; i++)
486		if (s->isids[i].set)
487			context_destroy(&s->isids[i].context);
488
489	level = SIDTAB_MAX_LEVEL;
490	while (level && !s->roots[level].ptr_inner)
491		--level;
492
493	sidtab_destroy_tree(s->roots[level], level);
494}