Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
 
   2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the BSD-type
   8 * license below:
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 *
  14 *      Redistributions of source code must retain the above copyright
  15 *      notice, this list of conditions and the following disclaimer.
  16 *
  17 *      Redistributions in binary form must reproduce the above
  18 *      copyright notice, this list of conditions and the following
  19 *      disclaimer in the documentation and/or other materials provided
  20 *      with the distribution.
  21 *
  22 *      Neither the name of the Network Appliance, Inc. nor the names of
  23 *      its contributors may be used to endorse or promote products
  24 *      derived from this software without specific prior written
  25 *      permission.
  26 *
  27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38 */
  39
  40/*
  41 * rpc_rdma.c
  42 *
  43 * This file contains the guts of the RPC RDMA protocol, and
  44 * does marshaling/unmarshaling, etc. It is also where interfacing
  45 * to the Linux RPC framework lives.
  46 */
  47
  48#include "xprt_rdma.h"
  49
  50#include <linux/highmem.h>
  51
 
 
 
 
 
  52#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  53# define RPCDBG_FACILITY	RPCDBG_TRANS
  54#endif
  55
  56enum rpcrdma_chunktype {
  57	rpcrdma_noch = 0,
  58	rpcrdma_readch,
  59	rpcrdma_areadch,
  60	rpcrdma_writech,
  61	rpcrdma_replych
  62};
 
 
 
 
  63
  64#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  65static const char transfertypes[][12] = {
  66	"pure inline",	/* no chunks */
  67	" read chunk",	/* some argument via rdma read */
  68	"*read chunk",	/* entire request via rdma read */
  69	"write chunk",	/* some result via rdma write */
  70	"reply chunk"	/* entire reply via rdma write */
  71};
  72#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74/* The client can send a request inline as long as the RPCRDMA header
  75 * plus the RPC call fit under the transport's inline limit. If the
  76 * combined call message size exceeds that limit, the client must use
  77 * the read chunk list for this operation.
 
 
 
  78 */
  79static bool rpcrdma_args_inline(struct rpc_rqst *rqst)
 
  80{
  81	unsigned int callsize = RPCRDMA_HDRLEN_MIN + rqst->rq_snd_buf.len;
 
  82
  83	return callsize <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84}
  85
  86/* The client can't know how large the actual reply will be. Thus it
  87 * plans for the largest possible reply for that particular ULP
  88 * operation. If the maximum combined reply message size exceeds that
  89 * limit, the client must provide a write list or a reply chunk for
  90 * this request.
  91 */
  92static bool rpcrdma_results_inline(struct rpc_rqst *rqst)
 
  93{
  94	unsigned int repsize = RPCRDMA_HDRLEN_MIN + rqst->rq_rcv_buf.buflen;
  95
  96	return repsize <= RPCRDMA_INLINE_READ_THRESHOLD(rqst);
  97}
  98
  99static int
 100rpcrdma_tail_pullup(struct xdr_buf *buf)
 
 
 
 
 
 101{
 102	size_t tlen = buf->tail[0].iov_len;
 103	size_t skip = tlen & 3;
 104
 105	/* Do not include the tail if it is only an XDR pad */
 106	if (tlen < 4)
 107		return 0;
 108
 109	/* xdr_write_pages() adds a pad at the beginning of the tail
 110	 * if the content in "buf->pages" is unaligned. Force the
 111	 * tail's actual content to land at the next XDR position
 112	 * after the head instead.
 113	 */
 114	if (skip) {
 115		unsigned char *src, *dst;
 116		unsigned int count;
 117
 118		src = buf->tail[0].iov_base;
 119		dst = buf->head[0].iov_base;
 120		dst += buf->head[0].iov_len;
 121
 122		src += skip;
 123		tlen -= skip;
 124
 125		dprintk("RPC:       %s: skip=%zu, memmove(%p, %p, %zu)\n",
 126			__func__, skip, dst, src, tlen);
 127
 128		for (count = tlen; count; count--)
 129			*dst++ = *src++;
 130	}
 131
 132	return tlen;
 133}
 134
 135/* Split "vec" on page boundaries into segments. FMR registers pages,
 136 * not a byte range. Other modes coalesce these segments into a single
 137 * MR when they can.
 
 
 
 138 */
 139static int
 140rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
 141		     int n, int nsegs)
 142{
 143	size_t page_offset;
 144	u32 remaining;
 145	char *base;
 146
 147	base = vec->iov_base;
 148	page_offset = offset_in_page(base);
 149	remaining = vec->iov_len;
 150	while (remaining && n < nsegs) {
 151		seg[n].mr_page = NULL;
 152		seg[n].mr_offset = base;
 153		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
 154		remaining -= seg[n].mr_len;
 155		base += seg[n].mr_len;
 156		++n;
 
 157		page_offset = 0;
 158	}
 159	return n;
 160}
 161
 162/*
 163 * Chunk assembly from upper layer xdr_buf.
 164 *
 165 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
 166 * elements. Segments are then coalesced when registered, if possible
 167 * within the selected memreg mode.
 168 *
 169 * Returns positive number of segments converted, or a negative errno.
 170 */
 171
 172static int
 173rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
 174	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
 
 175{
 176	int len, n = 0, p;
 177	int page_base;
 178	struct page **ppages;
 179
 180	if (pos == 0) {
 181		n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n, nsegs);
 182		if (n == nsegs)
 183			return -EIO;
 184	}
 185
 186	len = xdrbuf->page_len;
 187	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
 188	page_base = xdrbuf->page_base & ~PAGE_MASK;
 189	p = 0;
 190	while (len && n < nsegs) {
 191		if (!ppages[p]) {
 192			/* alloc the pagelist for receiving buffer */
 193			ppages[p] = alloc_page(GFP_ATOMIC);
 194			if (!ppages[p])
 195				return -ENOMEM;
 
 
 196		}
 197		seg[n].mr_page = ppages[p];
 198		seg[n].mr_offset = (void *)(unsigned long) page_base;
 199		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
 200		if (seg[n].mr_len > PAGE_SIZE)
 201			return -EIO;
 202		len -= seg[n].mr_len;
 203		++n;
 204		++p;
 205		page_base = 0;	/* page offset only applies to first page */
 206	}
 207
 208	/* Message overflows the seg array */
 209	if (len && n == nsegs)
 210		return -EIO;
 
 
 211
 212	/* When encoding the read list, the tail is always sent inline */
 213	if (type == rpcrdma_readch)
 214		return n;
 
 
 
 
 215
 216	if (xdrbuf->tail[0].iov_len) {
 217		/* the rpcrdma protocol allows us to omit any trailing
 218		 * xdr pad bytes, saving the server an RDMA operation. */
 219		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
 220			return n;
 221		n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n, nsegs);
 222		if (n == nsegs)
 223			return -EIO;
 224	}
 225
 
 
 
 226	return n;
 227}
 228
 229/*
 230 * Create read/write chunk lists, and reply chunks, for RDMA
 231 *
 232 *   Assume check against THRESHOLD has been done, and chunks are required.
 233 *   Assume only encoding one list entry for read|write chunks. The NFSv3
 234 *     protocol is simple enough to allow this as it only has a single "bulk
 235 *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
 236 *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
 237 *
 238 * When used for a single reply chunk (which is a special write
 239 * chunk used for the entire reply, rather than just the data), it
 240 * is used primarily for READDIR and READLINK which would otherwise
 241 * be severely size-limited by a small rdma inline read max. The server
 242 * response will come back as an RDMA Write, followed by a message
 243 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
 244 * chunks do not provide data alignment, however they do not require
 245 * "fixup" (moving the response to the upper layer buffer) either.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246 *
 247 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 248 *
 249 *  Read chunklist (a linked list):
 250 *   N elements, position P (same P for all chunks of same arg!):
 251 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 252 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253 *  Write chunklist (a list of (one) counted array):
 254 *   N elements:
 255 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 256 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257 *  Reply chunk (a counted array):
 258 *   N elements:
 259 *    1 - N - HLOO - HLOO - ... - HLOO
 260 *
 261 * Returns positive RPC/RDMA header size, or negative errno.
 
 262 */
 263
 264static ssize_t
 265rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
 266		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
 267{
 268	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 269	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
 270	int n, nsegs, nchunks = 0;
 271	unsigned int pos;
 272	struct rpcrdma_mr_seg *seg = req->rl_segments;
 273	struct rpcrdma_read_chunk *cur_rchunk = NULL;
 274	struct rpcrdma_write_array *warray = NULL;
 275	struct rpcrdma_write_chunk *cur_wchunk = NULL;
 276	__be32 *iptr = headerp->rm_body.rm_chunks;
 277	int (*map)(struct rpcrdma_xprt *, struct rpcrdma_mr_seg *, int, bool);
 278
 279	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
 280		/* a read chunk - server will RDMA Read our memory */
 281		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
 282	} else {
 283		/* a write or reply chunk - server will RDMA Write our memory */
 284		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
 285		if (type == rpcrdma_replych)
 286			*iptr++ = xdr_zero;	/* a NULL write chunk list */
 287		warray = (struct rpcrdma_write_array *) iptr;
 288		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
 289	}
 290
 291	if (type == rpcrdma_replych || type == rpcrdma_areadch)
 292		pos = 0;
 293	else
 294		pos = target->head[0].iov_len;
 295
 296	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
 
 297	if (nsegs < 0)
 298		return nsegs;
 299
 300	map = r_xprt->rx_ia.ri_ops->ro_map;
 
 
 
 
 
 
 
 301	do {
 302		n = map(r_xprt, seg, nsegs, cur_wchunk != NULL);
 303		if (n <= 0)
 304			goto out;
 305		if (cur_rchunk) {	/* read */
 306			cur_rchunk->rc_discrim = xdr_one;
 307			/* all read chunks have the same "position" */
 308			cur_rchunk->rc_position = cpu_to_be32(pos);
 309			cur_rchunk->rc_target.rs_handle =
 310						cpu_to_be32(seg->mr_rkey);
 311			cur_rchunk->rc_target.rs_length =
 312						cpu_to_be32(seg->mr_len);
 313			xdr_encode_hyper(
 314					(__be32 *)&cur_rchunk->rc_target.rs_offset,
 315					seg->mr_base);
 316			dprintk("RPC:       %s: read chunk "
 317				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
 318				seg->mr_len, (unsigned long long)seg->mr_base,
 319				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
 320			cur_rchunk++;
 321			r_xprt->rx_stats.read_chunk_count++;
 322		} else {		/* write/reply */
 323			cur_wchunk->wc_target.rs_handle =
 324						cpu_to_be32(seg->mr_rkey);
 325			cur_wchunk->wc_target.rs_length =
 326						cpu_to_be32(seg->mr_len);
 327			xdr_encode_hyper(
 328					(__be32 *)&cur_wchunk->wc_target.rs_offset,
 329					seg->mr_base);
 330			dprintk("RPC:       %s: %s chunk "
 331				"elem %d@0x%llx:0x%x (%s)\n", __func__,
 332				(type == rpcrdma_replych) ? "reply" : "write",
 333				seg->mr_len, (unsigned long long)seg->mr_base,
 334				seg->mr_rkey, n < nsegs ? "more" : "last");
 335			cur_wchunk++;
 336			if (type == rpcrdma_replych)
 337				r_xprt->rx_stats.reply_chunk_count++;
 338			else
 339				r_xprt->rx_stats.write_chunk_count++;
 340			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
 341		}
 342		nchunks++;
 343		seg   += n;
 344		nsegs -= n;
 345	} while (nsegs);
 346
 347	/* success. all failures return above */
 348	req->rl_nchunks = nchunks;
 349
 350	/*
 351	 * finish off header. If write, marshal discrim and nchunks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352	 */
 353	if (cur_rchunk) {
 354		iptr = (__be32 *) cur_rchunk;
 355		*iptr++ = xdr_zero;	/* finish the read chunk list */
 356		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
 357		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
 358	} else {
 359		warray->wc_discrim = xdr_one;
 360		warray->wc_nchunks = cpu_to_be32(nchunks);
 361		iptr = (__be32 *) cur_wchunk;
 362		if (type == rpcrdma_writech) {
 363			*iptr++ = xdr_zero; /* finish the write chunk list */
 364			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365		}
 366	}
 367
 368	/*
 369	 * Return header size.
 
 
 370	 */
 371	return (unsigned char *)iptr - (unsigned char *)headerp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373out:
 374	for (pos = 0; nchunks--;)
 375		pos += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
 376						      &req->rl_segments[pos]);
 377	return n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378}
 379
 380/*
 381 * Copy write data inline.
 382 * This function is used for "small" requests. Data which is passed
 383 * to RPC via iovecs (or page list) is copied directly into the
 384 * pre-registered memory buffer for this request. For small amounts
 385 * of data, this is efficient. The cutoff value is tunable.
 
 
 
 386 */
 387static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
 
 
 
 388{
 389	int i, npages, curlen;
 390	int copy_len;
 391	unsigned char *srcp, *destp;
 392	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
 393	int page_base;
 394	struct page **ppages;
 395
 396	destp = rqst->rq_svec[0].iov_base;
 397	curlen = rqst->rq_svec[0].iov_len;
 398	destp += curlen;
 399
 400	dprintk("RPC:       %s: destp 0x%p len %d hdrlen %d\n",
 401		__func__, destp, rqst->rq_slen, curlen);
 402
 403	copy_len = rqst->rq_snd_buf.page_len;
 404
 405	if (rqst->rq_snd_buf.tail[0].iov_len) {
 406		curlen = rqst->rq_snd_buf.tail[0].iov_len;
 407		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
 408			memmove(destp + copy_len,
 409				rqst->rq_snd_buf.tail[0].iov_base, curlen);
 410			r_xprt->rx_stats.pullup_copy_count += curlen;
 411		}
 412		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
 413			__func__, destp + copy_len, curlen);
 414		rqst->rq_svec[0].iov_len += curlen;
 415	}
 416	r_xprt->rx_stats.pullup_copy_count += copy_len;
 417
 418	page_base = rqst->rq_snd_buf.page_base;
 419	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
 420	page_base &= ~PAGE_MASK;
 421	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
 422	for (i = 0; copy_len && i < npages; i++) {
 423		curlen = PAGE_SIZE - page_base;
 424		if (curlen > copy_len)
 425			curlen = copy_len;
 426		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
 427			__func__, i, destp, copy_len, curlen);
 428		srcp = kmap_atomic(ppages[i]);
 429		memcpy(destp, srcp+page_base, curlen);
 430		kunmap_atomic(srcp);
 431		rqst->rq_svec[0].iov_len += curlen;
 432		destp += curlen;
 433		copy_len -= curlen;
 434		page_base = 0;
 435	}
 436	/* header now contains entire send message */
 437}
 438
 439/*
 440 * Marshal a request: the primary job of this routine is to choose
 441 * the transfer modes. See comments below.
 
 442 *
 443 * Uses multiple RDMA IOVs for a request:
 444 *  [0] -- RPC RDMA header, which uses memory from the *start* of the
 445 *         preregistered buffer that already holds the RPC data in
 446 *         its middle.
 447 *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
 448 *  [2] -- optional padding.
 449 *  [3] -- if padded, header only in [1] and data here.
 450 *
 451 * Returns zero on success, otherwise a negative errno.
 
 
 
 
 
 
 452 */
 453
 454int
 455rpcrdma_marshal_req(struct rpc_rqst *rqst)
 456{
 457	struct rpc_xprt *xprt = rqst->rq_xprt;
 458	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 459	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 460	char *base;
 461	size_t rpclen;
 462	ssize_t hdrlen;
 463	enum rpcrdma_chunktype rtype, wtype;
 464	struct rpcrdma_msg *headerp;
 465
 466#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 467	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
 468		return rpcrdma_bc_marshal_reply(rqst);
 469#endif
 470
 471	/*
 472	 * rpclen gets amount of data in first buffer, which is the
 473	 * pre-registered buffer.
 
 
 
 
 
 
 
 
 
 
 474	 */
 475	base = rqst->rq_svec[0].iov_base;
 476	rpclen = rqst->rq_svec[0].iov_len;
 477
 478	headerp = rdmab_to_msg(req->rl_rdmabuf);
 479	/* don't byte-swap XID, it's already done in request */
 480	headerp->rm_xid = rqst->rq_xid;
 481	headerp->rm_vers = rpcrdma_version;
 482	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
 483	headerp->rm_type = rdma_msg;
 484
 485	/*
 486	 * Chunks needed for results?
 487	 *
 488	 * o Read ops return data as write chunk(s), header as inline.
 489	 * o If the expected result is under the inline threshold, all ops
 490	 *   return as inline.
 
 
 491	 * o Large non-read ops return as a single reply chunk.
 492	 */
 493	if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
 494		wtype = rpcrdma_writech;
 495	else if (rpcrdma_results_inline(rqst))
 496		wtype = rpcrdma_noch;
 
 
 
 497	else
 498		wtype = rpcrdma_replych;
 499
 500	/*
 501	 * Chunks needed for arguments?
 502	 *
 503	 * o If the total request is under the inline threshold, all ops
 504	 *   are sent as inline.
 505	 * o Large write ops transmit data as read chunk(s), header as
 506	 *   inline.
 507	 * o Large non-write ops are sent with the entire message as a
 508	 *   single read chunk (protocol 0-position special case).
 509	 *
 510	 * This assumes that the upper layer does not present a request
 511	 * that both has a data payload, and whose non-data arguments
 512	 * by themselves are larger than the inline threshold.
 513	 */
 514	if (rpcrdma_args_inline(rqst)) {
 
 515		rtype = rpcrdma_noch;
 516	} else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
 
 517		rtype = rpcrdma_readch;
 518	} else {
 519		r_xprt->rx_stats.nomsg_call_count++;
 520		headerp->rm_type = htonl(RDMA_NOMSG);
 521		rtype = rpcrdma_areadch;
 522		rpclen = 0;
 523	}
 524
 525	/* The following simplification is not true forever */
 526	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
 527		wtype = rpcrdma_noch;
 528	if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
 529		dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
 530			__func__);
 531		return -EIO;
 532	}
 533
 534	hdrlen = RPCRDMA_HDRLEN_MIN;
 535
 536	/*
 537	 * Pull up any extra send data into the preregistered buffer.
 538	 * When padding is in use and applies to the transfer, insert
 539	 * it and change the message type.
 540	 */
 541	if (rtype == rpcrdma_noch) {
 542
 543		rpcrdma_inline_pullup(rqst);
 544
 545		headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
 546		headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
 547		headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
 548		/* new length after pullup */
 549		rpclen = rqst->rq_svec[0].iov_len;
 550	} else if (rtype == rpcrdma_readch)
 551		rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
 552	if (rtype != rpcrdma_noch) {
 553		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
 554					       headerp, rtype);
 555		wtype = rtype;	/* simplify dprintk */
 556
 557	} else if (wtype != rpcrdma_noch) {
 558		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
 559					       headerp, wtype);
 560	}
 561	if (hdrlen < 0)
 562		return hdrlen;
 563
 564	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd"
 565		" headerp 0x%p base 0x%p lkey 0x%x\n",
 566		__func__, transfertypes[wtype], hdrlen, rpclen,
 567		headerp, base, rdmab_lkey(req->rl_rdmabuf));
 568
 569	/*
 570	 * initialize send_iov's - normally only two: rdma chunk header and
 571	 * single preregistered RPC header buffer, but if padding is present,
 572	 * then use a preregistered (and zeroed) pad buffer between the RPC
 573	 * header and any write data. In all non-rdma cases, any following
 574	 * data has been copied into the RPC header buffer.
 575	 */
 576	req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
 577	req->rl_send_iov[0].length = hdrlen;
 578	req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
 579
 580	req->rl_niovs = 1;
 581	if (rtype == rpcrdma_areadch)
 582		return 0;
 583
 584	req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
 585	req->rl_send_iov[1].length = rpclen;
 586	req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587
 588	req->rl_niovs = 2;
 589	return 0;
 590}
 591
 592/*
 593 * Chase down a received write or reply chunklist to get length
 594 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
 595 */
 596static int
 597rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
 598{
 599	unsigned int i, total_len;
 600	struct rpcrdma_write_chunk *cur_wchunk;
 601	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
 602
 603	i = be32_to_cpu(**iptrp);
 604	if (i > max)
 605		return -1;
 606	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
 607	total_len = 0;
 608	while (i--) {
 609		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
 610		ifdebug(FACILITY) {
 611			u64 off;
 612			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
 613			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
 614				__func__,
 615				be32_to_cpu(seg->rs_length),
 616				(unsigned long long)off,
 617				be32_to_cpu(seg->rs_handle));
 618		}
 619		total_len += be32_to_cpu(seg->rs_length);
 620		++cur_wchunk;
 621	}
 622	/* check and adjust for properly terminated write chunk */
 623	if (wrchunk) {
 624		__be32 *w = (__be32 *) cur_wchunk;
 625		if (*w++ != xdr_zero)
 626			return -1;
 627		cur_wchunk = (struct rpcrdma_write_chunk *) w;
 628	}
 629	if ((char *)cur_wchunk > base + rep->rr_len)
 630		return -1;
 631
 632	*iptrp = (__be32 *) cur_wchunk;
 633	return total_len;
 634}
 635
 636/*
 637 * Scatter inline received data back into provided iov's.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638 */
 639static void
 640rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
 641{
 642	int i, npages, curlen, olen;
 
 643	char *destp;
 644	struct page **ppages;
 645	int page_base;
 646
 
 
 
 
 
 
 
 
 
 647	curlen = rqst->rq_rcv_buf.head[0].iov_len;
 648	if (curlen > copy_len) {	/* write chunk header fixup */
 649		curlen = copy_len;
 650		rqst->rq_rcv_buf.head[0].iov_len = curlen;
 651	}
 652
 653	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
 654		__func__, srcp, copy_len, curlen);
 655
 656	/* Shift pointer for first receive segment only */
 657	rqst->rq_rcv_buf.head[0].iov_base = srcp;
 658	srcp += curlen;
 659	copy_len -= curlen;
 660
 661	olen = copy_len;
 662	i = 0;
 663	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
 664	page_base = rqst->rq_rcv_buf.page_base;
 665	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
 666	page_base &= ~PAGE_MASK;
 667
 668	if (copy_len && rqst->rq_rcv_buf.page_len) {
 669		npages = PAGE_ALIGN(page_base +
 670			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
 671		for (; i < npages; i++) {
 
 
 
 
 672			curlen = PAGE_SIZE - page_base;
 673			if (curlen > copy_len)
 674				curlen = copy_len;
 675			dprintk("RPC:       %s: page %d"
 676				" srcp 0x%p len %d curlen %d\n",
 677				__func__, i, srcp, copy_len, curlen);
 678			destp = kmap_atomic(ppages[i]);
 679			memcpy(destp + page_base, srcp, curlen);
 680			flush_dcache_page(ppages[i]);
 681			kunmap_atomic(destp);
 682			srcp += curlen;
 683			copy_len -= curlen;
 684			if (copy_len == 0)
 
 
 685				break;
 686			page_base = 0;
 687		}
 688	}
 689
 690	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
 691		curlen = copy_len;
 692		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
 693			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
 694		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
 695			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
 696		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
 697			__func__, srcp, copy_len, curlen);
 698		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
 699		copy_len -= curlen; ++i;
 700	} else
 701		rqst->rq_rcv_buf.tail[0].iov_len = 0;
 702
 703	if (pad) {
 704		/* implicit padding on terminal chunk */
 705		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
 706		while (pad--)
 707			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
 708	}
 709
 710	if (copy_len)
 711		dprintk("RPC:       %s: %d bytes in"
 712			" %d extra segments (%d lost)\n",
 713			__func__, olen, i, copy_len);
 714
 715	/* TBD avoid a warning from call_decode() */
 716	rqst->rq_private_buf = rqst->rq_rcv_buf;
 717}
 718
 719void
 720rpcrdma_connect_worker(struct work_struct *work)
 721{
 722	struct rpcrdma_ep *ep =
 723		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
 724	struct rpcrdma_xprt *r_xprt =
 725		container_of(ep, struct rpcrdma_xprt, rx_ep);
 726	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 727
 728	spin_lock_bh(&xprt->transport_lock);
 729	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
 730		++xprt->connect_cookie;
 731	if (ep->rep_connected > 0) {
 732		if (!xprt_test_and_set_connected(xprt))
 733			xprt_wake_pending_tasks(xprt, 0);
 734	} else {
 735		if (xprt_test_and_clear_connected(xprt))
 736			xprt_wake_pending_tasks(xprt, -ENOTCONN);
 737	}
 738	spin_unlock_bh(&xprt->transport_lock);
 
 739}
 740
 741#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 742/* By convention, backchannel calls arrive via rdma_msg type
 743 * messages, and never populate the chunk lists. This makes
 744 * the RPC/RDMA header small and fixed in size, so it is
 745 * straightforward to check the RPC header's direction field.
 746 */
 747static bool
 748rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
 
 749{
 750	__be32 *p = (__be32 *)headerp;
 
 751
 752	if (headerp->rm_type != rdma_msg)
 753		return false;
 754	if (headerp->rm_body.rm_chunks[0] != xdr_zero)
 
 
 
 
 
 755		return false;
 756	if (headerp->rm_body.rm_chunks[1] != xdr_zero)
 757		return false;
 758	if (headerp->rm_body.rm_chunks[2] != xdr_zero)
 759		return false;
 760
 761	/* sanity */
 762	if (p[7] != headerp->rm_xid)
 763		return false;
 764	/* call direction */
 765	if (p[8] != cpu_to_be32(RPC_CALL))
 766		return false;
 767
 
 
 
 
 
 
 
 
 
 
 
 
 768	return true;
 769}
 
 
 
 
 770#endif	/* CONFIG_SUNRPC_BACKCHANNEL */
 771
 772/*
 773 * This function is called when an async event is posted to
 774 * the connection which changes the connection state. All it
 775 * does at this point is mark the connection up/down, the rpc
 776 * timers do the rest.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777 */
 778void
 779rpcrdma_conn_func(struct rpcrdma_ep *ep)
 780{
 781	schedule_delayed_work(&ep->rep_connect_worker, 0);
 
 
 
 
 
 
 
 782}
 783
 784/* Process received RPC/RDMA messages.
 785 *
 786 * Errors must result in the RPC task either being awakened, or
 787 * allowed to timeout, to discover the errors at that time.
 788 */
 789void
 790rpcrdma_reply_handler(struct rpcrdma_rep *rep)
 791{
 792	struct rpcrdma_msg *headerp;
 793	struct rpcrdma_req *req;
 794	struct rpc_rqst *rqst;
 795	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
 796	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
 797	__be32 *iptr;
 798	int rdmalen, status, rmerr;
 799	unsigned long cwnd;
 800
 801	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
 802
 803	if (rep->rr_len == RPCRDMA_BAD_LEN)
 804		goto out_badstatus;
 805	if (rep->rr_len < RPCRDMA_HDRLEN_ERR)
 806		goto out_shortreply;
 807
 808	headerp = rdmab_to_msg(rep->rr_rdmabuf);
 809#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 810	if (rpcrdma_is_bcall(headerp))
 811		goto out_bcall;
 812#endif
 
 
 
 
 
 813
 814	/* Match incoming rpcrdma_rep to an rpcrdma_req to
 815	 * get context for handling any incoming chunks.
 816	 */
 817	spin_lock_bh(&xprt->transport_lock);
 818	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
 819	if (!rqst)
 820		goto out_nomatch;
 821
 822	req = rpcr_to_rdmar(rqst);
 823	if (req->rl_reply)
 824		goto out_duplicate;
 825
 826	/* Sanity checking has passed. We are now committed
 827	 * to complete this transaction.
 828	 */
 829	list_del_init(&rqst->rq_list);
 830	spin_unlock_bh(&xprt->transport_lock);
 831	dprintk("RPC:       %s: reply %p completes request %p (xid 0x%08x)\n",
 832		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
 833
 834	/* from here on, the reply is no longer an orphan */
 835	req->rl_reply = rep;
 836	xprt->reestablish_timeout = 0;
 
 
 
 837
 838	if (headerp->rm_vers != rpcrdma_version)
 839		goto out_badversion;
 
 
 
 
 
 840
 841	/* check for expected message types */
 842	/* The order of some of these tests is important. */
 843	switch (headerp->rm_type) {
 844	case rdma_msg:
 845		/* never expect read chunks */
 846		/* never expect reply chunks (two ways to check) */
 847		/* never expect write chunks without having offered RDMA */
 848		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 849		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
 850		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
 851		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
 852		     req->rl_nchunks == 0))
 853			goto badheader;
 854		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
 855			/* count any expected write chunks in read reply */
 856			/* start at write chunk array count */
 857			iptr = &headerp->rm_body.rm_chunks[2];
 858			rdmalen = rpcrdma_count_chunks(rep,
 859						req->rl_nchunks, 1, &iptr);
 860			/* check for validity, and no reply chunk after */
 861			if (rdmalen < 0 || *iptr++ != xdr_zero)
 862				goto badheader;
 863			rep->rr_len -=
 864			    ((unsigned char *)iptr - (unsigned char *)headerp);
 865			status = rep->rr_len + rdmalen;
 866			r_xprt->rx_stats.total_rdma_reply += rdmalen;
 867			/* special case - last chunk may omit padding */
 868			if (rdmalen &= 3) {
 869				rdmalen = 4 - rdmalen;
 870				status += rdmalen;
 871			}
 872		} else {
 873			/* else ordinary inline */
 874			rdmalen = 0;
 875			iptr = (__be32 *)((unsigned char *)headerp +
 876							RPCRDMA_HDRLEN_MIN);
 877			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
 878			status = rep->rr_len;
 879		}
 880		/* Fix up the rpc results for upper layer */
 881		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883
 
 
 
 
 884	case rdma_nomsg:
 885		/* never expect read or write chunks, always reply chunks */
 886		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 887		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
 888		    headerp->rm_body.rm_chunks[2] != xdr_one ||
 889		    req->rl_nchunks == 0)
 890			goto badheader;
 891		iptr = (__be32 *)((unsigned char *)headerp +
 892							RPCRDMA_HDRLEN_MIN);
 893		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
 894		if (rdmalen < 0)
 895			goto badheader;
 896		r_xprt->rx_stats.total_rdma_reply += rdmalen;
 897		/* Reply chunk buffer already is the reply vector - no fixup. */
 898		status = rdmalen;
 899		break;
 900
 901	case rdma_error:
 902		goto out_rdmaerr;
 903
 904badheader:
 905	default:
 906		dprintk("%s: invalid rpcrdma reply header (type %d):"
 907				" chunks[012] == %d %d %d"
 908				" expected chunks <= %d\n",
 909				__func__, be32_to_cpu(headerp->rm_type),
 910				headerp->rm_body.rm_chunks[0],
 911				headerp->rm_body.rm_chunks[1],
 912				headerp->rm_body.rm_chunks[2],
 913				req->rl_nchunks);
 914		status = -EIO;
 915		r_xprt->rx_stats.bad_reply_count++;
 916		break;
 917	}
 
 
 918
 919out:
 920	/* Invalidate and flush the data payloads before waking the
 921	 * waiting application. This guarantees the memory region is
 922	 * properly fenced from the server before the application
 923	 * accesses the data. It also ensures proper send flow
 924	 * control: waking the next RPC waits until this RPC has
 925	 * relinquished all its Send Queue entries.
 926	 */
 927	if (req->rl_nchunks)
 928		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
 929
 930	spin_lock_bh(&xprt->transport_lock);
 931	cwnd = xprt->cwnd;
 932	xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT;
 933	if (xprt->cwnd > cwnd)
 934		xprt_release_rqst_cong(rqst->rq_task);
 935
 936	xprt_complete_rqst(rqst->rq_task, status);
 937	spin_unlock_bh(&xprt->transport_lock);
 938	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
 939			__func__, xprt, rqst, status);
 940	return;
 941
 942out_badstatus:
 943	rpcrdma_recv_buffer_put(rep);
 944	if (r_xprt->rx_ep.rep_connected == 1) {
 945		r_xprt->rx_ep.rep_connected = -EIO;
 946		rpcrdma_conn_func(&r_xprt->rx_ep);
 947	}
 948	return;
 949
 950#if defined(CONFIG_SUNRPC_BACKCHANNEL)
 951out_bcall:
 952	rpcrdma_bc_receive_call(r_xprt, rep);
 953	return;
 954#endif
 955
 956/* If the incoming reply terminated a pending RPC, the next
 957 * RPC call will post a replacement receive buffer as it is
 958 * being marshaled.
 959 */
 960out_badversion:
 961	dprintk("RPC:       %s: invalid version %d\n",
 962		__func__, be32_to_cpu(headerp->rm_vers));
 963	status = -EIO;
 964	r_xprt->rx_stats.bad_reply_count++;
 965	goto out;
 
 966
 967out_rdmaerr:
 968	rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err);
 969	switch (rmerr) {
 970	case ERR_VERS:
 971		pr_err("%s: server reports header version error (%u-%u)\n",
 972		       __func__,
 973		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low),
 974		       be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high));
 975		break;
 976	case ERR_CHUNK:
 977		pr_err("%s: server reports header decoding error\n",
 978		       __func__);
 979		break;
 980	default:
 981		pr_err("%s: server reports unknown error %d\n",
 982		       __func__, rmerr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983	}
 984	status = -EREMOTEIO;
 985	r_xprt->rx_stats.bad_reply_count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	goto out;
 987
 988/* If no pending RPC transaction was matched, post a replacement
 989 * receive buffer before returning.
 990 */
 991out_shortreply:
 992	dprintk("RPC:       %s: short/invalid reply\n", __func__);
 993	goto repost;
 994
 995out_nomatch:
 996	spin_unlock_bh(&xprt->transport_lock);
 997	dprintk("RPC:       %s: no match for incoming xid 0x%08x len %d\n",
 998		__func__, be32_to_cpu(headerp->rm_xid),
 999		rep->rr_len);
1000	goto repost;
1001
1002out_duplicate:
1003	spin_unlock_bh(&xprt->transport_lock);
1004	dprintk("RPC:       %s: "
1005		"duplicate reply %p to RPC request %p: xid 0x%08x\n",
1006		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
1007
1008repost:
1009	r_xprt->rx_stats.bad_reply_count++;
1010	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
1011		rpcrdma_recv_buffer_put(rep);
1012}
v5.4
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (c) 2014-2017 Oracle.  All rights reserved.
   4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the BSD-type
  10 * license below:
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 *
  16 *      Redistributions of source code must retain the above copyright
  17 *      notice, this list of conditions and the following disclaimer.
  18 *
  19 *      Redistributions in binary form must reproduce the above
  20 *      copyright notice, this list of conditions and the following
  21 *      disclaimer in the documentation and/or other materials provided
  22 *      with the distribution.
  23 *
  24 *      Neither the name of the Network Appliance, Inc. nor the names of
  25 *      its contributors may be used to endorse or promote products
  26 *      derived from this software without specific prior written
  27 *      permission.
  28 *
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  40 */
  41
  42/*
  43 * rpc_rdma.c
  44 *
  45 * This file contains the guts of the RPC RDMA protocol, and
  46 * does marshaling/unmarshaling, etc. It is also where interfacing
  47 * to the Linux RPC framework lives.
  48 */
  49
 
 
  50#include <linux/highmem.h>
  51
  52#include <linux/sunrpc/svc_rdma.h>
  53
  54#include "xprt_rdma.h"
  55#include <trace/events/rpcrdma.h>
  56
  57#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  58# define RPCDBG_FACILITY	RPCDBG_TRANS
  59#endif
  60
  61/* Returns size of largest RPC-over-RDMA header in a Call message
  62 *
  63 * The largest Call header contains a full-size Read list and a
  64 * minimal Reply chunk.
  65 */
  66static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
  67{
  68	unsigned int size;
  69
  70	/* Fixed header fields and list discriminators */
  71	size = RPCRDMA_HDRLEN_MIN;
  72
  73	/* Maximum Read list size */
  74	size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
  75
  76	/* Minimal Read chunk size */
  77	size += sizeof(__be32);	/* segment count */
  78	size += rpcrdma_segment_maxsz * sizeof(__be32);
  79	size += sizeof(__be32);	/* list discriminator */
  80
  81	dprintk("RPC:       %s: max call header size = %u\n",
  82		__func__, size);
  83	return size;
  84}
  85
  86/* Returns size of largest RPC-over-RDMA header in a Reply message
  87 *
  88 * There is only one Write list or one Reply chunk per Reply
  89 * message.  The larger list is the Write list.
  90 */
  91static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
  92{
  93	unsigned int size;
  94
  95	/* Fixed header fields and list discriminators */
  96	size = RPCRDMA_HDRLEN_MIN;
  97
  98	/* Maximum Write list size */
  99	size = sizeof(__be32);		/* segment count */
 100	size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
 101	size += sizeof(__be32);	/* list discriminator */
 102
 103	dprintk("RPC:       %s: max reply header size = %u\n",
 104		__func__, size);
 105	return size;
 106}
 107
 108/**
 109 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
 110 * @r_xprt: transport instance to initialize
 111 *
 112 * The max_inline fields contain the maximum size of an RPC message
 113 * so the marshaling code doesn't have to repeat this calculation
 114 * for every RPC.
 115 */
 116void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
 117{
 118	unsigned int maxsegs = r_xprt->rx_ia.ri_max_segs;
 119	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
 120
 121	ep->rep_max_inline_send =
 122		ep->rep_inline_send - rpcrdma_max_call_header_size(maxsegs);
 123	ep->rep_max_inline_recv =
 124		ep->rep_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
 125}
 126
 127/* The client can send a request inline as long as the RPCRDMA header
 128 * plus the RPC call fit under the transport's inline limit. If the
 129 * combined call message size exceeds that limit, the client must use
 130 * a Read chunk for this operation.
 131 *
 132 * A Read chunk is also required if sending the RPC call inline would
 133 * exceed this device's max_sge limit.
 134 */
 135static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
 136				struct rpc_rqst *rqst)
 137{
 138	struct xdr_buf *xdr = &rqst->rq_snd_buf;
 139	unsigned int count, remaining, offset;
 140
 141	if (xdr->len > r_xprt->rx_ep.rep_max_inline_send)
 142		return false;
 143
 144	if (xdr->page_len) {
 145		remaining = xdr->page_len;
 146		offset = offset_in_page(xdr->page_base);
 147		count = RPCRDMA_MIN_SEND_SGES;
 148		while (remaining) {
 149			remaining -= min_t(unsigned int,
 150					   PAGE_SIZE - offset, remaining);
 151			offset = 0;
 152			if (++count > r_xprt->rx_ia.ri_max_send_sges)
 153				return false;
 154		}
 155	}
 156
 157	return true;
 158}
 159
 160/* The client can't know how large the actual reply will be. Thus it
 161 * plans for the largest possible reply for that particular ULP
 162 * operation. If the maximum combined reply message size exceeds that
 163 * limit, the client must provide a write list or a reply chunk for
 164 * this request.
 165 */
 166static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
 167				   struct rpc_rqst *rqst)
 168{
 169	return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep.rep_max_inline_recv;
 
 
 170}
 171
 172/* The client is required to provide a Reply chunk if the maximum
 173 * size of the non-payload part of the RPC Reply is larger than
 174 * the inline threshold.
 175 */
 176static bool
 177rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
 178			  const struct rpc_rqst *rqst)
 179{
 180	const struct xdr_buf *buf = &rqst->rq_rcv_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181
 182	return (buf->head[0].iov_len + buf->tail[0].iov_len) <
 183		r_xprt->rx_ep.rep_max_inline_recv;
 
 
 
 
 
 
 
 
 
 184}
 185
 186/* Split @vec on page boundaries into SGEs. FMR registers pages, not
 187 * a byte range. Other modes coalesce these SGEs into a single MR
 188 * when they can.
 189 *
 190 * Returns pointer to next available SGE, and bumps the total number
 191 * of SGEs consumed.
 192 */
 193static struct rpcrdma_mr_seg *
 194rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
 195		     unsigned int *n)
 196{
 197	u32 remaining, page_offset;
 
 198	char *base;
 199
 200	base = vec->iov_base;
 201	page_offset = offset_in_page(base);
 202	remaining = vec->iov_len;
 203	while (remaining) {
 204		seg->mr_page = NULL;
 205		seg->mr_offset = base;
 206		seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
 207		remaining -= seg->mr_len;
 208		base += seg->mr_len;
 209		++seg;
 210		++(*n);
 211		page_offset = 0;
 212	}
 213	return seg;
 214}
 215
 216/* Convert @xdrbuf into SGEs no larger than a page each. As they
 217 * are registered, these SGEs are then coalesced into RDMA segments
 218 * when the selected memreg mode supports it.
 
 
 
 219 *
 220 * Returns positive number of SGEs consumed, or a negative errno.
 221 */
 222
 223static int
 224rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
 225		     unsigned int pos, enum rpcrdma_chunktype type,
 226		     struct rpcrdma_mr_seg *seg)
 227{
 228	unsigned long page_base;
 229	unsigned int len, n;
 230	struct page **ppages;
 231
 232	n = 0;
 233	if (pos == 0)
 234		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
 
 
 235
 236	len = xdrbuf->page_len;
 237	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
 238	page_base = offset_in_page(xdrbuf->page_base);
 239	while (len) {
 240		/* ACL likes to be lazy in allocating pages - ACLs
 241		 * are small by default but can get huge.
 242		 */
 243		if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) {
 244			if (!*ppages)
 245				*ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
 246			if (!*ppages)
 247				return -ENOBUFS;
 248		}
 249		seg->mr_page = *ppages;
 250		seg->mr_offset = (char *)page_base;
 251		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
 252		len -= seg->mr_len;
 253		++ppages;
 254		++seg;
 255		++n;
 256		page_base = 0;
 
 257	}
 258
 259	/* When encoding a Read chunk, the tail iovec contains an
 260	 * XDR pad and may be omitted.
 261	 */
 262	if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
 263		goto out;
 264
 265	/* When encoding a Write chunk, some servers need to see an
 266	 * extra segment for non-XDR-aligned Write chunks. The upper
 267	 * layer provides space in the tail iovec that may be used
 268	 * for this purpose.
 269	 */
 270	if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
 271		goto out;
 272
 273	if (xdrbuf->tail[0].iov_len)
 274		seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
 
 
 
 
 
 
 
 275
 276out:
 277	if (unlikely(n > RPCRDMA_MAX_SEGS))
 278		return -EIO;
 279	return n;
 280}
 281
 282static inline int
 283encode_item_present(struct xdr_stream *xdr)
 284{
 285	__be32 *p;
 286
 287	p = xdr_reserve_space(xdr, sizeof(*p));
 288	if (unlikely(!p))
 289		return -EMSGSIZE;
 290
 291	*p = xdr_one;
 292	return 0;
 293}
 294
 295static inline int
 296encode_item_not_present(struct xdr_stream *xdr)
 297{
 298	__be32 *p;
 299
 300	p = xdr_reserve_space(xdr, sizeof(*p));
 301	if (unlikely(!p))
 302		return -EMSGSIZE;
 303
 304	*p = xdr_zero;
 305	return 0;
 306}
 307
 308static void
 309xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
 310{
 311	*iptr++ = cpu_to_be32(mr->mr_handle);
 312	*iptr++ = cpu_to_be32(mr->mr_length);
 313	xdr_encode_hyper(iptr, mr->mr_offset);
 314}
 315
 316static int
 317encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
 318{
 319	__be32 *p;
 320
 321	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
 322	if (unlikely(!p))
 323		return -EMSGSIZE;
 324
 325	xdr_encode_rdma_segment(p, mr);
 326	return 0;
 327}
 328
 329static int
 330encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
 331		    u32 position)
 332{
 333	__be32 *p;
 334
 335	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
 336	if (unlikely(!p))
 337		return -EMSGSIZE;
 338
 339	*p++ = xdr_one;			/* Item present */
 340	*p++ = cpu_to_be32(position);
 341	xdr_encode_rdma_segment(p, mr);
 342	return 0;
 343}
 344
 345static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
 346						 struct rpcrdma_req *req,
 347						 struct rpcrdma_mr_seg *seg,
 348						 int nsegs, bool writing,
 349						 struct rpcrdma_mr **mr)
 350{
 351	*mr = rpcrdma_mr_pop(&req->rl_free_mrs);
 352	if (!*mr) {
 353		*mr = rpcrdma_mr_get(r_xprt);
 354		if (!*mr)
 355			goto out_getmr_err;
 356		trace_xprtrdma_mr_get(req);
 357		(*mr)->mr_req = req;
 358	}
 359
 360	rpcrdma_mr_push(*mr, &req->rl_registered);
 361	return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
 362
 363out_getmr_err:
 364	trace_xprtrdma_nomrs(req);
 365	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
 366	if (r_xprt->rx_ep.rep_connected != -ENODEV)
 367		schedule_work(&r_xprt->rx_buf.rb_refresh_worker);
 368	return ERR_PTR(-EAGAIN);
 369}
 370
 371/* Register and XDR encode the Read list. Supports encoding a list of read
 372 * segments that belong to a single read chunk.
 373 *
 374 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 375 *
 376 *  Read chunklist (a linked list):
 377 *   N elements, position P (same P for all chunks of same arg!):
 378 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 379 *
 380 * Returns zero on success, or a negative errno if a failure occurred.
 381 * @xdr is advanced to the next position in the stream.
 382 *
 383 * Only a single @pos value is currently supported.
 384 */
 385static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
 386				    struct rpcrdma_req *req,
 387				    struct rpc_rqst *rqst,
 388				    enum rpcrdma_chunktype rtype)
 389{
 390	struct xdr_stream *xdr = &req->rl_stream;
 391	struct rpcrdma_mr_seg *seg;
 392	struct rpcrdma_mr *mr;
 393	unsigned int pos;
 394	int nsegs;
 395
 396	if (rtype == rpcrdma_noch)
 397		goto done;
 398
 399	pos = rqst->rq_snd_buf.head[0].iov_len;
 400	if (rtype == rpcrdma_areadch)
 401		pos = 0;
 402	seg = req->rl_segments;
 403	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
 404				     rtype, seg);
 405	if (nsegs < 0)
 406		return nsegs;
 407
 408	do {
 409		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
 410		if (IS_ERR(seg))
 411			return PTR_ERR(seg);
 412
 413		if (encode_read_segment(xdr, mr, pos) < 0)
 414			return -EMSGSIZE;
 415
 416		trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
 417		r_xprt->rx_stats.read_chunk_count++;
 418		nsegs -= mr->mr_nents;
 419	} while (nsegs);
 420
 421done:
 422	return encode_item_not_present(xdr);
 423}
 424
 425/* Register and XDR encode the Write list. Supports encoding a list
 426 * containing one array of plain segments that belong to a single
 427 * write chunk.
 428 *
 429 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 430 *
 431 *  Write chunklist (a list of (one) counted array):
 432 *   N elements:
 433 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 434 *
 435 * Returns zero on success, or a negative errno if a failure occurred.
 436 * @xdr is advanced to the next position in the stream.
 437 *
 438 * Only a single Write chunk is currently supported.
 439 */
 440static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
 441				     struct rpcrdma_req *req,
 442				     struct rpc_rqst *rqst,
 443				     enum rpcrdma_chunktype wtype)
 444{
 445	struct xdr_stream *xdr = &req->rl_stream;
 446	struct rpcrdma_mr_seg *seg;
 447	struct rpcrdma_mr *mr;
 448	int nsegs, nchunks;
 449	__be32 *segcount;
 450
 451	if (wtype != rpcrdma_writech)
 452		goto done;
 453
 454	seg = req->rl_segments;
 455	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
 456				     rqst->rq_rcv_buf.head[0].iov_len,
 457				     wtype, seg);
 458	if (nsegs < 0)
 459		return nsegs;
 460
 461	if (encode_item_present(xdr) < 0)
 462		return -EMSGSIZE;
 463	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
 464	if (unlikely(!segcount))
 465		return -EMSGSIZE;
 466	/* Actual value encoded below */
 467
 468	nchunks = 0;
 469	do {
 470		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
 471		if (IS_ERR(seg))
 472			return PTR_ERR(seg);
 473
 474		if (encode_rdma_segment(xdr, mr) < 0)
 475			return -EMSGSIZE;
 476
 477		trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
 478		r_xprt->rx_stats.write_chunk_count++;
 479		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
 480		nchunks++;
 481		nsegs -= mr->mr_nents;
 482	} while (nsegs);
 483
 484	/* Update count of segments in this Write chunk */
 485	*segcount = cpu_to_be32(nchunks);
 486
 487done:
 488	return encode_item_not_present(xdr);
 489}
 490
 491/* Register and XDR encode the Reply chunk. Supports encoding an array
 492 * of plain segments that belong to a single write (reply) chunk.
 493 *
 494 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 495 *
 496 *  Reply chunk (a counted array):
 497 *   N elements:
 498 *    1 - N - HLOO - HLOO - ... - HLOO
 499 *
 500 * Returns zero on success, or a negative errno if a failure occurred.
 501 * @xdr is advanced to the next position in the stream.
 502 */
 503static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
 504				      struct rpcrdma_req *req,
 505				      struct rpc_rqst *rqst,
 506				      enum rpcrdma_chunktype wtype)
 507{
 508	struct xdr_stream *xdr = &req->rl_stream;
 509	struct rpcrdma_mr_seg *seg;
 510	struct rpcrdma_mr *mr;
 511	int nsegs, nchunks;
 512	__be32 *segcount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513
 514	if (wtype != rpcrdma_replych)
 515		return encode_item_not_present(xdr);
 
 
 516
 517	seg = req->rl_segments;
 518	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
 519	if (nsegs < 0)
 520		return nsegs;
 521
 522	if (encode_item_present(xdr) < 0)
 523		return -EMSGSIZE;
 524	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
 525	if (unlikely(!segcount))
 526		return -EMSGSIZE;
 527	/* Actual value encoded below */
 528
 529	nchunks = 0;
 530	do {
 531		seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
 532		if (IS_ERR(seg))
 533			return PTR_ERR(seg);
 534
 535		if (encode_rdma_segment(xdr, mr) < 0)
 536			return -EMSGSIZE;
 537
 538		trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
 539		r_xprt->rx_stats.reply_chunk_count++;
 540		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541		nchunks++;
 542		nsegs -= mr->mr_nents;
 
 543	} while (nsegs);
 544
 545	/* Update count of segments in the Reply chunk */
 546	*segcount = cpu_to_be32(nchunks);
 547
 548	return 0;
 549}
 550
 551static void rpcrdma_sendctx_done(struct kref *kref)
 552{
 553	struct rpcrdma_req *req =
 554		container_of(kref, struct rpcrdma_req, rl_kref);
 555	struct rpcrdma_rep *rep = req->rl_reply;
 556
 557	rpcrdma_complete_rqst(rep);
 558	rep->rr_rxprt->rx_stats.reply_waits_for_send++;
 559}
 560
 561/**
 562 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
 563 * @sc: sendctx containing SGEs to unmap
 564 *
 565 */
 566void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
 567{
 568	struct ib_sge *sge;
 569
 570	if (!sc->sc_unmap_count)
 571		return;
 572
 573	/* The first two SGEs contain the transport header and
 574	 * the inline buffer. These are always left mapped so
 575	 * they can be cheaply re-used.
 576	 */
 577	for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
 578	     ++sge, --sc->sc_unmap_count)
 579		ib_dma_unmap_page(sc->sc_device, sge->addr, sge->length,
 580				  DMA_TO_DEVICE);
 581
 582	kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
 583}
 584
 585/* Prepare an SGE for the RPC-over-RDMA transport header.
 586 */
 587static bool rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
 588				    struct rpcrdma_req *req, u32 len)
 589{
 590	struct rpcrdma_sendctx *sc = req->rl_sendctx;
 591	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
 592	struct ib_sge *sge = sc->sc_sges;
 593
 594	if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
 595		goto out_regbuf;
 596	sge->addr = rdmab_addr(rb);
 597	sge->length = len;
 598	sge->lkey = rdmab_lkey(rb);
 599
 600	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
 601				      DMA_TO_DEVICE);
 602	sc->sc_wr.num_sge++;
 603	return true;
 604
 605out_regbuf:
 606	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
 607	return false;
 608}
 609
 610/* Prepare the Send SGEs. The head and tail iovec, and each entry
 611 * in the page list, gets its own SGE.
 612 */
 613static bool rpcrdma_prepare_msg_sges(struct rpcrdma_xprt *r_xprt,
 614				     struct rpcrdma_req *req,
 615				     struct xdr_buf *xdr,
 616				     enum rpcrdma_chunktype rtype)
 617{
 618	struct rpcrdma_sendctx *sc = req->rl_sendctx;
 619	unsigned int sge_no, page_base, len, remaining;
 620	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
 621	struct ib_sge *sge = sc->sc_sges;
 622	struct page *page, **ppages;
 623
 624	/* The head iovec is straightforward, as it is already
 625	 * DMA-mapped. Sync the content that has changed.
 626	 */
 627	if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
 628		goto out_regbuf;
 629	sc->sc_device = rdmab_device(rb);
 630	sge_no = 1;
 631	sge[sge_no].addr = rdmab_addr(rb);
 632	sge[sge_no].length = xdr->head[0].iov_len;
 633	sge[sge_no].lkey = rdmab_lkey(rb);
 634	ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
 635				      sge[sge_no].length, DMA_TO_DEVICE);
 636
 637	/* If there is a Read chunk, the page list is being handled
 638	 * via explicit RDMA, and thus is skipped here. However, the
 639	 * tail iovec may include an XDR pad for the page list, as
 640	 * well as additional content, and may not reside in the
 641	 * same page as the head iovec.
 642	 */
 643	if (rtype == rpcrdma_readch) {
 644		len = xdr->tail[0].iov_len;
 645
 646		/* Do not include the tail if it is only an XDR pad */
 647		if (len < 4)
 648			goto out;
 649
 650		page = virt_to_page(xdr->tail[0].iov_base);
 651		page_base = offset_in_page(xdr->tail[0].iov_base);
 652
 653		/* If the content in the page list is an odd length,
 654		 * xdr_write_pages() has added a pad at the beginning
 655		 * of the tail iovec. Force the tail's non-pad content
 656		 * to land at the next XDR position in the Send message.
 657		 */
 658		page_base += len & 3;
 659		len -= len & 3;
 660		goto map_tail;
 661	}
 662
 663	/* If there is a page list present, temporarily DMA map
 664	 * and prepare an SGE for each page to be sent.
 665	 */
 666	if (xdr->page_len) {
 667		ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
 668		page_base = offset_in_page(xdr->page_base);
 669		remaining = xdr->page_len;
 670		while (remaining) {
 671			sge_no++;
 672			if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
 673				goto out_mapping_overflow;
 674
 675			len = min_t(u32, PAGE_SIZE - page_base, remaining);
 676			sge[sge_no].addr =
 677				ib_dma_map_page(rdmab_device(rb), *ppages,
 678						page_base, len, DMA_TO_DEVICE);
 679			if (ib_dma_mapping_error(rdmab_device(rb),
 680						 sge[sge_no].addr))
 681				goto out_mapping_err;
 682			sge[sge_no].length = len;
 683			sge[sge_no].lkey = rdmab_lkey(rb);
 684
 685			sc->sc_unmap_count++;
 686			ppages++;
 687			remaining -= len;
 688			page_base = 0;
 689		}
 690	}
 691
 692	/* The tail iovec is not always constructed in the same
 693	 * page where the head iovec resides (see, for example,
 694	 * gss_wrap_req_priv). To neatly accommodate that case,
 695	 * DMA map it separately.
 696	 */
 697	if (xdr->tail[0].iov_len) {
 698		page = virt_to_page(xdr->tail[0].iov_base);
 699		page_base = offset_in_page(xdr->tail[0].iov_base);
 700		len = xdr->tail[0].iov_len;
 701
 702map_tail:
 703		sge_no++;
 704		sge[sge_no].addr =
 705			ib_dma_map_page(rdmab_device(rb), page, page_base, len,
 706					DMA_TO_DEVICE);
 707		if (ib_dma_mapping_error(rdmab_device(rb), sge[sge_no].addr))
 708			goto out_mapping_err;
 709		sge[sge_no].length = len;
 710		sge[sge_no].lkey = rdmab_lkey(rb);
 711		sc->sc_unmap_count++;
 712	}
 713
 714out:
 715	sc->sc_wr.num_sge += sge_no;
 716	if (sc->sc_unmap_count)
 717		kref_get(&req->rl_kref);
 718	return true;
 719
 720out_regbuf:
 721	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
 722	return false;
 723
 724out_mapping_overflow:
 725	rpcrdma_sendctx_unmap(sc);
 726	pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
 727	return false;
 728
 729out_mapping_err:
 730	rpcrdma_sendctx_unmap(sc);
 731	trace_xprtrdma_dma_maperr(sge[sge_no].addr);
 732	return false;
 733}
 734
 735/**
 736 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
 737 * @r_xprt: controlling transport
 738 * @req: context of RPC Call being marshalled
 739 * @hdrlen: size of transport header, in bytes
 740 * @xdr: xdr_buf containing RPC Call
 741 * @rtype: chunk type being encoded
 742 *
 743 * Returns 0 on success; otherwise a negative errno is returned.
 744 */
 745int
 746rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
 747			  struct rpcrdma_req *req, u32 hdrlen,
 748			  struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
 749{
 750	int ret;
 
 
 
 
 
 751
 752	ret = -EAGAIN;
 753	req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
 754	if (!req->rl_sendctx)
 755		goto err;
 756	req->rl_sendctx->sc_wr.num_sge = 0;
 757	req->rl_sendctx->sc_unmap_count = 0;
 758	req->rl_sendctx->sc_req = req;
 759	kref_init(&req->rl_kref);
 760
 761	ret = -EIO;
 762	if (!rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen))
 763		goto err;
 764	if (rtype != rpcrdma_areadch)
 765		if (!rpcrdma_prepare_msg_sges(r_xprt, req, xdr, rtype))
 766			goto err;
 767	return 0;
 768
 769err:
 770	trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
 771	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772}
 773
 774/**
 775 * rpcrdma_marshal_req - Marshal and send one RPC request
 776 * @r_xprt: controlling transport
 777 * @rqst: RPC request to be marshaled
 778 *
 779 * For the RPC in "rqst", this function:
 780 *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
 781 *  - Registers Read, Write, and Reply chunks
 782 *  - Constructs the transport header
 783 *  - Posts a Send WR to send the transport header and request
 
 
 784 *
 785 * Returns:
 786 *	%0 if the RPC was sent successfully,
 787 *	%-ENOTCONN if the connection was lost,
 788 *	%-EAGAIN if the caller should call again with the same arguments,
 789 *	%-ENOBUFS if the caller should call again after a delay,
 790 *	%-EMSGSIZE if the transport header is too small,
 791 *	%-EIO if a permanent problem occurred while marshaling.
 792 */
 
 793int
 794rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
 795{
 
 
 796	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 797	struct xdr_stream *xdr = &req->rl_stream;
 
 
 798	enum rpcrdma_chunktype rtype, wtype;
 799	bool ddp_allowed;
 800	__be32 *p;
 801	int ret;
 802
 803	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
 804	xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
 805			rqst);
 806
 807	/* Fixed header fields */
 808	ret = -EMSGSIZE;
 809	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
 810	if (!p)
 811		goto out_err;
 812	*p++ = rqst->rq_xid;
 813	*p++ = rpcrdma_version;
 814	*p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
 815
 816	/* When the ULP employs a GSS flavor that guarantees integrity
 817	 * or privacy, direct data placement of individual data items
 818	 * is not allowed.
 819	 */
 820	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
 821						RPCAUTH_AUTH_DATATOUCH);
 
 
 
 
 
 
 
 822
 823	/*
 824	 * Chunks needed for results?
 825	 *
 
 826	 * o If the expected result is under the inline threshold, all ops
 827	 *   return as inline.
 828	 * o Large read ops return data as write chunk(s), header as
 829	 *   inline.
 830	 * o Large non-read ops return as a single reply chunk.
 831	 */
 832	if (rpcrdma_results_inline(r_xprt, rqst))
 
 
 833		wtype = rpcrdma_noch;
 834	else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
 835		 rpcrdma_nonpayload_inline(r_xprt, rqst))
 836		wtype = rpcrdma_writech;
 837	else
 838		wtype = rpcrdma_replych;
 839
 840	/*
 841	 * Chunks needed for arguments?
 842	 *
 843	 * o If the total request is under the inline threshold, all ops
 844	 *   are sent as inline.
 845	 * o Large write ops transmit data as read chunk(s), header as
 846	 *   inline.
 847	 * o Large non-write ops are sent with the entire message as a
 848	 *   single read chunk (protocol 0-position special case).
 849	 *
 850	 * This assumes that the upper layer does not present a request
 851	 * that both has a data payload, and whose non-data arguments
 852	 * by themselves are larger than the inline threshold.
 853	 */
 854	if (rpcrdma_args_inline(r_xprt, rqst)) {
 855		*p++ = rdma_msg;
 856		rtype = rpcrdma_noch;
 857	} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
 858		*p++ = rdma_msg;
 859		rtype = rpcrdma_readch;
 860	} else {
 861		r_xprt->rx_stats.nomsg_call_count++;
 862		*p++ = rdma_nomsg;
 863		rtype = rpcrdma_areadch;
 
 864	}
 865
 866	/* If this is a retransmit, discard previously registered
 867	 * chunks. Very likely the connection has been replaced,
 868	 * so these registrations are invalid and unusable.
 869	 */
 870	frwr_recycle(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871
 872	/* This implementation supports the following combinations
 873	 * of chunk lists in one RPC-over-RDMA Call message:
 874	 *
 875	 *   - Read list
 876	 *   - Write list
 877	 *   - Reply chunk
 878	 *   - Read list + Reply chunk
 879	 *
 880	 * It might not yet support the following combinations:
 881	 *
 882	 *   - Read list + Write list
 883	 *
 884	 * It does not support the following combinations:
 885	 *
 886	 *   - Write list + Reply chunk
 887	 *   - Read list + Write list + Reply chunk
 888	 *
 889	 * This implementation supports only a single chunk in each
 890	 * Read or Write list. Thus for example the client cannot
 891	 * send a Call message with a Position Zero Read chunk and a
 892	 * regular Read chunk at the same time.
 893	 */
 894	ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
 895	if (ret)
 896		goto out_err;
 897	ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
 898	if (ret)
 899		goto out_err;
 900	ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
 901	if (ret)
 902		goto out_err;
 903
 904	ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
 905					&rqst->rq_snd_buf, rtype);
 906	if (ret)
 907		goto out_err;
 908
 909	trace_xprtrdma_marshal(req, rtype, wtype);
 910	return 0;
 
 911
 912out_err:
 913	trace_xprtrdma_marshal_failed(rqst, ret);
 914	r_xprt->rx_stats.failed_marshal_count++;
 915	frwr_reset(req);
 916	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917}
 918
 919/**
 920 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
 921 * @rqst: controlling RPC request
 922 * @srcp: points to RPC message payload in receive buffer
 923 * @copy_len: remaining length of receive buffer content
 924 * @pad: Write chunk pad bytes needed (zero for pure inline)
 925 *
 926 * The upper layer has set the maximum number of bytes it can
 927 * receive in each component of rq_rcv_buf. These values are set in
 928 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
 929 *
 930 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
 931 * many cases this function simply updates iov_base pointers in
 932 * rq_rcv_buf to point directly to the received reply data, to
 933 * avoid copying reply data.
 934 *
 935 * Returns the count of bytes which had to be memcopied.
 936 */
 937static unsigned long
 938rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
 939{
 940	unsigned long fixup_copy_count;
 941	int i, npages, curlen;
 942	char *destp;
 943	struct page **ppages;
 944	int page_base;
 945
 946	/* The head iovec is redirected to the RPC reply message
 947	 * in the receive buffer, to avoid a memcopy.
 948	 */
 949	rqst->rq_rcv_buf.head[0].iov_base = srcp;
 950	rqst->rq_private_buf.head[0].iov_base = srcp;
 951
 952	/* The contents of the receive buffer that follow
 953	 * head.iov_len bytes are copied into the page list.
 954	 */
 955	curlen = rqst->rq_rcv_buf.head[0].iov_len;
 956	if (curlen > copy_len)
 957		curlen = copy_len;
 958	trace_xprtrdma_fixup(rqst, copy_len, curlen);
 
 
 
 
 
 
 
 959	srcp += curlen;
 960	copy_len -= curlen;
 961
 962	ppages = rqst->rq_rcv_buf.pages +
 963		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
 964	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
 965	fixup_copy_count = 0;
 
 
 
 966	if (copy_len && rqst->rq_rcv_buf.page_len) {
 967		int pagelist_len;
 968
 969		pagelist_len = rqst->rq_rcv_buf.page_len;
 970		if (pagelist_len > copy_len)
 971			pagelist_len = copy_len;
 972		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
 973		for (i = 0; i < npages; i++) {
 974			curlen = PAGE_SIZE - page_base;
 975			if (curlen > pagelist_len)
 976				curlen = pagelist_len;
 977
 978			trace_xprtrdma_fixup_pg(rqst, i, srcp,
 979						copy_len, curlen);
 980			destp = kmap_atomic(ppages[i]);
 981			memcpy(destp + page_base, srcp, curlen);
 982			flush_dcache_page(ppages[i]);
 983			kunmap_atomic(destp);
 984			srcp += curlen;
 985			copy_len -= curlen;
 986			fixup_copy_count += curlen;
 987			pagelist_len -= curlen;
 988			if (!pagelist_len)
 989				break;
 990			page_base = 0;
 991		}
 
 992
 993		/* Implicit padding for the last segment in a Write
 994		 * chunk is inserted inline at the front of the tail
 995		 * iovec. The upper layer ignores the content of
 996		 * the pad. Simply ensure inline content in the tail
 997		 * that follows the Write chunk is properly aligned.
 998		 */
 999		if (pad)
1000			srcp -= pad;
1001	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003	/* The tail iovec is redirected to the remaining data
1004	 * in the receive buffer, to avoid a memcopy.
1005	 */
1006	if (copy_len || pad) {
1007		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1008		rqst->rq_private_buf.tail[0].iov_base = srcp;
 
 
 
1009	}
1010
1011	return fixup_copy_count;
1012}
1013
 
1014/* By convention, backchannel calls arrive via rdma_msg type
1015 * messages, and never populate the chunk lists. This makes
1016 * the RPC/RDMA header small and fixed in size, so it is
1017 * straightforward to check the RPC header's direction field.
1018 */
1019static bool
1020rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1021#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1022{
1023	struct xdr_stream *xdr = &rep->rr_stream;
1024	__be32 *p;
1025
1026	if (rep->rr_proc != rdma_msg)
1027		return false;
1028
1029	/* Peek at stream contents without advancing. */
1030	p = xdr_inline_decode(xdr, 0);
1031
1032	/* Chunk lists */
1033	if (*p++ != xdr_zero)
1034		return false;
1035	if (*p++ != xdr_zero)
1036		return false;
1037	if (*p++ != xdr_zero)
1038		return false;
1039
1040	/* RPC header */
1041	if (*p++ != rep->rr_xid)
1042		return false;
1043	if (*p != cpu_to_be32(RPC_CALL))
 
1044		return false;
1045
1046	/* Now that we are sure this is a backchannel call,
1047	 * advance to the RPC header.
1048	 */
1049	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1050	if (unlikely(!p))
1051		goto out_short;
1052
1053	rpcrdma_bc_receive_call(r_xprt, rep);
1054	return true;
1055
1056out_short:
1057	pr_warn("RPC/RDMA short backward direction call\n");
1058	return true;
1059}
1060#else	/* CONFIG_SUNRPC_BACKCHANNEL */
1061{
1062	return false;
1063}
1064#endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1065
1066static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1067{
1068	u32 handle;
1069	u64 offset;
1070	__be32 *p;
1071
1072	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1073	if (unlikely(!p))
1074		return -EIO;
1075
1076	handle = be32_to_cpup(p++);
1077	*length = be32_to_cpup(p++);
1078	xdr_decode_hyper(p, &offset);
1079
1080	trace_xprtrdma_decode_seg(handle, *length, offset);
1081	return 0;
1082}
1083
1084static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1085{
1086	u32 segcount, seglength;
1087	__be32 *p;
1088
1089	p = xdr_inline_decode(xdr, sizeof(*p));
1090	if (unlikely(!p))
1091		return -EIO;
1092
1093	*length = 0;
1094	segcount = be32_to_cpup(p);
1095	while (segcount--) {
1096		if (decode_rdma_segment(xdr, &seglength))
1097			return -EIO;
1098		*length += seglength;
1099	}
1100
1101	return 0;
1102}
1103
1104/* In RPC-over-RDMA Version One replies, a Read list is never
1105 * expected. This decoder is a stub that returns an error if
1106 * a Read list is present.
1107 */
1108static int decode_read_list(struct xdr_stream *xdr)
 
1109{
1110	__be32 *p;
1111
1112	p = xdr_inline_decode(xdr, sizeof(*p));
1113	if (unlikely(!p))
1114		return -EIO;
1115	if (unlikely(*p != xdr_zero))
1116		return -EIO;
1117	return 0;
1118}
1119
1120/* Supports only one Write chunk in the Write list
 
 
 
1121 */
1122static int decode_write_list(struct xdr_stream *xdr, u32 *length)
 
1123{
1124	u32 chunklen;
1125	bool first;
1126	__be32 *p;
 
 
 
 
 
 
 
 
 
 
 
 
1127
1128	*length = 0;
1129	first = true;
1130	do {
1131		p = xdr_inline_decode(xdr, sizeof(*p));
1132		if (unlikely(!p))
1133			return -EIO;
1134		if (*p == xdr_zero)
1135			break;
1136		if (!first)
1137			return -EIO;
1138
1139		if (decode_write_chunk(xdr, &chunklen))
1140			return -EIO;
1141		*length += chunklen;
1142		first = false;
1143	} while (true);
1144	return 0;
1145}
1146
1147static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1148{
1149	__be32 *p;
1150
1151	p = xdr_inline_decode(xdr, sizeof(*p));
1152	if (unlikely(!p))
1153		return -EIO;
 
 
 
 
1154
1155	*length = 0;
1156	if (*p != xdr_zero)
1157		if (decode_write_chunk(xdr, length))
1158			return -EIO;
1159	return 0;
1160}
1161
1162static int
1163rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1164		   struct rpc_rqst *rqst)
1165{
1166	struct xdr_stream *xdr = &rep->rr_stream;
1167	u32 writelist, replychunk, rpclen;
1168	char *base;
1169
1170	/* Decode the chunk lists */
1171	if (decode_read_list(xdr))
1172		return -EIO;
1173	if (decode_write_list(xdr, &writelist))
1174		return -EIO;
1175	if (decode_reply_chunk(xdr, &replychunk))
1176		return -EIO;
1177
1178	/* RDMA_MSG sanity checks */
1179	if (unlikely(replychunk))
1180		return -EIO;
1181
1182	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1183	base = (char *)xdr_inline_decode(xdr, 0);
1184	rpclen = xdr_stream_remaining(xdr);
1185	r_xprt->rx_stats.fixup_copy_count +=
1186		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1187
1188	r_xprt->rx_stats.total_rdma_reply += writelist;
1189	return rpclen + xdr_align_size(writelist);
1190}
1191
1192static noinline int
1193rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1194{
1195	struct xdr_stream *xdr = &rep->rr_stream;
1196	u32 writelist, replychunk;
1197
1198	/* Decode the chunk lists */
1199	if (decode_read_list(xdr))
1200		return -EIO;
1201	if (decode_write_list(xdr, &writelist))
1202		return -EIO;
1203	if (decode_reply_chunk(xdr, &replychunk))
1204		return -EIO;
1205
1206	/* RDMA_NOMSG sanity checks */
1207	if (unlikely(writelist))
1208		return -EIO;
1209	if (unlikely(!replychunk))
1210		return -EIO;
1211
1212	/* Reply chunk buffer already is the reply vector */
1213	r_xprt->rx_stats.total_rdma_reply += replychunk;
1214	return replychunk;
1215}
1216
1217static noinline int
1218rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1219		     struct rpc_rqst *rqst)
1220{
1221	struct xdr_stream *xdr = &rep->rr_stream;
1222	__be32 *p;
1223
1224	p = xdr_inline_decode(xdr, sizeof(*p));
1225	if (unlikely(!p))
1226		return -EIO;
1227
1228	switch (*p) {
1229	case err_vers:
1230		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1231		if (!p)
1232			break;
1233		dprintk("RPC:       %s: server reports "
1234			"version error (%u-%u), xid %08x\n", __func__,
1235			be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1236			be32_to_cpu(rep->rr_xid));
1237		break;
1238	case err_chunk:
1239		dprintk("RPC:       %s: server reports "
1240			"header decoding error, xid %08x\n", __func__,
1241			be32_to_cpu(rep->rr_xid));
1242		break;
1243	default:
1244		dprintk("RPC:       %s: server reports "
1245			"unrecognized error %d, xid %08x\n", __func__,
1246			be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1247	}
1248
1249	r_xprt->rx_stats.bad_reply_count++;
1250	return -EREMOTEIO;
1251}
1252
1253/* Perform XID lookup, reconstruction of the RPC reply, and
1254 * RPC completion while holding the transport lock to ensure
1255 * the rep, rqst, and rq_task pointers remain stable.
1256 */
1257void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1258{
1259	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1260	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1261	struct rpc_rqst *rqst = rep->rr_rqst;
1262	int status;
1263
1264	switch (rep->rr_proc) {
1265	case rdma_msg:
1266		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1267		break;
1268	case rdma_nomsg:
1269		status = rpcrdma_decode_nomsg(r_xprt, rep);
 
 
 
 
 
 
 
 
 
 
 
 
 
1270		break;
 
1271	case rdma_error:
1272		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1273		break;
 
1274	default:
 
 
 
 
 
 
 
 
1275		status = -EIO;
 
 
1276	}
1277	if (status < 0)
1278		goto out_badheader;
1279
1280out:
1281	spin_lock(&xprt->queue_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282	xprt_complete_rqst(rqst->rq_task, status);
1283	xprt_unpin_rqst(rqst);
1284	spin_unlock(&xprt->queue_lock);
 
 
 
 
 
 
 
 
 
1285	return;
1286
 
 
 
 
 
 
1287/* If the incoming reply terminated a pending RPC, the next
1288 * RPC call will post a replacement receive buffer as it is
1289 * being marshaled.
1290 */
1291out_badheader:
1292	trace_xprtrdma_reply_hdr(rep);
 
 
1293	r_xprt->rx_stats.bad_reply_count++;
1294	goto out;
1295}
1296
1297static void rpcrdma_reply_done(struct kref *kref)
1298{
1299	struct rpcrdma_req *req =
1300		container_of(kref, struct rpcrdma_req, rl_kref);
1301
1302	rpcrdma_complete_rqst(req->rl_reply);
1303}
1304
1305/**
1306 * rpcrdma_reply_handler - Process received RPC/RDMA messages
1307 * @rep: Incoming rpcrdma_rep object to process
1308 *
1309 * Errors must result in the RPC task either being awakened, or
1310 * allowed to timeout, to discover the errors at that time.
1311 */
1312void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1313{
1314	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1315	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1316	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1317	struct rpcrdma_req *req;
1318	struct rpc_rqst *rqst;
1319	u32 credits;
1320	__be32 *p;
1321
1322	/* Any data means we had a useful conversation, so
1323	 * then we don't need to delay the next reconnect.
1324	 */
1325	if (xprt->reestablish_timeout)
1326		xprt->reestablish_timeout = 0;
1327
1328	/* Fixed transport header fields */
1329	xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1330			rep->rr_hdrbuf.head[0].iov_base, NULL);
1331	p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1332	if (unlikely(!p))
1333		goto out_shortreply;
1334	rep->rr_xid = *p++;
1335	rep->rr_vers = *p++;
1336	credits = be32_to_cpu(*p++);
1337	rep->rr_proc = *p++;
1338
1339	if (rep->rr_vers != rpcrdma_version)
1340		goto out_badversion;
1341
1342	if (rpcrdma_is_bcall(r_xprt, rep))
1343		return;
1344
1345	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1346	 * get context for handling any incoming chunks.
1347	 */
1348	spin_lock(&xprt->queue_lock);
1349	rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1350	if (!rqst)
1351		goto out_norqst;
1352	xprt_pin_rqst(rqst);
1353	spin_unlock(&xprt->queue_lock);
1354
1355	if (credits == 0)
1356		credits = 1;	/* don't deadlock */
1357	else if (credits > buf->rb_max_requests)
1358		credits = buf->rb_max_requests;
1359	if (buf->rb_credits != credits) {
1360		spin_lock(&xprt->transport_lock);
1361		buf->rb_credits = credits;
1362		xprt->cwnd = credits << RPC_CWNDSHIFT;
1363		spin_unlock(&xprt->transport_lock);
1364	}
1365
1366	req = rpcr_to_rdmar(rqst);
1367	if (req->rl_reply) {
1368		trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1369		rpcrdma_recv_buffer_put(req->rl_reply);
1370	}
1371	req->rl_reply = rep;
1372	rep->rr_rqst = rqst;
1373
1374	trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1375
1376	if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1377		frwr_reminv(rep, &req->rl_registered);
1378	if (!list_empty(&req->rl_registered))
1379		frwr_unmap_async(r_xprt, req);
1380		/* LocalInv completion will complete the RPC */
1381	else
1382		kref_put(&req->rl_kref, rpcrdma_reply_done);
1383	return;
1384
1385out_badversion:
1386	trace_xprtrdma_reply_vers(rep);
1387	goto out;
1388
1389out_norqst:
1390	spin_unlock(&xprt->queue_lock);
1391	trace_xprtrdma_reply_rqst(rep);
1392	goto out;
 
 
1393
1394out_shortreply:
1395	trace_xprtrdma_reply_short(rep);
 
 
 
 
 
 
 
 
 
 
1396
1397out:
1398	rpcrdma_recv_buffer_put(rep);
 
 
1399}