Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * net/sched/sch_tbf.c	Token Bucket Filter queue.
  3 *
  4 *		This program is free software; you can redistribute it and/or
  5 *		modify it under the terms of the GNU General Public License
  6 *		as published by the Free Software Foundation; either version
  7 *		2 of the License, or (at your option) any later version.
  8 *
  9 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 10 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
 11 *						 original idea by Martin Devera
 12 *
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/string.h>
 19#include <linux/errno.h>
 20#include <linux/skbuff.h>
 21#include <net/netlink.h>
 22#include <net/sch_generic.h>
 23#include <net/pkt_sched.h>
 24
 25
 26/*	Simple Token Bucket Filter.
 27	=======================================
 28
 29	SOURCE.
 30	-------
 31
 32	None.
 33
 34	Description.
 35	------------
 36
 37	A data flow obeys TBF with rate R and depth B, if for any
 38	time interval t_i...t_f the number of transmitted bits
 39	does not exceed B + R*(t_f-t_i).
 40
 41	Packetized version of this definition:
 42	The sequence of packets of sizes s_i served at moments t_i
 43	obeys TBF, if for any i<=k:
 44
 45	s_i+....+s_k <= B + R*(t_k - t_i)
 46
 47	Algorithm.
 48	----------
 49
 50	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
 51
 52	N(t+delta) = min{B/R, N(t) + delta}
 53
 54	If the first packet in queue has length S, it may be
 55	transmitted only at the time t_* when S/R <= N(t_*),
 56	and in this case N(t) jumps:
 57
 58	N(t_* + 0) = N(t_* - 0) - S/R.
 59
 60
 61
 62	Actually, QoS requires two TBF to be applied to a data stream.
 63	One of them controls steady state burst size, another
 64	one with rate P (peak rate) and depth M (equal to link MTU)
 65	limits bursts at a smaller time scale.
 66
 67	It is easy to see that P>R, and B>M. If P is infinity, this double
 68	TBF is equivalent to a single one.
 69
 70	When TBF works in reshaping mode, latency is estimated as:
 71
 72	lat = max ((L-B)/R, (L-M)/P)
 73
 74
 75	NOTES.
 76	------
 77
 78	If TBF throttles, it starts a watchdog timer, which will wake it up
 79	when it is ready to transmit.
 80	Note that the minimal timer resolution is 1/HZ.
 81	If no new packets arrive during this period,
 82	or if the device is not awaken by EOI for some previous packet,
 83	TBF can stop its activity for 1/HZ.
 84
 85
 86	This means, that with depth B, the maximal rate is
 87
 88	R_crit = B*HZ
 89
 90	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
 91
 92	Note that the peak rate TBF is much more tough: with MTU 1500
 93	P_crit = 150Kbytes/sec. So, if you need greater peak
 94	rates, use alpha with HZ=1000 :-)
 95
 96	With classful TBF, limit is just kept for backwards compatibility.
 97	It is passed to the default bfifo qdisc - if the inner qdisc is
 98	changed the limit is not effective anymore.
 99*/
100
101struct tbf_sched_data {
102/* Parameters */
103	u32		limit;		/* Maximal length of backlog: bytes */
104	u32		max_size;
105	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
106	s64		mtu;
107	struct psched_ratecfg rate;
108	struct psched_ratecfg peak;
109
110/* Variables */
111	s64	tokens;			/* Current number of B tokens */
112	s64	ptokens;		/* Current number of P tokens */
113	s64	t_c;			/* Time check-point */
114	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
115	struct qdisc_watchdog watchdog;	/* Watchdog timer */
116};
117
118
119/* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
121 */
122static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123			 u64 time_in_ns)
124{
125	/* The formula is :
126	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127	 */
128	u64 len = time_in_ns * r->rate_bytes_ps;
129
130	do_div(len, NSEC_PER_SEC);
131
132	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133		do_div(len, 53);
134		len = len * 48;
135	}
136
137	if (len > r->overhead)
138		len -= r->overhead;
139	else
140		len = 0;
141
142	return len;
143}
144
145/*
146 * Return length of individual segments of a gso packet,
147 * including all headers (MAC, IP, TCP/UDP)
148 */
149static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
150{
151	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
152	return hdr_len + skb_gso_transport_seglen(skb);
153}
154
155/* GSO packet is too big, segment it so that tbf can transmit
156 * each segment in time
157 */
158static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
 
159{
160	struct tbf_sched_data *q = qdisc_priv(sch);
161	struct sk_buff *segs, *nskb;
162	netdev_features_t features = netif_skb_features(skb);
163	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
164	int ret, nb;
165
166	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
167
168	if (IS_ERR_OR_NULL(segs))
169		return qdisc_reshape_fail(skb, sch);
170
171	nb = 0;
172	while (segs) {
173		nskb = segs->next;
174		segs->next = NULL;
175		qdisc_skb_cb(segs)->pkt_len = segs->len;
176		len += segs->len;
177		ret = qdisc_enqueue(segs, q->qdisc);
178		if (ret != NET_XMIT_SUCCESS) {
179			if (net_xmit_drop_count(ret))
180				qdisc_qstats_drop(sch);
181		} else {
182			nb++;
183		}
184		segs = nskb;
185	}
186	sch->q.qlen += nb;
187	if (nb > 1)
188		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
189	consume_skb(skb);
190	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
191}
192
193static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 
194{
195	struct tbf_sched_data *q = qdisc_priv(sch);
 
196	int ret;
197
198	if (qdisc_pkt_len(skb) > q->max_size) {
199		if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
200			return tbf_segment(skb, sch);
201		return qdisc_reshape_fail(skb, sch);
 
202	}
203	ret = qdisc_enqueue(skb, q->qdisc);
204	if (ret != NET_XMIT_SUCCESS) {
205		if (net_xmit_drop_count(ret))
206			qdisc_qstats_drop(sch);
207		return ret;
208	}
209
 
210	sch->q.qlen++;
211	return NET_XMIT_SUCCESS;
212}
213
214static unsigned int tbf_drop(struct Qdisc *sch)
215{
216	struct tbf_sched_data *q = qdisc_priv(sch);
217	unsigned int len = 0;
218
219	if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
220		sch->q.qlen--;
221		qdisc_qstats_drop(sch);
222	}
223	return len;
224}
225
226static bool tbf_peak_present(const struct tbf_sched_data *q)
227{
228	return q->peak.rate_bytes_ps;
229}
230
231static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
232{
233	struct tbf_sched_data *q = qdisc_priv(sch);
234	struct sk_buff *skb;
235
236	skb = q->qdisc->ops->peek(q->qdisc);
237
238	if (skb) {
239		s64 now;
240		s64 toks;
241		s64 ptoks = 0;
242		unsigned int len = qdisc_pkt_len(skb);
243
244		now = ktime_get_ns();
245		toks = min_t(s64, now - q->t_c, q->buffer);
246
247		if (tbf_peak_present(q)) {
248			ptoks = toks + q->ptokens;
249			if (ptoks > q->mtu)
250				ptoks = q->mtu;
251			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
252		}
253		toks += q->tokens;
254		if (toks > q->buffer)
255			toks = q->buffer;
256		toks -= (s64) psched_l2t_ns(&q->rate, len);
257
258		if ((toks|ptoks) >= 0) {
259			skb = qdisc_dequeue_peeked(q->qdisc);
260			if (unlikely(!skb))
261				return NULL;
262
263			q->t_c = now;
264			q->tokens = toks;
265			q->ptokens = ptoks;
 
266			sch->q.qlen--;
267			qdisc_unthrottled(sch);
268			qdisc_bstats_update(sch, skb);
269			return skb;
270		}
271
272		qdisc_watchdog_schedule_ns(&q->watchdog,
273					   now + max_t(long, -toks, -ptoks),
274					   true);
275
276		/* Maybe we have a shorter packet in the queue,
277		   which can be sent now. It sounds cool,
278		   but, however, this is wrong in principle.
279		   We MUST NOT reorder packets under these circumstances.
280
281		   Really, if we split the flow into independent
282		   subflows, it would be a very good solution.
283		   This is the main idea of all FQ algorithms
284		   (cf. CSZ, HPFQ, HFSC)
285		 */
286
287		qdisc_qstats_overlimit(sch);
288	}
289	return NULL;
290}
291
292static void tbf_reset(struct Qdisc *sch)
293{
294	struct tbf_sched_data *q = qdisc_priv(sch);
295
296	qdisc_reset(q->qdisc);
 
297	sch->q.qlen = 0;
298	q->t_c = ktime_get_ns();
299	q->tokens = q->buffer;
300	q->ptokens = q->mtu;
301	qdisc_watchdog_cancel(&q->watchdog);
302}
303
304static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
305	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
306	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
307	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
308	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
309	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
310	[TCA_TBF_BURST] = { .type = NLA_U32 },
311	[TCA_TBF_PBURST] = { .type = NLA_U32 },
312};
313
314static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
 
315{
316	int err;
317	struct tbf_sched_data *q = qdisc_priv(sch);
318	struct nlattr *tb[TCA_TBF_MAX + 1];
319	struct tc_tbf_qopt *qopt;
320	struct Qdisc *child = NULL;
321	struct psched_ratecfg rate;
322	struct psched_ratecfg peak;
323	u64 max_size;
324	s64 buffer, mtu;
325	u64 rate64 = 0, prate64 = 0;
326
327	err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
 
328	if (err < 0)
329		return err;
330
331	err = -EINVAL;
332	if (tb[TCA_TBF_PARMS] == NULL)
333		goto done;
334
335	qopt = nla_data(tb[TCA_TBF_PARMS]);
336	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
337		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
338					      tb[TCA_TBF_RTAB]));
 
339
340	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
341			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
342						      tb[TCA_TBF_PTAB]));
 
343
344	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
345	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
346
347	if (tb[TCA_TBF_RATE64])
348		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
349	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
350
351	if (tb[TCA_TBF_BURST]) {
352		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
353		buffer = psched_l2t_ns(&rate, max_size);
354	} else {
355		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
356	}
357
358	if (qopt->peakrate.rate) {
359		if (tb[TCA_TBF_PRATE64])
360			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
361		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
362		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
363			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
364					peak.rate_bytes_ps, rate.rate_bytes_ps);
365			err = -EINVAL;
366			goto done;
367		}
368
369		if (tb[TCA_TBF_PBURST]) {
370			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
371			max_size = min_t(u32, max_size, pburst);
372			mtu = psched_l2t_ns(&peak, pburst);
373		} else {
374			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
375		}
376	} else {
377		memset(&peak, 0, sizeof(peak));
378	}
379
380	if (max_size < psched_mtu(qdisc_dev(sch)))
381		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
382				    max_size, qdisc_dev(sch)->name,
383				    psched_mtu(qdisc_dev(sch)));
384
385	if (!max_size) {
386		err = -EINVAL;
387		goto done;
388	}
389
390	if (q->qdisc != &noop_qdisc) {
391		err = fifo_set_limit(q->qdisc, qopt->limit);
392		if (err)
393			goto done;
394	} else if (qopt->limit > 0) {
395		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
 
396		if (IS_ERR(child)) {
397			err = PTR_ERR(child);
398			goto done;
399		}
 
 
 
400	}
401
402	sch_tree_lock(sch);
403	if (child) {
404		qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
405					  q->qdisc->qstats.backlog);
406		qdisc_destroy(q->qdisc);
407		q->qdisc = child;
408	}
409	q->limit = qopt->limit;
410	if (tb[TCA_TBF_PBURST])
411		q->mtu = mtu;
412	else
413		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
414	q->max_size = max_size;
415	if (tb[TCA_TBF_BURST])
416		q->buffer = buffer;
417	else
418		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
419	q->tokens = q->buffer;
420	q->ptokens = q->mtu;
421
422	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
423	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
424
425	sch_tree_unlock(sch);
426	err = 0;
427done:
428	return err;
429}
430
431static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
 
432{
433	struct tbf_sched_data *q = qdisc_priv(sch);
434
435	if (opt == NULL)
 
 
 
436		return -EINVAL;
437
438	q->t_c = ktime_get_ns();
439	qdisc_watchdog_init(&q->watchdog, sch);
440	q->qdisc = &noop_qdisc;
441
442	return tbf_change(sch, opt);
443}
444
445static void tbf_destroy(struct Qdisc *sch)
446{
447	struct tbf_sched_data *q = qdisc_priv(sch);
448
449	qdisc_watchdog_cancel(&q->watchdog);
450	qdisc_destroy(q->qdisc);
451}
452
453static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
454{
455	struct tbf_sched_data *q = qdisc_priv(sch);
456	struct nlattr *nest;
457	struct tc_tbf_qopt opt;
458
459	sch->qstats.backlog = q->qdisc->qstats.backlog;
460	nest = nla_nest_start(skb, TCA_OPTIONS);
461	if (nest == NULL)
462		goto nla_put_failure;
463
464	opt.limit = q->limit;
465	psched_ratecfg_getrate(&opt.rate, &q->rate);
466	if (tbf_peak_present(q))
467		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
468	else
469		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
470	opt.mtu = PSCHED_NS2TICKS(q->mtu);
471	opt.buffer = PSCHED_NS2TICKS(q->buffer);
472	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
473		goto nla_put_failure;
474	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
475	    nla_put_u64(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps))
 
476		goto nla_put_failure;
477	if (tbf_peak_present(q) &&
478	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
479	    nla_put_u64(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps))
 
480		goto nla_put_failure;
481
482	return nla_nest_end(skb, nest);
483
484nla_put_failure:
485	nla_nest_cancel(skb, nest);
486	return -1;
487}
488
489static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
490			  struct sk_buff *skb, struct tcmsg *tcm)
491{
492	struct tbf_sched_data *q = qdisc_priv(sch);
493
494	tcm->tcm_handle |= TC_H_MIN(1);
495	tcm->tcm_info = q->qdisc->handle;
496
497	return 0;
498}
499
500static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
501		     struct Qdisc **old)
502{
503	struct tbf_sched_data *q = qdisc_priv(sch);
504
505	if (new == NULL)
506		new = &noop_qdisc;
507
508	*old = qdisc_replace(sch, new, &q->qdisc);
509	return 0;
510}
511
512static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
513{
514	struct tbf_sched_data *q = qdisc_priv(sch);
515	return q->qdisc;
516}
517
518static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
519{
520	return 1;
521}
522
523static void tbf_put(struct Qdisc *sch, unsigned long arg)
524{
525}
526
527static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
528{
529	if (!walker->stop) {
530		if (walker->count >= walker->skip)
531			if (walker->fn(sch, 1, walker) < 0) {
532				walker->stop = 1;
533				return;
534			}
535		walker->count++;
536	}
537}
538
539static const struct Qdisc_class_ops tbf_class_ops = {
540	.graft		=	tbf_graft,
541	.leaf		=	tbf_leaf,
542	.get		=	tbf_get,
543	.put		=	tbf_put,
544	.walk		=	tbf_walk,
545	.dump		=	tbf_dump_class,
546};
547
548static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
549	.next		=	NULL,
550	.cl_ops		=	&tbf_class_ops,
551	.id		=	"tbf",
552	.priv_size	=	sizeof(struct tbf_sched_data),
553	.enqueue	=	tbf_enqueue,
554	.dequeue	=	tbf_dequeue,
555	.peek		=	qdisc_peek_dequeued,
556	.drop		=	tbf_drop,
557	.init		=	tbf_init,
558	.reset		=	tbf_reset,
559	.destroy	=	tbf_destroy,
560	.change		=	tbf_change,
561	.dump		=	tbf_dump,
562	.owner		=	THIS_MODULE,
563};
564
565static int __init tbf_module_init(void)
566{
567	return register_qdisc(&tbf_qdisc_ops);
568}
569
570static void __exit tbf_module_exit(void)
571{
572	unregister_qdisc(&tbf_qdisc_ops);
573}
574module_init(tbf_module_init)
575module_exit(tbf_module_exit)
576MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * net/sched/sch_tbf.c	Token Bucket Filter queue.
  4 *
 
 
 
 
 
  5 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  6 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
  7 *						 original idea by Martin Devera
 
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/types.h>
 12#include <linux/kernel.h>
 13#include <linux/string.h>
 14#include <linux/errno.h>
 15#include <linux/skbuff.h>
 16#include <net/netlink.h>
 17#include <net/sch_generic.h>
 18#include <net/pkt_sched.h>
 19
 20
 21/*	Simple Token Bucket Filter.
 22	=======================================
 23
 24	SOURCE.
 25	-------
 26
 27	None.
 28
 29	Description.
 30	------------
 31
 32	A data flow obeys TBF with rate R and depth B, if for any
 33	time interval t_i...t_f the number of transmitted bits
 34	does not exceed B + R*(t_f-t_i).
 35
 36	Packetized version of this definition:
 37	The sequence of packets of sizes s_i served at moments t_i
 38	obeys TBF, if for any i<=k:
 39
 40	s_i+....+s_k <= B + R*(t_k - t_i)
 41
 42	Algorithm.
 43	----------
 44
 45	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
 46
 47	N(t+delta) = min{B/R, N(t) + delta}
 48
 49	If the first packet in queue has length S, it may be
 50	transmitted only at the time t_* when S/R <= N(t_*),
 51	and in this case N(t) jumps:
 52
 53	N(t_* + 0) = N(t_* - 0) - S/R.
 54
 55
 56
 57	Actually, QoS requires two TBF to be applied to a data stream.
 58	One of them controls steady state burst size, another
 59	one with rate P (peak rate) and depth M (equal to link MTU)
 60	limits bursts at a smaller time scale.
 61
 62	It is easy to see that P>R, and B>M. If P is infinity, this double
 63	TBF is equivalent to a single one.
 64
 65	When TBF works in reshaping mode, latency is estimated as:
 66
 67	lat = max ((L-B)/R, (L-M)/P)
 68
 69
 70	NOTES.
 71	------
 72
 73	If TBF throttles, it starts a watchdog timer, which will wake it up
 74	when it is ready to transmit.
 75	Note that the minimal timer resolution is 1/HZ.
 76	If no new packets arrive during this period,
 77	or if the device is not awaken by EOI for some previous packet,
 78	TBF can stop its activity for 1/HZ.
 79
 80
 81	This means, that with depth B, the maximal rate is
 82
 83	R_crit = B*HZ
 84
 85	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
 86
 87	Note that the peak rate TBF is much more tough: with MTU 1500
 88	P_crit = 150Kbytes/sec. So, if you need greater peak
 89	rates, use alpha with HZ=1000 :-)
 90
 91	With classful TBF, limit is just kept for backwards compatibility.
 92	It is passed to the default bfifo qdisc - if the inner qdisc is
 93	changed the limit is not effective anymore.
 94*/
 95
 96struct tbf_sched_data {
 97/* Parameters */
 98	u32		limit;		/* Maximal length of backlog: bytes */
 99	u32		max_size;
100	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
101	s64		mtu;
102	struct psched_ratecfg rate;
103	struct psched_ratecfg peak;
104
105/* Variables */
106	s64	tokens;			/* Current number of B tokens */
107	s64	ptokens;		/* Current number of P tokens */
108	s64	t_c;			/* Time check-point */
109	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
110	struct qdisc_watchdog watchdog;	/* Watchdog timer */
111};
112
113
114/* Time to Length, convert time in ns to length in bytes
115 * to determinate how many bytes can be sent in given time.
116 */
117static u64 psched_ns_t2l(const struct psched_ratecfg *r,
118			 u64 time_in_ns)
119{
120	/* The formula is :
121	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
122	 */
123	u64 len = time_in_ns * r->rate_bytes_ps;
124
125	do_div(len, NSEC_PER_SEC);
126
127	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
128		do_div(len, 53);
129		len = len * 48;
130	}
131
132	if (len > r->overhead)
133		len -= r->overhead;
134	else
135		len = 0;
136
137	return len;
138}
139
 
 
 
 
 
 
 
 
 
 
140/* GSO packet is too big, segment it so that tbf can transmit
141 * each segment in time
142 */
143static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
144		       struct sk_buff **to_free)
145{
146	struct tbf_sched_data *q = qdisc_priv(sch);
147	struct sk_buff *segs, *nskb;
148	netdev_features_t features = netif_skb_features(skb);
149	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
150	int ret, nb;
151
152	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
153
154	if (IS_ERR_OR_NULL(segs))
155		return qdisc_drop(skb, sch, to_free);
156
157	nb = 0;
158	while (segs) {
159		nskb = segs->next;
160		skb_mark_not_on_list(segs);
161		qdisc_skb_cb(segs)->pkt_len = segs->len;
162		len += segs->len;
163		ret = qdisc_enqueue(segs, q->qdisc, to_free);
164		if (ret != NET_XMIT_SUCCESS) {
165			if (net_xmit_drop_count(ret))
166				qdisc_qstats_drop(sch);
167		} else {
168			nb++;
169		}
170		segs = nskb;
171	}
172	sch->q.qlen += nb;
173	if (nb > 1)
174		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
175	consume_skb(skb);
176	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
177}
178
179static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
180		       struct sk_buff **to_free)
181{
182	struct tbf_sched_data *q = qdisc_priv(sch);
183	unsigned int len = qdisc_pkt_len(skb);
184	int ret;
185
186	if (qdisc_pkt_len(skb) > q->max_size) {
187		if (skb_is_gso(skb) &&
188		    skb_gso_validate_mac_len(skb, q->max_size))
189			return tbf_segment(skb, sch, to_free);
190		return qdisc_drop(skb, sch, to_free);
191	}
192	ret = qdisc_enqueue(skb, q->qdisc, to_free);
193	if (ret != NET_XMIT_SUCCESS) {
194		if (net_xmit_drop_count(ret))
195			qdisc_qstats_drop(sch);
196		return ret;
197	}
198
199	sch->qstats.backlog += len;
200	sch->q.qlen++;
201	return NET_XMIT_SUCCESS;
202}
203
 
 
 
 
 
 
 
 
 
 
 
 
204static bool tbf_peak_present(const struct tbf_sched_data *q)
205{
206	return q->peak.rate_bytes_ps;
207}
208
209static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
210{
211	struct tbf_sched_data *q = qdisc_priv(sch);
212	struct sk_buff *skb;
213
214	skb = q->qdisc->ops->peek(q->qdisc);
215
216	if (skb) {
217		s64 now;
218		s64 toks;
219		s64 ptoks = 0;
220		unsigned int len = qdisc_pkt_len(skb);
221
222		now = ktime_get_ns();
223		toks = min_t(s64, now - q->t_c, q->buffer);
224
225		if (tbf_peak_present(q)) {
226			ptoks = toks + q->ptokens;
227			if (ptoks > q->mtu)
228				ptoks = q->mtu;
229			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
230		}
231		toks += q->tokens;
232		if (toks > q->buffer)
233			toks = q->buffer;
234		toks -= (s64) psched_l2t_ns(&q->rate, len);
235
236		if ((toks|ptoks) >= 0) {
237			skb = qdisc_dequeue_peeked(q->qdisc);
238			if (unlikely(!skb))
239				return NULL;
240
241			q->t_c = now;
242			q->tokens = toks;
243			q->ptokens = ptoks;
244			qdisc_qstats_backlog_dec(sch, skb);
245			sch->q.qlen--;
 
246			qdisc_bstats_update(sch, skb);
247			return skb;
248		}
249
250		qdisc_watchdog_schedule_ns(&q->watchdog,
251					   now + max_t(long, -toks, -ptoks));
 
252
253		/* Maybe we have a shorter packet in the queue,
254		   which can be sent now. It sounds cool,
255		   but, however, this is wrong in principle.
256		   We MUST NOT reorder packets under these circumstances.
257
258		   Really, if we split the flow into independent
259		   subflows, it would be a very good solution.
260		   This is the main idea of all FQ algorithms
261		   (cf. CSZ, HPFQ, HFSC)
262		 */
263
264		qdisc_qstats_overlimit(sch);
265	}
266	return NULL;
267}
268
269static void tbf_reset(struct Qdisc *sch)
270{
271	struct tbf_sched_data *q = qdisc_priv(sch);
272
273	qdisc_reset(q->qdisc);
274	sch->qstats.backlog = 0;
275	sch->q.qlen = 0;
276	q->t_c = ktime_get_ns();
277	q->tokens = q->buffer;
278	q->ptokens = q->mtu;
279	qdisc_watchdog_cancel(&q->watchdog);
280}
281
282static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
283	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
284	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
285	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
286	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
287	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
288	[TCA_TBF_BURST] = { .type = NLA_U32 },
289	[TCA_TBF_PBURST] = { .type = NLA_U32 },
290};
291
292static int tbf_change(struct Qdisc *sch, struct nlattr *opt,
293		      struct netlink_ext_ack *extack)
294{
295	int err;
296	struct tbf_sched_data *q = qdisc_priv(sch);
297	struct nlattr *tb[TCA_TBF_MAX + 1];
298	struct tc_tbf_qopt *qopt;
299	struct Qdisc *child = NULL;
300	struct psched_ratecfg rate;
301	struct psched_ratecfg peak;
302	u64 max_size;
303	s64 buffer, mtu;
304	u64 rate64 = 0, prate64 = 0;
305
306	err = nla_parse_nested_deprecated(tb, TCA_TBF_MAX, opt, tbf_policy,
307					  NULL);
308	if (err < 0)
309		return err;
310
311	err = -EINVAL;
312	if (tb[TCA_TBF_PARMS] == NULL)
313		goto done;
314
315	qopt = nla_data(tb[TCA_TBF_PARMS]);
316	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
317		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
318					      tb[TCA_TBF_RTAB],
319					      NULL));
320
321	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
322			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
323						      tb[TCA_TBF_PTAB],
324						      NULL));
325
326	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
327	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
328
329	if (tb[TCA_TBF_RATE64])
330		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
331	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
332
333	if (tb[TCA_TBF_BURST]) {
334		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
335		buffer = psched_l2t_ns(&rate, max_size);
336	} else {
337		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
338	}
339
340	if (qopt->peakrate.rate) {
341		if (tb[TCA_TBF_PRATE64])
342			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
343		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
344		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
345			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
346					peak.rate_bytes_ps, rate.rate_bytes_ps);
347			err = -EINVAL;
348			goto done;
349		}
350
351		if (tb[TCA_TBF_PBURST]) {
352			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
353			max_size = min_t(u32, max_size, pburst);
354			mtu = psched_l2t_ns(&peak, pburst);
355		} else {
356			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
357		}
358	} else {
359		memset(&peak, 0, sizeof(peak));
360	}
361
362	if (max_size < psched_mtu(qdisc_dev(sch)))
363		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
364				    max_size, qdisc_dev(sch)->name,
365				    psched_mtu(qdisc_dev(sch)));
366
367	if (!max_size) {
368		err = -EINVAL;
369		goto done;
370	}
371
372	if (q->qdisc != &noop_qdisc) {
373		err = fifo_set_limit(q->qdisc, qopt->limit);
374		if (err)
375			goto done;
376	} else if (qopt->limit > 0) {
377		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit,
378					 extack);
379		if (IS_ERR(child)) {
380			err = PTR_ERR(child);
381			goto done;
382		}
383
384		/* child is fifo, no need to check for noop_qdisc */
385		qdisc_hash_add(child, true);
386	}
387
388	sch_tree_lock(sch);
389	if (child) {
390		qdisc_tree_flush_backlog(q->qdisc);
391		qdisc_put(q->qdisc);
 
392		q->qdisc = child;
393	}
394	q->limit = qopt->limit;
395	if (tb[TCA_TBF_PBURST])
396		q->mtu = mtu;
397	else
398		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
399	q->max_size = max_size;
400	if (tb[TCA_TBF_BURST])
401		q->buffer = buffer;
402	else
403		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
404	q->tokens = q->buffer;
405	q->ptokens = q->mtu;
406
407	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
408	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
409
410	sch_tree_unlock(sch);
411	err = 0;
412done:
413	return err;
414}
415
416static int tbf_init(struct Qdisc *sch, struct nlattr *opt,
417		    struct netlink_ext_ack *extack)
418{
419	struct tbf_sched_data *q = qdisc_priv(sch);
420
421	qdisc_watchdog_init(&q->watchdog, sch);
422	q->qdisc = &noop_qdisc;
423
424	if (!opt)
425		return -EINVAL;
426
427	q->t_c = ktime_get_ns();
 
 
428
429	return tbf_change(sch, opt, extack);
430}
431
432static void tbf_destroy(struct Qdisc *sch)
433{
434	struct tbf_sched_data *q = qdisc_priv(sch);
435
436	qdisc_watchdog_cancel(&q->watchdog);
437	qdisc_put(q->qdisc);
438}
439
440static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
441{
442	struct tbf_sched_data *q = qdisc_priv(sch);
443	struct nlattr *nest;
444	struct tc_tbf_qopt opt;
445
446	sch->qstats.backlog = q->qdisc->qstats.backlog;
447	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
448	if (nest == NULL)
449		goto nla_put_failure;
450
451	opt.limit = q->limit;
452	psched_ratecfg_getrate(&opt.rate, &q->rate);
453	if (tbf_peak_present(q))
454		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
455	else
456		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
457	opt.mtu = PSCHED_NS2TICKS(q->mtu);
458	opt.buffer = PSCHED_NS2TICKS(q->buffer);
459	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
460		goto nla_put_failure;
461	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
462	    nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
463			      TCA_TBF_PAD))
464		goto nla_put_failure;
465	if (tbf_peak_present(q) &&
466	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
467	    nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
468			      TCA_TBF_PAD))
469		goto nla_put_failure;
470
471	return nla_nest_end(skb, nest);
472
473nla_put_failure:
474	nla_nest_cancel(skb, nest);
475	return -1;
476}
477
478static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
479			  struct sk_buff *skb, struct tcmsg *tcm)
480{
481	struct tbf_sched_data *q = qdisc_priv(sch);
482
483	tcm->tcm_handle |= TC_H_MIN(1);
484	tcm->tcm_info = q->qdisc->handle;
485
486	return 0;
487}
488
489static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
490		     struct Qdisc **old, struct netlink_ext_ack *extack)
491{
492	struct tbf_sched_data *q = qdisc_priv(sch);
493
494	if (new == NULL)
495		new = &noop_qdisc;
496
497	*old = qdisc_replace(sch, new, &q->qdisc);
498	return 0;
499}
500
501static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
502{
503	struct tbf_sched_data *q = qdisc_priv(sch);
504	return q->qdisc;
505}
506
507static unsigned long tbf_find(struct Qdisc *sch, u32 classid)
508{
509	return 1;
510}
511
 
 
 
 
512static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
513{
514	if (!walker->stop) {
515		if (walker->count >= walker->skip)
516			if (walker->fn(sch, 1, walker) < 0) {
517				walker->stop = 1;
518				return;
519			}
520		walker->count++;
521	}
522}
523
524static const struct Qdisc_class_ops tbf_class_ops = {
525	.graft		=	tbf_graft,
526	.leaf		=	tbf_leaf,
527	.find		=	tbf_find,
 
528	.walk		=	tbf_walk,
529	.dump		=	tbf_dump_class,
530};
531
532static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
533	.next		=	NULL,
534	.cl_ops		=	&tbf_class_ops,
535	.id		=	"tbf",
536	.priv_size	=	sizeof(struct tbf_sched_data),
537	.enqueue	=	tbf_enqueue,
538	.dequeue	=	tbf_dequeue,
539	.peek		=	qdisc_peek_dequeued,
 
540	.init		=	tbf_init,
541	.reset		=	tbf_reset,
542	.destroy	=	tbf_destroy,
543	.change		=	tbf_change,
544	.dump		=	tbf_dump,
545	.owner		=	THIS_MODULE,
546};
547
548static int __init tbf_module_init(void)
549{
550	return register_qdisc(&tbf_qdisc_ops);
551}
552
553static void __exit tbf_module_exit(void)
554{
555	unregister_qdisc(&tbf_qdisc_ops);
556}
557module_init(tbf_module_init)
558module_exit(tbf_module_exit)
559MODULE_LICENSE("GPL");