Linux Audio

Check our new training course

Loading...
  1/*
  2 * net/sched/sch_tbf.c	Token Bucket Filter queue.
  3 *
  4 *		This program is free software; you can redistribute it and/or
  5 *		modify it under the terms of the GNU General Public License
  6 *		as published by the Free Software Foundation; either version
  7 *		2 of the License, or (at your option) any later version.
  8 *
  9 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 10 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
 11 *						 original idea by Martin Devera
 12 *
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/string.h>
 19#include <linux/errno.h>
 20#include <linux/skbuff.h>
 21#include <net/netlink.h>
 22#include <net/sch_generic.h>
 23#include <net/pkt_sched.h>
 24
 25
 26/*	Simple Token Bucket Filter.
 27	=======================================
 28
 29	SOURCE.
 30	-------
 31
 32	None.
 33
 34	Description.
 35	------------
 36
 37	A data flow obeys TBF with rate R and depth B, if for any
 38	time interval t_i...t_f the number of transmitted bits
 39	does not exceed B + R*(t_f-t_i).
 40
 41	Packetized version of this definition:
 42	The sequence of packets of sizes s_i served at moments t_i
 43	obeys TBF, if for any i<=k:
 44
 45	s_i+....+s_k <= B + R*(t_k - t_i)
 46
 47	Algorithm.
 48	----------
 49
 50	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
 51
 52	N(t+delta) = min{B/R, N(t) + delta}
 53
 54	If the first packet in queue has length S, it may be
 55	transmitted only at the time t_* when S/R <= N(t_*),
 56	and in this case N(t) jumps:
 57
 58	N(t_* + 0) = N(t_* - 0) - S/R.
 59
 60
 61
 62	Actually, QoS requires two TBF to be applied to a data stream.
 63	One of them controls steady state burst size, another
 64	one with rate P (peak rate) and depth M (equal to link MTU)
 65	limits bursts at a smaller time scale.
 66
 67	It is easy to see that P>R, and B>M. If P is infinity, this double
 68	TBF is equivalent to a single one.
 69
 70	When TBF works in reshaping mode, latency is estimated as:
 71
 72	lat = max ((L-B)/R, (L-M)/P)
 73
 74
 75	NOTES.
 76	------
 77
 78	If TBF throttles, it starts a watchdog timer, which will wake it up
 79	when it is ready to transmit.
 80	Note that the minimal timer resolution is 1/HZ.
 81	If no new packets arrive during this period,
 82	or if the device is not awaken by EOI for some previous packet,
 83	TBF can stop its activity for 1/HZ.
 84
 85
 86	This means, that with depth B, the maximal rate is
 87
 88	R_crit = B*HZ
 89
 90	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
 91
 92	Note that the peak rate TBF is much more tough: with MTU 1500
 93	P_crit = 150Kbytes/sec. So, if you need greater peak
 94	rates, use alpha with HZ=1000 :-)
 95
 96	With classful TBF, limit is just kept for backwards compatibility.
 97	It is passed to the default bfifo qdisc - if the inner qdisc is
 98	changed the limit is not effective anymore.
 99*/
100
101struct tbf_sched_data {
102/* Parameters */
103	u32		limit;		/* Maximal length of backlog: bytes */
 
 
104	u32		max_size;
105	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
106	s64		mtu;
107	struct psched_ratecfg rate;
108	struct psched_ratecfg peak;
109
110/* Variables */
111	s64	tokens;			/* Current number of B tokens */
112	s64	ptokens;		/* Current number of P tokens */
113	s64	t_c;			/* Time check-point */
114	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
115	struct qdisc_watchdog watchdog;	/* Watchdog timer */
116};
117
118
119/* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
121 */
122static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123			 u64 time_in_ns)
124{
125	/* The formula is :
126	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127	 */
128	u64 len = time_in_ns * r->rate_bytes_ps;
129
130	do_div(len, NSEC_PER_SEC);
131
132	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133		do_div(len, 53);
134		len = len * 48;
135	}
136
137	if (len > r->overhead)
138		len -= r->overhead;
139	else
140		len = 0;
141
142	return len;
143}
144
145/*
146 * Return length of individual segments of a gso packet,
147 * including all headers (MAC, IP, TCP/UDP)
148 */
149static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
150{
151	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
152	return hdr_len + skb_gso_transport_seglen(skb);
153}
154
155/* GSO packet is too big, segment it so that tbf can transmit
156 * each segment in time
157 */
158static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
159{
160	struct tbf_sched_data *q = qdisc_priv(sch);
161	struct sk_buff *segs, *nskb;
162	netdev_features_t features = netif_skb_features(skb);
163	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
164	int ret, nb;
165
166	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
167
168	if (IS_ERR_OR_NULL(segs))
169		return qdisc_reshape_fail(skb, sch);
170
171	nb = 0;
172	while (segs) {
173		nskb = segs->next;
174		segs->next = NULL;
175		qdisc_skb_cb(segs)->pkt_len = segs->len;
176		len += segs->len;
177		ret = qdisc_enqueue(segs, q->qdisc);
178		if (ret != NET_XMIT_SUCCESS) {
179			if (net_xmit_drop_count(ret))
180				qdisc_qstats_drop(sch);
181		} else {
182			nb++;
183		}
184		segs = nskb;
185	}
186	sch->q.qlen += nb;
187	if (nb > 1)
188		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
189	consume_skb(skb);
190	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
191}
192
193static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
194{
195	struct tbf_sched_data *q = qdisc_priv(sch);
196	int ret;
197
198	if (qdisc_pkt_len(skb) > q->max_size) {
199		if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
200			return tbf_segment(skb, sch);
201		return qdisc_reshape_fail(skb, sch);
202	}
203	ret = qdisc_enqueue(skb, q->qdisc);
204	if (ret != NET_XMIT_SUCCESS) {
205		if (net_xmit_drop_count(ret))
206			qdisc_qstats_drop(sch);
207		return ret;
208	}
209
210	sch->q.qlen++;
211	return NET_XMIT_SUCCESS;
212}
213
214static unsigned int tbf_drop(struct Qdisc *sch)
215{
216	struct tbf_sched_data *q = qdisc_priv(sch);
217	unsigned int len = 0;
218
219	if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
220		sch->q.qlen--;
221		qdisc_qstats_drop(sch);
222	}
223	return len;
224}
225
226static bool tbf_peak_present(const struct tbf_sched_data *q)
227{
228	return q->peak.rate_bytes_ps;
229}
230
231static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
232{
233	struct tbf_sched_data *q = qdisc_priv(sch);
234	struct sk_buff *skb;
235
236	skb = q->qdisc->ops->peek(q->qdisc);
237
238	if (skb) {
239		s64 now;
240		s64 toks;
241		s64 ptoks = 0;
242		unsigned int len = qdisc_pkt_len(skb);
243
244		now = ktime_get_ns();
245		toks = min_t(s64, now - q->t_c, q->buffer);
246
247		if (tbf_peak_present(q)) {
248			ptoks = toks + q->ptokens;
249			if (ptoks > q->mtu)
250				ptoks = q->mtu;
251			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
252		}
253		toks += q->tokens;
254		if (toks > q->buffer)
255			toks = q->buffer;
256		toks -= (s64) psched_l2t_ns(&q->rate, len);
257
258		if ((toks|ptoks) >= 0) {
259			skb = qdisc_dequeue_peeked(q->qdisc);
260			if (unlikely(!skb))
261				return NULL;
262
263			q->t_c = now;
264			q->tokens = toks;
265			q->ptokens = ptoks;
266			sch->q.qlen--;
267			qdisc_unthrottled(sch);
268			qdisc_bstats_update(sch, skb);
269			return skb;
270		}
271
272		qdisc_watchdog_schedule_ns(&q->watchdog,
273					   now + max_t(long, -toks, -ptoks),
274					   true);
275
276		/* Maybe we have a shorter packet in the queue,
277		   which can be sent now. It sounds cool,
278		   but, however, this is wrong in principle.
279		   We MUST NOT reorder packets under these circumstances.
280
281		   Really, if we split the flow into independent
282		   subflows, it would be a very good solution.
283		   This is the main idea of all FQ algorithms
284		   (cf. CSZ, HPFQ, HFSC)
285		 */
286
287		qdisc_qstats_overlimit(sch);
288	}
289	return NULL;
290}
291
292static void tbf_reset(struct Qdisc *sch)
293{
294	struct tbf_sched_data *q = qdisc_priv(sch);
295
296	qdisc_reset(q->qdisc);
297	sch->q.qlen = 0;
298	q->t_c = ktime_get_ns();
299	q->tokens = q->buffer;
300	q->ptokens = q->mtu;
301	qdisc_watchdog_cancel(&q->watchdog);
302}
303
304static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
305	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
306	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
307	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
308	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
309	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
310	[TCA_TBF_BURST] = { .type = NLA_U32 },
311	[TCA_TBF_PBURST] = { .type = NLA_U32 },
312};
313
314static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
315{
316	int err;
317	struct tbf_sched_data *q = qdisc_priv(sch);
318	struct nlattr *tb[TCA_TBF_MAX + 1];
319	struct tc_tbf_qopt *qopt;
 
 
320	struct Qdisc *child = NULL;
321	struct psched_ratecfg rate;
322	struct psched_ratecfg peak;
323	u64 max_size;
324	s64 buffer, mtu;
325	u64 rate64 = 0, prate64 = 0;
326
327	err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
328	if (err < 0)
329		return err;
330
331	err = -EINVAL;
332	if (tb[TCA_TBF_PARMS] == NULL)
333		goto done;
334
335	qopt = nla_data(tb[TCA_TBF_PARMS]);
336	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
337		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
338					      tb[TCA_TBF_RTAB]));
339
340	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
341			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
342						      tb[TCA_TBF_PTAB]));
343
344	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
345	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
346
347	if (tb[TCA_TBF_RATE64])
348		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
349	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
350
351	if (tb[TCA_TBF_BURST]) {
352		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
353		buffer = psched_l2t_ns(&rate, max_size);
354	} else {
355		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
356	}
357
358	if (qopt->peakrate.rate) {
359		if (tb[TCA_TBF_PRATE64])
360			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
361		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
362		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
363			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
364					peak.rate_bytes_ps, rate.rate_bytes_ps);
365			err = -EINVAL;
366			goto done;
367		}
368
369		if (tb[TCA_TBF_PBURST]) {
370			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
371			max_size = min_t(u32, max_size, pburst);
372			mtu = psched_l2t_ns(&peak, pburst);
373		} else {
374			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
375		}
376	} else {
377		memset(&peak, 0, sizeof(peak));
378	}
379
380	if (max_size < psched_mtu(qdisc_dev(sch)))
381		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
382				    max_size, qdisc_dev(sch)->name,
383				    psched_mtu(qdisc_dev(sch)));
384
385	if (!max_size) {
386		err = -EINVAL;
387		goto done;
 
 
 
 
 
388	}
 
 
389
390	if (q->qdisc != &noop_qdisc) {
391		err = fifo_set_limit(q->qdisc, qopt->limit);
392		if (err)
393			goto done;
394	} else if (qopt->limit > 0) {
395		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
396		if (IS_ERR(child)) {
397			err = PTR_ERR(child);
398			goto done;
399		}
400	}
401
402	sch_tree_lock(sch);
403	if (child) {
404		qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
405					  q->qdisc->qstats.backlog);
406		qdisc_destroy(q->qdisc);
407		q->qdisc = child;
408	}
409	q->limit = qopt->limit;
410	if (tb[TCA_TBF_PBURST])
411		q->mtu = mtu;
412	else
413		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
414	q->max_size = max_size;
415	if (tb[TCA_TBF_BURST])
416		q->buffer = buffer;
417	else
418		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
419	q->tokens = q->buffer;
420	q->ptokens = q->mtu;
421
422	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
423	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
424
425	sch_tree_unlock(sch);
426	err = 0;
427done:
 
 
 
 
428	return err;
429}
430
431static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
432{
433	struct tbf_sched_data *q = qdisc_priv(sch);
434
435	if (opt == NULL)
436		return -EINVAL;
437
438	q->t_c = ktime_get_ns();
439	qdisc_watchdog_init(&q->watchdog, sch);
440	q->qdisc = &noop_qdisc;
441
442	return tbf_change(sch, opt);
443}
444
445static void tbf_destroy(struct Qdisc *sch)
446{
447	struct tbf_sched_data *q = qdisc_priv(sch);
448
449	qdisc_watchdog_cancel(&q->watchdog);
 
 
 
 
 
 
450	qdisc_destroy(q->qdisc);
451}
452
453static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
454{
455	struct tbf_sched_data *q = qdisc_priv(sch);
456	struct nlattr *nest;
457	struct tc_tbf_qopt opt;
458
459	sch->qstats.backlog = q->qdisc->qstats.backlog;
460	nest = nla_nest_start(skb, TCA_OPTIONS);
461	if (nest == NULL)
462		goto nla_put_failure;
463
464	opt.limit = q->limit;
465	psched_ratecfg_getrate(&opt.rate, &q->rate);
466	if (tbf_peak_present(q))
467		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
468	else
469		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
470	opt.mtu = PSCHED_NS2TICKS(q->mtu);
471	opt.buffer = PSCHED_NS2TICKS(q->buffer);
472	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
473		goto nla_put_failure;
474	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
475	    nla_put_u64(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps))
476		goto nla_put_failure;
477	if (tbf_peak_present(q) &&
478	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
479	    nla_put_u64(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps))
480		goto nla_put_failure;
481
482	return nla_nest_end(skb, nest);
 
483
484nla_put_failure:
485	nla_nest_cancel(skb, nest);
486	return -1;
487}
488
489static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
490			  struct sk_buff *skb, struct tcmsg *tcm)
491{
492	struct tbf_sched_data *q = qdisc_priv(sch);
493
494	tcm->tcm_handle |= TC_H_MIN(1);
495	tcm->tcm_info = q->qdisc->handle;
496
497	return 0;
498}
499
500static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
501		     struct Qdisc **old)
502{
503	struct tbf_sched_data *q = qdisc_priv(sch);
504
505	if (new == NULL)
506		new = &noop_qdisc;
507
508	*old = qdisc_replace(sch, new, &q->qdisc);
 
 
 
 
 
 
509	return 0;
510}
511
512static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
513{
514	struct tbf_sched_data *q = qdisc_priv(sch);
515	return q->qdisc;
516}
517
518static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
519{
520	return 1;
521}
522
523static void tbf_put(struct Qdisc *sch, unsigned long arg)
524{
525}
526
527static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
528{
529	if (!walker->stop) {
530		if (walker->count >= walker->skip)
531			if (walker->fn(sch, 1, walker) < 0) {
532				walker->stop = 1;
533				return;
534			}
535		walker->count++;
536	}
537}
538
539static const struct Qdisc_class_ops tbf_class_ops = {
540	.graft		=	tbf_graft,
541	.leaf		=	tbf_leaf,
542	.get		=	tbf_get,
543	.put		=	tbf_put,
544	.walk		=	tbf_walk,
545	.dump		=	tbf_dump_class,
546};
547
548static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
549	.next		=	NULL,
550	.cl_ops		=	&tbf_class_ops,
551	.id		=	"tbf",
552	.priv_size	=	sizeof(struct tbf_sched_data),
553	.enqueue	=	tbf_enqueue,
554	.dequeue	=	tbf_dequeue,
555	.peek		=	qdisc_peek_dequeued,
556	.drop		=	tbf_drop,
557	.init		=	tbf_init,
558	.reset		=	tbf_reset,
559	.destroy	=	tbf_destroy,
560	.change		=	tbf_change,
561	.dump		=	tbf_dump,
562	.owner		=	THIS_MODULE,
563};
564
565static int __init tbf_module_init(void)
566{
567	return register_qdisc(&tbf_qdisc_ops);
568}
569
570static void __exit tbf_module_exit(void)
571{
572	unregister_qdisc(&tbf_qdisc_ops);
573}
574module_init(tbf_module_init)
575module_exit(tbf_module_exit)
576MODULE_LICENSE("GPL");
  1/*
  2 * net/sched/sch_tbf.c	Token Bucket Filter queue.
  3 *
  4 *		This program is free software; you can redistribute it and/or
  5 *		modify it under the terms of the GNU General Public License
  6 *		as published by the Free Software Foundation; either version
  7 *		2 of the License, or (at your option) any later version.
  8 *
  9 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 10 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
 11 *						 original idea by Martin Devera
 12 *
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/string.h>
 19#include <linux/errno.h>
 20#include <linux/skbuff.h>
 21#include <net/netlink.h>
 
 22#include <net/pkt_sched.h>
 23
 24
 25/*	Simple Token Bucket Filter.
 26	=======================================
 27
 28	SOURCE.
 29	-------
 30
 31	None.
 32
 33	Description.
 34	------------
 35
 36	A data flow obeys TBF with rate R and depth B, if for any
 37	time interval t_i...t_f the number of transmitted bits
 38	does not exceed B + R*(t_f-t_i).
 39
 40	Packetized version of this definition:
 41	The sequence of packets of sizes s_i served at moments t_i
 42	obeys TBF, if for any i<=k:
 43
 44	s_i+....+s_k <= B + R*(t_k - t_i)
 45
 46	Algorithm.
 47	----------
 48
 49	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
 50
 51	N(t+delta) = min{B/R, N(t) + delta}
 52
 53	If the first packet in queue has length S, it may be
 54	transmitted only at the time t_* when S/R <= N(t_*),
 55	and in this case N(t) jumps:
 56
 57	N(t_* + 0) = N(t_* - 0) - S/R.
 58
 59
 60
 61	Actually, QoS requires two TBF to be applied to a data stream.
 62	One of them controls steady state burst size, another
 63	one with rate P (peak rate) and depth M (equal to link MTU)
 64	limits bursts at a smaller time scale.
 65
 66	It is easy to see that P>R, and B>M. If P is infinity, this double
 67	TBF is equivalent to a single one.
 68
 69	When TBF works in reshaping mode, latency is estimated as:
 70
 71	lat = max ((L-B)/R, (L-M)/P)
 72
 73
 74	NOTES.
 75	------
 76
 77	If TBF throttles, it starts a watchdog timer, which will wake it up
 78	when it is ready to transmit.
 79	Note that the minimal timer resolution is 1/HZ.
 80	If no new packets arrive during this period,
 81	or if the device is not awaken by EOI for some previous packet,
 82	TBF can stop its activity for 1/HZ.
 83
 84
 85	This means, that with depth B, the maximal rate is
 86
 87	R_crit = B*HZ
 88
 89	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
 90
 91	Note that the peak rate TBF is much more tough: with MTU 1500
 92	P_crit = 150Kbytes/sec. So, if you need greater peak
 93	rates, use alpha with HZ=1000 :-)
 94
 95	With classful TBF, limit is just kept for backwards compatibility.
 96	It is passed to the default bfifo qdisc - if the inner qdisc is
 97	changed the limit is not effective anymore.
 98*/
 99
100struct tbf_sched_data {
101/* Parameters */
102	u32		limit;		/* Maximal length of backlog: bytes */
103	u32		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
104	u32		mtu;
105	u32		max_size;
106	struct qdisc_rate_table	*R_tab;
107	struct qdisc_rate_table	*P_tab;
 
 
108
109/* Variables */
110	long	tokens;			/* Current number of B tokens */
111	long	ptokens;		/* Current number of P tokens */
112	psched_time_t	t_c;		/* Time check-point */
113	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
114	struct qdisc_watchdog watchdog;	/* Watchdog timer */
115};
116
117#define L2T(q, L)   qdisc_l2t((q)->R_tab, L)
118#define L2T_P(q, L) qdisc_l2t((q)->P_tab, L)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
121{
122	struct tbf_sched_data *q = qdisc_priv(sch);
123	int ret;
124
125	if (qdisc_pkt_len(skb) > q->max_size)
 
 
126		return qdisc_reshape_fail(skb, sch);
127
128	ret = qdisc_enqueue(skb, q->qdisc);
129	if (ret != NET_XMIT_SUCCESS) {
130		if (net_xmit_drop_count(ret))
131			sch->qstats.drops++;
132		return ret;
133	}
134
135	sch->q.qlen++;
136	return NET_XMIT_SUCCESS;
137}
138
139static unsigned int tbf_drop(struct Qdisc *sch)
140{
141	struct tbf_sched_data *q = qdisc_priv(sch);
142	unsigned int len = 0;
143
144	if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
145		sch->q.qlen--;
146		sch->qstats.drops++;
147	}
148	return len;
149}
150
 
 
 
 
 
151static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
152{
153	struct tbf_sched_data *q = qdisc_priv(sch);
154	struct sk_buff *skb;
155
156	skb = q->qdisc->ops->peek(q->qdisc);
157
158	if (skb) {
159		psched_time_t now;
160		long toks;
161		long ptoks = 0;
162		unsigned int len = qdisc_pkt_len(skb);
163
164		now = psched_get_time();
165		toks = psched_tdiff_bounded(now, q->t_c, q->buffer);
166
167		if (q->P_tab) {
168			ptoks = toks + q->ptokens;
169			if (ptoks > (long)q->mtu)
170				ptoks = q->mtu;
171			ptoks -= L2T_P(q, len);
172		}
173		toks += q->tokens;
174		if (toks > (long)q->buffer)
175			toks = q->buffer;
176		toks -= L2T(q, len);
177
178		if ((toks|ptoks) >= 0) {
179			skb = qdisc_dequeue_peeked(q->qdisc);
180			if (unlikely(!skb))
181				return NULL;
182
183			q->t_c = now;
184			q->tokens = toks;
185			q->ptokens = ptoks;
186			sch->q.qlen--;
187			qdisc_unthrottled(sch);
188			qdisc_bstats_update(sch, skb);
189			return skb;
190		}
191
192		qdisc_watchdog_schedule(&q->watchdog,
193					now + max_t(long, -toks, -ptoks));
 
194
195		/* Maybe we have a shorter packet in the queue,
196		   which can be sent now. It sounds cool,
197		   but, however, this is wrong in principle.
198		   We MUST NOT reorder packets under these circumstances.
199
200		   Really, if we split the flow into independent
201		   subflows, it would be a very good solution.
202		   This is the main idea of all FQ algorithms
203		   (cf. CSZ, HPFQ, HFSC)
204		 */
205
206		sch->qstats.overlimits++;
207	}
208	return NULL;
209}
210
211static void tbf_reset(struct Qdisc *sch)
212{
213	struct tbf_sched_data *q = qdisc_priv(sch);
214
215	qdisc_reset(q->qdisc);
216	sch->q.qlen = 0;
217	q->t_c = psched_get_time();
218	q->tokens = q->buffer;
219	q->ptokens = q->mtu;
220	qdisc_watchdog_cancel(&q->watchdog);
221}
222
223static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
224	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
225	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
226	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
 
 
 
 
227};
228
229static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
230{
231	int err;
232	struct tbf_sched_data *q = qdisc_priv(sch);
233	struct nlattr *tb[TCA_TBF_PTAB + 1];
234	struct tc_tbf_qopt *qopt;
235	struct qdisc_rate_table *rtab = NULL;
236	struct qdisc_rate_table *ptab = NULL;
237	struct Qdisc *child = NULL;
238	int max_size, n;
 
 
 
 
239
240	err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy);
241	if (err < 0)
242		return err;
243
244	err = -EINVAL;
245	if (tb[TCA_TBF_PARMS] == NULL)
246		goto done;
247
248	qopt = nla_data(tb[TCA_TBF_PARMS]);
249	rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
250	if (rtab == NULL)
251		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
253	if (qopt->peakrate.rate) {
254		if (qopt->peakrate.rate > qopt->rate.rate)
255			ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
256		if (ptab == NULL)
 
 
 
 
257			goto done;
 
 
 
 
 
 
 
 
 
 
 
258	}
259
260	for (n = 0; n < 256; n++)
261		if (rtab->data[n] > qopt->buffer)
262			break;
263	max_size = (n << qopt->rate.cell_log) - 1;
264	if (ptab) {
265		int size;
266
267		for (n = 0; n < 256; n++)
268			if (ptab->data[n] > qopt->mtu)
269				break;
270		size = (n << qopt->peakrate.cell_log) - 1;
271		if (size < max_size)
272			max_size = size;
273	}
274	if (max_size < 0)
275		goto done;
276
277	if (q->qdisc != &noop_qdisc) {
278		err = fifo_set_limit(q->qdisc, qopt->limit);
279		if (err)
280			goto done;
281	} else if (qopt->limit > 0) {
282		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
283		if (IS_ERR(child)) {
284			err = PTR_ERR(child);
285			goto done;
286		}
287	}
288
289	sch_tree_lock(sch);
290	if (child) {
291		qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
 
292		qdisc_destroy(q->qdisc);
293		q->qdisc = child;
294	}
295	q->limit = qopt->limit;
296	q->mtu = qopt->mtu;
 
 
 
297	q->max_size = max_size;
298	q->buffer = qopt->buffer;
 
 
 
299	q->tokens = q->buffer;
300	q->ptokens = q->mtu;
301
302	swap(q->R_tab, rtab);
303	swap(q->P_tab, ptab);
304
305	sch_tree_unlock(sch);
306	err = 0;
307done:
308	if (rtab)
309		qdisc_put_rtab(rtab);
310	if (ptab)
311		qdisc_put_rtab(ptab);
312	return err;
313}
314
315static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
316{
317	struct tbf_sched_data *q = qdisc_priv(sch);
318
319	if (opt == NULL)
320		return -EINVAL;
321
322	q->t_c = psched_get_time();
323	qdisc_watchdog_init(&q->watchdog, sch);
324	q->qdisc = &noop_qdisc;
325
326	return tbf_change(sch, opt);
327}
328
329static void tbf_destroy(struct Qdisc *sch)
330{
331	struct tbf_sched_data *q = qdisc_priv(sch);
332
333	qdisc_watchdog_cancel(&q->watchdog);
334
335	if (q->P_tab)
336		qdisc_put_rtab(q->P_tab);
337	if (q->R_tab)
338		qdisc_put_rtab(q->R_tab);
339
340	qdisc_destroy(q->qdisc);
341}
342
343static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
344{
345	struct tbf_sched_data *q = qdisc_priv(sch);
346	struct nlattr *nest;
347	struct tc_tbf_qopt opt;
348
 
349	nest = nla_nest_start(skb, TCA_OPTIONS);
350	if (nest == NULL)
351		goto nla_put_failure;
352
353	opt.limit = q->limit;
354	opt.rate = q->R_tab->rate;
355	if (q->P_tab)
356		opt.peakrate = q->P_tab->rate;
357	else
358		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
359	opt.mtu = q->mtu;
360	opt.buffer = q->buffer;
361	NLA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt);
 
 
 
 
 
 
 
 
362
363	nla_nest_end(skb, nest);
364	return skb->len;
365
366nla_put_failure:
367	nla_nest_cancel(skb, nest);
368	return -1;
369}
370
371static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
372			  struct sk_buff *skb, struct tcmsg *tcm)
373{
374	struct tbf_sched_data *q = qdisc_priv(sch);
375
376	tcm->tcm_handle |= TC_H_MIN(1);
377	tcm->tcm_info = q->qdisc->handle;
378
379	return 0;
380}
381
382static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
383		     struct Qdisc **old)
384{
385	struct tbf_sched_data *q = qdisc_priv(sch);
386
387	if (new == NULL)
388		new = &noop_qdisc;
389
390	sch_tree_lock(sch);
391	*old = q->qdisc;
392	q->qdisc = new;
393	qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
394	qdisc_reset(*old);
395	sch_tree_unlock(sch);
396
397	return 0;
398}
399
400static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
401{
402	struct tbf_sched_data *q = qdisc_priv(sch);
403	return q->qdisc;
404}
405
406static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
407{
408	return 1;
409}
410
411static void tbf_put(struct Qdisc *sch, unsigned long arg)
412{
413}
414
415static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
416{
417	if (!walker->stop) {
418		if (walker->count >= walker->skip)
419			if (walker->fn(sch, 1, walker) < 0) {
420				walker->stop = 1;
421				return;
422			}
423		walker->count++;
424	}
425}
426
427static const struct Qdisc_class_ops tbf_class_ops = {
428	.graft		=	tbf_graft,
429	.leaf		=	tbf_leaf,
430	.get		=	tbf_get,
431	.put		=	tbf_put,
432	.walk		=	tbf_walk,
433	.dump		=	tbf_dump_class,
434};
435
436static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
437	.next		=	NULL,
438	.cl_ops		=	&tbf_class_ops,
439	.id		=	"tbf",
440	.priv_size	=	sizeof(struct tbf_sched_data),
441	.enqueue	=	tbf_enqueue,
442	.dequeue	=	tbf_dequeue,
443	.peek		=	qdisc_peek_dequeued,
444	.drop		=	tbf_drop,
445	.init		=	tbf_init,
446	.reset		=	tbf_reset,
447	.destroy	=	tbf_destroy,
448	.change		=	tbf_change,
449	.dump		=	tbf_dump,
450	.owner		=	THIS_MODULE,
451};
452
453static int __init tbf_module_init(void)
454{
455	return register_qdisc(&tbf_qdisc_ops);
456}
457
458static void __exit tbf_module_exit(void)
459{
460	unregister_qdisc(&tbf_qdisc_ops);
461}
462module_init(tbf_module_init)
463module_exit(tbf_module_exit)
464MODULE_LICENSE("GPL");