Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *	linux/mm/mlock.c
  3 *
  4 *  (C) Copyright 1995 Linus Torvalds
  5 *  (C) Copyright 2002 Christoph Hellwig
  6 */
  7
  8#include <linux/capability.h>
  9#include <linux/mman.h>
 10#include <linux/mm.h>
 
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/pagemap.h>
 14#include <linux/pagevec.h>
 15#include <linux/mempolicy.h>
 16#include <linux/syscalls.h>
 17#include <linux/sched.h>
 18#include <linux/export.h>
 19#include <linux/rmap.h>
 20#include <linux/mmzone.h>
 21#include <linux/hugetlb.h>
 22#include <linux/memcontrol.h>
 23#include <linux/mm_inline.h>
 24
 25#include "internal.h"
 26
 27bool can_do_mlock(void)
 28{
 29	if (rlimit(RLIMIT_MEMLOCK) != 0)
 30		return true;
 31	if (capable(CAP_IPC_LOCK))
 32		return true;
 33	return false;
 34}
 35EXPORT_SYMBOL(can_do_mlock);
 36
 37/*
 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 39 * in vmscan and, possibly, the fault path; and to support semi-accurate
 40 * statistics.
 41 *
 42 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 44 * The unevictable list is an LRU sibling list to the [in]active lists.
 45 * PageUnevictable is set to indicate the unevictable state.
 46 *
 47 * When lazy mlocking via vmscan, it is important to ensure that the
 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 49 * may have mlocked a page that is being munlocked. So lazy mlock must take
 50 * the mmap_sem for read, and verify that the vma really is locked
 51 * (see mm/rmap.c).
 52 */
 53
 54/*
 55 *  LRU accounting for clear_page_mlock()
 56 */
 57void clear_page_mlock(struct page *page)
 58{
 59	if (!TestClearPageMlocked(page))
 60		return;
 61
 62	mod_zone_page_state(page_zone(page), NR_MLOCK,
 63			    -hpage_nr_pages(page));
 64	count_vm_event(UNEVICTABLE_PGCLEARED);
 
 
 
 
 
 
 65	if (!isolate_lru_page(page)) {
 66		putback_lru_page(page);
 67	} else {
 68		/*
 69		 * We lost the race. the page already moved to evictable list.
 70		 */
 71		if (PageUnevictable(page))
 72			count_vm_event(UNEVICTABLE_PGSTRANDED);
 73	}
 74}
 75
 76/*
 77 * Mark page as mlocked if not already.
 78 * If page on LRU, isolate and putback to move to unevictable list.
 79 */
 80void mlock_vma_page(struct page *page)
 81{
 82	/* Serialize with page migration */
 83	BUG_ON(!PageLocked(page));
 84
 85	VM_BUG_ON_PAGE(PageTail(page), page);
 86	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
 87
 88	if (!TestSetPageMlocked(page)) {
 89		mod_zone_page_state(page_zone(page), NR_MLOCK,
 90				    hpage_nr_pages(page));
 91		count_vm_event(UNEVICTABLE_PGMLOCKED);
 92		if (!isolate_lru_page(page))
 93			putback_lru_page(page);
 94	}
 95}
 96
 97/*
 98 * Isolate a page from LRU with optional get_page() pin.
 99 * Assumes lru_lock already held and page already pinned.
100 */
101static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
102{
103	if (PageLRU(page)) {
104		struct lruvec *lruvec;
105
106		lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
107		if (getpage)
108			get_page(page);
109		ClearPageLRU(page);
110		del_page_from_lru_list(page, lruvec, page_lru(page));
111		return true;
112	}
113
114	return false;
115}
116
117/*
118 * Finish munlock after successful page isolation
119 *
120 * Page must be locked. This is a wrapper for try_to_munlock()
121 * and putback_lru_page() with munlock accounting.
122 */
123static void __munlock_isolated_page(struct page *page)
124{
125	int ret = SWAP_AGAIN;
126
127	/*
128	 * Optimization: if the page was mapped just once, that's our mapping
129	 * and we don't need to check all the other vmas.
130	 */
131	if (page_mapcount(page) > 1)
132		ret = try_to_munlock(page);
133
134	/* Did try_to_unlock() succeed or punt? */
135	if (ret != SWAP_MLOCK)
136		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
137
138	putback_lru_page(page);
139}
140
141/*
142 * Accounting for page isolation fail during munlock
143 *
144 * Performs accounting when page isolation fails in munlock. There is nothing
145 * else to do because it means some other task has already removed the page
146 * from the LRU. putback_lru_page() will take care of removing the page from
147 * the unevictable list, if necessary. vmscan [page_referenced()] will move
148 * the page back to the unevictable list if some other vma has it mlocked.
149 */
150static void __munlock_isolation_failed(struct page *page)
151{
152	if (PageUnevictable(page))
153		__count_vm_event(UNEVICTABLE_PGSTRANDED);
154	else
155		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
156}
157
158/**
159 * munlock_vma_page - munlock a vma page
160 * @page - page to be unlocked, either a normal page or THP page head
161 *
162 * returns the size of the page as a page mask (0 for normal page,
163 *         HPAGE_PMD_NR - 1 for THP head page)
164 *
165 * called from munlock()/munmap() path with page supposedly on the LRU.
166 * When we munlock a page, because the vma where we found the page is being
167 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
168 * page locked so that we can leave it on the unevictable lru list and not
169 * bother vmscan with it.  However, to walk the page's rmap list in
170 * try_to_munlock() we must isolate the page from the LRU.  If some other
171 * task has removed the page from the LRU, we won't be able to do that.
172 * So we clear the PageMlocked as we might not get another chance.  If we
173 * can't isolate the page, we leave it for putback_lru_page() and vmscan
174 * [page_referenced()/try_to_unmap()] to deal with.
175 */
176unsigned int munlock_vma_page(struct page *page)
177{
178	int nr_pages;
179	struct zone *zone = page_zone(page);
180
181	/* For try_to_munlock() and to serialize with page migration */
182	BUG_ON(!PageLocked(page));
183
184	VM_BUG_ON_PAGE(PageTail(page), page);
185
186	/*
187	 * Serialize with any parallel __split_huge_page_refcount() which
188	 * might otherwise copy PageMlocked to part of the tail pages before
189	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
190	 */
191	spin_lock_irq(&zone->lru_lock);
192
193	nr_pages = hpage_nr_pages(page);
194	if (!TestClearPageMlocked(page))
 
195		goto unlock_out;
 
196
197	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
 
198
199	if (__munlock_isolate_lru_page(page, true)) {
200		spin_unlock_irq(&zone->lru_lock);
201		__munlock_isolated_page(page);
202		goto out;
203	}
204	__munlock_isolation_failed(page);
205
206unlock_out:
207	spin_unlock_irq(&zone->lru_lock);
208
209out:
210	return nr_pages - 1;
211}
212
213/*
214 * convert get_user_pages() return value to posix mlock() error
215 */
216static int __mlock_posix_error_return(long retval)
217{
218	if (retval == -EFAULT)
219		retval = -ENOMEM;
220	else if (retval == -ENOMEM)
221		retval = -EAGAIN;
222	return retval;
223}
224
225/*
226 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
227 *
228 * The fast path is available only for evictable pages with single mapping.
229 * Then we can bypass the per-cpu pvec and get better performance.
230 * when mapcount > 1 we need try_to_munlock() which can fail.
231 * when !page_evictable(), we need the full redo logic of putback_lru_page to
232 * avoid leaving evictable page in unevictable list.
233 *
234 * In case of success, @page is added to @pvec and @pgrescued is incremented
235 * in case that the page was previously unevictable. @page is also unlocked.
236 */
237static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
238		int *pgrescued)
239{
240	VM_BUG_ON_PAGE(PageLRU(page), page);
241	VM_BUG_ON_PAGE(!PageLocked(page), page);
242
243	if (page_mapcount(page) <= 1 && page_evictable(page)) {
244		pagevec_add(pvec, page);
245		if (TestClearPageUnevictable(page))
246			(*pgrescued)++;
247		unlock_page(page);
248		return true;
249	}
250
251	return false;
252}
253
254/*
255 * Putback multiple evictable pages to the LRU
256 *
257 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
258 * the pages might have meanwhile become unevictable but that is OK.
259 */
260static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
261{
262	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
263	/*
264	 *__pagevec_lru_add() calls release_pages() so we don't call
265	 * put_page() explicitly
266	 */
267	__pagevec_lru_add(pvec);
268	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
269}
270
271/*
272 * Munlock a batch of pages from the same zone
273 *
274 * The work is split to two main phases. First phase clears the Mlocked flag
275 * and attempts to isolate the pages, all under a single zone lru lock.
276 * The second phase finishes the munlock only for pages where isolation
277 * succeeded.
278 *
279 * Note that the pagevec may be modified during the process.
280 */
281static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
282{
283	int i;
284	int nr = pagevec_count(pvec);
285	int delta_munlocked;
286	struct pagevec pvec_putback;
287	int pgrescued = 0;
288
289	pagevec_init(&pvec_putback, 0);
290
291	/* Phase 1: page isolation */
292	spin_lock_irq(&zone->lru_lock);
293	for (i = 0; i < nr; i++) {
294		struct page *page = pvec->pages[i];
295
296		if (TestClearPageMlocked(page)) {
297			/*
298			 * We already have pin from follow_page_mask()
299			 * so we can spare the get_page() here.
300			 */
301			if (__munlock_isolate_lru_page(page, false))
302				continue;
303			else
304				__munlock_isolation_failed(page);
 
 
305		}
306
307		/*
308		 * We won't be munlocking this page in the next phase
309		 * but we still need to release the follow_page_mask()
310		 * pin. We cannot do it under lru_lock however. If it's
311		 * the last pin, __page_cache_release() would deadlock.
312		 */
313		pagevec_add(&pvec_putback, pvec->pages[i]);
314		pvec->pages[i] = NULL;
315	}
316	delta_munlocked = -nr + pagevec_count(&pvec_putback);
317	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
318	spin_unlock_irq(&zone->lru_lock);
319
320	/* Now we can release pins of pages that we are not munlocking */
321	pagevec_release(&pvec_putback);
322
323	/* Phase 2: page munlock */
324	for (i = 0; i < nr; i++) {
325		struct page *page = pvec->pages[i];
326
327		if (page) {
328			lock_page(page);
329			if (!__putback_lru_fast_prepare(page, &pvec_putback,
330					&pgrescued)) {
331				/*
332				 * Slow path. We don't want to lose the last
333				 * pin before unlock_page()
334				 */
335				get_page(page); /* for putback_lru_page() */
336				__munlock_isolated_page(page);
337				unlock_page(page);
338				put_page(page); /* from follow_page_mask() */
339			}
340		}
341	}
342
343	/*
344	 * Phase 3: page putback for pages that qualified for the fast path
345	 * This will also call put_page() to return pin from follow_page_mask()
346	 */
347	if (pagevec_count(&pvec_putback))
348		__putback_lru_fast(&pvec_putback, pgrescued);
349}
350
351/*
352 * Fill up pagevec for __munlock_pagevec using pte walk
353 *
354 * The function expects that the struct page corresponding to @start address is
355 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
356 *
357 * The rest of @pvec is filled by subsequent pages within the same pmd and same
358 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
359 * pages also get pinned.
360 *
361 * Returns the address of the next page that should be scanned. This equals
362 * @start + PAGE_SIZE when no page could be added by the pte walk.
363 */
364static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
365		struct vm_area_struct *vma, int zoneid,	unsigned long start,
366		unsigned long end)
367{
368	pte_t *pte;
369	spinlock_t *ptl;
370
371	/*
372	 * Initialize pte walk starting at the already pinned page where we
373	 * are sure that there is a pte, as it was pinned under the same
374	 * mmap_sem write op.
375	 */
376	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
377	/* Make sure we do not cross the page table boundary */
378	end = pgd_addr_end(start, end);
 
379	end = pud_addr_end(start, end);
380	end = pmd_addr_end(start, end);
381
382	/* The page next to the pinned page is the first we will try to get */
383	start += PAGE_SIZE;
384	while (start < end) {
385		struct page *page = NULL;
386		pte++;
387		if (pte_present(*pte))
388			page = vm_normal_page(vma, start, *pte);
389		/*
390		 * Break if page could not be obtained or the page's node+zone does not
391		 * match
392		 */
393		if (!page || page_zone_id(page) != zoneid)
394			break;
395
396		/*
397		 * Do not use pagevec for PTE-mapped THP,
398		 * munlock_vma_pages_range() will handle them.
399		 */
400		if (PageTransCompound(page))
401			break;
402
403		get_page(page);
404		/*
405		 * Increase the address that will be returned *before* the
406		 * eventual break due to pvec becoming full by adding the page
407		 */
408		start += PAGE_SIZE;
409		if (pagevec_add(pvec, page) == 0)
410			break;
411	}
412	pte_unmap_unlock(pte, ptl);
413	return start;
414}
415
416/*
417 * munlock_vma_pages_range() - munlock all pages in the vma range.'
418 * @vma - vma containing range to be munlock()ed.
419 * @start - start address in @vma of the range
420 * @end - end of range in @vma.
421 *
422 *  For mremap(), munmap() and exit().
423 *
424 * Called with @vma VM_LOCKED.
425 *
426 * Returns with VM_LOCKED cleared.  Callers must be prepared to
427 * deal with this.
428 *
429 * We don't save and restore VM_LOCKED here because pages are
430 * still on lru.  In unmap path, pages might be scanned by reclaim
431 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
432 * free them.  This will result in freeing mlocked pages.
433 */
434void munlock_vma_pages_range(struct vm_area_struct *vma,
435			     unsigned long start, unsigned long end)
436{
437	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
438
439	while (start < end) {
440		struct page *page;
441		unsigned int page_mask;
442		unsigned long page_increm;
443		struct pagevec pvec;
444		struct zone *zone;
445		int zoneid;
446
447		pagevec_init(&pvec, 0);
448		/*
449		 * Although FOLL_DUMP is intended for get_dump_page(),
450		 * it just so happens that its special treatment of the
451		 * ZERO_PAGE (returning an error instead of doing get_page)
452		 * suits munlock very well (and if somehow an abnormal page
453		 * has sneaked into the range, we won't oops here: great).
454		 */
455		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
456				&page_mask);
457
458		if (page && !IS_ERR(page)) {
459			if (PageTransTail(page)) {
460				VM_BUG_ON_PAGE(PageMlocked(page), page);
461				put_page(page); /* follow_page_mask() */
462			} else if (PageTransHuge(page)) {
463				lock_page(page);
464				/*
465				 * Any THP page found by follow_page_mask() may
466				 * have gotten split before reaching
467				 * munlock_vma_page(), so we need to recompute
468				 * the page_mask here.
469				 */
470				page_mask = munlock_vma_page(page);
471				unlock_page(page);
472				put_page(page); /* follow_page_mask() */
473			} else {
474				/*
475				 * Non-huge pages are handled in batches via
476				 * pagevec. The pin from follow_page_mask()
477				 * prevents them from collapsing by THP.
478				 */
479				pagevec_add(&pvec, page);
480				zone = page_zone(page);
481				zoneid = page_zone_id(page);
482
483				/*
484				 * Try to fill the rest of pagevec using fast
485				 * pte walk. This will also update start to
486				 * the next page to process. Then munlock the
487				 * pagevec.
488				 */
489				start = __munlock_pagevec_fill(&pvec, vma,
490						zoneid, start, end);
491				__munlock_pagevec(&pvec, zone);
492				goto next;
493			}
494		}
495		page_increm = 1 + page_mask;
496		start += page_increm * PAGE_SIZE;
497next:
498		cond_resched();
499	}
500}
501
502/*
503 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
504 *
505 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
506 * munlock is a no-op.  However, for some special vmas, we go ahead and
507 * populate the ptes.
508 *
509 * For vmas that pass the filters, merge/split as appropriate.
510 */
511static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
512	unsigned long start, unsigned long end, vm_flags_t newflags)
513{
514	struct mm_struct *mm = vma->vm_mm;
515	pgoff_t pgoff;
516	int nr_pages;
517	int ret = 0;
518	int lock = !!(newflags & VM_LOCKED);
 
519
520	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
521	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
 
522		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
523		goto out;
524
525	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
526	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
527			  vma->vm_file, pgoff, vma_policy(vma),
528			  vma->vm_userfaultfd_ctx);
529	if (*prev) {
530		vma = *prev;
531		goto success;
532	}
533
534	if (start != vma->vm_start) {
535		ret = split_vma(mm, vma, start, 1);
536		if (ret)
537			goto out;
538	}
539
540	if (end != vma->vm_end) {
541		ret = split_vma(mm, vma, end, 0);
542		if (ret)
543			goto out;
544	}
545
546success:
547	/*
548	 * Keep track of amount of locked VM.
549	 */
550	nr_pages = (end - start) >> PAGE_SHIFT;
551	if (!lock)
552		nr_pages = -nr_pages;
 
 
553	mm->locked_vm += nr_pages;
554
555	/*
556	 * vm_flags is protected by the mmap_sem held in write mode.
557	 * It's okay if try_to_unmap_one unmaps a page just after we
558	 * set VM_LOCKED, populate_vma_page_range will bring it back.
559	 */
560
561	if (lock)
562		vma->vm_flags = newflags;
563	else
564		munlock_vma_pages_range(vma, start, end);
565
566out:
567	*prev = vma;
568	return ret;
569}
570
571static int apply_vma_lock_flags(unsigned long start, size_t len,
572				vm_flags_t flags)
573{
574	unsigned long nstart, end, tmp;
575	struct vm_area_struct * vma, * prev;
576	int error;
577
578	VM_BUG_ON(offset_in_page(start));
579	VM_BUG_ON(len != PAGE_ALIGN(len));
580	end = start + len;
581	if (end < start)
582		return -EINVAL;
583	if (end == start)
584		return 0;
585	vma = find_vma(current->mm, start);
586	if (!vma || vma->vm_start > start)
587		return -ENOMEM;
588
589	prev = vma->vm_prev;
590	if (start > vma->vm_start)
591		prev = vma;
592
593	for (nstart = start ; ; ) {
594		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
595
596		newflags |= flags;
597
598		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
599		tmp = vma->vm_end;
600		if (tmp > end)
601			tmp = end;
602		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
603		if (error)
604			break;
605		nstart = tmp;
606		if (nstart < prev->vm_end)
607			nstart = prev->vm_end;
608		if (nstart >= end)
609			break;
610
611		vma = prev->vm_next;
612		if (!vma || vma->vm_start != nstart) {
613			error = -ENOMEM;
614			break;
615		}
616	}
617	return error;
618}
619
620static int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
621{
622	unsigned long locked;
623	unsigned long lock_limit;
624	int error = -ENOMEM;
625
 
 
626	if (!can_do_mlock())
627		return -EPERM;
628
629	lru_add_drain_all();	/* flush pagevec */
630
631	len = PAGE_ALIGN(len + (offset_in_page(start)));
632	start &= PAGE_MASK;
633
634	lock_limit = rlimit(RLIMIT_MEMLOCK);
635	lock_limit >>= PAGE_SHIFT;
636	locked = len >> PAGE_SHIFT;
637
638	down_write(&current->mm->mmap_sem);
 
639
640	locked += current->mm->locked_vm;
 
 
 
 
 
 
 
 
 
 
641
642	/* check against resource limits */
643	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
644		error = apply_vma_lock_flags(start, len, flags);
645
646	up_write(&current->mm->mmap_sem);
647	if (error)
648		return error;
649
650	error = __mm_populate(start, len, 0);
651	if (error)
652		return __mlock_posix_error_return(error);
653	return 0;
654}
655
656SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
657{
658	return do_mlock(start, len, VM_LOCKED);
659}
660
661SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
662{
663	vm_flags_t vm_flags = VM_LOCKED;
664
665	if (flags & ~MLOCK_ONFAULT)
666		return -EINVAL;
667
668	if (flags & MLOCK_ONFAULT)
669		vm_flags |= VM_LOCKONFAULT;
670
671	return do_mlock(start, len, vm_flags);
672}
673
674SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
675{
676	int ret;
677
 
 
678	len = PAGE_ALIGN(len + (offset_in_page(start)));
679	start &= PAGE_MASK;
680
681	down_write(&current->mm->mmap_sem);
 
682	ret = apply_vma_lock_flags(start, len, 0);
683	up_write(&current->mm->mmap_sem);
684
685	return ret;
686}
687
688/*
689 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
690 * and translate into the appropriate modifications to mm->def_flags and/or the
691 * flags for all current VMAs.
692 *
693 * There are a couple of subtleties with this.  If mlockall() is called multiple
694 * times with different flags, the values do not necessarily stack.  If mlockall
695 * is called once including the MCL_FUTURE flag and then a second time without
696 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
697 */
698static int apply_mlockall_flags(int flags)
699{
700	struct vm_area_struct * vma, * prev = NULL;
701	vm_flags_t to_add = 0;
702
703	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
704	if (flags & MCL_FUTURE) {
705		current->mm->def_flags |= VM_LOCKED;
706
707		if (flags & MCL_ONFAULT)
708			current->mm->def_flags |= VM_LOCKONFAULT;
709
710		if (!(flags & MCL_CURRENT))
711			goto out;
712	}
713
714	if (flags & MCL_CURRENT) {
715		to_add |= VM_LOCKED;
716		if (flags & MCL_ONFAULT)
717			to_add |= VM_LOCKONFAULT;
718	}
719
720	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
721		vm_flags_t newflags;
722
723		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
724		newflags |= to_add;
725
726		/* Ignore errors */
727		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
728		cond_resched_rcu_qs();
729	}
730out:
731	return 0;
732}
733
734SYSCALL_DEFINE1(mlockall, int, flags)
735{
736	unsigned long lock_limit;
737	int ret;
738
739	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
 
740		return -EINVAL;
741
742	if (!can_do_mlock())
743		return -EPERM;
744
745	if (flags & MCL_CURRENT)
746		lru_add_drain_all();	/* flush pagevec */
747
748	lock_limit = rlimit(RLIMIT_MEMLOCK);
749	lock_limit >>= PAGE_SHIFT;
750
751	ret = -ENOMEM;
752	down_write(&current->mm->mmap_sem);
753
 
754	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
755	    capable(CAP_IPC_LOCK))
756		ret = apply_mlockall_flags(flags);
757	up_write(&current->mm->mmap_sem);
758	if (!ret && (flags & MCL_CURRENT))
759		mm_populate(0, TASK_SIZE);
760
761	return ret;
762}
763
764SYSCALL_DEFINE0(munlockall)
765{
766	int ret;
767
768	down_write(&current->mm->mmap_sem);
 
769	ret = apply_mlockall_flags(0);
770	up_write(&current->mm->mmap_sem);
771	return ret;
772}
773
774/*
775 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
776 * shm segments) get accounted against the user_struct instead.
777 */
778static DEFINE_SPINLOCK(shmlock_user_lock);
779
780int user_shm_lock(size_t size, struct user_struct *user)
781{
782	unsigned long lock_limit, locked;
783	int allowed = 0;
784
785	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
786	lock_limit = rlimit(RLIMIT_MEMLOCK);
787	if (lock_limit == RLIM_INFINITY)
788		allowed = 1;
789	lock_limit >>= PAGE_SHIFT;
790	spin_lock(&shmlock_user_lock);
791	if (!allowed &&
792	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
793		goto out;
794	get_uid(user);
795	user->locked_shm += locked;
796	allowed = 1;
797out:
798	spin_unlock(&shmlock_user_lock);
799	return allowed;
800}
801
802void user_shm_unlock(size_t size, struct user_struct *user)
803{
804	spin_lock(&shmlock_user_lock);
805	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
806	spin_unlock(&shmlock_user_lock);
807	free_uid(user);
808}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *	linux/mm/mlock.c
  4 *
  5 *  (C) Copyright 1995 Linus Torvalds
  6 *  (C) Copyright 2002 Christoph Hellwig
  7 */
  8
  9#include <linux/capability.h>
 10#include <linux/mman.h>
 11#include <linux/mm.h>
 12#include <linux/sched/user.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/pagemap.h>
 16#include <linux/pagevec.h>
 17#include <linux/mempolicy.h>
 18#include <linux/syscalls.h>
 19#include <linux/sched.h>
 20#include <linux/export.h>
 21#include <linux/rmap.h>
 22#include <linux/mmzone.h>
 23#include <linux/hugetlb.h>
 24#include <linux/memcontrol.h>
 25#include <linux/mm_inline.h>
 26
 27#include "internal.h"
 28
 29bool can_do_mlock(void)
 30{
 31	if (rlimit(RLIMIT_MEMLOCK) != 0)
 32		return true;
 33	if (capable(CAP_IPC_LOCK))
 34		return true;
 35	return false;
 36}
 37EXPORT_SYMBOL(can_do_mlock);
 38
 39/*
 40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 41 * in vmscan and, possibly, the fault path; and to support semi-accurate
 42 * statistics.
 43 *
 44 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 46 * The unevictable list is an LRU sibling list to the [in]active lists.
 47 * PageUnevictable is set to indicate the unevictable state.
 48 *
 49 * When lazy mlocking via vmscan, it is important to ensure that the
 50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 51 * may have mlocked a page that is being munlocked. So lazy mlock must take
 52 * the mmap_sem for read, and verify that the vma really is locked
 53 * (see mm/rmap.c).
 54 */
 55
 56/*
 57 *  LRU accounting for clear_page_mlock()
 58 */
 59void clear_page_mlock(struct page *page)
 60{
 61	if (!TestClearPageMlocked(page))
 62		return;
 63
 64	mod_zone_page_state(page_zone(page), NR_MLOCK,
 65			    -hpage_nr_pages(page));
 66	count_vm_event(UNEVICTABLE_PGCLEARED);
 67	/*
 68	 * The previous TestClearPageMlocked() corresponds to the smp_mb()
 69	 * in __pagevec_lru_add_fn().
 70	 *
 71	 * See __pagevec_lru_add_fn for more explanation.
 72	 */
 73	if (!isolate_lru_page(page)) {
 74		putback_lru_page(page);
 75	} else {
 76		/*
 77		 * We lost the race. the page already moved to evictable list.
 78		 */
 79		if (PageUnevictable(page))
 80			count_vm_event(UNEVICTABLE_PGSTRANDED);
 81	}
 82}
 83
 84/*
 85 * Mark page as mlocked if not already.
 86 * If page on LRU, isolate and putback to move to unevictable list.
 87 */
 88void mlock_vma_page(struct page *page)
 89{
 90	/* Serialize with page migration */
 91	BUG_ON(!PageLocked(page));
 92
 93	VM_BUG_ON_PAGE(PageTail(page), page);
 94	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
 95
 96	if (!TestSetPageMlocked(page)) {
 97		mod_zone_page_state(page_zone(page), NR_MLOCK,
 98				    hpage_nr_pages(page));
 99		count_vm_event(UNEVICTABLE_PGMLOCKED);
100		if (!isolate_lru_page(page))
101			putback_lru_page(page);
102	}
103}
104
105/*
106 * Isolate a page from LRU with optional get_page() pin.
107 * Assumes lru_lock already held and page already pinned.
108 */
109static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
110{
111	if (PageLRU(page)) {
112		struct lruvec *lruvec;
113
114		lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
115		if (getpage)
116			get_page(page);
117		ClearPageLRU(page);
118		del_page_from_lru_list(page, lruvec, page_lru(page));
119		return true;
120	}
121
122	return false;
123}
124
125/*
126 * Finish munlock after successful page isolation
127 *
128 * Page must be locked. This is a wrapper for try_to_munlock()
129 * and putback_lru_page() with munlock accounting.
130 */
131static void __munlock_isolated_page(struct page *page)
132{
 
 
133	/*
134	 * Optimization: if the page was mapped just once, that's our mapping
135	 * and we don't need to check all the other vmas.
136	 */
137	if (page_mapcount(page) > 1)
138		try_to_munlock(page);
139
140	/* Did try_to_unlock() succeed or punt? */
141	if (!PageMlocked(page))
142		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
143
144	putback_lru_page(page);
145}
146
147/*
148 * Accounting for page isolation fail during munlock
149 *
150 * Performs accounting when page isolation fails in munlock. There is nothing
151 * else to do because it means some other task has already removed the page
152 * from the LRU. putback_lru_page() will take care of removing the page from
153 * the unevictable list, if necessary. vmscan [page_referenced()] will move
154 * the page back to the unevictable list if some other vma has it mlocked.
155 */
156static void __munlock_isolation_failed(struct page *page)
157{
158	if (PageUnevictable(page))
159		__count_vm_event(UNEVICTABLE_PGSTRANDED);
160	else
161		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
162}
163
164/**
165 * munlock_vma_page - munlock a vma page
166 * @page: page to be unlocked, either a normal page or THP page head
167 *
168 * returns the size of the page as a page mask (0 for normal page,
169 *         HPAGE_PMD_NR - 1 for THP head page)
170 *
171 * called from munlock()/munmap() path with page supposedly on the LRU.
172 * When we munlock a page, because the vma where we found the page is being
173 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
174 * page locked so that we can leave it on the unevictable lru list and not
175 * bother vmscan with it.  However, to walk the page's rmap list in
176 * try_to_munlock() we must isolate the page from the LRU.  If some other
177 * task has removed the page from the LRU, we won't be able to do that.
178 * So we clear the PageMlocked as we might not get another chance.  If we
179 * can't isolate the page, we leave it for putback_lru_page() and vmscan
180 * [page_referenced()/try_to_unmap()] to deal with.
181 */
182unsigned int munlock_vma_page(struct page *page)
183{
184	int nr_pages;
185	pg_data_t *pgdat = page_pgdat(page);
186
187	/* For try_to_munlock() and to serialize with page migration */
188	BUG_ON(!PageLocked(page));
189
190	VM_BUG_ON_PAGE(PageTail(page), page);
191
192	/*
193	 * Serialize with any parallel __split_huge_page_refcount() which
194	 * might otherwise copy PageMlocked to part of the tail pages before
195	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
196	 */
197	spin_lock_irq(&pgdat->lru_lock);
198
199	if (!TestClearPageMlocked(page)) {
200		/* Potentially, PTE-mapped THP: do not skip the rest PTEs */
201		nr_pages = 1;
202		goto unlock_out;
203	}
204
205	nr_pages = hpage_nr_pages(page);
206	__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
207
208	if (__munlock_isolate_lru_page(page, true)) {
209		spin_unlock_irq(&pgdat->lru_lock);
210		__munlock_isolated_page(page);
211		goto out;
212	}
213	__munlock_isolation_failed(page);
214
215unlock_out:
216	spin_unlock_irq(&pgdat->lru_lock);
217
218out:
219	return nr_pages - 1;
220}
221
222/*
223 * convert get_user_pages() return value to posix mlock() error
224 */
225static int __mlock_posix_error_return(long retval)
226{
227	if (retval == -EFAULT)
228		retval = -ENOMEM;
229	else if (retval == -ENOMEM)
230		retval = -EAGAIN;
231	return retval;
232}
233
234/*
235 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
236 *
237 * The fast path is available only for evictable pages with single mapping.
238 * Then we can bypass the per-cpu pvec and get better performance.
239 * when mapcount > 1 we need try_to_munlock() which can fail.
240 * when !page_evictable(), we need the full redo logic of putback_lru_page to
241 * avoid leaving evictable page in unevictable list.
242 *
243 * In case of success, @page is added to @pvec and @pgrescued is incremented
244 * in case that the page was previously unevictable. @page is also unlocked.
245 */
246static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
247		int *pgrescued)
248{
249	VM_BUG_ON_PAGE(PageLRU(page), page);
250	VM_BUG_ON_PAGE(!PageLocked(page), page);
251
252	if (page_mapcount(page) <= 1 && page_evictable(page)) {
253		pagevec_add(pvec, page);
254		if (TestClearPageUnevictable(page))
255			(*pgrescued)++;
256		unlock_page(page);
257		return true;
258	}
259
260	return false;
261}
262
263/*
264 * Putback multiple evictable pages to the LRU
265 *
266 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
267 * the pages might have meanwhile become unevictable but that is OK.
268 */
269static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
270{
271	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
272	/*
273	 *__pagevec_lru_add() calls release_pages() so we don't call
274	 * put_page() explicitly
275	 */
276	__pagevec_lru_add(pvec);
277	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
278}
279
280/*
281 * Munlock a batch of pages from the same zone
282 *
283 * The work is split to two main phases. First phase clears the Mlocked flag
284 * and attempts to isolate the pages, all under a single zone lru lock.
285 * The second phase finishes the munlock only for pages where isolation
286 * succeeded.
287 *
288 * Note that the pagevec may be modified during the process.
289 */
290static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
291{
292	int i;
293	int nr = pagevec_count(pvec);
294	int delta_munlocked = -nr;
295	struct pagevec pvec_putback;
296	int pgrescued = 0;
297
298	pagevec_init(&pvec_putback);
299
300	/* Phase 1: page isolation */
301	spin_lock_irq(&zone->zone_pgdat->lru_lock);
302	for (i = 0; i < nr; i++) {
303		struct page *page = pvec->pages[i];
304
305		if (TestClearPageMlocked(page)) {
306			/*
307			 * We already have pin from follow_page_mask()
308			 * so we can spare the get_page() here.
309			 */
310			if (__munlock_isolate_lru_page(page, false))
311				continue;
312			else
313				__munlock_isolation_failed(page);
314		} else {
315			delta_munlocked++;
316		}
317
318		/*
319		 * We won't be munlocking this page in the next phase
320		 * but we still need to release the follow_page_mask()
321		 * pin. We cannot do it under lru_lock however. If it's
322		 * the last pin, __page_cache_release() would deadlock.
323		 */
324		pagevec_add(&pvec_putback, pvec->pages[i]);
325		pvec->pages[i] = NULL;
326	}
 
327	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
328	spin_unlock_irq(&zone->zone_pgdat->lru_lock);
329
330	/* Now we can release pins of pages that we are not munlocking */
331	pagevec_release(&pvec_putback);
332
333	/* Phase 2: page munlock */
334	for (i = 0; i < nr; i++) {
335		struct page *page = pvec->pages[i];
336
337		if (page) {
338			lock_page(page);
339			if (!__putback_lru_fast_prepare(page, &pvec_putback,
340					&pgrescued)) {
341				/*
342				 * Slow path. We don't want to lose the last
343				 * pin before unlock_page()
344				 */
345				get_page(page); /* for putback_lru_page() */
346				__munlock_isolated_page(page);
347				unlock_page(page);
348				put_page(page); /* from follow_page_mask() */
349			}
350		}
351	}
352
353	/*
354	 * Phase 3: page putback for pages that qualified for the fast path
355	 * This will also call put_page() to return pin from follow_page_mask()
356	 */
357	if (pagevec_count(&pvec_putback))
358		__putback_lru_fast(&pvec_putback, pgrescued);
359}
360
361/*
362 * Fill up pagevec for __munlock_pagevec using pte walk
363 *
364 * The function expects that the struct page corresponding to @start address is
365 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
366 *
367 * The rest of @pvec is filled by subsequent pages within the same pmd and same
368 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
369 * pages also get pinned.
370 *
371 * Returns the address of the next page that should be scanned. This equals
372 * @start + PAGE_SIZE when no page could be added by the pte walk.
373 */
374static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
375			struct vm_area_struct *vma, struct zone *zone,
376			unsigned long start, unsigned long end)
377{
378	pte_t *pte;
379	spinlock_t *ptl;
380
381	/*
382	 * Initialize pte walk starting at the already pinned page where we
383	 * are sure that there is a pte, as it was pinned under the same
384	 * mmap_sem write op.
385	 */
386	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
387	/* Make sure we do not cross the page table boundary */
388	end = pgd_addr_end(start, end);
389	end = p4d_addr_end(start, end);
390	end = pud_addr_end(start, end);
391	end = pmd_addr_end(start, end);
392
393	/* The page next to the pinned page is the first we will try to get */
394	start += PAGE_SIZE;
395	while (start < end) {
396		struct page *page = NULL;
397		pte++;
398		if (pte_present(*pte))
399			page = vm_normal_page(vma, start, *pte);
400		/*
401		 * Break if page could not be obtained or the page's node+zone does not
402		 * match
403		 */
404		if (!page || page_zone(page) != zone)
405			break;
406
407		/*
408		 * Do not use pagevec for PTE-mapped THP,
409		 * munlock_vma_pages_range() will handle them.
410		 */
411		if (PageTransCompound(page))
412			break;
413
414		get_page(page);
415		/*
416		 * Increase the address that will be returned *before* the
417		 * eventual break due to pvec becoming full by adding the page
418		 */
419		start += PAGE_SIZE;
420		if (pagevec_add(pvec, page) == 0)
421			break;
422	}
423	pte_unmap_unlock(pte, ptl);
424	return start;
425}
426
427/*
428 * munlock_vma_pages_range() - munlock all pages in the vma range.'
429 * @vma - vma containing range to be munlock()ed.
430 * @start - start address in @vma of the range
431 * @end - end of range in @vma.
432 *
433 *  For mremap(), munmap() and exit().
434 *
435 * Called with @vma VM_LOCKED.
436 *
437 * Returns with VM_LOCKED cleared.  Callers must be prepared to
438 * deal with this.
439 *
440 * We don't save and restore VM_LOCKED here because pages are
441 * still on lru.  In unmap path, pages might be scanned by reclaim
442 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
443 * free them.  This will result in freeing mlocked pages.
444 */
445void munlock_vma_pages_range(struct vm_area_struct *vma,
446			     unsigned long start, unsigned long end)
447{
448	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
449
450	while (start < end) {
451		struct page *page;
452		unsigned int page_mask = 0;
453		unsigned long page_increm;
454		struct pagevec pvec;
455		struct zone *zone;
 
456
457		pagevec_init(&pvec);
458		/*
459		 * Although FOLL_DUMP is intended for get_dump_page(),
460		 * it just so happens that its special treatment of the
461		 * ZERO_PAGE (returning an error instead of doing get_page)
462		 * suits munlock very well (and if somehow an abnormal page
463		 * has sneaked into the range, we won't oops here: great).
464		 */
465		page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
 
466
467		if (page && !IS_ERR(page)) {
468			if (PageTransTail(page)) {
469				VM_BUG_ON_PAGE(PageMlocked(page), page);
470				put_page(page); /* follow_page_mask() */
471			} else if (PageTransHuge(page)) {
472				lock_page(page);
473				/*
474				 * Any THP page found by follow_page_mask() may
475				 * have gotten split before reaching
476				 * munlock_vma_page(), so we need to compute
477				 * the page_mask here instead.
478				 */
479				page_mask = munlock_vma_page(page);
480				unlock_page(page);
481				put_page(page); /* follow_page_mask() */
482			} else {
483				/*
484				 * Non-huge pages are handled in batches via
485				 * pagevec. The pin from follow_page_mask()
486				 * prevents them from collapsing by THP.
487				 */
488				pagevec_add(&pvec, page);
489				zone = page_zone(page);
 
490
491				/*
492				 * Try to fill the rest of pagevec using fast
493				 * pte walk. This will also update start to
494				 * the next page to process. Then munlock the
495				 * pagevec.
496				 */
497				start = __munlock_pagevec_fill(&pvec, vma,
498						zone, start, end);
499				__munlock_pagevec(&pvec, zone);
500				goto next;
501			}
502		}
503		page_increm = 1 + page_mask;
504		start += page_increm * PAGE_SIZE;
505next:
506		cond_resched();
507	}
508}
509
510/*
511 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
512 *
513 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
514 * munlock is a no-op.  However, for some special vmas, we go ahead and
515 * populate the ptes.
516 *
517 * For vmas that pass the filters, merge/split as appropriate.
518 */
519static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
520	unsigned long start, unsigned long end, vm_flags_t newflags)
521{
522	struct mm_struct *mm = vma->vm_mm;
523	pgoff_t pgoff;
524	int nr_pages;
525	int ret = 0;
526	int lock = !!(newflags & VM_LOCKED);
527	vm_flags_t old_flags = vma->vm_flags;
528
529	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
530	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
531	    vma_is_dax(vma))
532		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
533		goto out;
534
535	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
536	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
537			  vma->vm_file, pgoff, vma_policy(vma),
538			  vma->vm_userfaultfd_ctx);
539	if (*prev) {
540		vma = *prev;
541		goto success;
542	}
543
544	if (start != vma->vm_start) {
545		ret = split_vma(mm, vma, start, 1);
546		if (ret)
547			goto out;
548	}
549
550	if (end != vma->vm_end) {
551		ret = split_vma(mm, vma, end, 0);
552		if (ret)
553			goto out;
554	}
555
556success:
557	/*
558	 * Keep track of amount of locked VM.
559	 */
560	nr_pages = (end - start) >> PAGE_SHIFT;
561	if (!lock)
562		nr_pages = -nr_pages;
563	else if (old_flags & VM_LOCKED)
564		nr_pages = 0;
565	mm->locked_vm += nr_pages;
566
567	/*
568	 * vm_flags is protected by the mmap_sem held in write mode.
569	 * It's okay if try_to_unmap_one unmaps a page just after we
570	 * set VM_LOCKED, populate_vma_page_range will bring it back.
571	 */
572
573	if (lock)
574		vma->vm_flags = newflags;
575	else
576		munlock_vma_pages_range(vma, start, end);
577
578out:
579	*prev = vma;
580	return ret;
581}
582
583static int apply_vma_lock_flags(unsigned long start, size_t len,
584				vm_flags_t flags)
585{
586	unsigned long nstart, end, tmp;
587	struct vm_area_struct * vma, * prev;
588	int error;
589
590	VM_BUG_ON(offset_in_page(start));
591	VM_BUG_ON(len != PAGE_ALIGN(len));
592	end = start + len;
593	if (end < start)
594		return -EINVAL;
595	if (end == start)
596		return 0;
597	vma = find_vma(current->mm, start);
598	if (!vma || vma->vm_start > start)
599		return -ENOMEM;
600
601	prev = vma->vm_prev;
602	if (start > vma->vm_start)
603		prev = vma;
604
605	for (nstart = start ; ; ) {
606		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
607
608		newflags |= flags;
609
610		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
611		tmp = vma->vm_end;
612		if (tmp > end)
613			tmp = end;
614		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
615		if (error)
616			break;
617		nstart = tmp;
618		if (nstart < prev->vm_end)
619			nstart = prev->vm_end;
620		if (nstart >= end)
621			break;
622
623		vma = prev->vm_next;
624		if (!vma || vma->vm_start != nstart) {
625			error = -ENOMEM;
626			break;
627		}
628	}
629	return error;
630}
631
632/*
633 * Go through vma areas and sum size of mlocked
634 * vma pages, as return value.
635 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
636 * is also counted.
637 * Return value: previously mlocked page counts
638 */
639static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
640		unsigned long start, size_t len)
641{
642	struct vm_area_struct *vma;
643	unsigned long count = 0;
644
645	if (mm == NULL)
646		mm = current->mm;
647
648	vma = find_vma(mm, start);
649	if (vma == NULL)
650		vma = mm->mmap;
651
652	for (; vma ; vma = vma->vm_next) {
653		if (start >= vma->vm_end)
654			continue;
655		if (start + len <=  vma->vm_start)
656			break;
657		if (vma->vm_flags & VM_LOCKED) {
658			if (start > vma->vm_start)
659				count -= (start - vma->vm_start);
660			if (start + len < vma->vm_end) {
661				count += start + len - vma->vm_start;
662				break;
663			}
664			count += vma->vm_end - vma->vm_start;
665		}
666	}
667
668	return count >> PAGE_SHIFT;
669}
670
671static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
672{
673	unsigned long locked;
674	unsigned long lock_limit;
675	int error = -ENOMEM;
676
677	start = untagged_addr(start);
678
679	if (!can_do_mlock())
680		return -EPERM;
681
 
 
682	len = PAGE_ALIGN(len + (offset_in_page(start)));
683	start &= PAGE_MASK;
684
685	lock_limit = rlimit(RLIMIT_MEMLOCK);
686	lock_limit >>= PAGE_SHIFT;
687	locked = len >> PAGE_SHIFT;
688
689	if (down_write_killable(&current->mm->mmap_sem))
690		return -EINTR;
691
692	locked += current->mm->locked_vm;
693	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
694		/*
695		 * It is possible that the regions requested intersect with
696		 * previously mlocked areas, that part area in "mm->locked_vm"
697		 * should not be counted to new mlock increment count. So check
698		 * and adjust locked count if necessary.
699		 */
700		locked -= count_mm_mlocked_page_nr(current->mm,
701				start, len);
702	}
703
704	/* check against resource limits */
705	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
706		error = apply_vma_lock_flags(start, len, flags);
707
708	up_write(&current->mm->mmap_sem);
709	if (error)
710		return error;
711
712	error = __mm_populate(start, len, 0);
713	if (error)
714		return __mlock_posix_error_return(error);
715	return 0;
716}
717
718SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
719{
720	return do_mlock(start, len, VM_LOCKED);
721}
722
723SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
724{
725	vm_flags_t vm_flags = VM_LOCKED;
726
727	if (flags & ~MLOCK_ONFAULT)
728		return -EINVAL;
729
730	if (flags & MLOCK_ONFAULT)
731		vm_flags |= VM_LOCKONFAULT;
732
733	return do_mlock(start, len, vm_flags);
734}
735
736SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
737{
738	int ret;
739
740	start = untagged_addr(start);
741
742	len = PAGE_ALIGN(len + (offset_in_page(start)));
743	start &= PAGE_MASK;
744
745	if (down_write_killable(&current->mm->mmap_sem))
746		return -EINTR;
747	ret = apply_vma_lock_flags(start, len, 0);
748	up_write(&current->mm->mmap_sem);
749
750	return ret;
751}
752
753/*
754 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
755 * and translate into the appropriate modifications to mm->def_flags and/or the
756 * flags for all current VMAs.
757 *
758 * There are a couple of subtleties with this.  If mlockall() is called multiple
759 * times with different flags, the values do not necessarily stack.  If mlockall
760 * is called once including the MCL_FUTURE flag and then a second time without
761 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
762 */
763static int apply_mlockall_flags(int flags)
764{
765	struct vm_area_struct * vma, * prev = NULL;
766	vm_flags_t to_add = 0;
767
768	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
769	if (flags & MCL_FUTURE) {
770		current->mm->def_flags |= VM_LOCKED;
771
772		if (flags & MCL_ONFAULT)
773			current->mm->def_flags |= VM_LOCKONFAULT;
774
775		if (!(flags & MCL_CURRENT))
776			goto out;
777	}
778
779	if (flags & MCL_CURRENT) {
780		to_add |= VM_LOCKED;
781		if (flags & MCL_ONFAULT)
782			to_add |= VM_LOCKONFAULT;
783	}
784
785	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
786		vm_flags_t newflags;
787
788		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
789		newflags |= to_add;
790
791		/* Ignore errors */
792		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
793		cond_resched();
794	}
795out:
796	return 0;
797}
798
799SYSCALL_DEFINE1(mlockall, int, flags)
800{
801	unsigned long lock_limit;
802	int ret;
803
804	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
805	    flags == MCL_ONFAULT)
806		return -EINVAL;
807
808	if (!can_do_mlock())
809		return -EPERM;
810
 
 
 
811	lock_limit = rlimit(RLIMIT_MEMLOCK);
812	lock_limit >>= PAGE_SHIFT;
813
814	if (down_write_killable(&current->mm->mmap_sem))
815		return -EINTR;
816
817	ret = -ENOMEM;
818	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
819	    capable(CAP_IPC_LOCK))
820		ret = apply_mlockall_flags(flags);
821	up_write(&current->mm->mmap_sem);
822	if (!ret && (flags & MCL_CURRENT))
823		mm_populate(0, TASK_SIZE);
824
825	return ret;
826}
827
828SYSCALL_DEFINE0(munlockall)
829{
830	int ret;
831
832	if (down_write_killable(&current->mm->mmap_sem))
833		return -EINTR;
834	ret = apply_mlockall_flags(0);
835	up_write(&current->mm->mmap_sem);
836	return ret;
837}
838
839/*
840 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
841 * shm segments) get accounted against the user_struct instead.
842 */
843static DEFINE_SPINLOCK(shmlock_user_lock);
844
845int user_shm_lock(size_t size, struct user_struct *user)
846{
847	unsigned long lock_limit, locked;
848	int allowed = 0;
849
850	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
851	lock_limit = rlimit(RLIMIT_MEMLOCK);
852	if (lock_limit == RLIM_INFINITY)
853		allowed = 1;
854	lock_limit >>= PAGE_SHIFT;
855	spin_lock(&shmlock_user_lock);
856	if (!allowed &&
857	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
858		goto out;
859	get_uid(user);
860	user->locked_shm += locked;
861	allowed = 1;
862out:
863	spin_unlock(&shmlock_user_lock);
864	return allowed;
865}
866
867void user_shm_unlock(size_t size, struct user_struct *user)
868{
869	spin_lock(&shmlock_user_lock);
870	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
871	spin_unlock(&shmlock_user_lock);
872	free_uid(user);
873}