Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
  2 *
  3 * This program is free software; you can redistribute it and/or
  4 * modify it under the terms of version 2 of the GNU General Public
  5 * License as published by the Free Software Foundation.
  6 */
  7#include <linux/kernel.h>
  8#include <linux/types.h>
  9#include <linux/slab.h>
 10#include <linux/bpf.h>
 
 11#include <linux/filter.h>
 12#include <linux/uaccess.h>
 13#include <linux/ctype.h>
 
 
 
 
 
 
 
 14#include "trace.h"
 15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 16/**
 17 * trace_call_bpf - invoke BPF program
 18 * @prog: BPF program
 19 * @ctx: opaque context pointer
 20 *
 21 * kprobe handlers execute BPF programs via this helper.
 22 * Can be used from static tracepoints in the future.
 23 *
 24 * Return: BPF programs always return an integer which is interpreted by
 25 * kprobe handler as:
 26 * 0 - return from kprobe (event is filtered out)
 27 * 1 - store kprobe event into ring buffer
 28 * Other values are reserved and currently alias to 1
 29 */
 30unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
 31{
 32	unsigned int ret;
 33
 34	if (in_nmi()) /* not supported yet */
 35		return 1;
 36
 37	preempt_disable();
 38
 39	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
 40		/*
 41		 * since some bpf program is already running on this cpu,
 42		 * don't call into another bpf program (same or different)
 43		 * and don't send kprobe event into ring-buffer,
 44		 * so return zero here
 45		 */
 46		ret = 0;
 47		goto out;
 48	}
 49
 50	rcu_read_lock();
 51	ret = BPF_PROG_RUN(prog, ctx);
 52	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54 out:
 55	__this_cpu_dec(bpf_prog_active);
 56	preempt_enable();
 57
 58	return ret;
 59}
 60EXPORT_SYMBOL_GPL(trace_call_bpf);
 61
 62static u64 bpf_probe_read(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63{
 64	void *dst = (void *) (long) r1;
 65	int size = (int) r2;
 66	void *unsafe_ptr = (void *) (long) r3;
 67
 68	return probe_kernel_read(dst, unsafe_ptr, size);
 
 
 
 
 
 
 
 
 
 69}
 70
 71static const struct bpf_func_proto bpf_probe_read_proto = {
 72	.func		= bpf_probe_read,
 73	.gpl_only	= true,
 74	.ret_type	= RET_INTEGER,
 75	.arg1_type	= ARG_PTR_TO_STACK,
 76	.arg2_type	= ARG_CONST_STACK_SIZE,
 77	.arg3_type	= ARG_ANYTHING,
 78};
 79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 80/*
 81 * limited trace_printk()
 82 * only %d %u %x %ld %lu %lx %lld %llu %llx %p %s conversion specifiers allowed
 83 */
 84static u64 bpf_trace_printk(u64 r1, u64 fmt_size, u64 r3, u64 r4, u64 r5)
 
 85{
 86	char *fmt = (char *) (long) r1;
 87	bool str_seen = false;
 88	int mod[3] = {};
 89	int fmt_cnt = 0;
 90	u64 unsafe_addr;
 91	char buf[64];
 92	int i;
 93
 94	/*
 95	 * bpf_check()->check_func_arg()->check_stack_boundary()
 96	 * guarantees that fmt points to bpf program stack,
 97	 * fmt_size bytes of it were initialized and fmt_size > 0
 98	 */
 99	if (fmt[--fmt_size] != 0)
100		return -EINVAL;
101
102	/* check format string for allowed specifiers */
103	for (i = 0; i < fmt_size; i++) {
104		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
105			return -EINVAL;
106
107		if (fmt[i] != '%')
108			continue;
109
110		if (fmt_cnt >= 3)
111			return -EINVAL;
112
113		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
114		i++;
115		if (fmt[i] == 'l') {
116			mod[fmt_cnt]++;
117			i++;
118		} else if (fmt[i] == 'p' || fmt[i] == 's') {
119			mod[fmt_cnt]++;
120			i++;
121			if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
 
 
122				return -EINVAL;
123			fmt_cnt++;
124			if (fmt[i - 1] == 's') {
125				if (str_seen)
126					/* allow only one '%s' per fmt string */
127					return -EINVAL;
128				str_seen = true;
129
130				switch (fmt_cnt) {
131				case 1:
132					unsafe_addr = r3;
133					r3 = (long) buf;
134					break;
135				case 2:
136					unsafe_addr = r4;
137					r4 = (long) buf;
138					break;
139				case 3:
140					unsafe_addr = r5;
141					r5 = (long) buf;
142					break;
143				}
144				buf[0] = 0;
145				strncpy_from_unsafe(buf,
146						    (void *) (long) unsafe_addr,
147						    sizeof(buf));
148			}
149			continue;
150		}
151
152		if (fmt[i] == 'l') {
153			mod[fmt_cnt]++;
154			i++;
155		}
156
157		if (fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x')
 
158			return -EINVAL;
159		fmt_cnt++;
160	}
161
162	return __trace_printk(1/* fake ip will not be printed */, fmt,
163			      mod[0] == 2 ? r3 : mod[0] == 1 ? (long) r3 : (u32) r3,
164			      mod[1] == 2 ? r4 : mod[1] == 1 ? (long) r4 : (u32) r4,
165			      mod[2] == 2 ? r5 : mod[2] == 1 ? (long) r5 : (u32) r5);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166}
167
168static const struct bpf_func_proto bpf_trace_printk_proto = {
169	.func		= bpf_trace_printk,
170	.gpl_only	= true,
171	.ret_type	= RET_INTEGER,
172	.arg1_type	= ARG_PTR_TO_STACK,
173	.arg2_type	= ARG_CONST_STACK_SIZE,
174};
175
176const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
177{
178	/*
179	 * this program might be calling bpf_trace_printk,
180	 * so allocate per-cpu printk buffers
181	 */
182	trace_printk_init_buffers();
183
184	return &bpf_trace_printk_proto;
185}
186
187static u64 bpf_perf_event_read(u64 r1, u64 index, u64 r3, u64 r4, u64 r5)
 
 
188{
189	struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
190	struct bpf_array *array = container_of(map, struct bpf_array, map);
191	struct perf_event *event;
192	struct file *file;
 
193
 
 
 
 
194	if (unlikely(index >= array->map.max_entries))
195		return -E2BIG;
196
197	file = (struct file *)array->ptrs[index];
198	if (unlikely(!file))
199		return -ENOENT;
200
201	event = file->private_data;
 
202
203	/* make sure event is local and doesn't have pmu::count */
204	if (event->oncpu != smp_processor_id() ||
205	    event->pmu->count)
206		return -EINVAL;
207
 
208	/*
209	 * we don't know if the function is run successfully by the
210	 * return value. It can be judged in other places, such as
211	 * eBPF programs.
212	 */
213	return perf_event_read_local(event);
 
 
214}
215
216static const struct bpf_func_proto bpf_perf_event_read_proto = {
217	.func		= bpf_perf_event_read,
218	.gpl_only	= true,
219	.ret_type	= RET_INTEGER,
220	.arg1_type	= ARG_CONST_MAP_PTR,
221	.arg2_type	= ARG_ANYTHING,
222};
223
224static u64 bpf_perf_event_output(u64 r1, u64 r2, u64 index, u64 r4, u64 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225{
226	struct pt_regs *regs = (struct pt_regs *) (long) r1;
227	struct bpf_map *map = (struct bpf_map *) (long) r2;
228	struct bpf_array *array = container_of(map, struct bpf_array, map);
229	void *data = (void *) (long) r4;
230	struct perf_sample_data sample_data;
 
231	struct perf_event *event;
232	struct file *file;
233	struct perf_raw_record raw = {
234		.size = size,
235		.data = data,
236	};
237
 
 
238	if (unlikely(index >= array->map.max_entries))
239		return -E2BIG;
240
241	file = (struct file *)array->ptrs[index];
242	if (unlikely(!file))
243		return -ENOENT;
244
245	event = file->private_data;
246
247	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
248		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
249		return -EINVAL;
250
251	if (unlikely(event->oncpu != smp_processor_id()))
252		return -EOPNOTSUPP;
253
254	perf_sample_data_init(&sample_data, 0, 0);
255	sample_data.raw = &raw;
256	perf_event_output(event, &sample_data, regs);
257	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258}
259
260static const struct bpf_func_proto bpf_perf_event_output_proto = {
261	.func		= bpf_perf_event_output,
262	.gpl_only	= true,
263	.ret_type	= RET_INTEGER,
264	.arg1_type	= ARG_PTR_TO_CTX,
265	.arg2_type	= ARG_CONST_MAP_PTR,
266	.arg3_type	= ARG_ANYTHING,
267	.arg4_type	= ARG_PTR_TO_STACK,
268	.arg5_type	= ARG_CONST_STACK_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269};
270
271static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272{
273	switch (func_id) {
274	case BPF_FUNC_map_lookup_elem:
275		return &bpf_map_lookup_elem_proto;
276	case BPF_FUNC_map_update_elem:
277		return &bpf_map_update_elem_proto;
278	case BPF_FUNC_map_delete_elem:
279		return &bpf_map_delete_elem_proto;
 
 
 
 
 
 
280	case BPF_FUNC_probe_read:
281		return &bpf_probe_read_proto;
282	case BPF_FUNC_ktime_get_ns:
283		return &bpf_ktime_get_ns_proto;
284	case BPF_FUNC_tail_call:
285		return &bpf_tail_call_proto;
286	case BPF_FUNC_get_current_pid_tgid:
287		return &bpf_get_current_pid_tgid_proto;
 
 
288	case BPF_FUNC_get_current_uid_gid:
289		return &bpf_get_current_uid_gid_proto;
290	case BPF_FUNC_get_current_comm:
291		return &bpf_get_current_comm_proto;
292	case BPF_FUNC_trace_printk:
293		return bpf_get_trace_printk_proto();
294	case BPF_FUNC_get_smp_processor_id:
295		return &bpf_get_smp_processor_id_proto;
 
 
296	case BPF_FUNC_perf_event_read:
297		return &bpf_perf_event_read_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298	case BPF_FUNC_perf_event_output:
299		return &bpf_perf_event_output_proto;
300	case BPF_FUNC_get_stackid:
301		return &bpf_get_stackid_proto;
 
 
 
 
 
 
 
 
302	default:
303		return NULL;
304	}
305}
306
307/* bpf+kprobe programs can access fields of 'struct pt_regs' */
308static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type)
 
 
309{
310	/* check bounds */
311	if (off < 0 || off >= sizeof(struct pt_regs))
312		return false;
313
314	/* only read is allowed */
315	if (type != BPF_READ)
316		return false;
317
318	/* disallow misaligned access */
319	if (off % size != 0)
320		return false;
 
 
 
 
 
 
321
322	return true;
323}
324
325static const struct bpf_verifier_ops kprobe_prog_ops = {
326	.get_func_proto  = kprobe_prog_func_proto,
327	.is_valid_access = kprobe_prog_is_valid_access,
328};
329
330static struct bpf_prog_type_list kprobe_tl = {
331	.ops	= &kprobe_prog_ops,
332	.type	= BPF_PROG_TYPE_KPROBE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333};
334
335static int __init register_kprobe_prog_ops(void)
 
336{
337	bpf_register_prog_type(&kprobe_tl);
 
 
 
 
 
 
 
338	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339}
340late_initcall(register_kprobe_prog_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
 
 
 
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
   9#include <linux/bpf_perf_event.h>
  10#include <linux/filter.h>
  11#include <linux/uaccess.h>
  12#include <linux/ctype.h>
  13#include <linux/kprobes.h>
  14#include <linux/syscalls.h>
  15#include <linux/error-injection.h>
  16
  17#include <asm/tlb.h>
  18
  19#include "trace_probe.h"
  20#include "trace.h"
  21
  22#define bpf_event_rcu_dereference(p)					\
  23	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  24
  25#ifdef CONFIG_MODULES
  26struct bpf_trace_module {
  27	struct module *module;
  28	struct list_head list;
  29};
  30
  31static LIST_HEAD(bpf_trace_modules);
  32static DEFINE_MUTEX(bpf_module_mutex);
  33
  34static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  35{
  36	struct bpf_raw_event_map *btp, *ret = NULL;
  37	struct bpf_trace_module *btm;
  38	unsigned int i;
  39
  40	mutex_lock(&bpf_module_mutex);
  41	list_for_each_entry(btm, &bpf_trace_modules, list) {
  42		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  43			btp = &btm->module->bpf_raw_events[i];
  44			if (!strcmp(btp->tp->name, name)) {
  45				if (try_module_get(btm->module))
  46					ret = btp;
  47				goto out;
  48			}
  49		}
  50	}
  51out:
  52	mutex_unlock(&bpf_module_mutex);
  53	return ret;
  54}
  55#else
  56static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  57{
  58	return NULL;
  59}
  60#endif /* CONFIG_MODULES */
  61
  62u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  63u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  64
  65/**
  66 * trace_call_bpf - invoke BPF program
  67 * @call: tracepoint event
  68 * @ctx: opaque context pointer
  69 *
  70 * kprobe handlers execute BPF programs via this helper.
  71 * Can be used from static tracepoints in the future.
  72 *
  73 * Return: BPF programs always return an integer which is interpreted by
  74 * kprobe handler as:
  75 * 0 - return from kprobe (event is filtered out)
  76 * 1 - store kprobe event into ring buffer
  77 * Other values are reserved and currently alias to 1
  78 */
  79unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
  80{
  81	unsigned int ret;
  82
  83	if (in_nmi()) /* not supported yet */
  84		return 1;
  85
  86	preempt_disable();
  87
  88	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
  89		/*
  90		 * since some bpf program is already running on this cpu,
  91		 * don't call into another bpf program (same or different)
  92		 * and don't send kprobe event into ring-buffer,
  93		 * so return zero here
  94		 */
  95		ret = 0;
  96		goto out;
  97	}
  98
  99	/*
 100	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 101	 * to all call sites, we did a bpf_prog_array_valid() there to check
 102	 * whether call->prog_array is empty or not, which is
 103	 * a heurisitc to speed up execution.
 104	 *
 105	 * If bpf_prog_array_valid() fetched prog_array was
 106	 * non-NULL, we go into trace_call_bpf() and do the actual
 107	 * proper rcu_dereference() under RCU lock.
 108	 * If it turns out that prog_array is NULL then, we bail out.
 109	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
 110	 * was NULL, you'll skip the prog_array with the risk of missing
 111	 * out of events when it was updated in between this and the
 112	 * rcu_dereference() which is accepted risk.
 113	 */
 114	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
 115
 116 out:
 117	__this_cpu_dec(bpf_prog_active);
 118	preempt_enable();
 119
 120	return ret;
 121}
 122EXPORT_SYMBOL_GPL(trace_call_bpf);
 123
 124#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 125BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 126{
 127	regs_set_return_value(regs, rc);
 128	override_function_with_return(regs);
 129	return 0;
 130}
 131
 132static const struct bpf_func_proto bpf_override_return_proto = {
 133	.func		= bpf_override_return,
 134	.gpl_only	= true,
 135	.ret_type	= RET_INTEGER,
 136	.arg1_type	= ARG_PTR_TO_CTX,
 137	.arg2_type	= ARG_ANYTHING,
 138};
 139#endif
 140
 141BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
 142{
 143	int ret;
 
 
 144
 145	ret = security_locked_down(LOCKDOWN_BPF_READ);
 146	if (ret < 0)
 147		goto out;
 148
 149	ret = probe_kernel_read(dst, unsafe_ptr, size);
 150	if (unlikely(ret < 0))
 151out:
 152		memset(dst, 0, size);
 153
 154	return ret;
 155}
 156
 157static const struct bpf_func_proto bpf_probe_read_proto = {
 158	.func		= bpf_probe_read,
 159	.gpl_only	= true,
 160	.ret_type	= RET_INTEGER,
 161	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 162	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 163	.arg3_type	= ARG_ANYTHING,
 164};
 165
 166BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
 167	   u32, size)
 168{
 169	/*
 170	 * Ensure we're in user context which is safe for the helper to
 171	 * run. This helper has no business in a kthread.
 172	 *
 173	 * access_ok() should prevent writing to non-user memory, but in
 174	 * some situations (nommu, temporary switch, etc) access_ok() does
 175	 * not provide enough validation, hence the check on KERNEL_DS.
 176	 *
 177	 * nmi_uaccess_okay() ensures the probe is not run in an interim
 178	 * state, when the task or mm are switched. This is specifically
 179	 * required to prevent the use of temporary mm.
 180	 */
 181
 182	if (unlikely(in_interrupt() ||
 183		     current->flags & (PF_KTHREAD | PF_EXITING)))
 184		return -EPERM;
 185	if (unlikely(uaccess_kernel()))
 186		return -EPERM;
 187	if (unlikely(!nmi_uaccess_okay()))
 188		return -EPERM;
 189	if (!access_ok(unsafe_ptr, size))
 190		return -EPERM;
 191
 192	return probe_kernel_write(unsafe_ptr, src, size);
 193}
 194
 195static const struct bpf_func_proto bpf_probe_write_user_proto = {
 196	.func		= bpf_probe_write_user,
 197	.gpl_only	= true,
 198	.ret_type	= RET_INTEGER,
 199	.arg1_type	= ARG_ANYTHING,
 200	.arg2_type	= ARG_PTR_TO_MEM,
 201	.arg3_type	= ARG_CONST_SIZE,
 202};
 203
 204static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 205{
 206	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 207			    current->comm, task_pid_nr(current));
 208
 209	return &bpf_probe_write_user_proto;
 210}
 211
 212/*
 213 * Only limited trace_printk() conversion specifiers allowed:
 214 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
 215 */
 216BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 217	   u64, arg2, u64, arg3)
 218{
 
 219	bool str_seen = false;
 220	int mod[3] = {};
 221	int fmt_cnt = 0;
 222	u64 unsafe_addr;
 223	char buf[64];
 224	int i;
 225
 226	/*
 227	 * bpf_check()->check_func_arg()->check_stack_boundary()
 228	 * guarantees that fmt points to bpf program stack,
 229	 * fmt_size bytes of it were initialized and fmt_size > 0
 230	 */
 231	if (fmt[--fmt_size] != 0)
 232		return -EINVAL;
 233
 234	/* check format string for allowed specifiers */
 235	for (i = 0; i < fmt_size; i++) {
 236		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
 237			return -EINVAL;
 238
 239		if (fmt[i] != '%')
 240			continue;
 241
 242		if (fmt_cnt >= 3)
 243			return -EINVAL;
 244
 245		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
 246		i++;
 247		if (fmt[i] == 'l') {
 248			mod[fmt_cnt]++;
 249			i++;
 250		} else if (fmt[i] == 'p' || fmt[i] == 's') {
 251			mod[fmt_cnt]++;
 252			/* disallow any further format extensions */
 253			if (fmt[i + 1] != 0 &&
 254			    !isspace(fmt[i + 1]) &&
 255			    !ispunct(fmt[i + 1]))
 256				return -EINVAL;
 257			fmt_cnt++;
 258			if (fmt[i] == 's') {
 259				if (str_seen)
 260					/* allow only one '%s' per fmt string */
 261					return -EINVAL;
 262				str_seen = true;
 263
 264				switch (fmt_cnt) {
 265				case 1:
 266					unsafe_addr = arg1;
 267					arg1 = (long) buf;
 268					break;
 269				case 2:
 270					unsafe_addr = arg2;
 271					arg2 = (long) buf;
 272					break;
 273				case 3:
 274					unsafe_addr = arg3;
 275					arg3 = (long) buf;
 276					break;
 277				}
 278				buf[0] = 0;
 279				strncpy_from_unsafe(buf,
 280						    (void *) (long) unsafe_addr,
 281						    sizeof(buf));
 282			}
 283			continue;
 284		}
 285
 286		if (fmt[i] == 'l') {
 287			mod[fmt_cnt]++;
 288			i++;
 289		}
 290
 291		if (fmt[i] != 'i' && fmt[i] != 'd' &&
 292		    fmt[i] != 'u' && fmt[i] != 'x')
 293			return -EINVAL;
 294		fmt_cnt++;
 295	}
 296
 297/* Horrid workaround for getting va_list handling working with different
 298 * argument type combinations generically for 32 and 64 bit archs.
 299 */
 300#define __BPF_TP_EMIT()	__BPF_ARG3_TP()
 301#define __BPF_TP(...)							\
 302	__trace_printk(0 /* Fake ip */,					\
 303		       fmt, ##__VA_ARGS__)
 304
 305#define __BPF_ARG1_TP(...)						\
 306	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
 307	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
 308	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
 309	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
 310	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
 311
 312#define __BPF_ARG2_TP(...)						\
 313	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
 314	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
 315	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
 316	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
 317	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
 318
 319#define __BPF_ARG3_TP(...)						\
 320	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
 321	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
 322	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
 323	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
 324	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
 325
 326	return __BPF_TP_EMIT();
 327}
 328
 329static const struct bpf_func_proto bpf_trace_printk_proto = {
 330	.func		= bpf_trace_printk,
 331	.gpl_only	= true,
 332	.ret_type	= RET_INTEGER,
 333	.arg1_type	= ARG_PTR_TO_MEM,
 334	.arg2_type	= ARG_CONST_SIZE,
 335};
 336
 337const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 338{
 339	/*
 340	 * this program might be calling bpf_trace_printk,
 341	 * so allocate per-cpu printk buffers
 342	 */
 343	trace_printk_init_buffers();
 344
 345	return &bpf_trace_printk_proto;
 346}
 347
 348static __always_inline int
 349get_map_perf_counter(struct bpf_map *map, u64 flags,
 350		     u64 *value, u64 *enabled, u64 *running)
 351{
 
 352	struct bpf_array *array = container_of(map, struct bpf_array, map);
 353	unsigned int cpu = smp_processor_id();
 354	u64 index = flags & BPF_F_INDEX_MASK;
 355	struct bpf_event_entry *ee;
 356
 357	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 358		return -EINVAL;
 359	if (index == BPF_F_CURRENT_CPU)
 360		index = cpu;
 361	if (unlikely(index >= array->map.max_entries))
 362		return -E2BIG;
 363
 364	ee = READ_ONCE(array->ptrs[index]);
 365	if (!ee)
 366		return -ENOENT;
 367
 368	return perf_event_read_local(ee->event, value, enabled, running);
 369}
 370
 371BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 372{
 373	u64 value = 0;
 374	int err;
 375
 376	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 377	/*
 378	 * this api is ugly since we miss [-22..-2] range of valid
 379	 * counter values, but that's uapi
 
 380	 */
 381	if (err)
 382		return err;
 383	return value;
 384}
 385
 386static const struct bpf_func_proto bpf_perf_event_read_proto = {
 387	.func		= bpf_perf_event_read,
 388	.gpl_only	= true,
 389	.ret_type	= RET_INTEGER,
 390	.arg1_type	= ARG_CONST_MAP_PTR,
 391	.arg2_type	= ARG_ANYTHING,
 392};
 393
 394BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 395	   struct bpf_perf_event_value *, buf, u32, size)
 396{
 397	int err = -EINVAL;
 398
 399	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 400		goto clear;
 401	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 402				   &buf->running);
 403	if (unlikely(err))
 404		goto clear;
 405	return 0;
 406clear:
 407	memset(buf, 0, size);
 408	return err;
 409}
 410
 411static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 412	.func		= bpf_perf_event_read_value,
 413	.gpl_only	= true,
 414	.ret_type	= RET_INTEGER,
 415	.arg1_type	= ARG_CONST_MAP_PTR,
 416	.arg2_type	= ARG_ANYTHING,
 417	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
 418	.arg4_type	= ARG_CONST_SIZE,
 419};
 420
 421static __always_inline u64
 422__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 423			u64 flags, struct perf_sample_data *sd)
 424{
 
 
 425	struct bpf_array *array = container_of(map, struct bpf_array, map);
 426	unsigned int cpu = smp_processor_id();
 427	u64 index = flags & BPF_F_INDEX_MASK;
 428	struct bpf_event_entry *ee;
 429	struct perf_event *event;
 
 
 
 
 
 430
 431	if (index == BPF_F_CURRENT_CPU)
 432		index = cpu;
 433	if (unlikely(index >= array->map.max_entries))
 434		return -E2BIG;
 435
 436	ee = READ_ONCE(array->ptrs[index]);
 437	if (!ee)
 438		return -ENOENT;
 439
 440	event = ee->event;
 
 441	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 442		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 443		return -EINVAL;
 444
 445	if (unlikely(event->oncpu != cpu))
 446		return -EOPNOTSUPP;
 447
 448	return perf_event_output(event, sd, regs);
 449}
 450
 451/*
 452 * Support executing tracepoints in normal, irq, and nmi context that each call
 453 * bpf_perf_event_output
 454 */
 455struct bpf_trace_sample_data {
 456	struct perf_sample_data sds[3];
 457};
 458
 459static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 460static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 461BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 462	   u64, flags, void *, data, u64, size)
 463{
 464	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 465	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 466	struct perf_raw_record raw = {
 467		.frag = {
 468			.size = size,
 469			.data = data,
 470		},
 471	};
 472	struct perf_sample_data *sd;
 473	int err;
 474
 475	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 476		err = -EBUSY;
 477		goto out;
 478	}
 479
 480	sd = &sds->sds[nest_level - 1];
 481
 482	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 483		err = -EINVAL;
 484		goto out;
 485	}
 486
 487	perf_sample_data_init(sd, 0, 0);
 488	sd->raw = &raw;
 489
 490	err = __bpf_perf_event_output(regs, map, flags, sd);
 491
 492out:
 493	this_cpu_dec(bpf_trace_nest_level);
 494	return err;
 495}
 496
 497static const struct bpf_func_proto bpf_perf_event_output_proto = {
 498	.func		= bpf_perf_event_output,
 499	.gpl_only	= true,
 500	.ret_type	= RET_INTEGER,
 501	.arg1_type	= ARG_PTR_TO_CTX,
 502	.arg2_type	= ARG_CONST_MAP_PTR,
 503	.arg3_type	= ARG_ANYTHING,
 504	.arg4_type	= ARG_PTR_TO_MEM,
 505	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 506};
 507
 508static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 509struct bpf_nested_pt_regs {
 510	struct pt_regs regs[3];
 511};
 512static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 513static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 514
 515u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 516		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 517{
 518	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 519	struct perf_raw_frag frag = {
 520		.copy		= ctx_copy,
 521		.size		= ctx_size,
 522		.data		= ctx,
 523	};
 524	struct perf_raw_record raw = {
 525		.frag = {
 526			{
 527				.next	= ctx_size ? &frag : NULL,
 528			},
 529			.size	= meta_size,
 530			.data	= meta,
 531		},
 532	};
 533	struct perf_sample_data *sd;
 534	struct pt_regs *regs;
 535	u64 ret;
 536
 537	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
 538		ret = -EBUSY;
 539		goto out;
 540	}
 541	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
 542	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
 543
 544	perf_fetch_caller_regs(regs);
 545	perf_sample_data_init(sd, 0, 0);
 546	sd->raw = &raw;
 547
 548	ret = __bpf_perf_event_output(regs, map, flags, sd);
 549out:
 550	this_cpu_dec(bpf_event_output_nest_level);
 551	return ret;
 552}
 553
 554BPF_CALL_0(bpf_get_current_task)
 555{
 556	return (long) current;
 557}
 558
 559static const struct bpf_func_proto bpf_get_current_task_proto = {
 560	.func		= bpf_get_current_task,
 561	.gpl_only	= true,
 562	.ret_type	= RET_INTEGER,
 563};
 564
 565BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
 566{
 567	struct bpf_array *array = container_of(map, struct bpf_array, map);
 568	struct cgroup *cgrp;
 569
 570	if (unlikely(idx >= array->map.max_entries))
 571		return -E2BIG;
 572
 573	cgrp = READ_ONCE(array->ptrs[idx]);
 574	if (unlikely(!cgrp))
 575		return -EAGAIN;
 576
 577	return task_under_cgroup_hierarchy(current, cgrp);
 578}
 579
 580static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
 581	.func           = bpf_current_task_under_cgroup,
 582	.gpl_only       = false,
 583	.ret_type       = RET_INTEGER,
 584	.arg1_type      = ARG_CONST_MAP_PTR,
 585	.arg2_type      = ARG_ANYTHING,
 586};
 587
 588BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
 589	   const void *, unsafe_ptr)
 590{
 591	int ret;
 592
 593	ret = security_locked_down(LOCKDOWN_BPF_READ);
 594	if (ret < 0)
 595		goto out;
 596
 597	/*
 598	 * The strncpy_from_unsafe() call will likely not fill the entire
 599	 * buffer, but that's okay in this circumstance as we're probing
 600	 * arbitrary memory anyway similar to bpf_probe_read() and might
 601	 * as well probe the stack. Thus, memory is explicitly cleared
 602	 * only in error case, so that improper users ignoring return
 603	 * code altogether don't copy garbage; otherwise length of string
 604	 * is returned that can be used for bpf_perf_event_output() et al.
 605	 */
 606	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
 607	if (unlikely(ret < 0))
 608out:
 609		memset(dst, 0, size);
 610
 611	return ret;
 612}
 613
 614static const struct bpf_func_proto bpf_probe_read_str_proto = {
 615	.func		= bpf_probe_read_str,
 616	.gpl_only	= true,
 617	.ret_type	= RET_INTEGER,
 618	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 619	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 620	.arg3_type	= ARG_ANYTHING,
 621};
 622
 623struct send_signal_irq_work {
 624	struct irq_work irq_work;
 625	struct task_struct *task;
 626	u32 sig;
 627};
 628
 629static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
 630
 631static void do_bpf_send_signal(struct irq_work *entry)
 632{
 633	struct send_signal_irq_work *work;
 634
 635	work = container_of(entry, struct send_signal_irq_work, irq_work);
 636	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID);
 637}
 638
 639BPF_CALL_1(bpf_send_signal, u32, sig)
 640{
 641	struct send_signal_irq_work *work = NULL;
 642
 643	/* Similar to bpf_probe_write_user, task needs to be
 644	 * in a sound condition and kernel memory access be
 645	 * permitted in order to send signal to the current
 646	 * task.
 647	 */
 648	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
 649		return -EPERM;
 650	if (unlikely(uaccess_kernel()))
 651		return -EPERM;
 652	if (unlikely(!nmi_uaccess_okay()))
 653		return -EPERM;
 654
 655	if (in_nmi()) {
 656		/* Do an early check on signal validity. Otherwise,
 657		 * the error is lost in deferred irq_work.
 658		 */
 659		if (unlikely(!valid_signal(sig)))
 660			return -EINVAL;
 661
 662		work = this_cpu_ptr(&send_signal_work);
 663		if (work->irq_work.flags & IRQ_WORK_BUSY)
 664			return -EBUSY;
 665
 666		/* Add the current task, which is the target of sending signal,
 667		 * to the irq_work. The current task may change when queued
 668		 * irq works get executed.
 669		 */
 670		work->task = current;
 671		work->sig = sig;
 672		irq_work_queue(&work->irq_work);
 673		return 0;
 674	}
 675
 676	return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID);
 677}
 678
 679static const struct bpf_func_proto bpf_send_signal_proto = {
 680	.func		= bpf_send_signal,
 681	.gpl_only	= false,
 682	.ret_type	= RET_INTEGER,
 683	.arg1_type	= ARG_ANYTHING,
 684};
 685
 686static const struct bpf_func_proto *
 687tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 688{
 689	switch (func_id) {
 690	case BPF_FUNC_map_lookup_elem:
 691		return &bpf_map_lookup_elem_proto;
 692	case BPF_FUNC_map_update_elem:
 693		return &bpf_map_update_elem_proto;
 694	case BPF_FUNC_map_delete_elem:
 695		return &bpf_map_delete_elem_proto;
 696	case BPF_FUNC_map_push_elem:
 697		return &bpf_map_push_elem_proto;
 698	case BPF_FUNC_map_pop_elem:
 699		return &bpf_map_pop_elem_proto;
 700	case BPF_FUNC_map_peek_elem:
 701		return &bpf_map_peek_elem_proto;
 702	case BPF_FUNC_probe_read:
 703		return &bpf_probe_read_proto;
 704	case BPF_FUNC_ktime_get_ns:
 705		return &bpf_ktime_get_ns_proto;
 706	case BPF_FUNC_tail_call:
 707		return &bpf_tail_call_proto;
 708	case BPF_FUNC_get_current_pid_tgid:
 709		return &bpf_get_current_pid_tgid_proto;
 710	case BPF_FUNC_get_current_task:
 711		return &bpf_get_current_task_proto;
 712	case BPF_FUNC_get_current_uid_gid:
 713		return &bpf_get_current_uid_gid_proto;
 714	case BPF_FUNC_get_current_comm:
 715		return &bpf_get_current_comm_proto;
 716	case BPF_FUNC_trace_printk:
 717		return bpf_get_trace_printk_proto();
 718	case BPF_FUNC_get_smp_processor_id:
 719		return &bpf_get_smp_processor_id_proto;
 720	case BPF_FUNC_get_numa_node_id:
 721		return &bpf_get_numa_node_id_proto;
 722	case BPF_FUNC_perf_event_read:
 723		return &bpf_perf_event_read_proto;
 724	case BPF_FUNC_probe_write_user:
 725		return bpf_get_probe_write_proto();
 726	case BPF_FUNC_current_task_under_cgroup:
 727		return &bpf_current_task_under_cgroup_proto;
 728	case BPF_FUNC_get_prandom_u32:
 729		return &bpf_get_prandom_u32_proto;
 730	case BPF_FUNC_probe_read_str:
 731		return &bpf_probe_read_str_proto;
 732#ifdef CONFIG_CGROUPS
 733	case BPF_FUNC_get_current_cgroup_id:
 734		return &bpf_get_current_cgroup_id_proto;
 735#endif
 736	case BPF_FUNC_send_signal:
 737		return &bpf_send_signal_proto;
 738	default:
 739		return NULL;
 740	}
 741}
 742
 743static const struct bpf_func_proto *
 744kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 745{
 746	switch (func_id) {
 747	case BPF_FUNC_perf_event_output:
 748		return &bpf_perf_event_output_proto;
 749	case BPF_FUNC_get_stackid:
 750		return &bpf_get_stackid_proto;
 751	case BPF_FUNC_get_stack:
 752		return &bpf_get_stack_proto;
 753	case BPF_FUNC_perf_event_read_value:
 754		return &bpf_perf_event_read_value_proto;
 755#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 756	case BPF_FUNC_override_return:
 757		return &bpf_override_return_proto;
 758#endif
 759	default:
 760		return tracing_func_proto(func_id, prog);
 761	}
 762}
 763
 764/* bpf+kprobe programs can access fields of 'struct pt_regs' */
 765static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
 766					const struct bpf_prog *prog,
 767					struct bpf_insn_access_aux *info)
 768{
 
 769	if (off < 0 || off >= sizeof(struct pt_regs))
 770		return false;
 
 
 771	if (type != BPF_READ)
 772		return false;
 
 
 773	if (off % size != 0)
 774		return false;
 775	/*
 776	 * Assertion for 32 bit to make sure last 8 byte access
 777	 * (BPF_DW) to the last 4 byte member is disallowed.
 778	 */
 779	if (off + size > sizeof(struct pt_regs))
 780		return false;
 781
 782	return true;
 783}
 784
 785const struct bpf_verifier_ops kprobe_verifier_ops = {
 786	.get_func_proto  = kprobe_prog_func_proto,
 787	.is_valid_access = kprobe_prog_is_valid_access,
 788};
 789
 790const struct bpf_prog_ops kprobe_prog_ops = {
 791};
 792
 793BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
 794	   u64, flags, void *, data, u64, size)
 795{
 796	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
 797
 798	/*
 799	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
 800	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
 801	 * from there and call the same bpf_perf_event_output() helper inline.
 802	 */
 803	return ____bpf_perf_event_output(regs, map, flags, data, size);
 804}
 805
 806static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
 807	.func		= bpf_perf_event_output_tp,
 808	.gpl_only	= true,
 809	.ret_type	= RET_INTEGER,
 810	.arg1_type	= ARG_PTR_TO_CTX,
 811	.arg2_type	= ARG_CONST_MAP_PTR,
 812	.arg3_type	= ARG_ANYTHING,
 813	.arg4_type	= ARG_PTR_TO_MEM,
 814	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 815};
 816
 817BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
 818	   u64, flags)
 819{
 820	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
 821
 822	/*
 823	 * Same comment as in bpf_perf_event_output_tp(), only that this time
 824	 * the other helper's function body cannot be inlined due to being
 825	 * external, thus we need to call raw helper function.
 826	 */
 827	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
 828			       flags, 0, 0);
 829}
 830
 831static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
 832	.func		= bpf_get_stackid_tp,
 833	.gpl_only	= true,
 834	.ret_type	= RET_INTEGER,
 835	.arg1_type	= ARG_PTR_TO_CTX,
 836	.arg2_type	= ARG_CONST_MAP_PTR,
 837	.arg3_type	= ARG_ANYTHING,
 838};
 839
 840BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
 841	   u64, flags)
 842{
 843	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
 844
 845	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
 846			     (unsigned long) size, flags, 0);
 847}
 848
 849static const struct bpf_func_proto bpf_get_stack_proto_tp = {
 850	.func		= bpf_get_stack_tp,
 851	.gpl_only	= true,
 852	.ret_type	= RET_INTEGER,
 853	.arg1_type	= ARG_PTR_TO_CTX,
 854	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
 855	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 856	.arg4_type	= ARG_ANYTHING,
 857};
 858
 859static const struct bpf_func_proto *
 860tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 861{
 862	switch (func_id) {
 863	case BPF_FUNC_perf_event_output:
 864		return &bpf_perf_event_output_proto_tp;
 865	case BPF_FUNC_get_stackid:
 866		return &bpf_get_stackid_proto_tp;
 867	case BPF_FUNC_get_stack:
 868		return &bpf_get_stack_proto_tp;
 869	default:
 870		return tracing_func_proto(func_id, prog);
 871	}
 872}
 873
 874static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
 875				    const struct bpf_prog *prog,
 876				    struct bpf_insn_access_aux *info)
 877{
 878	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
 879		return false;
 880	if (type != BPF_READ)
 881		return false;
 882	if (off % size != 0)
 883		return false;
 884
 885	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
 886	return true;
 887}
 888
 889const struct bpf_verifier_ops tracepoint_verifier_ops = {
 890	.get_func_proto  = tp_prog_func_proto,
 891	.is_valid_access = tp_prog_is_valid_access,
 892};
 893
 894const struct bpf_prog_ops tracepoint_prog_ops = {
 895};
 896
 897BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
 898	   struct bpf_perf_event_value *, buf, u32, size)
 899{
 900	int err = -EINVAL;
 901
 902	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 903		goto clear;
 904	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
 905				    &buf->running);
 906	if (unlikely(err))
 907		goto clear;
 908	return 0;
 909clear:
 910	memset(buf, 0, size);
 911	return err;
 912}
 913
 914static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
 915         .func           = bpf_perf_prog_read_value,
 916         .gpl_only       = true,
 917         .ret_type       = RET_INTEGER,
 918         .arg1_type      = ARG_PTR_TO_CTX,
 919         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
 920         .arg3_type      = ARG_CONST_SIZE,
 921};
 922
 923static const struct bpf_func_proto *
 924pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 925{
 926	switch (func_id) {
 927	case BPF_FUNC_perf_event_output:
 928		return &bpf_perf_event_output_proto_tp;
 929	case BPF_FUNC_get_stackid:
 930		return &bpf_get_stackid_proto_tp;
 931	case BPF_FUNC_get_stack:
 932		return &bpf_get_stack_proto_tp;
 933	case BPF_FUNC_perf_prog_read_value:
 934		return &bpf_perf_prog_read_value_proto;
 935	default:
 936		return tracing_func_proto(func_id, prog);
 937	}
 938}
 939
 940/*
 941 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
 942 * to avoid potential recursive reuse issue when/if tracepoints are added
 943 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
 944 *
 945 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
 946 * in normal, irq, and nmi context.
 947 */
 948struct bpf_raw_tp_regs {
 949	struct pt_regs regs[3];
 950};
 951static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
 952static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
 953static struct pt_regs *get_bpf_raw_tp_regs(void)
 954{
 955	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
 956	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
 957
 958	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
 959		this_cpu_dec(bpf_raw_tp_nest_level);
 960		return ERR_PTR(-EBUSY);
 961	}
 962
 963	return &tp_regs->regs[nest_level - 1];
 964}
 965
 966static void put_bpf_raw_tp_regs(void)
 967{
 968	this_cpu_dec(bpf_raw_tp_nest_level);
 969}
 970
 971BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
 972	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
 973{
 974	struct pt_regs *regs = get_bpf_raw_tp_regs();
 975	int ret;
 976
 977	if (IS_ERR(regs))
 978		return PTR_ERR(regs);
 979
 980	perf_fetch_caller_regs(regs);
 981	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
 982
 983	put_bpf_raw_tp_regs();
 984	return ret;
 985}
 986
 987static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
 988	.func		= bpf_perf_event_output_raw_tp,
 989	.gpl_only	= true,
 990	.ret_type	= RET_INTEGER,
 991	.arg1_type	= ARG_PTR_TO_CTX,
 992	.arg2_type	= ARG_CONST_MAP_PTR,
 993	.arg3_type	= ARG_ANYTHING,
 994	.arg4_type	= ARG_PTR_TO_MEM,
 995	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 996};
 997
 998BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
 999	   struct bpf_map *, map, u64, flags)
1000{
1001	struct pt_regs *regs = get_bpf_raw_tp_regs();
1002	int ret;
1003
1004	if (IS_ERR(regs))
1005		return PTR_ERR(regs);
1006
1007	perf_fetch_caller_regs(regs);
1008	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1009	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1010			      flags, 0, 0);
1011	put_bpf_raw_tp_regs();
1012	return ret;
1013}
1014
1015static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1016	.func		= bpf_get_stackid_raw_tp,
1017	.gpl_only	= true,
1018	.ret_type	= RET_INTEGER,
1019	.arg1_type	= ARG_PTR_TO_CTX,
1020	.arg2_type	= ARG_CONST_MAP_PTR,
1021	.arg3_type	= ARG_ANYTHING,
1022};
1023
1024BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1025	   void *, buf, u32, size, u64, flags)
1026{
1027	struct pt_regs *regs = get_bpf_raw_tp_regs();
1028	int ret;
1029
1030	if (IS_ERR(regs))
1031		return PTR_ERR(regs);
1032
1033	perf_fetch_caller_regs(regs);
1034	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1035			    (unsigned long) size, flags, 0);
1036	put_bpf_raw_tp_regs();
1037	return ret;
1038}
1039
1040static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1041	.func		= bpf_get_stack_raw_tp,
1042	.gpl_only	= true,
1043	.ret_type	= RET_INTEGER,
1044	.arg1_type	= ARG_PTR_TO_CTX,
1045	.arg2_type	= ARG_PTR_TO_MEM,
1046	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1047	.arg4_type	= ARG_ANYTHING,
1048};
1049
1050static const struct bpf_func_proto *
1051raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1052{
1053	switch (func_id) {
1054	case BPF_FUNC_perf_event_output:
1055		return &bpf_perf_event_output_proto_raw_tp;
1056	case BPF_FUNC_get_stackid:
1057		return &bpf_get_stackid_proto_raw_tp;
1058	case BPF_FUNC_get_stack:
1059		return &bpf_get_stack_proto_raw_tp;
1060	default:
1061		return tracing_func_proto(func_id, prog);
1062	}
1063}
1064
1065static bool raw_tp_prog_is_valid_access(int off, int size,
1066					enum bpf_access_type type,
1067					const struct bpf_prog *prog,
1068					struct bpf_insn_access_aux *info)
1069{
1070	/* largest tracepoint in the kernel has 12 args */
1071	if (off < 0 || off >= sizeof(__u64) * 12)
1072		return false;
1073	if (type != BPF_READ)
1074		return false;
1075	if (off % size != 0)
1076		return false;
1077	return true;
1078}
1079
1080const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1081	.get_func_proto  = raw_tp_prog_func_proto,
1082	.is_valid_access = raw_tp_prog_is_valid_access,
1083};
1084
1085const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1086};
1087
1088static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1089						 enum bpf_access_type type,
1090						 const struct bpf_prog *prog,
1091						 struct bpf_insn_access_aux *info)
1092{
1093	if (off == 0) {
1094		if (size != sizeof(u64) || type != BPF_READ)
1095			return false;
1096		info->reg_type = PTR_TO_TP_BUFFER;
1097	}
1098	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1099}
1100
1101const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1102	.get_func_proto  = raw_tp_prog_func_proto,
1103	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1104};
1105
1106const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1107};
1108
1109static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1110				    const struct bpf_prog *prog,
1111				    struct bpf_insn_access_aux *info)
1112{
1113	const int size_u64 = sizeof(u64);
1114
1115	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1116		return false;
1117	if (type != BPF_READ)
1118		return false;
1119	if (off % size != 0) {
1120		if (sizeof(unsigned long) != 4)
1121			return false;
1122		if (size != 8)
1123			return false;
1124		if (off % size != 4)
1125			return false;
1126	}
1127
1128	switch (off) {
1129	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1130		bpf_ctx_record_field_size(info, size_u64);
1131		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1132			return false;
1133		break;
1134	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1135		bpf_ctx_record_field_size(info, size_u64);
1136		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1137			return false;
1138		break;
1139	default:
1140		if (size != sizeof(long))
1141			return false;
1142	}
1143
1144	return true;
1145}
1146
1147static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1148				      const struct bpf_insn *si,
1149				      struct bpf_insn *insn_buf,
1150				      struct bpf_prog *prog, u32 *target_size)
1151{
1152	struct bpf_insn *insn = insn_buf;
1153
1154	switch (si->off) {
1155	case offsetof(struct bpf_perf_event_data, sample_period):
1156		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1157						       data), si->dst_reg, si->src_reg,
1158				      offsetof(struct bpf_perf_event_data_kern, data));
1159		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1160				      bpf_target_off(struct perf_sample_data, period, 8,
1161						     target_size));
1162		break;
1163	case offsetof(struct bpf_perf_event_data, addr):
1164		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1165						       data), si->dst_reg, si->src_reg,
1166				      offsetof(struct bpf_perf_event_data_kern, data));
1167		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1168				      bpf_target_off(struct perf_sample_data, addr, 8,
1169						     target_size));
1170		break;
1171	default:
1172		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1173						       regs), si->dst_reg, si->src_reg,
1174				      offsetof(struct bpf_perf_event_data_kern, regs));
1175		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1176				      si->off);
1177		break;
1178	}
1179
1180	return insn - insn_buf;
1181}
1182
1183const struct bpf_verifier_ops perf_event_verifier_ops = {
1184	.get_func_proto		= pe_prog_func_proto,
1185	.is_valid_access	= pe_prog_is_valid_access,
1186	.convert_ctx_access	= pe_prog_convert_ctx_access,
1187};
1188
1189const struct bpf_prog_ops perf_event_prog_ops = {
1190};
1191
1192static DEFINE_MUTEX(bpf_event_mutex);
1193
1194#define BPF_TRACE_MAX_PROGS 64
1195
1196int perf_event_attach_bpf_prog(struct perf_event *event,
1197			       struct bpf_prog *prog)
1198{
1199	struct bpf_prog_array *old_array;
1200	struct bpf_prog_array *new_array;
1201	int ret = -EEXIST;
1202
1203	/*
1204	 * Kprobe override only works if they are on the function entry,
1205	 * and only if they are on the opt-in list.
1206	 */
1207	if (prog->kprobe_override &&
1208	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1209	     !trace_kprobe_error_injectable(event->tp_event)))
1210		return -EINVAL;
1211
1212	mutex_lock(&bpf_event_mutex);
1213
1214	if (event->prog)
1215		goto unlock;
1216
1217	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1218	if (old_array &&
1219	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1220		ret = -E2BIG;
1221		goto unlock;
1222	}
1223
1224	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1225	if (ret < 0)
1226		goto unlock;
1227
1228	/* set the new array to event->tp_event and set event->prog */
1229	event->prog = prog;
1230	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1231	bpf_prog_array_free(old_array);
1232
1233unlock:
1234	mutex_unlock(&bpf_event_mutex);
1235	return ret;
1236}
1237
1238void perf_event_detach_bpf_prog(struct perf_event *event)
1239{
1240	struct bpf_prog_array *old_array;
1241	struct bpf_prog_array *new_array;
1242	int ret;
1243
1244	mutex_lock(&bpf_event_mutex);
1245
1246	if (!event->prog)
1247		goto unlock;
1248
1249	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1250	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1251	if (ret == -ENOENT)
1252		goto unlock;
1253	if (ret < 0) {
1254		bpf_prog_array_delete_safe(old_array, event->prog);
1255	} else {
1256		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1257		bpf_prog_array_free(old_array);
1258	}
1259
1260	bpf_prog_put(event->prog);
1261	event->prog = NULL;
1262
1263unlock:
1264	mutex_unlock(&bpf_event_mutex);
1265}
1266
1267int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1268{
1269	struct perf_event_query_bpf __user *uquery = info;
1270	struct perf_event_query_bpf query = {};
1271	struct bpf_prog_array *progs;
1272	u32 *ids, prog_cnt, ids_len;
1273	int ret;
1274
1275	if (!capable(CAP_SYS_ADMIN))
1276		return -EPERM;
1277	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1278		return -EINVAL;
1279	if (copy_from_user(&query, uquery, sizeof(query)))
1280		return -EFAULT;
1281
1282	ids_len = query.ids_len;
1283	if (ids_len > BPF_TRACE_MAX_PROGS)
1284		return -E2BIG;
1285	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1286	if (!ids)
1287		return -ENOMEM;
1288	/*
1289	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1290	 * is required when user only wants to check for uquery->prog_cnt.
1291	 * There is no need to check for it since the case is handled
1292	 * gracefully in bpf_prog_array_copy_info.
1293	 */
1294
1295	mutex_lock(&bpf_event_mutex);
1296	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1297	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1298	mutex_unlock(&bpf_event_mutex);
1299
1300	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1301	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1302		ret = -EFAULT;
1303
1304	kfree(ids);
1305	return ret;
1306}
1307
1308extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1309extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1310
1311struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1312{
1313	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1314
1315	for (; btp < __stop__bpf_raw_tp; btp++) {
1316		if (!strcmp(btp->tp->name, name))
1317			return btp;
1318	}
1319
1320	return bpf_get_raw_tracepoint_module(name);
1321}
1322
1323void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1324{
1325	struct module *mod = __module_address((unsigned long)btp);
1326
1327	if (mod)
1328		module_put(mod);
1329}
1330
1331static __always_inline
1332void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1333{
1334	rcu_read_lock();
1335	preempt_disable();
1336	(void) BPF_PROG_RUN(prog, args);
1337	preempt_enable();
1338	rcu_read_unlock();
1339}
1340
1341#define UNPACK(...)			__VA_ARGS__
1342#define REPEAT_1(FN, DL, X, ...)	FN(X)
1343#define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1344#define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1345#define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1346#define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1347#define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1348#define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1349#define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1350#define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1351#define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1352#define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1353#define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1354#define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1355
1356#define SARG(X)		u64 arg##X
1357#define COPY(X)		args[X] = arg##X
1358
1359#define __DL_COM	(,)
1360#define __DL_SEM	(;)
1361
1362#define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1363
1364#define BPF_TRACE_DEFN_x(x)						\
1365	void bpf_trace_run##x(struct bpf_prog *prog,			\
1366			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1367	{								\
1368		u64 args[x];						\
1369		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1370		__bpf_trace_run(prog, args);				\
1371	}								\
1372	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1373BPF_TRACE_DEFN_x(1);
1374BPF_TRACE_DEFN_x(2);
1375BPF_TRACE_DEFN_x(3);
1376BPF_TRACE_DEFN_x(4);
1377BPF_TRACE_DEFN_x(5);
1378BPF_TRACE_DEFN_x(6);
1379BPF_TRACE_DEFN_x(7);
1380BPF_TRACE_DEFN_x(8);
1381BPF_TRACE_DEFN_x(9);
1382BPF_TRACE_DEFN_x(10);
1383BPF_TRACE_DEFN_x(11);
1384BPF_TRACE_DEFN_x(12);
1385
1386static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1387{
1388	struct tracepoint *tp = btp->tp;
1389
1390	/*
1391	 * check that program doesn't access arguments beyond what's
1392	 * available in this tracepoint
1393	 */
1394	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1395		return -EINVAL;
1396
1397	if (prog->aux->max_tp_access > btp->writable_size)
1398		return -EINVAL;
1399
1400	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1401}
1402
1403int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1404{
1405	return __bpf_probe_register(btp, prog);
1406}
1407
1408int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1409{
1410	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1411}
1412
1413int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1414			    u32 *fd_type, const char **buf,
1415			    u64 *probe_offset, u64 *probe_addr)
1416{
1417	bool is_tracepoint, is_syscall_tp;
1418	struct bpf_prog *prog;
1419	int flags, err = 0;
1420
1421	prog = event->prog;
1422	if (!prog)
1423		return -ENOENT;
1424
1425	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1426	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1427		return -EOPNOTSUPP;
1428
1429	*prog_id = prog->aux->id;
1430	flags = event->tp_event->flags;
1431	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1432	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1433
1434	if (is_tracepoint || is_syscall_tp) {
1435		*buf = is_tracepoint ? event->tp_event->tp->name
1436				     : event->tp_event->name;
1437		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1438		*probe_offset = 0x0;
1439		*probe_addr = 0x0;
1440	} else {
1441		/* kprobe/uprobe */
1442		err = -EOPNOTSUPP;
1443#ifdef CONFIG_KPROBE_EVENTS
1444		if (flags & TRACE_EVENT_FL_KPROBE)
1445			err = bpf_get_kprobe_info(event, fd_type, buf,
1446						  probe_offset, probe_addr,
1447						  event->attr.type == PERF_TYPE_TRACEPOINT);
1448#endif
1449#ifdef CONFIG_UPROBE_EVENTS
1450		if (flags & TRACE_EVENT_FL_UPROBE)
1451			err = bpf_get_uprobe_info(event, fd_type, buf,
1452						  probe_offset,
1453						  event->attr.type == PERF_TYPE_TRACEPOINT);
1454#endif
1455	}
1456
1457	return err;
1458}
1459
1460static int __init send_signal_irq_work_init(void)
1461{
1462	int cpu;
1463	struct send_signal_irq_work *work;
1464
1465	for_each_possible_cpu(cpu) {
1466		work = per_cpu_ptr(&send_signal_work, cpu);
1467		init_irq_work(&work->irq_work, do_bpf_send_signal);
1468	}
1469	return 0;
1470}
1471
1472subsys_initcall(send_signal_irq_work_init);
1473
1474#ifdef CONFIG_MODULES
1475static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1476			    void *module)
1477{
1478	struct bpf_trace_module *btm, *tmp;
1479	struct module *mod = module;
1480
1481	if (mod->num_bpf_raw_events == 0 ||
1482	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1483		return 0;
1484
1485	mutex_lock(&bpf_module_mutex);
1486
1487	switch (op) {
1488	case MODULE_STATE_COMING:
1489		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1490		if (btm) {
1491			btm->module = module;
1492			list_add(&btm->list, &bpf_trace_modules);
1493		}
1494		break;
1495	case MODULE_STATE_GOING:
1496		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1497			if (btm->module == module) {
1498				list_del(&btm->list);
1499				kfree(btm);
1500				break;
1501			}
1502		}
1503		break;
1504	}
1505
1506	mutex_unlock(&bpf_module_mutex);
1507
1508	return 0;
1509}
1510
1511static struct notifier_block bpf_module_nb = {
1512	.notifier_call = bpf_event_notify,
1513};
1514
1515static int __init bpf_event_init(void)
1516{
1517	register_module_notifier(&bpf_module_nb);
1518	return 0;
1519}
1520
1521fs_initcall(bpf_event_init);
1522#endif /* CONFIG_MODULES */