Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
  2 *
  3 * This program is free software; you can redistribute it and/or
  4 * modify it under the terms of version 2 of the GNU General Public
  5 * License as published by the Free Software Foundation.
  6 */
  7#include <linux/kernel.h>
  8#include <linux/types.h>
  9#include <linux/slab.h>
 10#include <linux/bpf.h>
 
 11#include <linux/filter.h>
 12#include <linux/uaccess.h>
 13#include <linux/ctype.h>
 
 
 
 
 
 
 
 
 
 14#include "trace.h"
 15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 16/**
 17 * trace_call_bpf - invoke BPF program
 18 * @prog: BPF program
 19 * @ctx: opaque context pointer
 20 *
 21 * kprobe handlers execute BPF programs via this helper.
 22 * Can be used from static tracepoints in the future.
 23 *
 24 * Return: BPF programs always return an integer which is interpreted by
 25 * kprobe handler as:
 26 * 0 - return from kprobe (event is filtered out)
 27 * 1 - store kprobe event into ring buffer
 28 * Other values are reserved and currently alias to 1
 29 */
 30unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
 31{
 32	unsigned int ret;
 33
 34	if (in_nmi()) /* not supported yet */
 35		return 1;
 36
 37	preempt_disable();
 38
 39	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
 40		/*
 41		 * since some bpf program is already running on this cpu,
 42		 * don't call into another bpf program (same or different)
 43		 * and don't send kprobe event into ring-buffer,
 44		 * so return zero here
 45		 */
 46		ret = 0;
 47		goto out;
 48	}
 49
 50	rcu_read_lock();
 51	ret = BPF_PROG_RUN(prog, ctx);
 52	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 53
 54 out:
 55	__this_cpu_dec(bpf_prog_active);
 56	preempt_enable();
 57
 58	return ret;
 59}
 60EXPORT_SYMBOL_GPL(trace_call_bpf);
 61
 62static u64 bpf_probe_read(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 63{
 64	void *dst = (void *) (long) r1;
 65	int size = (int) r2;
 66	void *unsafe_ptr = (void *) (long) r3;
 
 
 
 67
 68	return probe_kernel_read(dst, unsafe_ptr, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69}
 70
 71static const struct bpf_func_proto bpf_probe_read_proto = {
 72	.func		= bpf_probe_read,
 73	.gpl_only	= true,
 74	.ret_type	= RET_INTEGER,
 75	.arg1_type	= ARG_PTR_TO_STACK,
 76	.arg2_type	= ARG_CONST_STACK_SIZE,
 77	.arg3_type	= ARG_ANYTHING,
 78};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79
 80/*
 81 * limited trace_printk()
 82 * only %d %u %x %ld %lu %lx %lld %llu %llx %p %s conversion specifiers allowed
 83 */
 84static u64 bpf_trace_printk(u64 r1, u64 fmt_size, u64 r3, u64 r4, u64 r5)
 
 85{
 86	char *fmt = (char *) (long) r1;
 
 
 87	bool str_seen = false;
 88	int mod[3] = {};
 89	int fmt_cnt = 0;
 90	u64 unsafe_addr;
 91	char buf[64];
 92	int i;
 93
 94	/*
 95	 * bpf_check()->check_func_arg()->check_stack_boundary()
 96	 * guarantees that fmt points to bpf program stack,
 97	 * fmt_size bytes of it were initialized and fmt_size > 0
 98	 */
 99	if (fmt[--fmt_size] != 0)
100		return -EINVAL;
101
102	/* check format string for allowed specifiers */
103	for (i = 0; i < fmt_size; i++) {
104		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
105			return -EINVAL;
106
107		if (fmt[i] != '%')
108			continue;
109
110		if (fmt_cnt >= 3)
111			return -EINVAL;
112
113		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
114		i++;
115		if (fmt[i] == 'l') {
116			mod[fmt_cnt]++;
117			i++;
118		} else if (fmt[i] == 'p' || fmt[i] == 's') {
119			mod[fmt_cnt]++;
120			i++;
121			if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122				return -EINVAL;
123			fmt_cnt++;
124			if (fmt[i - 1] == 's') {
125				if (str_seen)
126					/* allow only one '%s' per fmt string */
127					return -EINVAL;
128				str_seen = true;
129
130				switch (fmt_cnt) {
131				case 1:
132					unsafe_addr = r3;
133					r3 = (long) buf;
134					break;
135				case 2:
136					unsafe_addr = r4;
137					r4 = (long) buf;
138					break;
139				case 3:
140					unsafe_addr = r5;
141					r5 = (long) buf;
142					break;
143				}
144				buf[0] = 0;
145				strncpy_from_unsafe(buf,
146						    (void *) (long) unsafe_addr,
147						    sizeof(buf));
 
 
 
 
148			}
149			continue;
 
 
 
150		}
151
152		if (fmt[i] == 'l') {
153			mod[fmt_cnt]++;
154			i++;
155		}
156
157		if (fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x')
 
158			return -EINVAL;
 
159		fmt_cnt++;
160	}
161
162	return __trace_printk(1/* fake ip will not be printed */, fmt,
163			      mod[0] == 2 ? r3 : mod[0] == 1 ? (long) r3 : (u32) r3,
164			      mod[1] == 2 ? r4 : mod[1] == 1 ? (long) r4 : (u32) r4,
165			      mod[2] == 2 ? r5 : mod[2] == 1 ? (long) r5 : (u32) r5);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166}
167
168static const struct bpf_func_proto bpf_trace_printk_proto = {
169	.func		= bpf_trace_printk,
170	.gpl_only	= true,
171	.ret_type	= RET_INTEGER,
172	.arg1_type	= ARG_PTR_TO_STACK,
173	.arg2_type	= ARG_CONST_STACK_SIZE,
174};
175
176const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
177{
178	/*
179	 * this program might be calling bpf_trace_printk,
180	 * so allocate per-cpu printk buffers
 
 
 
 
181	 */
182	trace_printk_init_buffers();
 
183
184	return &bpf_trace_printk_proto;
185}
186
187static u64 bpf_perf_event_read(u64 r1, u64 index, u64 r3, u64 r4, u64 r5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188{
189	struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
190	struct bpf_array *array = container_of(map, struct bpf_array, map);
191	struct perf_event *event;
192	struct file *file;
 
193
 
 
 
 
194	if (unlikely(index >= array->map.max_entries))
195		return -E2BIG;
196
197	file = (struct file *)array->ptrs[index];
198	if (unlikely(!file))
199		return -ENOENT;
200
201	event = file->private_data;
 
202
203	/* make sure event is local and doesn't have pmu::count */
204	if (event->oncpu != smp_processor_id() ||
205	    event->pmu->count)
206		return -EINVAL;
207
 
208	/*
209	 * we don't know if the function is run successfully by the
210	 * return value. It can be judged in other places, such as
211	 * eBPF programs.
212	 */
213	return perf_event_read_local(event);
 
 
214}
215
216static const struct bpf_func_proto bpf_perf_event_read_proto = {
217	.func		= bpf_perf_event_read,
218	.gpl_only	= true,
219	.ret_type	= RET_INTEGER,
220	.arg1_type	= ARG_CONST_MAP_PTR,
221	.arg2_type	= ARG_ANYTHING,
222};
223
224static u64 bpf_perf_event_output(u64 r1, u64 r2, u64 index, u64 r4, u64 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225{
226	struct pt_regs *regs = (struct pt_regs *) (long) r1;
227	struct bpf_map *map = (struct bpf_map *) (long) r2;
228	struct bpf_array *array = container_of(map, struct bpf_array, map);
229	void *data = (void *) (long) r4;
230	struct perf_sample_data sample_data;
 
231	struct perf_event *event;
232	struct file *file;
233	struct perf_raw_record raw = {
234		.size = size,
235		.data = data,
236	};
237
 
 
238	if (unlikely(index >= array->map.max_entries))
239		return -E2BIG;
240
241	file = (struct file *)array->ptrs[index];
242	if (unlikely(!file))
243		return -ENOENT;
244
245	event = file->private_data;
246
247	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
248		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
249		return -EINVAL;
250
251	if (unlikely(event->oncpu != smp_processor_id()))
252		return -EOPNOTSUPP;
253
254	perf_sample_data_init(&sample_data, 0, 0);
255	sample_data.raw = &raw;
256	perf_event_output(event, &sample_data, regs);
257	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258}
259
260static const struct bpf_func_proto bpf_perf_event_output_proto = {
261	.func		= bpf_perf_event_output,
262	.gpl_only	= true,
263	.ret_type	= RET_INTEGER,
264	.arg1_type	= ARG_PTR_TO_CTX,
265	.arg2_type	= ARG_CONST_MAP_PTR,
266	.arg3_type	= ARG_ANYTHING,
267	.arg4_type	= ARG_PTR_TO_STACK,
268	.arg5_type	= ARG_CONST_STACK_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269};
270
271static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
272{
273	switch (func_id) {
274	case BPF_FUNC_map_lookup_elem:
275		return &bpf_map_lookup_elem_proto;
276	case BPF_FUNC_map_update_elem:
277		return &bpf_map_update_elem_proto;
278	case BPF_FUNC_map_delete_elem:
279		return &bpf_map_delete_elem_proto;
280	case BPF_FUNC_probe_read:
281		return &bpf_probe_read_proto;
 
 
 
 
282	case BPF_FUNC_ktime_get_ns:
283		return &bpf_ktime_get_ns_proto;
 
 
284	case BPF_FUNC_tail_call:
285		return &bpf_tail_call_proto;
286	case BPF_FUNC_get_current_pid_tgid:
287		return &bpf_get_current_pid_tgid_proto;
 
 
288	case BPF_FUNC_get_current_uid_gid:
289		return &bpf_get_current_uid_gid_proto;
290	case BPF_FUNC_get_current_comm:
291		return &bpf_get_current_comm_proto;
292	case BPF_FUNC_trace_printk:
293		return bpf_get_trace_printk_proto();
294	case BPF_FUNC_get_smp_processor_id:
295		return &bpf_get_smp_processor_id_proto;
 
 
296	case BPF_FUNC_perf_event_read:
297		return &bpf_perf_event_read_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298	case BPF_FUNC_perf_event_output:
299		return &bpf_perf_event_output_proto;
300	case BPF_FUNC_get_stackid:
301		return &bpf_get_stackid_proto;
 
 
 
 
 
 
302	default:
303		return NULL;
304	}
305}
306
307/* bpf+kprobe programs can access fields of 'struct pt_regs' */
308static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type)
 
 
309{
310	/* check bounds */
311	if (off < 0 || off >= sizeof(struct pt_regs))
312		return false;
313
314	/* only read is allowed */
315	if (type != BPF_READ)
316		return false;
317
318	/* disallow misaligned access */
319	if (off % size != 0)
320		return false;
 
 
 
 
 
 
321
322	return true;
323}
324
325static const struct bpf_verifier_ops kprobe_prog_ops = {
326	.get_func_proto  = kprobe_prog_func_proto,
327	.is_valid_access = kprobe_prog_is_valid_access,
328};
329
330static struct bpf_prog_type_list kprobe_tl = {
331	.ops	= &kprobe_prog_ops,
332	.type	= BPF_PROG_TYPE_KPROBE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333};
334
335static int __init register_kprobe_prog_ops(void)
 
 
 
 
 
 
 
 
 
 
 
 
336{
337	bpf_register_prog_type(&kprobe_tl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338	return 0;
339}
340late_initcall(register_kprobe_prog_ops);
 
 
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
   3 * Copyright (c) 2016 Facebook
 
 
 
   4 */
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/slab.h>
   8#include <linux/bpf.h>
   9#include <linux/bpf_perf_event.h>
  10#include <linux/filter.h>
  11#include <linux/uaccess.h>
  12#include <linux/ctype.h>
  13#include <linux/kprobes.h>
  14#include <linux/spinlock.h>
  15#include <linux/syscalls.h>
  16#include <linux/error-injection.h>
  17#include <linux/btf_ids.h>
  18
  19#include <asm/tlb.h>
  20
  21#include "trace_probe.h"
  22#include "trace.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include "bpf_trace.h"
  26
  27#define bpf_event_rcu_dereference(p)					\
  28	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
  29
  30#ifdef CONFIG_MODULES
  31struct bpf_trace_module {
  32	struct module *module;
  33	struct list_head list;
  34};
  35
  36static LIST_HEAD(bpf_trace_modules);
  37static DEFINE_MUTEX(bpf_module_mutex);
  38
  39static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  40{
  41	struct bpf_raw_event_map *btp, *ret = NULL;
  42	struct bpf_trace_module *btm;
  43	unsigned int i;
  44
  45	mutex_lock(&bpf_module_mutex);
  46	list_for_each_entry(btm, &bpf_trace_modules, list) {
  47		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
  48			btp = &btm->module->bpf_raw_events[i];
  49			if (!strcmp(btp->tp->name, name)) {
  50				if (try_module_get(btm->module))
  51					ret = btp;
  52				goto out;
  53			}
  54		}
  55	}
  56out:
  57	mutex_unlock(&bpf_module_mutex);
  58	return ret;
  59}
  60#else
  61static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
  62{
  63	return NULL;
  64}
  65#endif /* CONFIG_MODULES */
  66
  67u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  68u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
  69
  70/**
  71 * trace_call_bpf - invoke BPF program
  72 * @call: tracepoint event
  73 * @ctx: opaque context pointer
  74 *
  75 * kprobe handlers execute BPF programs via this helper.
  76 * Can be used from static tracepoints in the future.
  77 *
  78 * Return: BPF programs always return an integer which is interpreted by
  79 * kprobe handler as:
  80 * 0 - return from kprobe (event is filtered out)
  81 * 1 - store kprobe event into ring buffer
  82 * Other values are reserved and currently alias to 1
  83 */
  84unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
  85{
  86	unsigned int ret;
  87
  88	if (in_nmi()) /* not supported yet */
  89		return 1;
  90
  91	cant_sleep();
  92
  93	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
  94		/*
  95		 * since some bpf program is already running on this cpu,
  96		 * don't call into another bpf program (same or different)
  97		 * and don't send kprobe event into ring-buffer,
  98		 * so return zero here
  99		 */
 100		ret = 0;
 101		goto out;
 102	}
 103
 104	/*
 105	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
 106	 * to all call sites, we did a bpf_prog_array_valid() there to check
 107	 * whether call->prog_array is empty or not, which is
 108	 * a heurisitc to speed up execution.
 109	 *
 110	 * If bpf_prog_array_valid() fetched prog_array was
 111	 * non-NULL, we go into trace_call_bpf() and do the actual
 112	 * proper rcu_dereference() under RCU lock.
 113	 * If it turns out that prog_array is NULL then, we bail out.
 114	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
 115	 * was NULL, you'll skip the prog_array with the risk of missing
 116	 * out of events when it was updated in between this and the
 117	 * rcu_dereference() which is accepted risk.
 118	 */
 119	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
 120
 121 out:
 122	__this_cpu_dec(bpf_prog_active);
 
 123
 124	return ret;
 125}
 
 126
 127#ifdef CONFIG_BPF_KPROBE_OVERRIDE
 128BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
 129{
 130	regs_set_return_value(regs, rc);
 131	override_function_with_return(regs);
 132	return 0;
 133}
 134
 135static const struct bpf_func_proto bpf_override_return_proto = {
 136	.func		= bpf_override_return,
 137	.gpl_only	= true,
 138	.ret_type	= RET_INTEGER,
 139	.arg1_type	= ARG_PTR_TO_CTX,
 140	.arg2_type	= ARG_ANYTHING,
 141};
 142#endif
 143
 144static __always_inline int
 145bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
 146{
 147	int ret;
 148
 149	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
 150	if (unlikely(ret < 0))
 151		memset(dst, 0, size);
 152	return ret;
 153}
 154
 155BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
 156	   const void __user *, unsafe_ptr)
 157{
 158	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
 159}
 160
 161const struct bpf_func_proto bpf_probe_read_user_proto = {
 162	.func		= bpf_probe_read_user,
 163	.gpl_only	= true,
 164	.ret_type	= RET_INTEGER,
 165	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 166	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 167	.arg3_type	= ARG_ANYTHING,
 168};
 169
 170static __always_inline int
 171bpf_probe_read_user_str_common(void *dst, u32 size,
 172			       const void __user *unsafe_ptr)
 173{
 174	int ret;
 175
 176	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
 177	if (unlikely(ret < 0))
 178		memset(dst, 0, size);
 179	return ret;
 180}
 181
 182BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
 183	   const void __user *, unsafe_ptr)
 184{
 185	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
 186}
 187
 188const struct bpf_func_proto bpf_probe_read_user_str_proto = {
 189	.func		= bpf_probe_read_user_str,
 190	.gpl_only	= true,
 191	.ret_type	= RET_INTEGER,
 192	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 193	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 194	.arg3_type	= ARG_ANYTHING,
 195};
 196
 197static __always_inline int
 198bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
 199{
 200	int ret = security_locked_down(LOCKDOWN_BPF_READ);
 201
 202	if (unlikely(ret < 0))
 203		goto fail;
 204	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
 205	if (unlikely(ret < 0))
 206		goto fail;
 207	return ret;
 208fail:
 209	memset(dst, 0, size);
 210	return ret;
 211}
 212
 213BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
 214	   const void *, unsafe_ptr)
 215{
 216	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 217}
 218
 219const struct bpf_func_proto bpf_probe_read_kernel_proto = {
 220	.func		= bpf_probe_read_kernel,
 221	.gpl_only	= true,
 222	.ret_type	= RET_INTEGER,
 223	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 224	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 225	.arg3_type	= ARG_ANYTHING,
 226};
 227
 228static __always_inline int
 229bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
 230{
 231	int ret = security_locked_down(LOCKDOWN_BPF_READ);
 232
 233	if (unlikely(ret < 0))
 234		goto fail;
 235
 236	/*
 237	 * The strncpy_from_kernel_nofault() call will likely not fill the
 238	 * entire buffer, but that's okay in this circumstance as we're probing
 239	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
 240	 * as well probe the stack. Thus, memory is explicitly cleared
 241	 * only in error case, so that improper users ignoring return
 242	 * code altogether don't copy garbage; otherwise length of string
 243	 * is returned that can be used for bpf_perf_event_output() et al.
 244	 */
 245	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
 246	if (unlikely(ret < 0))
 247		goto fail;
 248
 249	return ret;
 250fail:
 251	memset(dst, 0, size);
 252	return ret;
 253}
 254
 255BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
 256	   const void *, unsafe_ptr)
 257{
 258	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 259}
 260
 261const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
 262	.func		= bpf_probe_read_kernel_str,
 263	.gpl_only	= true,
 264	.ret_type	= RET_INTEGER,
 265	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 266	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 267	.arg3_type	= ARG_ANYTHING,
 268};
 269
 270#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 271BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
 272	   const void *, unsafe_ptr)
 273{
 274	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 275		return bpf_probe_read_user_common(dst, size,
 276				(__force void __user *)unsafe_ptr);
 277	}
 278	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
 279}
 280
 281static const struct bpf_func_proto bpf_probe_read_compat_proto = {
 282	.func		= bpf_probe_read_compat,
 283	.gpl_only	= true,
 284	.ret_type	= RET_INTEGER,
 285	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 286	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 287	.arg3_type	= ARG_ANYTHING,
 288};
 289
 290BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
 291	   const void *, unsafe_ptr)
 292{
 293	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 294		return bpf_probe_read_user_str_common(dst, size,
 295				(__force void __user *)unsafe_ptr);
 296	}
 297	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
 298}
 299
 300static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
 301	.func		= bpf_probe_read_compat_str,
 302	.gpl_only	= true,
 303	.ret_type	= RET_INTEGER,
 304	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
 305	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
 306	.arg3_type	= ARG_ANYTHING,
 307};
 308#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
 309
 310BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
 311	   u32, size)
 312{
 313	/*
 314	 * Ensure we're in user context which is safe for the helper to
 315	 * run. This helper has no business in a kthread.
 316	 *
 317	 * access_ok() should prevent writing to non-user memory, but in
 318	 * some situations (nommu, temporary switch, etc) access_ok() does
 319	 * not provide enough validation, hence the check on KERNEL_DS.
 320	 *
 321	 * nmi_uaccess_okay() ensures the probe is not run in an interim
 322	 * state, when the task or mm are switched. This is specifically
 323	 * required to prevent the use of temporary mm.
 324	 */
 325
 326	if (unlikely(in_interrupt() ||
 327		     current->flags & (PF_KTHREAD | PF_EXITING)))
 328		return -EPERM;
 329	if (unlikely(uaccess_kernel()))
 330		return -EPERM;
 331	if (unlikely(!nmi_uaccess_okay()))
 332		return -EPERM;
 333
 334	return copy_to_user_nofault(unsafe_ptr, src, size);
 335}
 336
 337static const struct bpf_func_proto bpf_probe_write_user_proto = {
 338	.func		= bpf_probe_write_user,
 339	.gpl_only	= true,
 340	.ret_type	= RET_INTEGER,
 341	.arg1_type	= ARG_ANYTHING,
 342	.arg2_type	= ARG_PTR_TO_MEM,
 343	.arg3_type	= ARG_CONST_SIZE,
 344};
 345
 346static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
 347{
 348	if (!capable(CAP_SYS_ADMIN))
 349		return NULL;
 350
 351	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
 352			    current->comm, task_pid_nr(current));
 353
 354	return &bpf_probe_write_user_proto;
 355}
 356
 357static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
 358		size_t bufsz)
 359{
 360	void __user *user_ptr = (__force void __user *)unsafe_ptr;
 361
 362	buf[0] = 0;
 363
 364	switch (fmt_ptype) {
 365	case 's':
 366#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
 367		if ((unsigned long)unsafe_ptr < TASK_SIZE) {
 368			strncpy_from_user_nofault(buf, user_ptr, bufsz);
 369			break;
 370		}
 371		fallthrough;
 372#endif
 373	case 'k':
 374		strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
 375		break;
 376	case 'u':
 377		strncpy_from_user_nofault(buf, user_ptr, bufsz);
 378		break;
 379	}
 380}
 381
 382static DEFINE_RAW_SPINLOCK(trace_printk_lock);
 383
 384#define BPF_TRACE_PRINTK_SIZE   1024
 385
 386static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
 387{
 388	static char buf[BPF_TRACE_PRINTK_SIZE];
 389	unsigned long flags;
 390	va_list ap;
 391	int ret;
 392
 393	raw_spin_lock_irqsave(&trace_printk_lock, flags);
 394	va_start(ap, fmt);
 395	ret = vsnprintf(buf, sizeof(buf), fmt, ap);
 396	va_end(ap);
 397	/* vsnprintf() will not append null for zero-length strings */
 398	if (ret == 0)
 399		buf[0] = '\0';
 400	trace_bpf_trace_printk(buf);
 401	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
 402
 403	return ret;
 404}
 405
 406/*
 407 * Only limited trace_printk() conversion specifiers allowed:
 408 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
 409 */
 410BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
 411	   u64, arg2, u64, arg3)
 412{
 413	int i, mod[3] = {}, fmt_cnt = 0;
 414	char buf[64], fmt_ptype;
 415	void *unsafe_ptr = NULL;
 416	bool str_seen = false;
 
 
 
 
 
 417
 418	/*
 419	 * bpf_check()->check_func_arg()->check_stack_boundary()
 420	 * guarantees that fmt points to bpf program stack,
 421	 * fmt_size bytes of it were initialized and fmt_size > 0
 422	 */
 423	if (fmt[--fmt_size] != 0)
 424		return -EINVAL;
 425
 426	/* check format string for allowed specifiers */
 427	for (i = 0; i < fmt_size; i++) {
 428		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
 429			return -EINVAL;
 430
 431		if (fmt[i] != '%')
 432			continue;
 433
 434		if (fmt_cnt >= 3)
 435			return -EINVAL;
 436
 437		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
 438		i++;
 439		if (fmt[i] == 'l') {
 440			mod[fmt_cnt]++;
 441			i++;
 442		} else if (fmt[i] == 'p') {
 443			mod[fmt_cnt]++;
 444			if ((fmt[i + 1] == 'k' ||
 445			     fmt[i + 1] == 'u') &&
 446			    fmt[i + 2] == 's') {
 447				fmt_ptype = fmt[i + 1];
 448				i += 2;
 449				goto fmt_str;
 450			}
 451
 452			if (fmt[i + 1] == 'B') {
 453				i++;
 454				goto fmt_next;
 455			}
 456
 457			/* disallow any further format extensions */
 458			if (fmt[i + 1] != 0 &&
 459			    !isspace(fmt[i + 1]) &&
 460			    !ispunct(fmt[i + 1]))
 461				return -EINVAL;
 462
 463			goto fmt_next;
 464		} else if (fmt[i] == 's') {
 465			mod[fmt_cnt]++;
 466			fmt_ptype = fmt[i];
 467fmt_str:
 468			if (str_seen)
 469				/* allow only one '%s' per fmt string */
 470				return -EINVAL;
 471			str_seen = true;
 472
 473			if (fmt[i + 1] != 0 &&
 474			    !isspace(fmt[i + 1]) &&
 475			    !ispunct(fmt[i + 1]))
 476				return -EINVAL;
 477
 478			switch (fmt_cnt) {
 479			case 0:
 480				unsafe_ptr = (void *)(long)arg1;
 481				arg1 = (long)buf;
 482				break;
 483			case 1:
 484				unsafe_ptr = (void *)(long)arg2;
 485				arg2 = (long)buf;
 486				break;
 487			case 2:
 488				unsafe_ptr = (void *)(long)arg3;
 489				arg3 = (long)buf;
 490				break;
 491			}
 492
 493			bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
 494					sizeof(buf));
 495			goto fmt_next;
 496		}
 497
 498		if (fmt[i] == 'l') {
 499			mod[fmt_cnt]++;
 500			i++;
 501		}
 502
 503		if (fmt[i] != 'i' && fmt[i] != 'd' &&
 504		    fmt[i] != 'u' && fmt[i] != 'x')
 505			return -EINVAL;
 506fmt_next:
 507		fmt_cnt++;
 508	}
 509
 510/* Horrid workaround for getting va_list handling working with different
 511 * argument type combinations generically for 32 and 64 bit archs.
 512 */
 513#define __BPF_TP_EMIT()	__BPF_ARG3_TP()
 514#define __BPF_TP(...)							\
 515	bpf_do_trace_printk(fmt, ##__VA_ARGS__)
 516
 517#define __BPF_ARG1_TP(...)						\
 518	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
 519	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
 520	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
 521	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
 522	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
 523
 524#define __BPF_ARG2_TP(...)						\
 525	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
 526	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
 527	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
 528	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
 529	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
 530
 531#define __BPF_ARG3_TP(...)						\
 532	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
 533	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
 534	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
 535	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
 536	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
 537
 538	return __BPF_TP_EMIT();
 539}
 540
 541static const struct bpf_func_proto bpf_trace_printk_proto = {
 542	.func		= bpf_trace_printk,
 543	.gpl_only	= true,
 544	.ret_type	= RET_INTEGER,
 545	.arg1_type	= ARG_PTR_TO_MEM,
 546	.arg2_type	= ARG_CONST_SIZE,
 547};
 548
 549const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
 550{
 551	/*
 552	 * This program might be calling bpf_trace_printk,
 553	 * so enable the associated bpf_trace/bpf_trace_printk event.
 554	 * Repeat this each time as it is possible a user has
 555	 * disabled bpf_trace_printk events.  By loading a program
 556	 * calling bpf_trace_printk() however the user has expressed
 557	 * the intent to see such events.
 558	 */
 559	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
 560		pr_warn_ratelimited("could not enable bpf_trace_printk events");
 561
 562	return &bpf_trace_printk_proto;
 563}
 564
 565#define MAX_SEQ_PRINTF_VARARGS		12
 566#define MAX_SEQ_PRINTF_MAX_MEMCPY	6
 567#define MAX_SEQ_PRINTF_STR_LEN		128
 568
 569struct bpf_seq_printf_buf {
 570	char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
 571};
 572static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
 573static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
 574
 575BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
 576	   const void *, data, u32, data_len)
 577{
 578	int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
 579	int i, buf_used, copy_size, num_args;
 580	u64 params[MAX_SEQ_PRINTF_VARARGS];
 581	struct bpf_seq_printf_buf *bufs;
 582	const u64 *args = data;
 583
 584	buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
 585	if (WARN_ON_ONCE(buf_used > 1)) {
 586		err = -EBUSY;
 587		goto out;
 588	}
 589
 590	bufs = this_cpu_ptr(&bpf_seq_printf_buf);
 591
 592	/*
 593	 * bpf_check()->check_func_arg()->check_stack_boundary()
 594	 * guarantees that fmt points to bpf program stack,
 595	 * fmt_size bytes of it were initialized and fmt_size > 0
 596	 */
 597	if (fmt[--fmt_size] != 0)
 598		goto out;
 599
 600	if (data_len & 7)
 601		goto out;
 602
 603	for (i = 0; i < fmt_size; i++) {
 604		if (fmt[i] == '%') {
 605			if (fmt[i + 1] == '%')
 606				i++;
 607			else if (!data || !data_len)
 608				goto out;
 609		}
 610	}
 611
 612	num_args = data_len / 8;
 613
 614	/* check format string for allowed specifiers */
 615	for (i = 0; i < fmt_size; i++) {
 616		/* only printable ascii for now. */
 617		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
 618			err = -EINVAL;
 619			goto out;
 620		}
 621
 622		if (fmt[i] != '%')
 623			continue;
 624
 625		if (fmt[i + 1] == '%') {
 626			i++;
 627			continue;
 628		}
 629
 630		if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
 631			err = -E2BIG;
 632			goto out;
 633		}
 634
 635		if (fmt_cnt >= num_args) {
 636			err = -EINVAL;
 637			goto out;
 638		}
 639
 640		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
 641		i++;
 642
 643		/* skip optional "[0 +-][num]" width formating field */
 644		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
 645		       fmt[i] == ' ')
 646			i++;
 647		if (fmt[i] >= '1' && fmt[i] <= '9') {
 648			i++;
 649			while (fmt[i] >= '0' && fmt[i] <= '9')
 650				i++;
 651		}
 652
 653		if (fmt[i] == 's') {
 654			void *unsafe_ptr;
 655
 656			/* try our best to copy */
 657			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
 658				err = -E2BIG;
 659				goto out;
 660			}
 661
 662			unsafe_ptr = (void *)(long)args[fmt_cnt];
 663			err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
 664					unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
 665			if (err < 0)
 666				bufs->buf[memcpy_cnt][0] = '\0';
 667			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
 668
 669			fmt_cnt++;
 670			memcpy_cnt++;
 671			continue;
 672		}
 673
 674		if (fmt[i] == 'p') {
 675			if (fmt[i + 1] == 0 ||
 676			    fmt[i + 1] == 'K' ||
 677			    fmt[i + 1] == 'x' ||
 678			    fmt[i + 1] == 'B') {
 679				/* just kernel pointers */
 680				params[fmt_cnt] = args[fmt_cnt];
 681				fmt_cnt++;
 682				continue;
 683			}
 684
 685			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
 686			if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
 687				err = -EINVAL;
 688				goto out;
 689			}
 690			if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
 691				err = -EINVAL;
 692				goto out;
 693			}
 694
 695			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
 696				err = -E2BIG;
 697				goto out;
 698			}
 699
 700
 701			copy_size = (fmt[i + 2] == '4') ? 4 : 16;
 702
 703			err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
 704						(void *) (long) args[fmt_cnt],
 705						copy_size);
 706			if (err < 0)
 707				memset(bufs->buf[memcpy_cnt], 0, copy_size);
 708			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
 709
 710			i += 2;
 711			fmt_cnt++;
 712			memcpy_cnt++;
 713			continue;
 714		}
 715
 716		if (fmt[i] == 'l') {
 717			i++;
 718			if (fmt[i] == 'l')
 719				i++;
 720		}
 721
 722		if (fmt[i] != 'i' && fmt[i] != 'd' &&
 723		    fmt[i] != 'u' && fmt[i] != 'x' &&
 724		    fmt[i] != 'X') {
 725			err = -EINVAL;
 726			goto out;
 727		}
 728
 729		params[fmt_cnt] = args[fmt_cnt];
 730		fmt_cnt++;
 731	}
 732
 733	/* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
 734	 * all of them to seq_printf().
 735	 */
 736	seq_printf(m, fmt, params[0], params[1], params[2], params[3],
 737		   params[4], params[5], params[6], params[7], params[8],
 738		   params[9], params[10], params[11]);
 739
 740	err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
 741out:
 742	this_cpu_dec(bpf_seq_printf_buf_used);
 743	return err;
 744}
 745
 746BTF_ID_LIST(bpf_seq_printf_btf_ids)
 747BTF_ID(struct, seq_file)
 748
 749static const struct bpf_func_proto bpf_seq_printf_proto = {
 750	.func		= bpf_seq_printf,
 751	.gpl_only	= true,
 752	.ret_type	= RET_INTEGER,
 753	.arg1_type	= ARG_PTR_TO_BTF_ID,
 754	.arg2_type	= ARG_PTR_TO_MEM,
 755	.arg3_type	= ARG_CONST_SIZE,
 756	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
 757	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
 758	.btf_id		= bpf_seq_printf_btf_ids,
 759};
 760
 761BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
 762{
 763	return seq_write(m, data, len) ? -EOVERFLOW : 0;
 764}
 765
 766BTF_ID_LIST(bpf_seq_write_btf_ids)
 767BTF_ID(struct, seq_file)
 768
 769static const struct bpf_func_proto bpf_seq_write_proto = {
 770	.func		= bpf_seq_write,
 771	.gpl_only	= true,
 772	.ret_type	= RET_INTEGER,
 773	.arg1_type	= ARG_PTR_TO_BTF_ID,
 774	.arg2_type	= ARG_PTR_TO_MEM,
 775	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
 776	.btf_id		= bpf_seq_write_btf_ids,
 777};
 778
 779static __always_inline int
 780get_map_perf_counter(struct bpf_map *map, u64 flags,
 781		     u64 *value, u64 *enabled, u64 *running)
 782{
 
 783	struct bpf_array *array = container_of(map, struct bpf_array, map);
 784	unsigned int cpu = smp_processor_id();
 785	u64 index = flags & BPF_F_INDEX_MASK;
 786	struct bpf_event_entry *ee;
 787
 788	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
 789		return -EINVAL;
 790	if (index == BPF_F_CURRENT_CPU)
 791		index = cpu;
 792	if (unlikely(index >= array->map.max_entries))
 793		return -E2BIG;
 794
 795	ee = READ_ONCE(array->ptrs[index]);
 796	if (!ee)
 797		return -ENOENT;
 798
 799	return perf_event_read_local(ee->event, value, enabled, running);
 800}
 801
 802BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
 803{
 804	u64 value = 0;
 805	int err;
 806
 807	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
 808	/*
 809	 * this api is ugly since we miss [-22..-2] range of valid
 810	 * counter values, but that's uapi
 
 811	 */
 812	if (err)
 813		return err;
 814	return value;
 815}
 816
 817static const struct bpf_func_proto bpf_perf_event_read_proto = {
 818	.func		= bpf_perf_event_read,
 819	.gpl_only	= true,
 820	.ret_type	= RET_INTEGER,
 821	.arg1_type	= ARG_CONST_MAP_PTR,
 822	.arg2_type	= ARG_ANYTHING,
 823};
 824
 825BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
 826	   struct bpf_perf_event_value *, buf, u32, size)
 827{
 828	int err = -EINVAL;
 829
 830	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
 831		goto clear;
 832	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
 833				   &buf->running);
 834	if (unlikely(err))
 835		goto clear;
 836	return 0;
 837clear:
 838	memset(buf, 0, size);
 839	return err;
 840}
 841
 842static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
 843	.func		= bpf_perf_event_read_value,
 844	.gpl_only	= true,
 845	.ret_type	= RET_INTEGER,
 846	.arg1_type	= ARG_CONST_MAP_PTR,
 847	.arg2_type	= ARG_ANYTHING,
 848	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
 849	.arg4_type	= ARG_CONST_SIZE,
 850};
 851
 852static __always_inline u64
 853__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
 854			u64 flags, struct perf_sample_data *sd)
 855{
 
 
 856	struct bpf_array *array = container_of(map, struct bpf_array, map);
 857	unsigned int cpu = smp_processor_id();
 858	u64 index = flags & BPF_F_INDEX_MASK;
 859	struct bpf_event_entry *ee;
 860	struct perf_event *event;
 
 
 
 
 
 861
 862	if (index == BPF_F_CURRENT_CPU)
 863		index = cpu;
 864	if (unlikely(index >= array->map.max_entries))
 865		return -E2BIG;
 866
 867	ee = READ_ONCE(array->ptrs[index]);
 868	if (!ee)
 869		return -ENOENT;
 870
 871	event = ee->event;
 
 872	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
 873		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
 874		return -EINVAL;
 875
 876	if (unlikely(event->oncpu != cpu))
 877		return -EOPNOTSUPP;
 878
 879	return perf_event_output(event, sd, regs);
 880}
 881
 882/*
 883 * Support executing tracepoints in normal, irq, and nmi context that each call
 884 * bpf_perf_event_output
 885 */
 886struct bpf_trace_sample_data {
 887	struct perf_sample_data sds[3];
 888};
 889
 890static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
 891static DEFINE_PER_CPU(int, bpf_trace_nest_level);
 892BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
 893	   u64, flags, void *, data, u64, size)
 894{
 895	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
 896	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
 897	struct perf_raw_record raw = {
 898		.frag = {
 899			.size = size,
 900			.data = data,
 901		},
 902	};
 903	struct perf_sample_data *sd;
 904	int err;
 905
 906	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
 907		err = -EBUSY;
 908		goto out;
 909	}
 910
 911	sd = &sds->sds[nest_level - 1];
 912
 913	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
 914		err = -EINVAL;
 915		goto out;
 916	}
 917
 918	perf_sample_data_init(sd, 0, 0);
 919	sd->raw = &raw;
 920
 921	err = __bpf_perf_event_output(regs, map, flags, sd);
 922
 923out:
 924	this_cpu_dec(bpf_trace_nest_level);
 925	return err;
 926}
 927
 928static const struct bpf_func_proto bpf_perf_event_output_proto = {
 929	.func		= bpf_perf_event_output,
 930	.gpl_only	= true,
 931	.ret_type	= RET_INTEGER,
 932	.arg1_type	= ARG_PTR_TO_CTX,
 933	.arg2_type	= ARG_CONST_MAP_PTR,
 934	.arg3_type	= ARG_ANYTHING,
 935	.arg4_type	= ARG_PTR_TO_MEM,
 936	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
 937};
 938
 939static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
 940struct bpf_nested_pt_regs {
 941	struct pt_regs regs[3];
 942};
 943static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
 944static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
 945
 946u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
 947		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
 948{
 949	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
 950	struct perf_raw_frag frag = {
 951		.copy		= ctx_copy,
 952		.size		= ctx_size,
 953		.data		= ctx,
 954	};
 955	struct perf_raw_record raw = {
 956		.frag = {
 957			{
 958				.next	= ctx_size ? &frag : NULL,
 959			},
 960			.size	= meta_size,
 961			.data	= meta,
 962		},
 963	};
 964	struct perf_sample_data *sd;
 965	struct pt_regs *regs;
 966	u64 ret;
 967
 968	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
 969		ret = -EBUSY;
 970		goto out;
 971	}
 972	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
 973	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
 974
 975	perf_fetch_caller_regs(regs);
 976	perf_sample_data_init(sd, 0, 0);
 977	sd->raw = &raw;
 978
 979	ret = __bpf_perf_event_output(regs, map, flags, sd);
 980out:
 981	this_cpu_dec(bpf_event_output_nest_level);
 982	return ret;
 983}
 984
 985BPF_CALL_0(bpf_get_current_task)
 986{
 987	return (long) current;
 988}
 989
 990const struct bpf_func_proto bpf_get_current_task_proto = {
 991	.func		= bpf_get_current_task,
 992	.gpl_only	= true,
 993	.ret_type	= RET_INTEGER,
 994};
 995
 996BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
 997{
 998	struct bpf_array *array = container_of(map, struct bpf_array, map);
 999	struct cgroup *cgrp;
1000
1001	if (unlikely(idx >= array->map.max_entries))
1002		return -E2BIG;
1003
1004	cgrp = READ_ONCE(array->ptrs[idx]);
1005	if (unlikely(!cgrp))
1006		return -EAGAIN;
1007
1008	return task_under_cgroup_hierarchy(current, cgrp);
1009}
1010
1011static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
1012	.func           = bpf_current_task_under_cgroup,
1013	.gpl_only       = false,
1014	.ret_type       = RET_INTEGER,
1015	.arg1_type      = ARG_CONST_MAP_PTR,
1016	.arg2_type      = ARG_ANYTHING,
1017};
1018
1019struct send_signal_irq_work {
1020	struct irq_work irq_work;
1021	struct task_struct *task;
1022	u32 sig;
1023	enum pid_type type;
1024};
1025
1026static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
1027
1028static void do_bpf_send_signal(struct irq_work *entry)
1029{
1030	struct send_signal_irq_work *work;
1031
1032	work = container_of(entry, struct send_signal_irq_work, irq_work);
1033	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
1034}
1035
1036static int bpf_send_signal_common(u32 sig, enum pid_type type)
1037{
1038	struct send_signal_irq_work *work = NULL;
1039
1040	/* Similar to bpf_probe_write_user, task needs to be
1041	 * in a sound condition and kernel memory access be
1042	 * permitted in order to send signal to the current
1043	 * task.
1044	 */
1045	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
1046		return -EPERM;
1047	if (unlikely(uaccess_kernel()))
1048		return -EPERM;
1049	if (unlikely(!nmi_uaccess_okay()))
1050		return -EPERM;
1051
1052	if (irqs_disabled()) {
1053		/* Do an early check on signal validity. Otherwise,
1054		 * the error is lost in deferred irq_work.
1055		 */
1056		if (unlikely(!valid_signal(sig)))
1057			return -EINVAL;
1058
1059		work = this_cpu_ptr(&send_signal_work);
1060		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
1061			return -EBUSY;
1062
1063		/* Add the current task, which is the target of sending signal,
1064		 * to the irq_work. The current task may change when queued
1065		 * irq works get executed.
1066		 */
1067		work->task = current;
1068		work->sig = sig;
1069		work->type = type;
1070		irq_work_queue(&work->irq_work);
1071		return 0;
1072	}
1073
1074	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
1075}
1076
1077BPF_CALL_1(bpf_send_signal, u32, sig)
1078{
1079	return bpf_send_signal_common(sig, PIDTYPE_TGID);
1080}
1081
1082static const struct bpf_func_proto bpf_send_signal_proto = {
1083	.func		= bpf_send_signal,
1084	.gpl_only	= false,
1085	.ret_type	= RET_INTEGER,
1086	.arg1_type	= ARG_ANYTHING,
1087};
1088
1089BPF_CALL_1(bpf_send_signal_thread, u32, sig)
1090{
1091	return bpf_send_signal_common(sig, PIDTYPE_PID);
1092}
1093
1094static const struct bpf_func_proto bpf_send_signal_thread_proto = {
1095	.func		= bpf_send_signal_thread,
1096	.gpl_only	= false,
1097	.ret_type	= RET_INTEGER,
1098	.arg1_type	= ARG_ANYTHING,
1099};
1100
1101const struct bpf_func_proto *
1102bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1103{
1104	switch (func_id) {
1105	case BPF_FUNC_map_lookup_elem:
1106		return &bpf_map_lookup_elem_proto;
1107	case BPF_FUNC_map_update_elem:
1108		return &bpf_map_update_elem_proto;
1109	case BPF_FUNC_map_delete_elem:
1110		return &bpf_map_delete_elem_proto;
1111	case BPF_FUNC_map_push_elem:
1112		return &bpf_map_push_elem_proto;
1113	case BPF_FUNC_map_pop_elem:
1114		return &bpf_map_pop_elem_proto;
1115	case BPF_FUNC_map_peek_elem:
1116		return &bpf_map_peek_elem_proto;
1117	case BPF_FUNC_ktime_get_ns:
1118		return &bpf_ktime_get_ns_proto;
1119	case BPF_FUNC_ktime_get_boot_ns:
1120		return &bpf_ktime_get_boot_ns_proto;
1121	case BPF_FUNC_tail_call:
1122		return &bpf_tail_call_proto;
1123	case BPF_FUNC_get_current_pid_tgid:
1124		return &bpf_get_current_pid_tgid_proto;
1125	case BPF_FUNC_get_current_task:
1126		return &bpf_get_current_task_proto;
1127	case BPF_FUNC_get_current_uid_gid:
1128		return &bpf_get_current_uid_gid_proto;
1129	case BPF_FUNC_get_current_comm:
1130		return &bpf_get_current_comm_proto;
1131	case BPF_FUNC_trace_printk:
1132		return bpf_get_trace_printk_proto();
1133	case BPF_FUNC_get_smp_processor_id:
1134		return &bpf_get_smp_processor_id_proto;
1135	case BPF_FUNC_get_numa_node_id:
1136		return &bpf_get_numa_node_id_proto;
1137	case BPF_FUNC_perf_event_read:
1138		return &bpf_perf_event_read_proto;
1139	case BPF_FUNC_probe_write_user:
1140		return bpf_get_probe_write_proto();
1141	case BPF_FUNC_current_task_under_cgroup:
1142		return &bpf_current_task_under_cgroup_proto;
1143	case BPF_FUNC_get_prandom_u32:
1144		return &bpf_get_prandom_u32_proto;
1145	case BPF_FUNC_probe_read_user:
1146		return &bpf_probe_read_user_proto;
1147	case BPF_FUNC_probe_read_kernel:
1148		return &bpf_probe_read_kernel_proto;
1149	case BPF_FUNC_probe_read_user_str:
1150		return &bpf_probe_read_user_str_proto;
1151	case BPF_FUNC_probe_read_kernel_str:
1152		return &bpf_probe_read_kernel_str_proto;
1153#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1154	case BPF_FUNC_probe_read:
1155		return &bpf_probe_read_compat_proto;
1156	case BPF_FUNC_probe_read_str:
1157		return &bpf_probe_read_compat_str_proto;
1158#endif
1159#ifdef CONFIG_CGROUPS
1160	case BPF_FUNC_get_current_cgroup_id:
1161		return &bpf_get_current_cgroup_id_proto;
1162#endif
1163	case BPF_FUNC_send_signal:
1164		return &bpf_send_signal_proto;
1165	case BPF_FUNC_send_signal_thread:
1166		return &bpf_send_signal_thread_proto;
1167	case BPF_FUNC_perf_event_read_value:
1168		return &bpf_perf_event_read_value_proto;
1169	case BPF_FUNC_get_ns_current_pid_tgid:
1170		return &bpf_get_ns_current_pid_tgid_proto;
1171	case BPF_FUNC_ringbuf_output:
1172		return &bpf_ringbuf_output_proto;
1173	case BPF_FUNC_ringbuf_reserve:
1174		return &bpf_ringbuf_reserve_proto;
1175	case BPF_FUNC_ringbuf_submit:
1176		return &bpf_ringbuf_submit_proto;
1177	case BPF_FUNC_ringbuf_discard:
1178		return &bpf_ringbuf_discard_proto;
1179	case BPF_FUNC_ringbuf_query:
1180		return &bpf_ringbuf_query_proto;
1181	case BPF_FUNC_jiffies64:
1182		return &bpf_jiffies64_proto;
1183	case BPF_FUNC_get_task_stack:
1184		return &bpf_get_task_stack_proto;
1185	default:
1186		return NULL;
1187	}
1188}
1189
1190static const struct bpf_func_proto *
1191kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1192{
1193	switch (func_id) {
1194	case BPF_FUNC_perf_event_output:
1195		return &bpf_perf_event_output_proto;
1196	case BPF_FUNC_get_stackid:
1197		return &bpf_get_stackid_proto;
1198	case BPF_FUNC_get_stack:
1199		return &bpf_get_stack_proto;
1200#ifdef CONFIG_BPF_KPROBE_OVERRIDE
1201	case BPF_FUNC_override_return:
1202		return &bpf_override_return_proto;
1203#endif
1204	default:
1205		return bpf_tracing_func_proto(func_id, prog);
1206	}
1207}
1208
1209/* bpf+kprobe programs can access fields of 'struct pt_regs' */
1210static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1211					const struct bpf_prog *prog,
1212					struct bpf_insn_access_aux *info)
1213{
 
1214	if (off < 0 || off >= sizeof(struct pt_regs))
1215		return false;
 
 
1216	if (type != BPF_READ)
1217		return false;
 
 
1218	if (off % size != 0)
1219		return false;
1220	/*
1221	 * Assertion for 32 bit to make sure last 8 byte access
1222	 * (BPF_DW) to the last 4 byte member is disallowed.
1223	 */
1224	if (off + size > sizeof(struct pt_regs))
1225		return false;
1226
1227	return true;
1228}
1229
1230const struct bpf_verifier_ops kprobe_verifier_ops = {
1231	.get_func_proto  = kprobe_prog_func_proto,
1232	.is_valid_access = kprobe_prog_is_valid_access,
1233};
1234
1235const struct bpf_prog_ops kprobe_prog_ops = {
1236};
1237
1238BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1239	   u64, flags, void *, data, u64, size)
1240{
1241	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1242
1243	/*
1244	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1245	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1246	 * from there and call the same bpf_perf_event_output() helper inline.
1247	 */
1248	return ____bpf_perf_event_output(regs, map, flags, data, size);
1249}
1250
1251static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1252	.func		= bpf_perf_event_output_tp,
1253	.gpl_only	= true,
1254	.ret_type	= RET_INTEGER,
1255	.arg1_type	= ARG_PTR_TO_CTX,
1256	.arg2_type	= ARG_CONST_MAP_PTR,
1257	.arg3_type	= ARG_ANYTHING,
1258	.arg4_type	= ARG_PTR_TO_MEM,
1259	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1260};
1261
1262BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1263	   u64, flags)
1264{
1265	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1266
1267	/*
1268	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1269	 * the other helper's function body cannot be inlined due to being
1270	 * external, thus we need to call raw helper function.
1271	 */
1272	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1273			       flags, 0, 0);
1274}
1275
1276static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1277	.func		= bpf_get_stackid_tp,
1278	.gpl_only	= true,
1279	.ret_type	= RET_INTEGER,
1280	.arg1_type	= ARG_PTR_TO_CTX,
1281	.arg2_type	= ARG_CONST_MAP_PTR,
1282	.arg3_type	= ARG_ANYTHING,
1283};
1284
1285BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1286	   u64, flags)
1287{
1288	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1289
1290	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1291			     (unsigned long) size, flags, 0);
1292}
1293
1294static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1295	.func		= bpf_get_stack_tp,
1296	.gpl_only	= true,
1297	.ret_type	= RET_INTEGER,
1298	.arg1_type	= ARG_PTR_TO_CTX,
1299	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1300	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1301	.arg4_type	= ARG_ANYTHING,
1302};
1303
1304static const struct bpf_func_proto *
1305tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1306{
1307	switch (func_id) {
1308	case BPF_FUNC_perf_event_output:
1309		return &bpf_perf_event_output_proto_tp;
1310	case BPF_FUNC_get_stackid:
1311		return &bpf_get_stackid_proto_tp;
1312	case BPF_FUNC_get_stack:
1313		return &bpf_get_stack_proto_tp;
1314	default:
1315		return bpf_tracing_func_proto(func_id, prog);
1316	}
1317}
1318
1319static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1320				    const struct bpf_prog *prog,
1321				    struct bpf_insn_access_aux *info)
1322{
1323	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1324		return false;
1325	if (type != BPF_READ)
1326		return false;
1327	if (off % size != 0)
1328		return false;
1329
1330	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1331	return true;
1332}
1333
1334const struct bpf_verifier_ops tracepoint_verifier_ops = {
1335	.get_func_proto  = tp_prog_func_proto,
1336	.is_valid_access = tp_prog_is_valid_access,
1337};
1338
1339const struct bpf_prog_ops tracepoint_prog_ops = {
1340};
1341
1342BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1343	   struct bpf_perf_event_value *, buf, u32, size)
1344{
1345	int err = -EINVAL;
1346
1347	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1348		goto clear;
1349	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1350				    &buf->running);
1351	if (unlikely(err))
1352		goto clear;
1353	return 0;
1354clear:
1355	memset(buf, 0, size);
1356	return err;
1357}
1358
1359static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1360         .func           = bpf_perf_prog_read_value,
1361         .gpl_only       = true,
1362         .ret_type       = RET_INTEGER,
1363         .arg1_type      = ARG_PTR_TO_CTX,
1364         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1365         .arg3_type      = ARG_CONST_SIZE,
1366};
1367
1368BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1369	   void *, buf, u32, size, u64, flags)
1370{
1371#ifndef CONFIG_X86
1372	return -ENOENT;
1373#else
1374	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1375	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1376	u32 to_copy;
1377
1378	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1379		return -EINVAL;
1380
1381	if (unlikely(!br_stack))
1382		return -EINVAL;
1383
1384	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1385		return br_stack->nr * br_entry_size;
1386
1387	if (!buf || (size % br_entry_size != 0))
1388		return -EINVAL;
1389
1390	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1391	memcpy(buf, br_stack->entries, to_copy);
1392
1393	return to_copy;
1394#endif
1395}
1396
1397static const struct bpf_func_proto bpf_read_branch_records_proto = {
1398	.func           = bpf_read_branch_records,
1399	.gpl_only       = true,
1400	.ret_type       = RET_INTEGER,
1401	.arg1_type      = ARG_PTR_TO_CTX,
1402	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1403	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1404	.arg4_type      = ARG_ANYTHING,
1405};
1406
1407static const struct bpf_func_proto *
1408pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1409{
1410	switch (func_id) {
1411	case BPF_FUNC_perf_event_output:
1412		return &bpf_perf_event_output_proto_tp;
1413	case BPF_FUNC_get_stackid:
1414		return &bpf_get_stackid_proto_pe;
1415	case BPF_FUNC_get_stack:
1416		return &bpf_get_stack_proto_pe;
1417	case BPF_FUNC_perf_prog_read_value:
1418		return &bpf_perf_prog_read_value_proto;
1419	case BPF_FUNC_read_branch_records:
1420		return &bpf_read_branch_records_proto;
1421	default:
1422		return bpf_tracing_func_proto(func_id, prog);
1423	}
1424}
1425
1426/*
1427 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1428 * to avoid potential recursive reuse issue when/if tracepoints are added
1429 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1430 *
1431 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1432 * in normal, irq, and nmi context.
1433 */
1434struct bpf_raw_tp_regs {
1435	struct pt_regs regs[3];
1436};
1437static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1438static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1439static struct pt_regs *get_bpf_raw_tp_regs(void)
1440{
1441	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1442	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1443
1444	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1445		this_cpu_dec(bpf_raw_tp_nest_level);
1446		return ERR_PTR(-EBUSY);
1447	}
1448
1449	return &tp_regs->regs[nest_level - 1];
1450}
1451
1452static void put_bpf_raw_tp_regs(void)
1453{
1454	this_cpu_dec(bpf_raw_tp_nest_level);
1455}
1456
1457BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1458	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1459{
1460	struct pt_regs *regs = get_bpf_raw_tp_regs();
1461	int ret;
1462
1463	if (IS_ERR(regs))
1464		return PTR_ERR(regs);
1465
1466	perf_fetch_caller_regs(regs);
1467	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1468
1469	put_bpf_raw_tp_regs();
1470	return ret;
1471}
1472
1473static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1474	.func		= bpf_perf_event_output_raw_tp,
1475	.gpl_only	= true,
1476	.ret_type	= RET_INTEGER,
1477	.arg1_type	= ARG_PTR_TO_CTX,
1478	.arg2_type	= ARG_CONST_MAP_PTR,
1479	.arg3_type	= ARG_ANYTHING,
1480	.arg4_type	= ARG_PTR_TO_MEM,
1481	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1482};
1483
1484extern const struct bpf_func_proto bpf_skb_output_proto;
1485extern const struct bpf_func_proto bpf_xdp_output_proto;
1486
1487BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1488	   struct bpf_map *, map, u64, flags)
1489{
1490	struct pt_regs *regs = get_bpf_raw_tp_regs();
1491	int ret;
1492
1493	if (IS_ERR(regs))
1494		return PTR_ERR(regs);
1495
1496	perf_fetch_caller_regs(regs);
1497	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1498	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1499			      flags, 0, 0);
1500	put_bpf_raw_tp_regs();
1501	return ret;
1502}
1503
1504static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1505	.func		= bpf_get_stackid_raw_tp,
1506	.gpl_only	= true,
1507	.ret_type	= RET_INTEGER,
1508	.arg1_type	= ARG_PTR_TO_CTX,
1509	.arg2_type	= ARG_CONST_MAP_PTR,
1510	.arg3_type	= ARG_ANYTHING,
1511};
1512
1513BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1514	   void *, buf, u32, size, u64, flags)
1515{
1516	struct pt_regs *regs = get_bpf_raw_tp_regs();
1517	int ret;
1518
1519	if (IS_ERR(regs))
1520		return PTR_ERR(regs);
1521
1522	perf_fetch_caller_regs(regs);
1523	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1524			    (unsigned long) size, flags, 0);
1525	put_bpf_raw_tp_regs();
1526	return ret;
1527}
1528
1529static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1530	.func		= bpf_get_stack_raw_tp,
1531	.gpl_only	= true,
1532	.ret_type	= RET_INTEGER,
1533	.arg1_type	= ARG_PTR_TO_CTX,
1534	.arg2_type	= ARG_PTR_TO_MEM,
1535	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1536	.arg4_type	= ARG_ANYTHING,
1537};
1538
1539static const struct bpf_func_proto *
1540raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1541{
1542	switch (func_id) {
1543	case BPF_FUNC_perf_event_output:
1544		return &bpf_perf_event_output_proto_raw_tp;
1545	case BPF_FUNC_get_stackid:
1546		return &bpf_get_stackid_proto_raw_tp;
1547	case BPF_FUNC_get_stack:
1548		return &bpf_get_stack_proto_raw_tp;
1549	default:
1550		return bpf_tracing_func_proto(func_id, prog);
1551	}
1552}
1553
1554const struct bpf_func_proto *
1555tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1556{
1557	switch (func_id) {
1558#ifdef CONFIG_NET
1559	case BPF_FUNC_skb_output:
1560		return &bpf_skb_output_proto;
1561	case BPF_FUNC_xdp_output:
1562		return &bpf_xdp_output_proto;
1563	case BPF_FUNC_skc_to_tcp6_sock:
1564		return &bpf_skc_to_tcp6_sock_proto;
1565	case BPF_FUNC_skc_to_tcp_sock:
1566		return &bpf_skc_to_tcp_sock_proto;
1567	case BPF_FUNC_skc_to_tcp_timewait_sock:
1568		return &bpf_skc_to_tcp_timewait_sock_proto;
1569	case BPF_FUNC_skc_to_tcp_request_sock:
1570		return &bpf_skc_to_tcp_request_sock_proto;
1571	case BPF_FUNC_skc_to_udp6_sock:
1572		return &bpf_skc_to_udp6_sock_proto;
1573#endif
1574	case BPF_FUNC_seq_printf:
1575		return prog->expected_attach_type == BPF_TRACE_ITER ?
1576		       &bpf_seq_printf_proto :
1577		       NULL;
1578	case BPF_FUNC_seq_write:
1579		return prog->expected_attach_type == BPF_TRACE_ITER ?
1580		       &bpf_seq_write_proto :
1581		       NULL;
1582	default:
1583		return raw_tp_prog_func_proto(func_id, prog);
1584	}
1585}
1586
1587static bool raw_tp_prog_is_valid_access(int off, int size,
1588					enum bpf_access_type type,
1589					const struct bpf_prog *prog,
1590					struct bpf_insn_access_aux *info)
1591{
1592	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1593		return false;
1594	if (type != BPF_READ)
1595		return false;
1596	if (off % size != 0)
1597		return false;
1598	return true;
1599}
1600
1601static bool tracing_prog_is_valid_access(int off, int size,
1602					 enum bpf_access_type type,
1603					 const struct bpf_prog *prog,
1604					 struct bpf_insn_access_aux *info)
1605{
1606	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1607		return false;
1608	if (type != BPF_READ)
1609		return false;
1610	if (off % size != 0)
1611		return false;
1612	return btf_ctx_access(off, size, type, prog, info);
1613}
1614
1615int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1616				     const union bpf_attr *kattr,
1617				     union bpf_attr __user *uattr)
1618{
1619	return -ENOTSUPP;
1620}
1621
1622const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1623	.get_func_proto  = raw_tp_prog_func_proto,
1624	.is_valid_access = raw_tp_prog_is_valid_access,
1625};
1626
1627const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1628};
1629
1630const struct bpf_verifier_ops tracing_verifier_ops = {
1631	.get_func_proto  = tracing_prog_func_proto,
1632	.is_valid_access = tracing_prog_is_valid_access,
1633};
1634
1635const struct bpf_prog_ops tracing_prog_ops = {
1636	.test_run = bpf_prog_test_run_tracing,
1637};
1638
1639static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1640						 enum bpf_access_type type,
1641						 const struct bpf_prog *prog,
1642						 struct bpf_insn_access_aux *info)
1643{
1644	if (off == 0) {
1645		if (size != sizeof(u64) || type != BPF_READ)
1646			return false;
1647		info->reg_type = PTR_TO_TP_BUFFER;
1648	}
1649	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1650}
1651
1652const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1653	.get_func_proto  = raw_tp_prog_func_proto,
1654	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1655};
1656
1657const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1658};
1659
1660static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1661				    const struct bpf_prog *prog,
1662				    struct bpf_insn_access_aux *info)
1663{
1664	const int size_u64 = sizeof(u64);
1665
1666	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1667		return false;
1668	if (type != BPF_READ)
1669		return false;
1670	if (off % size != 0) {
1671		if (sizeof(unsigned long) != 4)
1672			return false;
1673		if (size != 8)
1674			return false;
1675		if (off % size != 4)
1676			return false;
1677	}
1678
1679	switch (off) {
1680	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1681		bpf_ctx_record_field_size(info, size_u64);
1682		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1683			return false;
1684		break;
1685	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1686		bpf_ctx_record_field_size(info, size_u64);
1687		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1688			return false;
1689		break;
1690	default:
1691		if (size != sizeof(long))
1692			return false;
1693	}
1694
1695	return true;
1696}
1697
1698static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1699				      const struct bpf_insn *si,
1700				      struct bpf_insn *insn_buf,
1701				      struct bpf_prog *prog, u32 *target_size)
1702{
1703	struct bpf_insn *insn = insn_buf;
1704
1705	switch (si->off) {
1706	case offsetof(struct bpf_perf_event_data, sample_period):
1707		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1708						       data), si->dst_reg, si->src_reg,
1709				      offsetof(struct bpf_perf_event_data_kern, data));
1710		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1711				      bpf_target_off(struct perf_sample_data, period, 8,
1712						     target_size));
1713		break;
1714	case offsetof(struct bpf_perf_event_data, addr):
1715		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1716						       data), si->dst_reg, si->src_reg,
1717				      offsetof(struct bpf_perf_event_data_kern, data));
1718		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1719				      bpf_target_off(struct perf_sample_data, addr, 8,
1720						     target_size));
1721		break;
1722	default:
1723		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1724						       regs), si->dst_reg, si->src_reg,
1725				      offsetof(struct bpf_perf_event_data_kern, regs));
1726		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1727				      si->off);
1728		break;
1729	}
1730
1731	return insn - insn_buf;
1732}
1733
1734const struct bpf_verifier_ops perf_event_verifier_ops = {
1735	.get_func_proto		= pe_prog_func_proto,
1736	.is_valid_access	= pe_prog_is_valid_access,
1737	.convert_ctx_access	= pe_prog_convert_ctx_access,
1738};
1739
1740const struct bpf_prog_ops perf_event_prog_ops = {
1741};
1742
1743static DEFINE_MUTEX(bpf_event_mutex);
1744
1745#define BPF_TRACE_MAX_PROGS 64
1746
1747int perf_event_attach_bpf_prog(struct perf_event *event,
1748			       struct bpf_prog *prog)
1749{
1750	struct bpf_prog_array *old_array;
1751	struct bpf_prog_array *new_array;
1752	int ret = -EEXIST;
1753
1754	/*
1755	 * Kprobe override only works if they are on the function entry,
1756	 * and only if they are on the opt-in list.
1757	 */
1758	if (prog->kprobe_override &&
1759	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1760	     !trace_kprobe_error_injectable(event->tp_event)))
1761		return -EINVAL;
1762
1763	mutex_lock(&bpf_event_mutex);
1764
1765	if (event->prog)
1766		goto unlock;
1767
1768	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1769	if (old_array &&
1770	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1771		ret = -E2BIG;
1772		goto unlock;
1773	}
1774
1775	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1776	if (ret < 0)
1777		goto unlock;
1778
1779	/* set the new array to event->tp_event and set event->prog */
1780	event->prog = prog;
1781	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1782	bpf_prog_array_free(old_array);
1783
1784unlock:
1785	mutex_unlock(&bpf_event_mutex);
1786	return ret;
1787}
1788
1789void perf_event_detach_bpf_prog(struct perf_event *event)
1790{
1791	struct bpf_prog_array *old_array;
1792	struct bpf_prog_array *new_array;
1793	int ret;
1794
1795	mutex_lock(&bpf_event_mutex);
1796
1797	if (!event->prog)
1798		goto unlock;
1799
1800	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1801	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1802	if (ret == -ENOENT)
1803		goto unlock;
1804	if (ret < 0) {
1805		bpf_prog_array_delete_safe(old_array, event->prog);
1806	} else {
1807		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1808		bpf_prog_array_free(old_array);
1809	}
1810
1811	bpf_prog_put(event->prog);
1812	event->prog = NULL;
1813
1814unlock:
1815	mutex_unlock(&bpf_event_mutex);
1816}
1817
1818int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1819{
1820	struct perf_event_query_bpf __user *uquery = info;
1821	struct perf_event_query_bpf query = {};
1822	struct bpf_prog_array *progs;
1823	u32 *ids, prog_cnt, ids_len;
1824	int ret;
1825
1826	if (!perfmon_capable())
1827		return -EPERM;
1828	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1829		return -EINVAL;
1830	if (copy_from_user(&query, uquery, sizeof(query)))
1831		return -EFAULT;
1832
1833	ids_len = query.ids_len;
1834	if (ids_len > BPF_TRACE_MAX_PROGS)
1835		return -E2BIG;
1836	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1837	if (!ids)
1838		return -ENOMEM;
1839	/*
1840	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1841	 * is required when user only wants to check for uquery->prog_cnt.
1842	 * There is no need to check for it since the case is handled
1843	 * gracefully in bpf_prog_array_copy_info.
1844	 */
1845
1846	mutex_lock(&bpf_event_mutex);
1847	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1848	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1849	mutex_unlock(&bpf_event_mutex);
1850
1851	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1852	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1853		ret = -EFAULT;
1854
1855	kfree(ids);
1856	return ret;
1857}
1858
1859extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1860extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1861
1862struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1863{
1864	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1865
1866	for (; btp < __stop__bpf_raw_tp; btp++) {
1867		if (!strcmp(btp->tp->name, name))
1868			return btp;
1869	}
1870
1871	return bpf_get_raw_tracepoint_module(name);
1872}
1873
1874void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1875{
1876	struct module *mod = __module_address((unsigned long)btp);
1877
1878	if (mod)
1879		module_put(mod);
1880}
1881
1882static __always_inline
1883void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1884{
1885	cant_sleep();
1886	rcu_read_lock();
1887	(void) BPF_PROG_RUN(prog, args);
1888	rcu_read_unlock();
1889}
1890
1891#define UNPACK(...)			__VA_ARGS__
1892#define REPEAT_1(FN, DL, X, ...)	FN(X)
1893#define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1894#define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1895#define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1896#define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1897#define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1898#define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1899#define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1900#define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1901#define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1902#define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1903#define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1904#define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1905
1906#define SARG(X)		u64 arg##X
1907#define COPY(X)		args[X] = arg##X
1908
1909#define __DL_COM	(,)
1910#define __DL_SEM	(;)
1911
1912#define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1913
1914#define BPF_TRACE_DEFN_x(x)						\
1915	void bpf_trace_run##x(struct bpf_prog *prog,			\
1916			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1917	{								\
1918		u64 args[x];						\
1919		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1920		__bpf_trace_run(prog, args);				\
1921	}								\
1922	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1923BPF_TRACE_DEFN_x(1);
1924BPF_TRACE_DEFN_x(2);
1925BPF_TRACE_DEFN_x(3);
1926BPF_TRACE_DEFN_x(4);
1927BPF_TRACE_DEFN_x(5);
1928BPF_TRACE_DEFN_x(6);
1929BPF_TRACE_DEFN_x(7);
1930BPF_TRACE_DEFN_x(8);
1931BPF_TRACE_DEFN_x(9);
1932BPF_TRACE_DEFN_x(10);
1933BPF_TRACE_DEFN_x(11);
1934BPF_TRACE_DEFN_x(12);
1935
1936static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1937{
1938	struct tracepoint *tp = btp->tp;
1939
1940	/*
1941	 * check that program doesn't access arguments beyond what's
1942	 * available in this tracepoint
1943	 */
1944	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1945		return -EINVAL;
1946
1947	if (prog->aux->max_tp_access > btp->writable_size)
1948		return -EINVAL;
1949
1950	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1951}
1952
1953int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1954{
1955	return __bpf_probe_register(btp, prog);
1956}
1957
1958int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1959{
1960	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1961}
1962
1963int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1964			    u32 *fd_type, const char **buf,
1965			    u64 *probe_offset, u64 *probe_addr)
1966{
1967	bool is_tracepoint, is_syscall_tp;
1968	struct bpf_prog *prog;
1969	int flags, err = 0;
1970
1971	prog = event->prog;
1972	if (!prog)
1973		return -ENOENT;
1974
1975	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1976	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1977		return -EOPNOTSUPP;
1978
1979	*prog_id = prog->aux->id;
1980	flags = event->tp_event->flags;
1981	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1982	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1983
1984	if (is_tracepoint || is_syscall_tp) {
1985		*buf = is_tracepoint ? event->tp_event->tp->name
1986				     : event->tp_event->name;
1987		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1988		*probe_offset = 0x0;
1989		*probe_addr = 0x0;
1990	} else {
1991		/* kprobe/uprobe */
1992		err = -EOPNOTSUPP;
1993#ifdef CONFIG_KPROBE_EVENTS
1994		if (flags & TRACE_EVENT_FL_KPROBE)
1995			err = bpf_get_kprobe_info(event, fd_type, buf,
1996						  probe_offset, probe_addr,
1997						  event->attr.type == PERF_TYPE_TRACEPOINT);
1998#endif
1999#ifdef CONFIG_UPROBE_EVENTS
2000		if (flags & TRACE_EVENT_FL_UPROBE)
2001			err = bpf_get_uprobe_info(event, fd_type, buf,
2002						  probe_offset,
2003						  event->attr.type == PERF_TYPE_TRACEPOINT);
2004#endif
2005	}
2006
2007	return err;
2008}
2009
2010static int __init send_signal_irq_work_init(void)
2011{
2012	int cpu;
2013	struct send_signal_irq_work *work;
2014
2015	for_each_possible_cpu(cpu) {
2016		work = per_cpu_ptr(&send_signal_work, cpu);
2017		init_irq_work(&work->irq_work, do_bpf_send_signal);
2018	}
2019	return 0;
2020}
2021
2022subsys_initcall(send_signal_irq_work_init);
2023
2024#ifdef CONFIG_MODULES
2025static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2026			    void *module)
2027{
2028	struct bpf_trace_module *btm, *tmp;
2029	struct module *mod = module;
2030
2031	if (mod->num_bpf_raw_events == 0 ||
2032	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2033		return 0;
2034
2035	mutex_lock(&bpf_module_mutex);
2036
2037	switch (op) {
2038	case MODULE_STATE_COMING:
2039		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2040		if (btm) {
2041			btm->module = module;
2042			list_add(&btm->list, &bpf_trace_modules);
2043		}
2044		break;
2045	case MODULE_STATE_GOING:
2046		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2047			if (btm->module == module) {
2048				list_del(&btm->list);
2049				kfree(btm);
2050				break;
2051			}
2052		}
2053		break;
2054	}
2055
2056	mutex_unlock(&bpf_module_mutex);
2057
2058	return 0;
2059}
2060
2061static struct notifier_block bpf_module_nb = {
2062	.notifier_call = bpf_event_notify,
2063};
2064
2065static int __init bpf_event_init(void)
2066{
2067	register_module_notifier(&bpf_module_nb);
2068	return 0;
2069}
2070
2071fs_initcall(bpf_event_init);
2072#endif /* CONFIG_MODULES */