Loading...
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/phy/phy.h>
46#include <linux/usb.h>
47#include <linux/usb/hcd.h>
48#include <linux/usb/phy.h>
49
50#include "usb.h"
51
52
53/*-------------------------------------------------------------------------*/
54
55/*
56 * USB Host Controller Driver framework
57 *
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
60 *
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
65 *
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
71 *
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
76 *
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 *
80 * HISTORY:
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
84 */
85
86/*-------------------------------------------------------------------------*/
87
88/* Keep track of which host controller drivers are loaded */
89unsigned long usb_hcds_loaded;
90EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92/* host controllers we manage */
93DEFINE_IDR (usb_bus_idr);
94EXPORT_SYMBOL_GPL (usb_bus_idr);
95
96/* used when allocating bus numbers */
97#define USB_MAXBUS 64
98
99/* used when updating list of hcds */
100DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
101EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
102
103/* used for controlling access to virtual root hubs */
104static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106/* used when updating an endpoint's URB list */
107static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109/* used to protect against unlinking URBs after the device is gone */
110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112/* wait queue for synchronous unlinks */
113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115static inline int is_root_hub(struct usb_device *udev)
116{
117 return (udev->parent == NULL);
118}
119
120/*-------------------------------------------------------------------------*/
121
122/*
123 * Sharable chunks of root hub code.
124 */
125
126/*-------------------------------------------------------------------------*/
127#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130/* usb 3.1 root hub device descriptor */
131static const u8 usb31_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
134 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149};
150
151/* usb 3.0 root hub device descriptor */
152static const u8 usb3_rh_dev_descriptor[18] = {
153 0x12, /* __u8 bLength; */
154 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
155 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
160 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170};
171
172/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
173static const u8 usb25_rh_dev_descriptor[18] = {
174 0x12, /* __u8 bLength; */
175 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
176 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
177
178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
179 0x00, /* __u8 bDeviceSubClass; */
180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
181 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
182
183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
186
187 0x03, /* __u8 iManufacturer; */
188 0x02, /* __u8 iProduct; */
189 0x01, /* __u8 iSerialNumber; */
190 0x01 /* __u8 bNumConfigurations; */
191};
192
193/* usb 2.0 root hub device descriptor */
194static const u8 usb2_rh_dev_descriptor[18] = {
195 0x12, /* __u8 bLength; */
196 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
197 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
198
199 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
200 0x00, /* __u8 bDeviceSubClass; */
201 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
202 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
203
204 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
205 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
206 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
207
208 0x03, /* __u8 iManufacturer; */
209 0x02, /* __u8 iProduct; */
210 0x01, /* __u8 iSerialNumber; */
211 0x01 /* __u8 bNumConfigurations; */
212};
213
214/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
215
216/* usb 1.1 root hub device descriptor */
217static const u8 usb11_rh_dev_descriptor[18] = {
218 0x12, /* __u8 bLength; */
219 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
220 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
221
222 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
223 0x00, /* __u8 bDeviceSubClass; */
224 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
225 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
226
227 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
228 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
229 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
230
231 0x03, /* __u8 iManufacturer; */
232 0x02, /* __u8 iProduct; */
233 0x01, /* __u8 iSerialNumber; */
234 0x01 /* __u8 bNumConfigurations; */
235};
236
237
238/*-------------------------------------------------------------------------*/
239
240/* Configuration descriptors for our root hubs */
241
242static const u8 fs_rh_config_descriptor[] = {
243
244 /* one configuration */
245 0x09, /* __u8 bLength; */
246 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
247 0x19, 0x00, /* __le16 wTotalLength; */
248 0x01, /* __u8 bNumInterfaces; (1) */
249 0x01, /* __u8 bConfigurationValue; */
250 0x00, /* __u8 iConfiguration; */
251 0xc0, /* __u8 bmAttributes;
252 Bit 7: must be set,
253 6: Self-powered,
254 5: Remote wakeup,
255 4..0: resvd */
256 0x00, /* __u8 MaxPower; */
257
258 /* USB 1.1:
259 * USB 2.0, single TT organization (mandatory):
260 * one interface, protocol 0
261 *
262 * USB 2.0, multiple TT organization (optional):
263 * two interfaces, protocols 1 (like single TT)
264 * and 2 (multiple TT mode) ... config is
265 * sometimes settable
266 * NOT IMPLEMENTED
267 */
268
269 /* one interface */
270 0x09, /* __u8 if_bLength; */
271 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
272 0x00, /* __u8 if_bInterfaceNumber; */
273 0x00, /* __u8 if_bAlternateSetting; */
274 0x01, /* __u8 if_bNumEndpoints; */
275 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
276 0x00, /* __u8 if_bInterfaceSubClass; */
277 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
278 0x00, /* __u8 if_iInterface; */
279
280 /* one endpoint (status change endpoint) */
281 0x07, /* __u8 ep_bLength; */
282 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
283 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
284 0x03, /* __u8 ep_bmAttributes; Interrupt */
285 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
286 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
287};
288
289static const u8 hs_rh_config_descriptor[] = {
290
291 /* one configuration */
292 0x09, /* __u8 bLength; */
293 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
294 0x19, 0x00, /* __le16 wTotalLength; */
295 0x01, /* __u8 bNumInterfaces; (1) */
296 0x01, /* __u8 bConfigurationValue; */
297 0x00, /* __u8 iConfiguration; */
298 0xc0, /* __u8 bmAttributes;
299 Bit 7: must be set,
300 6: Self-powered,
301 5: Remote wakeup,
302 4..0: resvd */
303 0x00, /* __u8 MaxPower; */
304
305 /* USB 1.1:
306 * USB 2.0, single TT organization (mandatory):
307 * one interface, protocol 0
308 *
309 * USB 2.0, multiple TT organization (optional):
310 * two interfaces, protocols 1 (like single TT)
311 * and 2 (multiple TT mode) ... config is
312 * sometimes settable
313 * NOT IMPLEMENTED
314 */
315
316 /* one interface */
317 0x09, /* __u8 if_bLength; */
318 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
319 0x00, /* __u8 if_bInterfaceNumber; */
320 0x00, /* __u8 if_bAlternateSetting; */
321 0x01, /* __u8 if_bNumEndpoints; */
322 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
323 0x00, /* __u8 if_bInterfaceSubClass; */
324 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
325 0x00, /* __u8 if_iInterface; */
326
327 /* one endpoint (status change endpoint) */
328 0x07, /* __u8 ep_bLength; */
329 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
330 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
331 0x03, /* __u8 ep_bmAttributes; Interrupt */
332 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
333 * see hub.c:hub_configure() for details. */
334 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
335 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
336};
337
338static const u8 ss_rh_config_descriptor[] = {
339 /* one configuration */
340 0x09, /* __u8 bLength; */
341 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
342 0x1f, 0x00, /* __le16 wTotalLength; */
343 0x01, /* __u8 bNumInterfaces; (1) */
344 0x01, /* __u8 bConfigurationValue; */
345 0x00, /* __u8 iConfiguration; */
346 0xc0, /* __u8 bmAttributes;
347 Bit 7: must be set,
348 6: Self-powered,
349 5: Remote wakeup,
350 4..0: resvd */
351 0x00, /* __u8 MaxPower; */
352
353 /* one interface */
354 0x09, /* __u8 if_bLength; */
355 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
356 0x00, /* __u8 if_bInterfaceNumber; */
357 0x00, /* __u8 if_bAlternateSetting; */
358 0x01, /* __u8 if_bNumEndpoints; */
359 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
360 0x00, /* __u8 if_bInterfaceSubClass; */
361 0x00, /* __u8 if_bInterfaceProtocol; */
362 0x00, /* __u8 if_iInterface; */
363
364 /* one endpoint (status change endpoint) */
365 0x07, /* __u8 ep_bLength; */
366 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
367 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
368 0x03, /* __u8 ep_bmAttributes; Interrupt */
369 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
370 * see hub.c:hub_configure() for details. */
371 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
372 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
373
374 /* one SuperSpeed endpoint companion descriptor */
375 0x06, /* __u8 ss_bLength */
376 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
377 /* Companion */
378 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
379 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
380 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
381};
382
383/* authorized_default behaviour:
384 * -1 is authorized for all devices except wireless (old behaviour)
385 * 0 is unauthorized for all devices
386 * 1 is authorized for all devices
387 */
388static int authorized_default = -1;
389module_param(authorized_default, int, S_IRUGO|S_IWUSR);
390MODULE_PARM_DESC(authorized_default,
391 "Default USB device authorization: 0 is not authorized, 1 is "
392 "authorized, -1 is authorized except for wireless USB (default, "
393 "old behaviour");
394/*-------------------------------------------------------------------------*/
395
396/**
397 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
398 * @s: Null-terminated ASCII (actually ISO-8859-1) string
399 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
400 * @len: Length (in bytes; may be odd) of descriptor buffer.
401 *
402 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
403 * whichever is less.
404 *
405 * Note:
406 * USB String descriptors can contain at most 126 characters; input
407 * strings longer than that are truncated.
408 */
409static unsigned
410ascii2desc(char const *s, u8 *buf, unsigned len)
411{
412 unsigned n, t = 2 + 2*strlen(s);
413
414 if (t > 254)
415 t = 254; /* Longest possible UTF string descriptor */
416 if (len > t)
417 len = t;
418
419 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
420
421 n = len;
422 while (n--) {
423 *buf++ = t;
424 if (!n--)
425 break;
426 *buf++ = t >> 8;
427 t = (unsigned char)*s++;
428 }
429 return len;
430}
431
432/**
433 * rh_string() - provides string descriptors for root hub
434 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
435 * @hcd: the host controller for this root hub
436 * @data: buffer for output packet
437 * @len: length of the provided buffer
438 *
439 * Produces either a manufacturer, product or serial number string for the
440 * virtual root hub device.
441 *
442 * Return: The number of bytes filled in: the length of the descriptor or
443 * of the provided buffer, whichever is less.
444 */
445static unsigned
446rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
447{
448 char buf[100];
449 char const *s;
450 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
451
452 /* language ids */
453 switch (id) {
454 case 0:
455 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
456 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
457 if (len > 4)
458 len = 4;
459 memcpy(data, langids, len);
460 return len;
461 case 1:
462 /* Serial number */
463 s = hcd->self.bus_name;
464 break;
465 case 2:
466 /* Product name */
467 s = hcd->product_desc;
468 break;
469 case 3:
470 /* Manufacturer */
471 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
472 init_utsname()->release, hcd->driver->description);
473 s = buf;
474 break;
475 default:
476 /* Can't happen; caller guarantees it */
477 return 0;
478 }
479
480 return ascii2desc(s, data, len);
481}
482
483
484/* Root hub control transfers execute synchronously */
485static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
486{
487 struct usb_ctrlrequest *cmd;
488 u16 typeReq, wValue, wIndex, wLength;
489 u8 *ubuf = urb->transfer_buffer;
490 unsigned len = 0;
491 int status;
492 u8 patch_wakeup = 0;
493 u8 patch_protocol = 0;
494 u16 tbuf_size;
495 u8 *tbuf = NULL;
496 const u8 *bufp;
497
498 might_sleep();
499
500 spin_lock_irq(&hcd_root_hub_lock);
501 status = usb_hcd_link_urb_to_ep(hcd, urb);
502 spin_unlock_irq(&hcd_root_hub_lock);
503 if (status)
504 return status;
505 urb->hcpriv = hcd; /* Indicate it's queued */
506
507 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
508 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
509 wValue = le16_to_cpu (cmd->wValue);
510 wIndex = le16_to_cpu (cmd->wIndex);
511 wLength = le16_to_cpu (cmd->wLength);
512
513 if (wLength > urb->transfer_buffer_length)
514 goto error;
515
516 /*
517 * tbuf should be at least as big as the
518 * USB hub descriptor.
519 */
520 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
521 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
522 if (!tbuf)
523 return -ENOMEM;
524
525 bufp = tbuf;
526
527
528 urb->actual_length = 0;
529 switch (typeReq) {
530
531 /* DEVICE REQUESTS */
532
533 /* The root hub's remote wakeup enable bit is implemented using
534 * driver model wakeup flags. If this system supports wakeup
535 * through USB, userspace may change the default "allow wakeup"
536 * policy through sysfs or these calls.
537 *
538 * Most root hubs support wakeup from downstream devices, for
539 * runtime power management (disabling USB clocks and reducing
540 * VBUS power usage). However, not all of them do so; silicon,
541 * board, and BIOS bugs here are not uncommon, so these can't
542 * be treated quite like external hubs.
543 *
544 * Likewise, not all root hubs will pass wakeup events upstream,
545 * to wake up the whole system. So don't assume root hub and
546 * controller capabilities are identical.
547 */
548
549 case DeviceRequest | USB_REQ_GET_STATUS:
550 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
551 << USB_DEVICE_REMOTE_WAKEUP)
552 | (1 << USB_DEVICE_SELF_POWERED);
553 tbuf[1] = 0;
554 len = 2;
555 break;
556 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
557 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
558 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
559 else
560 goto error;
561 break;
562 case DeviceOutRequest | USB_REQ_SET_FEATURE:
563 if (device_can_wakeup(&hcd->self.root_hub->dev)
564 && wValue == USB_DEVICE_REMOTE_WAKEUP)
565 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
566 else
567 goto error;
568 break;
569 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
570 tbuf[0] = 1;
571 len = 1;
572 /* FALLTHROUGH */
573 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
574 break;
575 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
576 switch (wValue & 0xff00) {
577 case USB_DT_DEVICE << 8:
578 switch (hcd->speed) {
579 case HCD_USB31:
580 bufp = usb31_rh_dev_descriptor;
581 break;
582 case HCD_USB3:
583 bufp = usb3_rh_dev_descriptor;
584 break;
585 case HCD_USB25:
586 bufp = usb25_rh_dev_descriptor;
587 break;
588 case HCD_USB2:
589 bufp = usb2_rh_dev_descriptor;
590 break;
591 case HCD_USB11:
592 bufp = usb11_rh_dev_descriptor;
593 break;
594 default:
595 goto error;
596 }
597 len = 18;
598 if (hcd->has_tt)
599 patch_protocol = 1;
600 break;
601 case USB_DT_CONFIG << 8:
602 switch (hcd->speed) {
603 case HCD_USB31:
604 case HCD_USB3:
605 bufp = ss_rh_config_descriptor;
606 len = sizeof ss_rh_config_descriptor;
607 break;
608 case HCD_USB25:
609 case HCD_USB2:
610 bufp = hs_rh_config_descriptor;
611 len = sizeof hs_rh_config_descriptor;
612 break;
613 case HCD_USB11:
614 bufp = fs_rh_config_descriptor;
615 len = sizeof fs_rh_config_descriptor;
616 break;
617 default:
618 goto error;
619 }
620 if (device_can_wakeup(&hcd->self.root_hub->dev))
621 patch_wakeup = 1;
622 break;
623 case USB_DT_STRING << 8:
624 if ((wValue & 0xff) < 4)
625 urb->actual_length = rh_string(wValue & 0xff,
626 hcd, ubuf, wLength);
627 else /* unsupported IDs --> "protocol stall" */
628 goto error;
629 break;
630 case USB_DT_BOS << 8:
631 goto nongeneric;
632 default:
633 goto error;
634 }
635 break;
636 case DeviceRequest | USB_REQ_GET_INTERFACE:
637 tbuf[0] = 0;
638 len = 1;
639 /* FALLTHROUGH */
640 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
641 break;
642 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
643 /* wValue == urb->dev->devaddr */
644 dev_dbg (hcd->self.controller, "root hub device address %d\n",
645 wValue);
646 break;
647
648 /* INTERFACE REQUESTS (no defined feature/status flags) */
649
650 /* ENDPOINT REQUESTS */
651
652 case EndpointRequest | USB_REQ_GET_STATUS:
653 /* ENDPOINT_HALT flag */
654 tbuf[0] = 0;
655 tbuf[1] = 0;
656 len = 2;
657 /* FALLTHROUGH */
658 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
659 case EndpointOutRequest | USB_REQ_SET_FEATURE:
660 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
661 break;
662
663 /* CLASS REQUESTS (and errors) */
664
665 default:
666nongeneric:
667 /* non-generic request */
668 switch (typeReq) {
669 case GetHubStatus:
670 len = 4;
671 break;
672 case GetPortStatus:
673 if (wValue == HUB_PORT_STATUS)
674 len = 4;
675 else
676 /* other port status types return 8 bytes */
677 len = 8;
678 break;
679 case GetHubDescriptor:
680 len = sizeof (struct usb_hub_descriptor);
681 break;
682 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
683 /* len is returned by hub_control */
684 break;
685 }
686 status = hcd->driver->hub_control (hcd,
687 typeReq, wValue, wIndex,
688 tbuf, wLength);
689
690 if (typeReq == GetHubDescriptor)
691 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
692 (struct usb_hub_descriptor *)tbuf);
693 break;
694error:
695 /* "protocol stall" on error */
696 status = -EPIPE;
697 }
698
699 if (status < 0) {
700 len = 0;
701 if (status != -EPIPE) {
702 dev_dbg (hcd->self.controller,
703 "CTRL: TypeReq=0x%x val=0x%x "
704 "idx=0x%x len=%d ==> %d\n",
705 typeReq, wValue, wIndex,
706 wLength, status);
707 }
708 } else if (status > 0) {
709 /* hub_control may return the length of data copied. */
710 len = status;
711 status = 0;
712 }
713 if (len) {
714 if (urb->transfer_buffer_length < len)
715 len = urb->transfer_buffer_length;
716 urb->actual_length = len;
717 /* always USB_DIR_IN, toward host */
718 memcpy (ubuf, bufp, len);
719
720 /* report whether RH hardware supports remote wakeup */
721 if (patch_wakeup &&
722 len > offsetof (struct usb_config_descriptor,
723 bmAttributes))
724 ((struct usb_config_descriptor *)ubuf)->bmAttributes
725 |= USB_CONFIG_ATT_WAKEUP;
726
727 /* report whether RH hardware has an integrated TT */
728 if (patch_protocol &&
729 len > offsetof(struct usb_device_descriptor,
730 bDeviceProtocol))
731 ((struct usb_device_descriptor *) ubuf)->
732 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
733 }
734
735 kfree(tbuf);
736
737 /* any errors get returned through the urb completion */
738 spin_lock_irq(&hcd_root_hub_lock);
739 usb_hcd_unlink_urb_from_ep(hcd, urb);
740 usb_hcd_giveback_urb(hcd, urb, status);
741 spin_unlock_irq(&hcd_root_hub_lock);
742 return 0;
743}
744
745/*-------------------------------------------------------------------------*/
746
747/*
748 * Root Hub interrupt transfers are polled using a timer if the
749 * driver requests it; otherwise the driver is responsible for
750 * calling usb_hcd_poll_rh_status() when an event occurs.
751 *
752 * Completions are called in_interrupt(), but they may or may not
753 * be in_irq().
754 */
755void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
756{
757 struct urb *urb;
758 int length;
759 unsigned long flags;
760 char buffer[6]; /* Any root hubs with > 31 ports? */
761
762 if (unlikely(!hcd->rh_pollable))
763 return;
764 if (!hcd->uses_new_polling && !hcd->status_urb)
765 return;
766
767 length = hcd->driver->hub_status_data(hcd, buffer);
768 if (length > 0) {
769
770 /* try to complete the status urb */
771 spin_lock_irqsave(&hcd_root_hub_lock, flags);
772 urb = hcd->status_urb;
773 if (urb) {
774 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
775 hcd->status_urb = NULL;
776 urb->actual_length = length;
777 memcpy(urb->transfer_buffer, buffer, length);
778
779 usb_hcd_unlink_urb_from_ep(hcd, urb);
780 usb_hcd_giveback_urb(hcd, urb, 0);
781 } else {
782 length = 0;
783 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
784 }
785 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
786 }
787
788 /* The USB 2.0 spec says 256 ms. This is close enough and won't
789 * exceed that limit if HZ is 100. The math is more clunky than
790 * maybe expected, this is to make sure that all timers for USB devices
791 * fire at the same time to give the CPU a break in between */
792 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
793 (length == 0 && hcd->status_urb != NULL))
794 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795}
796EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
797
798/* timer callback */
799static void rh_timer_func (unsigned long _hcd)
800{
801 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
802}
803
804/*-------------------------------------------------------------------------*/
805
806static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
807{
808 int retval;
809 unsigned long flags;
810 unsigned len = 1 + (urb->dev->maxchild / 8);
811
812 spin_lock_irqsave (&hcd_root_hub_lock, flags);
813 if (hcd->status_urb || urb->transfer_buffer_length < len) {
814 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815 retval = -EINVAL;
816 goto done;
817 }
818
819 retval = usb_hcd_link_urb_to_ep(hcd, urb);
820 if (retval)
821 goto done;
822
823 hcd->status_urb = urb;
824 urb->hcpriv = hcd; /* indicate it's queued */
825 if (!hcd->uses_new_polling)
826 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
827
828 /* If a status change has already occurred, report it ASAP */
829 else if (HCD_POLL_PENDING(hcd))
830 mod_timer(&hcd->rh_timer, jiffies);
831 retval = 0;
832 done:
833 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834 return retval;
835}
836
837static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
838{
839 if (usb_endpoint_xfer_int(&urb->ep->desc))
840 return rh_queue_status (hcd, urb);
841 if (usb_endpoint_xfer_control(&urb->ep->desc))
842 return rh_call_control (hcd, urb);
843 return -EINVAL;
844}
845
846/*-------------------------------------------------------------------------*/
847
848/* Unlinks of root-hub control URBs are legal, but they don't do anything
849 * since these URBs always execute synchronously.
850 */
851static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
852{
853 unsigned long flags;
854 int rc;
855
856 spin_lock_irqsave(&hcd_root_hub_lock, flags);
857 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858 if (rc)
859 goto done;
860
861 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
862 ; /* Do nothing */
863
864 } else { /* Status URB */
865 if (!hcd->uses_new_polling)
866 del_timer (&hcd->rh_timer);
867 if (urb == hcd->status_urb) {
868 hcd->status_urb = NULL;
869 usb_hcd_unlink_urb_from_ep(hcd, urb);
870 usb_hcd_giveback_urb(hcd, urb, status);
871 }
872 }
873 done:
874 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875 return rc;
876}
877
878
879
880/*
881 * Show & store the current value of authorized_default
882 */
883static ssize_t authorized_default_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
885{
886 struct usb_device *rh_usb_dev = to_usb_device(dev);
887 struct usb_bus *usb_bus = rh_usb_dev->bus;
888 struct usb_hcd *hcd;
889
890 hcd = bus_to_hcd(usb_bus);
891 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
892}
893
894static ssize_t authorized_default_store(struct device *dev,
895 struct device_attribute *attr,
896 const char *buf, size_t size)
897{
898 ssize_t result;
899 unsigned val;
900 struct usb_device *rh_usb_dev = to_usb_device(dev);
901 struct usb_bus *usb_bus = rh_usb_dev->bus;
902 struct usb_hcd *hcd;
903
904 hcd = bus_to_hcd(usb_bus);
905 result = sscanf(buf, "%u\n", &val);
906 if (result == 1) {
907 if (val)
908 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
909 else
910 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
911
912 result = size;
913 } else {
914 result = -EINVAL;
915 }
916 return result;
917}
918static DEVICE_ATTR_RW(authorized_default);
919
920/*
921 * interface_authorized_default_show - show default authorization status
922 * for USB interfaces
923 *
924 * note: interface_authorized_default is the default value
925 * for initializing the authorized attribute of interfaces
926 */
927static ssize_t interface_authorized_default_show(struct device *dev,
928 struct device_attribute *attr, char *buf)
929{
930 struct usb_device *usb_dev = to_usb_device(dev);
931 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
932
933 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
934}
935
936/*
937 * interface_authorized_default_store - store default authorization status
938 * for USB interfaces
939 *
940 * note: interface_authorized_default is the default value
941 * for initializing the authorized attribute of interfaces
942 */
943static ssize_t interface_authorized_default_store(struct device *dev,
944 struct device_attribute *attr, const char *buf, size_t count)
945{
946 struct usb_device *usb_dev = to_usb_device(dev);
947 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
948 int rc = count;
949 bool val;
950
951 if (strtobool(buf, &val) != 0)
952 return -EINVAL;
953
954 if (val)
955 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
956 else
957 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
958
959 return rc;
960}
961static DEVICE_ATTR_RW(interface_authorized_default);
962
963/* Group all the USB bus attributes */
964static struct attribute *usb_bus_attrs[] = {
965 &dev_attr_authorized_default.attr,
966 &dev_attr_interface_authorized_default.attr,
967 NULL,
968};
969
970static struct attribute_group usb_bus_attr_group = {
971 .name = NULL, /* we want them in the same directory */
972 .attrs = usb_bus_attrs,
973};
974
975
976
977/*-------------------------------------------------------------------------*/
978
979/**
980 * usb_bus_init - shared initialization code
981 * @bus: the bus structure being initialized
982 *
983 * This code is used to initialize a usb_bus structure, memory for which is
984 * separately managed.
985 */
986static void usb_bus_init (struct usb_bus *bus)
987{
988 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
989
990 bus->devnum_next = 1;
991
992 bus->root_hub = NULL;
993 bus->busnum = -1;
994 bus->bandwidth_allocated = 0;
995 bus->bandwidth_int_reqs = 0;
996 bus->bandwidth_isoc_reqs = 0;
997 mutex_init(&bus->usb_address0_mutex);
998}
999
1000/*-------------------------------------------------------------------------*/
1001
1002/**
1003 * usb_register_bus - registers the USB host controller with the usb core
1004 * @bus: pointer to the bus to register
1005 * Context: !in_interrupt()
1006 *
1007 * Assigns a bus number, and links the controller into usbcore data
1008 * structures so that it can be seen by scanning the bus list.
1009 *
1010 * Return: 0 if successful. A negative error code otherwise.
1011 */
1012static int usb_register_bus(struct usb_bus *bus)
1013{
1014 int result = -E2BIG;
1015 int busnum;
1016
1017 mutex_lock(&usb_bus_idr_lock);
1018 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1019 if (busnum < 0) {
1020 pr_err("%s: failed to get bus number\n", usbcore_name);
1021 goto error_find_busnum;
1022 }
1023 bus->busnum = busnum;
1024 mutex_unlock(&usb_bus_idr_lock);
1025
1026 usb_notify_add_bus(bus);
1027
1028 dev_info (bus->controller, "new USB bus registered, assigned bus "
1029 "number %d\n", bus->busnum);
1030 return 0;
1031
1032error_find_busnum:
1033 mutex_unlock(&usb_bus_idr_lock);
1034 return result;
1035}
1036
1037/**
1038 * usb_deregister_bus - deregisters the USB host controller
1039 * @bus: pointer to the bus to deregister
1040 * Context: !in_interrupt()
1041 *
1042 * Recycles the bus number, and unlinks the controller from usbcore data
1043 * structures so that it won't be seen by scanning the bus list.
1044 */
1045static void usb_deregister_bus (struct usb_bus *bus)
1046{
1047 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1048
1049 /*
1050 * NOTE: make sure that all the devices are removed by the
1051 * controller code, as well as having it call this when cleaning
1052 * itself up
1053 */
1054 mutex_lock(&usb_bus_idr_lock);
1055 idr_remove(&usb_bus_idr, bus->busnum);
1056 mutex_unlock(&usb_bus_idr_lock);
1057
1058 usb_notify_remove_bus(bus);
1059}
1060
1061/**
1062 * register_root_hub - called by usb_add_hcd() to register a root hub
1063 * @hcd: host controller for this root hub
1064 *
1065 * This function registers the root hub with the USB subsystem. It sets up
1066 * the device properly in the device tree and then calls usb_new_device()
1067 * to register the usb device. It also assigns the root hub's USB address
1068 * (always 1).
1069 *
1070 * Return: 0 if successful. A negative error code otherwise.
1071 */
1072static int register_root_hub(struct usb_hcd *hcd)
1073{
1074 struct device *parent_dev = hcd->self.controller;
1075 struct usb_device *usb_dev = hcd->self.root_hub;
1076 const int devnum = 1;
1077 int retval;
1078
1079 usb_dev->devnum = devnum;
1080 usb_dev->bus->devnum_next = devnum + 1;
1081 memset (&usb_dev->bus->devmap.devicemap, 0,
1082 sizeof usb_dev->bus->devmap.devicemap);
1083 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1084 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1085
1086 mutex_lock(&usb_bus_idr_lock);
1087
1088 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1089 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1090 if (retval != sizeof usb_dev->descriptor) {
1091 mutex_unlock(&usb_bus_idr_lock);
1092 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1093 dev_name(&usb_dev->dev), retval);
1094 return (retval < 0) ? retval : -EMSGSIZE;
1095 }
1096
1097 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1098 retval = usb_get_bos_descriptor(usb_dev);
1099 if (!retval) {
1100 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1101 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1102 mutex_unlock(&usb_bus_idr_lock);
1103 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1104 dev_name(&usb_dev->dev), retval);
1105 return retval;
1106 }
1107 }
1108
1109 retval = usb_new_device (usb_dev);
1110 if (retval) {
1111 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1112 dev_name(&usb_dev->dev), retval);
1113 } else {
1114 spin_lock_irq (&hcd_root_hub_lock);
1115 hcd->rh_registered = 1;
1116 spin_unlock_irq (&hcd_root_hub_lock);
1117
1118 /* Did the HC die before the root hub was registered? */
1119 if (HCD_DEAD(hcd))
1120 usb_hc_died (hcd); /* This time clean up */
1121 }
1122 mutex_unlock(&usb_bus_idr_lock);
1123
1124 return retval;
1125}
1126
1127/*
1128 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1129 * @bus: the bus which the root hub belongs to
1130 * @portnum: the port which is being resumed
1131 *
1132 * HCDs should call this function when they know that a resume signal is
1133 * being sent to a root-hub port. The root hub will be prevented from
1134 * going into autosuspend until usb_hcd_end_port_resume() is called.
1135 *
1136 * The bus's private lock must be held by the caller.
1137 */
1138void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1139{
1140 unsigned bit = 1 << portnum;
1141
1142 if (!(bus->resuming_ports & bit)) {
1143 bus->resuming_ports |= bit;
1144 pm_runtime_get_noresume(&bus->root_hub->dev);
1145 }
1146}
1147EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1148
1149/*
1150 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1151 * @bus: the bus which the root hub belongs to
1152 * @portnum: the port which is being resumed
1153 *
1154 * HCDs should call this function when they know that a resume signal has
1155 * stopped being sent to a root-hub port. The root hub will be allowed to
1156 * autosuspend again.
1157 *
1158 * The bus's private lock must be held by the caller.
1159 */
1160void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1161{
1162 unsigned bit = 1 << portnum;
1163
1164 if (bus->resuming_ports & bit) {
1165 bus->resuming_ports &= ~bit;
1166 pm_runtime_put_noidle(&bus->root_hub->dev);
1167 }
1168}
1169EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1170
1171/*-------------------------------------------------------------------------*/
1172
1173/**
1174 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1175 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1176 * @is_input: true iff the transaction sends data to the host
1177 * @isoc: true for isochronous transactions, false for interrupt ones
1178 * @bytecount: how many bytes in the transaction.
1179 *
1180 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1181 *
1182 * Note:
1183 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1184 * scheduled in software, this function is only used for such scheduling.
1185 */
1186long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1187{
1188 unsigned long tmp;
1189
1190 switch (speed) {
1191 case USB_SPEED_LOW: /* INTR only */
1192 if (is_input) {
1193 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1194 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1195 } else {
1196 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1198 }
1199 case USB_SPEED_FULL: /* ISOC or INTR */
1200 if (isoc) {
1201 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1203 } else {
1204 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1205 return 9107L + BW_HOST_DELAY + tmp;
1206 }
1207 case USB_SPEED_HIGH: /* ISOC or INTR */
1208 /* FIXME adjust for input vs output */
1209 if (isoc)
1210 tmp = HS_NSECS_ISO (bytecount);
1211 else
1212 tmp = HS_NSECS (bytecount);
1213 return tmp;
1214 default:
1215 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1216 return -1;
1217 }
1218}
1219EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1220
1221
1222/*-------------------------------------------------------------------------*/
1223
1224/*
1225 * Generic HC operations.
1226 */
1227
1228/*-------------------------------------------------------------------------*/
1229
1230/**
1231 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1232 * @hcd: host controller to which @urb was submitted
1233 * @urb: URB being submitted
1234 *
1235 * Host controller drivers should call this routine in their enqueue()
1236 * method. The HCD's private spinlock must be held and interrupts must
1237 * be disabled. The actions carried out here are required for URB
1238 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1239 *
1240 * Return: 0 for no error, otherwise a negative error code (in which case
1241 * the enqueue() method must fail). If no error occurs but enqueue() fails
1242 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1243 * the private spinlock and returning.
1244 */
1245int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1246{
1247 int rc = 0;
1248
1249 spin_lock(&hcd_urb_list_lock);
1250
1251 /* Check that the URB isn't being killed */
1252 if (unlikely(atomic_read(&urb->reject))) {
1253 rc = -EPERM;
1254 goto done;
1255 }
1256
1257 if (unlikely(!urb->ep->enabled)) {
1258 rc = -ENOENT;
1259 goto done;
1260 }
1261
1262 if (unlikely(!urb->dev->can_submit)) {
1263 rc = -EHOSTUNREACH;
1264 goto done;
1265 }
1266
1267 /*
1268 * Check the host controller's state and add the URB to the
1269 * endpoint's queue.
1270 */
1271 if (HCD_RH_RUNNING(hcd)) {
1272 urb->unlinked = 0;
1273 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1274 } else {
1275 rc = -ESHUTDOWN;
1276 goto done;
1277 }
1278 done:
1279 spin_unlock(&hcd_urb_list_lock);
1280 return rc;
1281}
1282EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1283
1284/**
1285 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1286 * @hcd: host controller to which @urb was submitted
1287 * @urb: URB being checked for unlinkability
1288 * @status: error code to store in @urb if the unlink succeeds
1289 *
1290 * Host controller drivers should call this routine in their dequeue()
1291 * method. The HCD's private spinlock must be held and interrupts must
1292 * be disabled. The actions carried out here are required for making
1293 * sure than an unlink is valid.
1294 *
1295 * Return: 0 for no error, otherwise a negative error code (in which case
1296 * the dequeue() method must fail). The possible error codes are:
1297 *
1298 * -EIDRM: @urb was not submitted or has already completed.
1299 * The completion function may not have been called yet.
1300 *
1301 * -EBUSY: @urb has already been unlinked.
1302 */
1303int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1304 int status)
1305{
1306 struct list_head *tmp;
1307
1308 /* insist the urb is still queued */
1309 list_for_each(tmp, &urb->ep->urb_list) {
1310 if (tmp == &urb->urb_list)
1311 break;
1312 }
1313 if (tmp != &urb->urb_list)
1314 return -EIDRM;
1315
1316 /* Any status except -EINPROGRESS means something already started to
1317 * unlink this URB from the hardware. So there's no more work to do.
1318 */
1319 if (urb->unlinked)
1320 return -EBUSY;
1321 urb->unlinked = status;
1322 return 0;
1323}
1324EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1325
1326/**
1327 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1328 * @hcd: host controller to which @urb was submitted
1329 * @urb: URB being unlinked
1330 *
1331 * Host controller drivers should call this routine before calling
1332 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1333 * interrupts must be disabled. The actions carried out here are required
1334 * for URB completion.
1335 */
1336void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1337{
1338 /* clear all state linking urb to this dev (and hcd) */
1339 spin_lock(&hcd_urb_list_lock);
1340 list_del_init(&urb->urb_list);
1341 spin_unlock(&hcd_urb_list_lock);
1342}
1343EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1344
1345/*
1346 * Some usb host controllers can only perform dma using a small SRAM area.
1347 * The usb core itself is however optimized for host controllers that can dma
1348 * using regular system memory - like pci devices doing bus mastering.
1349 *
1350 * To support host controllers with limited dma capabilities we provide dma
1351 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1352 * For this to work properly the host controller code must first use the
1353 * function dma_declare_coherent_memory() to point out which memory area
1354 * that should be used for dma allocations.
1355 *
1356 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1357 * dma using dma_alloc_coherent() which in turn allocates from the memory
1358 * area pointed out with dma_declare_coherent_memory().
1359 *
1360 * So, to summarize...
1361 *
1362 * - We need "local" memory, canonical example being
1363 * a small SRAM on a discrete controller being the
1364 * only memory that the controller can read ...
1365 * (a) "normal" kernel memory is no good, and
1366 * (b) there's not enough to share
1367 *
1368 * - The only *portable* hook for such stuff in the
1369 * DMA framework is dma_declare_coherent_memory()
1370 *
1371 * - So we use that, even though the primary requirement
1372 * is that the memory be "local" (hence addressable
1373 * by that device), not "coherent".
1374 *
1375 */
1376
1377static int hcd_alloc_coherent(struct usb_bus *bus,
1378 gfp_t mem_flags, dma_addr_t *dma_handle,
1379 void **vaddr_handle, size_t size,
1380 enum dma_data_direction dir)
1381{
1382 unsigned char *vaddr;
1383
1384 if (*vaddr_handle == NULL) {
1385 WARN_ON_ONCE(1);
1386 return -EFAULT;
1387 }
1388
1389 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1390 mem_flags, dma_handle);
1391 if (!vaddr)
1392 return -ENOMEM;
1393
1394 /*
1395 * Store the virtual address of the buffer at the end
1396 * of the allocated dma buffer. The size of the buffer
1397 * may be uneven so use unaligned functions instead
1398 * of just rounding up. It makes sense to optimize for
1399 * memory footprint over access speed since the amount
1400 * of memory available for dma may be limited.
1401 */
1402 put_unaligned((unsigned long)*vaddr_handle,
1403 (unsigned long *)(vaddr + size));
1404
1405 if (dir == DMA_TO_DEVICE)
1406 memcpy(vaddr, *vaddr_handle, size);
1407
1408 *vaddr_handle = vaddr;
1409 return 0;
1410}
1411
1412static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1413 void **vaddr_handle, size_t size,
1414 enum dma_data_direction dir)
1415{
1416 unsigned char *vaddr = *vaddr_handle;
1417
1418 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1419
1420 if (dir == DMA_FROM_DEVICE)
1421 memcpy(vaddr, *vaddr_handle, size);
1422
1423 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1424
1425 *vaddr_handle = vaddr;
1426 *dma_handle = 0;
1427}
1428
1429void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1430{
1431 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1432 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1433 dma_unmap_single(hcd->self.controller,
1434 urb->setup_dma,
1435 sizeof(struct usb_ctrlrequest),
1436 DMA_TO_DEVICE);
1437 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1438 hcd_free_coherent(urb->dev->bus,
1439 &urb->setup_dma,
1440 (void **) &urb->setup_packet,
1441 sizeof(struct usb_ctrlrequest),
1442 DMA_TO_DEVICE);
1443
1444 /* Make it safe to call this routine more than once */
1445 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1446}
1447EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1448
1449static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1450{
1451 if (hcd->driver->unmap_urb_for_dma)
1452 hcd->driver->unmap_urb_for_dma(hcd, urb);
1453 else
1454 usb_hcd_unmap_urb_for_dma(hcd, urb);
1455}
1456
1457void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1458{
1459 enum dma_data_direction dir;
1460
1461 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1462
1463 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1464 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1465 (urb->transfer_flags & URB_DMA_MAP_SG))
1466 dma_unmap_sg(hcd->self.controller,
1467 urb->sg,
1468 urb->num_sgs,
1469 dir);
1470 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1471 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1472 dma_unmap_page(hcd->self.controller,
1473 urb->transfer_dma,
1474 urb->transfer_buffer_length,
1475 dir);
1476 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1477 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1478 dma_unmap_single(hcd->self.controller,
1479 urb->transfer_dma,
1480 urb->transfer_buffer_length,
1481 dir);
1482 else if (urb->transfer_flags & URB_MAP_LOCAL)
1483 hcd_free_coherent(urb->dev->bus,
1484 &urb->transfer_dma,
1485 &urb->transfer_buffer,
1486 urb->transfer_buffer_length,
1487 dir);
1488
1489 /* Make it safe to call this routine more than once */
1490 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1491 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1492}
1493EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1494
1495static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1496 gfp_t mem_flags)
1497{
1498 if (hcd->driver->map_urb_for_dma)
1499 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1500 else
1501 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1502}
1503
1504int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1505 gfp_t mem_flags)
1506{
1507 enum dma_data_direction dir;
1508 int ret = 0;
1509
1510 /* Map the URB's buffers for DMA access.
1511 * Lower level HCD code should use *_dma exclusively,
1512 * unless it uses pio or talks to another transport,
1513 * or uses the provided scatter gather list for bulk.
1514 */
1515
1516 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1517 if (hcd->self.uses_pio_for_control)
1518 return ret;
1519 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1520 urb->setup_dma = dma_map_single(
1521 hcd->self.controller,
1522 urb->setup_packet,
1523 sizeof(struct usb_ctrlrequest),
1524 DMA_TO_DEVICE);
1525 if (dma_mapping_error(hcd->self.controller,
1526 urb->setup_dma))
1527 return -EAGAIN;
1528 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1529 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1530 ret = hcd_alloc_coherent(
1531 urb->dev->bus, mem_flags,
1532 &urb->setup_dma,
1533 (void **)&urb->setup_packet,
1534 sizeof(struct usb_ctrlrequest),
1535 DMA_TO_DEVICE);
1536 if (ret)
1537 return ret;
1538 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1539 }
1540 }
1541
1542 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1543 if (urb->transfer_buffer_length != 0
1544 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1545 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1546 if (urb->num_sgs) {
1547 int n;
1548
1549 /* We don't support sg for isoc transfers ! */
1550 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1551 WARN_ON(1);
1552 return -EINVAL;
1553 }
1554
1555 n = dma_map_sg(
1556 hcd->self.controller,
1557 urb->sg,
1558 urb->num_sgs,
1559 dir);
1560 if (n <= 0)
1561 ret = -EAGAIN;
1562 else
1563 urb->transfer_flags |= URB_DMA_MAP_SG;
1564 urb->num_mapped_sgs = n;
1565 if (n != urb->num_sgs)
1566 urb->transfer_flags |=
1567 URB_DMA_SG_COMBINED;
1568 } else if (urb->sg) {
1569 struct scatterlist *sg = urb->sg;
1570 urb->transfer_dma = dma_map_page(
1571 hcd->self.controller,
1572 sg_page(sg),
1573 sg->offset,
1574 urb->transfer_buffer_length,
1575 dir);
1576 if (dma_mapping_error(hcd->self.controller,
1577 urb->transfer_dma))
1578 ret = -EAGAIN;
1579 else
1580 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1581 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1582 WARN_ONCE(1, "transfer buffer not dma capable\n");
1583 ret = -EAGAIN;
1584 } else {
1585 urb->transfer_dma = dma_map_single(
1586 hcd->self.controller,
1587 urb->transfer_buffer,
1588 urb->transfer_buffer_length,
1589 dir);
1590 if (dma_mapping_error(hcd->self.controller,
1591 urb->transfer_dma))
1592 ret = -EAGAIN;
1593 else
1594 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1595 }
1596 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1597 ret = hcd_alloc_coherent(
1598 urb->dev->bus, mem_flags,
1599 &urb->transfer_dma,
1600 &urb->transfer_buffer,
1601 urb->transfer_buffer_length,
1602 dir);
1603 if (ret == 0)
1604 urb->transfer_flags |= URB_MAP_LOCAL;
1605 }
1606 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1607 URB_SETUP_MAP_LOCAL)))
1608 usb_hcd_unmap_urb_for_dma(hcd, urb);
1609 }
1610 return ret;
1611}
1612EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1613
1614/*-------------------------------------------------------------------------*/
1615
1616/* may be called in any context with a valid urb->dev usecount
1617 * caller surrenders "ownership" of urb
1618 * expects usb_submit_urb() to have sanity checked and conditioned all
1619 * inputs in the urb
1620 */
1621int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1622{
1623 int status;
1624 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1625
1626 /* increment urb's reference count as part of giving it to the HCD
1627 * (which will control it). HCD guarantees that it either returns
1628 * an error or calls giveback(), but not both.
1629 */
1630 usb_get_urb(urb);
1631 atomic_inc(&urb->use_count);
1632 atomic_inc(&urb->dev->urbnum);
1633 usbmon_urb_submit(&hcd->self, urb);
1634
1635 /* NOTE requirements on root-hub callers (usbfs and the hub
1636 * driver, for now): URBs' urb->transfer_buffer must be
1637 * valid and usb_buffer_{sync,unmap}() not be needed, since
1638 * they could clobber root hub response data. Also, control
1639 * URBs must be submitted in process context with interrupts
1640 * enabled.
1641 */
1642
1643 if (is_root_hub(urb->dev)) {
1644 status = rh_urb_enqueue(hcd, urb);
1645 } else {
1646 status = map_urb_for_dma(hcd, urb, mem_flags);
1647 if (likely(status == 0)) {
1648 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1649 if (unlikely(status))
1650 unmap_urb_for_dma(hcd, urb);
1651 }
1652 }
1653
1654 if (unlikely(status)) {
1655 usbmon_urb_submit_error(&hcd->self, urb, status);
1656 urb->hcpriv = NULL;
1657 INIT_LIST_HEAD(&urb->urb_list);
1658 atomic_dec(&urb->use_count);
1659 atomic_dec(&urb->dev->urbnum);
1660 if (atomic_read(&urb->reject))
1661 wake_up(&usb_kill_urb_queue);
1662 usb_put_urb(urb);
1663 }
1664 return status;
1665}
1666
1667/*-------------------------------------------------------------------------*/
1668
1669/* this makes the hcd giveback() the urb more quickly, by kicking it
1670 * off hardware queues (which may take a while) and returning it as
1671 * soon as practical. we've already set up the urb's return status,
1672 * but we can't know if the callback completed already.
1673 */
1674static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1675{
1676 int value;
1677
1678 if (is_root_hub(urb->dev))
1679 value = usb_rh_urb_dequeue(hcd, urb, status);
1680 else {
1681
1682 /* The only reason an HCD might fail this call is if
1683 * it has not yet fully queued the urb to begin with.
1684 * Such failures should be harmless. */
1685 value = hcd->driver->urb_dequeue(hcd, urb, status);
1686 }
1687 return value;
1688}
1689
1690/*
1691 * called in any context
1692 *
1693 * caller guarantees urb won't be recycled till both unlink()
1694 * and the urb's completion function return
1695 */
1696int usb_hcd_unlink_urb (struct urb *urb, int status)
1697{
1698 struct usb_hcd *hcd;
1699 struct usb_device *udev = urb->dev;
1700 int retval = -EIDRM;
1701 unsigned long flags;
1702
1703 /* Prevent the device and bus from going away while
1704 * the unlink is carried out. If they are already gone
1705 * then urb->use_count must be 0, since disconnected
1706 * devices can't have any active URBs.
1707 */
1708 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1709 if (atomic_read(&urb->use_count) > 0) {
1710 retval = 0;
1711 usb_get_dev(udev);
1712 }
1713 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1714 if (retval == 0) {
1715 hcd = bus_to_hcd(urb->dev->bus);
1716 retval = unlink1(hcd, urb, status);
1717 if (retval == 0)
1718 retval = -EINPROGRESS;
1719 else if (retval != -EIDRM && retval != -EBUSY)
1720 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1721 urb, retval);
1722 usb_put_dev(udev);
1723 }
1724 return retval;
1725}
1726
1727/*-------------------------------------------------------------------------*/
1728
1729static void __usb_hcd_giveback_urb(struct urb *urb)
1730{
1731 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1732 struct usb_anchor *anchor = urb->anchor;
1733 int status = urb->unlinked;
1734 unsigned long flags;
1735
1736 urb->hcpriv = NULL;
1737 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1738 urb->actual_length < urb->transfer_buffer_length &&
1739 !status))
1740 status = -EREMOTEIO;
1741
1742 unmap_urb_for_dma(hcd, urb);
1743 usbmon_urb_complete(&hcd->self, urb, status);
1744 usb_anchor_suspend_wakeups(anchor);
1745 usb_unanchor_urb(urb);
1746 if (likely(status == 0))
1747 usb_led_activity(USB_LED_EVENT_HOST);
1748
1749 /* pass ownership to the completion handler */
1750 urb->status = status;
1751
1752 /*
1753 * We disable local IRQs here avoid possible deadlock because
1754 * drivers may call spin_lock() to hold lock which might be
1755 * acquired in one hard interrupt handler.
1756 *
1757 * The local_irq_save()/local_irq_restore() around complete()
1758 * will be removed if current USB drivers have been cleaned up
1759 * and no one may trigger the above deadlock situation when
1760 * running complete() in tasklet.
1761 */
1762 local_irq_save(flags);
1763 urb->complete(urb);
1764 local_irq_restore(flags);
1765
1766 usb_anchor_resume_wakeups(anchor);
1767 atomic_dec(&urb->use_count);
1768 if (unlikely(atomic_read(&urb->reject)))
1769 wake_up(&usb_kill_urb_queue);
1770 usb_put_urb(urb);
1771}
1772
1773static void usb_giveback_urb_bh(unsigned long param)
1774{
1775 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1776 struct list_head local_list;
1777
1778 spin_lock_irq(&bh->lock);
1779 bh->running = true;
1780 restart:
1781 list_replace_init(&bh->head, &local_list);
1782 spin_unlock_irq(&bh->lock);
1783
1784 while (!list_empty(&local_list)) {
1785 struct urb *urb;
1786
1787 urb = list_entry(local_list.next, struct urb, urb_list);
1788 list_del_init(&urb->urb_list);
1789 bh->completing_ep = urb->ep;
1790 __usb_hcd_giveback_urb(urb);
1791 bh->completing_ep = NULL;
1792 }
1793
1794 /* check if there are new URBs to giveback */
1795 spin_lock_irq(&bh->lock);
1796 if (!list_empty(&bh->head))
1797 goto restart;
1798 bh->running = false;
1799 spin_unlock_irq(&bh->lock);
1800}
1801
1802/**
1803 * usb_hcd_giveback_urb - return URB from HCD to device driver
1804 * @hcd: host controller returning the URB
1805 * @urb: urb being returned to the USB device driver.
1806 * @status: completion status code for the URB.
1807 * Context: in_interrupt()
1808 *
1809 * This hands the URB from HCD to its USB device driver, using its
1810 * completion function. The HCD has freed all per-urb resources
1811 * (and is done using urb->hcpriv). It also released all HCD locks;
1812 * the device driver won't cause problems if it frees, modifies,
1813 * or resubmits this URB.
1814 *
1815 * If @urb was unlinked, the value of @status will be overridden by
1816 * @urb->unlinked. Erroneous short transfers are detected in case
1817 * the HCD hasn't checked for them.
1818 */
1819void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1820{
1821 struct giveback_urb_bh *bh;
1822 bool running, high_prio_bh;
1823
1824 /* pass status to tasklet via unlinked */
1825 if (likely(!urb->unlinked))
1826 urb->unlinked = status;
1827
1828 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1829 __usb_hcd_giveback_urb(urb);
1830 return;
1831 }
1832
1833 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1834 bh = &hcd->high_prio_bh;
1835 high_prio_bh = true;
1836 } else {
1837 bh = &hcd->low_prio_bh;
1838 high_prio_bh = false;
1839 }
1840
1841 spin_lock(&bh->lock);
1842 list_add_tail(&urb->urb_list, &bh->head);
1843 running = bh->running;
1844 spin_unlock(&bh->lock);
1845
1846 if (running)
1847 ;
1848 else if (high_prio_bh)
1849 tasklet_hi_schedule(&bh->bh);
1850 else
1851 tasklet_schedule(&bh->bh);
1852}
1853EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1854
1855/*-------------------------------------------------------------------------*/
1856
1857/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1858 * queue to drain completely. The caller must first insure that no more
1859 * URBs can be submitted for this endpoint.
1860 */
1861void usb_hcd_flush_endpoint(struct usb_device *udev,
1862 struct usb_host_endpoint *ep)
1863{
1864 struct usb_hcd *hcd;
1865 struct urb *urb;
1866
1867 if (!ep)
1868 return;
1869 might_sleep();
1870 hcd = bus_to_hcd(udev->bus);
1871
1872 /* No more submits can occur */
1873 spin_lock_irq(&hcd_urb_list_lock);
1874rescan:
1875 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1876 int is_in;
1877
1878 if (urb->unlinked)
1879 continue;
1880 usb_get_urb (urb);
1881 is_in = usb_urb_dir_in(urb);
1882 spin_unlock(&hcd_urb_list_lock);
1883
1884 /* kick hcd */
1885 unlink1(hcd, urb, -ESHUTDOWN);
1886 dev_dbg (hcd->self.controller,
1887 "shutdown urb %p ep%d%s%s\n",
1888 urb, usb_endpoint_num(&ep->desc),
1889 is_in ? "in" : "out",
1890 ({ char *s;
1891
1892 switch (usb_endpoint_type(&ep->desc)) {
1893 case USB_ENDPOINT_XFER_CONTROL:
1894 s = ""; break;
1895 case USB_ENDPOINT_XFER_BULK:
1896 s = "-bulk"; break;
1897 case USB_ENDPOINT_XFER_INT:
1898 s = "-intr"; break;
1899 default:
1900 s = "-iso"; break;
1901 };
1902 s;
1903 }));
1904 usb_put_urb (urb);
1905
1906 /* list contents may have changed */
1907 spin_lock(&hcd_urb_list_lock);
1908 goto rescan;
1909 }
1910 spin_unlock_irq(&hcd_urb_list_lock);
1911
1912 /* Wait until the endpoint queue is completely empty */
1913 while (!list_empty (&ep->urb_list)) {
1914 spin_lock_irq(&hcd_urb_list_lock);
1915
1916 /* The list may have changed while we acquired the spinlock */
1917 urb = NULL;
1918 if (!list_empty (&ep->urb_list)) {
1919 urb = list_entry (ep->urb_list.prev, struct urb,
1920 urb_list);
1921 usb_get_urb (urb);
1922 }
1923 spin_unlock_irq(&hcd_urb_list_lock);
1924
1925 if (urb) {
1926 usb_kill_urb (urb);
1927 usb_put_urb (urb);
1928 }
1929 }
1930}
1931
1932/**
1933 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1934 * the bus bandwidth
1935 * @udev: target &usb_device
1936 * @new_config: new configuration to install
1937 * @cur_alt: the current alternate interface setting
1938 * @new_alt: alternate interface setting that is being installed
1939 *
1940 * To change configurations, pass in the new configuration in new_config,
1941 * and pass NULL for cur_alt and new_alt.
1942 *
1943 * To reset a device's configuration (put the device in the ADDRESSED state),
1944 * pass in NULL for new_config, cur_alt, and new_alt.
1945 *
1946 * To change alternate interface settings, pass in NULL for new_config,
1947 * pass in the current alternate interface setting in cur_alt,
1948 * and pass in the new alternate interface setting in new_alt.
1949 *
1950 * Return: An error if the requested bandwidth change exceeds the
1951 * bus bandwidth or host controller internal resources.
1952 */
1953int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1954 struct usb_host_config *new_config,
1955 struct usb_host_interface *cur_alt,
1956 struct usb_host_interface *new_alt)
1957{
1958 int num_intfs, i, j;
1959 struct usb_host_interface *alt = NULL;
1960 int ret = 0;
1961 struct usb_hcd *hcd;
1962 struct usb_host_endpoint *ep;
1963
1964 hcd = bus_to_hcd(udev->bus);
1965 if (!hcd->driver->check_bandwidth)
1966 return 0;
1967
1968 /* Configuration is being removed - set configuration 0 */
1969 if (!new_config && !cur_alt) {
1970 for (i = 1; i < 16; ++i) {
1971 ep = udev->ep_out[i];
1972 if (ep)
1973 hcd->driver->drop_endpoint(hcd, udev, ep);
1974 ep = udev->ep_in[i];
1975 if (ep)
1976 hcd->driver->drop_endpoint(hcd, udev, ep);
1977 }
1978 hcd->driver->check_bandwidth(hcd, udev);
1979 return 0;
1980 }
1981 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1982 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1983 * of the bus. There will always be bandwidth for endpoint 0, so it's
1984 * ok to exclude it.
1985 */
1986 if (new_config) {
1987 num_intfs = new_config->desc.bNumInterfaces;
1988 /* Remove endpoints (except endpoint 0, which is always on the
1989 * schedule) from the old config from the schedule
1990 */
1991 for (i = 1; i < 16; ++i) {
1992 ep = udev->ep_out[i];
1993 if (ep) {
1994 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1995 if (ret < 0)
1996 goto reset;
1997 }
1998 ep = udev->ep_in[i];
1999 if (ep) {
2000 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 if (ret < 0)
2002 goto reset;
2003 }
2004 }
2005 for (i = 0; i < num_intfs; ++i) {
2006 struct usb_host_interface *first_alt;
2007 int iface_num;
2008
2009 first_alt = &new_config->intf_cache[i]->altsetting[0];
2010 iface_num = first_alt->desc.bInterfaceNumber;
2011 /* Set up endpoints for alternate interface setting 0 */
2012 alt = usb_find_alt_setting(new_config, iface_num, 0);
2013 if (!alt)
2014 /* No alt setting 0? Pick the first setting. */
2015 alt = first_alt;
2016
2017 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2018 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2019 if (ret < 0)
2020 goto reset;
2021 }
2022 }
2023 }
2024 if (cur_alt && new_alt) {
2025 struct usb_interface *iface = usb_ifnum_to_if(udev,
2026 cur_alt->desc.bInterfaceNumber);
2027
2028 if (!iface)
2029 return -EINVAL;
2030 if (iface->resetting_device) {
2031 /*
2032 * The USB core just reset the device, so the xHCI host
2033 * and the device will think alt setting 0 is installed.
2034 * However, the USB core will pass in the alternate
2035 * setting installed before the reset as cur_alt. Dig
2036 * out the alternate setting 0 structure, or the first
2037 * alternate setting if a broken device doesn't have alt
2038 * setting 0.
2039 */
2040 cur_alt = usb_altnum_to_altsetting(iface, 0);
2041 if (!cur_alt)
2042 cur_alt = &iface->altsetting[0];
2043 }
2044
2045 /* Drop all the endpoints in the current alt setting */
2046 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2047 ret = hcd->driver->drop_endpoint(hcd, udev,
2048 &cur_alt->endpoint[i]);
2049 if (ret < 0)
2050 goto reset;
2051 }
2052 /* Add all the endpoints in the new alt setting */
2053 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2054 ret = hcd->driver->add_endpoint(hcd, udev,
2055 &new_alt->endpoint[i]);
2056 if (ret < 0)
2057 goto reset;
2058 }
2059 }
2060 ret = hcd->driver->check_bandwidth(hcd, udev);
2061reset:
2062 if (ret < 0)
2063 hcd->driver->reset_bandwidth(hcd, udev);
2064 return ret;
2065}
2066
2067/* Disables the endpoint: synchronizes with the hcd to make sure all
2068 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2069 * have been called previously. Use for set_configuration, set_interface,
2070 * driver removal, physical disconnect.
2071 *
2072 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2073 * type, maxpacket size, toggle, halt status, and scheduling.
2074 */
2075void usb_hcd_disable_endpoint(struct usb_device *udev,
2076 struct usb_host_endpoint *ep)
2077{
2078 struct usb_hcd *hcd;
2079
2080 might_sleep();
2081 hcd = bus_to_hcd(udev->bus);
2082 if (hcd->driver->endpoint_disable)
2083 hcd->driver->endpoint_disable(hcd, ep);
2084}
2085
2086/**
2087 * usb_hcd_reset_endpoint - reset host endpoint state
2088 * @udev: USB device.
2089 * @ep: the endpoint to reset.
2090 *
2091 * Resets any host endpoint state such as the toggle bit, sequence
2092 * number and current window.
2093 */
2094void usb_hcd_reset_endpoint(struct usb_device *udev,
2095 struct usb_host_endpoint *ep)
2096{
2097 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2098
2099 if (hcd->driver->endpoint_reset)
2100 hcd->driver->endpoint_reset(hcd, ep);
2101 else {
2102 int epnum = usb_endpoint_num(&ep->desc);
2103 int is_out = usb_endpoint_dir_out(&ep->desc);
2104 int is_control = usb_endpoint_xfer_control(&ep->desc);
2105
2106 usb_settoggle(udev, epnum, is_out, 0);
2107 if (is_control)
2108 usb_settoggle(udev, epnum, !is_out, 0);
2109 }
2110}
2111
2112/**
2113 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2114 * @interface: alternate setting that includes all endpoints.
2115 * @eps: array of endpoints that need streams.
2116 * @num_eps: number of endpoints in the array.
2117 * @num_streams: number of streams to allocate.
2118 * @mem_flags: flags hcd should use to allocate memory.
2119 *
2120 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2121 * Drivers may queue multiple transfers to different stream IDs, which may
2122 * complete in a different order than they were queued.
2123 *
2124 * Return: On success, the number of allocated streams. On failure, a negative
2125 * error code.
2126 */
2127int usb_alloc_streams(struct usb_interface *interface,
2128 struct usb_host_endpoint **eps, unsigned int num_eps,
2129 unsigned int num_streams, gfp_t mem_flags)
2130{
2131 struct usb_hcd *hcd;
2132 struct usb_device *dev;
2133 int i, ret;
2134
2135 dev = interface_to_usbdev(interface);
2136 hcd = bus_to_hcd(dev->bus);
2137 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2138 return -EINVAL;
2139 if (dev->speed < USB_SPEED_SUPER)
2140 return -EINVAL;
2141 if (dev->state < USB_STATE_CONFIGURED)
2142 return -ENODEV;
2143
2144 for (i = 0; i < num_eps; i++) {
2145 /* Streams only apply to bulk endpoints. */
2146 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2147 return -EINVAL;
2148 /* Re-alloc is not allowed */
2149 if (eps[i]->streams)
2150 return -EINVAL;
2151 }
2152
2153 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2154 num_streams, mem_flags);
2155 if (ret < 0)
2156 return ret;
2157
2158 for (i = 0; i < num_eps; i++)
2159 eps[i]->streams = ret;
2160
2161 return ret;
2162}
2163EXPORT_SYMBOL_GPL(usb_alloc_streams);
2164
2165/**
2166 * usb_free_streams - free bulk endpoint stream IDs.
2167 * @interface: alternate setting that includes all endpoints.
2168 * @eps: array of endpoints to remove streams from.
2169 * @num_eps: number of endpoints in the array.
2170 * @mem_flags: flags hcd should use to allocate memory.
2171 *
2172 * Reverts a group of bulk endpoints back to not using stream IDs.
2173 * Can fail if we are given bad arguments, or HCD is broken.
2174 *
2175 * Return: 0 on success. On failure, a negative error code.
2176 */
2177int usb_free_streams(struct usb_interface *interface,
2178 struct usb_host_endpoint **eps, unsigned int num_eps,
2179 gfp_t mem_flags)
2180{
2181 struct usb_hcd *hcd;
2182 struct usb_device *dev;
2183 int i, ret;
2184
2185 dev = interface_to_usbdev(interface);
2186 hcd = bus_to_hcd(dev->bus);
2187 if (dev->speed < USB_SPEED_SUPER)
2188 return -EINVAL;
2189
2190 /* Double-free is not allowed */
2191 for (i = 0; i < num_eps; i++)
2192 if (!eps[i] || !eps[i]->streams)
2193 return -EINVAL;
2194
2195 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2196 if (ret < 0)
2197 return ret;
2198
2199 for (i = 0; i < num_eps; i++)
2200 eps[i]->streams = 0;
2201
2202 return ret;
2203}
2204EXPORT_SYMBOL_GPL(usb_free_streams);
2205
2206/* Protect against drivers that try to unlink URBs after the device
2207 * is gone, by waiting until all unlinks for @udev are finished.
2208 * Since we don't currently track URBs by device, simply wait until
2209 * nothing is running in the locked region of usb_hcd_unlink_urb().
2210 */
2211void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2212{
2213 spin_lock_irq(&hcd_urb_unlink_lock);
2214 spin_unlock_irq(&hcd_urb_unlink_lock);
2215}
2216
2217/*-------------------------------------------------------------------------*/
2218
2219/* called in any context */
2220int usb_hcd_get_frame_number (struct usb_device *udev)
2221{
2222 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2223
2224 if (!HCD_RH_RUNNING(hcd))
2225 return -ESHUTDOWN;
2226 return hcd->driver->get_frame_number (hcd);
2227}
2228
2229/*-------------------------------------------------------------------------*/
2230
2231#ifdef CONFIG_PM
2232
2233int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2234{
2235 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2236 int status;
2237 int old_state = hcd->state;
2238
2239 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2240 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2241 rhdev->do_remote_wakeup);
2242 if (HCD_DEAD(hcd)) {
2243 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2244 return 0;
2245 }
2246
2247 if (!hcd->driver->bus_suspend) {
2248 status = -ENOENT;
2249 } else {
2250 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2251 hcd->state = HC_STATE_QUIESCING;
2252 status = hcd->driver->bus_suspend(hcd);
2253 }
2254 if (status == 0) {
2255 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2256 hcd->state = HC_STATE_SUSPENDED;
2257
2258 /* Did we race with a root-hub wakeup event? */
2259 if (rhdev->do_remote_wakeup) {
2260 char buffer[6];
2261
2262 status = hcd->driver->hub_status_data(hcd, buffer);
2263 if (status != 0) {
2264 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2265 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2266 status = -EBUSY;
2267 }
2268 }
2269 } else {
2270 spin_lock_irq(&hcd_root_hub_lock);
2271 if (!HCD_DEAD(hcd)) {
2272 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2273 hcd->state = old_state;
2274 }
2275 spin_unlock_irq(&hcd_root_hub_lock);
2276 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2277 "suspend", status);
2278 }
2279 return status;
2280}
2281
2282int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2283{
2284 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2285 int status;
2286 int old_state = hcd->state;
2287
2288 dev_dbg(&rhdev->dev, "usb %sresume\n",
2289 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2290 if (HCD_DEAD(hcd)) {
2291 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2292 return 0;
2293 }
2294 if (!hcd->driver->bus_resume)
2295 return -ENOENT;
2296 if (HCD_RH_RUNNING(hcd))
2297 return 0;
2298
2299 hcd->state = HC_STATE_RESUMING;
2300 status = hcd->driver->bus_resume(hcd);
2301 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2302 if (status == 0) {
2303 struct usb_device *udev;
2304 int port1;
2305
2306 spin_lock_irq(&hcd_root_hub_lock);
2307 if (!HCD_DEAD(hcd)) {
2308 usb_set_device_state(rhdev, rhdev->actconfig
2309 ? USB_STATE_CONFIGURED
2310 : USB_STATE_ADDRESS);
2311 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2312 hcd->state = HC_STATE_RUNNING;
2313 }
2314 spin_unlock_irq(&hcd_root_hub_lock);
2315
2316 /*
2317 * Check whether any of the enabled ports on the root hub are
2318 * unsuspended. If they are then a TRSMRCY delay is needed
2319 * (this is what the USB-2 spec calls a "global resume").
2320 * Otherwise we can skip the delay.
2321 */
2322 usb_hub_for_each_child(rhdev, port1, udev) {
2323 if (udev->state != USB_STATE_NOTATTACHED &&
2324 !udev->port_is_suspended) {
2325 usleep_range(10000, 11000); /* TRSMRCY */
2326 break;
2327 }
2328 }
2329 } else {
2330 hcd->state = old_state;
2331 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2332 "resume", status);
2333 if (status != -ESHUTDOWN)
2334 usb_hc_died(hcd);
2335 }
2336 return status;
2337}
2338
2339/* Workqueue routine for root-hub remote wakeup */
2340static void hcd_resume_work(struct work_struct *work)
2341{
2342 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2343 struct usb_device *udev = hcd->self.root_hub;
2344
2345 usb_remote_wakeup(udev);
2346}
2347
2348/**
2349 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2350 * @hcd: host controller for this root hub
2351 *
2352 * The USB host controller calls this function when its root hub is
2353 * suspended (with the remote wakeup feature enabled) and a remote
2354 * wakeup request is received. The routine submits a workqueue request
2355 * to resume the root hub (that is, manage its downstream ports again).
2356 */
2357void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2358{
2359 unsigned long flags;
2360
2361 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2362 if (hcd->rh_registered) {
2363 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2364 queue_work(pm_wq, &hcd->wakeup_work);
2365 }
2366 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2367}
2368EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2369
2370#endif /* CONFIG_PM */
2371
2372/*-------------------------------------------------------------------------*/
2373
2374#ifdef CONFIG_USB_OTG
2375
2376/**
2377 * usb_bus_start_enum - start immediate enumeration (for OTG)
2378 * @bus: the bus (must use hcd framework)
2379 * @port_num: 1-based number of port; usually bus->otg_port
2380 * Context: in_interrupt()
2381 *
2382 * Starts enumeration, with an immediate reset followed later by
2383 * hub_wq identifying and possibly configuring the device.
2384 * This is needed by OTG controller drivers, where it helps meet
2385 * HNP protocol timing requirements for starting a port reset.
2386 *
2387 * Return: 0 if successful.
2388 */
2389int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2390{
2391 struct usb_hcd *hcd;
2392 int status = -EOPNOTSUPP;
2393
2394 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2395 * boards with root hubs hooked up to internal devices (instead of
2396 * just the OTG port) may need more attention to resetting...
2397 */
2398 hcd = bus_to_hcd(bus);
2399 if (port_num && hcd->driver->start_port_reset)
2400 status = hcd->driver->start_port_reset(hcd, port_num);
2401
2402 /* allocate hub_wq shortly after (first) root port reset finishes;
2403 * it may issue others, until at least 50 msecs have passed.
2404 */
2405 if (status == 0)
2406 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2407 return status;
2408}
2409EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2410
2411#endif
2412
2413/*-------------------------------------------------------------------------*/
2414
2415/**
2416 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2417 * @irq: the IRQ being raised
2418 * @__hcd: pointer to the HCD whose IRQ is being signaled
2419 *
2420 * If the controller isn't HALTed, calls the driver's irq handler.
2421 * Checks whether the controller is now dead.
2422 *
2423 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2424 */
2425irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2426{
2427 struct usb_hcd *hcd = __hcd;
2428 irqreturn_t rc;
2429
2430 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2431 rc = IRQ_NONE;
2432 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2433 rc = IRQ_NONE;
2434 else
2435 rc = IRQ_HANDLED;
2436
2437 return rc;
2438}
2439EXPORT_SYMBOL_GPL(usb_hcd_irq);
2440
2441/*-------------------------------------------------------------------------*/
2442
2443/**
2444 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2445 * @hcd: pointer to the HCD representing the controller
2446 *
2447 * This is called by bus glue to report a USB host controller that died
2448 * while operations may still have been pending. It's called automatically
2449 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2450 *
2451 * Only call this function with the primary HCD.
2452 */
2453void usb_hc_died (struct usb_hcd *hcd)
2454{
2455 unsigned long flags;
2456
2457 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2458
2459 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2460 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2461 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2462 if (hcd->rh_registered) {
2463 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2464
2465 /* make hub_wq clean up old urbs and devices */
2466 usb_set_device_state (hcd->self.root_hub,
2467 USB_STATE_NOTATTACHED);
2468 usb_kick_hub_wq(hcd->self.root_hub);
2469 }
2470 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2471 hcd = hcd->shared_hcd;
2472 if (hcd->rh_registered) {
2473 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2474
2475 /* make hub_wq clean up old urbs and devices */
2476 usb_set_device_state(hcd->self.root_hub,
2477 USB_STATE_NOTATTACHED);
2478 usb_kick_hub_wq(hcd->self.root_hub);
2479 }
2480 }
2481 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2482 /* Make sure that the other roothub is also deallocated. */
2483}
2484EXPORT_SYMBOL_GPL (usb_hc_died);
2485
2486/*-------------------------------------------------------------------------*/
2487
2488static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2489{
2490
2491 spin_lock_init(&bh->lock);
2492 INIT_LIST_HEAD(&bh->head);
2493 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2494}
2495
2496/**
2497 * usb_create_shared_hcd - create and initialize an HCD structure
2498 * @driver: HC driver that will use this hcd
2499 * @dev: device for this HC, stored in hcd->self.controller
2500 * @bus_name: value to store in hcd->self.bus_name
2501 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2502 * PCI device. Only allocate certain resources for the primary HCD
2503 * Context: !in_interrupt()
2504 *
2505 * Allocate a struct usb_hcd, with extra space at the end for the
2506 * HC driver's private data. Initialize the generic members of the
2507 * hcd structure.
2508 *
2509 * Return: On success, a pointer to the created and initialized HCD structure.
2510 * On failure (e.g. if memory is unavailable), %NULL.
2511 */
2512struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2513 struct device *dev, const char *bus_name,
2514 struct usb_hcd *primary_hcd)
2515{
2516 struct usb_hcd *hcd;
2517
2518 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2519 if (!hcd) {
2520 dev_dbg (dev, "hcd alloc failed\n");
2521 return NULL;
2522 }
2523 if (primary_hcd == NULL) {
2524 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2525 GFP_KERNEL);
2526 if (!hcd->bandwidth_mutex) {
2527 kfree(hcd);
2528 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2529 return NULL;
2530 }
2531 mutex_init(hcd->bandwidth_mutex);
2532 dev_set_drvdata(dev, hcd);
2533 } else {
2534 mutex_lock(&usb_port_peer_mutex);
2535 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2536 hcd->primary_hcd = primary_hcd;
2537 primary_hcd->primary_hcd = primary_hcd;
2538 hcd->shared_hcd = primary_hcd;
2539 primary_hcd->shared_hcd = hcd;
2540 mutex_unlock(&usb_port_peer_mutex);
2541 }
2542
2543 kref_init(&hcd->kref);
2544
2545 usb_bus_init(&hcd->self);
2546 hcd->self.controller = dev;
2547 hcd->self.bus_name = bus_name;
2548 hcd->self.uses_dma = (dev->dma_mask != NULL);
2549
2550 init_timer(&hcd->rh_timer);
2551 hcd->rh_timer.function = rh_timer_func;
2552 hcd->rh_timer.data = (unsigned long) hcd;
2553#ifdef CONFIG_PM
2554 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2555#endif
2556
2557 hcd->driver = driver;
2558 hcd->speed = driver->flags & HCD_MASK;
2559 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2560 "USB Host Controller";
2561 return hcd;
2562}
2563EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2564
2565/**
2566 * usb_create_hcd - create and initialize an HCD structure
2567 * @driver: HC driver that will use this hcd
2568 * @dev: device for this HC, stored in hcd->self.controller
2569 * @bus_name: value to store in hcd->self.bus_name
2570 * Context: !in_interrupt()
2571 *
2572 * Allocate a struct usb_hcd, with extra space at the end for the
2573 * HC driver's private data. Initialize the generic members of the
2574 * hcd structure.
2575 *
2576 * Return: On success, a pointer to the created and initialized HCD
2577 * structure. On failure (e.g. if memory is unavailable), %NULL.
2578 */
2579struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2580 struct device *dev, const char *bus_name)
2581{
2582 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2583}
2584EXPORT_SYMBOL_GPL(usb_create_hcd);
2585
2586/*
2587 * Roothubs that share one PCI device must also share the bandwidth mutex.
2588 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2589 * deallocated.
2590 *
2591 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2592 * freed. When hcd_release() is called for either hcd in a peer set
2593 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2594 * block new peering attempts
2595 */
2596static void hcd_release(struct kref *kref)
2597{
2598 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2599
2600 mutex_lock(&usb_port_peer_mutex);
2601 if (usb_hcd_is_primary_hcd(hcd))
2602 kfree(hcd->bandwidth_mutex);
2603 if (hcd->shared_hcd) {
2604 struct usb_hcd *peer = hcd->shared_hcd;
2605
2606 peer->shared_hcd = NULL;
2607 if (peer->primary_hcd == hcd)
2608 peer->primary_hcd = NULL;
2609 }
2610 mutex_unlock(&usb_port_peer_mutex);
2611 kfree(hcd);
2612}
2613
2614struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2615{
2616 if (hcd)
2617 kref_get (&hcd->kref);
2618 return hcd;
2619}
2620EXPORT_SYMBOL_GPL(usb_get_hcd);
2621
2622void usb_put_hcd (struct usb_hcd *hcd)
2623{
2624 if (hcd)
2625 kref_put (&hcd->kref, hcd_release);
2626}
2627EXPORT_SYMBOL_GPL(usb_put_hcd);
2628
2629int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2630{
2631 if (!hcd->primary_hcd)
2632 return 1;
2633 return hcd == hcd->primary_hcd;
2634}
2635EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2636
2637int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2638{
2639 if (!hcd->driver->find_raw_port_number)
2640 return port1;
2641
2642 return hcd->driver->find_raw_port_number(hcd, port1);
2643}
2644
2645static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2646 unsigned int irqnum, unsigned long irqflags)
2647{
2648 int retval;
2649
2650 if (hcd->driver->irq) {
2651
2652 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2653 hcd->driver->description, hcd->self.busnum);
2654 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2655 hcd->irq_descr, hcd);
2656 if (retval != 0) {
2657 dev_err(hcd->self.controller,
2658 "request interrupt %d failed\n",
2659 irqnum);
2660 return retval;
2661 }
2662 hcd->irq = irqnum;
2663 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2664 (hcd->driver->flags & HCD_MEMORY) ?
2665 "io mem" : "io base",
2666 (unsigned long long)hcd->rsrc_start);
2667 } else {
2668 hcd->irq = 0;
2669 if (hcd->rsrc_start)
2670 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2671 (hcd->driver->flags & HCD_MEMORY) ?
2672 "io mem" : "io base",
2673 (unsigned long long)hcd->rsrc_start);
2674 }
2675 return 0;
2676}
2677
2678/*
2679 * Before we free this root hub, flush in-flight peering attempts
2680 * and disable peer lookups
2681 */
2682static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2683{
2684 struct usb_device *rhdev;
2685
2686 mutex_lock(&usb_port_peer_mutex);
2687 rhdev = hcd->self.root_hub;
2688 hcd->self.root_hub = NULL;
2689 mutex_unlock(&usb_port_peer_mutex);
2690 usb_put_dev(rhdev);
2691}
2692
2693/**
2694 * usb_add_hcd - finish generic HCD structure initialization and register
2695 * @hcd: the usb_hcd structure to initialize
2696 * @irqnum: Interrupt line to allocate
2697 * @irqflags: Interrupt type flags
2698 *
2699 * Finish the remaining parts of generic HCD initialization: allocate the
2700 * buffers of consistent memory, register the bus, request the IRQ line,
2701 * and call the driver's reset() and start() routines.
2702 */
2703int usb_add_hcd(struct usb_hcd *hcd,
2704 unsigned int irqnum, unsigned long irqflags)
2705{
2706 int retval;
2707 struct usb_device *rhdev;
2708
2709 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2710 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2711
2712 if (IS_ERR(phy)) {
2713 retval = PTR_ERR(phy);
2714 if (retval == -EPROBE_DEFER)
2715 return retval;
2716 } else {
2717 retval = usb_phy_init(phy);
2718 if (retval) {
2719 usb_put_phy(phy);
2720 return retval;
2721 }
2722 hcd->usb_phy = phy;
2723 hcd->remove_phy = 1;
2724 }
2725 }
2726
2727 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2728 struct phy *phy = phy_get(hcd->self.controller, "usb");
2729
2730 if (IS_ERR(phy)) {
2731 retval = PTR_ERR(phy);
2732 if (retval == -EPROBE_DEFER)
2733 goto err_phy;
2734 } else {
2735 retval = phy_init(phy);
2736 if (retval) {
2737 phy_put(phy);
2738 goto err_phy;
2739 }
2740 retval = phy_power_on(phy);
2741 if (retval) {
2742 phy_exit(phy);
2743 phy_put(phy);
2744 goto err_phy;
2745 }
2746 hcd->phy = phy;
2747 hcd->remove_phy = 1;
2748 }
2749 }
2750
2751 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2752
2753 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2754 if (authorized_default < 0 || authorized_default > 1) {
2755 if (hcd->wireless)
2756 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2757 else
2758 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2759 } else {
2760 if (authorized_default)
2761 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2762 else
2763 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2764 }
2765 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2766
2767 /* per default all interfaces are authorized */
2768 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2769
2770 /* HC is in reset state, but accessible. Now do the one-time init,
2771 * bottom up so that hcds can customize the root hubs before hub_wq
2772 * starts talking to them. (Note, bus id is assigned early too.)
2773 */
2774 retval = hcd_buffer_create(hcd);
2775 if (retval != 0) {
2776 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2777 goto err_create_buf;
2778 }
2779
2780 retval = usb_register_bus(&hcd->self);
2781 if (retval < 0)
2782 goto err_register_bus;
2783
2784 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2785 if (rhdev == NULL) {
2786 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2787 retval = -ENOMEM;
2788 goto err_allocate_root_hub;
2789 }
2790 mutex_lock(&usb_port_peer_mutex);
2791 hcd->self.root_hub = rhdev;
2792 mutex_unlock(&usb_port_peer_mutex);
2793
2794 switch (hcd->speed) {
2795 case HCD_USB11:
2796 rhdev->speed = USB_SPEED_FULL;
2797 break;
2798 case HCD_USB2:
2799 rhdev->speed = USB_SPEED_HIGH;
2800 break;
2801 case HCD_USB25:
2802 rhdev->speed = USB_SPEED_WIRELESS;
2803 break;
2804 case HCD_USB3:
2805 rhdev->speed = USB_SPEED_SUPER;
2806 break;
2807 case HCD_USB31:
2808 rhdev->speed = USB_SPEED_SUPER_PLUS;
2809 break;
2810 default:
2811 retval = -EINVAL;
2812 goto err_set_rh_speed;
2813 }
2814
2815 /* wakeup flag init defaults to "everything works" for root hubs,
2816 * but drivers can override it in reset() if needed, along with
2817 * recording the overall controller's system wakeup capability.
2818 */
2819 device_set_wakeup_capable(&rhdev->dev, 1);
2820
2821 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2822 * registered. But since the controller can die at any time,
2823 * let's initialize the flag before touching the hardware.
2824 */
2825 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2826
2827 /* "reset" is misnamed; its role is now one-time init. the controller
2828 * should already have been reset (and boot firmware kicked off etc).
2829 */
2830 if (hcd->driver->reset) {
2831 retval = hcd->driver->reset(hcd);
2832 if (retval < 0) {
2833 dev_err(hcd->self.controller, "can't setup: %d\n",
2834 retval);
2835 goto err_hcd_driver_setup;
2836 }
2837 }
2838 hcd->rh_pollable = 1;
2839
2840 /* NOTE: root hub and controller capabilities may not be the same */
2841 if (device_can_wakeup(hcd->self.controller)
2842 && device_can_wakeup(&hcd->self.root_hub->dev))
2843 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2844
2845 /* initialize tasklets */
2846 init_giveback_urb_bh(&hcd->high_prio_bh);
2847 init_giveback_urb_bh(&hcd->low_prio_bh);
2848
2849 /* enable irqs just before we start the controller,
2850 * if the BIOS provides legacy PCI irqs.
2851 */
2852 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2853 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2854 if (retval)
2855 goto err_request_irq;
2856 }
2857
2858 hcd->state = HC_STATE_RUNNING;
2859 retval = hcd->driver->start(hcd);
2860 if (retval < 0) {
2861 dev_err(hcd->self.controller, "startup error %d\n", retval);
2862 goto err_hcd_driver_start;
2863 }
2864
2865 /* starting here, usbcore will pay attention to this root hub */
2866 retval = register_root_hub(hcd);
2867 if (retval != 0)
2868 goto err_register_root_hub;
2869
2870 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2871 if (retval < 0) {
2872 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2873 retval);
2874 goto error_create_attr_group;
2875 }
2876 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2877 usb_hcd_poll_rh_status(hcd);
2878
2879 return retval;
2880
2881error_create_attr_group:
2882 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2883 if (HC_IS_RUNNING(hcd->state))
2884 hcd->state = HC_STATE_QUIESCING;
2885 spin_lock_irq(&hcd_root_hub_lock);
2886 hcd->rh_registered = 0;
2887 spin_unlock_irq(&hcd_root_hub_lock);
2888
2889#ifdef CONFIG_PM
2890 cancel_work_sync(&hcd->wakeup_work);
2891#endif
2892 mutex_lock(&usb_bus_idr_lock);
2893 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2894 mutex_unlock(&usb_bus_idr_lock);
2895err_register_root_hub:
2896 hcd->rh_pollable = 0;
2897 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2898 del_timer_sync(&hcd->rh_timer);
2899 hcd->driver->stop(hcd);
2900 hcd->state = HC_STATE_HALT;
2901 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2902 del_timer_sync(&hcd->rh_timer);
2903err_hcd_driver_start:
2904 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2905 free_irq(irqnum, hcd);
2906err_request_irq:
2907err_hcd_driver_setup:
2908err_set_rh_speed:
2909 usb_put_invalidate_rhdev(hcd);
2910err_allocate_root_hub:
2911 usb_deregister_bus(&hcd->self);
2912err_register_bus:
2913 hcd_buffer_destroy(hcd);
2914err_create_buf:
2915 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2916 phy_power_off(hcd->phy);
2917 phy_exit(hcd->phy);
2918 phy_put(hcd->phy);
2919 hcd->phy = NULL;
2920 }
2921err_phy:
2922 if (hcd->remove_phy && hcd->usb_phy) {
2923 usb_phy_shutdown(hcd->usb_phy);
2924 usb_put_phy(hcd->usb_phy);
2925 hcd->usb_phy = NULL;
2926 }
2927 return retval;
2928}
2929EXPORT_SYMBOL_GPL(usb_add_hcd);
2930
2931/**
2932 * usb_remove_hcd - shutdown processing for generic HCDs
2933 * @hcd: the usb_hcd structure to remove
2934 * Context: !in_interrupt()
2935 *
2936 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2937 * invoking the HCD's stop() method.
2938 */
2939void usb_remove_hcd(struct usb_hcd *hcd)
2940{
2941 struct usb_device *rhdev = hcd->self.root_hub;
2942
2943 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2944
2945 usb_get_dev(rhdev);
2946 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2947
2948 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2949 if (HC_IS_RUNNING (hcd->state))
2950 hcd->state = HC_STATE_QUIESCING;
2951
2952 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2953 spin_lock_irq (&hcd_root_hub_lock);
2954 hcd->rh_registered = 0;
2955 spin_unlock_irq (&hcd_root_hub_lock);
2956
2957#ifdef CONFIG_PM
2958 cancel_work_sync(&hcd->wakeup_work);
2959#endif
2960
2961 mutex_lock(&usb_bus_idr_lock);
2962 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2963 mutex_unlock(&usb_bus_idr_lock);
2964
2965 /*
2966 * tasklet_kill() isn't needed here because:
2967 * - driver's disconnect() called from usb_disconnect() should
2968 * make sure its URBs are completed during the disconnect()
2969 * callback
2970 *
2971 * - it is too late to run complete() here since driver may have
2972 * been removed already now
2973 */
2974
2975 /* Prevent any more root-hub status calls from the timer.
2976 * The HCD might still restart the timer (if a port status change
2977 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2978 * the hub_status_data() callback.
2979 */
2980 hcd->rh_pollable = 0;
2981 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2982 del_timer_sync(&hcd->rh_timer);
2983
2984 hcd->driver->stop(hcd);
2985 hcd->state = HC_STATE_HALT;
2986
2987 /* In case the HCD restarted the timer, stop it again. */
2988 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2989 del_timer_sync(&hcd->rh_timer);
2990
2991 if (usb_hcd_is_primary_hcd(hcd)) {
2992 if (hcd->irq > 0)
2993 free_irq(hcd->irq, hcd);
2994 }
2995
2996 usb_deregister_bus(&hcd->self);
2997 hcd_buffer_destroy(hcd);
2998
2999 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3000 phy_power_off(hcd->phy);
3001 phy_exit(hcd->phy);
3002 phy_put(hcd->phy);
3003 hcd->phy = NULL;
3004 }
3005 if (hcd->remove_phy && hcd->usb_phy) {
3006 usb_phy_shutdown(hcd->usb_phy);
3007 usb_put_phy(hcd->usb_phy);
3008 hcd->usb_phy = NULL;
3009 }
3010
3011 usb_put_invalidate_rhdev(hcd);
3012}
3013EXPORT_SYMBOL_GPL(usb_remove_hcd);
3014
3015void
3016usb_hcd_platform_shutdown(struct platform_device *dev)
3017{
3018 struct usb_hcd *hcd = platform_get_drvdata(dev);
3019
3020 if (hcd->driver->shutdown)
3021 hcd->driver->shutdown(hcd);
3022}
3023EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3024
3025/*-------------------------------------------------------------------------*/
3026
3027#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3028
3029const struct usb_mon_operations *mon_ops;
3030
3031/*
3032 * The registration is unlocked.
3033 * We do it this way because we do not want to lock in hot paths.
3034 *
3035 * Notice that the code is minimally error-proof. Because usbmon needs
3036 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3037 */
3038
3039int usb_mon_register(const struct usb_mon_operations *ops)
3040{
3041
3042 if (mon_ops)
3043 return -EBUSY;
3044
3045 mon_ops = ops;
3046 mb();
3047 return 0;
3048}
3049EXPORT_SYMBOL_GPL (usb_mon_register);
3050
3051void usb_mon_deregister (void)
3052{
3053
3054 if (mon_ops == NULL) {
3055 printk(KERN_ERR "USB: monitor was not registered\n");
3056 return;
3057 }
3058 mon_ops = NULL;
3059 mb();
3060}
3061EXPORT_SYMBOL_GPL (usb_mon_deregister);
3062
3063#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34
35#include <linux/phy/phy.h>
36#include <linux/usb.h>
37#include <linux/usb/hcd.h>
38#include <linux/usb/otg.h>
39
40#include "usb.h"
41#include "phy.h"
42
43
44/*-------------------------------------------------------------------------*/
45
46/*
47 * USB Host Controller Driver framework
48 *
49 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
50 * HCD-specific behaviors/bugs.
51 *
52 * This does error checks, tracks devices and urbs, and delegates to a
53 * "hc_driver" only for code (and data) that really needs to know about
54 * hardware differences. That includes root hub registers, i/o queues,
55 * and so on ... but as little else as possible.
56 *
57 * Shared code includes most of the "root hub" code (these are emulated,
58 * though each HC's hardware works differently) and PCI glue, plus request
59 * tracking overhead. The HCD code should only block on spinlocks or on
60 * hardware handshaking; blocking on software events (such as other kernel
61 * threads releasing resources, or completing actions) is all generic.
62 *
63 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
64 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
65 * only by the hub driver ... and that neither should be seen or used by
66 * usb client device drivers.
67 *
68 * Contributors of ideas or unattributed patches include: David Brownell,
69 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
70 *
71 * HISTORY:
72 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
73 * associated cleanup. "usb_hcd" still != "usb_bus".
74 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
75 */
76
77/*-------------------------------------------------------------------------*/
78
79/* Keep track of which host controller drivers are loaded */
80unsigned long usb_hcds_loaded;
81EXPORT_SYMBOL_GPL(usb_hcds_loaded);
82
83/* host controllers we manage */
84DEFINE_IDR (usb_bus_idr);
85EXPORT_SYMBOL_GPL (usb_bus_idr);
86
87/* used when allocating bus numbers */
88#define USB_MAXBUS 64
89
90/* used when updating list of hcds */
91DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
92EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
93
94/* used for controlling access to virtual root hubs */
95static DEFINE_SPINLOCK(hcd_root_hub_lock);
96
97/* used when updating an endpoint's URB list */
98static DEFINE_SPINLOCK(hcd_urb_list_lock);
99
100/* used to protect against unlinking URBs after the device is gone */
101static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
102
103/* wait queue for synchronous unlinks */
104DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
105
106/*-------------------------------------------------------------------------*/
107
108/*
109 * Sharable chunks of root hub code.
110 */
111
112/*-------------------------------------------------------------------------*/
113#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
114#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
115
116/* usb 3.1 root hub device descriptor */
117static const u8 usb31_rh_dev_descriptor[18] = {
118 0x12, /* __u8 bLength; */
119 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
120 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
121
122 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
123 0x00, /* __u8 bDeviceSubClass; */
124 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
125 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
126
127 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
128 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
129 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
130
131 0x03, /* __u8 iManufacturer; */
132 0x02, /* __u8 iProduct; */
133 0x01, /* __u8 iSerialNumber; */
134 0x01 /* __u8 bNumConfigurations; */
135};
136
137/* usb 3.0 root hub device descriptor */
138static const u8 usb3_rh_dev_descriptor[18] = {
139 0x12, /* __u8 bLength; */
140 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
141 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
142
143 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
144 0x00, /* __u8 bDeviceSubClass; */
145 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
146 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
147
148 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
149 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
150 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
151
152 0x03, /* __u8 iManufacturer; */
153 0x02, /* __u8 iProduct; */
154 0x01, /* __u8 iSerialNumber; */
155 0x01 /* __u8 bNumConfigurations; */
156};
157
158/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
159static const u8 usb25_rh_dev_descriptor[18] = {
160 0x12, /* __u8 bLength; */
161 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
162 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
163
164 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
165 0x00, /* __u8 bDeviceSubClass; */
166 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
167 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
168
169 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
170 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
171 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
172
173 0x03, /* __u8 iManufacturer; */
174 0x02, /* __u8 iProduct; */
175 0x01, /* __u8 iSerialNumber; */
176 0x01 /* __u8 bNumConfigurations; */
177};
178
179/* usb 2.0 root hub device descriptor */
180static const u8 usb2_rh_dev_descriptor[18] = {
181 0x12, /* __u8 bLength; */
182 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
183 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
184
185 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
186 0x00, /* __u8 bDeviceSubClass; */
187 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
188 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
189
190 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
191 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
192 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
193
194 0x03, /* __u8 iManufacturer; */
195 0x02, /* __u8 iProduct; */
196 0x01, /* __u8 iSerialNumber; */
197 0x01 /* __u8 bNumConfigurations; */
198};
199
200/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
201
202/* usb 1.1 root hub device descriptor */
203static const u8 usb11_rh_dev_descriptor[18] = {
204 0x12, /* __u8 bLength; */
205 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
206 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
207
208 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
209 0x00, /* __u8 bDeviceSubClass; */
210 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
211 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
212
213 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
214 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
215 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
216
217 0x03, /* __u8 iManufacturer; */
218 0x02, /* __u8 iProduct; */
219 0x01, /* __u8 iSerialNumber; */
220 0x01 /* __u8 bNumConfigurations; */
221};
222
223
224/*-------------------------------------------------------------------------*/
225
226/* Configuration descriptors for our root hubs */
227
228static const u8 fs_rh_config_descriptor[] = {
229
230 /* one configuration */
231 0x09, /* __u8 bLength; */
232 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
233 0x19, 0x00, /* __le16 wTotalLength; */
234 0x01, /* __u8 bNumInterfaces; (1) */
235 0x01, /* __u8 bConfigurationValue; */
236 0x00, /* __u8 iConfiguration; */
237 0xc0, /* __u8 bmAttributes;
238 Bit 7: must be set,
239 6: Self-powered,
240 5: Remote wakeup,
241 4..0: resvd */
242 0x00, /* __u8 MaxPower; */
243
244 /* USB 1.1:
245 * USB 2.0, single TT organization (mandatory):
246 * one interface, protocol 0
247 *
248 * USB 2.0, multiple TT organization (optional):
249 * two interfaces, protocols 1 (like single TT)
250 * and 2 (multiple TT mode) ... config is
251 * sometimes settable
252 * NOT IMPLEMENTED
253 */
254
255 /* one interface */
256 0x09, /* __u8 if_bLength; */
257 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
258 0x00, /* __u8 if_bInterfaceNumber; */
259 0x00, /* __u8 if_bAlternateSetting; */
260 0x01, /* __u8 if_bNumEndpoints; */
261 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
262 0x00, /* __u8 if_bInterfaceSubClass; */
263 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
264 0x00, /* __u8 if_iInterface; */
265
266 /* one endpoint (status change endpoint) */
267 0x07, /* __u8 ep_bLength; */
268 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
269 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
270 0x03, /* __u8 ep_bmAttributes; Interrupt */
271 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
272 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
273};
274
275static const u8 hs_rh_config_descriptor[] = {
276
277 /* one configuration */
278 0x09, /* __u8 bLength; */
279 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
280 0x19, 0x00, /* __le16 wTotalLength; */
281 0x01, /* __u8 bNumInterfaces; (1) */
282 0x01, /* __u8 bConfigurationValue; */
283 0x00, /* __u8 iConfiguration; */
284 0xc0, /* __u8 bmAttributes;
285 Bit 7: must be set,
286 6: Self-powered,
287 5: Remote wakeup,
288 4..0: resvd */
289 0x00, /* __u8 MaxPower; */
290
291 /* USB 1.1:
292 * USB 2.0, single TT organization (mandatory):
293 * one interface, protocol 0
294 *
295 * USB 2.0, multiple TT organization (optional):
296 * two interfaces, protocols 1 (like single TT)
297 * and 2 (multiple TT mode) ... config is
298 * sometimes settable
299 * NOT IMPLEMENTED
300 */
301
302 /* one interface */
303 0x09, /* __u8 if_bLength; */
304 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
305 0x00, /* __u8 if_bInterfaceNumber; */
306 0x00, /* __u8 if_bAlternateSetting; */
307 0x01, /* __u8 if_bNumEndpoints; */
308 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
309 0x00, /* __u8 if_bInterfaceSubClass; */
310 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
311 0x00, /* __u8 if_iInterface; */
312
313 /* one endpoint (status change endpoint) */
314 0x07, /* __u8 ep_bLength; */
315 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
316 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
317 0x03, /* __u8 ep_bmAttributes; Interrupt */
318 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
319 * see hub.c:hub_configure() for details. */
320 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
321 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
322};
323
324static const u8 ss_rh_config_descriptor[] = {
325 /* one configuration */
326 0x09, /* __u8 bLength; */
327 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
328 0x1f, 0x00, /* __le16 wTotalLength; */
329 0x01, /* __u8 bNumInterfaces; (1) */
330 0x01, /* __u8 bConfigurationValue; */
331 0x00, /* __u8 iConfiguration; */
332 0xc0, /* __u8 bmAttributes;
333 Bit 7: must be set,
334 6: Self-powered,
335 5: Remote wakeup,
336 4..0: resvd */
337 0x00, /* __u8 MaxPower; */
338
339 /* one interface */
340 0x09, /* __u8 if_bLength; */
341 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
342 0x00, /* __u8 if_bInterfaceNumber; */
343 0x00, /* __u8 if_bAlternateSetting; */
344 0x01, /* __u8 if_bNumEndpoints; */
345 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
346 0x00, /* __u8 if_bInterfaceSubClass; */
347 0x00, /* __u8 if_bInterfaceProtocol; */
348 0x00, /* __u8 if_iInterface; */
349
350 /* one endpoint (status change endpoint) */
351 0x07, /* __u8 ep_bLength; */
352 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
353 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
354 0x03, /* __u8 ep_bmAttributes; Interrupt */
355 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
356 * see hub.c:hub_configure() for details. */
357 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
358 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
359
360 /* one SuperSpeed endpoint companion descriptor */
361 0x06, /* __u8 ss_bLength */
362 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
363 /* Companion */
364 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
365 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
366 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
367};
368
369/* authorized_default behaviour:
370 * -1 is authorized for all devices except wireless (old behaviour)
371 * 0 is unauthorized for all devices
372 * 1 is authorized for all devices
373 * 2 is authorized for internal devices
374 */
375#define USB_AUTHORIZE_WIRED -1
376#define USB_AUTHORIZE_NONE 0
377#define USB_AUTHORIZE_ALL 1
378#define USB_AUTHORIZE_INTERNAL 2
379
380static int authorized_default = USB_AUTHORIZE_WIRED;
381module_param(authorized_default, int, S_IRUGO|S_IWUSR);
382MODULE_PARM_DESC(authorized_default,
383 "Default USB device authorization: 0 is not authorized, 1 is "
384 "authorized, 2 is authorized for internal devices, -1 is "
385 "authorized except for wireless USB (default, old behaviour)");
386/*-------------------------------------------------------------------------*/
387
388/**
389 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
390 * @s: Null-terminated ASCII (actually ISO-8859-1) string
391 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
392 * @len: Length (in bytes; may be odd) of descriptor buffer.
393 *
394 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
395 * whichever is less.
396 *
397 * Note:
398 * USB String descriptors can contain at most 126 characters; input
399 * strings longer than that are truncated.
400 */
401static unsigned
402ascii2desc(char const *s, u8 *buf, unsigned len)
403{
404 unsigned n, t = 2 + 2*strlen(s);
405
406 if (t > 254)
407 t = 254; /* Longest possible UTF string descriptor */
408 if (len > t)
409 len = t;
410
411 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
412
413 n = len;
414 while (n--) {
415 *buf++ = t;
416 if (!n--)
417 break;
418 *buf++ = t >> 8;
419 t = (unsigned char)*s++;
420 }
421 return len;
422}
423
424/**
425 * rh_string() - provides string descriptors for root hub
426 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
427 * @hcd: the host controller for this root hub
428 * @data: buffer for output packet
429 * @len: length of the provided buffer
430 *
431 * Produces either a manufacturer, product or serial number string for the
432 * virtual root hub device.
433 *
434 * Return: The number of bytes filled in: the length of the descriptor or
435 * of the provided buffer, whichever is less.
436 */
437static unsigned
438rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
439{
440 char buf[100];
441 char const *s;
442 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
443
444 /* language ids */
445 switch (id) {
446 case 0:
447 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
448 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
449 if (len > 4)
450 len = 4;
451 memcpy(data, langids, len);
452 return len;
453 case 1:
454 /* Serial number */
455 s = hcd->self.bus_name;
456 break;
457 case 2:
458 /* Product name */
459 s = hcd->product_desc;
460 break;
461 case 3:
462 /* Manufacturer */
463 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
464 init_utsname()->release, hcd->driver->description);
465 s = buf;
466 break;
467 default:
468 /* Can't happen; caller guarantees it */
469 return 0;
470 }
471
472 return ascii2desc(s, data, len);
473}
474
475
476/* Root hub control transfers execute synchronously */
477static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
478{
479 struct usb_ctrlrequest *cmd;
480 u16 typeReq, wValue, wIndex, wLength;
481 u8 *ubuf = urb->transfer_buffer;
482 unsigned len = 0;
483 int status;
484 u8 patch_wakeup = 0;
485 u8 patch_protocol = 0;
486 u16 tbuf_size;
487 u8 *tbuf = NULL;
488 const u8 *bufp;
489
490 might_sleep();
491
492 spin_lock_irq(&hcd_root_hub_lock);
493 status = usb_hcd_link_urb_to_ep(hcd, urb);
494 spin_unlock_irq(&hcd_root_hub_lock);
495 if (status)
496 return status;
497 urb->hcpriv = hcd; /* Indicate it's queued */
498
499 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
500 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
501 wValue = le16_to_cpu (cmd->wValue);
502 wIndex = le16_to_cpu (cmd->wIndex);
503 wLength = le16_to_cpu (cmd->wLength);
504
505 if (wLength > urb->transfer_buffer_length)
506 goto error;
507
508 /*
509 * tbuf should be at least as big as the
510 * USB hub descriptor.
511 */
512 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
513 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
514 if (!tbuf) {
515 status = -ENOMEM;
516 goto err_alloc;
517 }
518
519 bufp = tbuf;
520
521
522 urb->actual_length = 0;
523 switch (typeReq) {
524
525 /* DEVICE REQUESTS */
526
527 /* The root hub's remote wakeup enable bit is implemented using
528 * driver model wakeup flags. If this system supports wakeup
529 * through USB, userspace may change the default "allow wakeup"
530 * policy through sysfs or these calls.
531 *
532 * Most root hubs support wakeup from downstream devices, for
533 * runtime power management (disabling USB clocks and reducing
534 * VBUS power usage). However, not all of them do so; silicon,
535 * board, and BIOS bugs here are not uncommon, so these can't
536 * be treated quite like external hubs.
537 *
538 * Likewise, not all root hubs will pass wakeup events upstream,
539 * to wake up the whole system. So don't assume root hub and
540 * controller capabilities are identical.
541 */
542
543 case DeviceRequest | USB_REQ_GET_STATUS:
544 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
545 << USB_DEVICE_REMOTE_WAKEUP)
546 | (1 << USB_DEVICE_SELF_POWERED);
547 tbuf[1] = 0;
548 len = 2;
549 break;
550 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
551 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
552 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
553 else
554 goto error;
555 break;
556 case DeviceOutRequest | USB_REQ_SET_FEATURE:
557 if (device_can_wakeup(&hcd->self.root_hub->dev)
558 && wValue == USB_DEVICE_REMOTE_WAKEUP)
559 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
560 else
561 goto error;
562 break;
563 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
564 tbuf[0] = 1;
565 len = 1;
566 /* FALLTHROUGH */
567 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
568 break;
569 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
570 switch (wValue & 0xff00) {
571 case USB_DT_DEVICE << 8:
572 switch (hcd->speed) {
573 case HCD_USB32:
574 case HCD_USB31:
575 bufp = usb31_rh_dev_descriptor;
576 break;
577 case HCD_USB3:
578 bufp = usb3_rh_dev_descriptor;
579 break;
580 case HCD_USB25:
581 bufp = usb25_rh_dev_descriptor;
582 break;
583 case HCD_USB2:
584 bufp = usb2_rh_dev_descriptor;
585 break;
586 case HCD_USB11:
587 bufp = usb11_rh_dev_descriptor;
588 break;
589 default:
590 goto error;
591 }
592 len = 18;
593 if (hcd->has_tt)
594 patch_protocol = 1;
595 break;
596 case USB_DT_CONFIG << 8:
597 switch (hcd->speed) {
598 case HCD_USB32:
599 case HCD_USB31:
600 case HCD_USB3:
601 bufp = ss_rh_config_descriptor;
602 len = sizeof ss_rh_config_descriptor;
603 break;
604 case HCD_USB25:
605 case HCD_USB2:
606 bufp = hs_rh_config_descriptor;
607 len = sizeof hs_rh_config_descriptor;
608 break;
609 case HCD_USB11:
610 bufp = fs_rh_config_descriptor;
611 len = sizeof fs_rh_config_descriptor;
612 break;
613 default:
614 goto error;
615 }
616 if (device_can_wakeup(&hcd->self.root_hub->dev))
617 patch_wakeup = 1;
618 break;
619 case USB_DT_STRING << 8:
620 if ((wValue & 0xff) < 4)
621 urb->actual_length = rh_string(wValue & 0xff,
622 hcd, ubuf, wLength);
623 else /* unsupported IDs --> "protocol stall" */
624 goto error;
625 break;
626 case USB_DT_BOS << 8:
627 goto nongeneric;
628 default:
629 goto error;
630 }
631 break;
632 case DeviceRequest | USB_REQ_GET_INTERFACE:
633 tbuf[0] = 0;
634 len = 1;
635 /* FALLTHROUGH */
636 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
637 break;
638 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
639 /* wValue == urb->dev->devaddr */
640 dev_dbg (hcd->self.controller, "root hub device address %d\n",
641 wValue);
642 break;
643
644 /* INTERFACE REQUESTS (no defined feature/status flags) */
645
646 /* ENDPOINT REQUESTS */
647
648 case EndpointRequest | USB_REQ_GET_STATUS:
649 /* ENDPOINT_HALT flag */
650 tbuf[0] = 0;
651 tbuf[1] = 0;
652 len = 2;
653 /* FALLTHROUGH */
654 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
655 case EndpointOutRequest | USB_REQ_SET_FEATURE:
656 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
657 break;
658
659 /* CLASS REQUESTS (and errors) */
660
661 default:
662nongeneric:
663 /* non-generic request */
664 switch (typeReq) {
665 case GetHubStatus:
666 len = 4;
667 break;
668 case GetPortStatus:
669 if (wValue == HUB_PORT_STATUS)
670 len = 4;
671 else
672 /* other port status types return 8 bytes */
673 len = 8;
674 break;
675 case GetHubDescriptor:
676 len = sizeof (struct usb_hub_descriptor);
677 break;
678 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
679 /* len is returned by hub_control */
680 break;
681 }
682 status = hcd->driver->hub_control (hcd,
683 typeReq, wValue, wIndex,
684 tbuf, wLength);
685
686 if (typeReq == GetHubDescriptor)
687 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
688 (struct usb_hub_descriptor *)tbuf);
689 break;
690error:
691 /* "protocol stall" on error */
692 status = -EPIPE;
693 }
694
695 if (status < 0) {
696 len = 0;
697 if (status != -EPIPE) {
698 dev_dbg (hcd->self.controller,
699 "CTRL: TypeReq=0x%x val=0x%x "
700 "idx=0x%x len=%d ==> %d\n",
701 typeReq, wValue, wIndex,
702 wLength, status);
703 }
704 } else if (status > 0) {
705 /* hub_control may return the length of data copied. */
706 len = status;
707 status = 0;
708 }
709 if (len) {
710 if (urb->transfer_buffer_length < len)
711 len = urb->transfer_buffer_length;
712 urb->actual_length = len;
713 /* always USB_DIR_IN, toward host */
714 memcpy (ubuf, bufp, len);
715
716 /* report whether RH hardware supports remote wakeup */
717 if (patch_wakeup &&
718 len > offsetof (struct usb_config_descriptor,
719 bmAttributes))
720 ((struct usb_config_descriptor *)ubuf)->bmAttributes
721 |= USB_CONFIG_ATT_WAKEUP;
722
723 /* report whether RH hardware has an integrated TT */
724 if (patch_protocol &&
725 len > offsetof(struct usb_device_descriptor,
726 bDeviceProtocol))
727 ((struct usb_device_descriptor *) ubuf)->
728 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
729 }
730
731 kfree(tbuf);
732 err_alloc:
733
734 /* any errors get returned through the urb completion */
735 spin_lock_irq(&hcd_root_hub_lock);
736 usb_hcd_unlink_urb_from_ep(hcd, urb);
737 usb_hcd_giveback_urb(hcd, urb, status);
738 spin_unlock_irq(&hcd_root_hub_lock);
739 return 0;
740}
741
742/*-------------------------------------------------------------------------*/
743
744/*
745 * Root Hub interrupt transfers are polled using a timer if the
746 * driver requests it; otherwise the driver is responsible for
747 * calling usb_hcd_poll_rh_status() when an event occurs.
748 *
749 * Completions are called in_interrupt(), but they may or may not
750 * be in_irq().
751 */
752void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753{
754 struct urb *urb;
755 int length;
756 unsigned long flags;
757 char buffer[6]; /* Any root hubs with > 31 ports? */
758
759 if (unlikely(!hcd->rh_pollable))
760 return;
761 if (!hcd->uses_new_polling && !hcd->status_urb)
762 return;
763
764 length = hcd->driver->hub_status_data(hcd, buffer);
765 if (length > 0) {
766
767 /* try to complete the status urb */
768 spin_lock_irqsave(&hcd_root_hub_lock, flags);
769 urb = hcd->status_urb;
770 if (urb) {
771 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
772 hcd->status_urb = NULL;
773 urb->actual_length = length;
774 memcpy(urb->transfer_buffer, buffer, length);
775
776 usb_hcd_unlink_urb_from_ep(hcd, urb);
777 usb_hcd_giveback_urb(hcd, urb, 0);
778 } else {
779 length = 0;
780 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
781 }
782 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
783 }
784
785 /* The USB 2.0 spec says 256 ms. This is close enough and won't
786 * exceed that limit if HZ is 100. The math is more clunky than
787 * maybe expected, this is to make sure that all timers for USB devices
788 * fire at the same time to give the CPU a break in between */
789 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
790 (length == 0 && hcd->status_urb != NULL))
791 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
792}
793EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
794
795/* timer callback */
796static void rh_timer_func (struct timer_list *t)
797{
798 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
799
800 usb_hcd_poll_rh_status(_hcd);
801}
802
803/*-------------------------------------------------------------------------*/
804
805static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
806{
807 int retval;
808 unsigned long flags;
809 unsigned len = 1 + (urb->dev->maxchild / 8);
810
811 spin_lock_irqsave (&hcd_root_hub_lock, flags);
812 if (hcd->status_urb || urb->transfer_buffer_length < len) {
813 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
814 retval = -EINVAL;
815 goto done;
816 }
817
818 retval = usb_hcd_link_urb_to_ep(hcd, urb);
819 if (retval)
820 goto done;
821
822 hcd->status_urb = urb;
823 urb->hcpriv = hcd; /* indicate it's queued */
824 if (!hcd->uses_new_polling)
825 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
826
827 /* If a status change has already occurred, report it ASAP */
828 else if (HCD_POLL_PENDING(hcd))
829 mod_timer(&hcd->rh_timer, jiffies);
830 retval = 0;
831 done:
832 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
833 return retval;
834}
835
836static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
837{
838 if (usb_endpoint_xfer_int(&urb->ep->desc))
839 return rh_queue_status (hcd, urb);
840 if (usb_endpoint_xfer_control(&urb->ep->desc))
841 return rh_call_control (hcd, urb);
842 return -EINVAL;
843}
844
845/*-------------------------------------------------------------------------*/
846
847/* Unlinks of root-hub control URBs are legal, but they don't do anything
848 * since these URBs always execute synchronously.
849 */
850static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
851{
852 unsigned long flags;
853 int rc;
854
855 spin_lock_irqsave(&hcd_root_hub_lock, flags);
856 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
857 if (rc)
858 goto done;
859
860 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
861 ; /* Do nothing */
862
863 } else { /* Status URB */
864 if (!hcd->uses_new_polling)
865 del_timer (&hcd->rh_timer);
866 if (urb == hcd->status_urb) {
867 hcd->status_urb = NULL;
868 usb_hcd_unlink_urb_from_ep(hcd, urb);
869 usb_hcd_giveback_urb(hcd, urb, status);
870 }
871 }
872 done:
873 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
874 return rc;
875}
876
877
878/*-------------------------------------------------------------------------*/
879
880/**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
887static void usb_bus_init (struct usb_bus *bus)
888{
889 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891 bus->devnum_next = 1;
892
893 bus->root_hub = NULL;
894 bus->busnum = -1;
895 bus->bandwidth_allocated = 0;
896 bus->bandwidth_int_reqs = 0;
897 bus->bandwidth_isoc_reqs = 0;
898 mutex_init(&bus->devnum_next_mutex);
899}
900
901/*-------------------------------------------------------------------------*/
902
903/**
904 * usb_register_bus - registers the USB host controller with the usb core
905 * @bus: pointer to the bus to register
906 * Context: !in_interrupt()
907 *
908 * Assigns a bus number, and links the controller into usbcore data
909 * structures so that it can be seen by scanning the bus list.
910 *
911 * Return: 0 if successful. A negative error code otherwise.
912 */
913static int usb_register_bus(struct usb_bus *bus)
914{
915 int result = -E2BIG;
916 int busnum;
917
918 mutex_lock(&usb_bus_idr_lock);
919 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
920 if (busnum < 0) {
921 pr_err("%s: failed to get bus number\n", usbcore_name);
922 goto error_find_busnum;
923 }
924 bus->busnum = busnum;
925 mutex_unlock(&usb_bus_idr_lock);
926
927 usb_notify_add_bus(bus);
928
929 dev_info (bus->controller, "new USB bus registered, assigned bus "
930 "number %d\n", bus->busnum);
931 return 0;
932
933error_find_busnum:
934 mutex_unlock(&usb_bus_idr_lock);
935 return result;
936}
937
938/**
939 * usb_deregister_bus - deregisters the USB host controller
940 * @bus: pointer to the bus to deregister
941 * Context: !in_interrupt()
942 *
943 * Recycles the bus number, and unlinks the controller from usbcore data
944 * structures so that it won't be seen by scanning the bus list.
945 */
946static void usb_deregister_bus (struct usb_bus *bus)
947{
948 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
949
950 /*
951 * NOTE: make sure that all the devices are removed by the
952 * controller code, as well as having it call this when cleaning
953 * itself up
954 */
955 mutex_lock(&usb_bus_idr_lock);
956 idr_remove(&usb_bus_idr, bus->busnum);
957 mutex_unlock(&usb_bus_idr_lock);
958
959 usb_notify_remove_bus(bus);
960}
961
962/**
963 * register_root_hub - called by usb_add_hcd() to register a root hub
964 * @hcd: host controller for this root hub
965 *
966 * This function registers the root hub with the USB subsystem. It sets up
967 * the device properly in the device tree and then calls usb_new_device()
968 * to register the usb device. It also assigns the root hub's USB address
969 * (always 1).
970 *
971 * Return: 0 if successful. A negative error code otherwise.
972 */
973static int register_root_hub(struct usb_hcd *hcd)
974{
975 struct device *parent_dev = hcd->self.controller;
976 struct usb_device *usb_dev = hcd->self.root_hub;
977 const int devnum = 1;
978 int retval;
979
980 usb_dev->devnum = devnum;
981 usb_dev->bus->devnum_next = devnum + 1;
982 set_bit (devnum, usb_dev->bus->devmap.devicemap);
983 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
984
985 mutex_lock(&usb_bus_idr_lock);
986
987 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
988 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
989 if (retval != sizeof usb_dev->descriptor) {
990 mutex_unlock(&usb_bus_idr_lock);
991 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
992 dev_name(&usb_dev->dev), retval);
993 return (retval < 0) ? retval : -EMSGSIZE;
994 }
995
996 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
997 retval = usb_get_bos_descriptor(usb_dev);
998 if (!retval) {
999 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1000 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1001 mutex_unlock(&usb_bus_idr_lock);
1002 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1003 dev_name(&usb_dev->dev), retval);
1004 return retval;
1005 }
1006 }
1007
1008 retval = usb_new_device (usb_dev);
1009 if (retval) {
1010 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1011 dev_name(&usb_dev->dev), retval);
1012 } else {
1013 spin_lock_irq (&hcd_root_hub_lock);
1014 hcd->rh_registered = 1;
1015 spin_unlock_irq (&hcd_root_hub_lock);
1016
1017 /* Did the HC die before the root hub was registered? */
1018 if (HCD_DEAD(hcd))
1019 usb_hc_died (hcd); /* This time clean up */
1020 }
1021 mutex_unlock(&usb_bus_idr_lock);
1022
1023 return retval;
1024}
1025
1026/*
1027 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1028 * @bus: the bus which the root hub belongs to
1029 * @portnum: the port which is being resumed
1030 *
1031 * HCDs should call this function when they know that a resume signal is
1032 * being sent to a root-hub port. The root hub will be prevented from
1033 * going into autosuspend until usb_hcd_end_port_resume() is called.
1034 *
1035 * The bus's private lock must be held by the caller.
1036 */
1037void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1038{
1039 unsigned bit = 1 << portnum;
1040
1041 if (!(bus->resuming_ports & bit)) {
1042 bus->resuming_ports |= bit;
1043 pm_runtime_get_noresume(&bus->root_hub->dev);
1044 }
1045}
1046EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1047
1048/*
1049 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1050 * @bus: the bus which the root hub belongs to
1051 * @portnum: the port which is being resumed
1052 *
1053 * HCDs should call this function when they know that a resume signal has
1054 * stopped being sent to a root-hub port. The root hub will be allowed to
1055 * autosuspend again.
1056 *
1057 * The bus's private lock must be held by the caller.
1058 */
1059void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1060{
1061 unsigned bit = 1 << portnum;
1062
1063 if (bus->resuming_ports & bit) {
1064 bus->resuming_ports &= ~bit;
1065 pm_runtime_put_noidle(&bus->root_hub->dev);
1066 }
1067}
1068EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1069
1070/*-------------------------------------------------------------------------*/
1071
1072/**
1073 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1074 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1075 * @is_input: true iff the transaction sends data to the host
1076 * @isoc: true for isochronous transactions, false for interrupt ones
1077 * @bytecount: how many bytes in the transaction.
1078 *
1079 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1080 *
1081 * Note:
1082 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1083 * scheduled in software, this function is only used for such scheduling.
1084 */
1085long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1086{
1087 unsigned long tmp;
1088
1089 switch (speed) {
1090 case USB_SPEED_LOW: /* INTR only */
1091 if (is_input) {
1092 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1093 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1094 } else {
1095 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1096 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1097 }
1098 case USB_SPEED_FULL: /* ISOC or INTR */
1099 if (isoc) {
1100 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1102 } else {
1103 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1104 return 9107L + BW_HOST_DELAY + tmp;
1105 }
1106 case USB_SPEED_HIGH: /* ISOC or INTR */
1107 /* FIXME adjust for input vs output */
1108 if (isoc)
1109 tmp = HS_NSECS_ISO (bytecount);
1110 else
1111 tmp = HS_NSECS (bytecount);
1112 return tmp;
1113 default:
1114 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1115 return -1;
1116 }
1117}
1118EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1119
1120
1121/*-------------------------------------------------------------------------*/
1122
1123/*
1124 * Generic HC operations.
1125 */
1126
1127/*-------------------------------------------------------------------------*/
1128
1129/**
1130 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1131 * @hcd: host controller to which @urb was submitted
1132 * @urb: URB being submitted
1133 *
1134 * Host controller drivers should call this routine in their enqueue()
1135 * method. The HCD's private spinlock must be held and interrupts must
1136 * be disabled. The actions carried out here are required for URB
1137 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1138 *
1139 * Return: 0 for no error, otherwise a negative error code (in which case
1140 * the enqueue() method must fail). If no error occurs but enqueue() fails
1141 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1142 * the private spinlock and returning.
1143 */
1144int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1145{
1146 int rc = 0;
1147
1148 spin_lock(&hcd_urb_list_lock);
1149
1150 /* Check that the URB isn't being killed */
1151 if (unlikely(atomic_read(&urb->reject))) {
1152 rc = -EPERM;
1153 goto done;
1154 }
1155
1156 if (unlikely(!urb->ep->enabled)) {
1157 rc = -ENOENT;
1158 goto done;
1159 }
1160
1161 if (unlikely(!urb->dev->can_submit)) {
1162 rc = -EHOSTUNREACH;
1163 goto done;
1164 }
1165
1166 /*
1167 * Check the host controller's state and add the URB to the
1168 * endpoint's queue.
1169 */
1170 if (HCD_RH_RUNNING(hcd)) {
1171 urb->unlinked = 0;
1172 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1173 } else {
1174 rc = -ESHUTDOWN;
1175 goto done;
1176 }
1177 done:
1178 spin_unlock(&hcd_urb_list_lock);
1179 return rc;
1180}
1181EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1182
1183/**
1184 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1185 * @hcd: host controller to which @urb was submitted
1186 * @urb: URB being checked for unlinkability
1187 * @status: error code to store in @urb if the unlink succeeds
1188 *
1189 * Host controller drivers should call this routine in their dequeue()
1190 * method. The HCD's private spinlock must be held and interrupts must
1191 * be disabled. The actions carried out here are required for making
1192 * sure than an unlink is valid.
1193 *
1194 * Return: 0 for no error, otherwise a negative error code (in which case
1195 * the dequeue() method must fail). The possible error codes are:
1196 *
1197 * -EIDRM: @urb was not submitted or has already completed.
1198 * The completion function may not have been called yet.
1199 *
1200 * -EBUSY: @urb has already been unlinked.
1201 */
1202int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1203 int status)
1204{
1205 struct list_head *tmp;
1206
1207 /* insist the urb is still queued */
1208 list_for_each(tmp, &urb->ep->urb_list) {
1209 if (tmp == &urb->urb_list)
1210 break;
1211 }
1212 if (tmp != &urb->urb_list)
1213 return -EIDRM;
1214
1215 /* Any status except -EINPROGRESS means something already started to
1216 * unlink this URB from the hardware. So there's no more work to do.
1217 */
1218 if (urb->unlinked)
1219 return -EBUSY;
1220 urb->unlinked = status;
1221 return 0;
1222}
1223EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1224
1225/**
1226 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1227 * @hcd: host controller to which @urb was submitted
1228 * @urb: URB being unlinked
1229 *
1230 * Host controller drivers should call this routine before calling
1231 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1232 * interrupts must be disabled. The actions carried out here are required
1233 * for URB completion.
1234 */
1235void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1236{
1237 /* clear all state linking urb to this dev (and hcd) */
1238 spin_lock(&hcd_urb_list_lock);
1239 list_del_init(&urb->urb_list);
1240 spin_unlock(&hcd_urb_list_lock);
1241}
1242EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1243
1244/*
1245 * Some usb host controllers can only perform dma using a small SRAM area.
1246 * The usb core itself is however optimized for host controllers that can dma
1247 * using regular system memory - like pci devices doing bus mastering.
1248 *
1249 * To support host controllers with limited dma capabilities we provide dma
1250 * bounce buffers. This feature can be enabled by initializing
1251 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1252 *
1253 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1254 * data for dma using the genalloc API.
1255 *
1256 * So, to summarize...
1257 *
1258 * - We need "local" memory, canonical example being
1259 * a small SRAM on a discrete controller being the
1260 * only memory that the controller can read ...
1261 * (a) "normal" kernel memory is no good, and
1262 * (b) there's not enough to share
1263 *
1264 * - So we use that, even though the primary requirement
1265 * is that the memory be "local" (hence addressable
1266 * by that device), not "coherent".
1267 *
1268 */
1269
1270static int hcd_alloc_coherent(struct usb_bus *bus,
1271 gfp_t mem_flags, dma_addr_t *dma_handle,
1272 void **vaddr_handle, size_t size,
1273 enum dma_data_direction dir)
1274{
1275 unsigned char *vaddr;
1276
1277 if (*vaddr_handle == NULL) {
1278 WARN_ON_ONCE(1);
1279 return -EFAULT;
1280 }
1281
1282 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1283 mem_flags, dma_handle);
1284 if (!vaddr)
1285 return -ENOMEM;
1286
1287 /*
1288 * Store the virtual address of the buffer at the end
1289 * of the allocated dma buffer. The size of the buffer
1290 * may be uneven so use unaligned functions instead
1291 * of just rounding up. It makes sense to optimize for
1292 * memory footprint over access speed since the amount
1293 * of memory available for dma may be limited.
1294 */
1295 put_unaligned((unsigned long)*vaddr_handle,
1296 (unsigned long *)(vaddr + size));
1297
1298 if (dir == DMA_TO_DEVICE)
1299 memcpy(vaddr, *vaddr_handle, size);
1300
1301 *vaddr_handle = vaddr;
1302 return 0;
1303}
1304
1305static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1306 void **vaddr_handle, size_t size,
1307 enum dma_data_direction dir)
1308{
1309 unsigned char *vaddr = *vaddr_handle;
1310
1311 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1312
1313 if (dir == DMA_FROM_DEVICE)
1314 memcpy(vaddr, *vaddr_handle, size);
1315
1316 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1317
1318 *vaddr_handle = vaddr;
1319 *dma_handle = 0;
1320}
1321
1322void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1323{
1324 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1325 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1326 dma_unmap_single(hcd->self.sysdev,
1327 urb->setup_dma,
1328 sizeof(struct usb_ctrlrequest),
1329 DMA_TO_DEVICE);
1330 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1331 hcd_free_coherent(urb->dev->bus,
1332 &urb->setup_dma,
1333 (void **) &urb->setup_packet,
1334 sizeof(struct usb_ctrlrequest),
1335 DMA_TO_DEVICE);
1336
1337 /* Make it safe to call this routine more than once */
1338 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1339}
1340EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1341
1342static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343{
1344 if (hcd->driver->unmap_urb_for_dma)
1345 hcd->driver->unmap_urb_for_dma(hcd, urb);
1346 else
1347 usb_hcd_unmap_urb_for_dma(hcd, urb);
1348}
1349
1350void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351{
1352 enum dma_data_direction dir;
1353
1354 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1355
1356 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358 (urb->transfer_flags & URB_DMA_MAP_SG))
1359 dma_unmap_sg(hcd->self.sysdev,
1360 urb->sg,
1361 urb->num_sgs,
1362 dir);
1363 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1364 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1365 dma_unmap_page(hcd->self.sysdev,
1366 urb->transfer_dma,
1367 urb->transfer_buffer_length,
1368 dir);
1369 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1370 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1371 dma_unmap_single(hcd->self.sysdev,
1372 urb->transfer_dma,
1373 urb->transfer_buffer_length,
1374 dir);
1375 else if (urb->transfer_flags & URB_MAP_LOCAL)
1376 hcd_free_coherent(urb->dev->bus,
1377 &urb->transfer_dma,
1378 &urb->transfer_buffer,
1379 urb->transfer_buffer_length,
1380 dir);
1381
1382 /* Make it safe to call this routine more than once */
1383 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1384 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1385}
1386EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1387
1388static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1389 gfp_t mem_flags)
1390{
1391 if (hcd->driver->map_urb_for_dma)
1392 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1393 else
1394 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1395}
1396
1397int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1398 gfp_t mem_flags)
1399{
1400 enum dma_data_direction dir;
1401 int ret = 0;
1402
1403 /* Map the URB's buffers for DMA access.
1404 * Lower level HCD code should use *_dma exclusively,
1405 * unless it uses pio or talks to another transport,
1406 * or uses the provided scatter gather list for bulk.
1407 */
1408
1409 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1410 if (hcd->self.uses_pio_for_control)
1411 return ret;
1412 if (hcd_uses_dma(hcd)) {
1413 if (is_vmalloc_addr(urb->setup_packet)) {
1414 WARN_ONCE(1, "setup packet is not dma capable\n");
1415 return -EAGAIN;
1416 } else if (object_is_on_stack(urb->setup_packet)) {
1417 WARN_ONCE(1, "setup packet is on stack\n");
1418 return -EAGAIN;
1419 }
1420
1421 urb->setup_dma = dma_map_single(
1422 hcd->self.sysdev,
1423 urb->setup_packet,
1424 sizeof(struct usb_ctrlrequest),
1425 DMA_TO_DEVICE);
1426 if (dma_mapping_error(hcd->self.sysdev,
1427 urb->setup_dma))
1428 return -EAGAIN;
1429 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1430 } else if (hcd->localmem_pool) {
1431 ret = hcd_alloc_coherent(
1432 urb->dev->bus, mem_flags,
1433 &urb->setup_dma,
1434 (void **)&urb->setup_packet,
1435 sizeof(struct usb_ctrlrequest),
1436 DMA_TO_DEVICE);
1437 if (ret)
1438 return ret;
1439 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1440 }
1441 }
1442
1443 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1444 if (urb->transfer_buffer_length != 0
1445 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1446 if (hcd_uses_dma(hcd)) {
1447 if (urb->num_sgs) {
1448 int n;
1449
1450 /* We don't support sg for isoc transfers ! */
1451 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1452 WARN_ON(1);
1453 return -EINVAL;
1454 }
1455
1456 n = dma_map_sg(
1457 hcd->self.sysdev,
1458 urb->sg,
1459 urb->num_sgs,
1460 dir);
1461 if (n <= 0)
1462 ret = -EAGAIN;
1463 else
1464 urb->transfer_flags |= URB_DMA_MAP_SG;
1465 urb->num_mapped_sgs = n;
1466 if (n != urb->num_sgs)
1467 urb->transfer_flags |=
1468 URB_DMA_SG_COMBINED;
1469 } else if (urb->sg) {
1470 struct scatterlist *sg = urb->sg;
1471 urb->transfer_dma = dma_map_page(
1472 hcd->self.sysdev,
1473 sg_page(sg),
1474 sg->offset,
1475 urb->transfer_buffer_length,
1476 dir);
1477 if (dma_mapping_error(hcd->self.sysdev,
1478 urb->transfer_dma))
1479 ret = -EAGAIN;
1480 else
1481 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1482 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1483 WARN_ONCE(1, "transfer buffer not dma capable\n");
1484 ret = -EAGAIN;
1485 } else if (object_is_on_stack(urb->transfer_buffer)) {
1486 WARN_ONCE(1, "transfer buffer is on stack\n");
1487 ret = -EAGAIN;
1488 } else {
1489 urb->transfer_dma = dma_map_single(
1490 hcd->self.sysdev,
1491 urb->transfer_buffer,
1492 urb->transfer_buffer_length,
1493 dir);
1494 if (dma_mapping_error(hcd->self.sysdev,
1495 urb->transfer_dma))
1496 ret = -EAGAIN;
1497 else
1498 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1499 }
1500 } else if (hcd->localmem_pool) {
1501 ret = hcd_alloc_coherent(
1502 urb->dev->bus, mem_flags,
1503 &urb->transfer_dma,
1504 &urb->transfer_buffer,
1505 urb->transfer_buffer_length,
1506 dir);
1507 if (ret == 0)
1508 urb->transfer_flags |= URB_MAP_LOCAL;
1509 }
1510 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1511 URB_SETUP_MAP_LOCAL)))
1512 usb_hcd_unmap_urb_for_dma(hcd, urb);
1513 }
1514 return ret;
1515}
1516EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1517
1518/*-------------------------------------------------------------------------*/
1519
1520/* may be called in any context with a valid urb->dev usecount
1521 * caller surrenders "ownership" of urb
1522 * expects usb_submit_urb() to have sanity checked and conditioned all
1523 * inputs in the urb
1524 */
1525int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1526{
1527 int status;
1528 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1529
1530 /* increment urb's reference count as part of giving it to the HCD
1531 * (which will control it). HCD guarantees that it either returns
1532 * an error or calls giveback(), but not both.
1533 */
1534 usb_get_urb(urb);
1535 atomic_inc(&urb->use_count);
1536 atomic_inc(&urb->dev->urbnum);
1537 usbmon_urb_submit(&hcd->self, urb);
1538
1539 /* NOTE requirements on root-hub callers (usbfs and the hub
1540 * driver, for now): URBs' urb->transfer_buffer must be
1541 * valid and usb_buffer_{sync,unmap}() not be needed, since
1542 * they could clobber root hub response data. Also, control
1543 * URBs must be submitted in process context with interrupts
1544 * enabled.
1545 */
1546
1547 if (is_root_hub(urb->dev)) {
1548 status = rh_urb_enqueue(hcd, urb);
1549 } else {
1550 status = map_urb_for_dma(hcd, urb, mem_flags);
1551 if (likely(status == 0)) {
1552 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1553 if (unlikely(status))
1554 unmap_urb_for_dma(hcd, urb);
1555 }
1556 }
1557
1558 if (unlikely(status)) {
1559 usbmon_urb_submit_error(&hcd->self, urb, status);
1560 urb->hcpriv = NULL;
1561 INIT_LIST_HEAD(&urb->urb_list);
1562 atomic_dec(&urb->use_count);
1563 atomic_dec(&urb->dev->urbnum);
1564 if (atomic_read(&urb->reject))
1565 wake_up(&usb_kill_urb_queue);
1566 usb_put_urb(urb);
1567 }
1568 return status;
1569}
1570
1571/*-------------------------------------------------------------------------*/
1572
1573/* this makes the hcd giveback() the urb more quickly, by kicking it
1574 * off hardware queues (which may take a while) and returning it as
1575 * soon as practical. we've already set up the urb's return status,
1576 * but we can't know if the callback completed already.
1577 */
1578static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1579{
1580 int value;
1581
1582 if (is_root_hub(urb->dev))
1583 value = usb_rh_urb_dequeue(hcd, urb, status);
1584 else {
1585
1586 /* The only reason an HCD might fail this call is if
1587 * it has not yet fully queued the urb to begin with.
1588 * Such failures should be harmless. */
1589 value = hcd->driver->urb_dequeue(hcd, urb, status);
1590 }
1591 return value;
1592}
1593
1594/*
1595 * called in any context
1596 *
1597 * caller guarantees urb won't be recycled till both unlink()
1598 * and the urb's completion function return
1599 */
1600int usb_hcd_unlink_urb (struct urb *urb, int status)
1601{
1602 struct usb_hcd *hcd;
1603 struct usb_device *udev = urb->dev;
1604 int retval = -EIDRM;
1605 unsigned long flags;
1606
1607 /* Prevent the device and bus from going away while
1608 * the unlink is carried out. If they are already gone
1609 * then urb->use_count must be 0, since disconnected
1610 * devices can't have any active URBs.
1611 */
1612 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1613 if (atomic_read(&urb->use_count) > 0) {
1614 retval = 0;
1615 usb_get_dev(udev);
1616 }
1617 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1618 if (retval == 0) {
1619 hcd = bus_to_hcd(urb->dev->bus);
1620 retval = unlink1(hcd, urb, status);
1621 if (retval == 0)
1622 retval = -EINPROGRESS;
1623 else if (retval != -EIDRM && retval != -EBUSY)
1624 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1625 urb, retval);
1626 usb_put_dev(udev);
1627 }
1628 return retval;
1629}
1630
1631/*-------------------------------------------------------------------------*/
1632
1633static void __usb_hcd_giveback_urb(struct urb *urb)
1634{
1635 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1636 struct usb_anchor *anchor = urb->anchor;
1637 int status = urb->unlinked;
1638
1639 urb->hcpriv = NULL;
1640 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1641 urb->actual_length < urb->transfer_buffer_length &&
1642 !status))
1643 status = -EREMOTEIO;
1644
1645 unmap_urb_for_dma(hcd, urb);
1646 usbmon_urb_complete(&hcd->self, urb, status);
1647 usb_anchor_suspend_wakeups(anchor);
1648 usb_unanchor_urb(urb);
1649 if (likely(status == 0))
1650 usb_led_activity(USB_LED_EVENT_HOST);
1651
1652 /* pass ownership to the completion handler */
1653 urb->status = status;
1654 urb->complete(urb);
1655
1656 usb_anchor_resume_wakeups(anchor);
1657 atomic_dec(&urb->use_count);
1658 if (unlikely(atomic_read(&urb->reject)))
1659 wake_up(&usb_kill_urb_queue);
1660 usb_put_urb(urb);
1661}
1662
1663static void usb_giveback_urb_bh(unsigned long param)
1664{
1665 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1666 struct list_head local_list;
1667
1668 spin_lock_irq(&bh->lock);
1669 bh->running = true;
1670 restart:
1671 list_replace_init(&bh->head, &local_list);
1672 spin_unlock_irq(&bh->lock);
1673
1674 while (!list_empty(&local_list)) {
1675 struct urb *urb;
1676
1677 urb = list_entry(local_list.next, struct urb, urb_list);
1678 list_del_init(&urb->urb_list);
1679 bh->completing_ep = urb->ep;
1680 __usb_hcd_giveback_urb(urb);
1681 bh->completing_ep = NULL;
1682 }
1683
1684 /* check if there are new URBs to giveback */
1685 spin_lock_irq(&bh->lock);
1686 if (!list_empty(&bh->head))
1687 goto restart;
1688 bh->running = false;
1689 spin_unlock_irq(&bh->lock);
1690}
1691
1692/**
1693 * usb_hcd_giveback_urb - return URB from HCD to device driver
1694 * @hcd: host controller returning the URB
1695 * @urb: urb being returned to the USB device driver.
1696 * @status: completion status code for the URB.
1697 * Context: in_interrupt()
1698 *
1699 * This hands the URB from HCD to its USB device driver, using its
1700 * completion function. The HCD has freed all per-urb resources
1701 * (and is done using urb->hcpriv). It also released all HCD locks;
1702 * the device driver won't cause problems if it frees, modifies,
1703 * or resubmits this URB.
1704 *
1705 * If @urb was unlinked, the value of @status will be overridden by
1706 * @urb->unlinked. Erroneous short transfers are detected in case
1707 * the HCD hasn't checked for them.
1708 */
1709void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1710{
1711 struct giveback_urb_bh *bh;
1712 bool running, high_prio_bh;
1713
1714 /* pass status to tasklet via unlinked */
1715 if (likely(!urb->unlinked))
1716 urb->unlinked = status;
1717
1718 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1719 __usb_hcd_giveback_urb(urb);
1720 return;
1721 }
1722
1723 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1724 bh = &hcd->high_prio_bh;
1725 high_prio_bh = true;
1726 } else {
1727 bh = &hcd->low_prio_bh;
1728 high_prio_bh = false;
1729 }
1730
1731 spin_lock(&bh->lock);
1732 list_add_tail(&urb->urb_list, &bh->head);
1733 running = bh->running;
1734 spin_unlock(&bh->lock);
1735
1736 if (running)
1737 ;
1738 else if (high_prio_bh)
1739 tasklet_hi_schedule(&bh->bh);
1740 else
1741 tasklet_schedule(&bh->bh);
1742}
1743EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1744
1745/*-------------------------------------------------------------------------*/
1746
1747/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1748 * queue to drain completely. The caller must first insure that no more
1749 * URBs can be submitted for this endpoint.
1750 */
1751void usb_hcd_flush_endpoint(struct usb_device *udev,
1752 struct usb_host_endpoint *ep)
1753{
1754 struct usb_hcd *hcd;
1755 struct urb *urb;
1756
1757 if (!ep)
1758 return;
1759 might_sleep();
1760 hcd = bus_to_hcd(udev->bus);
1761
1762 /* No more submits can occur */
1763 spin_lock_irq(&hcd_urb_list_lock);
1764rescan:
1765 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1766 int is_in;
1767
1768 if (urb->unlinked)
1769 continue;
1770 usb_get_urb (urb);
1771 is_in = usb_urb_dir_in(urb);
1772 spin_unlock(&hcd_urb_list_lock);
1773
1774 /* kick hcd */
1775 unlink1(hcd, urb, -ESHUTDOWN);
1776 dev_dbg (hcd->self.controller,
1777 "shutdown urb %pK ep%d%s-%s\n",
1778 urb, usb_endpoint_num(&ep->desc),
1779 is_in ? "in" : "out",
1780 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1781 usb_put_urb (urb);
1782
1783 /* list contents may have changed */
1784 spin_lock(&hcd_urb_list_lock);
1785 goto rescan;
1786 }
1787 spin_unlock_irq(&hcd_urb_list_lock);
1788
1789 /* Wait until the endpoint queue is completely empty */
1790 while (!list_empty (&ep->urb_list)) {
1791 spin_lock_irq(&hcd_urb_list_lock);
1792
1793 /* The list may have changed while we acquired the spinlock */
1794 urb = NULL;
1795 if (!list_empty (&ep->urb_list)) {
1796 urb = list_entry (ep->urb_list.prev, struct urb,
1797 urb_list);
1798 usb_get_urb (urb);
1799 }
1800 spin_unlock_irq(&hcd_urb_list_lock);
1801
1802 if (urb) {
1803 usb_kill_urb (urb);
1804 usb_put_urb (urb);
1805 }
1806 }
1807}
1808
1809/**
1810 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1811 * the bus bandwidth
1812 * @udev: target &usb_device
1813 * @new_config: new configuration to install
1814 * @cur_alt: the current alternate interface setting
1815 * @new_alt: alternate interface setting that is being installed
1816 *
1817 * To change configurations, pass in the new configuration in new_config,
1818 * and pass NULL for cur_alt and new_alt.
1819 *
1820 * To reset a device's configuration (put the device in the ADDRESSED state),
1821 * pass in NULL for new_config, cur_alt, and new_alt.
1822 *
1823 * To change alternate interface settings, pass in NULL for new_config,
1824 * pass in the current alternate interface setting in cur_alt,
1825 * and pass in the new alternate interface setting in new_alt.
1826 *
1827 * Return: An error if the requested bandwidth change exceeds the
1828 * bus bandwidth or host controller internal resources.
1829 */
1830int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1831 struct usb_host_config *new_config,
1832 struct usb_host_interface *cur_alt,
1833 struct usb_host_interface *new_alt)
1834{
1835 int num_intfs, i, j;
1836 struct usb_host_interface *alt = NULL;
1837 int ret = 0;
1838 struct usb_hcd *hcd;
1839 struct usb_host_endpoint *ep;
1840
1841 hcd = bus_to_hcd(udev->bus);
1842 if (!hcd->driver->check_bandwidth)
1843 return 0;
1844
1845 /* Configuration is being removed - set configuration 0 */
1846 if (!new_config && !cur_alt) {
1847 for (i = 1; i < 16; ++i) {
1848 ep = udev->ep_out[i];
1849 if (ep)
1850 hcd->driver->drop_endpoint(hcd, udev, ep);
1851 ep = udev->ep_in[i];
1852 if (ep)
1853 hcd->driver->drop_endpoint(hcd, udev, ep);
1854 }
1855 hcd->driver->check_bandwidth(hcd, udev);
1856 return 0;
1857 }
1858 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1859 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1860 * of the bus. There will always be bandwidth for endpoint 0, so it's
1861 * ok to exclude it.
1862 */
1863 if (new_config) {
1864 num_intfs = new_config->desc.bNumInterfaces;
1865 /* Remove endpoints (except endpoint 0, which is always on the
1866 * schedule) from the old config from the schedule
1867 */
1868 for (i = 1; i < 16; ++i) {
1869 ep = udev->ep_out[i];
1870 if (ep) {
1871 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1872 if (ret < 0)
1873 goto reset;
1874 }
1875 ep = udev->ep_in[i];
1876 if (ep) {
1877 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1878 if (ret < 0)
1879 goto reset;
1880 }
1881 }
1882 for (i = 0; i < num_intfs; ++i) {
1883 struct usb_host_interface *first_alt;
1884 int iface_num;
1885
1886 first_alt = &new_config->intf_cache[i]->altsetting[0];
1887 iface_num = first_alt->desc.bInterfaceNumber;
1888 /* Set up endpoints for alternate interface setting 0 */
1889 alt = usb_find_alt_setting(new_config, iface_num, 0);
1890 if (!alt)
1891 /* No alt setting 0? Pick the first setting. */
1892 alt = first_alt;
1893
1894 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1895 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1896 if (ret < 0)
1897 goto reset;
1898 }
1899 }
1900 }
1901 if (cur_alt && new_alt) {
1902 struct usb_interface *iface = usb_ifnum_to_if(udev,
1903 cur_alt->desc.bInterfaceNumber);
1904
1905 if (!iface)
1906 return -EINVAL;
1907 if (iface->resetting_device) {
1908 /*
1909 * The USB core just reset the device, so the xHCI host
1910 * and the device will think alt setting 0 is installed.
1911 * However, the USB core will pass in the alternate
1912 * setting installed before the reset as cur_alt. Dig
1913 * out the alternate setting 0 structure, or the first
1914 * alternate setting if a broken device doesn't have alt
1915 * setting 0.
1916 */
1917 cur_alt = usb_altnum_to_altsetting(iface, 0);
1918 if (!cur_alt)
1919 cur_alt = &iface->altsetting[0];
1920 }
1921
1922 /* Drop all the endpoints in the current alt setting */
1923 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1924 ret = hcd->driver->drop_endpoint(hcd, udev,
1925 &cur_alt->endpoint[i]);
1926 if (ret < 0)
1927 goto reset;
1928 }
1929 /* Add all the endpoints in the new alt setting */
1930 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1931 ret = hcd->driver->add_endpoint(hcd, udev,
1932 &new_alt->endpoint[i]);
1933 if (ret < 0)
1934 goto reset;
1935 }
1936 }
1937 ret = hcd->driver->check_bandwidth(hcd, udev);
1938reset:
1939 if (ret < 0)
1940 hcd->driver->reset_bandwidth(hcd, udev);
1941 return ret;
1942}
1943
1944/* Disables the endpoint: synchronizes with the hcd to make sure all
1945 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1946 * have been called previously. Use for set_configuration, set_interface,
1947 * driver removal, physical disconnect.
1948 *
1949 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1950 * type, maxpacket size, toggle, halt status, and scheduling.
1951 */
1952void usb_hcd_disable_endpoint(struct usb_device *udev,
1953 struct usb_host_endpoint *ep)
1954{
1955 struct usb_hcd *hcd;
1956
1957 might_sleep();
1958 hcd = bus_to_hcd(udev->bus);
1959 if (hcd->driver->endpoint_disable)
1960 hcd->driver->endpoint_disable(hcd, ep);
1961}
1962
1963/**
1964 * usb_hcd_reset_endpoint - reset host endpoint state
1965 * @udev: USB device.
1966 * @ep: the endpoint to reset.
1967 *
1968 * Resets any host endpoint state such as the toggle bit, sequence
1969 * number and current window.
1970 */
1971void usb_hcd_reset_endpoint(struct usb_device *udev,
1972 struct usb_host_endpoint *ep)
1973{
1974 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1975
1976 if (hcd->driver->endpoint_reset)
1977 hcd->driver->endpoint_reset(hcd, ep);
1978 else {
1979 int epnum = usb_endpoint_num(&ep->desc);
1980 int is_out = usb_endpoint_dir_out(&ep->desc);
1981 int is_control = usb_endpoint_xfer_control(&ep->desc);
1982
1983 usb_settoggle(udev, epnum, is_out, 0);
1984 if (is_control)
1985 usb_settoggle(udev, epnum, !is_out, 0);
1986 }
1987}
1988
1989/**
1990 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1991 * @interface: alternate setting that includes all endpoints.
1992 * @eps: array of endpoints that need streams.
1993 * @num_eps: number of endpoints in the array.
1994 * @num_streams: number of streams to allocate.
1995 * @mem_flags: flags hcd should use to allocate memory.
1996 *
1997 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
1998 * Drivers may queue multiple transfers to different stream IDs, which may
1999 * complete in a different order than they were queued.
2000 *
2001 * Return: On success, the number of allocated streams. On failure, a negative
2002 * error code.
2003 */
2004int usb_alloc_streams(struct usb_interface *interface,
2005 struct usb_host_endpoint **eps, unsigned int num_eps,
2006 unsigned int num_streams, gfp_t mem_flags)
2007{
2008 struct usb_hcd *hcd;
2009 struct usb_device *dev;
2010 int i, ret;
2011
2012 dev = interface_to_usbdev(interface);
2013 hcd = bus_to_hcd(dev->bus);
2014 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2015 return -EINVAL;
2016 if (dev->speed < USB_SPEED_SUPER)
2017 return -EINVAL;
2018 if (dev->state < USB_STATE_CONFIGURED)
2019 return -ENODEV;
2020
2021 for (i = 0; i < num_eps; i++) {
2022 /* Streams only apply to bulk endpoints. */
2023 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2024 return -EINVAL;
2025 /* Re-alloc is not allowed */
2026 if (eps[i]->streams)
2027 return -EINVAL;
2028 }
2029
2030 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2031 num_streams, mem_flags);
2032 if (ret < 0)
2033 return ret;
2034
2035 for (i = 0; i < num_eps; i++)
2036 eps[i]->streams = ret;
2037
2038 return ret;
2039}
2040EXPORT_SYMBOL_GPL(usb_alloc_streams);
2041
2042/**
2043 * usb_free_streams - free bulk endpoint stream IDs.
2044 * @interface: alternate setting that includes all endpoints.
2045 * @eps: array of endpoints to remove streams from.
2046 * @num_eps: number of endpoints in the array.
2047 * @mem_flags: flags hcd should use to allocate memory.
2048 *
2049 * Reverts a group of bulk endpoints back to not using stream IDs.
2050 * Can fail if we are given bad arguments, or HCD is broken.
2051 *
2052 * Return: 0 on success. On failure, a negative error code.
2053 */
2054int usb_free_streams(struct usb_interface *interface,
2055 struct usb_host_endpoint **eps, unsigned int num_eps,
2056 gfp_t mem_flags)
2057{
2058 struct usb_hcd *hcd;
2059 struct usb_device *dev;
2060 int i, ret;
2061
2062 dev = interface_to_usbdev(interface);
2063 hcd = bus_to_hcd(dev->bus);
2064 if (dev->speed < USB_SPEED_SUPER)
2065 return -EINVAL;
2066
2067 /* Double-free is not allowed */
2068 for (i = 0; i < num_eps; i++)
2069 if (!eps[i] || !eps[i]->streams)
2070 return -EINVAL;
2071
2072 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2073 if (ret < 0)
2074 return ret;
2075
2076 for (i = 0; i < num_eps; i++)
2077 eps[i]->streams = 0;
2078
2079 return ret;
2080}
2081EXPORT_SYMBOL_GPL(usb_free_streams);
2082
2083/* Protect against drivers that try to unlink URBs after the device
2084 * is gone, by waiting until all unlinks for @udev are finished.
2085 * Since we don't currently track URBs by device, simply wait until
2086 * nothing is running in the locked region of usb_hcd_unlink_urb().
2087 */
2088void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2089{
2090 spin_lock_irq(&hcd_urb_unlink_lock);
2091 spin_unlock_irq(&hcd_urb_unlink_lock);
2092}
2093
2094/*-------------------------------------------------------------------------*/
2095
2096/* called in any context */
2097int usb_hcd_get_frame_number (struct usb_device *udev)
2098{
2099 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2100
2101 if (!HCD_RH_RUNNING(hcd))
2102 return -ESHUTDOWN;
2103 return hcd->driver->get_frame_number (hcd);
2104}
2105
2106/*-------------------------------------------------------------------------*/
2107
2108#ifdef CONFIG_PM
2109
2110int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2111{
2112 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2113 int status;
2114 int old_state = hcd->state;
2115
2116 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2117 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2118 rhdev->do_remote_wakeup);
2119 if (HCD_DEAD(hcd)) {
2120 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2121 return 0;
2122 }
2123
2124 if (!hcd->driver->bus_suspend) {
2125 status = -ENOENT;
2126 } else {
2127 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2128 hcd->state = HC_STATE_QUIESCING;
2129 status = hcd->driver->bus_suspend(hcd);
2130 }
2131 if (status == 0) {
2132 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2133 hcd->state = HC_STATE_SUSPENDED;
2134
2135 if (!PMSG_IS_AUTO(msg))
2136 usb_phy_roothub_suspend(hcd->self.sysdev,
2137 hcd->phy_roothub);
2138
2139 /* Did we race with a root-hub wakeup event? */
2140 if (rhdev->do_remote_wakeup) {
2141 char buffer[6];
2142
2143 status = hcd->driver->hub_status_data(hcd, buffer);
2144 if (status != 0) {
2145 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2146 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2147 status = -EBUSY;
2148 }
2149 }
2150 } else {
2151 spin_lock_irq(&hcd_root_hub_lock);
2152 if (!HCD_DEAD(hcd)) {
2153 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2154 hcd->state = old_state;
2155 }
2156 spin_unlock_irq(&hcd_root_hub_lock);
2157 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2158 "suspend", status);
2159 }
2160 return status;
2161}
2162
2163int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2164{
2165 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2166 int status;
2167 int old_state = hcd->state;
2168
2169 dev_dbg(&rhdev->dev, "usb %sresume\n",
2170 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2171 if (HCD_DEAD(hcd)) {
2172 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2173 return 0;
2174 }
2175
2176 if (!PMSG_IS_AUTO(msg)) {
2177 status = usb_phy_roothub_resume(hcd->self.sysdev,
2178 hcd->phy_roothub);
2179 if (status)
2180 return status;
2181 }
2182
2183 if (!hcd->driver->bus_resume)
2184 return -ENOENT;
2185 if (HCD_RH_RUNNING(hcd))
2186 return 0;
2187
2188 hcd->state = HC_STATE_RESUMING;
2189 status = hcd->driver->bus_resume(hcd);
2190 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2191 if (status == 0)
2192 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2193
2194 if (status == 0) {
2195 struct usb_device *udev;
2196 int port1;
2197
2198 spin_lock_irq(&hcd_root_hub_lock);
2199 if (!HCD_DEAD(hcd)) {
2200 usb_set_device_state(rhdev, rhdev->actconfig
2201 ? USB_STATE_CONFIGURED
2202 : USB_STATE_ADDRESS);
2203 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2204 hcd->state = HC_STATE_RUNNING;
2205 }
2206 spin_unlock_irq(&hcd_root_hub_lock);
2207
2208 /*
2209 * Check whether any of the enabled ports on the root hub are
2210 * unsuspended. If they are then a TRSMRCY delay is needed
2211 * (this is what the USB-2 spec calls a "global resume").
2212 * Otherwise we can skip the delay.
2213 */
2214 usb_hub_for_each_child(rhdev, port1, udev) {
2215 if (udev->state != USB_STATE_NOTATTACHED &&
2216 !udev->port_is_suspended) {
2217 usleep_range(10000, 11000); /* TRSMRCY */
2218 break;
2219 }
2220 }
2221 } else {
2222 hcd->state = old_state;
2223 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2224 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2225 "resume", status);
2226 if (status != -ESHUTDOWN)
2227 usb_hc_died(hcd);
2228 }
2229 return status;
2230}
2231
2232/* Workqueue routine for root-hub remote wakeup */
2233static void hcd_resume_work(struct work_struct *work)
2234{
2235 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2236 struct usb_device *udev = hcd->self.root_hub;
2237
2238 usb_remote_wakeup(udev);
2239}
2240
2241/**
2242 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2243 * @hcd: host controller for this root hub
2244 *
2245 * The USB host controller calls this function when its root hub is
2246 * suspended (with the remote wakeup feature enabled) and a remote
2247 * wakeup request is received. The routine submits a workqueue request
2248 * to resume the root hub (that is, manage its downstream ports again).
2249 */
2250void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2251{
2252 unsigned long flags;
2253
2254 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2255 if (hcd->rh_registered) {
2256 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2257 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2258 queue_work(pm_wq, &hcd->wakeup_work);
2259 }
2260 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2261}
2262EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2263
2264#endif /* CONFIG_PM */
2265
2266/*-------------------------------------------------------------------------*/
2267
2268#ifdef CONFIG_USB_OTG
2269
2270/**
2271 * usb_bus_start_enum - start immediate enumeration (for OTG)
2272 * @bus: the bus (must use hcd framework)
2273 * @port_num: 1-based number of port; usually bus->otg_port
2274 * Context: in_interrupt()
2275 *
2276 * Starts enumeration, with an immediate reset followed later by
2277 * hub_wq identifying and possibly configuring the device.
2278 * This is needed by OTG controller drivers, where it helps meet
2279 * HNP protocol timing requirements for starting a port reset.
2280 *
2281 * Return: 0 if successful.
2282 */
2283int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2284{
2285 struct usb_hcd *hcd;
2286 int status = -EOPNOTSUPP;
2287
2288 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2289 * boards with root hubs hooked up to internal devices (instead of
2290 * just the OTG port) may need more attention to resetting...
2291 */
2292 hcd = bus_to_hcd(bus);
2293 if (port_num && hcd->driver->start_port_reset)
2294 status = hcd->driver->start_port_reset(hcd, port_num);
2295
2296 /* allocate hub_wq shortly after (first) root port reset finishes;
2297 * it may issue others, until at least 50 msecs have passed.
2298 */
2299 if (status == 0)
2300 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2301 return status;
2302}
2303EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2304
2305#endif
2306
2307/*-------------------------------------------------------------------------*/
2308
2309/**
2310 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2311 * @irq: the IRQ being raised
2312 * @__hcd: pointer to the HCD whose IRQ is being signaled
2313 *
2314 * If the controller isn't HALTed, calls the driver's irq handler.
2315 * Checks whether the controller is now dead.
2316 *
2317 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2318 */
2319irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2320{
2321 struct usb_hcd *hcd = __hcd;
2322 irqreturn_t rc;
2323
2324 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2325 rc = IRQ_NONE;
2326 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2327 rc = IRQ_NONE;
2328 else
2329 rc = IRQ_HANDLED;
2330
2331 return rc;
2332}
2333EXPORT_SYMBOL_GPL(usb_hcd_irq);
2334
2335/*-------------------------------------------------------------------------*/
2336
2337/* Workqueue routine for when the root-hub has died. */
2338static void hcd_died_work(struct work_struct *work)
2339{
2340 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2341 static char *env[] = {
2342 "ERROR=DEAD",
2343 NULL
2344 };
2345
2346 /* Notify user space that the host controller has died */
2347 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2348}
2349
2350/**
2351 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2352 * @hcd: pointer to the HCD representing the controller
2353 *
2354 * This is called by bus glue to report a USB host controller that died
2355 * while operations may still have been pending. It's called automatically
2356 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2357 *
2358 * Only call this function with the primary HCD.
2359 */
2360void usb_hc_died (struct usb_hcd *hcd)
2361{
2362 unsigned long flags;
2363
2364 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2368 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2369 if (hcd->rh_registered) {
2370 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2371
2372 /* make hub_wq clean up old urbs and devices */
2373 usb_set_device_state (hcd->self.root_hub,
2374 USB_STATE_NOTATTACHED);
2375 usb_kick_hub_wq(hcd->self.root_hub);
2376 }
2377 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2378 hcd = hcd->shared_hcd;
2379 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2380 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2381 if (hcd->rh_registered) {
2382 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2383
2384 /* make hub_wq clean up old urbs and devices */
2385 usb_set_device_state(hcd->self.root_hub,
2386 USB_STATE_NOTATTACHED);
2387 usb_kick_hub_wq(hcd->self.root_hub);
2388 }
2389 }
2390
2391 /* Handle the case where this function gets called with a shared HCD */
2392 if (usb_hcd_is_primary_hcd(hcd))
2393 schedule_work(&hcd->died_work);
2394 else
2395 schedule_work(&hcd->primary_hcd->died_work);
2396
2397 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2398 /* Make sure that the other roothub is also deallocated. */
2399}
2400EXPORT_SYMBOL_GPL (usb_hc_died);
2401
2402/*-------------------------------------------------------------------------*/
2403
2404static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2405{
2406
2407 spin_lock_init(&bh->lock);
2408 INIT_LIST_HEAD(&bh->head);
2409 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2410}
2411
2412struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2413 struct device *sysdev, struct device *dev, const char *bus_name,
2414 struct usb_hcd *primary_hcd)
2415{
2416 struct usb_hcd *hcd;
2417
2418 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2419 if (!hcd)
2420 return NULL;
2421 if (primary_hcd == NULL) {
2422 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2423 GFP_KERNEL);
2424 if (!hcd->address0_mutex) {
2425 kfree(hcd);
2426 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2427 return NULL;
2428 }
2429 mutex_init(hcd->address0_mutex);
2430 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2431 GFP_KERNEL);
2432 if (!hcd->bandwidth_mutex) {
2433 kfree(hcd->address0_mutex);
2434 kfree(hcd);
2435 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2436 return NULL;
2437 }
2438 mutex_init(hcd->bandwidth_mutex);
2439 dev_set_drvdata(dev, hcd);
2440 } else {
2441 mutex_lock(&usb_port_peer_mutex);
2442 hcd->address0_mutex = primary_hcd->address0_mutex;
2443 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2444 hcd->primary_hcd = primary_hcd;
2445 primary_hcd->primary_hcd = primary_hcd;
2446 hcd->shared_hcd = primary_hcd;
2447 primary_hcd->shared_hcd = hcd;
2448 mutex_unlock(&usb_port_peer_mutex);
2449 }
2450
2451 kref_init(&hcd->kref);
2452
2453 usb_bus_init(&hcd->self);
2454 hcd->self.controller = dev;
2455 hcd->self.sysdev = sysdev;
2456 hcd->self.bus_name = bus_name;
2457
2458 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2459#ifdef CONFIG_PM
2460 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2461#endif
2462
2463 INIT_WORK(&hcd->died_work, hcd_died_work);
2464
2465 hcd->driver = driver;
2466 hcd->speed = driver->flags & HCD_MASK;
2467 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2468 "USB Host Controller";
2469 return hcd;
2470}
2471EXPORT_SYMBOL_GPL(__usb_create_hcd);
2472
2473/**
2474 * usb_create_shared_hcd - create and initialize an HCD structure
2475 * @driver: HC driver that will use this hcd
2476 * @dev: device for this HC, stored in hcd->self.controller
2477 * @bus_name: value to store in hcd->self.bus_name
2478 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2479 * PCI device. Only allocate certain resources for the primary HCD
2480 * Context: !in_interrupt()
2481 *
2482 * Allocate a struct usb_hcd, with extra space at the end for the
2483 * HC driver's private data. Initialize the generic members of the
2484 * hcd structure.
2485 *
2486 * Return: On success, a pointer to the created and initialized HCD structure.
2487 * On failure (e.g. if memory is unavailable), %NULL.
2488 */
2489struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2490 struct device *dev, const char *bus_name,
2491 struct usb_hcd *primary_hcd)
2492{
2493 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2494}
2495EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2496
2497/**
2498 * usb_create_hcd - create and initialize an HCD structure
2499 * @driver: HC driver that will use this hcd
2500 * @dev: device for this HC, stored in hcd->self.controller
2501 * @bus_name: value to store in hcd->self.bus_name
2502 * Context: !in_interrupt()
2503 *
2504 * Allocate a struct usb_hcd, with extra space at the end for the
2505 * HC driver's private data. Initialize the generic members of the
2506 * hcd structure.
2507 *
2508 * Return: On success, a pointer to the created and initialized HCD
2509 * structure. On failure (e.g. if memory is unavailable), %NULL.
2510 */
2511struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2512 struct device *dev, const char *bus_name)
2513{
2514 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2515}
2516EXPORT_SYMBOL_GPL(usb_create_hcd);
2517
2518/*
2519 * Roothubs that share one PCI device must also share the bandwidth mutex.
2520 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2521 * deallocated.
2522 *
2523 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2524 * freed. When hcd_release() is called for either hcd in a peer set,
2525 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2526 */
2527static void hcd_release(struct kref *kref)
2528{
2529 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2530
2531 mutex_lock(&usb_port_peer_mutex);
2532 if (hcd->shared_hcd) {
2533 struct usb_hcd *peer = hcd->shared_hcd;
2534
2535 peer->shared_hcd = NULL;
2536 peer->primary_hcd = NULL;
2537 } else {
2538 kfree(hcd->address0_mutex);
2539 kfree(hcd->bandwidth_mutex);
2540 }
2541 mutex_unlock(&usb_port_peer_mutex);
2542 kfree(hcd);
2543}
2544
2545struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2546{
2547 if (hcd)
2548 kref_get (&hcd->kref);
2549 return hcd;
2550}
2551EXPORT_SYMBOL_GPL(usb_get_hcd);
2552
2553void usb_put_hcd (struct usb_hcd *hcd)
2554{
2555 if (hcd)
2556 kref_put (&hcd->kref, hcd_release);
2557}
2558EXPORT_SYMBOL_GPL(usb_put_hcd);
2559
2560int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2561{
2562 if (!hcd->primary_hcd)
2563 return 1;
2564 return hcd == hcd->primary_hcd;
2565}
2566EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2567
2568int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2569{
2570 if (!hcd->driver->find_raw_port_number)
2571 return port1;
2572
2573 return hcd->driver->find_raw_port_number(hcd, port1);
2574}
2575
2576static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2577 unsigned int irqnum, unsigned long irqflags)
2578{
2579 int retval;
2580
2581 if (hcd->driver->irq) {
2582
2583 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2584 hcd->driver->description, hcd->self.busnum);
2585 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2586 hcd->irq_descr, hcd);
2587 if (retval != 0) {
2588 dev_err(hcd->self.controller,
2589 "request interrupt %d failed\n",
2590 irqnum);
2591 return retval;
2592 }
2593 hcd->irq = irqnum;
2594 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2595 (hcd->driver->flags & HCD_MEMORY) ?
2596 "io mem" : "io base",
2597 (unsigned long long)hcd->rsrc_start);
2598 } else {
2599 hcd->irq = 0;
2600 if (hcd->rsrc_start)
2601 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2602 (hcd->driver->flags & HCD_MEMORY) ?
2603 "io mem" : "io base",
2604 (unsigned long long)hcd->rsrc_start);
2605 }
2606 return 0;
2607}
2608
2609/*
2610 * Before we free this root hub, flush in-flight peering attempts
2611 * and disable peer lookups
2612 */
2613static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2614{
2615 struct usb_device *rhdev;
2616
2617 mutex_lock(&usb_port_peer_mutex);
2618 rhdev = hcd->self.root_hub;
2619 hcd->self.root_hub = NULL;
2620 mutex_unlock(&usb_port_peer_mutex);
2621 usb_put_dev(rhdev);
2622}
2623
2624/**
2625 * usb_add_hcd - finish generic HCD structure initialization and register
2626 * @hcd: the usb_hcd structure to initialize
2627 * @irqnum: Interrupt line to allocate
2628 * @irqflags: Interrupt type flags
2629 *
2630 * Finish the remaining parts of generic HCD initialization: allocate the
2631 * buffers of consistent memory, register the bus, request the IRQ line,
2632 * and call the driver's reset() and start() routines.
2633 */
2634int usb_add_hcd(struct usb_hcd *hcd,
2635 unsigned int irqnum, unsigned long irqflags)
2636{
2637 int retval;
2638 struct usb_device *rhdev;
2639
2640 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2641 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2642 if (IS_ERR(hcd->phy_roothub))
2643 return PTR_ERR(hcd->phy_roothub);
2644
2645 retval = usb_phy_roothub_init(hcd->phy_roothub);
2646 if (retval)
2647 return retval;
2648
2649 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2650 PHY_MODE_USB_HOST_SS);
2651 if (retval)
2652 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2653 PHY_MODE_USB_HOST);
2654 if (retval)
2655 goto err_usb_phy_roothub_power_on;
2656
2657 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2658 if (retval)
2659 goto err_usb_phy_roothub_power_on;
2660 }
2661
2662 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2663
2664 switch (authorized_default) {
2665 case USB_AUTHORIZE_NONE:
2666 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2667 break;
2668
2669 case USB_AUTHORIZE_ALL:
2670 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2671 break;
2672
2673 case USB_AUTHORIZE_INTERNAL:
2674 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2675 break;
2676
2677 case USB_AUTHORIZE_WIRED:
2678 default:
2679 hcd->dev_policy = hcd->wireless ?
2680 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2681 break;
2682 }
2683
2684 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2685
2686 /* per default all interfaces are authorized */
2687 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2688
2689 /* HC is in reset state, but accessible. Now do the one-time init,
2690 * bottom up so that hcds can customize the root hubs before hub_wq
2691 * starts talking to them. (Note, bus id is assigned early too.)
2692 */
2693 retval = hcd_buffer_create(hcd);
2694 if (retval != 0) {
2695 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2696 goto err_create_buf;
2697 }
2698
2699 retval = usb_register_bus(&hcd->self);
2700 if (retval < 0)
2701 goto err_register_bus;
2702
2703 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2704 if (rhdev == NULL) {
2705 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2706 retval = -ENOMEM;
2707 goto err_allocate_root_hub;
2708 }
2709 mutex_lock(&usb_port_peer_mutex);
2710 hcd->self.root_hub = rhdev;
2711 mutex_unlock(&usb_port_peer_mutex);
2712
2713 rhdev->rx_lanes = 1;
2714 rhdev->tx_lanes = 1;
2715
2716 switch (hcd->speed) {
2717 case HCD_USB11:
2718 rhdev->speed = USB_SPEED_FULL;
2719 break;
2720 case HCD_USB2:
2721 rhdev->speed = USB_SPEED_HIGH;
2722 break;
2723 case HCD_USB25:
2724 rhdev->speed = USB_SPEED_WIRELESS;
2725 break;
2726 case HCD_USB3:
2727 rhdev->speed = USB_SPEED_SUPER;
2728 break;
2729 case HCD_USB32:
2730 rhdev->rx_lanes = 2;
2731 rhdev->tx_lanes = 2;
2732 /* fall through */
2733 case HCD_USB31:
2734 rhdev->speed = USB_SPEED_SUPER_PLUS;
2735 break;
2736 default:
2737 retval = -EINVAL;
2738 goto err_set_rh_speed;
2739 }
2740
2741 /* wakeup flag init defaults to "everything works" for root hubs,
2742 * but drivers can override it in reset() if needed, along with
2743 * recording the overall controller's system wakeup capability.
2744 */
2745 device_set_wakeup_capable(&rhdev->dev, 1);
2746
2747 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2748 * registered. But since the controller can die at any time,
2749 * let's initialize the flag before touching the hardware.
2750 */
2751 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2752
2753 /* "reset" is misnamed; its role is now one-time init. the controller
2754 * should already have been reset (and boot firmware kicked off etc).
2755 */
2756 if (hcd->driver->reset) {
2757 retval = hcd->driver->reset(hcd);
2758 if (retval < 0) {
2759 dev_err(hcd->self.controller, "can't setup: %d\n",
2760 retval);
2761 goto err_hcd_driver_setup;
2762 }
2763 }
2764 hcd->rh_pollable = 1;
2765
2766 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2767 if (retval)
2768 goto err_hcd_driver_setup;
2769
2770 /* NOTE: root hub and controller capabilities may not be the same */
2771 if (device_can_wakeup(hcd->self.controller)
2772 && device_can_wakeup(&hcd->self.root_hub->dev))
2773 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2774
2775 /* initialize tasklets */
2776 init_giveback_urb_bh(&hcd->high_prio_bh);
2777 init_giveback_urb_bh(&hcd->low_prio_bh);
2778
2779 /* enable irqs just before we start the controller,
2780 * if the BIOS provides legacy PCI irqs.
2781 */
2782 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2783 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2784 if (retval)
2785 goto err_request_irq;
2786 }
2787
2788 hcd->state = HC_STATE_RUNNING;
2789 retval = hcd->driver->start(hcd);
2790 if (retval < 0) {
2791 dev_err(hcd->self.controller, "startup error %d\n", retval);
2792 goto err_hcd_driver_start;
2793 }
2794
2795 /* starting here, usbcore will pay attention to this root hub */
2796 retval = register_root_hub(hcd);
2797 if (retval != 0)
2798 goto err_register_root_hub;
2799
2800 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2801 usb_hcd_poll_rh_status(hcd);
2802
2803 return retval;
2804
2805err_register_root_hub:
2806 hcd->rh_pollable = 0;
2807 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2808 del_timer_sync(&hcd->rh_timer);
2809 hcd->driver->stop(hcd);
2810 hcd->state = HC_STATE_HALT;
2811 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2812 del_timer_sync(&hcd->rh_timer);
2813err_hcd_driver_start:
2814 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2815 free_irq(irqnum, hcd);
2816err_request_irq:
2817err_hcd_driver_setup:
2818err_set_rh_speed:
2819 usb_put_invalidate_rhdev(hcd);
2820err_allocate_root_hub:
2821 usb_deregister_bus(&hcd->self);
2822err_register_bus:
2823 hcd_buffer_destroy(hcd);
2824err_create_buf:
2825 usb_phy_roothub_power_off(hcd->phy_roothub);
2826err_usb_phy_roothub_power_on:
2827 usb_phy_roothub_exit(hcd->phy_roothub);
2828
2829 return retval;
2830}
2831EXPORT_SYMBOL_GPL(usb_add_hcd);
2832
2833/**
2834 * usb_remove_hcd - shutdown processing for generic HCDs
2835 * @hcd: the usb_hcd structure to remove
2836 * Context: !in_interrupt()
2837 *
2838 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2839 * invoking the HCD's stop() method.
2840 */
2841void usb_remove_hcd(struct usb_hcd *hcd)
2842{
2843 struct usb_device *rhdev = hcd->self.root_hub;
2844
2845 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2846
2847 usb_get_dev(rhdev);
2848 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2849 if (HC_IS_RUNNING (hcd->state))
2850 hcd->state = HC_STATE_QUIESCING;
2851
2852 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2853 spin_lock_irq (&hcd_root_hub_lock);
2854 hcd->rh_registered = 0;
2855 spin_unlock_irq (&hcd_root_hub_lock);
2856
2857#ifdef CONFIG_PM
2858 cancel_work_sync(&hcd->wakeup_work);
2859#endif
2860 cancel_work_sync(&hcd->died_work);
2861
2862 mutex_lock(&usb_bus_idr_lock);
2863 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2864 mutex_unlock(&usb_bus_idr_lock);
2865
2866 /*
2867 * tasklet_kill() isn't needed here because:
2868 * - driver's disconnect() called from usb_disconnect() should
2869 * make sure its URBs are completed during the disconnect()
2870 * callback
2871 *
2872 * - it is too late to run complete() here since driver may have
2873 * been removed already now
2874 */
2875
2876 /* Prevent any more root-hub status calls from the timer.
2877 * The HCD might still restart the timer (if a port status change
2878 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2879 * the hub_status_data() callback.
2880 */
2881 hcd->rh_pollable = 0;
2882 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2883 del_timer_sync(&hcd->rh_timer);
2884
2885 hcd->driver->stop(hcd);
2886 hcd->state = HC_STATE_HALT;
2887
2888 /* In case the HCD restarted the timer, stop it again. */
2889 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2890 del_timer_sync(&hcd->rh_timer);
2891
2892 if (usb_hcd_is_primary_hcd(hcd)) {
2893 if (hcd->irq > 0)
2894 free_irq(hcd->irq, hcd);
2895 }
2896
2897 usb_deregister_bus(&hcd->self);
2898 hcd_buffer_destroy(hcd);
2899
2900 usb_phy_roothub_power_off(hcd->phy_roothub);
2901 usb_phy_roothub_exit(hcd->phy_roothub);
2902
2903 usb_put_invalidate_rhdev(hcd);
2904 hcd->flags = 0;
2905}
2906EXPORT_SYMBOL_GPL(usb_remove_hcd);
2907
2908void
2909usb_hcd_platform_shutdown(struct platform_device *dev)
2910{
2911 struct usb_hcd *hcd = platform_get_drvdata(dev);
2912
2913 /* No need for pm_runtime_put(), we're shutting down */
2914 pm_runtime_get_sync(&dev->dev);
2915
2916 if (hcd->driver->shutdown)
2917 hcd->driver->shutdown(hcd);
2918}
2919EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2920
2921int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2922 dma_addr_t dma, size_t size)
2923{
2924 int err;
2925 void *local_mem;
2926
2927 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2928 dev_to_node(hcd->self.sysdev),
2929 dev_name(hcd->self.sysdev));
2930 if (IS_ERR(hcd->localmem_pool))
2931 return PTR_ERR(hcd->localmem_pool);
2932
2933 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2934 size, MEMREMAP_WC);
2935 if (IS_ERR(local_mem))
2936 return PTR_ERR(local_mem);
2937
2938 /*
2939 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2940 * It's not backed by system memory and thus there's no kernel mapping
2941 * for it.
2942 */
2943 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2944 dma, size, dev_to_node(hcd->self.sysdev));
2945 if (err < 0) {
2946 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2947 err);
2948 return err;
2949 }
2950
2951 return 0;
2952}
2953EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2954
2955/*-------------------------------------------------------------------------*/
2956
2957#if IS_ENABLED(CONFIG_USB_MON)
2958
2959const struct usb_mon_operations *mon_ops;
2960
2961/*
2962 * The registration is unlocked.
2963 * We do it this way because we do not want to lock in hot paths.
2964 *
2965 * Notice that the code is minimally error-proof. Because usbmon needs
2966 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2967 */
2968
2969int usb_mon_register(const struct usb_mon_operations *ops)
2970{
2971
2972 if (mon_ops)
2973 return -EBUSY;
2974
2975 mon_ops = ops;
2976 mb();
2977 return 0;
2978}
2979EXPORT_SYMBOL_GPL (usb_mon_register);
2980
2981void usb_mon_deregister (void)
2982{
2983
2984 if (mon_ops == NULL) {
2985 printk(KERN_ERR "USB: monitor was not registered\n");
2986 return;
2987 }
2988 mon_ops = NULL;
2989 mb();
2990}
2991EXPORT_SYMBOL_GPL (usb_mon_deregister);
2992
2993#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */