Loading...
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/phy/phy.h>
46#include <linux/usb.h>
47#include <linux/usb/hcd.h>
48#include <linux/usb/phy.h>
49
50#include "usb.h"
51
52
53/*-------------------------------------------------------------------------*/
54
55/*
56 * USB Host Controller Driver framework
57 *
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
60 *
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
65 *
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
71 *
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
76 *
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 *
80 * HISTORY:
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
84 */
85
86/*-------------------------------------------------------------------------*/
87
88/* Keep track of which host controller drivers are loaded */
89unsigned long usb_hcds_loaded;
90EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91
92/* host controllers we manage */
93DEFINE_IDR (usb_bus_idr);
94EXPORT_SYMBOL_GPL (usb_bus_idr);
95
96/* used when allocating bus numbers */
97#define USB_MAXBUS 64
98
99/* used when updating list of hcds */
100DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
101EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
102
103/* used for controlling access to virtual root hubs */
104static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106/* used when updating an endpoint's URB list */
107static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109/* used to protect against unlinking URBs after the device is gone */
110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112/* wait queue for synchronous unlinks */
113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115static inline int is_root_hub(struct usb_device *udev)
116{
117 return (udev->parent == NULL);
118}
119
120/*-------------------------------------------------------------------------*/
121
122/*
123 * Sharable chunks of root hub code.
124 */
125
126/*-------------------------------------------------------------------------*/
127#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130/* usb 3.1 root hub device descriptor */
131static const u8 usb31_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
134 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149};
150
151/* usb 3.0 root hub device descriptor */
152static const u8 usb3_rh_dev_descriptor[18] = {
153 0x12, /* __u8 bLength; */
154 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
155 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
160 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170};
171
172/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
173static const u8 usb25_rh_dev_descriptor[18] = {
174 0x12, /* __u8 bLength; */
175 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
176 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
177
178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
179 0x00, /* __u8 bDeviceSubClass; */
180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
181 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
182
183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
186
187 0x03, /* __u8 iManufacturer; */
188 0x02, /* __u8 iProduct; */
189 0x01, /* __u8 iSerialNumber; */
190 0x01 /* __u8 bNumConfigurations; */
191};
192
193/* usb 2.0 root hub device descriptor */
194static const u8 usb2_rh_dev_descriptor[18] = {
195 0x12, /* __u8 bLength; */
196 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
197 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
198
199 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
200 0x00, /* __u8 bDeviceSubClass; */
201 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
202 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
203
204 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
205 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
206 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
207
208 0x03, /* __u8 iManufacturer; */
209 0x02, /* __u8 iProduct; */
210 0x01, /* __u8 iSerialNumber; */
211 0x01 /* __u8 bNumConfigurations; */
212};
213
214/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
215
216/* usb 1.1 root hub device descriptor */
217static const u8 usb11_rh_dev_descriptor[18] = {
218 0x12, /* __u8 bLength; */
219 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
220 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
221
222 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
223 0x00, /* __u8 bDeviceSubClass; */
224 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
225 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
226
227 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
228 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
229 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
230
231 0x03, /* __u8 iManufacturer; */
232 0x02, /* __u8 iProduct; */
233 0x01, /* __u8 iSerialNumber; */
234 0x01 /* __u8 bNumConfigurations; */
235};
236
237
238/*-------------------------------------------------------------------------*/
239
240/* Configuration descriptors for our root hubs */
241
242static const u8 fs_rh_config_descriptor[] = {
243
244 /* one configuration */
245 0x09, /* __u8 bLength; */
246 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
247 0x19, 0x00, /* __le16 wTotalLength; */
248 0x01, /* __u8 bNumInterfaces; (1) */
249 0x01, /* __u8 bConfigurationValue; */
250 0x00, /* __u8 iConfiguration; */
251 0xc0, /* __u8 bmAttributes;
252 Bit 7: must be set,
253 6: Self-powered,
254 5: Remote wakeup,
255 4..0: resvd */
256 0x00, /* __u8 MaxPower; */
257
258 /* USB 1.1:
259 * USB 2.0, single TT organization (mandatory):
260 * one interface, protocol 0
261 *
262 * USB 2.0, multiple TT organization (optional):
263 * two interfaces, protocols 1 (like single TT)
264 * and 2 (multiple TT mode) ... config is
265 * sometimes settable
266 * NOT IMPLEMENTED
267 */
268
269 /* one interface */
270 0x09, /* __u8 if_bLength; */
271 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
272 0x00, /* __u8 if_bInterfaceNumber; */
273 0x00, /* __u8 if_bAlternateSetting; */
274 0x01, /* __u8 if_bNumEndpoints; */
275 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
276 0x00, /* __u8 if_bInterfaceSubClass; */
277 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
278 0x00, /* __u8 if_iInterface; */
279
280 /* one endpoint (status change endpoint) */
281 0x07, /* __u8 ep_bLength; */
282 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
283 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
284 0x03, /* __u8 ep_bmAttributes; Interrupt */
285 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
286 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
287};
288
289static const u8 hs_rh_config_descriptor[] = {
290
291 /* one configuration */
292 0x09, /* __u8 bLength; */
293 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
294 0x19, 0x00, /* __le16 wTotalLength; */
295 0x01, /* __u8 bNumInterfaces; (1) */
296 0x01, /* __u8 bConfigurationValue; */
297 0x00, /* __u8 iConfiguration; */
298 0xc0, /* __u8 bmAttributes;
299 Bit 7: must be set,
300 6: Self-powered,
301 5: Remote wakeup,
302 4..0: resvd */
303 0x00, /* __u8 MaxPower; */
304
305 /* USB 1.1:
306 * USB 2.0, single TT organization (mandatory):
307 * one interface, protocol 0
308 *
309 * USB 2.0, multiple TT organization (optional):
310 * two interfaces, protocols 1 (like single TT)
311 * and 2 (multiple TT mode) ... config is
312 * sometimes settable
313 * NOT IMPLEMENTED
314 */
315
316 /* one interface */
317 0x09, /* __u8 if_bLength; */
318 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
319 0x00, /* __u8 if_bInterfaceNumber; */
320 0x00, /* __u8 if_bAlternateSetting; */
321 0x01, /* __u8 if_bNumEndpoints; */
322 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
323 0x00, /* __u8 if_bInterfaceSubClass; */
324 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
325 0x00, /* __u8 if_iInterface; */
326
327 /* one endpoint (status change endpoint) */
328 0x07, /* __u8 ep_bLength; */
329 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
330 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
331 0x03, /* __u8 ep_bmAttributes; Interrupt */
332 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
333 * see hub.c:hub_configure() for details. */
334 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
335 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
336};
337
338static const u8 ss_rh_config_descriptor[] = {
339 /* one configuration */
340 0x09, /* __u8 bLength; */
341 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
342 0x1f, 0x00, /* __le16 wTotalLength; */
343 0x01, /* __u8 bNumInterfaces; (1) */
344 0x01, /* __u8 bConfigurationValue; */
345 0x00, /* __u8 iConfiguration; */
346 0xc0, /* __u8 bmAttributes;
347 Bit 7: must be set,
348 6: Self-powered,
349 5: Remote wakeup,
350 4..0: resvd */
351 0x00, /* __u8 MaxPower; */
352
353 /* one interface */
354 0x09, /* __u8 if_bLength; */
355 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
356 0x00, /* __u8 if_bInterfaceNumber; */
357 0x00, /* __u8 if_bAlternateSetting; */
358 0x01, /* __u8 if_bNumEndpoints; */
359 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
360 0x00, /* __u8 if_bInterfaceSubClass; */
361 0x00, /* __u8 if_bInterfaceProtocol; */
362 0x00, /* __u8 if_iInterface; */
363
364 /* one endpoint (status change endpoint) */
365 0x07, /* __u8 ep_bLength; */
366 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
367 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
368 0x03, /* __u8 ep_bmAttributes; Interrupt */
369 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
370 * see hub.c:hub_configure() for details. */
371 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
372 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
373
374 /* one SuperSpeed endpoint companion descriptor */
375 0x06, /* __u8 ss_bLength */
376 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
377 /* Companion */
378 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
379 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
380 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
381};
382
383/* authorized_default behaviour:
384 * -1 is authorized for all devices except wireless (old behaviour)
385 * 0 is unauthorized for all devices
386 * 1 is authorized for all devices
387 */
388static int authorized_default = -1;
389module_param(authorized_default, int, S_IRUGO|S_IWUSR);
390MODULE_PARM_DESC(authorized_default,
391 "Default USB device authorization: 0 is not authorized, 1 is "
392 "authorized, -1 is authorized except for wireless USB (default, "
393 "old behaviour");
394/*-------------------------------------------------------------------------*/
395
396/**
397 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
398 * @s: Null-terminated ASCII (actually ISO-8859-1) string
399 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
400 * @len: Length (in bytes; may be odd) of descriptor buffer.
401 *
402 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
403 * whichever is less.
404 *
405 * Note:
406 * USB String descriptors can contain at most 126 characters; input
407 * strings longer than that are truncated.
408 */
409static unsigned
410ascii2desc(char const *s, u8 *buf, unsigned len)
411{
412 unsigned n, t = 2 + 2*strlen(s);
413
414 if (t > 254)
415 t = 254; /* Longest possible UTF string descriptor */
416 if (len > t)
417 len = t;
418
419 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
420
421 n = len;
422 while (n--) {
423 *buf++ = t;
424 if (!n--)
425 break;
426 *buf++ = t >> 8;
427 t = (unsigned char)*s++;
428 }
429 return len;
430}
431
432/**
433 * rh_string() - provides string descriptors for root hub
434 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
435 * @hcd: the host controller for this root hub
436 * @data: buffer for output packet
437 * @len: length of the provided buffer
438 *
439 * Produces either a manufacturer, product or serial number string for the
440 * virtual root hub device.
441 *
442 * Return: The number of bytes filled in: the length of the descriptor or
443 * of the provided buffer, whichever is less.
444 */
445static unsigned
446rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
447{
448 char buf[100];
449 char const *s;
450 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
451
452 /* language ids */
453 switch (id) {
454 case 0:
455 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
456 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
457 if (len > 4)
458 len = 4;
459 memcpy(data, langids, len);
460 return len;
461 case 1:
462 /* Serial number */
463 s = hcd->self.bus_name;
464 break;
465 case 2:
466 /* Product name */
467 s = hcd->product_desc;
468 break;
469 case 3:
470 /* Manufacturer */
471 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
472 init_utsname()->release, hcd->driver->description);
473 s = buf;
474 break;
475 default:
476 /* Can't happen; caller guarantees it */
477 return 0;
478 }
479
480 return ascii2desc(s, data, len);
481}
482
483
484/* Root hub control transfers execute synchronously */
485static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
486{
487 struct usb_ctrlrequest *cmd;
488 u16 typeReq, wValue, wIndex, wLength;
489 u8 *ubuf = urb->transfer_buffer;
490 unsigned len = 0;
491 int status;
492 u8 patch_wakeup = 0;
493 u8 patch_protocol = 0;
494 u16 tbuf_size;
495 u8 *tbuf = NULL;
496 const u8 *bufp;
497
498 might_sleep();
499
500 spin_lock_irq(&hcd_root_hub_lock);
501 status = usb_hcd_link_urb_to_ep(hcd, urb);
502 spin_unlock_irq(&hcd_root_hub_lock);
503 if (status)
504 return status;
505 urb->hcpriv = hcd; /* Indicate it's queued */
506
507 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
508 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
509 wValue = le16_to_cpu (cmd->wValue);
510 wIndex = le16_to_cpu (cmd->wIndex);
511 wLength = le16_to_cpu (cmd->wLength);
512
513 if (wLength > urb->transfer_buffer_length)
514 goto error;
515
516 /*
517 * tbuf should be at least as big as the
518 * USB hub descriptor.
519 */
520 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
521 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
522 if (!tbuf)
523 return -ENOMEM;
524
525 bufp = tbuf;
526
527
528 urb->actual_length = 0;
529 switch (typeReq) {
530
531 /* DEVICE REQUESTS */
532
533 /* The root hub's remote wakeup enable bit is implemented using
534 * driver model wakeup flags. If this system supports wakeup
535 * through USB, userspace may change the default "allow wakeup"
536 * policy through sysfs or these calls.
537 *
538 * Most root hubs support wakeup from downstream devices, for
539 * runtime power management (disabling USB clocks and reducing
540 * VBUS power usage). However, not all of them do so; silicon,
541 * board, and BIOS bugs here are not uncommon, so these can't
542 * be treated quite like external hubs.
543 *
544 * Likewise, not all root hubs will pass wakeup events upstream,
545 * to wake up the whole system. So don't assume root hub and
546 * controller capabilities are identical.
547 */
548
549 case DeviceRequest | USB_REQ_GET_STATUS:
550 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
551 << USB_DEVICE_REMOTE_WAKEUP)
552 | (1 << USB_DEVICE_SELF_POWERED);
553 tbuf[1] = 0;
554 len = 2;
555 break;
556 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
557 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
558 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
559 else
560 goto error;
561 break;
562 case DeviceOutRequest | USB_REQ_SET_FEATURE:
563 if (device_can_wakeup(&hcd->self.root_hub->dev)
564 && wValue == USB_DEVICE_REMOTE_WAKEUP)
565 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
566 else
567 goto error;
568 break;
569 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
570 tbuf[0] = 1;
571 len = 1;
572 /* FALLTHROUGH */
573 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
574 break;
575 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
576 switch (wValue & 0xff00) {
577 case USB_DT_DEVICE << 8:
578 switch (hcd->speed) {
579 case HCD_USB31:
580 bufp = usb31_rh_dev_descriptor;
581 break;
582 case HCD_USB3:
583 bufp = usb3_rh_dev_descriptor;
584 break;
585 case HCD_USB25:
586 bufp = usb25_rh_dev_descriptor;
587 break;
588 case HCD_USB2:
589 bufp = usb2_rh_dev_descriptor;
590 break;
591 case HCD_USB11:
592 bufp = usb11_rh_dev_descriptor;
593 break;
594 default:
595 goto error;
596 }
597 len = 18;
598 if (hcd->has_tt)
599 patch_protocol = 1;
600 break;
601 case USB_DT_CONFIG << 8:
602 switch (hcd->speed) {
603 case HCD_USB31:
604 case HCD_USB3:
605 bufp = ss_rh_config_descriptor;
606 len = sizeof ss_rh_config_descriptor;
607 break;
608 case HCD_USB25:
609 case HCD_USB2:
610 bufp = hs_rh_config_descriptor;
611 len = sizeof hs_rh_config_descriptor;
612 break;
613 case HCD_USB11:
614 bufp = fs_rh_config_descriptor;
615 len = sizeof fs_rh_config_descriptor;
616 break;
617 default:
618 goto error;
619 }
620 if (device_can_wakeup(&hcd->self.root_hub->dev))
621 patch_wakeup = 1;
622 break;
623 case USB_DT_STRING << 8:
624 if ((wValue & 0xff) < 4)
625 urb->actual_length = rh_string(wValue & 0xff,
626 hcd, ubuf, wLength);
627 else /* unsupported IDs --> "protocol stall" */
628 goto error;
629 break;
630 case USB_DT_BOS << 8:
631 goto nongeneric;
632 default:
633 goto error;
634 }
635 break;
636 case DeviceRequest | USB_REQ_GET_INTERFACE:
637 tbuf[0] = 0;
638 len = 1;
639 /* FALLTHROUGH */
640 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
641 break;
642 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
643 /* wValue == urb->dev->devaddr */
644 dev_dbg (hcd->self.controller, "root hub device address %d\n",
645 wValue);
646 break;
647
648 /* INTERFACE REQUESTS (no defined feature/status flags) */
649
650 /* ENDPOINT REQUESTS */
651
652 case EndpointRequest | USB_REQ_GET_STATUS:
653 /* ENDPOINT_HALT flag */
654 tbuf[0] = 0;
655 tbuf[1] = 0;
656 len = 2;
657 /* FALLTHROUGH */
658 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
659 case EndpointOutRequest | USB_REQ_SET_FEATURE:
660 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
661 break;
662
663 /* CLASS REQUESTS (and errors) */
664
665 default:
666nongeneric:
667 /* non-generic request */
668 switch (typeReq) {
669 case GetHubStatus:
670 len = 4;
671 break;
672 case GetPortStatus:
673 if (wValue == HUB_PORT_STATUS)
674 len = 4;
675 else
676 /* other port status types return 8 bytes */
677 len = 8;
678 break;
679 case GetHubDescriptor:
680 len = sizeof (struct usb_hub_descriptor);
681 break;
682 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
683 /* len is returned by hub_control */
684 break;
685 }
686 status = hcd->driver->hub_control (hcd,
687 typeReq, wValue, wIndex,
688 tbuf, wLength);
689
690 if (typeReq == GetHubDescriptor)
691 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
692 (struct usb_hub_descriptor *)tbuf);
693 break;
694error:
695 /* "protocol stall" on error */
696 status = -EPIPE;
697 }
698
699 if (status < 0) {
700 len = 0;
701 if (status != -EPIPE) {
702 dev_dbg (hcd->self.controller,
703 "CTRL: TypeReq=0x%x val=0x%x "
704 "idx=0x%x len=%d ==> %d\n",
705 typeReq, wValue, wIndex,
706 wLength, status);
707 }
708 } else if (status > 0) {
709 /* hub_control may return the length of data copied. */
710 len = status;
711 status = 0;
712 }
713 if (len) {
714 if (urb->transfer_buffer_length < len)
715 len = urb->transfer_buffer_length;
716 urb->actual_length = len;
717 /* always USB_DIR_IN, toward host */
718 memcpy (ubuf, bufp, len);
719
720 /* report whether RH hardware supports remote wakeup */
721 if (patch_wakeup &&
722 len > offsetof (struct usb_config_descriptor,
723 bmAttributes))
724 ((struct usb_config_descriptor *)ubuf)->bmAttributes
725 |= USB_CONFIG_ATT_WAKEUP;
726
727 /* report whether RH hardware has an integrated TT */
728 if (patch_protocol &&
729 len > offsetof(struct usb_device_descriptor,
730 bDeviceProtocol))
731 ((struct usb_device_descriptor *) ubuf)->
732 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
733 }
734
735 kfree(tbuf);
736
737 /* any errors get returned through the urb completion */
738 spin_lock_irq(&hcd_root_hub_lock);
739 usb_hcd_unlink_urb_from_ep(hcd, urb);
740 usb_hcd_giveback_urb(hcd, urb, status);
741 spin_unlock_irq(&hcd_root_hub_lock);
742 return 0;
743}
744
745/*-------------------------------------------------------------------------*/
746
747/*
748 * Root Hub interrupt transfers are polled using a timer if the
749 * driver requests it; otherwise the driver is responsible for
750 * calling usb_hcd_poll_rh_status() when an event occurs.
751 *
752 * Completions are called in_interrupt(), but they may or may not
753 * be in_irq().
754 */
755void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
756{
757 struct urb *urb;
758 int length;
759 unsigned long flags;
760 char buffer[6]; /* Any root hubs with > 31 ports? */
761
762 if (unlikely(!hcd->rh_pollable))
763 return;
764 if (!hcd->uses_new_polling && !hcd->status_urb)
765 return;
766
767 length = hcd->driver->hub_status_data(hcd, buffer);
768 if (length > 0) {
769
770 /* try to complete the status urb */
771 spin_lock_irqsave(&hcd_root_hub_lock, flags);
772 urb = hcd->status_urb;
773 if (urb) {
774 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
775 hcd->status_urb = NULL;
776 urb->actual_length = length;
777 memcpy(urb->transfer_buffer, buffer, length);
778
779 usb_hcd_unlink_urb_from_ep(hcd, urb);
780 usb_hcd_giveback_urb(hcd, urb, 0);
781 } else {
782 length = 0;
783 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
784 }
785 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
786 }
787
788 /* The USB 2.0 spec says 256 ms. This is close enough and won't
789 * exceed that limit if HZ is 100. The math is more clunky than
790 * maybe expected, this is to make sure that all timers for USB devices
791 * fire at the same time to give the CPU a break in between */
792 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
793 (length == 0 && hcd->status_urb != NULL))
794 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795}
796EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
797
798/* timer callback */
799static void rh_timer_func (unsigned long _hcd)
800{
801 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
802}
803
804/*-------------------------------------------------------------------------*/
805
806static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
807{
808 int retval;
809 unsigned long flags;
810 unsigned len = 1 + (urb->dev->maxchild / 8);
811
812 spin_lock_irqsave (&hcd_root_hub_lock, flags);
813 if (hcd->status_urb || urb->transfer_buffer_length < len) {
814 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815 retval = -EINVAL;
816 goto done;
817 }
818
819 retval = usb_hcd_link_urb_to_ep(hcd, urb);
820 if (retval)
821 goto done;
822
823 hcd->status_urb = urb;
824 urb->hcpriv = hcd; /* indicate it's queued */
825 if (!hcd->uses_new_polling)
826 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
827
828 /* If a status change has already occurred, report it ASAP */
829 else if (HCD_POLL_PENDING(hcd))
830 mod_timer(&hcd->rh_timer, jiffies);
831 retval = 0;
832 done:
833 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834 return retval;
835}
836
837static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
838{
839 if (usb_endpoint_xfer_int(&urb->ep->desc))
840 return rh_queue_status (hcd, urb);
841 if (usb_endpoint_xfer_control(&urb->ep->desc))
842 return rh_call_control (hcd, urb);
843 return -EINVAL;
844}
845
846/*-------------------------------------------------------------------------*/
847
848/* Unlinks of root-hub control URBs are legal, but they don't do anything
849 * since these URBs always execute synchronously.
850 */
851static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
852{
853 unsigned long flags;
854 int rc;
855
856 spin_lock_irqsave(&hcd_root_hub_lock, flags);
857 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858 if (rc)
859 goto done;
860
861 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
862 ; /* Do nothing */
863
864 } else { /* Status URB */
865 if (!hcd->uses_new_polling)
866 del_timer (&hcd->rh_timer);
867 if (urb == hcd->status_urb) {
868 hcd->status_urb = NULL;
869 usb_hcd_unlink_urb_from_ep(hcd, urb);
870 usb_hcd_giveback_urb(hcd, urb, status);
871 }
872 }
873 done:
874 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875 return rc;
876}
877
878
879
880/*
881 * Show & store the current value of authorized_default
882 */
883static ssize_t authorized_default_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
885{
886 struct usb_device *rh_usb_dev = to_usb_device(dev);
887 struct usb_bus *usb_bus = rh_usb_dev->bus;
888 struct usb_hcd *hcd;
889
890 hcd = bus_to_hcd(usb_bus);
891 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
892}
893
894static ssize_t authorized_default_store(struct device *dev,
895 struct device_attribute *attr,
896 const char *buf, size_t size)
897{
898 ssize_t result;
899 unsigned val;
900 struct usb_device *rh_usb_dev = to_usb_device(dev);
901 struct usb_bus *usb_bus = rh_usb_dev->bus;
902 struct usb_hcd *hcd;
903
904 hcd = bus_to_hcd(usb_bus);
905 result = sscanf(buf, "%u\n", &val);
906 if (result == 1) {
907 if (val)
908 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
909 else
910 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
911
912 result = size;
913 } else {
914 result = -EINVAL;
915 }
916 return result;
917}
918static DEVICE_ATTR_RW(authorized_default);
919
920/*
921 * interface_authorized_default_show - show default authorization status
922 * for USB interfaces
923 *
924 * note: interface_authorized_default is the default value
925 * for initializing the authorized attribute of interfaces
926 */
927static ssize_t interface_authorized_default_show(struct device *dev,
928 struct device_attribute *attr, char *buf)
929{
930 struct usb_device *usb_dev = to_usb_device(dev);
931 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
932
933 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
934}
935
936/*
937 * interface_authorized_default_store - store default authorization status
938 * for USB interfaces
939 *
940 * note: interface_authorized_default is the default value
941 * for initializing the authorized attribute of interfaces
942 */
943static ssize_t interface_authorized_default_store(struct device *dev,
944 struct device_attribute *attr, const char *buf, size_t count)
945{
946 struct usb_device *usb_dev = to_usb_device(dev);
947 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
948 int rc = count;
949 bool val;
950
951 if (strtobool(buf, &val) != 0)
952 return -EINVAL;
953
954 if (val)
955 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
956 else
957 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
958
959 return rc;
960}
961static DEVICE_ATTR_RW(interface_authorized_default);
962
963/* Group all the USB bus attributes */
964static struct attribute *usb_bus_attrs[] = {
965 &dev_attr_authorized_default.attr,
966 &dev_attr_interface_authorized_default.attr,
967 NULL,
968};
969
970static struct attribute_group usb_bus_attr_group = {
971 .name = NULL, /* we want them in the same directory */
972 .attrs = usb_bus_attrs,
973};
974
975
976
977/*-------------------------------------------------------------------------*/
978
979/**
980 * usb_bus_init - shared initialization code
981 * @bus: the bus structure being initialized
982 *
983 * This code is used to initialize a usb_bus structure, memory for which is
984 * separately managed.
985 */
986static void usb_bus_init (struct usb_bus *bus)
987{
988 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
989
990 bus->devnum_next = 1;
991
992 bus->root_hub = NULL;
993 bus->busnum = -1;
994 bus->bandwidth_allocated = 0;
995 bus->bandwidth_int_reqs = 0;
996 bus->bandwidth_isoc_reqs = 0;
997 mutex_init(&bus->usb_address0_mutex);
998}
999
1000/*-------------------------------------------------------------------------*/
1001
1002/**
1003 * usb_register_bus - registers the USB host controller with the usb core
1004 * @bus: pointer to the bus to register
1005 * Context: !in_interrupt()
1006 *
1007 * Assigns a bus number, and links the controller into usbcore data
1008 * structures so that it can be seen by scanning the bus list.
1009 *
1010 * Return: 0 if successful. A negative error code otherwise.
1011 */
1012static int usb_register_bus(struct usb_bus *bus)
1013{
1014 int result = -E2BIG;
1015 int busnum;
1016
1017 mutex_lock(&usb_bus_idr_lock);
1018 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1019 if (busnum < 0) {
1020 pr_err("%s: failed to get bus number\n", usbcore_name);
1021 goto error_find_busnum;
1022 }
1023 bus->busnum = busnum;
1024 mutex_unlock(&usb_bus_idr_lock);
1025
1026 usb_notify_add_bus(bus);
1027
1028 dev_info (bus->controller, "new USB bus registered, assigned bus "
1029 "number %d\n", bus->busnum);
1030 return 0;
1031
1032error_find_busnum:
1033 mutex_unlock(&usb_bus_idr_lock);
1034 return result;
1035}
1036
1037/**
1038 * usb_deregister_bus - deregisters the USB host controller
1039 * @bus: pointer to the bus to deregister
1040 * Context: !in_interrupt()
1041 *
1042 * Recycles the bus number, and unlinks the controller from usbcore data
1043 * structures so that it won't be seen by scanning the bus list.
1044 */
1045static void usb_deregister_bus (struct usb_bus *bus)
1046{
1047 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1048
1049 /*
1050 * NOTE: make sure that all the devices are removed by the
1051 * controller code, as well as having it call this when cleaning
1052 * itself up
1053 */
1054 mutex_lock(&usb_bus_idr_lock);
1055 idr_remove(&usb_bus_idr, bus->busnum);
1056 mutex_unlock(&usb_bus_idr_lock);
1057
1058 usb_notify_remove_bus(bus);
1059}
1060
1061/**
1062 * register_root_hub - called by usb_add_hcd() to register a root hub
1063 * @hcd: host controller for this root hub
1064 *
1065 * This function registers the root hub with the USB subsystem. It sets up
1066 * the device properly in the device tree and then calls usb_new_device()
1067 * to register the usb device. It also assigns the root hub's USB address
1068 * (always 1).
1069 *
1070 * Return: 0 if successful. A negative error code otherwise.
1071 */
1072static int register_root_hub(struct usb_hcd *hcd)
1073{
1074 struct device *parent_dev = hcd->self.controller;
1075 struct usb_device *usb_dev = hcd->self.root_hub;
1076 const int devnum = 1;
1077 int retval;
1078
1079 usb_dev->devnum = devnum;
1080 usb_dev->bus->devnum_next = devnum + 1;
1081 memset (&usb_dev->bus->devmap.devicemap, 0,
1082 sizeof usb_dev->bus->devmap.devicemap);
1083 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1084 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1085
1086 mutex_lock(&usb_bus_idr_lock);
1087
1088 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1089 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1090 if (retval != sizeof usb_dev->descriptor) {
1091 mutex_unlock(&usb_bus_idr_lock);
1092 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1093 dev_name(&usb_dev->dev), retval);
1094 return (retval < 0) ? retval : -EMSGSIZE;
1095 }
1096
1097 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1098 retval = usb_get_bos_descriptor(usb_dev);
1099 if (!retval) {
1100 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1101 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1102 mutex_unlock(&usb_bus_idr_lock);
1103 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1104 dev_name(&usb_dev->dev), retval);
1105 return retval;
1106 }
1107 }
1108
1109 retval = usb_new_device (usb_dev);
1110 if (retval) {
1111 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1112 dev_name(&usb_dev->dev), retval);
1113 } else {
1114 spin_lock_irq (&hcd_root_hub_lock);
1115 hcd->rh_registered = 1;
1116 spin_unlock_irq (&hcd_root_hub_lock);
1117
1118 /* Did the HC die before the root hub was registered? */
1119 if (HCD_DEAD(hcd))
1120 usb_hc_died (hcd); /* This time clean up */
1121 }
1122 mutex_unlock(&usb_bus_idr_lock);
1123
1124 return retval;
1125}
1126
1127/*
1128 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1129 * @bus: the bus which the root hub belongs to
1130 * @portnum: the port which is being resumed
1131 *
1132 * HCDs should call this function when they know that a resume signal is
1133 * being sent to a root-hub port. The root hub will be prevented from
1134 * going into autosuspend until usb_hcd_end_port_resume() is called.
1135 *
1136 * The bus's private lock must be held by the caller.
1137 */
1138void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1139{
1140 unsigned bit = 1 << portnum;
1141
1142 if (!(bus->resuming_ports & bit)) {
1143 bus->resuming_ports |= bit;
1144 pm_runtime_get_noresume(&bus->root_hub->dev);
1145 }
1146}
1147EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1148
1149/*
1150 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1151 * @bus: the bus which the root hub belongs to
1152 * @portnum: the port which is being resumed
1153 *
1154 * HCDs should call this function when they know that a resume signal has
1155 * stopped being sent to a root-hub port. The root hub will be allowed to
1156 * autosuspend again.
1157 *
1158 * The bus's private lock must be held by the caller.
1159 */
1160void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1161{
1162 unsigned bit = 1 << portnum;
1163
1164 if (bus->resuming_ports & bit) {
1165 bus->resuming_ports &= ~bit;
1166 pm_runtime_put_noidle(&bus->root_hub->dev);
1167 }
1168}
1169EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1170
1171/*-------------------------------------------------------------------------*/
1172
1173/**
1174 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1175 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1176 * @is_input: true iff the transaction sends data to the host
1177 * @isoc: true for isochronous transactions, false for interrupt ones
1178 * @bytecount: how many bytes in the transaction.
1179 *
1180 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1181 *
1182 * Note:
1183 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1184 * scheduled in software, this function is only used for such scheduling.
1185 */
1186long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1187{
1188 unsigned long tmp;
1189
1190 switch (speed) {
1191 case USB_SPEED_LOW: /* INTR only */
1192 if (is_input) {
1193 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1194 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1195 } else {
1196 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1198 }
1199 case USB_SPEED_FULL: /* ISOC or INTR */
1200 if (isoc) {
1201 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1203 } else {
1204 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1205 return 9107L + BW_HOST_DELAY + tmp;
1206 }
1207 case USB_SPEED_HIGH: /* ISOC or INTR */
1208 /* FIXME adjust for input vs output */
1209 if (isoc)
1210 tmp = HS_NSECS_ISO (bytecount);
1211 else
1212 tmp = HS_NSECS (bytecount);
1213 return tmp;
1214 default:
1215 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1216 return -1;
1217 }
1218}
1219EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1220
1221
1222/*-------------------------------------------------------------------------*/
1223
1224/*
1225 * Generic HC operations.
1226 */
1227
1228/*-------------------------------------------------------------------------*/
1229
1230/**
1231 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1232 * @hcd: host controller to which @urb was submitted
1233 * @urb: URB being submitted
1234 *
1235 * Host controller drivers should call this routine in their enqueue()
1236 * method. The HCD's private spinlock must be held and interrupts must
1237 * be disabled. The actions carried out here are required for URB
1238 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1239 *
1240 * Return: 0 for no error, otherwise a negative error code (in which case
1241 * the enqueue() method must fail). If no error occurs but enqueue() fails
1242 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1243 * the private spinlock and returning.
1244 */
1245int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1246{
1247 int rc = 0;
1248
1249 spin_lock(&hcd_urb_list_lock);
1250
1251 /* Check that the URB isn't being killed */
1252 if (unlikely(atomic_read(&urb->reject))) {
1253 rc = -EPERM;
1254 goto done;
1255 }
1256
1257 if (unlikely(!urb->ep->enabled)) {
1258 rc = -ENOENT;
1259 goto done;
1260 }
1261
1262 if (unlikely(!urb->dev->can_submit)) {
1263 rc = -EHOSTUNREACH;
1264 goto done;
1265 }
1266
1267 /*
1268 * Check the host controller's state and add the URB to the
1269 * endpoint's queue.
1270 */
1271 if (HCD_RH_RUNNING(hcd)) {
1272 urb->unlinked = 0;
1273 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1274 } else {
1275 rc = -ESHUTDOWN;
1276 goto done;
1277 }
1278 done:
1279 spin_unlock(&hcd_urb_list_lock);
1280 return rc;
1281}
1282EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1283
1284/**
1285 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1286 * @hcd: host controller to which @urb was submitted
1287 * @urb: URB being checked for unlinkability
1288 * @status: error code to store in @urb if the unlink succeeds
1289 *
1290 * Host controller drivers should call this routine in their dequeue()
1291 * method. The HCD's private spinlock must be held and interrupts must
1292 * be disabled. The actions carried out here are required for making
1293 * sure than an unlink is valid.
1294 *
1295 * Return: 0 for no error, otherwise a negative error code (in which case
1296 * the dequeue() method must fail). The possible error codes are:
1297 *
1298 * -EIDRM: @urb was not submitted or has already completed.
1299 * The completion function may not have been called yet.
1300 *
1301 * -EBUSY: @urb has already been unlinked.
1302 */
1303int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1304 int status)
1305{
1306 struct list_head *tmp;
1307
1308 /* insist the urb is still queued */
1309 list_for_each(tmp, &urb->ep->urb_list) {
1310 if (tmp == &urb->urb_list)
1311 break;
1312 }
1313 if (tmp != &urb->urb_list)
1314 return -EIDRM;
1315
1316 /* Any status except -EINPROGRESS means something already started to
1317 * unlink this URB from the hardware. So there's no more work to do.
1318 */
1319 if (urb->unlinked)
1320 return -EBUSY;
1321 urb->unlinked = status;
1322 return 0;
1323}
1324EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1325
1326/**
1327 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1328 * @hcd: host controller to which @urb was submitted
1329 * @urb: URB being unlinked
1330 *
1331 * Host controller drivers should call this routine before calling
1332 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1333 * interrupts must be disabled. The actions carried out here are required
1334 * for URB completion.
1335 */
1336void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1337{
1338 /* clear all state linking urb to this dev (and hcd) */
1339 spin_lock(&hcd_urb_list_lock);
1340 list_del_init(&urb->urb_list);
1341 spin_unlock(&hcd_urb_list_lock);
1342}
1343EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1344
1345/*
1346 * Some usb host controllers can only perform dma using a small SRAM area.
1347 * The usb core itself is however optimized for host controllers that can dma
1348 * using regular system memory - like pci devices doing bus mastering.
1349 *
1350 * To support host controllers with limited dma capabilities we provide dma
1351 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1352 * For this to work properly the host controller code must first use the
1353 * function dma_declare_coherent_memory() to point out which memory area
1354 * that should be used for dma allocations.
1355 *
1356 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1357 * dma using dma_alloc_coherent() which in turn allocates from the memory
1358 * area pointed out with dma_declare_coherent_memory().
1359 *
1360 * So, to summarize...
1361 *
1362 * - We need "local" memory, canonical example being
1363 * a small SRAM on a discrete controller being the
1364 * only memory that the controller can read ...
1365 * (a) "normal" kernel memory is no good, and
1366 * (b) there's not enough to share
1367 *
1368 * - The only *portable* hook for such stuff in the
1369 * DMA framework is dma_declare_coherent_memory()
1370 *
1371 * - So we use that, even though the primary requirement
1372 * is that the memory be "local" (hence addressable
1373 * by that device), not "coherent".
1374 *
1375 */
1376
1377static int hcd_alloc_coherent(struct usb_bus *bus,
1378 gfp_t mem_flags, dma_addr_t *dma_handle,
1379 void **vaddr_handle, size_t size,
1380 enum dma_data_direction dir)
1381{
1382 unsigned char *vaddr;
1383
1384 if (*vaddr_handle == NULL) {
1385 WARN_ON_ONCE(1);
1386 return -EFAULT;
1387 }
1388
1389 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1390 mem_flags, dma_handle);
1391 if (!vaddr)
1392 return -ENOMEM;
1393
1394 /*
1395 * Store the virtual address of the buffer at the end
1396 * of the allocated dma buffer. The size of the buffer
1397 * may be uneven so use unaligned functions instead
1398 * of just rounding up. It makes sense to optimize for
1399 * memory footprint over access speed since the amount
1400 * of memory available for dma may be limited.
1401 */
1402 put_unaligned((unsigned long)*vaddr_handle,
1403 (unsigned long *)(vaddr + size));
1404
1405 if (dir == DMA_TO_DEVICE)
1406 memcpy(vaddr, *vaddr_handle, size);
1407
1408 *vaddr_handle = vaddr;
1409 return 0;
1410}
1411
1412static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1413 void **vaddr_handle, size_t size,
1414 enum dma_data_direction dir)
1415{
1416 unsigned char *vaddr = *vaddr_handle;
1417
1418 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1419
1420 if (dir == DMA_FROM_DEVICE)
1421 memcpy(vaddr, *vaddr_handle, size);
1422
1423 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1424
1425 *vaddr_handle = vaddr;
1426 *dma_handle = 0;
1427}
1428
1429void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1430{
1431 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1432 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1433 dma_unmap_single(hcd->self.controller,
1434 urb->setup_dma,
1435 sizeof(struct usb_ctrlrequest),
1436 DMA_TO_DEVICE);
1437 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1438 hcd_free_coherent(urb->dev->bus,
1439 &urb->setup_dma,
1440 (void **) &urb->setup_packet,
1441 sizeof(struct usb_ctrlrequest),
1442 DMA_TO_DEVICE);
1443
1444 /* Make it safe to call this routine more than once */
1445 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1446}
1447EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1448
1449static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1450{
1451 if (hcd->driver->unmap_urb_for_dma)
1452 hcd->driver->unmap_urb_for_dma(hcd, urb);
1453 else
1454 usb_hcd_unmap_urb_for_dma(hcd, urb);
1455}
1456
1457void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1458{
1459 enum dma_data_direction dir;
1460
1461 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1462
1463 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1464 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1465 (urb->transfer_flags & URB_DMA_MAP_SG))
1466 dma_unmap_sg(hcd->self.controller,
1467 urb->sg,
1468 urb->num_sgs,
1469 dir);
1470 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1471 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1472 dma_unmap_page(hcd->self.controller,
1473 urb->transfer_dma,
1474 urb->transfer_buffer_length,
1475 dir);
1476 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1477 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1478 dma_unmap_single(hcd->self.controller,
1479 urb->transfer_dma,
1480 urb->transfer_buffer_length,
1481 dir);
1482 else if (urb->transfer_flags & URB_MAP_LOCAL)
1483 hcd_free_coherent(urb->dev->bus,
1484 &urb->transfer_dma,
1485 &urb->transfer_buffer,
1486 urb->transfer_buffer_length,
1487 dir);
1488
1489 /* Make it safe to call this routine more than once */
1490 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1491 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1492}
1493EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1494
1495static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1496 gfp_t mem_flags)
1497{
1498 if (hcd->driver->map_urb_for_dma)
1499 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1500 else
1501 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1502}
1503
1504int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1505 gfp_t mem_flags)
1506{
1507 enum dma_data_direction dir;
1508 int ret = 0;
1509
1510 /* Map the URB's buffers for DMA access.
1511 * Lower level HCD code should use *_dma exclusively,
1512 * unless it uses pio or talks to another transport,
1513 * or uses the provided scatter gather list for bulk.
1514 */
1515
1516 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1517 if (hcd->self.uses_pio_for_control)
1518 return ret;
1519 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1520 urb->setup_dma = dma_map_single(
1521 hcd->self.controller,
1522 urb->setup_packet,
1523 sizeof(struct usb_ctrlrequest),
1524 DMA_TO_DEVICE);
1525 if (dma_mapping_error(hcd->self.controller,
1526 urb->setup_dma))
1527 return -EAGAIN;
1528 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1529 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1530 ret = hcd_alloc_coherent(
1531 urb->dev->bus, mem_flags,
1532 &urb->setup_dma,
1533 (void **)&urb->setup_packet,
1534 sizeof(struct usb_ctrlrequest),
1535 DMA_TO_DEVICE);
1536 if (ret)
1537 return ret;
1538 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1539 }
1540 }
1541
1542 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1543 if (urb->transfer_buffer_length != 0
1544 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1545 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1546 if (urb->num_sgs) {
1547 int n;
1548
1549 /* We don't support sg for isoc transfers ! */
1550 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1551 WARN_ON(1);
1552 return -EINVAL;
1553 }
1554
1555 n = dma_map_sg(
1556 hcd->self.controller,
1557 urb->sg,
1558 urb->num_sgs,
1559 dir);
1560 if (n <= 0)
1561 ret = -EAGAIN;
1562 else
1563 urb->transfer_flags |= URB_DMA_MAP_SG;
1564 urb->num_mapped_sgs = n;
1565 if (n != urb->num_sgs)
1566 urb->transfer_flags |=
1567 URB_DMA_SG_COMBINED;
1568 } else if (urb->sg) {
1569 struct scatterlist *sg = urb->sg;
1570 urb->transfer_dma = dma_map_page(
1571 hcd->self.controller,
1572 sg_page(sg),
1573 sg->offset,
1574 urb->transfer_buffer_length,
1575 dir);
1576 if (dma_mapping_error(hcd->self.controller,
1577 urb->transfer_dma))
1578 ret = -EAGAIN;
1579 else
1580 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1581 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1582 WARN_ONCE(1, "transfer buffer not dma capable\n");
1583 ret = -EAGAIN;
1584 } else {
1585 urb->transfer_dma = dma_map_single(
1586 hcd->self.controller,
1587 urb->transfer_buffer,
1588 urb->transfer_buffer_length,
1589 dir);
1590 if (dma_mapping_error(hcd->self.controller,
1591 urb->transfer_dma))
1592 ret = -EAGAIN;
1593 else
1594 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1595 }
1596 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1597 ret = hcd_alloc_coherent(
1598 urb->dev->bus, mem_flags,
1599 &urb->transfer_dma,
1600 &urb->transfer_buffer,
1601 urb->transfer_buffer_length,
1602 dir);
1603 if (ret == 0)
1604 urb->transfer_flags |= URB_MAP_LOCAL;
1605 }
1606 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1607 URB_SETUP_MAP_LOCAL)))
1608 usb_hcd_unmap_urb_for_dma(hcd, urb);
1609 }
1610 return ret;
1611}
1612EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1613
1614/*-------------------------------------------------------------------------*/
1615
1616/* may be called in any context with a valid urb->dev usecount
1617 * caller surrenders "ownership" of urb
1618 * expects usb_submit_urb() to have sanity checked and conditioned all
1619 * inputs in the urb
1620 */
1621int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1622{
1623 int status;
1624 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1625
1626 /* increment urb's reference count as part of giving it to the HCD
1627 * (which will control it). HCD guarantees that it either returns
1628 * an error or calls giveback(), but not both.
1629 */
1630 usb_get_urb(urb);
1631 atomic_inc(&urb->use_count);
1632 atomic_inc(&urb->dev->urbnum);
1633 usbmon_urb_submit(&hcd->self, urb);
1634
1635 /* NOTE requirements on root-hub callers (usbfs and the hub
1636 * driver, for now): URBs' urb->transfer_buffer must be
1637 * valid and usb_buffer_{sync,unmap}() not be needed, since
1638 * they could clobber root hub response data. Also, control
1639 * URBs must be submitted in process context with interrupts
1640 * enabled.
1641 */
1642
1643 if (is_root_hub(urb->dev)) {
1644 status = rh_urb_enqueue(hcd, urb);
1645 } else {
1646 status = map_urb_for_dma(hcd, urb, mem_flags);
1647 if (likely(status == 0)) {
1648 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1649 if (unlikely(status))
1650 unmap_urb_for_dma(hcd, urb);
1651 }
1652 }
1653
1654 if (unlikely(status)) {
1655 usbmon_urb_submit_error(&hcd->self, urb, status);
1656 urb->hcpriv = NULL;
1657 INIT_LIST_HEAD(&urb->urb_list);
1658 atomic_dec(&urb->use_count);
1659 atomic_dec(&urb->dev->urbnum);
1660 if (atomic_read(&urb->reject))
1661 wake_up(&usb_kill_urb_queue);
1662 usb_put_urb(urb);
1663 }
1664 return status;
1665}
1666
1667/*-------------------------------------------------------------------------*/
1668
1669/* this makes the hcd giveback() the urb more quickly, by kicking it
1670 * off hardware queues (which may take a while) and returning it as
1671 * soon as practical. we've already set up the urb's return status,
1672 * but we can't know if the callback completed already.
1673 */
1674static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1675{
1676 int value;
1677
1678 if (is_root_hub(urb->dev))
1679 value = usb_rh_urb_dequeue(hcd, urb, status);
1680 else {
1681
1682 /* The only reason an HCD might fail this call is if
1683 * it has not yet fully queued the urb to begin with.
1684 * Such failures should be harmless. */
1685 value = hcd->driver->urb_dequeue(hcd, urb, status);
1686 }
1687 return value;
1688}
1689
1690/*
1691 * called in any context
1692 *
1693 * caller guarantees urb won't be recycled till both unlink()
1694 * and the urb's completion function return
1695 */
1696int usb_hcd_unlink_urb (struct urb *urb, int status)
1697{
1698 struct usb_hcd *hcd;
1699 struct usb_device *udev = urb->dev;
1700 int retval = -EIDRM;
1701 unsigned long flags;
1702
1703 /* Prevent the device and bus from going away while
1704 * the unlink is carried out. If they are already gone
1705 * then urb->use_count must be 0, since disconnected
1706 * devices can't have any active URBs.
1707 */
1708 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1709 if (atomic_read(&urb->use_count) > 0) {
1710 retval = 0;
1711 usb_get_dev(udev);
1712 }
1713 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1714 if (retval == 0) {
1715 hcd = bus_to_hcd(urb->dev->bus);
1716 retval = unlink1(hcd, urb, status);
1717 if (retval == 0)
1718 retval = -EINPROGRESS;
1719 else if (retval != -EIDRM && retval != -EBUSY)
1720 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1721 urb, retval);
1722 usb_put_dev(udev);
1723 }
1724 return retval;
1725}
1726
1727/*-------------------------------------------------------------------------*/
1728
1729static void __usb_hcd_giveback_urb(struct urb *urb)
1730{
1731 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1732 struct usb_anchor *anchor = urb->anchor;
1733 int status = urb->unlinked;
1734 unsigned long flags;
1735
1736 urb->hcpriv = NULL;
1737 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1738 urb->actual_length < urb->transfer_buffer_length &&
1739 !status))
1740 status = -EREMOTEIO;
1741
1742 unmap_urb_for_dma(hcd, urb);
1743 usbmon_urb_complete(&hcd->self, urb, status);
1744 usb_anchor_suspend_wakeups(anchor);
1745 usb_unanchor_urb(urb);
1746 if (likely(status == 0))
1747 usb_led_activity(USB_LED_EVENT_HOST);
1748
1749 /* pass ownership to the completion handler */
1750 urb->status = status;
1751
1752 /*
1753 * We disable local IRQs here avoid possible deadlock because
1754 * drivers may call spin_lock() to hold lock which might be
1755 * acquired in one hard interrupt handler.
1756 *
1757 * The local_irq_save()/local_irq_restore() around complete()
1758 * will be removed if current USB drivers have been cleaned up
1759 * and no one may trigger the above deadlock situation when
1760 * running complete() in tasklet.
1761 */
1762 local_irq_save(flags);
1763 urb->complete(urb);
1764 local_irq_restore(flags);
1765
1766 usb_anchor_resume_wakeups(anchor);
1767 atomic_dec(&urb->use_count);
1768 if (unlikely(atomic_read(&urb->reject)))
1769 wake_up(&usb_kill_urb_queue);
1770 usb_put_urb(urb);
1771}
1772
1773static void usb_giveback_urb_bh(unsigned long param)
1774{
1775 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1776 struct list_head local_list;
1777
1778 spin_lock_irq(&bh->lock);
1779 bh->running = true;
1780 restart:
1781 list_replace_init(&bh->head, &local_list);
1782 spin_unlock_irq(&bh->lock);
1783
1784 while (!list_empty(&local_list)) {
1785 struct urb *urb;
1786
1787 urb = list_entry(local_list.next, struct urb, urb_list);
1788 list_del_init(&urb->urb_list);
1789 bh->completing_ep = urb->ep;
1790 __usb_hcd_giveback_urb(urb);
1791 bh->completing_ep = NULL;
1792 }
1793
1794 /* check if there are new URBs to giveback */
1795 spin_lock_irq(&bh->lock);
1796 if (!list_empty(&bh->head))
1797 goto restart;
1798 bh->running = false;
1799 spin_unlock_irq(&bh->lock);
1800}
1801
1802/**
1803 * usb_hcd_giveback_urb - return URB from HCD to device driver
1804 * @hcd: host controller returning the URB
1805 * @urb: urb being returned to the USB device driver.
1806 * @status: completion status code for the URB.
1807 * Context: in_interrupt()
1808 *
1809 * This hands the URB from HCD to its USB device driver, using its
1810 * completion function. The HCD has freed all per-urb resources
1811 * (and is done using urb->hcpriv). It also released all HCD locks;
1812 * the device driver won't cause problems if it frees, modifies,
1813 * or resubmits this URB.
1814 *
1815 * If @urb was unlinked, the value of @status will be overridden by
1816 * @urb->unlinked. Erroneous short transfers are detected in case
1817 * the HCD hasn't checked for them.
1818 */
1819void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1820{
1821 struct giveback_urb_bh *bh;
1822 bool running, high_prio_bh;
1823
1824 /* pass status to tasklet via unlinked */
1825 if (likely(!urb->unlinked))
1826 urb->unlinked = status;
1827
1828 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1829 __usb_hcd_giveback_urb(urb);
1830 return;
1831 }
1832
1833 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1834 bh = &hcd->high_prio_bh;
1835 high_prio_bh = true;
1836 } else {
1837 bh = &hcd->low_prio_bh;
1838 high_prio_bh = false;
1839 }
1840
1841 spin_lock(&bh->lock);
1842 list_add_tail(&urb->urb_list, &bh->head);
1843 running = bh->running;
1844 spin_unlock(&bh->lock);
1845
1846 if (running)
1847 ;
1848 else if (high_prio_bh)
1849 tasklet_hi_schedule(&bh->bh);
1850 else
1851 tasklet_schedule(&bh->bh);
1852}
1853EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1854
1855/*-------------------------------------------------------------------------*/
1856
1857/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1858 * queue to drain completely. The caller must first insure that no more
1859 * URBs can be submitted for this endpoint.
1860 */
1861void usb_hcd_flush_endpoint(struct usb_device *udev,
1862 struct usb_host_endpoint *ep)
1863{
1864 struct usb_hcd *hcd;
1865 struct urb *urb;
1866
1867 if (!ep)
1868 return;
1869 might_sleep();
1870 hcd = bus_to_hcd(udev->bus);
1871
1872 /* No more submits can occur */
1873 spin_lock_irq(&hcd_urb_list_lock);
1874rescan:
1875 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1876 int is_in;
1877
1878 if (urb->unlinked)
1879 continue;
1880 usb_get_urb (urb);
1881 is_in = usb_urb_dir_in(urb);
1882 spin_unlock(&hcd_urb_list_lock);
1883
1884 /* kick hcd */
1885 unlink1(hcd, urb, -ESHUTDOWN);
1886 dev_dbg (hcd->self.controller,
1887 "shutdown urb %p ep%d%s%s\n",
1888 urb, usb_endpoint_num(&ep->desc),
1889 is_in ? "in" : "out",
1890 ({ char *s;
1891
1892 switch (usb_endpoint_type(&ep->desc)) {
1893 case USB_ENDPOINT_XFER_CONTROL:
1894 s = ""; break;
1895 case USB_ENDPOINT_XFER_BULK:
1896 s = "-bulk"; break;
1897 case USB_ENDPOINT_XFER_INT:
1898 s = "-intr"; break;
1899 default:
1900 s = "-iso"; break;
1901 };
1902 s;
1903 }));
1904 usb_put_urb (urb);
1905
1906 /* list contents may have changed */
1907 spin_lock(&hcd_urb_list_lock);
1908 goto rescan;
1909 }
1910 spin_unlock_irq(&hcd_urb_list_lock);
1911
1912 /* Wait until the endpoint queue is completely empty */
1913 while (!list_empty (&ep->urb_list)) {
1914 spin_lock_irq(&hcd_urb_list_lock);
1915
1916 /* The list may have changed while we acquired the spinlock */
1917 urb = NULL;
1918 if (!list_empty (&ep->urb_list)) {
1919 urb = list_entry (ep->urb_list.prev, struct urb,
1920 urb_list);
1921 usb_get_urb (urb);
1922 }
1923 spin_unlock_irq(&hcd_urb_list_lock);
1924
1925 if (urb) {
1926 usb_kill_urb (urb);
1927 usb_put_urb (urb);
1928 }
1929 }
1930}
1931
1932/**
1933 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1934 * the bus bandwidth
1935 * @udev: target &usb_device
1936 * @new_config: new configuration to install
1937 * @cur_alt: the current alternate interface setting
1938 * @new_alt: alternate interface setting that is being installed
1939 *
1940 * To change configurations, pass in the new configuration in new_config,
1941 * and pass NULL for cur_alt and new_alt.
1942 *
1943 * To reset a device's configuration (put the device in the ADDRESSED state),
1944 * pass in NULL for new_config, cur_alt, and new_alt.
1945 *
1946 * To change alternate interface settings, pass in NULL for new_config,
1947 * pass in the current alternate interface setting in cur_alt,
1948 * and pass in the new alternate interface setting in new_alt.
1949 *
1950 * Return: An error if the requested bandwidth change exceeds the
1951 * bus bandwidth or host controller internal resources.
1952 */
1953int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1954 struct usb_host_config *new_config,
1955 struct usb_host_interface *cur_alt,
1956 struct usb_host_interface *new_alt)
1957{
1958 int num_intfs, i, j;
1959 struct usb_host_interface *alt = NULL;
1960 int ret = 0;
1961 struct usb_hcd *hcd;
1962 struct usb_host_endpoint *ep;
1963
1964 hcd = bus_to_hcd(udev->bus);
1965 if (!hcd->driver->check_bandwidth)
1966 return 0;
1967
1968 /* Configuration is being removed - set configuration 0 */
1969 if (!new_config && !cur_alt) {
1970 for (i = 1; i < 16; ++i) {
1971 ep = udev->ep_out[i];
1972 if (ep)
1973 hcd->driver->drop_endpoint(hcd, udev, ep);
1974 ep = udev->ep_in[i];
1975 if (ep)
1976 hcd->driver->drop_endpoint(hcd, udev, ep);
1977 }
1978 hcd->driver->check_bandwidth(hcd, udev);
1979 return 0;
1980 }
1981 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1982 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1983 * of the bus. There will always be bandwidth for endpoint 0, so it's
1984 * ok to exclude it.
1985 */
1986 if (new_config) {
1987 num_intfs = new_config->desc.bNumInterfaces;
1988 /* Remove endpoints (except endpoint 0, which is always on the
1989 * schedule) from the old config from the schedule
1990 */
1991 for (i = 1; i < 16; ++i) {
1992 ep = udev->ep_out[i];
1993 if (ep) {
1994 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1995 if (ret < 0)
1996 goto reset;
1997 }
1998 ep = udev->ep_in[i];
1999 if (ep) {
2000 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 if (ret < 0)
2002 goto reset;
2003 }
2004 }
2005 for (i = 0; i < num_intfs; ++i) {
2006 struct usb_host_interface *first_alt;
2007 int iface_num;
2008
2009 first_alt = &new_config->intf_cache[i]->altsetting[0];
2010 iface_num = first_alt->desc.bInterfaceNumber;
2011 /* Set up endpoints for alternate interface setting 0 */
2012 alt = usb_find_alt_setting(new_config, iface_num, 0);
2013 if (!alt)
2014 /* No alt setting 0? Pick the first setting. */
2015 alt = first_alt;
2016
2017 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2018 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2019 if (ret < 0)
2020 goto reset;
2021 }
2022 }
2023 }
2024 if (cur_alt && new_alt) {
2025 struct usb_interface *iface = usb_ifnum_to_if(udev,
2026 cur_alt->desc.bInterfaceNumber);
2027
2028 if (!iface)
2029 return -EINVAL;
2030 if (iface->resetting_device) {
2031 /*
2032 * The USB core just reset the device, so the xHCI host
2033 * and the device will think alt setting 0 is installed.
2034 * However, the USB core will pass in the alternate
2035 * setting installed before the reset as cur_alt. Dig
2036 * out the alternate setting 0 structure, or the first
2037 * alternate setting if a broken device doesn't have alt
2038 * setting 0.
2039 */
2040 cur_alt = usb_altnum_to_altsetting(iface, 0);
2041 if (!cur_alt)
2042 cur_alt = &iface->altsetting[0];
2043 }
2044
2045 /* Drop all the endpoints in the current alt setting */
2046 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2047 ret = hcd->driver->drop_endpoint(hcd, udev,
2048 &cur_alt->endpoint[i]);
2049 if (ret < 0)
2050 goto reset;
2051 }
2052 /* Add all the endpoints in the new alt setting */
2053 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2054 ret = hcd->driver->add_endpoint(hcd, udev,
2055 &new_alt->endpoint[i]);
2056 if (ret < 0)
2057 goto reset;
2058 }
2059 }
2060 ret = hcd->driver->check_bandwidth(hcd, udev);
2061reset:
2062 if (ret < 0)
2063 hcd->driver->reset_bandwidth(hcd, udev);
2064 return ret;
2065}
2066
2067/* Disables the endpoint: synchronizes with the hcd to make sure all
2068 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2069 * have been called previously. Use for set_configuration, set_interface,
2070 * driver removal, physical disconnect.
2071 *
2072 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2073 * type, maxpacket size, toggle, halt status, and scheduling.
2074 */
2075void usb_hcd_disable_endpoint(struct usb_device *udev,
2076 struct usb_host_endpoint *ep)
2077{
2078 struct usb_hcd *hcd;
2079
2080 might_sleep();
2081 hcd = bus_to_hcd(udev->bus);
2082 if (hcd->driver->endpoint_disable)
2083 hcd->driver->endpoint_disable(hcd, ep);
2084}
2085
2086/**
2087 * usb_hcd_reset_endpoint - reset host endpoint state
2088 * @udev: USB device.
2089 * @ep: the endpoint to reset.
2090 *
2091 * Resets any host endpoint state such as the toggle bit, sequence
2092 * number and current window.
2093 */
2094void usb_hcd_reset_endpoint(struct usb_device *udev,
2095 struct usb_host_endpoint *ep)
2096{
2097 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2098
2099 if (hcd->driver->endpoint_reset)
2100 hcd->driver->endpoint_reset(hcd, ep);
2101 else {
2102 int epnum = usb_endpoint_num(&ep->desc);
2103 int is_out = usb_endpoint_dir_out(&ep->desc);
2104 int is_control = usb_endpoint_xfer_control(&ep->desc);
2105
2106 usb_settoggle(udev, epnum, is_out, 0);
2107 if (is_control)
2108 usb_settoggle(udev, epnum, !is_out, 0);
2109 }
2110}
2111
2112/**
2113 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2114 * @interface: alternate setting that includes all endpoints.
2115 * @eps: array of endpoints that need streams.
2116 * @num_eps: number of endpoints in the array.
2117 * @num_streams: number of streams to allocate.
2118 * @mem_flags: flags hcd should use to allocate memory.
2119 *
2120 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2121 * Drivers may queue multiple transfers to different stream IDs, which may
2122 * complete in a different order than they were queued.
2123 *
2124 * Return: On success, the number of allocated streams. On failure, a negative
2125 * error code.
2126 */
2127int usb_alloc_streams(struct usb_interface *interface,
2128 struct usb_host_endpoint **eps, unsigned int num_eps,
2129 unsigned int num_streams, gfp_t mem_flags)
2130{
2131 struct usb_hcd *hcd;
2132 struct usb_device *dev;
2133 int i, ret;
2134
2135 dev = interface_to_usbdev(interface);
2136 hcd = bus_to_hcd(dev->bus);
2137 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2138 return -EINVAL;
2139 if (dev->speed < USB_SPEED_SUPER)
2140 return -EINVAL;
2141 if (dev->state < USB_STATE_CONFIGURED)
2142 return -ENODEV;
2143
2144 for (i = 0; i < num_eps; i++) {
2145 /* Streams only apply to bulk endpoints. */
2146 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2147 return -EINVAL;
2148 /* Re-alloc is not allowed */
2149 if (eps[i]->streams)
2150 return -EINVAL;
2151 }
2152
2153 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2154 num_streams, mem_flags);
2155 if (ret < 0)
2156 return ret;
2157
2158 for (i = 0; i < num_eps; i++)
2159 eps[i]->streams = ret;
2160
2161 return ret;
2162}
2163EXPORT_SYMBOL_GPL(usb_alloc_streams);
2164
2165/**
2166 * usb_free_streams - free bulk endpoint stream IDs.
2167 * @interface: alternate setting that includes all endpoints.
2168 * @eps: array of endpoints to remove streams from.
2169 * @num_eps: number of endpoints in the array.
2170 * @mem_flags: flags hcd should use to allocate memory.
2171 *
2172 * Reverts a group of bulk endpoints back to not using stream IDs.
2173 * Can fail if we are given bad arguments, or HCD is broken.
2174 *
2175 * Return: 0 on success. On failure, a negative error code.
2176 */
2177int usb_free_streams(struct usb_interface *interface,
2178 struct usb_host_endpoint **eps, unsigned int num_eps,
2179 gfp_t mem_flags)
2180{
2181 struct usb_hcd *hcd;
2182 struct usb_device *dev;
2183 int i, ret;
2184
2185 dev = interface_to_usbdev(interface);
2186 hcd = bus_to_hcd(dev->bus);
2187 if (dev->speed < USB_SPEED_SUPER)
2188 return -EINVAL;
2189
2190 /* Double-free is not allowed */
2191 for (i = 0; i < num_eps; i++)
2192 if (!eps[i] || !eps[i]->streams)
2193 return -EINVAL;
2194
2195 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2196 if (ret < 0)
2197 return ret;
2198
2199 for (i = 0; i < num_eps; i++)
2200 eps[i]->streams = 0;
2201
2202 return ret;
2203}
2204EXPORT_SYMBOL_GPL(usb_free_streams);
2205
2206/* Protect against drivers that try to unlink URBs after the device
2207 * is gone, by waiting until all unlinks for @udev are finished.
2208 * Since we don't currently track URBs by device, simply wait until
2209 * nothing is running in the locked region of usb_hcd_unlink_urb().
2210 */
2211void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2212{
2213 spin_lock_irq(&hcd_urb_unlink_lock);
2214 spin_unlock_irq(&hcd_urb_unlink_lock);
2215}
2216
2217/*-------------------------------------------------------------------------*/
2218
2219/* called in any context */
2220int usb_hcd_get_frame_number (struct usb_device *udev)
2221{
2222 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2223
2224 if (!HCD_RH_RUNNING(hcd))
2225 return -ESHUTDOWN;
2226 return hcd->driver->get_frame_number (hcd);
2227}
2228
2229/*-------------------------------------------------------------------------*/
2230
2231#ifdef CONFIG_PM
2232
2233int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2234{
2235 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2236 int status;
2237 int old_state = hcd->state;
2238
2239 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2240 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2241 rhdev->do_remote_wakeup);
2242 if (HCD_DEAD(hcd)) {
2243 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2244 return 0;
2245 }
2246
2247 if (!hcd->driver->bus_suspend) {
2248 status = -ENOENT;
2249 } else {
2250 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2251 hcd->state = HC_STATE_QUIESCING;
2252 status = hcd->driver->bus_suspend(hcd);
2253 }
2254 if (status == 0) {
2255 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2256 hcd->state = HC_STATE_SUSPENDED;
2257
2258 /* Did we race with a root-hub wakeup event? */
2259 if (rhdev->do_remote_wakeup) {
2260 char buffer[6];
2261
2262 status = hcd->driver->hub_status_data(hcd, buffer);
2263 if (status != 0) {
2264 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2265 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2266 status = -EBUSY;
2267 }
2268 }
2269 } else {
2270 spin_lock_irq(&hcd_root_hub_lock);
2271 if (!HCD_DEAD(hcd)) {
2272 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2273 hcd->state = old_state;
2274 }
2275 spin_unlock_irq(&hcd_root_hub_lock);
2276 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2277 "suspend", status);
2278 }
2279 return status;
2280}
2281
2282int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2283{
2284 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2285 int status;
2286 int old_state = hcd->state;
2287
2288 dev_dbg(&rhdev->dev, "usb %sresume\n",
2289 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2290 if (HCD_DEAD(hcd)) {
2291 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2292 return 0;
2293 }
2294 if (!hcd->driver->bus_resume)
2295 return -ENOENT;
2296 if (HCD_RH_RUNNING(hcd))
2297 return 0;
2298
2299 hcd->state = HC_STATE_RESUMING;
2300 status = hcd->driver->bus_resume(hcd);
2301 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2302 if (status == 0) {
2303 struct usb_device *udev;
2304 int port1;
2305
2306 spin_lock_irq(&hcd_root_hub_lock);
2307 if (!HCD_DEAD(hcd)) {
2308 usb_set_device_state(rhdev, rhdev->actconfig
2309 ? USB_STATE_CONFIGURED
2310 : USB_STATE_ADDRESS);
2311 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2312 hcd->state = HC_STATE_RUNNING;
2313 }
2314 spin_unlock_irq(&hcd_root_hub_lock);
2315
2316 /*
2317 * Check whether any of the enabled ports on the root hub are
2318 * unsuspended. If they are then a TRSMRCY delay is needed
2319 * (this is what the USB-2 spec calls a "global resume").
2320 * Otherwise we can skip the delay.
2321 */
2322 usb_hub_for_each_child(rhdev, port1, udev) {
2323 if (udev->state != USB_STATE_NOTATTACHED &&
2324 !udev->port_is_suspended) {
2325 usleep_range(10000, 11000); /* TRSMRCY */
2326 break;
2327 }
2328 }
2329 } else {
2330 hcd->state = old_state;
2331 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2332 "resume", status);
2333 if (status != -ESHUTDOWN)
2334 usb_hc_died(hcd);
2335 }
2336 return status;
2337}
2338
2339/* Workqueue routine for root-hub remote wakeup */
2340static void hcd_resume_work(struct work_struct *work)
2341{
2342 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2343 struct usb_device *udev = hcd->self.root_hub;
2344
2345 usb_remote_wakeup(udev);
2346}
2347
2348/**
2349 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2350 * @hcd: host controller for this root hub
2351 *
2352 * The USB host controller calls this function when its root hub is
2353 * suspended (with the remote wakeup feature enabled) and a remote
2354 * wakeup request is received. The routine submits a workqueue request
2355 * to resume the root hub (that is, manage its downstream ports again).
2356 */
2357void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2358{
2359 unsigned long flags;
2360
2361 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2362 if (hcd->rh_registered) {
2363 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2364 queue_work(pm_wq, &hcd->wakeup_work);
2365 }
2366 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2367}
2368EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2369
2370#endif /* CONFIG_PM */
2371
2372/*-------------------------------------------------------------------------*/
2373
2374#ifdef CONFIG_USB_OTG
2375
2376/**
2377 * usb_bus_start_enum - start immediate enumeration (for OTG)
2378 * @bus: the bus (must use hcd framework)
2379 * @port_num: 1-based number of port; usually bus->otg_port
2380 * Context: in_interrupt()
2381 *
2382 * Starts enumeration, with an immediate reset followed later by
2383 * hub_wq identifying and possibly configuring the device.
2384 * This is needed by OTG controller drivers, where it helps meet
2385 * HNP protocol timing requirements for starting a port reset.
2386 *
2387 * Return: 0 if successful.
2388 */
2389int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2390{
2391 struct usb_hcd *hcd;
2392 int status = -EOPNOTSUPP;
2393
2394 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2395 * boards with root hubs hooked up to internal devices (instead of
2396 * just the OTG port) may need more attention to resetting...
2397 */
2398 hcd = bus_to_hcd(bus);
2399 if (port_num && hcd->driver->start_port_reset)
2400 status = hcd->driver->start_port_reset(hcd, port_num);
2401
2402 /* allocate hub_wq shortly after (first) root port reset finishes;
2403 * it may issue others, until at least 50 msecs have passed.
2404 */
2405 if (status == 0)
2406 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2407 return status;
2408}
2409EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2410
2411#endif
2412
2413/*-------------------------------------------------------------------------*/
2414
2415/**
2416 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2417 * @irq: the IRQ being raised
2418 * @__hcd: pointer to the HCD whose IRQ is being signaled
2419 *
2420 * If the controller isn't HALTed, calls the driver's irq handler.
2421 * Checks whether the controller is now dead.
2422 *
2423 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2424 */
2425irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2426{
2427 struct usb_hcd *hcd = __hcd;
2428 irqreturn_t rc;
2429
2430 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2431 rc = IRQ_NONE;
2432 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2433 rc = IRQ_NONE;
2434 else
2435 rc = IRQ_HANDLED;
2436
2437 return rc;
2438}
2439EXPORT_SYMBOL_GPL(usb_hcd_irq);
2440
2441/*-------------------------------------------------------------------------*/
2442
2443/**
2444 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2445 * @hcd: pointer to the HCD representing the controller
2446 *
2447 * This is called by bus glue to report a USB host controller that died
2448 * while operations may still have been pending. It's called automatically
2449 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2450 *
2451 * Only call this function with the primary HCD.
2452 */
2453void usb_hc_died (struct usb_hcd *hcd)
2454{
2455 unsigned long flags;
2456
2457 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2458
2459 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2460 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2461 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2462 if (hcd->rh_registered) {
2463 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2464
2465 /* make hub_wq clean up old urbs and devices */
2466 usb_set_device_state (hcd->self.root_hub,
2467 USB_STATE_NOTATTACHED);
2468 usb_kick_hub_wq(hcd->self.root_hub);
2469 }
2470 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2471 hcd = hcd->shared_hcd;
2472 if (hcd->rh_registered) {
2473 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2474
2475 /* make hub_wq clean up old urbs and devices */
2476 usb_set_device_state(hcd->self.root_hub,
2477 USB_STATE_NOTATTACHED);
2478 usb_kick_hub_wq(hcd->self.root_hub);
2479 }
2480 }
2481 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2482 /* Make sure that the other roothub is also deallocated. */
2483}
2484EXPORT_SYMBOL_GPL (usb_hc_died);
2485
2486/*-------------------------------------------------------------------------*/
2487
2488static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2489{
2490
2491 spin_lock_init(&bh->lock);
2492 INIT_LIST_HEAD(&bh->head);
2493 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2494}
2495
2496/**
2497 * usb_create_shared_hcd - create and initialize an HCD structure
2498 * @driver: HC driver that will use this hcd
2499 * @dev: device for this HC, stored in hcd->self.controller
2500 * @bus_name: value to store in hcd->self.bus_name
2501 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2502 * PCI device. Only allocate certain resources for the primary HCD
2503 * Context: !in_interrupt()
2504 *
2505 * Allocate a struct usb_hcd, with extra space at the end for the
2506 * HC driver's private data. Initialize the generic members of the
2507 * hcd structure.
2508 *
2509 * Return: On success, a pointer to the created and initialized HCD structure.
2510 * On failure (e.g. if memory is unavailable), %NULL.
2511 */
2512struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2513 struct device *dev, const char *bus_name,
2514 struct usb_hcd *primary_hcd)
2515{
2516 struct usb_hcd *hcd;
2517
2518 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2519 if (!hcd) {
2520 dev_dbg (dev, "hcd alloc failed\n");
2521 return NULL;
2522 }
2523 if (primary_hcd == NULL) {
2524 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2525 GFP_KERNEL);
2526 if (!hcd->bandwidth_mutex) {
2527 kfree(hcd);
2528 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2529 return NULL;
2530 }
2531 mutex_init(hcd->bandwidth_mutex);
2532 dev_set_drvdata(dev, hcd);
2533 } else {
2534 mutex_lock(&usb_port_peer_mutex);
2535 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2536 hcd->primary_hcd = primary_hcd;
2537 primary_hcd->primary_hcd = primary_hcd;
2538 hcd->shared_hcd = primary_hcd;
2539 primary_hcd->shared_hcd = hcd;
2540 mutex_unlock(&usb_port_peer_mutex);
2541 }
2542
2543 kref_init(&hcd->kref);
2544
2545 usb_bus_init(&hcd->self);
2546 hcd->self.controller = dev;
2547 hcd->self.bus_name = bus_name;
2548 hcd->self.uses_dma = (dev->dma_mask != NULL);
2549
2550 init_timer(&hcd->rh_timer);
2551 hcd->rh_timer.function = rh_timer_func;
2552 hcd->rh_timer.data = (unsigned long) hcd;
2553#ifdef CONFIG_PM
2554 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2555#endif
2556
2557 hcd->driver = driver;
2558 hcd->speed = driver->flags & HCD_MASK;
2559 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2560 "USB Host Controller";
2561 return hcd;
2562}
2563EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2564
2565/**
2566 * usb_create_hcd - create and initialize an HCD structure
2567 * @driver: HC driver that will use this hcd
2568 * @dev: device for this HC, stored in hcd->self.controller
2569 * @bus_name: value to store in hcd->self.bus_name
2570 * Context: !in_interrupt()
2571 *
2572 * Allocate a struct usb_hcd, with extra space at the end for the
2573 * HC driver's private data. Initialize the generic members of the
2574 * hcd structure.
2575 *
2576 * Return: On success, a pointer to the created and initialized HCD
2577 * structure. On failure (e.g. if memory is unavailable), %NULL.
2578 */
2579struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2580 struct device *dev, const char *bus_name)
2581{
2582 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2583}
2584EXPORT_SYMBOL_GPL(usb_create_hcd);
2585
2586/*
2587 * Roothubs that share one PCI device must also share the bandwidth mutex.
2588 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2589 * deallocated.
2590 *
2591 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2592 * freed. When hcd_release() is called for either hcd in a peer set
2593 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2594 * block new peering attempts
2595 */
2596static void hcd_release(struct kref *kref)
2597{
2598 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2599
2600 mutex_lock(&usb_port_peer_mutex);
2601 if (usb_hcd_is_primary_hcd(hcd))
2602 kfree(hcd->bandwidth_mutex);
2603 if (hcd->shared_hcd) {
2604 struct usb_hcd *peer = hcd->shared_hcd;
2605
2606 peer->shared_hcd = NULL;
2607 if (peer->primary_hcd == hcd)
2608 peer->primary_hcd = NULL;
2609 }
2610 mutex_unlock(&usb_port_peer_mutex);
2611 kfree(hcd);
2612}
2613
2614struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2615{
2616 if (hcd)
2617 kref_get (&hcd->kref);
2618 return hcd;
2619}
2620EXPORT_SYMBOL_GPL(usb_get_hcd);
2621
2622void usb_put_hcd (struct usb_hcd *hcd)
2623{
2624 if (hcd)
2625 kref_put (&hcd->kref, hcd_release);
2626}
2627EXPORT_SYMBOL_GPL(usb_put_hcd);
2628
2629int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2630{
2631 if (!hcd->primary_hcd)
2632 return 1;
2633 return hcd == hcd->primary_hcd;
2634}
2635EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2636
2637int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2638{
2639 if (!hcd->driver->find_raw_port_number)
2640 return port1;
2641
2642 return hcd->driver->find_raw_port_number(hcd, port1);
2643}
2644
2645static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2646 unsigned int irqnum, unsigned long irqflags)
2647{
2648 int retval;
2649
2650 if (hcd->driver->irq) {
2651
2652 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2653 hcd->driver->description, hcd->self.busnum);
2654 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2655 hcd->irq_descr, hcd);
2656 if (retval != 0) {
2657 dev_err(hcd->self.controller,
2658 "request interrupt %d failed\n",
2659 irqnum);
2660 return retval;
2661 }
2662 hcd->irq = irqnum;
2663 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2664 (hcd->driver->flags & HCD_MEMORY) ?
2665 "io mem" : "io base",
2666 (unsigned long long)hcd->rsrc_start);
2667 } else {
2668 hcd->irq = 0;
2669 if (hcd->rsrc_start)
2670 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2671 (hcd->driver->flags & HCD_MEMORY) ?
2672 "io mem" : "io base",
2673 (unsigned long long)hcd->rsrc_start);
2674 }
2675 return 0;
2676}
2677
2678/*
2679 * Before we free this root hub, flush in-flight peering attempts
2680 * and disable peer lookups
2681 */
2682static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2683{
2684 struct usb_device *rhdev;
2685
2686 mutex_lock(&usb_port_peer_mutex);
2687 rhdev = hcd->self.root_hub;
2688 hcd->self.root_hub = NULL;
2689 mutex_unlock(&usb_port_peer_mutex);
2690 usb_put_dev(rhdev);
2691}
2692
2693/**
2694 * usb_add_hcd - finish generic HCD structure initialization and register
2695 * @hcd: the usb_hcd structure to initialize
2696 * @irqnum: Interrupt line to allocate
2697 * @irqflags: Interrupt type flags
2698 *
2699 * Finish the remaining parts of generic HCD initialization: allocate the
2700 * buffers of consistent memory, register the bus, request the IRQ line,
2701 * and call the driver's reset() and start() routines.
2702 */
2703int usb_add_hcd(struct usb_hcd *hcd,
2704 unsigned int irqnum, unsigned long irqflags)
2705{
2706 int retval;
2707 struct usb_device *rhdev;
2708
2709 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2710 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2711
2712 if (IS_ERR(phy)) {
2713 retval = PTR_ERR(phy);
2714 if (retval == -EPROBE_DEFER)
2715 return retval;
2716 } else {
2717 retval = usb_phy_init(phy);
2718 if (retval) {
2719 usb_put_phy(phy);
2720 return retval;
2721 }
2722 hcd->usb_phy = phy;
2723 hcd->remove_phy = 1;
2724 }
2725 }
2726
2727 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2728 struct phy *phy = phy_get(hcd->self.controller, "usb");
2729
2730 if (IS_ERR(phy)) {
2731 retval = PTR_ERR(phy);
2732 if (retval == -EPROBE_DEFER)
2733 goto err_phy;
2734 } else {
2735 retval = phy_init(phy);
2736 if (retval) {
2737 phy_put(phy);
2738 goto err_phy;
2739 }
2740 retval = phy_power_on(phy);
2741 if (retval) {
2742 phy_exit(phy);
2743 phy_put(phy);
2744 goto err_phy;
2745 }
2746 hcd->phy = phy;
2747 hcd->remove_phy = 1;
2748 }
2749 }
2750
2751 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2752
2753 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2754 if (authorized_default < 0 || authorized_default > 1) {
2755 if (hcd->wireless)
2756 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2757 else
2758 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2759 } else {
2760 if (authorized_default)
2761 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2762 else
2763 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2764 }
2765 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2766
2767 /* per default all interfaces are authorized */
2768 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2769
2770 /* HC is in reset state, but accessible. Now do the one-time init,
2771 * bottom up so that hcds can customize the root hubs before hub_wq
2772 * starts talking to them. (Note, bus id is assigned early too.)
2773 */
2774 retval = hcd_buffer_create(hcd);
2775 if (retval != 0) {
2776 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2777 goto err_create_buf;
2778 }
2779
2780 retval = usb_register_bus(&hcd->self);
2781 if (retval < 0)
2782 goto err_register_bus;
2783
2784 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2785 if (rhdev == NULL) {
2786 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2787 retval = -ENOMEM;
2788 goto err_allocate_root_hub;
2789 }
2790 mutex_lock(&usb_port_peer_mutex);
2791 hcd->self.root_hub = rhdev;
2792 mutex_unlock(&usb_port_peer_mutex);
2793
2794 switch (hcd->speed) {
2795 case HCD_USB11:
2796 rhdev->speed = USB_SPEED_FULL;
2797 break;
2798 case HCD_USB2:
2799 rhdev->speed = USB_SPEED_HIGH;
2800 break;
2801 case HCD_USB25:
2802 rhdev->speed = USB_SPEED_WIRELESS;
2803 break;
2804 case HCD_USB3:
2805 rhdev->speed = USB_SPEED_SUPER;
2806 break;
2807 case HCD_USB31:
2808 rhdev->speed = USB_SPEED_SUPER_PLUS;
2809 break;
2810 default:
2811 retval = -EINVAL;
2812 goto err_set_rh_speed;
2813 }
2814
2815 /* wakeup flag init defaults to "everything works" for root hubs,
2816 * but drivers can override it in reset() if needed, along with
2817 * recording the overall controller's system wakeup capability.
2818 */
2819 device_set_wakeup_capable(&rhdev->dev, 1);
2820
2821 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2822 * registered. But since the controller can die at any time,
2823 * let's initialize the flag before touching the hardware.
2824 */
2825 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2826
2827 /* "reset" is misnamed; its role is now one-time init. the controller
2828 * should already have been reset (and boot firmware kicked off etc).
2829 */
2830 if (hcd->driver->reset) {
2831 retval = hcd->driver->reset(hcd);
2832 if (retval < 0) {
2833 dev_err(hcd->self.controller, "can't setup: %d\n",
2834 retval);
2835 goto err_hcd_driver_setup;
2836 }
2837 }
2838 hcd->rh_pollable = 1;
2839
2840 /* NOTE: root hub and controller capabilities may not be the same */
2841 if (device_can_wakeup(hcd->self.controller)
2842 && device_can_wakeup(&hcd->self.root_hub->dev))
2843 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2844
2845 /* initialize tasklets */
2846 init_giveback_urb_bh(&hcd->high_prio_bh);
2847 init_giveback_urb_bh(&hcd->low_prio_bh);
2848
2849 /* enable irqs just before we start the controller,
2850 * if the BIOS provides legacy PCI irqs.
2851 */
2852 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2853 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2854 if (retval)
2855 goto err_request_irq;
2856 }
2857
2858 hcd->state = HC_STATE_RUNNING;
2859 retval = hcd->driver->start(hcd);
2860 if (retval < 0) {
2861 dev_err(hcd->self.controller, "startup error %d\n", retval);
2862 goto err_hcd_driver_start;
2863 }
2864
2865 /* starting here, usbcore will pay attention to this root hub */
2866 retval = register_root_hub(hcd);
2867 if (retval != 0)
2868 goto err_register_root_hub;
2869
2870 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2871 if (retval < 0) {
2872 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2873 retval);
2874 goto error_create_attr_group;
2875 }
2876 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2877 usb_hcd_poll_rh_status(hcd);
2878
2879 return retval;
2880
2881error_create_attr_group:
2882 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2883 if (HC_IS_RUNNING(hcd->state))
2884 hcd->state = HC_STATE_QUIESCING;
2885 spin_lock_irq(&hcd_root_hub_lock);
2886 hcd->rh_registered = 0;
2887 spin_unlock_irq(&hcd_root_hub_lock);
2888
2889#ifdef CONFIG_PM
2890 cancel_work_sync(&hcd->wakeup_work);
2891#endif
2892 mutex_lock(&usb_bus_idr_lock);
2893 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2894 mutex_unlock(&usb_bus_idr_lock);
2895err_register_root_hub:
2896 hcd->rh_pollable = 0;
2897 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2898 del_timer_sync(&hcd->rh_timer);
2899 hcd->driver->stop(hcd);
2900 hcd->state = HC_STATE_HALT;
2901 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2902 del_timer_sync(&hcd->rh_timer);
2903err_hcd_driver_start:
2904 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2905 free_irq(irqnum, hcd);
2906err_request_irq:
2907err_hcd_driver_setup:
2908err_set_rh_speed:
2909 usb_put_invalidate_rhdev(hcd);
2910err_allocate_root_hub:
2911 usb_deregister_bus(&hcd->self);
2912err_register_bus:
2913 hcd_buffer_destroy(hcd);
2914err_create_buf:
2915 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2916 phy_power_off(hcd->phy);
2917 phy_exit(hcd->phy);
2918 phy_put(hcd->phy);
2919 hcd->phy = NULL;
2920 }
2921err_phy:
2922 if (hcd->remove_phy && hcd->usb_phy) {
2923 usb_phy_shutdown(hcd->usb_phy);
2924 usb_put_phy(hcd->usb_phy);
2925 hcd->usb_phy = NULL;
2926 }
2927 return retval;
2928}
2929EXPORT_SYMBOL_GPL(usb_add_hcd);
2930
2931/**
2932 * usb_remove_hcd - shutdown processing for generic HCDs
2933 * @hcd: the usb_hcd structure to remove
2934 * Context: !in_interrupt()
2935 *
2936 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2937 * invoking the HCD's stop() method.
2938 */
2939void usb_remove_hcd(struct usb_hcd *hcd)
2940{
2941 struct usb_device *rhdev = hcd->self.root_hub;
2942
2943 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2944
2945 usb_get_dev(rhdev);
2946 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2947
2948 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2949 if (HC_IS_RUNNING (hcd->state))
2950 hcd->state = HC_STATE_QUIESCING;
2951
2952 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2953 spin_lock_irq (&hcd_root_hub_lock);
2954 hcd->rh_registered = 0;
2955 spin_unlock_irq (&hcd_root_hub_lock);
2956
2957#ifdef CONFIG_PM
2958 cancel_work_sync(&hcd->wakeup_work);
2959#endif
2960
2961 mutex_lock(&usb_bus_idr_lock);
2962 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2963 mutex_unlock(&usb_bus_idr_lock);
2964
2965 /*
2966 * tasklet_kill() isn't needed here because:
2967 * - driver's disconnect() called from usb_disconnect() should
2968 * make sure its URBs are completed during the disconnect()
2969 * callback
2970 *
2971 * - it is too late to run complete() here since driver may have
2972 * been removed already now
2973 */
2974
2975 /* Prevent any more root-hub status calls from the timer.
2976 * The HCD might still restart the timer (if a port status change
2977 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2978 * the hub_status_data() callback.
2979 */
2980 hcd->rh_pollable = 0;
2981 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2982 del_timer_sync(&hcd->rh_timer);
2983
2984 hcd->driver->stop(hcd);
2985 hcd->state = HC_STATE_HALT;
2986
2987 /* In case the HCD restarted the timer, stop it again. */
2988 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2989 del_timer_sync(&hcd->rh_timer);
2990
2991 if (usb_hcd_is_primary_hcd(hcd)) {
2992 if (hcd->irq > 0)
2993 free_irq(hcd->irq, hcd);
2994 }
2995
2996 usb_deregister_bus(&hcd->self);
2997 hcd_buffer_destroy(hcd);
2998
2999 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3000 phy_power_off(hcd->phy);
3001 phy_exit(hcd->phy);
3002 phy_put(hcd->phy);
3003 hcd->phy = NULL;
3004 }
3005 if (hcd->remove_phy && hcd->usb_phy) {
3006 usb_phy_shutdown(hcd->usb_phy);
3007 usb_put_phy(hcd->usb_phy);
3008 hcd->usb_phy = NULL;
3009 }
3010
3011 usb_put_invalidate_rhdev(hcd);
3012}
3013EXPORT_SYMBOL_GPL(usb_remove_hcd);
3014
3015void
3016usb_hcd_platform_shutdown(struct platform_device *dev)
3017{
3018 struct usb_hcd *hcd = platform_get_drvdata(dev);
3019
3020 if (hcd->driver->shutdown)
3021 hcd->driver->shutdown(hcd);
3022}
3023EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3024
3025/*-------------------------------------------------------------------------*/
3026
3027#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3028
3029const struct usb_mon_operations *mon_ops;
3030
3031/*
3032 * The registration is unlocked.
3033 * We do it this way because we do not want to lock in hot paths.
3034 *
3035 * Notice that the code is minimally error-proof. Because usbmon needs
3036 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3037 */
3038
3039int usb_mon_register(const struct usb_mon_operations *ops)
3040{
3041
3042 if (mon_ops)
3043 return -EBUSY;
3044
3045 mon_ops = ops;
3046 mb();
3047 return 0;
3048}
3049EXPORT_SYMBOL_GPL (usb_mon_register);
3050
3051void usb_mon_deregister (void)
3052{
3053
3054 if (mon_ops == NULL) {
3055 printk(KERN_ERR "USB: monitor was not registered\n");
3056 return;
3057 }
3058 mon_ops = NULL;
3059 mb();
3060}
3061EXPORT_SYMBOL_GPL (usb_mon_deregister);
3062
3063#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34#include <linux/kcov.h>
35
36#include <linux/phy/phy.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/usb/otg.h>
40
41#include "usb.h"
42#include "phy.h"
43
44
45/*-------------------------------------------------------------------------*/
46
47/*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78/*-------------------------------------------------------------------------*/
79
80/* Keep track of which host controller drivers are loaded */
81unsigned long usb_hcds_loaded;
82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84/* host controllers we manage */
85DEFINE_IDR (usb_bus_idr);
86EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88/* used when allocating bus numbers */
89#define USB_MAXBUS 64
90
91/* used when updating list of hcds */
92DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95/* used for controlling access to virtual root hubs */
96static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98/* used when updating an endpoint's URB list */
99static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101/* used to protect against unlinking URBs after the device is gone */
102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104/* wait queue for synchronous unlinks */
105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107/*-------------------------------------------------------------------------*/
108
109/*
110 * Sharable chunks of root hub code.
111 */
112
113/*-------------------------------------------------------------------------*/
114#define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115#define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117/* usb 3.1 root hub device descriptor */
118static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136};
137
138/* usb 3.0 root hub device descriptor */
139static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157};
158
159/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178};
179
180/* usb 2.0 root hub device descriptor */
181static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199};
200
201/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203/* usb 1.1 root hub device descriptor */
204static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222};
223
224
225/*-------------------------------------------------------------------------*/
226
227/* Configuration descriptors for our root hubs */
228
229static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274};
275
276static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323};
324
325static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368};
369
370/* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376#define USB_AUTHORIZE_WIRED -1
377#define USB_AUTHORIZE_NONE 0
378#define USB_AUTHORIZE_ALL 1
379#define USB_AUTHORIZE_INTERNAL 2
380
381static int authorized_default = USB_AUTHORIZE_WIRED;
382module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387/*-------------------------------------------------------------------------*/
388
389/**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402static unsigned
403ascii2desc(char const *s, u8 *buf, unsigned len)
404{
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423}
424
425/**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438static unsigned
439rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440{
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474}
475
476
477/* Root hub control transfers execute synchronously */
478static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479{
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741}
742
743/*-------------------------------------------------------------------------*/
744
745/*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751 */
752void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753{
754 struct urb *urb;
755 int length;
756 unsigned long flags;
757 char buffer[6]; /* Any root hubs with > 31 ports? */
758
759 if (unlikely(!hcd->rh_pollable))
760 return;
761 if (!hcd->uses_new_polling && !hcd->status_urb)
762 return;
763
764 length = hcd->driver->hub_status_data(hcd, buffer);
765 if (length > 0) {
766
767 /* try to complete the status urb */
768 spin_lock_irqsave(&hcd_root_hub_lock, flags);
769 urb = hcd->status_urb;
770 if (urb) {
771 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
772 hcd->status_urb = NULL;
773 urb->actual_length = length;
774 memcpy(urb->transfer_buffer, buffer, length);
775
776 usb_hcd_unlink_urb_from_ep(hcd, urb);
777 usb_hcd_giveback_urb(hcd, urb, 0);
778 } else {
779 length = 0;
780 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
781 }
782 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
783 }
784
785 /* The USB 2.0 spec says 256 ms. This is close enough and won't
786 * exceed that limit if HZ is 100. The math is more clunky than
787 * maybe expected, this is to make sure that all timers for USB devices
788 * fire at the same time to give the CPU a break in between */
789 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
790 (length == 0 && hcd->status_urb != NULL))
791 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
792}
793EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
794
795/* timer callback */
796static void rh_timer_func (struct timer_list *t)
797{
798 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
799
800 usb_hcd_poll_rh_status(_hcd);
801}
802
803/*-------------------------------------------------------------------------*/
804
805static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
806{
807 int retval;
808 unsigned long flags;
809 unsigned len = 1 + (urb->dev->maxchild / 8);
810
811 spin_lock_irqsave (&hcd_root_hub_lock, flags);
812 if (hcd->status_urb || urb->transfer_buffer_length < len) {
813 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
814 retval = -EINVAL;
815 goto done;
816 }
817
818 retval = usb_hcd_link_urb_to_ep(hcd, urb);
819 if (retval)
820 goto done;
821
822 hcd->status_urb = urb;
823 urb->hcpriv = hcd; /* indicate it's queued */
824 if (!hcd->uses_new_polling)
825 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
826
827 /* If a status change has already occurred, report it ASAP */
828 else if (HCD_POLL_PENDING(hcd))
829 mod_timer(&hcd->rh_timer, jiffies);
830 retval = 0;
831 done:
832 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
833 return retval;
834}
835
836static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
837{
838 if (usb_endpoint_xfer_int(&urb->ep->desc))
839 return rh_queue_status (hcd, urb);
840 if (usb_endpoint_xfer_control(&urb->ep->desc))
841 return rh_call_control (hcd, urb);
842 return -EINVAL;
843}
844
845/*-------------------------------------------------------------------------*/
846
847/* Unlinks of root-hub control URBs are legal, but they don't do anything
848 * since these URBs always execute synchronously.
849 */
850static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
851{
852 unsigned long flags;
853 int rc;
854
855 spin_lock_irqsave(&hcd_root_hub_lock, flags);
856 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
857 if (rc)
858 goto done;
859
860 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
861 ; /* Do nothing */
862
863 } else { /* Status URB */
864 if (!hcd->uses_new_polling)
865 del_timer (&hcd->rh_timer);
866 if (urb == hcd->status_urb) {
867 hcd->status_urb = NULL;
868 usb_hcd_unlink_urb_from_ep(hcd, urb);
869 usb_hcd_giveback_urb(hcd, urb, status);
870 }
871 }
872 done:
873 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
874 return rc;
875}
876
877
878/*-------------------------------------------------------------------------*/
879
880/**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
887static void usb_bus_init (struct usb_bus *bus)
888{
889 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891 bus->devnum_next = 1;
892
893 bus->root_hub = NULL;
894 bus->busnum = -1;
895 bus->bandwidth_allocated = 0;
896 bus->bandwidth_int_reqs = 0;
897 bus->bandwidth_isoc_reqs = 0;
898 mutex_init(&bus->devnum_next_mutex);
899}
900
901/*-------------------------------------------------------------------------*/
902
903/**
904 * usb_register_bus - registers the USB host controller with the usb core
905 * @bus: pointer to the bus to register
906 *
907 * Context: task context, might sleep.
908 *
909 * Assigns a bus number, and links the controller into usbcore data
910 * structures so that it can be seen by scanning the bus list.
911 *
912 * Return: 0 if successful. A negative error code otherwise.
913 */
914static int usb_register_bus(struct usb_bus *bus)
915{
916 int result = -E2BIG;
917 int busnum;
918
919 mutex_lock(&usb_bus_idr_lock);
920 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
921 if (busnum < 0) {
922 pr_err("%s: failed to get bus number\n", usbcore_name);
923 goto error_find_busnum;
924 }
925 bus->busnum = busnum;
926 mutex_unlock(&usb_bus_idr_lock);
927
928 usb_notify_add_bus(bus);
929
930 dev_info (bus->controller, "new USB bus registered, assigned bus "
931 "number %d\n", bus->busnum);
932 return 0;
933
934error_find_busnum:
935 mutex_unlock(&usb_bus_idr_lock);
936 return result;
937}
938
939/**
940 * usb_deregister_bus - deregisters the USB host controller
941 * @bus: pointer to the bus to deregister
942 *
943 * Context: task context, might sleep.
944 *
945 * Recycles the bus number, and unlinks the controller from usbcore data
946 * structures so that it won't be seen by scanning the bus list.
947 */
948static void usb_deregister_bus (struct usb_bus *bus)
949{
950 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
951
952 /*
953 * NOTE: make sure that all the devices are removed by the
954 * controller code, as well as having it call this when cleaning
955 * itself up
956 */
957 mutex_lock(&usb_bus_idr_lock);
958 idr_remove(&usb_bus_idr, bus->busnum);
959 mutex_unlock(&usb_bus_idr_lock);
960
961 usb_notify_remove_bus(bus);
962}
963
964/**
965 * register_root_hub - called by usb_add_hcd() to register a root hub
966 * @hcd: host controller for this root hub
967 *
968 * This function registers the root hub with the USB subsystem. It sets up
969 * the device properly in the device tree and then calls usb_new_device()
970 * to register the usb device. It also assigns the root hub's USB address
971 * (always 1).
972 *
973 * Return: 0 if successful. A negative error code otherwise.
974 */
975static int register_root_hub(struct usb_hcd *hcd)
976{
977 struct device *parent_dev = hcd->self.controller;
978 struct usb_device *usb_dev = hcd->self.root_hub;
979 const int devnum = 1;
980 int retval;
981
982 usb_dev->devnum = devnum;
983 usb_dev->bus->devnum_next = devnum + 1;
984 set_bit (devnum, usb_dev->bus->devmap.devicemap);
985 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
986
987 mutex_lock(&usb_bus_idr_lock);
988
989 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
990 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
991 if (retval != sizeof usb_dev->descriptor) {
992 mutex_unlock(&usb_bus_idr_lock);
993 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
994 dev_name(&usb_dev->dev), retval);
995 return (retval < 0) ? retval : -EMSGSIZE;
996 }
997
998 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
999 retval = usb_get_bos_descriptor(usb_dev);
1000 if (!retval) {
1001 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1002 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1003 mutex_unlock(&usb_bus_idr_lock);
1004 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005 dev_name(&usb_dev->dev), retval);
1006 return retval;
1007 }
1008 }
1009
1010 retval = usb_new_device (usb_dev);
1011 if (retval) {
1012 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013 dev_name(&usb_dev->dev), retval);
1014 } else {
1015 spin_lock_irq (&hcd_root_hub_lock);
1016 hcd->rh_registered = 1;
1017 spin_unlock_irq (&hcd_root_hub_lock);
1018
1019 /* Did the HC die before the root hub was registered? */
1020 if (HCD_DEAD(hcd))
1021 usb_hc_died (hcd); /* This time clean up */
1022 }
1023 mutex_unlock(&usb_bus_idr_lock);
1024
1025 return retval;
1026}
1027
1028/*
1029 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1030 * @bus: the bus which the root hub belongs to
1031 * @portnum: the port which is being resumed
1032 *
1033 * HCDs should call this function when they know that a resume signal is
1034 * being sent to a root-hub port. The root hub will be prevented from
1035 * going into autosuspend until usb_hcd_end_port_resume() is called.
1036 *
1037 * The bus's private lock must be held by the caller.
1038 */
1039void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1040{
1041 unsigned bit = 1 << portnum;
1042
1043 if (!(bus->resuming_ports & bit)) {
1044 bus->resuming_ports |= bit;
1045 pm_runtime_get_noresume(&bus->root_hub->dev);
1046 }
1047}
1048EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1049
1050/*
1051 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1052 * @bus: the bus which the root hub belongs to
1053 * @portnum: the port which is being resumed
1054 *
1055 * HCDs should call this function when they know that a resume signal has
1056 * stopped being sent to a root-hub port. The root hub will be allowed to
1057 * autosuspend again.
1058 *
1059 * The bus's private lock must be held by the caller.
1060 */
1061void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1062{
1063 unsigned bit = 1 << portnum;
1064
1065 if (bus->resuming_ports & bit) {
1066 bus->resuming_ports &= ~bit;
1067 pm_runtime_put_noidle(&bus->root_hub->dev);
1068 }
1069}
1070EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1071
1072/*-------------------------------------------------------------------------*/
1073
1074/**
1075 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1076 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1077 * @is_input: true iff the transaction sends data to the host
1078 * @isoc: true for isochronous transactions, false for interrupt ones
1079 * @bytecount: how many bytes in the transaction.
1080 *
1081 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1082 *
1083 * Note:
1084 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1085 * scheduled in software, this function is only used for such scheduling.
1086 */
1087long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1088{
1089 unsigned long tmp;
1090
1091 switch (speed) {
1092 case USB_SPEED_LOW: /* INTR only */
1093 if (is_input) {
1094 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1095 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1096 } else {
1097 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1098 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1099 }
1100 case USB_SPEED_FULL: /* ISOC or INTR */
1101 if (isoc) {
1102 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1103 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1104 } else {
1105 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106 return 9107L + BW_HOST_DELAY + tmp;
1107 }
1108 case USB_SPEED_HIGH: /* ISOC or INTR */
1109 /* FIXME adjust for input vs output */
1110 if (isoc)
1111 tmp = HS_NSECS_ISO (bytecount);
1112 else
1113 tmp = HS_NSECS (bytecount);
1114 return tmp;
1115 default:
1116 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1117 return -1;
1118 }
1119}
1120EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1121
1122
1123/*-------------------------------------------------------------------------*/
1124
1125/*
1126 * Generic HC operations.
1127 */
1128
1129/*-------------------------------------------------------------------------*/
1130
1131/**
1132 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1133 * @hcd: host controller to which @urb was submitted
1134 * @urb: URB being submitted
1135 *
1136 * Host controller drivers should call this routine in their enqueue()
1137 * method. The HCD's private spinlock must be held and interrupts must
1138 * be disabled. The actions carried out here are required for URB
1139 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1140 *
1141 * Return: 0 for no error, otherwise a negative error code (in which case
1142 * the enqueue() method must fail). If no error occurs but enqueue() fails
1143 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1144 * the private spinlock and returning.
1145 */
1146int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1147{
1148 int rc = 0;
1149
1150 spin_lock(&hcd_urb_list_lock);
1151
1152 /* Check that the URB isn't being killed */
1153 if (unlikely(atomic_read(&urb->reject))) {
1154 rc = -EPERM;
1155 goto done;
1156 }
1157
1158 if (unlikely(!urb->ep->enabled)) {
1159 rc = -ENOENT;
1160 goto done;
1161 }
1162
1163 if (unlikely(!urb->dev->can_submit)) {
1164 rc = -EHOSTUNREACH;
1165 goto done;
1166 }
1167
1168 /*
1169 * Check the host controller's state and add the URB to the
1170 * endpoint's queue.
1171 */
1172 if (HCD_RH_RUNNING(hcd)) {
1173 urb->unlinked = 0;
1174 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1175 } else {
1176 rc = -ESHUTDOWN;
1177 goto done;
1178 }
1179 done:
1180 spin_unlock(&hcd_urb_list_lock);
1181 return rc;
1182}
1183EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1184
1185/**
1186 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1187 * @hcd: host controller to which @urb was submitted
1188 * @urb: URB being checked for unlinkability
1189 * @status: error code to store in @urb if the unlink succeeds
1190 *
1191 * Host controller drivers should call this routine in their dequeue()
1192 * method. The HCD's private spinlock must be held and interrupts must
1193 * be disabled. The actions carried out here are required for making
1194 * sure than an unlink is valid.
1195 *
1196 * Return: 0 for no error, otherwise a negative error code (in which case
1197 * the dequeue() method must fail). The possible error codes are:
1198 *
1199 * -EIDRM: @urb was not submitted or has already completed.
1200 * The completion function may not have been called yet.
1201 *
1202 * -EBUSY: @urb has already been unlinked.
1203 */
1204int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1205 int status)
1206{
1207 struct list_head *tmp;
1208
1209 /* insist the urb is still queued */
1210 list_for_each(tmp, &urb->ep->urb_list) {
1211 if (tmp == &urb->urb_list)
1212 break;
1213 }
1214 if (tmp != &urb->urb_list)
1215 return -EIDRM;
1216
1217 /* Any status except -EINPROGRESS means something already started to
1218 * unlink this URB from the hardware. So there's no more work to do.
1219 */
1220 if (urb->unlinked)
1221 return -EBUSY;
1222 urb->unlinked = status;
1223 return 0;
1224}
1225EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1226
1227/**
1228 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1229 * @hcd: host controller to which @urb was submitted
1230 * @urb: URB being unlinked
1231 *
1232 * Host controller drivers should call this routine before calling
1233 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1234 * interrupts must be disabled. The actions carried out here are required
1235 * for URB completion.
1236 */
1237void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1238{
1239 /* clear all state linking urb to this dev (and hcd) */
1240 spin_lock(&hcd_urb_list_lock);
1241 list_del_init(&urb->urb_list);
1242 spin_unlock(&hcd_urb_list_lock);
1243}
1244EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1245
1246/*
1247 * Some usb host controllers can only perform dma using a small SRAM area.
1248 * The usb core itself is however optimized for host controllers that can dma
1249 * using regular system memory - like pci devices doing bus mastering.
1250 *
1251 * To support host controllers with limited dma capabilities we provide dma
1252 * bounce buffers. This feature can be enabled by initializing
1253 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1254 *
1255 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1256 * data for dma using the genalloc API.
1257 *
1258 * So, to summarize...
1259 *
1260 * - We need "local" memory, canonical example being
1261 * a small SRAM on a discrete controller being the
1262 * only memory that the controller can read ...
1263 * (a) "normal" kernel memory is no good, and
1264 * (b) there's not enough to share
1265 *
1266 * - So we use that, even though the primary requirement
1267 * is that the memory be "local" (hence addressable
1268 * by that device), not "coherent".
1269 *
1270 */
1271
1272static int hcd_alloc_coherent(struct usb_bus *bus,
1273 gfp_t mem_flags, dma_addr_t *dma_handle,
1274 void **vaddr_handle, size_t size,
1275 enum dma_data_direction dir)
1276{
1277 unsigned char *vaddr;
1278
1279 if (*vaddr_handle == NULL) {
1280 WARN_ON_ONCE(1);
1281 return -EFAULT;
1282 }
1283
1284 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1285 mem_flags, dma_handle);
1286 if (!vaddr)
1287 return -ENOMEM;
1288
1289 /*
1290 * Store the virtual address of the buffer at the end
1291 * of the allocated dma buffer. The size of the buffer
1292 * may be uneven so use unaligned functions instead
1293 * of just rounding up. It makes sense to optimize for
1294 * memory footprint over access speed since the amount
1295 * of memory available for dma may be limited.
1296 */
1297 put_unaligned((unsigned long)*vaddr_handle,
1298 (unsigned long *)(vaddr + size));
1299
1300 if (dir == DMA_TO_DEVICE)
1301 memcpy(vaddr, *vaddr_handle, size);
1302
1303 *vaddr_handle = vaddr;
1304 return 0;
1305}
1306
1307static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1308 void **vaddr_handle, size_t size,
1309 enum dma_data_direction dir)
1310{
1311 unsigned char *vaddr = *vaddr_handle;
1312
1313 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1314
1315 if (dir == DMA_FROM_DEVICE)
1316 memcpy(vaddr, *vaddr_handle, size);
1317
1318 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1319
1320 *vaddr_handle = vaddr;
1321 *dma_handle = 0;
1322}
1323
1324void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1325{
1326 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1327 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1328 dma_unmap_single(hcd->self.sysdev,
1329 urb->setup_dma,
1330 sizeof(struct usb_ctrlrequest),
1331 DMA_TO_DEVICE);
1332 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1333 hcd_free_coherent(urb->dev->bus,
1334 &urb->setup_dma,
1335 (void **) &urb->setup_packet,
1336 sizeof(struct usb_ctrlrequest),
1337 DMA_TO_DEVICE);
1338
1339 /* Make it safe to call this routine more than once */
1340 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1341}
1342EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1343
1344static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1345{
1346 if (hcd->driver->unmap_urb_for_dma)
1347 hcd->driver->unmap_urb_for_dma(hcd, urb);
1348 else
1349 usb_hcd_unmap_urb_for_dma(hcd, urb);
1350}
1351
1352void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353{
1354 enum dma_data_direction dir;
1355
1356 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1357
1358 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1359 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1360 (urb->transfer_flags & URB_DMA_MAP_SG))
1361 dma_unmap_sg(hcd->self.sysdev,
1362 urb->sg,
1363 urb->num_sgs,
1364 dir);
1365 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1366 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1367 dma_unmap_page(hcd->self.sysdev,
1368 urb->transfer_dma,
1369 urb->transfer_buffer_length,
1370 dir);
1371 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1372 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1373 dma_unmap_single(hcd->self.sysdev,
1374 urb->transfer_dma,
1375 urb->transfer_buffer_length,
1376 dir);
1377 else if (urb->transfer_flags & URB_MAP_LOCAL)
1378 hcd_free_coherent(urb->dev->bus,
1379 &urb->transfer_dma,
1380 &urb->transfer_buffer,
1381 urb->transfer_buffer_length,
1382 dir);
1383
1384 /* Make it safe to call this routine more than once */
1385 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1386 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1387}
1388EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1389
1390static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1391 gfp_t mem_flags)
1392{
1393 if (hcd->driver->map_urb_for_dma)
1394 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1395 else
1396 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1397}
1398
1399int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1400 gfp_t mem_flags)
1401{
1402 enum dma_data_direction dir;
1403 int ret = 0;
1404
1405 /* Map the URB's buffers for DMA access.
1406 * Lower level HCD code should use *_dma exclusively,
1407 * unless it uses pio or talks to another transport,
1408 * or uses the provided scatter gather list for bulk.
1409 */
1410
1411 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1412 if (hcd->self.uses_pio_for_control)
1413 return ret;
1414 if (hcd->localmem_pool) {
1415 ret = hcd_alloc_coherent(
1416 urb->dev->bus, mem_flags,
1417 &urb->setup_dma,
1418 (void **)&urb->setup_packet,
1419 sizeof(struct usb_ctrlrequest),
1420 DMA_TO_DEVICE);
1421 if (ret)
1422 return ret;
1423 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1424 } else if (hcd_uses_dma(hcd)) {
1425 if (object_is_on_stack(urb->setup_packet)) {
1426 WARN_ONCE(1, "setup packet is on stack\n");
1427 return -EAGAIN;
1428 }
1429
1430 urb->setup_dma = dma_map_single(
1431 hcd->self.sysdev,
1432 urb->setup_packet,
1433 sizeof(struct usb_ctrlrequest),
1434 DMA_TO_DEVICE);
1435 if (dma_mapping_error(hcd->self.sysdev,
1436 urb->setup_dma))
1437 return -EAGAIN;
1438 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1439 }
1440 }
1441
1442 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443 if (urb->transfer_buffer_length != 0
1444 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1445 if (hcd->localmem_pool) {
1446 ret = hcd_alloc_coherent(
1447 urb->dev->bus, mem_flags,
1448 &urb->transfer_dma,
1449 &urb->transfer_buffer,
1450 urb->transfer_buffer_length,
1451 dir);
1452 if (ret == 0)
1453 urb->transfer_flags |= URB_MAP_LOCAL;
1454 } else if (hcd_uses_dma(hcd)) {
1455 if (urb->num_sgs) {
1456 int n;
1457
1458 /* We don't support sg for isoc transfers ! */
1459 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1460 WARN_ON(1);
1461 return -EINVAL;
1462 }
1463
1464 n = dma_map_sg(
1465 hcd->self.sysdev,
1466 urb->sg,
1467 urb->num_sgs,
1468 dir);
1469 if (n <= 0)
1470 ret = -EAGAIN;
1471 else
1472 urb->transfer_flags |= URB_DMA_MAP_SG;
1473 urb->num_mapped_sgs = n;
1474 if (n != urb->num_sgs)
1475 urb->transfer_flags |=
1476 URB_DMA_SG_COMBINED;
1477 } else if (urb->sg) {
1478 struct scatterlist *sg = urb->sg;
1479 urb->transfer_dma = dma_map_page(
1480 hcd->self.sysdev,
1481 sg_page(sg),
1482 sg->offset,
1483 urb->transfer_buffer_length,
1484 dir);
1485 if (dma_mapping_error(hcd->self.sysdev,
1486 urb->transfer_dma))
1487 ret = -EAGAIN;
1488 else
1489 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1490 } else if (object_is_on_stack(urb->transfer_buffer)) {
1491 WARN_ONCE(1, "transfer buffer is on stack\n");
1492 ret = -EAGAIN;
1493 } else {
1494 urb->transfer_dma = dma_map_single(
1495 hcd->self.sysdev,
1496 urb->transfer_buffer,
1497 urb->transfer_buffer_length,
1498 dir);
1499 if (dma_mapping_error(hcd->self.sysdev,
1500 urb->transfer_dma))
1501 ret = -EAGAIN;
1502 else
1503 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1504 }
1505 }
1506 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1507 URB_SETUP_MAP_LOCAL)))
1508 usb_hcd_unmap_urb_for_dma(hcd, urb);
1509 }
1510 return ret;
1511}
1512EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1513
1514/*-------------------------------------------------------------------------*/
1515
1516/* may be called in any context with a valid urb->dev usecount
1517 * caller surrenders "ownership" of urb
1518 * expects usb_submit_urb() to have sanity checked and conditioned all
1519 * inputs in the urb
1520 */
1521int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1522{
1523 int status;
1524 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1525
1526 /* increment urb's reference count as part of giving it to the HCD
1527 * (which will control it). HCD guarantees that it either returns
1528 * an error or calls giveback(), but not both.
1529 */
1530 usb_get_urb(urb);
1531 atomic_inc(&urb->use_count);
1532 atomic_inc(&urb->dev->urbnum);
1533 usbmon_urb_submit(&hcd->self, urb);
1534
1535 /* NOTE requirements on root-hub callers (usbfs and the hub
1536 * driver, for now): URBs' urb->transfer_buffer must be
1537 * valid and usb_buffer_{sync,unmap}() not be needed, since
1538 * they could clobber root hub response data. Also, control
1539 * URBs must be submitted in process context with interrupts
1540 * enabled.
1541 */
1542
1543 if (is_root_hub(urb->dev)) {
1544 status = rh_urb_enqueue(hcd, urb);
1545 } else {
1546 status = map_urb_for_dma(hcd, urb, mem_flags);
1547 if (likely(status == 0)) {
1548 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1549 if (unlikely(status))
1550 unmap_urb_for_dma(hcd, urb);
1551 }
1552 }
1553
1554 if (unlikely(status)) {
1555 usbmon_urb_submit_error(&hcd->self, urb, status);
1556 urb->hcpriv = NULL;
1557 INIT_LIST_HEAD(&urb->urb_list);
1558 atomic_dec(&urb->use_count);
1559 atomic_dec(&urb->dev->urbnum);
1560 if (atomic_read(&urb->reject))
1561 wake_up(&usb_kill_urb_queue);
1562 usb_put_urb(urb);
1563 }
1564 return status;
1565}
1566
1567/*-------------------------------------------------------------------------*/
1568
1569/* this makes the hcd giveback() the urb more quickly, by kicking it
1570 * off hardware queues (which may take a while) and returning it as
1571 * soon as practical. we've already set up the urb's return status,
1572 * but we can't know if the callback completed already.
1573 */
1574static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1575{
1576 int value;
1577
1578 if (is_root_hub(urb->dev))
1579 value = usb_rh_urb_dequeue(hcd, urb, status);
1580 else {
1581
1582 /* The only reason an HCD might fail this call is if
1583 * it has not yet fully queued the urb to begin with.
1584 * Such failures should be harmless. */
1585 value = hcd->driver->urb_dequeue(hcd, urb, status);
1586 }
1587 return value;
1588}
1589
1590/*
1591 * called in any context
1592 *
1593 * caller guarantees urb won't be recycled till both unlink()
1594 * and the urb's completion function return
1595 */
1596int usb_hcd_unlink_urb (struct urb *urb, int status)
1597{
1598 struct usb_hcd *hcd;
1599 struct usb_device *udev = urb->dev;
1600 int retval = -EIDRM;
1601 unsigned long flags;
1602
1603 /* Prevent the device and bus from going away while
1604 * the unlink is carried out. If they are already gone
1605 * then urb->use_count must be 0, since disconnected
1606 * devices can't have any active URBs.
1607 */
1608 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1609 if (atomic_read(&urb->use_count) > 0) {
1610 retval = 0;
1611 usb_get_dev(udev);
1612 }
1613 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1614 if (retval == 0) {
1615 hcd = bus_to_hcd(urb->dev->bus);
1616 retval = unlink1(hcd, urb, status);
1617 if (retval == 0)
1618 retval = -EINPROGRESS;
1619 else if (retval != -EIDRM && retval != -EBUSY)
1620 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1621 urb, retval);
1622 usb_put_dev(udev);
1623 }
1624 return retval;
1625}
1626
1627/*-------------------------------------------------------------------------*/
1628
1629static void __usb_hcd_giveback_urb(struct urb *urb)
1630{
1631 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1632 struct usb_anchor *anchor = urb->anchor;
1633 int status = urb->unlinked;
1634
1635 urb->hcpriv = NULL;
1636 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1637 urb->actual_length < urb->transfer_buffer_length &&
1638 !status))
1639 status = -EREMOTEIO;
1640
1641 unmap_urb_for_dma(hcd, urb);
1642 usbmon_urb_complete(&hcd->self, urb, status);
1643 usb_anchor_suspend_wakeups(anchor);
1644 usb_unanchor_urb(urb);
1645 if (likely(status == 0))
1646 usb_led_activity(USB_LED_EVENT_HOST);
1647
1648 /* pass ownership to the completion handler */
1649 urb->status = status;
1650 /*
1651 * This function can be called in task context inside another remote
1652 * coverage collection section, but kcov doesn't support that kind of
1653 * recursion yet. Only collect coverage in softirq context for now.
1654 */
1655 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1656 urb->complete(urb);
1657 kcov_remote_stop_softirq();
1658
1659 usb_anchor_resume_wakeups(anchor);
1660 atomic_dec(&urb->use_count);
1661 if (unlikely(atomic_read(&urb->reject)))
1662 wake_up(&usb_kill_urb_queue);
1663 usb_put_urb(urb);
1664}
1665
1666static void usb_giveback_urb_bh(struct tasklet_struct *t)
1667{
1668 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1669 struct list_head local_list;
1670
1671 spin_lock_irq(&bh->lock);
1672 bh->running = true;
1673 restart:
1674 list_replace_init(&bh->head, &local_list);
1675 spin_unlock_irq(&bh->lock);
1676
1677 while (!list_empty(&local_list)) {
1678 struct urb *urb;
1679
1680 urb = list_entry(local_list.next, struct urb, urb_list);
1681 list_del_init(&urb->urb_list);
1682 bh->completing_ep = urb->ep;
1683 __usb_hcd_giveback_urb(urb);
1684 bh->completing_ep = NULL;
1685 }
1686
1687 /* check if there are new URBs to giveback */
1688 spin_lock_irq(&bh->lock);
1689 if (!list_empty(&bh->head))
1690 goto restart;
1691 bh->running = false;
1692 spin_unlock_irq(&bh->lock);
1693}
1694
1695/**
1696 * usb_hcd_giveback_urb - return URB from HCD to device driver
1697 * @hcd: host controller returning the URB
1698 * @urb: urb being returned to the USB device driver.
1699 * @status: completion status code for the URB.
1700 *
1701 * Context: atomic. The completion callback is invoked in caller's context.
1702 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1703 * context (except for URBs submitted to the root hub which always complete in
1704 * caller's context).
1705 *
1706 * This hands the URB from HCD to its USB device driver, using its
1707 * completion function. The HCD has freed all per-urb resources
1708 * (and is done using urb->hcpriv). It also released all HCD locks;
1709 * the device driver won't cause problems if it frees, modifies,
1710 * or resubmits this URB.
1711 *
1712 * If @urb was unlinked, the value of @status will be overridden by
1713 * @urb->unlinked. Erroneous short transfers are detected in case
1714 * the HCD hasn't checked for them.
1715 */
1716void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1717{
1718 struct giveback_urb_bh *bh;
1719 bool running, high_prio_bh;
1720
1721 /* pass status to tasklet via unlinked */
1722 if (likely(!urb->unlinked))
1723 urb->unlinked = status;
1724
1725 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1726 __usb_hcd_giveback_urb(urb);
1727 return;
1728 }
1729
1730 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1731 bh = &hcd->high_prio_bh;
1732 high_prio_bh = true;
1733 } else {
1734 bh = &hcd->low_prio_bh;
1735 high_prio_bh = false;
1736 }
1737
1738 spin_lock(&bh->lock);
1739 list_add_tail(&urb->urb_list, &bh->head);
1740 running = bh->running;
1741 spin_unlock(&bh->lock);
1742
1743 if (running)
1744 ;
1745 else if (high_prio_bh)
1746 tasklet_hi_schedule(&bh->bh);
1747 else
1748 tasklet_schedule(&bh->bh);
1749}
1750EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1751
1752/*-------------------------------------------------------------------------*/
1753
1754/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1755 * queue to drain completely. The caller must first insure that no more
1756 * URBs can be submitted for this endpoint.
1757 */
1758void usb_hcd_flush_endpoint(struct usb_device *udev,
1759 struct usb_host_endpoint *ep)
1760{
1761 struct usb_hcd *hcd;
1762 struct urb *urb;
1763
1764 if (!ep)
1765 return;
1766 might_sleep();
1767 hcd = bus_to_hcd(udev->bus);
1768
1769 /* No more submits can occur */
1770 spin_lock_irq(&hcd_urb_list_lock);
1771rescan:
1772 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1773 int is_in;
1774
1775 if (urb->unlinked)
1776 continue;
1777 usb_get_urb (urb);
1778 is_in = usb_urb_dir_in(urb);
1779 spin_unlock(&hcd_urb_list_lock);
1780
1781 /* kick hcd */
1782 unlink1(hcd, urb, -ESHUTDOWN);
1783 dev_dbg (hcd->self.controller,
1784 "shutdown urb %pK ep%d%s-%s\n",
1785 urb, usb_endpoint_num(&ep->desc),
1786 is_in ? "in" : "out",
1787 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1788 usb_put_urb (urb);
1789
1790 /* list contents may have changed */
1791 spin_lock(&hcd_urb_list_lock);
1792 goto rescan;
1793 }
1794 spin_unlock_irq(&hcd_urb_list_lock);
1795
1796 /* Wait until the endpoint queue is completely empty */
1797 while (!list_empty (&ep->urb_list)) {
1798 spin_lock_irq(&hcd_urb_list_lock);
1799
1800 /* The list may have changed while we acquired the spinlock */
1801 urb = NULL;
1802 if (!list_empty (&ep->urb_list)) {
1803 urb = list_entry (ep->urb_list.prev, struct urb,
1804 urb_list);
1805 usb_get_urb (urb);
1806 }
1807 spin_unlock_irq(&hcd_urb_list_lock);
1808
1809 if (urb) {
1810 usb_kill_urb (urb);
1811 usb_put_urb (urb);
1812 }
1813 }
1814}
1815
1816/**
1817 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1818 * the bus bandwidth
1819 * @udev: target &usb_device
1820 * @new_config: new configuration to install
1821 * @cur_alt: the current alternate interface setting
1822 * @new_alt: alternate interface setting that is being installed
1823 *
1824 * To change configurations, pass in the new configuration in new_config,
1825 * and pass NULL for cur_alt and new_alt.
1826 *
1827 * To reset a device's configuration (put the device in the ADDRESSED state),
1828 * pass in NULL for new_config, cur_alt, and new_alt.
1829 *
1830 * To change alternate interface settings, pass in NULL for new_config,
1831 * pass in the current alternate interface setting in cur_alt,
1832 * and pass in the new alternate interface setting in new_alt.
1833 *
1834 * Return: An error if the requested bandwidth change exceeds the
1835 * bus bandwidth or host controller internal resources.
1836 */
1837int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1838 struct usb_host_config *new_config,
1839 struct usb_host_interface *cur_alt,
1840 struct usb_host_interface *new_alt)
1841{
1842 int num_intfs, i, j;
1843 struct usb_host_interface *alt = NULL;
1844 int ret = 0;
1845 struct usb_hcd *hcd;
1846 struct usb_host_endpoint *ep;
1847
1848 hcd = bus_to_hcd(udev->bus);
1849 if (!hcd->driver->check_bandwidth)
1850 return 0;
1851
1852 /* Configuration is being removed - set configuration 0 */
1853 if (!new_config && !cur_alt) {
1854 for (i = 1; i < 16; ++i) {
1855 ep = udev->ep_out[i];
1856 if (ep)
1857 hcd->driver->drop_endpoint(hcd, udev, ep);
1858 ep = udev->ep_in[i];
1859 if (ep)
1860 hcd->driver->drop_endpoint(hcd, udev, ep);
1861 }
1862 hcd->driver->check_bandwidth(hcd, udev);
1863 return 0;
1864 }
1865 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1866 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1867 * of the bus. There will always be bandwidth for endpoint 0, so it's
1868 * ok to exclude it.
1869 */
1870 if (new_config) {
1871 num_intfs = new_config->desc.bNumInterfaces;
1872 /* Remove endpoints (except endpoint 0, which is always on the
1873 * schedule) from the old config from the schedule
1874 */
1875 for (i = 1; i < 16; ++i) {
1876 ep = udev->ep_out[i];
1877 if (ep) {
1878 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1879 if (ret < 0)
1880 goto reset;
1881 }
1882 ep = udev->ep_in[i];
1883 if (ep) {
1884 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1885 if (ret < 0)
1886 goto reset;
1887 }
1888 }
1889 for (i = 0; i < num_intfs; ++i) {
1890 struct usb_host_interface *first_alt;
1891 int iface_num;
1892
1893 first_alt = &new_config->intf_cache[i]->altsetting[0];
1894 iface_num = first_alt->desc.bInterfaceNumber;
1895 /* Set up endpoints for alternate interface setting 0 */
1896 alt = usb_find_alt_setting(new_config, iface_num, 0);
1897 if (!alt)
1898 /* No alt setting 0? Pick the first setting. */
1899 alt = first_alt;
1900
1901 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1902 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1903 if (ret < 0)
1904 goto reset;
1905 }
1906 }
1907 }
1908 if (cur_alt && new_alt) {
1909 struct usb_interface *iface = usb_ifnum_to_if(udev,
1910 cur_alt->desc.bInterfaceNumber);
1911
1912 if (!iface)
1913 return -EINVAL;
1914 if (iface->resetting_device) {
1915 /*
1916 * The USB core just reset the device, so the xHCI host
1917 * and the device will think alt setting 0 is installed.
1918 * However, the USB core will pass in the alternate
1919 * setting installed before the reset as cur_alt. Dig
1920 * out the alternate setting 0 structure, or the first
1921 * alternate setting if a broken device doesn't have alt
1922 * setting 0.
1923 */
1924 cur_alt = usb_altnum_to_altsetting(iface, 0);
1925 if (!cur_alt)
1926 cur_alt = &iface->altsetting[0];
1927 }
1928
1929 /* Drop all the endpoints in the current alt setting */
1930 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1931 ret = hcd->driver->drop_endpoint(hcd, udev,
1932 &cur_alt->endpoint[i]);
1933 if (ret < 0)
1934 goto reset;
1935 }
1936 /* Add all the endpoints in the new alt setting */
1937 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1938 ret = hcd->driver->add_endpoint(hcd, udev,
1939 &new_alt->endpoint[i]);
1940 if (ret < 0)
1941 goto reset;
1942 }
1943 }
1944 ret = hcd->driver->check_bandwidth(hcd, udev);
1945reset:
1946 if (ret < 0)
1947 hcd->driver->reset_bandwidth(hcd, udev);
1948 return ret;
1949}
1950
1951/* Disables the endpoint: synchronizes with the hcd to make sure all
1952 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1953 * have been called previously. Use for set_configuration, set_interface,
1954 * driver removal, physical disconnect.
1955 *
1956 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1957 * type, maxpacket size, toggle, halt status, and scheduling.
1958 */
1959void usb_hcd_disable_endpoint(struct usb_device *udev,
1960 struct usb_host_endpoint *ep)
1961{
1962 struct usb_hcd *hcd;
1963
1964 might_sleep();
1965 hcd = bus_to_hcd(udev->bus);
1966 if (hcd->driver->endpoint_disable)
1967 hcd->driver->endpoint_disable(hcd, ep);
1968}
1969
1970/**
1971 * usb_hcd_reset_endpoint - reset host endpoint state
1972 * @udev: USB device.
1973 * @ep: the endpoint to reset.
1974 *
1975 * Resets any host endpoint state such as the toggle bit, sequence
1976 * number and current window.
1977 */
1978void usb_hcd_reset_endpoint(struct usb_device *udev,
1979 struct usb_host_endpoint *ep)
1980{
1981 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1982
1983 if (hcd->driver->endpoint_reset)
1984 hcd->driver->endpoint_reset(hcd, ep);
1985 else {
1986 int epnum = usb_endpoint_num(&ep->desc);
1987 int is_out = usb_endpoint_dir_out(&ep->desc);
1988 int is_control = usb_endpoint_xfer_control(&ep->desc);
1989
1990 usb_settoggle(udev, epnum, is_out, 0);
1991 if (is_control)
1992 usb_settoggle(udev, epnum, !is_out, 0);
1993 }
1994}
1995
1996/**
1997 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1998 * @interface: alternate setting that includes all endpoints.
1999 * @eps: array of endpoints that need streams.
2000 * @num_eps: number of endpoints in the array.
2001 * @num_streams: number of streams to allocate.
2002 * @mem_flags: flags hcd should use to allocate memory.
2003 *
2004 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2005 * Drivers may queue multiple transfers to different stream IDs, which may
2006 * complete in a different order than they were queued.
2007 *
2008 * Return: On success, the number of allocated streams. On failure, a negative
2009 * error code.
2010 */
2011int usb_alloc_streams(struct usb_interface *interface,
2012 struct usb_host_endpoint **eps, unsigned int num_eps,
2013 unsigned int num_streams, gfp_t mem_flags)
2014{
2015 struct usb_hcd *hcd;
2016 struct usb_device *dev;
2017 int i, ret;
2018
2019 dev = interface_to_usbdev(interface);
2020 hcd = bus_to_hcd(dev->bus);
2021 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2022 return -EINVAL;
2023 if (dev->speed < USB_SPEED_SUPER)
2024 return -EINVAL;
2025 if (dev->state < USB_STATE_CONFIGURED)
2026 return -ENODEV;
2027
2028 for (i = 0; i < num_eps; i++) {
2029 /* Streams only apply to bulk endpoints. */
2030 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2031 return -EINVAL;
2032 /* Re-alloc is not allowed */
2033 if (eps[i]->streams)
2034 return -EINVAL;
2035 }
2036
2037 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2038 num_streams, mem_flags);
2039 if (ret < 0)
2040 return ret;
2041
2042 for (i = 0; i < num_eps; i++)
2043 eps[i]->streams = ret;
2044
2045 return ret;
2046}
2047EXPORT_SYMBOL_GPL(usb_alloc_streams);
2048
2049/**
2050 * usb_free_streams - free bulk endpoint stream IDs.
2051 * @interface: alternate setting that includes all endpoints.
2052 * @eps: array of endpoints to remove streams from.
2053 * @num_eps: number of endpoints in the array.
2054 * @mem_flags: flags hcd should use to allocate memory.
2055 *
2056 * Reverts a group of bulk endpoints back to not using stream IDs.
2057 * Can fail if we are given bad arguments, or HCD is broken.
2058 *
2059 * Return: 0 on success. On failure, a negative error code.
2060 */
2061int usb_free_streams(struct usb_interface *interface,
2062 struct usb_host_endpoint **eps, unsigned int num_eps,
2063 gfp_t mem_flags)
2064{
2065 struct usb_hcd *hcd;
2066 struct usb_device *dev;
2067 int i, ret;
2068
2069 dev = interface_to_usbdev(interface);
2070 hcd = bus_to_hcd(dev->bus);
2071 if (dev->speed < USB_SPEED_SUPER)
2072 return -EINVAL;
2073
2074 /* Double-free is not allowed */
2075 for (i = 0; i < num_eps; i++)
2076 if (!eps[i] || !eps[i]->streams)
2077 return -EINVAL;
2078
2079 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2080 if (ret < 0)
2081 return ret;
2082
2083 for (i = 0; i < num_eps; i++)
2084 eps[i]->streams = 0;
2085
2086 return ret;
2087}
2088EXPORT_SYMBOL_GPL(usb_free_streams);
2089
2090/* Protect against drivers that try to unlink URBs after the device
2091 * is gone, by waiting until all unlinks for @udev are finished.
2092 * Since we don't currently track URBs by device, simply wait until
2093 * nothing is running in the locked region of usb_hcd_unlink_urb().
2094 */
2095void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2096{
2097 spin_lock_irq(&hcd_urb_unlink_lock);
2098 spin_unlock_irq(&hcd_urb_unlink_lock);
2099}
2100
2101/*-------------------------------------------------------------------------*/
2102
2103/* called in any context */
2104int usb_hcd_get_frame_number (struct usb_device *udev)
2105{
2106 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2107
2108 if (!HCD_RH_RUNNING(hcd))
2109 return -ESHUTDOWN;
2110 return hcd->driver->get_frame_number (hcd);
2111}
2112
2113/*-------------------------------------------------------------------------*/
2114#ifdef CONFIG_USB_HCD_TEST_MODE
2115
2116static void usb_ehset_completion(struct urb *urb)
2117{
2118 struct completion *done = urb->context;
2119
2120 complete(done);
2121}
2122/*
2123 * Allocate and initialize a control URB. This request will be used by the
2124 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2125 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2126 * Return NULL if failed.
2127 */
2128static struct urb *request_single_step_set_feature_urb(
2129 struct usb_device *udev,
2130 void *dr,
2131 void *buf,
2132 struct completion *done)
2133{
2134 struct urb *urb;
2135 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2136 struct usb_host_endpoint *ep;
2137
2138 urb = usb_alloc_urb(0, GFP_KERNEL);
2139 if (!urb)
2140 return NULL;
2141
2142 urb->pipe = usb_rcvctrlpipe(udev, 0);
2143 ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out)
2144 [usb_pipeendpoint(urb->pipe)];
2145 if (!ep) {
2146 usb_free_urb(urb);
2147 return NULL;
2148 }
2149
2150 urb->ep = ep;
2151 urb->dev = udev;
2152 urb->setup_packet = (void *)dr;
2153 urb->transfer_buffer = buf;
2154 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2155 urb->complete = usb_ehset_completion;
2156 urb->status = -EINPROGRESS;
2157 urb->actual_length = 0;
2158 urb->transfer_flags = URB_DIR_IN;
2159 usb_get_urb(urb);
2160 atomic_inc(&urb->use_count);
2161 atomic_inc(&urb->dev->urbnum);
2162 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2163 usb_put_urb(urb);
2164 usb_free_urb(urb);
2165 return NULL;
2166 }
2167
2168 urb->context = done;
2169 return urb;
2170}
2171
2172int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2173{
2174 int retval = -ENOMEM;
2175 struct usb_ctrlrequest *dr;
2176 struct urb *urb;
2177 struct usb_device *udev;
2178 struct usb_device_descriptor *buf;
2179 DECLARE_COMPLETION_ONSTACK(done);
2180
2181 /* Obtain udev of the rhub's child port */
2182 udev = usb_hub_find_child(hcd->self.root_hub, port);
2183 if (!udev) {
2184 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2185 return -ENODEV;
2186 }
2187 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2188 if (!buf)
2189 return -ENOMEM;
2190
2191 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2192 if (!dr) {
2193 kfree(buf);
2194 return -ENOMEM;
2195 }
2196
2197 /* Fill Setup packet for GetDescriptor */
2198 dr->bRequestType = USB_DIR_IN;
2199 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2200 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2201 dr->wIndex = 0;
2202 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2203 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2204 if (!urb)
2205 goto cleanup;
2206
2207 /* Submit just the SETUP stage */
2208 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2209 if (retval)
2210 goto out1;
2211 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2212 usb_kill_urb(urb);
2213 retval = -ETIMEDOUT;
2214 dev_err(hcd->self.controller,
2215 "%s SETUP stage timed out on ep0\n", __func__);
2216 goto out1;
2217 }
2218 msleep(15 * 1000);
2219
2220 /* Complete remaining DATA and STATUS stages using the same URB */
2221 urb->status = -EINPROGRESS;
2222 usb_get_urb(urb);
2223 atomic_inc(&urb->use_count);
2224 atomic_inc(&urb->dev->urbnum);
2225 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2226 if (!retval && !wait_for_completion_timeout(&done,
2227 msecs_to_jiffies(2000))) {
2228 usb_kill_urb(urb);
2229 retval = -ETIMEDOUT;
2230 dev_err(hcd->self.controller,
2231 "%s IN stage timed out on ep0\n", __func__);
2232 }
2233out1:
2234 usb_free_urb(urb);
2235cleanup:
2236 kfree(dr);
2237 kfree(buf);
2238 return retval;
2239}
2240EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2241#endif /* CONFIG_USB_HCD_TEST_MODE */
2242
2243/*-------------------------------------------------------------------------*/
2244
2245#ifdef CONFIG_PM
2246
2247int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2248{
2249 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2250 int status;
2251 int old_state = hcd->state;
2252
2253 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2254 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2255 rhdev->do_remote_wakeup);
2256 if (HCD_DEAD(hcd)) {
2257 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2258 return 0;
2259 }
2260
2261 if (!hcd->driver->bus_suspend) {
2262 status = -ENOENT;
2263 } else {
2264 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2265 hcd->state = HC_STATE_QUIESCING;
2266 status = hcd->driver->bus_suspend(hcd);
2267 }
2268 if (status == 0) {
2269 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2270 hcd->state = HC_STATE_SUSPENDED;
2271
2272 if (!PMSG_IS_AUTO(msg))
2273 usb_phy_roothub_suspend(hcd->self.sysdev,
2274 hcd->phy_roothub);
2275
2276 /* Did we race with a root-hub wakeup event? */
2277 if (rhdev->do_remote_wakeup) {
2278 char buffer[6];
2279
2280 status = hcd->driver->hub_status_data(hcd, buffer);
2281 if (status != 0) {
2282 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2283 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2284 status = -EBUSY;
2285 }
2286 }
2287 } else {
2288 spin_lock_irq(&hcd_root_hub_lock);
2289 if (!HCD_DEAD(hcd)) {
2290 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2291 hcd->state = old_state;
2292 }
2293 spin_unlock_irq(&hcd_root_hub_lock);
2294 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2295 "suspend", status);
2296 }
2297 return status;
2298}
2299
2300int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2301{
2302 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2303 int status;
2304 int old_state = hcd->state;
2305
2306 dev_dbg(&rhdev->dev, "usb %sresume\n",
2307 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2308 if (HCD_DEAD(hcd)) {
2309 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2310 return 0;
2311 }
2312
2313 if (!PMSG_IS_AUTO(msg)) {
2314 status = usb_phy_roothub_resume(hcd->self.sysdev,
2315 hcd->phy_roothub);
2316 if (status)
2317 return status;
2318 }
2319
2320 if (!hcd->driver->bus_resume)
2321 return -ENOENT;
2322 if (HCD_RH_RUNNING(hcd))
2323 return 0;
2324
2325 hcd->state = HC_STATE_RESUMING;
2326 status = hcd->driver->bus_resume(hcd);
2327 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2328 if (status == 0)
2329 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2330
2331 if (status == 0) {
2332 struct usb_device *udev;
2333 int port1;
2334
2335 spin_lock_irq(&hcd_root_hub_lock);
2336 if (!HCD_DEAD(hcd)) {
2337 usb_set_device_state(rhdev, rhdev->actconfig
2338 ? USB_STATE_CONFIGURED
2339 : USB_STATE_ADDRESS);
2340 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2341 hcd->state = HC_STATE_RUNNING;
2342 }
2343 spin_unlock_irq(&hcd_root_hub_lock);
2344
2345 /*
2346 * Check whether any of the enabled ports on the root hub are
2347 * unsuspended. If they are then a TRSMRCY delay is needed
2348 * (this is what the USB-2 spec calls a "global resume").
2349 * Otherwise we can skip the delay.
2350 */
2351 usb_hub_for_each_child(rhdev, port1, udev) {
2352 if (udev->state != USB_STATE_NOTATTACHED &&
2353 !udev->port_is_suspended) {
2354 usleep_range(10000, 11000); /* TRSMRCY */
2355 break;
2356 }
2357 }
2358 } else {
2359 hcd->state = old_state;
2360 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2361 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2362 "resume", status);
2363 if (status != -ESHUTDOWN)
2364 usb_hc_died(hcd);
2365 }
2366 return status;
2367}
2368
2369/* Workqueue routine for root-hub remote wakeup */
2370static void hcd_resume_work(struct work_struct *work)
2371{
2372 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2373 struct usb_device *udev = hcd->self.root_hub;
2374
2375 usb_remote_wakeup(udev);
2376}
2377
2378/**
2379 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2380 * @hcd: host controller for this root hub
2381 *
2382 * The USB host controller calls this function when its root hub is
2383 * suspended (with the remote wakeup feature enabled) and a remote
2384 * wakeup request is received. The routine submits a workqueue request
2385 * to resume the root hub (that is, manage its downstream ports again).
2386 */
2387void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2388{
2389 unsigned long flags;
2390
2391 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2392 if (hcd->rh_registered) {
2393 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2394 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2395 queue_work(pm_wq, &hcd->wakeup_work);
2396 }
2397 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2398}
2399EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2400
2401#endif /* CONFIG_PM */
2402
2403/*-------------------------------------------------------------------------*/
2404
2405#ifdef CONFIG_USB_OTG
2406
2407/**
2408 * usb_bus_start_enum - start immediate enumeration (for OTG)
2409 * @bus: the bus (must use hcd framework)
2410 * @port_num: 1-based number of port; usually bus->otg_port
2411 * Context: atomic
2412 *
2413 * Starts enumeration, with an immediate reset followed later by
2414 * hub_wq identifying and possibly configuring the device.
2415 * This is needed by OTG controller drivers, where it helps meet
2416 * HNP protocol timing requirements for starting a port reset.
2417 *
2418 * Return: 0 if successful.
2419 */
2420int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2421{
2422 struct usb_hcd *hcd;
2423 int status = -EOPNOTSUPP;
2424
2425 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2426 * boards with root hubs hooked up to internal devices (instead of
2427 * just the OTG port) may need more attention to resetting...
2428 */
2429 hcd = bus_to_hcd(bus);
2430 if (port_num && hcd->driver->start_port_reset)
2431 status = hcd->driver->start_port_reset(hcd, port_num);
2432
2433 /* allocate hub_wq shortly after (first) root port reset finishes;
2434 * it may issue others, until at least 50 msecs have passed.
2435 */
2436 if (status == 0)
2437 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2438 return status;
2439}
2440EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2441
2442#endif
2443
2444/*-------------------------------------------------------------------------*/
2445
2446/**
2447 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2448 * @irq: the IRQ being raised
2449 * @__hcd: pointer to the HCD whose IRQ is being signaled
2450 *
2451 * If the controller isn't HALTed, calls the driver's irq handler.
2452 * Checks whether the controller is now dead.
2453 *
2454 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2455 */
2456irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2457{
2458 struct usb_hcd *hcd = __hcd;
2459 irqreturn_t rc;
2460
2461 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2462 rc = IRQ_NONE;
2463 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2464 rc = IRQ_NONE;
2465 else
2466 rc = IRQ_HANDLED;
2467
2468 return rc;
2469}
2470EXPORT_SYMBOL_GPL(usb_hcd_irq);
2471
2472/*-------------------------------------------------------------------------*/
2473
2474/* Workqueue routine for when the root-hub has died. */
2475static void hcd_died_work(struct work_struct *work)
2476{
2477 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2478 static char *env[] = {
2479 "ERROR=DEAD",
2480 NULL
2481 };
2482
2483 /* Notify user space that the host controller has died */
2484 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2485}
2486
2487/**
2488 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2489 * @hcd: pointer to the HCD representing the controller
2490 *
2491 * This is called by bus glue to report a USB host controller that died
2492 * while operations may still have been pending. It's called automatically
2493 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2494 *
2495 * Only call this function with the primary HCD.
2496 */
2497void usb_hc_died (struct usb_hcd *hcd)
2498{
2499 unsigned long flags;
2500
2501 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2502
2503 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2504 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2505 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2506 if (hcd->rh_registered) {
2507 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2508
2509 /* make hub_wq clean up old urbs and devices */
2510 usb_set_device_state (hcd->self.root_hub,
2511 USB_STATE_NOTATTACHED);
2512 usb_kick_hub_wq(hcd->self.root_hub);
2513 }
2514 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2515 hcd = hcd->shared_hcd;
2516 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2517 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2518 if (hcd->rh_registered) {
2519 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2520
2521 /* make hub_wq clean up old urbs and devices */
2522 usb_set_device_state(hcd->self.root_hub,
2523 USB_STATE_NOTATTACHED);
2524 usb_kick_hub_wq(hcd->self.root_hub);
2525 }
2526 }
2527
2528 /* Handle the case where this function gets called with a shared HCD */
2529 if (usb_hcd_is_primary_hcd(hcd))
2530 schedule_work(&hcd->died_work);
2531 else
2532 schedule_work(&hcd->primary_hcd->died_work);
2533
2534 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2535 /* Make sure that the other roothub is also deallocated. */
2536}
2537EXPORT_SYMBOL_GPL (usb_hc_died);
2538
2539/*-------------------------------------------------------------------------*/
2540
2541static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2542{
2543
2544 spin_lock_init(&bh->lock);
2545 INIT_LIST_HEAD(&bh->head);
2546 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2547}
2548
2549struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2550 struct device *sysdev, struct device *dev, const char *bus_name,
2551 struct usb_hcd *primary_hcd)
2552{
2553 struct usb_hcd *hcd;
2554
2555 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2556 if (!hcd)
2557 return NULL;
2558 if (primary_hcd == NULL) {
2559 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2560 GFP_KERNEL);
2561 if (!hcd->address0_mutex) {
2562 kfree(hcd);
2563 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2564 return NULL;
2565 }
2566 mutex_init(hcd->address0_mutex);
2567 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2568 GFP_KERNEL);
2569 if (!hcd->bandwidth_mutex) {
2570 kfree(hcd->address0_mutex);
2571 kfree(hcd);
2572 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2573 return NULL;
2574 }
2575 mutex_init(hcd->bandwidth_mutex);
2576 dev_set_drvdata(dev, hcd);
2577 } else {
2578 mutex_lock(&usb_port_peer_mutex);
2579 hcd->address0_mutex = primary_hcd->address0_mutex;
2580 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2581 hcd->primary_hcd = primary_hcd;
2582 primary_hcd->primary_hcd = primary_hcd;
2583 hcd->shared_hcd = primary_hcd;
2584 primary_hcd->shared_hcd = hcd;
2585 mutex_unlock(&usb_port_peer_mutex);
2586 }
2587
2588 kref_init(&hcd->kref);
2589
2590 usb_bus_init(&hcd->self);
2591 hcd->self.controller = dev;
2592 hcd->self.sysdev = sysdev;
2593 hcd->self.bus_name = bus_name;
2594
2595 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2596#ifdef CONFIG_PM
2597 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2598#endif
2599
2600 INIT_WORK(&hcd->died_work, hcd_died_work);
2601
2602 hcd->driver = driver;
2603 hcd->speed = driver->flags & HCD_MASK;
2604 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2605 "USB Host Controller";
2606 return hcd;
2607}
2608EXPORT_SYMBOL_GPL(__usb_create_hcd);
2609
2610/**
2611 * usb_create_shared_hcd - create and initialize an HCD structure
2612 * @driver: HC driver that will use this hcd
2613 * @dev: device for this HC, stored in hcd->self.controller
2614 * @bus_name: value to store in hcd->self.bus_name
2615 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2616 * PCI device. Only allocate certain resources for the primary HCD
2617 *
2618 * Context: task context, might sleep.
2619 *
2620 * Allocate a struct usb_hcd, with extra space at the end for the
2621 * HC driver's private data. Initialize the generic members of the
2622 * hcd structure.
2623 *
2624 * Return: On success, a pointer to the created and initialized HCD structure.
2625 * On failure (e.g. if memory is unavailable), %NULL.
2626 */
2627struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2628 struct device *dev, const char *bus_name,
2629 struct usb_hcd *primary_hcd)
2630{
2631 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2632}
2633EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2634
2635/**
2636 * usb_create_hcd - create and initialize an HCD structure
2637 * @driver: HC driver that will use this hcd
2638 * @dev: device for this HC, stored in hcd->self.controller
2639 * @bus_name: value to store in hcd->self.bus_name
2640 *
2641 * Context: task context, might sleep.
2642 *
2643 * Allocate a struct usb_hcd, with extra space at the end for the
2644 * HC driver's private data. Initialize the generic members of the
2645 * hcd structure.
2646 *
2647 * Return: On success, a pointer to the created and initialized HCD
2648 * structure. On failure (e.g. if memory is unavailable), %NULL.
2649 */
2650struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2651 struct device *dev, const char *bus_name)
2652{
2653 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2654}
2655EXPORT_SYMBOL_GPL(usb_create_hcd);
2656
2657/*
2658 * Roothubs that share one PCI device must also share the bandwidth mutex.
2659 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2660 * deallocated.
2661 *
2662 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2663 * freed. When hcd_release() is called for either hcd in a peer set,
2664 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2665 */
2666static void hcd_release(struct kref *kref)
2667{
2668 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2669
2670 mutex_lock(&usb_port_peer_mutex);
2671 if (hcd->shared_hcd) {
2672 struct usb_hcd *peer = hcd->shared_hcd;
2673
2674 peer->shared_hcd = NULL;
2675 peer->primary_hcd = NULL;
2676 } else {
2677 kfree(hcd->address0_mutex);
2678 kfree(hcd->bandwidth_mutex);
2679 }
2680 mutex_unlock(&usb_port_peer_mutex);
2681 kfree(hcd);
2682}
2683
2684struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2685{
2686 if (hcd)
2687 kref_get (&hcd->kref);
2688 return hcd;
2689}
2690EXPORT_SYMBOL_GPL(usb_get_hcd);
2691
2692void usb_put_hcd (struct usb_hcd *hcd)
2693{
2694 if (hcd)
2695 kref_put (&hcd->kref, hcd_release);
2696}
2697EXPORT_SYMBOL_GPL(usb_put_hcd);
2698
2699int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2700{
2701 if (!hcd->primary_hcd)
2702 return 1;
2703 return hcd == hcd->primary_hcd;
2704}
2705EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2706
2707int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2708{
2709 if (!hcd->driver->find_raw_port_number)
2710 return port1;
2711
2712 return hcd->driver->find_raw_port_number(hcd, port1);
2713}
2714
2715static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2716 unsigned int irqnum, unsigned long irqflags)
2717{
2718 int retval;
2719
2720 if (hcd->driver->irq) {
2721
2722 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2723 hcd->driver->description, hcd->self.busnum);
2724 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2725 hcd->irq_descr, hcd);
2726 if (retval != 0) {
2727 dev_err(hcd->self.controller,
2728 "request interrupt %d failed\n",
2729 irqnum);
2730 return retval;
2731 }
2732 hcd->irq = irqnum;
2733 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2734 (hcd->driver->flags & HCD_MEMORY) ?
2735 "io mem" : "io base",
2736 (unsigned long long)hcd->rsrc_start);
2737 } else {
2738 hcd->irq = 0;
2739 if (hcd->rsrc_start)
2740 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2741 (hcd->driver->flags & HCD_MEMORY) ?
2742 "io mem" : "io base",
2743 (unsigned long long)hcd->rsrc_start);
2744 }
2745 return 0;
2746}
2747
2748/*
2749 * Before we free this root hub, flush in-flight peering attempts
2750 * and disable peer lookups
2751 */
2752static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2753{
2754 struct usb_device *rhdev;
2755
2756 mutex_lock(&usb_port_peer_mutex);
2757 rhdev = hcd->self.root_hub;
2758 hcd->self.root_hub = NULL;
2759 mutex_unlock(&usb_port_peer_mutex);
2760 usb_put_dev(rhdev);
2761}
2762
2763/**
2764 * usb_add_hcd - finish generic HCD structure initialization and register
2765 * @hcd: the usb_hcd structure to initialize
2766 * @irqnum: Interrupt line to allocate
2767 * @irqflags: Interrupt type flags
2768 *
2769 * Finish the remaining parts of generic HCD initialization: allocate the
2770 * buffers of consistent memory, register the bus, request the IRQ line,
2771 * and call the driver's reset() and start() routines.
2772 */
2773int usb_add_hcd(struct usb_hcd *hcd,
2774 unsigned int irqnum, unsigned long irqflags)
2775{
2776 int retval;
2777 struct usb_device *rhdev;
2778 struct usb_hcd *shared_hcd;
2779
2780 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2781 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2782 if (IS_ERR(hcd->phy_roothub))
2783 return PTR_ERR(hcd->phy_roothub);
2784
2785 retval = usb_phy_roothub_init(hcd->phy_roothub);
2786 if (retval)
2787 return retval;
2788
2789 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2790 PHY_MODE_USB_HOST_SS);
2791 if (retval)
2792 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2793 PHY_MODE_USB_HOST);
2794 if (retval)
2795 goto err_usb_phy_roothub_power_on;
2796
2797 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2798 if (retval)
2799 goto err_usb_phy_roothub_power_on;
2800 }
2801
2802 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2803
2804 switch (authorized_default) {
2805 case USB_AUTHORIZE_NONE:
2806 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2807 break;
2808
2809 case USB_AUTHORIZE_ALL:
2810 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2811 break;
2812
2813 case USB_AUTHORIZE_INTERNAL:
2814 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2815 break;
2816
2817 case USB_AUTHORIZE_WIRED:
2818 default:
2819 hcd->dev_policy = hcd->wireless ?
2820 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2821 break;
2822 }
2823
2824 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2825
2826 /* per default all interfaces are authorized */
2827 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2828
2829 /* HC is in reset state, but accessible. Now do the one-time init,
2830 * bottom up so that hcds can customize the root hubs before hub_wq
2831 * starts talking to them. (Note, bus id is assigned early too.)
2832 */
2833 retval = hcd_buffer_create(hcd);
2834 if (retval != 0) {
2835 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2836 goto err_create_buf;
2837 }
2838
2839 retval = usb_register_bus(&hcd->self);
2840 if (retval < 0)
2841 goto err_register_bus;
2842
2843 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2844 if (rhdev == NULL) {
2845 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2846 retval = -ENOMEM;
2847 goto err_allocate_root_hub;
2848 }
2849 mutex_lock(&usb_port_peer_mutex);
2850 hcd->self.root_hub = rhdev;
2851 mutex_unlock(&usb_port_peer_mutex);
2852
2853 rhdev->rx_lanes = 1;
2854 rhdev->tx_lanes = 1;
2855 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2856
2857 switch (hcd->speed) {
2858 case HCD_USB11:
2859 rhdev->speed = USB_SPEED_FULL;
2860 break;
2861 case HCD_USB2:
2862 rhdev->speed = USB_SPEED_HIGH;
2863 break;
2864 case HCD_USB25:
2865 rhdev->speed = USB_SPEED_WIRELESS;
2866 break;
2867 case HCD_USB3:
2868 rhdev->speed = USB_SPEED_SUPER;
2869 break;
2870 case HCD_USB32:
2871 rhdev->rx_lanes = 2;
2872 rhdev->tx_lanes = 2;
2873 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2874 rhdev->speed = USB_SPEED_SUPER_PLUS;
2875 break;
2876 case HCD_USB31:
2877 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2878 rhdev->speed = USB_SPEED_SUPER_PLUS;
2879 break;
2880 default:
2881 retval = -EINVAL;
2882 goto err_set_rh_speed;
2883 }
2884
2885 /* wakeup flag init defaults to "everything works" for root hubs,
2886 * but drivers can override it in reset() if needed, along with
2887 * recording the overall controller's system wakeup capability.
2888 */
2889 device_set_wakeup_capable(&rhdev->dev, 1);
2890
2891 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2892 * registered. But since the controller can die at any time,
2893 * let's initialize the flag before touching the hardware.
2894 */
2895 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2896
2897 /* "reset" is misnamed; its role is now one-time init. the controller
2898 * should already have been reset (and boot firmware kicked off etc).
2899 */
2900 if (hcd->driver->reset) {
2901 retval = hcd->driver->reset(hcd);
2902 if (retval < 0) {
2903 dev_err(hcd->self.controller, "can't setup: %d\n",
2904 retval);
2905 goto err_hcd_driver_setup;
2906 }
2907 }
2908 hcd->rh_pollable = 1;
2909
2910 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2911 if (retval)
2912 goto err_hcd_driver_setup;
2913
2914 /* NOTE: root hub and controller capabilities may not be the same */
2915 if (device_can_wakeup(hcd->self.controller)
2916 && device_can_wakeup(&hcd->self.root_hub->dev))
2917 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2918
2919 /* initialize tasklets */
2920 init_giveback_urb_bh(&hcd->high_prio_bh);
2921 init_giveback_urb_bh(&hcd->low_prio_bh);
2922
2923 /* enable irqs just before we start the controller,
2924 * if the BIOS provides legacy PCI irqs.
2925 */
2926 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2927 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2928 if (retval)
2929 goto err_request_irq;
2930 }
2931
2932 hcd->state = HC_STATE_RUNNING;
2933 retval = hcd->driver->start(hcd);
2934 if (retval < 0) {
2935 dev_err(hcd->self.controller, "startup error %d\n", retval);
2936 goto err_hcd_driver_start;
2937 }
2938
2939 /* starting here, usbcore will pay attention to the shared HCD roothub */
2940 shared_hcd = hcd->shared_hcd;
2941 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2942 retval = register_root_hub(shared_hcd);
2943 if (retval != 0)
2944 goto err_register_root_hub;
2945
2946 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2947 usb_hcd_poll_rh_status(shared_hcd);
2948 }
2949
2950 /* starting here, usbcore will pay attention to this root hub */
2951 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2952 retval = register_root_hub(hcd);
2953 if (retval != 0)
2954 goto err_register_root_hub;
2955
2956 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2957 usb_hcd_poll_rh_status(hcd);
2958 }
2959
2960 return retval;
2961
2962err_register_root_hub:
2963 hcd->rh_pollable = 0;
2964 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2965 del_timer_sync(&hcd->rh_timer);
2966 hcd->driver->stop(hcd);
2967 hcd->state = HC_STATE_HALT;
2968 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2969 del_timer_sync(&hcd->rh_timer);
2970err_hcd_driver_start:
2971 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2972 free_irq(irqnum, hcd);
2973err_request_irq:
2974err_hcd_driver_setup:
2975err_set_rh_speed:
2976 usb_put_invalidate_rhdev(hcd);
2977err_allocate_root_hub:
2978 usb_deregister_bus(&hcd->self);
2979err_register_bus:
2980 hcd_buffer_destroy(hcd);
2981err_create_buf:
2982 usb_phy_roothub_power_off(hcd->phy_roothub);
2983err_usb_phy_roothub_power_on:
2984 usb_phy_roothub_exit(hcd->phy_roothub);
2985
2986 return retval;
2987}
2988EXPORT_SYMBOL_GPL(usb_add_hcd);
2989
2990/**
2991 * usb_remove_hcd - shutdown processing for generic HCDs
2992 * @hcd: the usb_hcd structure to remove
2993 *
2994 * Context: task context, might sleep.
2995 *
2996 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2997 * invoking the HCD's stop() method.
2998 */
2999void usb_remove_hcd(struct usb_hcd *hcd)
3000{
3001 struct usb_device *rhdev = hcd->self.root_hub;
3002 bool rh_registered;
3003
3004 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3005
3006 usb_get_dev(rhdev);
3007 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3008 if (HC_IS_RUNNING (hcd->state))
3009 hcd->state = HC_STATE_QUIESCING;
3010
3011 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3012 spin_lock_irq (&hcd_root_hub_lock);
3013 rh_registered = hcd->rh_registered;
3014 hcd->rh_registered = 0;
3015 spin_unlock_irq (&hcd_root_hub_lock);
3016
3017#ifdef CONFIG_PM
3018 cancel_work_sync(&hcd->wakeup_work);
3019#endif
3020 cancel_work_sync(&hcd->died_work);
3021
3022 mutex_lock(&usb_bus_idr_lock);
3023 if (rh_registered)
3024 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3025 mutex_unlock(&usb_bus_idr_lock);
3026
3027 /*
3028 * tasklet_kill() isn't needed here because:
3029 * - driver's disconnect() called from usb_disconnect() should
3030 * make sure its URBs are completed during the disconnect()
3031 * callback
3032 *
3033 * - it is too late to run complete() here since driver may have
3034 * been removed already now
3035 */
3036
3037 /* Prevent any more root-hub status calls from the timer.
3038 * The HCD might still restart the timer (if a port status change
3039 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3040 * the hub_status_data() callback.
3041 */
3042 hcd->rh_pollable = 0;
3043 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3044 del_timer_sync(&hcd->rh_timer);
3045
3046 hcd->driver->stop(hcd);
3047 hcd->state = HC_STATE_HALT;
3048
3049 /* In case the HCD restarted the timer, stop it again. */
3050 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3051 del_timer_sync(&hcd->rh_timer);
3052
3053 if (usb_hcd_is_primary_hcd(hcd)) {
3054 if (hcd->irq > 0)
3055 free_irq(hcd->irq, hcd);
3056 }
3057
3058 usb_deregister_bus(&hcd->self);
3059 hcd_buffer_destroy(hcd);
3060
3061 usb_phy_roothub_power_off(hcd->phy_roothub);
3062 usb_phy_roothub_exit(hcd->phy_roothub);
3063
3064 usb_put_invalidate_rhdev(hcd);
3065 hcd->flags = 0;
3066}
3067EXPORT_SYMBOL_GPL(usb_remove_hcd);
3068
3069void
3070usb_hcd_platform_shutdown(struct platform_device *dev)
3071{
3072 struct usb_hcd *hcd = platform_get_drvdata(dev);
3073
3074 /* No need for pm_runtime_put(), we're shutting down */
3075 pm_runtime_get_sync(&dev->dev);
3076
3077 if (hcd->driver->shutdown)
3078 hcd->driver->shutdown(hcd);
3079}
3080EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3081
3082int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3083 dma_addr_t dma, size_t size)
3084{
3085 int err;
3086 void *local_mem;
3087
3088 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3089 dev_to_node(hcd->self.sysdev),
3090 dev_name(hcd->self.sysdev));
3091 if (IS_ERR(hcd->localmem_pool))
3092 return PTR_ERR(hcd->localmem_pool);
3093
3094 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3095 size, MEMREMAP_WC);
3096 if (IS_ERR(local_mem))
3097 return PTR_ERR(local_mem);
3098
3099 /*
3100 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3101 * It's not backed by system memory and thus there's no kernel mapping
3102 * for it.
3103 */
3104 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3105 dma, size, dev_to_node(hcd->self.sysdev));
3106 if (err < 0) {
3107 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3108 err);
3109 return err;
3110 }
3111
3112 return 0;
3113}
3114EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3115
3116/*-------------------------------------------------------------------------*/
3117
3118#if IS_ENABLED(CONFIG_USB_MON)
3119
3120const struct usb_mon_operations *mon_ops;
3121
3122/*
3123 * The registration is unlocked.
3124 * We do it this way because we do not want to lock in hot paths.
3125 *
3126 * Notice that the code is minimally error-proof. Because usbmon needs
3127 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3128 */
3129
3130int usb_mon_register(const struct usb_mon_operations *ops)
3131{
3132
3133 if (mon_ops)
3134 return -EBUSY;
3135
3136 mon_ops = ops;
3137 mb();
3138 return 0;
3139}
3140EXPORT_SYMBOL_GPL (usb_mon_register);
3141
3142void usb_mon_deregister (void)
3143{
3144
3145 if (mon_ops == NULL) {
3146 printk(KERN_ERR "USB: monitor was not registered\n");
3147 return;
3148 }
3149 mon_ops = NULL;
3150 mb();
3151}
3152EXPORT_SYMBOL_GPL (usb_mon_deregister);
3153
3154#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */