Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 *
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bcd.h>
  26#include <linux/module.h>
  27#include <linux/version.h>
  28#include <linux/kernel.h>
 
  29#include <linux/slab.h>
  30#include <linux/completion.h>
  31#include <linux/utsname.h>
  32#include <linux/mm.h>
  33#include <asm/io.h>
  34#include <linux/device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/mutex.h>
  37#include <asm/irq.h>
  38#include <asm/byteorder.h>
  39#include <asm/unaligned.h>
  40#include <linux/platform_device.h>
  41#include <linux/workqueue.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/types.h>
 
 
 
  44
  45#include <linux/phy/phy.h>
  46#include <linux/usb.h>
  47#include <linux/usb/hcd.h>
  48#include <linux/usb/phy.h>
  49
  50#include "usb.h"
 
  51
  52
  53/*-------------------------------------------------------------------------*/
  54
  55/*
  56 * USB Host Controller Driver framework
  57 *
  58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  59 * HCD-specific behaviors/bugs.
  60 *
  61 * This does error checks, tracks devices and urbs, and delegates to a
  62 * "hc_driver" only for code (and data) that really needs to know about
  63 * hardware differences.  That includes root hub registers, i/o queues,
  64 * and so on ... but as little else as possible.
  65 *
  66 * Shared code includes most of the "root hub" code (these are emulated,
  67 * though each HC's hardware works differently) and PCI glue, plus request
  68 * tracking overhead.  The HCD code should only block on spinlocks or on
  69 * hardware handshaking; blocking on software events (such as other kernel
  70 * threads releasing resources, or completing actions) is all generic.
  71 *
  72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  74 * only by the hub driver ... and that neither should be seen or used by
  75 * usb client device drivers.
  76 *
  77 * Contributors of ideas or unattributed patches include: David Brownell,
  78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  79 *
  80 * HISTORY:
  81 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  82 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  83 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  84 */
  85
  86/*-------------------------------------------------------------------------*/
  87
  88/* Keep track of which host controller drivers are loaded */
  89unsigned long usb_hcds_loaded;
  90EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  91
  92/* host controllers we manage */
  93DEFINE_IDR (usb_bus_idr);
  94EXPORT_SYMBOL_GPL (usb_bus_idr);
  95
  96/* used when allocating bus numbers */
  97#define USB_MAXBUS		64
  98
  99/* used when updating list of hcds */
 100DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
 101EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
 102
 103/* used for controlling access to virtual root hubs */
 104static DEFINE_SPINLOCK(hcd_root_hub_lock);
 105
 106/* used when updating an endpoint's URB list */
 107static DEFINE_SPINLOCK(hcd_urb_list_lock);
 108
 109/* used to protect against unlinking URBs after the device is gone */
 110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 111
 112/* wait queue for synchronous unlinks */
 113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 114
 115static inline int is_root_hub(struct usb_device *udev)
 116{
 117	return (udev->parent == NULL);
 118}
 119
 120/*-------------------------------------------------------------------------*/
 121
 122/*
 123 * Sharable chunks of root hub code.
 124 */
 125
 126/*-------------------------------------------------------------------------*/
 127#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 128#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 129
 130/* usb 3.1 root hub device descriptor */
 131static const u8 usb31_rh_dev_descriptor[18] = {
 132	0x12,       /*  __u8  bLength; */
 133	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 134	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 135
 136	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 137	0x00,	    /*  __u8  bDeviceSubClass; */
 138	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 139	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 140
 141	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 142	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 143	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 144
 145	0x03,       /*  __u8  iManufacturer; */
 146	0x02,       /*  __u8  iProduct; */
 147	0x01,       /*  __u8  iSerialNumber; */
 148	0x01        /*  __u8  bNumConfigurations; */
 149};
 150
 151/* usb 3.0 root hub device descriptor */
 152static const u8 usb3_rh_dev_descriptor[18] = {
 153	0x12,       /*  __u8  bLength; */
 154	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 155	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 156
 157	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 158	0x00,	    /*  __u8  bDeviceSubClass; */
 159	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 160	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 161
 162	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 163	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 164	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 165
 166	0x03,       /*  __u8  iManufacturer; */
 167	0x02,       /*  __u8  iProduct; */
 168	0x01,       /*  __u8  iSerialNumber; */
 169	0x01        /*  __u8  bNumConfigurations; */
 170};
 171
 172/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 173static const u8 usb25_rh_dev_descriptor[18] = {
 174	0x12,       /*  __u8  bLength; */
 175	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 176	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 177
 178	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 179	0x00,	    /*  __u8  bDeviceSubClass; */
 180	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 181	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 182
 183	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 184	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 185	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 186
 187	0x03,       /*  __u8  iManufacturer; */
 188	0x02,       /*  __u8  iProduct; */
 189	0x01,       /*  __u8  iSerialNumber; */
 190	0x01        /*  __u8  bNumConfigurations; */
 191};
 192
 193/* usb 2.0 root hub device descriptor */
 194static const u8 usb2_rh_dev_descriptor[18] = {
 195	0x12,       /*  __u8  bLength; */
 196	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 197	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 198
 199	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 200	0x00,	    /*  __u8  bDeviceSubClass; */
 201	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 202	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 203
 204	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 205	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 206	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 207
 208	0x03,       /*  __u8  iManufacturer; */
 209	0x02,       /*  __u8  iProduct; */
 210	0x01,       /*  __u8  iSerialNumber; */
 211	0x01        /*  __u8  bNumConfigurations; */
 212};
 213
 214/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 215
 216/* usb 1.1 root hub device descriptor */
 217static const u8 usb11_rh_dev_descriptor[18] = {
 218	0x12,       /*  __u8  bLength; */
 219	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 220	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 221
 222	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 223	0x00,	    /*  __u8  bDeviceSubClass; */
 224	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 225	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 226
 227	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 228	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 229	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 230
 231	0x03,       /*  __u8  iManufacturer; */
 232	0x02,       /*  __u8  iProduct; */
 233	0x01,       /*  __u8  iSerialNumber; */
 234	0x01        /*  __u8  bNumConfigurations; */
 235};
 236
 237
 238/*-------------------------------------------------------------------------*/
 239
 240/* Configuration descriptors for our root hubs */
 241
 242static const u8 fs_rh_config_descriptor[] = {
 243
 244	/* one configuration */
 245	0x09,       /*  __u8  bLength; */
 246	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 247	0x19, 0x00, /*  __le16 wTotalLength; */
 248	0x01,       /*  __u8  bNumInterfaces; (1) */
 249	0x01,       /*  __u8  bConfigurationValue; */
 250	0x00,       /*  __u8  iConfiguration; */
 251	0xc0,       /*  __u8  bmAttributes;
 252				 Bit 7: must be set,
 253				     6: Self-powered,
 254				     5: Remote wakeup,
 255				     4..0: resvd */
 256	0x00,       /*  __u8  MaxPower; */
 257
 258	/* USB 1.1:
 259	 * USB 2.0, single TT organization (mandatory):
 260	 *	one interface, protocol 0
 261	 *
 262	 * USB 2.0, multiple TT organization (optional):
 263	 *	two interfaces, protocols 1 (like single TT)
 264	 *	and 2 (multiple TT mode) ... config is
 265	 *	sometimes settable
 266	 *	NOT IMPLEMENTED
 267	 */
 268
 269	/* one interface */
 270	0x09,       /*  __u8  if_bLength; */
 271	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 272	0x00,       /*  __u8  if_bInterfaceNumber; */
 273	0x00,       /*  __u8  if_bAlternateSetting; */
 274	0x01,       /*  __u8  if_bNumEndpoints; */
 275	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 276	0x00,       /*  __u8  if_bInterfaceSubClass; */
 277	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 278	0x00,       /*  __u8  if_iInterface; */
 279
 280	/* one endpoint (status change endpoint) */
 281	0x07,       /*  __u8  ep_bLength; */
 282	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 283	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 284	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 285	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 286	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 287};
 288
 289static const u8 hs_rh_config_descriptor[] = {
 290
 291	/* one configuration */
 292	0x09,       /*  __u8  bLength; */
 293	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 294	0x19, 0x00, /*  __le16 wTotalLength; */
 295	0x01,       /*  __u8  bNumInterfaces; (1) */
 296	0x01,       /*  __u8  bConfigurationValue; */
 297	0x00,       /*  __u8  iConfiguration; */
 298	0xc0,       /*  __u8  bmAttributes;
 299				 Bit 7: must be set,
 300				     6: Self-powered,
 301				     5: Remote wakeup,
 302				     4..0: resvd */
 303	0x00,       /*  __u8  MaxPower; */
 304
 305	/* USB 1.1:
 306	 * USB 2.0, single TT organization (mandatory):
 307	 *	one interface, protocol 0
 308	 *
 309	 * USB 2.0, multiple TT organization (optional):
 310	 *	two interfaces, protocols 1 (like single TT)
 311	 *	and 2 (multiple TT mode) ... config is
 312	 *	sometimes settable
 313	 *	NOT IMPLEMENTED
 314	 */
 315
 316	/* one interface */
 317	0x09,       /*  __u8  if_bLength; */
 318	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 319	0x00,       /*  __u8  if_bInterfaceNumber; */
 320	0x00,       /*  __u8  if_bAlternateSetting; */
 321	0x01,       /*  __u8  if_bNumEndpoints; */
 322	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 323	0x00,       /*  __u8  if_bInterfaceSubClass; */
 324	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 325	0x00,       /*  __u8  if_iInterface; */
 326
 327	/* one endpoint (status change endpoint) */
 328	0x07,       /*  __u8  ep_bLength; */
 329	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 330	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 331	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 332		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 333		     * see hub.c:hub_configure() for details. */
 334	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 335	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 336};
 337
 338static const u8 ss_rh_config_descriptor[] = {
 339	/* one configuration */
 340	0x09,       /*  __u8  bLength; */
 341	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 342	0x1f, 0x00, /*  __le16 wTotalLength; */
 343	0x01,       /*  __u8  bNumInterfaces; (1) */
 344	0x01,       /*  __u8  bConfigurationValue; */
 345	0x00,       /*  __u8  iConfiguration; */
 346	0xc0,       /*  __u8  bmAttributes;
 347				 Bit 7: must be set,
 348				     6: Self-powered,
 349				     5: Remote wakeup,
 350				     4..0: resvd */
 351	0x00,       /*  __u8  MaxPower; */
 352
 353	/* one interface */
 354	0x09,       /*  __u8  if_bLength; */
 355	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 356	0x00,       /*  __u8  if_bInterfaceNumber; */
 357	0x00,       /*  __u8  if_bAlternateSetting; */
 358	0x01,       /*  __u8  if_bNumEndpoints; */
 359	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 360	0x00,       /*  __u8  if_bInterfaceSubClass; */
 361	0x00,       /*  __u8  if_bInterfaceProtocol; */
 362	0x00,       /*  __u8  if_iInterface; */
 363
 364	/* one endpoint (status change endpoint) */
 365	0x07,       /*  __u8  ep_bLength; */
 366	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 367	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 368	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 369		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 370		     * see hub.c:hub_configure() for details. */
 371	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 372	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 373
 374	/* one SuperSpeed endpoint companion descriptor */
 375	0x06,        /* __u8 ss_bLength */
 376	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 377		     /* Companion */
 378	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 379	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 380	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 381};
 382
 383/* authorized_default behaviour:
 384 * -1 is authorized for all devices except wireless (old behaviour)
 385 * 0 is unauthorized for all devices
 386 * 1 is authorized for all devices
 
 387 */
 388static int authorized_default = -1;
 
 
 
 
 
 389module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 390MODULE_PARM_DESC(authorized_default,
 391		"Default USB device authorization: 0 is not authorized, 1 is "
 392		"authorized, -1 is authorized except for wireless USB (default, "
 393		"old behaviour");
 394/*-------------------------------------------------------------------------*/
 395
 396/**
 397 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 398 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 399 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 400 * @len: Length (in bytes; may be odd) of descriptor buffer.
 401 *
 402 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 403 * whichever is less.
 404 *
 405 * Note:
 406 * USB String descriptors can contain at most 126 characters; input
 407 * strings longer than that are truncated.
 408 */
 409static unsigned
 410ascii2desc(char const *s, u8 *buf, unsigned len)
 411{
 412	unsigned n, t = 2 + 2*strlen(s);
 413
 414	if (t > 254)
 415		t = 254;	/* Longest possible UTF string descriptor */
 416	if (len > t)
 417		len = t;
 418
 419	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 420
 421	n = len;
 422	while (n--) {
 423		*buf++ = t;
 424		if (!n--)
 425			break;
 426		*buf++ = t >> 8;
 427		t = (unsigned char)*s++;
 428	}
 429	return len;
 430}
 431
 432/**
 433 * rh_string() - provides string descriptors for root hub
 434 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 435 * @hcd: the host controller for this root hub
 436 * @data: buffer for output packet
 437 * @len: length of the provided buffer
 438 *
 439 * Produces either a manufacturer, product or serial number string for the
 440 * virtual root hub device.
 441 *
 442 * Return: The number of bytes filled in: the length of the descriptor or
 443 * of the provided buffer, whichever is less.
 444 */
 445static unsigned
 446rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 447{
 448	char buf[100];
 449	char const *s;
 450	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 451
 452	/* language ids */
 453	switch (id) {
 454	case 0:
 455		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 456		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 457		if (len > 4)
 458			len = 4;
 459		memcpy(data, langids, len);
 460		return len;
 461	case 1:
 462		/* Serial number */
 463		s = hcd->self.bus_name;
 464		break;
 465	case 2:
 466		/* Product name */
 467		s = hcd->product_desc;
 468		break;
 469	case 3:
 470		/* Manufacturer */
 471		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 472			init_utsname()->release, hcd->driver->description);
 473		s = buf;
 474		break;
 475	default:
 476		/* Can't happen; caller guarantees it */
 477		return 0;
 478	}
 479
 480	return ascii2desc(s, data, len);
 481}
 482
 483
 484/* Root hub control transfers execute synchronously */
 485static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 486{
 487	struct usb_ctrlrequest *cmd;
 488	u16		typeReq, wValue, wIndex, wLength;
 489	u8		*ubuf = urb->transfer_buffer;
 490	unsigned	len = 0;
 491	int		status;
 492	u8		patch_wakeup = 0;
 493	u8		patch_protocol = 0;
 494	u16		tbuf_size;
 495	u8		*tbuf = NULL;
 496	const u8	*bufp;
 497
 498	might_sleep();
 499
 500	spin_lock_irq(&hcd_root_hub_lock);
 501	status = usb_hcd_link_urb_to_ep(hcd, urb);
 502	spin_unlock_irq(&hcd_root_hub_lock);
 503	if (status)
 504		return status;
 505	urb->hcpriv = hcd;	/* Indicate it's queued */
 506
 507	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 508	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 509	wValue   = le16_to_cpu (cmd->wValue);
 510	wIndex   = le16_to_cpu (cmd->wIndex);
 511	wLength  = le16_to_cpu (cmd->wLength);
 512
 513	if (wLength > urb->transfer_buffer_length)
 514		goto error;
 515
 516	/*
 517	 * tbuf should be at least as big as the
 518	 * USB hub descriptor.
 519	 */
 520	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 521	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 522	if (!tbuf)
 523		return -ENOMEM;
 
 
 524
 525	bufp = tbuf;
 526
 527
 528	urb->actual_length = 0;
 529	switch (typeReq) {
 530
 531	/* DEVICE REQUESTS */
 532
 533	/* The root hub's remote wakeup enable bit is implemented using
 534	 * driver model wakeup flags.  If this system supports wakeup
 535	 * through USB, userspace may change the default "allow wakeup"
 536	 * policy through sysfs or these calls.
 537	 *
 538	 * Most root hubs support wakeup from downstream devices, for
 539	 * runtime power management (disabling USB clocks and reducing
 540	 * VBUS power usage).  However, not all of them do so; silicon,
 541	 * board, and BIOS bugs here are not uncommon, so these can't
 542	 * be treated quite like external hubs.
 543	 *
 544	 * Likewise, not all root hubs will pass wakeup events upstream,
 545	 * to wake up the whole system.  So don't assume root hub and
 546	 * controller capabilities are identical.
 547	 */
 548
 549	case DeviceRequest | USB_REQ_GET_STATUS:
 550		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 551					<< USB_DEVICE_REMOTE_WAKEUP)
 552				| (1 << USB_DEVICE_SELF_POWERED);
 553		tbuf[1] = 0;
 554		len = 2;
 555		break;
 556	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 557		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 558			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 559		else
 560			goto error;
 561		break;
 562	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 563		if (device_can_wakeup(&hcd->self.root_hub->dev)
 564				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 565			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 566		else
 567			goto error;
 568		break;
 569	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 570		tbuf[0] = 1;
 571		len = 1;
 572			/* FALLTHROUGH */
 573	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 574		break;
 575	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 576		switch (wValue & 0xff00) {
 577		case USB_DT_DEVICE << 8:
 578			switch (hcd->speed) {
 
 579			case HCD_USB31:
 580				bufp = usb31_rh_dev_descriptor;
 581				break;
 582			case HCD_USB3:
 583				bufp = usb3_rh_dev_descriptor;
 584				break;
 585			case HCD_USB25:
 586				bufp = usb25_rh_dev_descriptor;
 587				break;
 588			case HCD_USB2:
 589				bufp = usb2_rh_dev_descriptor;
 590				break;
 591			case HCD_USB11:
 592				bufp = usb11_rh_dev_descriptor;
 593				break;
 594			default:
 595				goto error;
 596			}
 597			len = 18;
 598			if (hcd->has_tt)
 599				patch_protocol = 1;
 600			break;
 601		case USB_DT_CONFIG << 8:
 602			switch (hcd->speed) {
 
 603			case HCD_USB31:
 604			case HCD_USB3:
 605				bufp = ss_rh_config_descriptor;
 606				len = sizeof ss_rh_config_descriptor;
 607				break;
 608			case HCD_USB25:
 609			case HCD_USB2:
 610				bufp = hs_rh_config_descriptor;
 611				len = sizeof hs_rh_config_descriptor;
 612				break;
 613			case HCD_USB11:
 614				bufp = fs_rh_config_descriptor;
 615				len = sizeof fs_rh_config_descriptor;
 616				break;
 617			default:
 618				goto error;
 619			}
 620			if (device_can_wakeup(&hcd->self.root_hub->dev))
 621				patch_wakeup = 1;
 622			break;
 623		case USB_DT_STRING << 8:
 624			if ((wValue & 0xff) < 4)
 625				urb->actual_length = rh_string(wValue & 0xff,
 626						hcd, ubuf, wLength);
 627			else /* unsupported IDs --> "protocol stall" */
 628				goto error;
 629			break;
 630		case USB_DT_BOS << 8:
 631			goto nongeneric;
 632		default:
 633			goto error;
 634		}
 635		break;
 636	case DeviceRequest | USB_REQ_GET_INTERFACE:
 637		tbuf[0] = 0;
 638		len = 1;
 639			/* FALLTHROUGH */
 640	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 641		break;
 642	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 643		/* wValue == urb->dev->devaddr */
 644		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 645			wValue);
 646		break;
 647
 648	/* INTERFACE REQUESTS (no defined feature/status flags) */
 649
 650	/* ENDPOINT REQUESTS */
 651
 652	case EndpointRequest | USB_REQ_GET_STATUS:
 653		/* ENDPOINT_HALT flag */
 654		tbuf[0] = 0;
 655		tbuf[1] = 0;
 656		len = 2;
 657			/* FALLTHROUGH */
 658	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 659	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 660		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 661		break;
 662
 663	/* CLASS REQUESTS (and errors) */
 664
 665	default:
 666nongeneric:
 667		/* non-generic request */
 668		switch (typeReq) {
 669		case GetHubStatus:
 670			len = 4;
 671			break;
 672		case GetPortStatus:
 673			if (wValue == HUB_PORT_STATUS)
 674				len = 4;
 675			else
 676				/* other port status types return 8 bytes */
 677				len = 8;
 678			break;
 679		case GetHubDescriptor:
 680			len = sizeof (struct usb_hub_descriptor);
 681			break;
 682		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 683			/* len is returned by hub_control */
 684			break;
 685		}
 686		status = hcd->driver->hub_control (hcd,
 687			typeReq, wValue, wIndex,
 688			tbuf, wLength);
 689
 690		if (typeReq == GetHubDescriptor)
 691			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 692				(struct usb_hub_descriptor *)tbuf);
 693		break;
 694error:
 695		/* "protocol stall" on error */
 696		status = -EPIPE;
 697	}
 698
 699	if (status < 0) {
 700		len = 0;
 701		if (status != -EPIPE) {
 702			dev_dbg (hcd->self.controller,
 703				"CTRL: TypeReq=0x%x val=0x%x "
 704				"idx=0x%x len=%d ==> %d\n",
 705				typeReq, wValue, wIndex,
 706				wLength, status);
 707		}
 708	} else if (status > 0) {
 709		/* hub_control may return the length of data copied. */
 710		len = status;
 711		status = 0;
 712	}
 713	if (len) {
 714		if (urb->transfer_buffer_length < len)
 715			len = urb->transfer_buffer_length;
 716		urb->actual_length = len;
 717		/* always USB_DIR_IN, toward host */
 718		memcpy (ubuf, bufp, len);
 719
 720		/* report whether RH hardware supports remote wakeup */
 721		if (patch_wakeup &&
 722				len > offsetof (struct usb_config_descriptor,
 723						bmAttributes))
 724			((struct usb_config_descriptor *)ubuf)->bmAttributes
 725				|= USB_CONFIG_ATT_WAKEUP;
 726
 727		/* report whether RH hardware has an integrated TT */
 728		if (patch_protocol &&
 729				len > offsetof(struct usb_device_descriptor,
 730						bDeviceProtocol))
 731			((struct usb_device_descriptor *) ubuf)->
 732				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 733	}
 734
 735	kfree(tbuf);
 
 736
 737	/* any errors get returned through the urb completion */
 738	spin_lock_irq(&hcd_root_hub_lock);
 739	usb_hcd_unlink_urb_from_ep(hcd, urb);
 740	usb_hcd_giveback_urb(hcd, urb, status);
 741	spin_unlock_irq(&hcd_root_hub_lock);
 742	return 0;
 743}
 744
 745/*-------------------------------------------------------------------------*/
 746
 747/*
 748 * Root Hub interrupt transfers are polled using a timer if the
 749 * driver requests it; otherwise the driver is responsible for
 750 * calling usb_hcd_poll_rh_status() when an event occurs.
 751 *
 752 * Completions are called in_interrupt(), but they may or may not
 753 * be in_irq().
 754 */
 755void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 756{
 757	struct urb	*urb;
 758	int		length;
 759	unsigned long	flags;
 760	char		buffer[6];	/* Any root hubs with > 31 ports? */
 761
 762	if (unlikely(!hcd->rh_pollable))
 763		return;
 764	if (!hcd->uses_new_polling && !hcd->status_urb)
 765		return;
 766
 767	length = hcd->driver->hub_status_data(hcd, buffer);
 768	if (length > 0) {
 769
 770		/* try to complete the status urb */
 771		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 772		urb = hcd->status_urb;
 773		if (urb) {
 774			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 775			hcd->status_urb = NULL;
 776			urb->actual_length = length;
 777			memcpy(urb->transfer_buffer, buffer, length);
 778
 779			usb_hcd_unlink_urb_from_ep(hcd, urb);
 780			usb_hcd_giveback_urb(hcd, urb, 0);
 781		} else {
 782			length = 0;
 783			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 784		}
 785		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 786	}
 787
 788	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 789	 * exceed that limit if HZ is 100. The math is more clunky than
 790	 * maybe expected, this is to make sure that all timers for USB devices
 791	 * fire at the same time to give the CPU a break in between */
 792	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 793			(length == 0 && hcd->status_urb != NULL))
 794		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 795}
 796EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 797
 798/* timer callback */
 799static void rh_timer_func (unsigned long _hcd)
 800{
 801	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 
 
 802}
 803
 804/*-------------------------------------------------------------------------*/
 805
 806static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 807{
 808	int		retval;
 809	unsigned long	flags;
 810	unsigned	len = 1 + (urb->dev->maxchild / 8);
 811
 812	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 813	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 814		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 815		retval = -EINVAL;
 816		goto done;
 817	}
 818
 819	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 820	if (retval)
 821		goto done;
 822
 823	hcd->status_urb = urb;
 824	urb->hcpriv = hcd;	/* indicate it's queued */
 825	if (!hcd->uses_new_polling)
 826		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 827
 828	/* If a status change has already occurred, report it ASAP */
 829	else if (HCD_POLL_PENDING(hcd))
 830		mod_timer(&hcd->rh_timer, jiffies);
 831	retval = 0;
 832 done:
 833	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 834	return retval;
 835}
 836
 837static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 838{
 839	if (usb_endpoint_xfer_int(&urb->ep->desc))
 840		return rh_queue_status (hcd, urb);
 841	if (usb_endpoint_xfer_control(&urb->ep->desc))
 842		return rh_call_control (hcd, urb);
 843	return -EINVAL;
 844}
 845
 846/*-------------------------------------------------------------------------*/
 847
 848/* Unlinks of root-hub control URBs are legal, but they don't do anything
 849 * since these URBs always execute synchronously.
 850 */
 851static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 852{
 853	unsigned long	flags;
 854	int		rc;
 855
 856	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 857	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 858	if (rc)
 859		goto done;
 860
 861	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 862		;	/* Do nothing */
 863
 864	} else {				/* Status URB */
 865		if (!hcd->uses_new_polling)
 866			del_timer (&hcd->rh_timer);
 867		if (urb == hcd->status_urb) {
 868			hcd->status_urb = NULL;
 869			usb_hcd_unlink_urb_from_ep(hcd, urb);
 870			usb_hcd_giveback_urb(hcd, urb, status);
 871		}
 872	}
 873 done:
 874	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 875	return rc;
 876}
 877
 878
 879
 880/*
 881 * Show & store the current value of authorized_default
 882 */
 883static ssize_t authorized_default_show(struct device *dev,
 884				       struct device_attribute *attr, char *buf)
 885{
 886	struct usb_device *rh_usb_dev = to_usb_device(dev);
 887	struct usb_bus *usb_bus = rh_usb_dev->bus;
 888	struct usb_hcd *hcd;
 889
 890	hcd = bus_to_hcd(usb_bus);
 891	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
 892}
 893
 894static ssize_t authorized_default_store(struct device *dev,
 895					struct device_attribute *attr,
 896					const char *buf, size_t size)
 897{
 898	ssize_t result;
 899	unsigned val;
 900	struct usb_device *rh_usb_dev = to_usb_device(dev);
 901	struct usb_bus *usb_bus = rh_usb_dev->bus;
 902	struct usb_hcd *hcd;
 903
 904	hcd = bus_to_hcd(usb_bus);
 905	result = sscanf(buf, "%u\n", &val);
 906	if (result == 1) {
 907		if (val)
 908			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 909		else
 910			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 911
 912		result = size;
 913	} else {
 914		result = -EINVAL;
 915	}
 916	return result;
 917}
 918static DEVICE_ATTR_RW(authorized_default);
 919
 920/*
 921 * interface_authorized_default_show - show default authorization status
 922 * for USB interfaces
 923 *
 924 * note: interface_authorized_default is the default value
 925 *       for initializing the authorized attribute of interfaces
 926 */
 927static ssize_t interface_authorized_default_show(struct device *dev,
 928		struct device_attribute *attr, char *buf)
 929{
 930	struct usb_device *usb_dev = to_usb_device(dev);
 931	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
 932
 933	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
 934}
 935
 936/*
 937 * interface_authorized_default_store - store default authorization status
 938 * for USB interfaces
 939 *
 940 * note: interface_authorized_default is the default value
 941 *       for initializing the authorized attribute of interfaces
 942 */
 943static ssize_t interface_authorized_default_store(struct device *dev,
 944		struct device_attribute *attr, const char *buf, size_t count)
 945{
 946	struct usb_device *usb_dev = to_usb_device(dev);
 947	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
 948	int rc = count;
 949	bool val;
 950
 951	if (strtobool(buf, &val) != 0)
 952		return -EINVAL;
 953
 954	if (val)
 955		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
 956	else
 957		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
 958
 959	return rc;
 960}
 961static DEVICE_ATTR_RW(interface_authorized_default);
 962
 963/* Group all the USB bus attributes */
 964static struct attribute *usb_bus_attrs[] = {
 965		&dev_attr_authorized_default.attr,
 966		&dev_attr_interface_authorized_default.attr,
 967		NULL,
 968};
 969
 970static struct attribute_group usb_bus_attr_group = {
 971	.name = NULL,	/* we want them in the same directory */
 972	.attrs = usb_bus_attrs,
 973};
 974
 975
 976
 977/*-------------------------------------------------------------------------*/
 978
 979/**
 980 * usb_bus_init - shared initialization code
 981 * @bus: the bus structure being initialized
 982 *
 983 * This code is used to initialize a usb_bus structure, memory for which is
 984 * separately managed.
 985 */
 986static void usb_bus_init (struct usb_bus *bus)
 987{
 988	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 989
 990	bus->devnum_next = 1;
 991
 992	bus->root_hub = NULL;
 993	bus->busnum = -1;
 994	bus->bandwidth_allocated = 0;
 995	bus->bandwidth_int_reqs  = 0;
 996	bus->bandwidth_isoc_reqs = 0;
 997	mutex_init(&bus->usb_address0_mutex);
 998}
 999
1000/*-------------------------------------------------------------------------*/
1001
1002/**
1003 * usb_register_bus - registers the USB host controller with the usb core
1004 * @bus: pointer to the bus to register
1005 * Context: !in_interrupt()
 
1006 *
1007 * Assigns a bus number, and links the controller into usbcore data
1008 * structures so that it can be seen by scanning the bus list.
1009 *
1010 * Return: 0 if successful. A negative error code otherwise.
1011 */
1012static int usb_register_bus(struct usb_bus *bus)
1013{
1014	int result = -E2BIG;
1015	int busnum;
1016
1017	mutex_lock(&usb_bus_idr_lock);
1018	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1019	if (busnum < 0) {
1020		pr_err("%s: failed to get bus number\n", usbcore_name);
1021		goto error_find_busnum;
1022	}
1023	bus->busnum = busnum;
1024	mutex_unlock(&usb_bus_idr_lock);
1025
1026	usb_notify_add_bus(bus);
1027
1028	dev_info (bus->controller, "new USB bus registered, assigned bus "
1029		  "number %d\n", bus->busnum);
1030	return 0;
1031
1032error_find_busnum:
1033	mutex_unlock(&usb_bus_idr_lock);
1034	return result;
1035}
1036
1037/**
1038 * usb_deregister_bus - deregisters the USB host controller
1039 * @bus: pointer to the bus to deregister
1040 * Context: !in_interrupt()
 
1041 *
1042 * Recycles the bus number, and unlinks the controller from usbcore data
1043 * structures so that it won't be seen by scanning the bus list.
1044 */
1045static void usb_deregister_bus (struct usb_bus *bus)
1046{
1047	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1048
1049	/*
1050	 * NOTE: make sure that all the devices are removed by the
1051	 * controller code, as well as having it call this when cleaning
1052	 * itself up
1053	 */
1054	mutex_lock(&usb_bus_idr_lock);
1055	idr_remove(&usb_bus_idr, bus->busnum);
1056	mutex_unlock(&usb_bus_idr_lock);
1057
1058	usb_notify_remove_bus(bus);
1059}
1060
1061/**
1062 * register_root_hub - called by usb_add_hcd() to register a root hub
1063 * @hcd: host controller for this root hub
1064 *
1065 * This function registers the root hub with the USB subsystem.  It sets up
1066 * the device properly in the device tree and then calls usb_new_device()
1067 * to register the usb device.  It also assigns the root hub's USB address
1068 * (always 1).
1069 *
1070 * Return: 0 if successful. A negative error code otherwise.
1071 */
1072static int register_root_hub(struct usb_hcd *hcd)
1073{
1074	struct device *parent_dev = hcd->self.controller;
1075	struct usb_device *usb_dev = hcd->self.root_hub;
1076	const int devnum = 1;
1077	int retval;
1078
1079	usb_dev->devnum = devnum;
1080	usb_dev->bus->devnum_next = devnum + 1;
1081	memset (&usb_dev->bus->devmap.devicemap, 0,
1082			sizeof usb_dev->bus->devmap.devicemap);
1083	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1084	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1085
1086	mutex_lock(&usb_bus_idr_lock);
1087
1088	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1089	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1090	if (retval != sizeof usb_dev->descriptor) {
1091		mutex_unlock(&usb_bus_idr_lock);
1092		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1093				dev_name(&usb_dev->dev), retval);
1094		return (retval < 0) ? retval : -EMSGSIZE;
1095	}
1096
1097	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1098		retval = usb_get_bos_descriptor(usb_dev);
1099		if (!retval) {
1100			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1101		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1102			mutex_unlock(&usb_bus_idr_lock);
1103			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1104					dev_name(&usb_dev->dev), retval);
1105			return retval;
1106		}
1107	}
1108
1109	retval = usb_new_device (usb_dev);
1110	if (retval) {
1111		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1112				dev_name(&usb_dev->dev), retval);
1113	} else {
1114		spin_lock_irq (&hcd_root_hub_lock);
1115		hcd->rh_registered = 1;
1116		spin_unlock_irq (&hcd_root_hub_lock);
1117
1118		/* Did the HC die before the root hub was registered? */
1119		if (HCD_DEAD(hcd))
1120			usb_hc_died (hcd);	/* This time clean up */
1121	}
1122	mutex_unlock(&usb_bus_idr_lock);
1123
1124	return retval;
1125}
1126
1127/*
1128 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1129 * @bus: the bus which the root hub belongs to
1130 * @portnum: the port which is being resumed
1131 *
1132 * HCDs should call this function when they know that a resume signal is
1133 * being sent to a root-hub port.  The root hub will be prevented from
1134 * going into autosuspend until usb_hcd_end_port_resume() is called.
1135 *
1136 * The bus's private lock must be held by the caller.
1137 */
1138void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1139{
1140	unsigned bit = 1 << portnum;
1141
1142	if (!(bus->resuming_ports & bit)) {
1143		bus->resuming_ports |= bit;
1144		pm_runtime_get_noresume(&bus->root_hub->dev);
1145	}
1146}
1147EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1148
1149/*
1150 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1151 * @bus: the bus which the root hub belongs to
1152 * @portnum: the port which is being resumed
1153 *
1154 * HCDs should call this function when they know that a resume signal has
1155 * stopped being sent to a root-hub port.  The root hub will be allowed to
1156 * autosuspend again.
1157 *
1158 * The bus's private lock must be held by the caller.
1159 */
1160void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1161{
1162	unsigned bit = 1 << portnum;
1163
1164	if (bus->resuming_ports & bit) {
1165		bus->resuming_ports &= ~bit;
1166		pm_runtime_put_noidle(&bus->root_hub->dev);
1167	}
1168}
1169EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1170
1171/*-------------------------------------------------------------------------*/
1172
1173/**
1174 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1175 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1176 * @is_input: true iff the transaction sends data to the host
1177 * @isoc: true for isochronous transactions, false for interrupt ones
1178 * @bytecount: how many bytes in the transaction.
1179 *
1180 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1181 *
1182 * Note:
1183 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1184 * scheduled in software, this function is only used for such scheduling.
1185 */
1186long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1187{
1188	unsigned long	tmp;
1189
1190	switch (speed) {
1191	case USB_SPEED_LOW: 	/* INTR only */
1192		if (is_input) {
1193			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1194			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1195		} else {
1196			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1198		}
1199	case USB_SPEED_FULL:	/* ISOC or INTR */
1200		if (isoc) {
1201			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1203		} else {
1204			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1205			return 9107L + BW_HOST_DELAY + tmp;
1206		}
1207	case USB_SPEED_HIGH:	/* ISOC or INTR */
1208		/* FIXME adjust for input vs output */
1209		if (isoc)
1210			tmp = HS_NSECS_ISO (bytecount);
1211		else
1212			tmp = HS_NSECS (bytecount);
1213		return tmp;
1214	default:
1215		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1216		return -1;
1217	}
1218}
1219EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1220
1221
1222/*-------------------------------------------------------------------------*/
1223
1224/*
1225 * Generic HC operations.
1226 */
1227
1228/*-------------------------------------------------------------------------*/
1229
1230/**
1231 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1232 * @hcd: host controller to which @urb was submitted
1233 * @urb: URB being submitted
1234 *
1235 * Host controller drivers should call this routine in their enqueue()
1236 * method.  The HCD's private spinlock must be held and interrupts must
1237 * be disabled.  The actions carried out here are required for URB
1238 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1239 *
1240 * Return: 0 for no error, otherwise a negative error code (in which case
1241 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1242 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1243 * the private spinlock and returning.
1244 */
1245int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1246{
1247	int		rc = 0;
1248
1249	spin_lock(&hcd_urb_list_lock);
1250
1251	/* Check that the URB isn't being killed */
1252	if (unlikely(atomic_read(&urb->reject))) {
1253		rc = -EPERM;
1254		goto done;
1255	}
1256
1257	if (unlikely(!urb->ep->enabled)) {
1258		rc = -ENOENT;
1259		goto done;
1260	}
1261
1262	if (unlikely(!urb->dev->can_submit)) {
1263		rc = -EHOSTUNREACH;
1264		goto done;
1265	}
1266
1267	/*
1268	 * Check the host controller's state and add the URB to the
1269	 * endpoint's queue.
1270	 */
1271	if (HCD_RH_RUNNING(hcd)) {
1272		urb->unlinked = 0;
1273		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1274	} else {
1275		rc = -ESHUTDOWN;
1276		goto done;
1277	}
1278 done:
1279	spin_unlock(&hcd_urb_list_lock);
1280	return rc;
1281}
1282EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1283
1284/**
1285 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1286 * @hcd: host controller to which @urb was submitted
1287 * @urb: URB being checked for unlinkability
1288 * @status: error code to store in @urb if the unlink succeeds
1289 *
1290 * Host controller drivers should call this routine in their dequeue()
1291 * method.  The HCD's private spinlock must be held and interrupts must
1292 * be disabled.  The actions carried out here are required for making
1293 * sure than an unlink is valid.
1294 *
1295 * Return: 0 for no error, otherwise a negative error code (in which case
1296 * the dequeue() method must fail).  The possible error codes are:
1297 *
1298 *	-EIDRM: @urb was not submitted or has already completed.
1299 *		The completion function may not have been called yet.
1300 *
1301 *	-EBUSY: @urb has already been unlinked.
1302 */
1303int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1304		int status)
1305{
1306	struct list_head	*tmp;
1307
1308	/* insist the urb is still queued */
1309	list_for_each(tmp, &urb->ep->urb_list) {
1310		if (tmp == &urb->urb_list)
1311			break;
1312	}
1313	if (tmp != &urb->urb_list)
1314		return -EIDRM;
1315
1316	/* Any status except -EINPROGRESS means something already started to
1317	 * unlink this URB from the hardware.  So there's no more work to do.
1318	 */
1319	if (urb->unlinked)
1320		return -EBUSY;
1321	urb->unlinked = status;
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1325
1326/**
1327 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1328 * @hcd: host controller to which @urb was submitted
1329 * @urb: URB being unlinked
1330 *
1331 * Host controller drivers should call this routine before calling
1332 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1333 * interrupts must be disabled.  The actions carried out here are required
1334 * for URB completion.
1335 */
1336void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1337{
1338	/* clear all state linking urb to this dev (and hcd) */
1339	spin_lock(&hcd_urb_list_lock);
1340	list_del_init(&urb->urb_list);
1341	spin_unlock(&hcd_urb_list_lock);
1342}
1343EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1344
1345/*
1346 * Some usb host controllers can only perform dma using a small SRAM area.
1347 * The usb core itself is however optimized for host controllers that can dma
1348 * using regular system memory - like pci devices doing bus mastering.
1349 *
1350 * To support host controllers with limited dma capabilities we provide dma
1351 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1352 * For this to work properly the host controller code must first use the
1353 * function dma_declare_coherent_memory() to point out which memory area
1354 * that should be used for dma allocations.
1355 *
1356 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1357 * dma using dma_alloc_coherent() which in turn allocates from the memory
1358 * area pointed out with dma_declare_coherent_memory().
1359 *
1360 * So, to summarize...
1361 *
1362 * - We need "local" memory, canonical example being
1363 *   a small SRAM on a discrete controller being the
1364 *   only memory that the controller can read ...
1365 *   (a) "normal" kernel memory is no good, and
1366 *   (b) there's not enough to share
1367 *
1368 * - The only *portable* hook for such stuff in the
1369 *   DMA framework is dma_declare_coherent_memory()
1370 *
1371 * - So we use that, even though the primary requirement
1372 *   is that the memory be "local" (hence addressable
1373 *   by that device), not "coherent".
1374 *
1375 */
1376
1377static int hcd_alloc_coherent(struct usb_bus *bus,
1378			      gfp_t mem_flags, dma_addr_t *dma_handle,
1379			      void **vaddr_handle, size_t size,
1380			      enum dma_data_direction dir)
1381{
1382	unsigned char *vaddr;
1383
1384	if (*vaddr_handle == NULL) {
1385		WARN_ON_ONCE(1);
1386		return -EFAULT;
1387	}
1388
1389	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1390				 mem_flags, dma_handle);
1391	if (!vaddr)
1392		return -ENOMEM;
1393
1394	/*
1395	 * Store the virtual address of the buffer at the end
1396	 * of the allocated dma buffer. The size of the buffer
1397	 * may be uneven so use unaligned functions instead
1398	 * of just rounding up. It makes sense to optimize for
1399	 * memory footprint over access speed since the amount
1400	 * of memory available for dma may be limited.
1401	 */
1402	put_unaligned((unsigned long)*vaddr_handle,
1403		      (unsigned long *)(vaddr + size));
1404
1405	if (dir == DMA_TO_DEVICE)
1406		memcpy(vaddr, *vaddr_handle, size);
1407
1408	*vaddr_handle = vaddr;
1409	return 0;
1410}
1411
1412static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1413			      void **vaddr_handle, size_t size,
1414			      enum dma_data_direction dir)
1415{
1416	unsigned char *vaddr = *vaddr_handle;
1417
1418	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1419
1420	if (dir == DMA_FROM_DEVICE)
1421		memcpy(vaddr, *vaddr_handle, size);
1422
1423	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1424
1425	*vaddr_handle = vaddr;
1426	*dma_handle = 0;
1427}
1428
1429void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1430{
1431	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1432	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1433		dma_unmap_single(hcd->self.controller,
1434				urb->setup_dma,
1435				sizeof(struct usb_ctrlrequest),
1436				DMA_TO_DEVICE);
1437	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1438		hcd_free_coherent(urb->dev->bus,
1439				&urb->setup_dma,
1440				(void **) &urb->setup_packet,
1441				sizeof(struct usb_ctrlrequest),
1442				DMA_TO_DEVICE);
1443
1444	/* Make it safe to call this routine more than once */
1445	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1446}
1447EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1448
1449static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1450{
1451	if (hcd->driver->unmap_urb_for_dma)
1452		hcd->driver->unmap_urb_for_dma(hcd, urb);
1453	else
1454		usb_hcd_unmap_urb_for_dma(hcd, urb);
1455}
1456
1457void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1458{
1459	enum dma_data_direction dir;
1460
1461	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1462
1463	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1464	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1465	    (urb->transfer_flags & URB_DMA_MAP_SG))
1466		dma_unmap_sg(hcd->self.controller,
1467				urb->sg,
1468				urb->num_sgs,
1469				dir);
1470	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1471		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1472		dma_unmap_page(hcd->self.controller,
1473				urb->transfer_dma,
1474				urb->transfer_buffer_length,
1475				dir);
1476	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1477		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1478		dma_unmap_single(hcd->self.controller,
1479				urb->transfer_dma,
1480				urb->transfer_buffer_length,
1481				dir);
1482	else if (urb->transfer_flags & URB_MAP_LOCAL)
1483		hcd_free_coherent(urb->dev->bus,
1484				&urb->transfer_dma,
1485				&urb->transfer_buffer,
1486				urb->transfer_buffer_length,
1487				dir);
1488
1489	/* Make it safe to call this routine more than once */
1490	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1491			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1492}
1493EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1494
1495static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1496			   gfp_t mem_flags)
1497{
1498	if (hcd->driver->map_urb_for_dma)
1499		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1500	else
1501		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1502}
1503
1504int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1505			    gfp_t mem_flags)
1506{
1507	enum dma_data_direction dir;
1508	int ret = 0;
1509
1510	/* Map the URB's buffers for DMA access.
1511	 * Lower level HCD code should use *_dma exclusively,
1512	 * unless it uses pio or talks to another transport,
1513	 * or uses the provided scatter gather list for bulk.
1514	 */
1515
1516	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1517		if (hcd->self.uses_pio_for_control)
1518			return ret;
1519		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1520			urb->setup_dma = dma_map_single(
1521					hcd->self.controller,
1522					urb->setup_packet,
1523					sizeof(struct usb_ctrlrequest),
1524					DMA_TO_DEVICE);
1525			if (dma_mapping_error(hcd->self.controller,
1526						urb->setup_dma))
1527				return -EAGAIN;
1528			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1529		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1530			ret = hcd_alloc_coherent(
1531					urb->dev->bus, mem_flags,
1532					&urb->setup_dma,
1533					(void **)&urb->setup_packet,
1534					sizeof(struct usb_ctrlrequest),
1535					DMA_TO_DEVICE);
1536			if (ret)
1537				return ret;
1538			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539		}
1540	}
1541
1542	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1543	if (urb->transfer_buffer_length != 0
1544	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1545		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
 
 
 
 
 
 
 
 
 
1546			if (urb->num_sgs) {
1547				int n;
1548
1549				/* We don't support sg for isoc transfers ! */
1550				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1551					WARN_ON(1);
1552					return -EINVAL;
1553				}
1554
1555				n = dma_map_sg(
1556						hcd->self.controller,
1557						urb->sg,
1558						urb->num_sgs,
1559						dir);
1560				if (n <= 0)
1561					ret = -EAGAIN;
1562				else
1563					urb->transfer_flags |= URB_DMA_MAP_SG;
1564				urb->num_mapped_sgs = n;
1565				if (n != urb->num_sgs)
1566					urb->transfer_flags |=
1567							URB_DMA_SG_COMBINED;
1568			} else if (urb->sg) {
1569				struct scatterlist *sg = urb->sg;
1570				urb->transfer_dma = dma_map_page(
1571						hcd->self.controller,
1572						sg_page(sg),
1573						sg->offset,
1574						urb->transfer_buffer_length,
1575						dir);
1576				if (dma_mapping_error(hcd->self.controller,
1577						urb->transfer_dma))
1578					ret = -EAGAIN;
1579				else
1580					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1581			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1582				WARN_ONCE(1, "transfer buffer not dma capable\n");
1583				ret = -EAGAIN;
1584			} else {
1585				urb->transfer_dma = dma_map_single(
1586						hcd->self.controller,
1587						urb->transfer_buffer,
1588						urb->transfer_buffer_length,
1589						dir);
1590				if (dma_mapping_error(hcd->self.controller,
1591						urb->transfer_dma))
1592					ret = -EAGAIN;
1593				else
1594					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1595			}
1596		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1597			ret = hcd_alloc_coherent(
1598					urb->dev->bus, mem_flags,
1599					&urb->transfer_dma,
1600					&urb->transfer_buffer,
1601					urb->transfer_buffer_length,
1602					dir);
1603			if (ret == 0)
1604				urb->transfer_flags |= URB_MAP_LOCAL;
1605		}
1606		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1607				URB_SETUP_MAP_LOCAL)))
1608			usb_hcd_unmap_urb_for_dma(hcd, urb);
1609	}
1610	return ret;
1611}
1612EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1613
1614/*-------------------------------------------------------------------------*/
1615
1616/* may be called in any context with a valid urb->dev usecount
1617 * caller surrenders "ownership" of urb
1618 * expects usb_submit_urb() to have sanity checked and conditioned all
1619 * inputs in the urb
1620 */
1621int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1622{
1623	int			status;
1624	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1625
1626	/* increment urb's reference count as part of giving it to the HCD
1627	 * (which will control it).  HCD guarantees that it either returns
1628	 * an error or calls giveback(), but not both.
1629	 */
1630	usb_get_urb(urb);
1631	atomic_inc(&urb->use_count);
1632	atomic_inc(&urb->dev->urbnum);
1633	usbmon_urb_submit(&hcd->self, urb);
1634
1635	/* NOTE requirements on root-hub callers (usbfs and the hub
1636	 * driver, for now):  URBs' urb->transfer_buffer must be
1637	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1638	 * they could clobber root hub response data.  Also, control
1639	 * URBs must be submitted in process context with interrupts
1640	 * enabled.
1641	 */
1642
1643	if (is_root_hub(urb->dev)) {
1644		status = rh_urb_enqueue(hcd, urb);
1645	} else {
1646		status = map_urb_for_dma(hcd, urb, mem_flags);
1647		if (likely(status == 0)) {
1648			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1649			if (unlikely(status))
1650				unmap_urb_for_dma(hcd, urb);
1651		}
1652	}
1653
1654	if (unlikely(status)) {
1655		usbmon_urb_submit_error(&hcd->self, urb, status);
1656		urb->hcpriv = NULL;
1657		INIT_LIST_HEAD(&urb->urb_list);
1658		atomic_dec(&urb->use_count);
1659		atomic_dec(&urb->dev->urbnum);
1660		if (atomic_read(&urb->reject))
1661			wake_up(&usb_kill_urb_queue);
1662		usb_put_urb(urb);
1663	}
1664	return status;
1665}
1666
1667/*-------------------------------------------------------------------------*/
1668
1669/* this makes the hcd giveback() the urb more quickly, by kicking it
1670 * off hardware queues (which may take a while) and returning it as
1671 * soon as practical.  we've already set up the urb's return status,
1672 * but we can't know if the callback completed already.
1673 */
1674static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1675{
1676	int		value;
1677
1678	if (is_root_hub(urb->dev))
1679		value = usb_rh_urb_dequeue(hcd, urb, status);
1680	else {
1681
1682		/* The only reason an HCD might fail this call is if
1683		 * it has not yet fully queued the urb to begin with.
1684		 * Such failures should be harmless. */
1685		value = hcd->driver->urb_dequeue(hcd, urb, status);
1686	}
1687	return value;
1688}
1689
1690/*
1691 * called in any context
1692 *
1693 * caller guarantees urb won't be recycled till both unlink()
1694 * and the urb's completion function return
1695 */
1696int usb_hcd_unlink_urb (struct urb *urb, int status)
1697{
1698	struct usb_hcd		*hcd;
1699	struct usb_device	*udev = urb->dev;
1700	int			retval = -EIDRM;
1701	unsigned long		flags;
1702
1703	/* Prevent the device and bus from going away while
1704	 * the unlink is carried out.  If they are already gone
1705	 * then urb->use_count must be 0, since disconnected
1706	 * devices can't have any active URBs.
1707	 */
1708	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1709	if (atomic_read(&urb->use_count) > 0) {
1710		retval = 0;
1711		usb_get_dev(udev);
1712	}
1713	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1714	if (retval == 0) {
1715		hcd = bus_to_hcd(urb->dev->bus);
1716		retval = unlink1(hcd, urb, status);
1717		if (retval == 0)
1718			retval = -EINPROGRESS;
1719		else if (retval != -EIDRM && retval != -EBUSY)
1720			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1721					urb, retval);
1722		usb_put_dev(udev);
1723	}
1724	return retval;
1725}
1726
1727/*-------------------------------------------------------------------------*/
1728
1729static void __usb_hcd_giveback_urb(struct urb *urb)
1730{
1731	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1732	struct usb_anchor *anchor = urb->anchor;
1733	int status = urb->unlinked;
1734	unsigned long flags;
1735
1736	urb->hcpriv = NULL;
1737	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1738	    urb->actual_length < urb->transfer_buffer_length &&
1739	    !status))
1740		status = -EREMOTEIO;
1741
1742	unmap_urb_for_dma(hcd, urb);
1743	usbmon_urb_complete(&hcd->self, urb, status);
1744	usb_anchor_suspend_wakeups(anchor);
1745	usb_unanchor_urb(urb);
1746	if (likely(status == 0))
1747		usb_led_activity(USB_LED_EVENT_HOST);
1748
1749	/* pass ownership to the completion handler */
1750	urb->status = status;
1751
1752	/*
1753	 * We disable local IRQs here avoid possible deadlock because
1754	 * drivers may call spin_lock() to hold lock which might be
1755	 * acquired in one hard interrupt handler.
1756	 *
1757	 * The local_irq_save()/local_irq_restore() around complete()
1758	 * will be removed if current USB drivers have been cleaned up
1759	 * and no one may trigger the above deadlock situation when
1760	 * running complete() in tasklet.
1761	 */
1762	local_irq_save(flags);
1763	urb->complete(urb);
1764	local_irq_restore(flags);
1765
1766	usb_anchor_resume_wakeups(anchor);
1767	atomic_dec(&urb->use_count);
1768	if (unlikely(atomic_read(&urb->reject)))
1769		wake_up(&usb_kill_urb_queue);
1770	usb_put_urb(urb);
1771}
1772
1773static void usb_giveback_urb_bh(unsigned long param)
1774{
1775	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1776	struct list_head local_list;
1777
1778	spin_lock_irq(&bh->lock);
1779	bh->running = true;
1780 restart:
1781	list_replace_init(&bh->head, &local_list);
1782	spin_unlock_irq(&bh->lock);
1783
1784	while (!list_empty(&local_list)) {
1785		struct urb *urb;
1786
1787		urb = list_entry(local_list.next, struct urb, urb_list);
1788		list_del_init(&urb->urb_list);
1789		bh->completing_ep = urb->ep;
1790		__usb_hcd_giveback_urb(urb);
1791		bh->completing_ep = NULL;
1792	}
1793
1794	/* check if there are new URBs to giveback */
1795	spin_lock_irq(&bh->lock);
1796	if (!list_empty(&bh->head))
1797		goto restart;
1798	bh->running = false;
1799	spin_unlock_irq(&bh->lock);
1800}
1801
1802/**
1803 * usb_hcd_giveback_urb - return URB from HCD to device driver
1804 * @hcd: host controller returning the URB
1805 * @urb: urb being returned to the USB device driver.
1806 * @status: completion status code for the URB.
1807 * Context: in_interrupt()
 
 
 
 
1808 *
1809 * This hands the URB from HCD to its USB device driver, using its
1810 * completion function.  The HCD has freed all per-urb resources
1811 * (and is done using urb->hcpriv).  It also released all HCD locks;
1812 * the device driver won't cause problems if it frees, modifies,
1813 * or resubmits this URB.
1814 *
1815 * If @urb was unlinked, the value of @status will be overridden by
1816 * @urb->unlinked.  Erroneous short transfers are detected in case
1817 * the HCD hasn't checked for them.
1818 */
1819void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1820{
1821	struct giveback_urb_bh *bh;
1822	bool running, high_prio_bh;
1823
1824	/* pass status to tasklet via unlinked */
1825	if (likely(!urb->unlinked))
1826		urb->unlinked = status;
1827
1828	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1829		__usb_hcd_giveback_urb(urb);
1830		return;
1831	}
1832
1833	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1834		bh = &hcd->high_prio_bh;
1835		high_prio_bh = true;
1836	} else {
1837		bh = &hcd->low_prio_bh;
1838		high_prio_bh = false;
1839	}
1840
1841	spin_lock(&bh->lock);
1842	list_add_tail(&urb->urb_list, &bh->head);
1843	running = bh->running;
1844	spin_unlock(&bh->lock);
1845
1846	if (running)
1847		;
1848	else if (high_prio_bh)
1849		tasklet_hi_schedule(&bh->bh);
1850	else
1851		tasklet_schedule(&bh->bh);
1852}
1853EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1854
1855/*-------------------------------------------------------------------------*/
1856
1857/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1858 * queue to drain completely.  The caller must first insure that no more
1859 * URBs can be submitted for this endpoint.
1860 */
1861void usb_hcd_flush_endpoint(struct usb_device *udev,
1862		struct usb_host_endpoint *ep)
1863{
1864	struct usb_hcd		*hcd;
1865	struct urb		*urb;
1866
1867	if (!ep)
1868		return;
1869	might_sleep();
1870	hcd = bus_to_hcd(udev->bus);
1871
1872	/* No more submits can occur */
1873	spin_lock_irq(&hcd_urb_list_lock);
1874rescan:
1875	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1876		int	is_in;
1877
1878		if (urb->unlinked)
1879			continue;
1880		usb_get_urb (urb);
1881		is_in = usb_urb_dir_in(urb);
1882		spin_unlock(&hcd_urb_list_lock);
1883
1884		/* kick hcd */
1885		unlink1(hcd, urb, -ESHUTDOWN);
1886		dev_dbg (hcd->self.controller,
1887			"shutdown urb %p ep%d%s%s\n",
1888			urb, usb_endpoint_num(&ep->desc),
1889			is_in ? "in" : "out",
1890			({	char *s;
1891
1892				 switch (usb_endpoint_type(&ep->desc)) {
1893				 case USB_ENDPOINT_XFER_CONTROL:
1894					s = ""; break;
1895				 case USB_ENDPOINT_XFER_BULK:
1896					s = "-bulk"; break;
1897				 case USB_ENDPOINT_XFER_INT:
1898					s = "-intr"; break;
1899				 default:
1900					s = "-iso"; break;
1901				};
1902				s;
1903			}));
1904		usb_put_urb (urb);
1905
1906		/* list contents may have changed */
1907		spin_lock(&hcd_urb_list_lock);
1908		goto rescan;
1909	}
1910	spin_unlock_irq(&hcd_urb_list_lock);
1911
1912	/* Wait until the endpoint queue is completely empty */
1913	while (!list_empty (&ep->urb_list)) {
1914		spin_lock_irq(&hcd_urb_list_lock);
1915
1916		/* The list may have changed while we acquired the spinlock */
1917		urb = NULL;
1918		if (!list_empty (&ep->urb_list)) {
1919			urb = list_entry (ep->urb_list.prev, struct urb,
1920					urb_list);
1921			usb_get_urb (urb);
1922		}
1923		spin_unlock_irq(&hcd_urb_list_lock);
1924
1925		if (urb) {
1926			usb_kill_urb (urb);
1927			usb_put_urb (urb);
1928		}
1929	}
1930}
1931
1932/**
1933 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1934 *				the bus bandwidth
1935 * @udev: target &usb_device
1936 * @new_config: new configuration to install
1937 * @cur_alt: the current alternate interface setting
1938 * @new_alt: alternate interface setting that is being installed
1939 *
1940 * To change configurations, pass in the new configuration in new_config,
1941 * and pass NULL for cur_alt and new_alt.
1942 *
1943 * To reset a device's configuration (put the device in the ADDRESSED state),
1944 * pass in NULL for new_config, cur_alt, and new_alt.
1945 *
1946 * To change alternate interface settings, pass in NULL for new_config,
1947 * pass in the current alternate interface setting in cur_alt,
1948 * and pass in the new alternate interface setting in new_alt.
1949 *
1950 * Return: An error if the requested bandwidth change exceeds the
1951 * bus bandwidth or host controller internal resources.
1952 */
1953int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1954		struct usb_host_config *new_config,
1955		struct usb_host_interface *cur_alt,
1956		struct usb_host_interface *new_alt)
1957{
1958	int num_intfs, i, j;
1959	struct usb_host_interface *alt = NULL;
1960	int ret = 0;
1961	struct usb_hcd *hcd;
1962	struct usb_host_endpoint *ep;
1963
1964	hcd = bus_to_hcd(udev->bus);
1965	if (!hcd->driver->check_bandwidth)
1966		return 0;
1967
1968	/* Configuration is being removed - set configuration 0 */
1969	if (!new_config && !cur_alt) {
1970		for (i = 1; i < 16; ++i) {
1971			ep = udev->ep_out[i];
1972			if (ep)
1973				hcd->driver->drop_endpoint(hcd, udev, ep);
1974			ep = udev->ep_in[i];
1975			if (ep)
1976				hcd->driver->drop_endpoint(hcd, udev, ep);
1977		}
1978		hcd->driver->check_bandwidth(hcd, udev);
1979		return 0;
1980	}
1981	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1982	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1983	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1984	 * ok to exclude it.
1985	 */
1986	if (new_config) {
1987		num_intfs = new_config->desc.bNumInterfaces;
1988		/* Remove endpoints (except endpoint 0, which is always on the
1989		 * schedule) from the old config from the schedule
1990		 */
1991		for (i = 1; i < 16; ++i) {
1992			ep = udev->ep_out[i];
1993			if (ep) {
1994				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1995				if (ret < 0)
1996					goto reset;
1997			}
1998			ep = udev->ep_in[i];
1999			if (ep) {
2000				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001				if (ret < 0)
2002					goto reset;
2003			}
2004		}
2005		for (i = 0; i < num_intfs; ++i) {
2006			struct usb_host_interface *first_alt;
2007			int iface_num;
2008
2009			first_alt = &new_config->intf_cache[i]->altsetting[0];
2010			iface_num = first_alt->desc.bInterfaceNumber;
2011			/* Set up endpoints for alternate interface setting 0 */
2012			alt = usb_find_alt_setting(new_config, iface_num, 0);
2013			if (!alt)
2014				/* No alt setting 0? Pick the first setting. */
2015				alt = first_alt;
2016
2017			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2018				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2019				if (ret < 0)
2020					goto reset;
2021			}
2022		}
2023	}
2024	if (cur_alt && new_alt) {
2025		struct usb_interface *iface = usb_ifnum_to_if(udev,
2026				cur_alt->desc.bInterfaceNumber);
2027
2028		if (!iface)
2029			return -EINVAL;
2030		if (iface->resetting_device) {
2031			/*
2032			 * The USB core just reset the device, so the xHCI host
2033			 * and the device will think alt setting 0 is installed.
2034			 * However, the USB core will pass in the alternate
2035			 * setting installed before the reset as cur_alt.  Dig
2036			 * out the alternate setting 0 structure, or the first
2037			 * alternate setting if a broken device doesn't have alt
2038			 * setting 0.
2039			 */
2040			cur_alt = usb_altnum_to_altsetting(iface, 0);
2041			if (!cur_alt)
2042				cur_alt = &iface->altsetting[0];
2043		}
2044
2045		/* Drop all the endpoints in the current alt setting */
2046		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2047			ret = hcd->driver->drop_endpoint(hcd, udev,
2048					&cur_alt->endpoint[i]);
2049			if (ret < 0)
2050				goto reset;
2051		}
2052		/* Add all the endpoints in the new alt setting */
2053		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2054			ret = hcd->driver->add_endpoint(hcd, udev,
2055					&new_alt->endpoint[i]);
2056			if (ret < 0)
2057				goto reset;
2058		}
2059	}
2060	ret = hcd->driver->check_bandwidth(hcd, udev);
2061reset:
2062	if (ret < 0)
2063		hcd->driver->reset_bandwidth(hcd, udev);
2064	return ret;
2065}
2066
2067/* Disables the endpoint: synchronizes with the hcd to make sure all
2068 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2069 * have been called previously.  Use for set_configuration, set_interface,
2070 * driver removal, physical disconnect.
2071 *
2072 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2073 * type, maxpacket size, toggle, halt status, and scheduling.
2074 */
2075void usb_hcd_disable_endpoint(struct usb_device *udev,
2076		struct usb_host_endpoint *ep)
2077{
2078	struct usb_hcd		*hcd;
2079
2080	might_sleep();
2081	hcd = bus_to_hcd(udev->bus);
2082	if (hcd->driver->endpoint_disable)
2083		hcd->driver->endpoint_disable(hcd, ep);
2084}
2085
2086/**
2087 * usb_hcd_reset_endpoint - reset host endpoint state
2088 * @udev: USB device.
2089 * @ep:   the endpoint to reset.
2090 *
2091 * Resets any host endpoint state such as the toggle bit, sequence
2092 * number and current window.
2093 */
2094void usb_hcd_reset_endpoint(struct usb_device *udev,
2095			    struct usb_host_endpoint *ep)
2096{
2097	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2098
2099	if (hcd->driver->endpoint_reset)
2100		hcd->driver->endpoint_reset(hcd, ep);
2101	else {
2102		int epnum = usb_endpoint_num(&ep->desc);
2103		int is_out = usb_endpoint_dir_out(&ep->desc);
2104		int is_control = usb_endpoint_xfer_control(&ep->desc);
2105
2106		usb_settoggle(udev, epnum, is_out, 0);
2107		if (is_control)
2108			usb_settoggle(udev, epnum, !is_out, 0);
2109	}
2110}
2111
2112/**
2113 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2114 * @interface:		alternate setting that includes all endpoints.
2115 * @eps:		array of endpoints that need streams.
2116 * @num_eps:		number of endpoints in the array.
2117 * @num_streams:	number of streams to allocate.
2118 * @mem_flags:		flags hcd should use to allocate memory.
2119 *
2120 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2121 * Drivers may queue multiple transfers to different stream IDs, which may
2122 * complete in a different order than they were queued.
2123 *
2124 * Return: On success, the number of allocated streams. On failure, a negative
2125 * error code.
2126 */
2127int usb_alloc_streams(struct usb_interface *interface,
2128		struct usb_host_endpoint **eps, unsigned int num_eps,
2129		unsigned int num_streams, gfp_t mem_flags)
2130{
2131	struct usb_hcd *hcd;
2132	struct usb_device *dev;
2133	int i, ret;
2134
2135	dev = interface_to_usbdev(interface);
2136	hcd = bus_to_hcd(dev->bus);
2137	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2138		return -EINVAL;
2139	if (dev->speed < USB_SPEED_SUPER)
2140		return -EINVAL;
2141	if (dev->state < USB_STATE_CONFIGURED)
2142		return -ENODEV;
2143
2144	for (i = 0; i < num_eps; i++) {
2145		/* Streams only apply to bulk endpoints. */
2146		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2147			return -EINVAL;
2148		/* Re-alloc is not allowed */
2149		if (eps[i]->streams)
2150			return -EINVAL;
2151	}
2152
2153	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2154			num_streams, mem_flags);
2155	if (ret < 0)
2156		return ret;
2157
2158	for (i = 0; i < num_eps; i++)
2159		eps[i]->streams = ret;
2160
2161	return ret;
2162}
2163EXPORT_SYMBOL_GPL(usb_alloc_streams);
2164
2165/**
2166 * usb_free_streams - free bulk endpoint stream IDs.
2167 * @interface:	alternate setting that includes all endpoints.
2168 * @eps:	array of endpoints to remove streams from.
2169 * @num_eps:	number of endpoints in the array.
2170 * @mem_flags:	flags hcd should use to allocate memory.
2171 *
2172 * Reverts a group of bulk endpoints back to not using stream IDs.
2173 * Can fail if we are given bad arguments, or HCD is broken.
2174 *
2175 * Return: 0 on success. On failure, a negative error code.
2176 */
2177int usb_free_streams(struct usb_interface *interface,
2178		struct usb_host_endpoint **eps, unsigned int num_eps,
2179		gfp_t mem_flags)
2180{
2181	struct usb_hcd *hcd;
2182	struct usb_device *dev;
2183	int i, ret;
2184
2185	dev = interface_to_usbdev(interface);
2186	hcd = bus_to_hcd(dev->bus);
2187	if (dev->speed < USB_SPEED_SUPER)
2188		return -EINVAL;
2189
2190	/* Double-free is not allowed */
2191	for (i = 0; i < num_eps; i++)
2192		if (!eps[i] || !eps[i]->streams)
2193			return -EINVAL;
2194
2195	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2196	if (ret < 0)
2197		return ret;
2198
2199	for (i = 0; i < num_eps; i++)
2200		eps[i]->streams = 0;
2201
2202	return ret;
2203}
2204EXPORT_SYMBOL_GPL(usb_free_streams);
2205
2206/* Protect against drivers that try to unlink URBs after the device
2207 * is gone, by waiting until all unlinks for @udev are finished.
2208 * Since we don't currently track URBs by device, simply wait until
2209 * nothing is running in the locked region of usb_hcd_unlink_urb().
2210 */
2211void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2212{
2213	spin_lock_irq(&hcd_urb_unlink_lock);
2214	spin_unlock_irq(&hcd_urb_unlink_lock);
2215}
2216
2217/*-------------------------------------------------------------------------*/
2218
2219/* called in any context */
2220int usb_hcd_get_frame_number (struct usb_device *udev)
2221{
2222	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2223
2224	if (!HCD_RH_RUNNING(hcd))
2225		return -ESHUTDOWN;
2226	return hcd->driver->get_frame_number (hcd);
2227}
2228
2229/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230
2231#ifdef	CONFIG_PM
2232
2233int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2234{
2235	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2236	int		status;
2237	int		old_state = hcd->state;
2238
2239	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2240			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2241			rhdev->do_remote_wakeup);
2242	if (HCD_DEAD(hcd)) {
2243		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2244		return 0;
2245	}
2246
2247	if (!hcd->driver->bus_suspend) {
2248		status = -ENOENT;
2249	} else {
2250		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2251		hcd->state = HC_STATE_QUIESCING;
2252		status = hcd->driver->bus_suspend(hcd);
2253	}
2254	if (status == 0) {
2255		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2256		hcd->state = HC_STATE_SUSPENDED;
2257
 
 
 
 
2258		/* Did we race with a root-hub wakeup event? */
2259		if (rhdev->do_remote_wakeup) {
2260			char	buffer[6];
2261
2262			status = hcd->driver->hub_status_data(hcd, buffer);
2263			if (status != 0) {
2264				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2265				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2266				status = -EBUSY;
2267			}
2268		}
2269	} else {
2270		spin_lock_irq(&hcd_root_hub_lock);
2271		if (!HCD_DEAD(hcd)) {
2272			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2273			hcd->state = old_state;
2274		}
2275		spin_unlock_irq(&hcd_root_hub_lock);
2276		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2277				"suspend", status);
2278	}
2279	return status;
2280}
2281
2282int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2283{
2284	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2285	int		status;
2286	int		old_state = hcd->state;
2287
2288	dev_dbg(&rhdev->dev, "usb %sresume\n",
2289			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2290	if (HCD_DEAD(hcd)) {
2291		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2292		return 0;
2293	}
 
 
 
 
 
 
 
 
2294	if (!hcd->driver->bus_resume)
2295		return -ENOENT;
2296	if (HCD_RH_RUNNING(hcd))
2297		return 0;
2298
2299	hcd->state = HC_STATE_RESUMING;
2300	status = hcd->driver->bus_resume(hcd);
2301	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
 
 
 
2302	if (status == 0) {
2303		struct usb_device *udev;
2304		int port1;
2305
2306		spin_lock_irq(&hcd_root_hub_lock);
2307		if (!HCD_DEAD(hcd)) {
2308			usb_set_device_state(rhdev, rhdev->actconfig
2309					? USB_STATE_CONFIGURED
2310					: USB_STATE_ADDRESS);
2311			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2312			hcd->state = HC_STATE_RUNNING;
2313		}
2314		spin_unlock_irq(&hcd_root_hub_lock);
2315
2316		/*
2317		 * Check whether any of the enabled ports on the root hub are
2318		 * unsuspended.  If they are then a TRSMRCY delay is needed
2319		 * (this is what the USB-2 spec calls a "global resume").
2320		 * Otherwise we can skip the delay.
2321		 */
2322		usb_hub_for_each_child(rhdev, port1, udev) {
2323			if (udev->state != USB_STATE_NOTATTACHED &&
2324					!udev->port_is_suspended) {
2325				usleep_range(10000, 11000);	/* TRSMRCY */
2326				break;
2327			}
2328		}
2329	} else {
2330		hcd->state = old_state;
 
2331		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2332				"resume", status);
2333		if (status != -ESHUTDOWN)
2334			usb_hc_died(hcd);
2335	}
2336	return status;
2337}
2338
2339/* Workqueue routine for root-hub remote wakeup */
2340static void hcd_resume_work(struct work_struct *work)
2341{
2342	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2343	struct usb_device *udev = hcd->self.root_hub;
2344
2345	usb_remote_wakeup(udev);
2346}
2347
2348/**
2349 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2350 * @hcd: host controller for this root hub
2351 *
2352 * The USB host controller calls this function when its root hub is
2353 * suspended (with the remote wakeup feature enabled) and a remote
2354 * wakeup request is received.  The routine submits a workqueue request
2355 * to resume the root hub (that is, manage its downstream ports again).
2356 */
2357void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2358{
2359	unsigned long flags;
2360
2361	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2362	if (hcd->rh_registered) {
 
2363		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2364		queue_work(pm_wq, &hcd->wakeup_work);
2365	}
2366	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2367}
2368EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2369
2370#endif	/* CONFIG_PM */
2371
2372/*-------------------------------------------------------------------------*/
2373
2374#ifdef	CONFIG_USB_OTG
2375
2376/**
2377 * usb_bus_start_enum - start immediate enumeration (for OTG)
2378 * @bus: the bus (must use hcd framework)
2379 * @port_num: 1-based number of port; usually bus->otg_port
2380 * Context: in_interrupt()
2381 *
2382 * Starts enumeration, with an immediate reset followed later by
2383 * hub_wq identifying and possibly configuring the device.
2384 * This is needed by OTG controller drivers, where it helps meet
2385 * HNP protocol timing requirements for starting a port reset.
2386 *
2387 * Return: 0 if successful.
2388 */
2389int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2390{
2391	struct usb_hcd		*hcd;
2392	int			status = -EOPNOTSUPP;
2393
2394	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2395	 * boards with root hubs hooked up to internal devices (instead of
2396	 * just the OTG port) may need more attention to resetting...
2397	 */
2398	hcd = bus_to_hcd(bus);
2399	if (port_num && hcd->driver->start_port_reset)
2400		status = hcd->driver->start_port_reset(hcd, port_num);
2401
2402	/* allocate hub_wq shortly after (first) root port reset finishes;
2403	 * it may issue others, until at least 50 msecs have passed.
2404	 */
2405	if (status == 0)
2406		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2407	return status;
2408}
2409EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2410
2411#endif
2412
2413/*-------------------------------------------------------------------------*/
2414
2415/**
2416 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2417 * @irq: the IRQ being raised
2418 * @__hcd: pointer to the HCD whose IRQ is being signaled
2419 *
2420 * If the controller isn't HALTed, calls the driver's irq handler.
2421 * Checks whether the controller is now dead.
2422 *
2423 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2424 */
2425irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2426{
2427	struct usb_hcd		*hcd = __hcd;
2428	irqreturn_t		rc;
2429
2430	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2431		rc = IRQ_NONE;
2432	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2433		rc = IRQ_NONE;
2434	else
2435		rc = IRQ_HANDLED;
2436
2437	return rc;
2438}
2439EXPORT_SYMBOL_GPL(usb_hcd_irq);
2440
2441/*-------------------------------------------------------------------------*/
2442
 
 
 
 
 
 
 
 
 
 
 
 
 
2443/**
2444 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2445 * @hcd: pointer to the HCD representing the controller
2446 *
2447 * This is called by bus glue to report a USB host controller that died
2448 * while operations may still have been pending.  It's called automatically
2449 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2450 *
2451 * Only call this function with the primary HCD.
2452 */
2453void usb_hc_died (struct usb_hcd *hcd)
2454{
2455	unsigned long flags;
2456
2457	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2458
2459	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2460	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2461	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2462	if (hcd->rh_registered) {
2463		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2464
2465		/* make hub_wq clean up old urbs and devices */
2466		usb_set_device_state (hcd->self.root_hub,
2467				USB_STATE_NOTATTACHED);
2468		usb_kick_hub_wq(hcd->self.root_hub);
2469	}
2470	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2471		hcd = hcd->shared_hcd;
 
 
2472		if (hcd->rh_registered) {
2473			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2474
2475			/* make hub_wq clean up old urbs and devices */
2476			usb_set_device_state(hcd->self.root_hub,
2477					USB_STATE_NOTATTACHED);
2478			usb_kick_hub_wq(hcd->self.root_hub);
2479		}
2480	}
 
 
 
 
 
 
 
2481	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2482	/* Make sure that the other roothub is also deallocated. */
2483}
2484EXPORT_SYMBOL_GPL (usb_hc_died);
2485
2486/*-------------------------------------------------------------------------*/
2487
2488static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2489{
2490
2491	spin_lock_init(&bh->lock);
2492	INIT_LIST_HEAD(&bh->head);
2493	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2494}
2495
2496/**
2497 * usb_create_shared_hcd - create and initialize an HCD structure
2498 * @driver: HC driver that will use this hcd
2499 * @dev: device for this HC, stored in hcd->self.controller
2500 * @bus_name: value to store in hcd->self.bus_name
2501 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2502 *              PCI device.  Only allocate certain resources for the primary HCD
2503 * Context: !in_interrupt()
2504 *
2505 * Allocate a struct usb_hcd, with extra space at the end for the
2506 * HC driver's private data.  Initialize the generic members of the
2507 * hcd structure.
2508 *
2509 * Return: On success, a pointer to the created and initialized HCD structure.
2510 * On failure (e.g. if memory is unavailable), %NULL.
2511 */
2512struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2513		struct device *dev, const char *bus_name,
2514		struct usb_hcd *primary_hcd)
2515{
2516	struct usb_hcd *hcd;
2517
2518	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2519	if (!hcd) {
2520		dev_dbg (dev, "hcd alloc failed\n");
2521		return NULL;
2522	}
2523	if (primary_hcd == NULL) {
 
 
 
 
 
 
 
 
2524		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2525				GFP_KERNEL);
2526		if (!hcd->bandwidth_mutex) {
 
2527			kfree(hcd);
2528			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2529			return NULL;
2530		}
2531		mutex_init(hcd->bandwidth_mutex);
2532		dev_set_drvdata(dev, hcd);
2533	} else {
2534		mutex_lock(&usb_port_peer_mutex);
 
2535		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2536		hcd->primary_hcd = primary_hcd;
2537		primary_hcd->primary_hcd = primary_hcd;
2538		hcd->shared_hcd = primary_hcd;
2539		primary_hcd->shared_hcd = hcd;
2540		mutex_unlock(&usb_port_peer_mutex);
2541	}
2542
2543	kref_init(&hcd->kref);
2544
2545	usb_bus_init(&hcd->self);
2546	hcd->self.controller = dev;
 
2547	hcd->self.bus_name = bus_name;
2548	hcd->self.uses_dma = (dev->dma_mask != NULL);
2549
2550	init_timer(&hcd->rh_timer);
2551	hcd->rh_timer.function = rh_timer_func;
2552	hcd->rh_timer.data = (unsigned long) hcd;
2553#ifdef CONFIG_PM
2554	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2555#endif
2556
 
 
2557	hcd->driver = driver;
2558	hcd->speed = driver->flags & HCD_MASK;
2559	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2560			"USB Host Controller";
2561	return hcd;
2562}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2563EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2564
2565/**
2566 * usb_create_hcd - create and initialize an HCD structure
2567 * @driver: HC driver that will use this hcd
2568 * @dev: device for this HC, stored in hcd->self.controller
2569 * @bus_name: value to store in hcd->self.bus_name
2570 * Context: !in_interrupt()
 
2571 *
2572 * Allocate a struct usb_hcd, with extra space at the end for the
2573 * HC driver's private data.  Initialize the generic members of the
2574 * hcd structure.
2575 *
2576 * Return: On success, a pointer to the created and initialized HCD
2577 * structure. On failure (e.g. if memory is unavailable), %NULL.
2578 */
2579struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2580		struct device *dev, const char *bus_name)
2581{
2582	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2583}
2584EXPORT_SYMBOL_GPL(usb_create_hcd);
2585
2586/*
2587 * Roothubs that share one PCI device must also share the bandwidth mutex.
2588 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2589 * deallocated.
2590 *
2591 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2592 * freed.  When hcd_release() is called for either hcd in a peer set
2593 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2594 * block new peering attempts
2595 */
2596static void hcd_release(struct kref *kref)
2597{
2598	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2599
2600	mutex_lock(&usb_port_peer_mutex);
2601	if (usb_hcd_is_primary_hcd(hcd))
2602		kfree(hcd->bandwidth_mutex);
2603	if (hcd->shared_hcd) {
2604		struct usb_hcd *peer = hcd->shared_hcd;
2605
2606		peer->shared_hcd = NULL;
2607		if (peer->primary_hcd == hcd)
2608			peer->primary_hcd = NULL;
 
 
2609	}
2610	mutex_unlock(&usb_port_peer_mutex);
2611	kfree(hcd);
2612}
2613
2614struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2615{
2616	if (hcd)
2617		kref_get (&hcd->kref);
2618	return hcd;
2619}
2620EXPORT_SYMBOL_GPL(usb_get_hcd);
2621
2622void usb_put_hcd (struct usb_hcd *hcd)
2623{
2624	if (hcd)
2625		kref_put (&hcd->kref, hcd_release);
2626}
2627EXPORT_SYMBOL_GPL(usb_put_hcd);
2628
2629int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2630{
2631	if (!hcd->primary_hcd)
2632		return 1;
2633	return hcd == hcd->primary_hcd;
2634}
2635EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2636
2637int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2638{
2639	if (!hcd->driver->find_raw_port_number)
2640		return port1;
2641
2642	return hcd->driver->find_raw_port_number(hcd, port1);
2643}
2644
2645static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2646		unsigned int irqnum, unsigned long irqflags)
2647{
2648	int retval;
2649
2650	if (hcd->driver->irq) {
2651
2652		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2653				hcd->driver->description, hcd->self.busnum);
2654		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2655				hcd->irq_descr, hcd);
2656		if (retval != 0) {
2657			dev_err(hcd->self.controller,
2658					"request interrupt %d failed\n",
2659					irqnum);
2660			return retval;
2661		}
2662		hcd->irq = irqnum;
2663		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2664				(hcd->driver->flags & HCD_MEMORY) ?
2665					"io mem" : "io base",
2666					(unsigned long long)hcd->rsrc_start);
2667	} else {
2668		hcd->irq = 0;
2669		if (hcd->rsrc_start)
2670			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2671					(hcd->driver->flags & HCD_MEMORY) ?
2672					"io mem" : "io base",
2673					(unsigned long long)hcd->rsrc_start);
2674	}
2675	return 0;
2676}
2677
2678/*
2679 * Before we free this root hub, flush in-flight peering attempts
2680 * and disable peer lookups
2681 */
2682static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2683{
2684	struct usb_device *rhdev;
2685
2686	mutex_lock(&usb_port_peer_mutex);
2687	rhdev = hcd->self.root_hub;
2688	hcd->self.root_hub = NULL;
2689	mutex_unlock(&usb_port_peer_mutex);
2690	usb_put_dev(rhdev);
2691}
2692
2693/**
2694 * usb_add_hcd - finish generic HCD structure initialization and register
2695 * @hcd: the usb_hcd structure to initialize
2696 * @irqnum: Interrupt line to allocate
2697 * @irqflags: Interrupt type flags
2698 *
2699 * Finish the remaining parts of generic HCD initialization: allocate the
2700 * buffers of consistent memory, register the bus, request the IRQ line,
2701 * and call the driver's reset() and start() routines.
2702 */
2703int usb_add_hcd(struct usb_hcd *hcd,
2704		unsigned int irqnum, unsigned long irqflags)
2705{
2706	int retval;
2707	struct usb_device *rhdev;
 
2708
2709	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2710		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
 
 
2711
2712		if (IS_ERR(phy)) {
2713			retval = PTR_ERR(phy);
2714			if (retval == -EPROBE_DEFER)
2715				return retval;
2716		} else {
2717			retval = usb_phy_init(phy);
2718			if (retval) {
2719				usb_put_phy(phy);
2720				return retval;
2721			}
2722			hcd->usb_phy = phy;
2723			hcd->remove_phy = 1;
2724		}
2725	}
2726
2727	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2728		struct phy *phy = phy_get(hcd->self.controller, "usb");
 
 
 
 
 
2729
2730		if (IS_ERR(phy)) {
2731			retval = PTR_ERR(phy);
2732			if (retval == -EPROBE_DEFER)
2733				goto err_phy;
2734		} else {
2735			retval = phy_init(phy);
2736			if (retval) {
2737				phy_put(phy);
2738				goto err_phy;
2739			}
2740			retval = phy_power_on(phy);
2741			if (retval) {
2742				phy_exit(phy);
2743				phy_put(phy);
2744				goto err_phy;
2745			}
2746			hcd->phy = phy;
2747			hcd->remove_phy = 1;
2748		}
2749	}
2750
2751	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2752
2753	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2754	if (authorized_default < 0 || authorized_default > 1) {
2755		if (hcd->wireless)
2756			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2757		else
2758			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2759	} else {
2760		if (authorized_default)
2761			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2762		else
2763			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 
 
 
 
 
 
 
2764	}
 
2765	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2766
2767	/* per default all interfaces are authorized */
2768	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2769
2770	/* HC is in reset state, but accessible.  Now do the one-time init,
2771	 * bottom up so that hcds can customize the root hubs before hub_wq
2772	 * starts talking to them.  (Note, bus id is assigned early too.)
2773	 */
2774	retval = hcd_buffer_create(hcd);
2775	if (retval != 0) {
2776		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2777		goto err_create_buf;
2778	}
2779
2780	retval = usb_register_bus(&hcd->self);
2781	if (retval < 0)
2782		goto err_register_bus;
2783
2784	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2785	if (rhdev == NULL) {
2786		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2787		retval = -ENOMEM;
2788		goto err_allocate_root_hub;
2789	}
2790	mutex_lock(&usb_port_peer_mutex);
2791	hcd->self.root_hub = rhdev;
2792	mutex_unlock(&usb_port_peer_mutex);
2793
 
 
 
 
2794	switch (hcd->speed) {
2795	case HCD_USB11:
2796		rhdev->speed = USB_SPEED_FULL;
2797		break;
2798	case HCD_USB2:
2799		rhdev->speed = USB_SPEED_HIGH;
2800		break;
2801	case HCD_USB25:
2802		rhdev->speed = USB_SPEED_WIRELESS;
2803		break;
2804	case HCD_USB3:
2805		rhdev->speed = USB_SPEED_SUPER;
2806		break;
 
 
 
 
 
 
2807	case HCD_USB31:
 
2808		rhdev->speed = USB_SPEED_SUPER_PLUS;
2809		break;
2810	default:
2811		retval = -EINVAL;
2812		goto err_set_rh_speed;
2813	}
2814
2815	/* wakeup flag init defaults to "everything works" for root hubs,
2816	 * but drivers can override it in reset() if needed, along with
2817	 * recording the overall controller's system wakeup capability.
2818	 */
2819	device_set_wakeup_capable(&rhdev->dev, 1);
2820
2821	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2822	 * registered.  But since the controller can die at any time,
2823	 * let's initialize the flag before touching the hardware.
2824	 */
2825	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2826
2827	/* "reset" is misnamed; its role is now one-time init. the controller
2828	 * should already have been reset (and boot firmware kicked off etc).
2829	 */
2830	if (hcd->driver->reset) {
2831		retval = hcd->driver->reset(hcd);
2832		if (retval < 0) {
2833			dev_err(hcd->self.controller, "can't setup: %d\n",
2834					retval);
2835			goto err_hcd_driver_setup;
2836		}
2837	}
2838	hcd->rh_pollable = 1;
2839
 
 
 
 
2840	/* NOTE: root hub and controller capabilities may not be the same */
2841	if (device_can_wakeup(hcd->self.controller)
2842			&& device_can_wakeup(&hcd->self.root_hub->dev))
2843		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2844
2845	/* initialize tasklets */
2846	init_giveback_urb_bh(&hcd->high_prio_bh);
2847	init_giveback_urb_bh(&hcd->low_prio_bh);
2848
2849	/* enable irqs just before we start the controller,
2850	 * if the BIOS provides legacy PCI irqs.
2851	 */
2852	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2853		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2854		if (retval)
2855			goto err_request_irq;
2856	}
2857
2858	hcd->state = HC_STATE_RUNNING;
2859	retval = hcd->driver->start(hcd);
2860	if (retval < 0) {
2861		dev_err(hcd->self.controller, "startup error %d\n", retval);
2862		goto err_hcd_driver_start;
2863	}
2864
 
 
 
 
 
 
 
 
 
 
 
2865	/* starting here, usbcore will pay attention to this root hub */
2866	retval = register_root_hub(hcd);
2867	if (retval != 0)
2868		goto err_register_root_hub;
 
2869
2870	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2871	if (retval < 0) {
2872		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2873		       retval);
2874		goto error_create_attr_group;
2875	}
2876	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2877		usb_hcd_poll_rh_status(hcd);
2878
2879	return retval;
2880
2881error_create_attr_group:
2882	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2883	if (HC_IS_RUNNING(hcd->state))
2884		hcd->state = HC_STATE_QUIESCING;
2885	spin_lock_irq(&hcd_root_hub_lock);
2886	hcd->rh_registered = 0;
2887	spin_unlock_irq(&hcd_root_hub_lock);
2888
2889#ifdef CONFIG_PM
2890	cancel_work_sync(&hcd->wakeup_work);
2891#endif
2892	mutex_lock(&usb_bus_idr_lock);
2893	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2894	mutex_unlock(&usb_bus_idr_lock);
2895err_register_root_hub:
2896	hcd->rh_pollable = 0;
2897	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2898	del_timer_sync(&hcd->rh_timer);
2899	hcd->driver->stop(hcd);
2900	hcd->state = HC_STATE_HALT;
2901	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2902	del_timer_sync(&hcd->rh_timer);
2903err_hcd_driver_start:
2904	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2905		free_irq(irqnum, hcd);
2906err_request_irq:
2907err_hcd_driver_setup:
2908err_set_rh_speed:
2909	usb_put_invalidate_rhdev(hcd);
2910err_allocate_root_hub:
2911	usb_deregister_bus(&hcd->self);
2912err_register_bus:
2913	hcd_buffer_destroy(hcd);
2914err_create_buf:
2915	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2916		phy_power_off(hcd->phy);
2917		phy_exit(hcd->phy);
2918		phy_put(hcd->phy);
2919		hcd->phy = NULL;
2920	}
2921err_phy:
2922	if (hcd->remove_phy && hcd->usb_phy) {
2923		usb_phy_shutdown(hcd->usb_phy);
2924		usb_put_phy(hcd->usb_phy);
2925		hcd->usb_phy = NULL;
2926	}
2927	return retval;
2928}
2929EXPORT_SYMBOL_GPL(usb_add_hcd);
2930
2931/**
2932 * usb_remove_hcd - shutdown processing for generic HCDs
2933 * @hcd: the usb_hcd structure to remove
2934 * Context: !in_interrupt()
 
2935 *
2936 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2937 * invoking the HCD's stop() method.
2938 */
2939void usb_remove_hcd(struct usb_hcd *hcd)
2940{
2941	struct usb_device *rhdev = hcd->self.root_hub;
 
2942
2943	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2944
2945	usb_get_dev(rhdev);
2946	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2947
2948	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2949	if (HC_IS_RUNNING (hcd->state))
2950		hcd->state = HC_STATE_QUIESCING;
2951
2952	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2953	spin_lock_irq (&hcd_root_hub_lock);
 
2954	hcd->rh_registered = 0;
2955	spin_unlock_irq (&hcd_root_hub_lock);
2956
2957#ifdef CONFIG_PM
2958	cancel_work_sync(&hcd->wakeup_work);
2959#endif
 
2960
2961	mutex_lock(&usb_bus_idr_lock);
2962	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
 
2963	mutex_unlock(&usb_bus_idr_lock);
2964
2965	/*
2966	 * tasklet_kill() isn't needed here because:
2967	 * - driver's disconnect() called from usb_disconnect() should
2968	 *   make sure its URBs are completed during the disconnect()
2969	 *   callback
2970	 *
2971	 * - it is too late to run complete() here since driver may have
2972	 *   been removed already now
2973	 */
2974
2975	/* Prevent any more root-hub status calls from the timer.
2976	 * The HCD might still restart the timer (if a port status change
2977	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2978	 * the hub_status_data() callback.
2979	 */
2980	hcd->rh_pollable = 0;
2981	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2982	del_timer_sync(&hcd->rh_timer);
2983
2984	hcd->driver->stop(hcd);
2985	hcd->state = HC_STATE_HALT;
2986
2987	/* In case the HCD restarted the timer, stop it again. */
2988	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2989	del_timer_sync(&hcd->rh_timer);
2990
2991	if (usb_hcd_is_primary_hcd(hcd)) {
2992		if (hcd->irq > 0)
2993			free_irq(hcd->irq, hcd);
2994	}
2995
2996	usb_deregister_bus(&hcd->self);
2997	hcd_buffer_destroy(hcd);
2998
2999	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3000		phy_power_off(hcd->phy);
3001		phy_exit(hcd->phy);
3002		phy_put(hcd->phy);
3003		hcd->phy = NULL;
3004	}
3005	if (hcd->remove_phy && hcd->usb_phy) {
3006		usb_phy_shutdown(hcd->usb_phy);
3007		usb_put_phy(hcd->usb_phy);
3008		hcd->usb_phy = NULL;
3009	}
3010
3011	usb_put_invalidate_rhdev(hcd);
 
3012}
3013EXPORT_SYMBOL_GPL(usb_remove_hcd);
3014
3015void
3016usb_hcd_platform_shutdown(struct platform_device *dev)
3017{
3018	struct usb_hcd *hcd = platform_get_drvdata(dev);
3019
 
 
 
3020	if (hcd->driver->shutdown)
3021		hcd->driver->shutdown(hcd);
3022}
3023EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3025/*-------------------------------------------------------------------------*/
3026
3027#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3028
3029const struct usb_mon_operations *mon_ops;
3030
3031/*
3032 * The registration is unlocked.
3033 * We do it this way because we do not want to lock in hot paths.
3034 *
3035 * Notice that the code is minimally error-proof. Because usbmon needs
3036 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3037 */
3038
3039int usb_mon_register(const struct usb_mon_operations *ops)
3040{
3041
3042	if (mon_ops)
3043		return -EBUSY;
3044
3045	mon_ops = ops;
3046	mb();
3047	return 0;
3048}
3049EXPORT_SYMBOL_GPL (usb_mon_register);
3050
3051void usb_mon_deregister (void)
3052{
3053
3054	if (mon_ops == NULL) {
3055		printk(KERN_ERR "USB: monitor was not registered\n");
3056		return;
3057	}
3058	mon_ops = NULL;
3059	mb();
3060}
3061EXPORT_SYMBOL_GPL (usb_mon_deregister);
3062
3063#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright Linus Torvalds 1999
   4 * (C) Copyright Johannes Erdfelt 1999-2001
   5 * (C) Copyright Andreas Gal 1999
   6 * (C) Copyright Gregory P. Smith 1999
   7 * (C) Copyright Deti Fliegl 1999
   8 * (C) Copyright Randy Dunlap 2000
   9 * (C) Copyright David Brownell 2000-2002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/module.h>
  14#include <linux/version.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/slab.h>
  18#include <linux/completion.h>
  19#include <linux/utsname.h>
  20#include <linux/mm.h>
  21#include <asm/io.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/mutex.h>
  25#include <asm/irq.h>
  26#include <asm/byteorder.h>
  27#include <asm/unaligned.h>
  28#include <linux/platform_device.h>
  29#include <linux/workqueue.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/types.h>
  32#include <linux/genalloc.h>
  33#include <linux/io.h>
  34#include <linux/kcov.h>
  35
  36#include <linux/phy/phy.h>
  37#include <linux/usb.h>
  38#include <linux/usb/hcd.h>
  39#include <linux/usb/otg.h>
  40
  41#include "usb.h"
  42#include "phy.h"
  43
  44
  45/*-------------------------------------------------------------------------*/
  46
  47/*
  48 * USB Host Controller Driver framework
  49 *
  50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  51 * HCD-specific behaviors/bugs.
  52 *
  53 * This does error checks, tracks devices and urbs, and delegates to a
  54 * "hc_driver" only for code (and data) that really needs to know about
  55 * hardware differences.  That includes root hub registers, i/o queues,
  56 * and so on ... but as little else as possible.
  57 *
  58 * Shared code includes most of the "root hub" code (these are emulated,
  59 * though each HC's hardware works differently) and PCI glue, plus request
  60 * tracking overhead.  The HCD code should only block on spinlocks or on
  61 * hardware handshaking; blocking on software events (such as other kernel
  62 * threads releasing resources, or completing actions) is all generic.
  63 *
  64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  66 * only by the hub driver ... and that neither should be seen or used by
  67 * usb client device drivers.
  68 *
  69 * Contributors of ideas or unattributed patches include: David Brownell,
  70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  71 *
  72 * HISTORY:
  73 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  74 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  75 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  76 */
  77
  78/*-------------------------------------------------------------------------*/
  79
  80/* Keep track of which host controller drivers are loaded */
  81unsigned long usb_hcds_loaded;
  82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  83
  84/* host controllers we manage */
  85DEFINE_IDR (usb_bus_idr);
  86EXPORT_SYMBOL_GPL (usb_bus_idr);
  87
  88/* used when allocating bus numbers */
  89#define USB_MAXBUS		64
  90
  91/* used when updating list of hcds */
  92DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
  93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
  94
  95/* used for controlling access to virtual root hubs */
  96static DEFINE_SPINLOCK(hcd_root_hub_lock);
  97
  98/* used when updating an endpoint's URB list */
  99static DEFINE_SPINLOCK(hcd_urb_list_lock);
 100
 101/* used to protect against unlinking URBs after the device is gone */
 102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 103
 104/* wait queue for synchronous unlinks */
 105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 106
 
 
 
 
 
 107/*-------------------------------------------------------------------------*/
 108
 109/*
 110 * Sharable chunks of root hub code.
 111 */
 112
 113/*-------------------------------------------------------------------------*/
 114#define KERNEL_REL	bin2bcd(LINUX_VERSION_MAJOR)
 115#define KERNEL_VER	bin2bcd(LINUX_VERSION_PATCHLEVEL)
 116
 117/* usb 3.1 root hub device descriptor */
 118static const u8 usb31_rh_dev_descriptor[18] = {
 119	0x12,       /*  __u8  bLength; */
 120	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 121	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 122
 123	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 124	0x00,	    /*  __u8  bDeviceSubClass; */
 125	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 126	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 127
 128	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 129	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 130	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 131
 132	0x03,       /*  __u8  iManufacturer; */
 133	0x02,       /*  __u8  iProduct; */
 134	0x01,       /*  __u8  iSerialNumber; */
 135	0x01        /*  __u8  bNumConfigurations; */
 136};
 137
 138/* usb 3.0 root hub device descriptor */
 139static const u8 usb3_rh_dev_descriptor[18] = {
 140	0x12,       /*  __u8  bLength; */
 141	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 142	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 143
 144	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 145	0x00,	    /*  __u8  bDeviceSubClass; */
 146	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 147	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 148
 149	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 150	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 151	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 152
 153	0x03,       /*  __u8  iManufacturer; */
 154	0x02,       /*  __u8  iProduct; */
 155	0x01,       /*  __u8  iSerialNumber; */
 156	0x01        /*  __u8  bNumConfigurations; */
 157};
 158
 159/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 160static const u8 usb25_rh_dev_descriptor[18] = {
 161	0x12,       /*  __u8  bLength; */
 162	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 163	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 164
 165	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 166	0x00,	    /*  __u8  bDeviceSubClass; */
 167	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 168	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 169
 170	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 171	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 172	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 173
 174	0x03,       /*  __u8  iManufacturer; */
 175	0x02,       /*  __u8  iProduct; */
 176	0x01,       /*  __u8  iSerialNumber; */
 177	0x01        /*  __u8  bNumConfigurations; */
 178};
 179
 180/* usb 2.0 root hub device descriptor */
 181static const u8 usb2_rh_dev_descriptor[18] = {
 182	0x12,       /*  __u8  bLength; */
 183	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 184	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 185
 186	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 187	0x00,	    /*  __u8  bDeviceSubClass; */
 188	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 189	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 190
 191	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 192	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 193	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 194
 195	0x03,       /*  __u8  iManufacturer; */
 196	0x02,       /*  __u8  iProduct; */
 197	0x01,       /*  __u8  iSerialNumber; */
 198	0x01        /*  __u8  bNumConfigurations; */
 199};
 200
 201/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 202
 203/* usb 1.1 root hub device descriptor */
 204static const u8 usb11_rh_dev_descriptor[18] = {
 205	0x12,       /*  __u8  bLength; */
 206	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 207	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 208
 209	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 210	0x00,	    /*  __u8  bDeviceSubClass; */
 211	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 212	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 213
 214	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 215	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 216	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 217
 218	0x03,       /*  __u8  iManufacturer; */
 219	0x02,       /*  __u8  iProduct; */
 220	0x01,       /*  __u8  iSerialNumber; */
 221	0x01        /*  __u8  bNumConfigurations; */
 222};
 223
 224
 225/*-------------------------------------------------------------------------*/
 226
 227/* Configuration descriptors for our root hubs */
 228
 229static const u8 fs_rh_config_descriptor[] = {
 230
 231	/* one configuration */
 232	0x09,       /*  __u8  bLength; */
 233	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 234	0x19, 0x00, /*  __le16 wTotalLength; */
 235	0x01,       /*  __u8  bNumInterfaces; (1) */
 236	0x01,       /*  __u8  bConfigurationValue; */
 237	0x00,       /*  __u8  iConfiguration; */
 238	0xc0,       /*  __u8  bmAttributes;
 239				 Bit 7: must be set,
 240				     6: Self-powered,
 241				     5: Remote wakeup,
 242				     4..0: resvd */
 243	0x00,       /*  __u8  MaxPower; */
 244
 245	/* USB 1.1:
 246	 * USB 2.0, single TT organization (mandatory):
 247	 *	one interface, protocol 0
 248	 *
 249	 * USB 2.0, multiple TT organization (optional):
 250	 *	two interfaces, protocols 1 (like single TT)
 251	 *	and 2 (multiple TT mode) ... config is
 252	 *	sometimes settable
 253	 *	NOT IMPLEMENTED
 254	 */
 255
 256	/* one interface */
 257	0x09,       /*  __u8  if_bLength; */
 258	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 259	0x00,       /*  __u8  if_bInterfaceNumber; */
 260	0x00,       /*  __u8  if_bAlternateSetting; */
 261	0x01,       /*  __u8  if_bNumEndpoints; */
 262	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 263	0x00,       /*  __u8  if_bInterfaceSubClass; */
 264	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 265	0x00,       /*  __u8  if_iInterface; */
 266
 267	/* one endpoint (status change endpoint) */
 268	0x07,       /*  __u8  ep_bLength; */
 269	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 270	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 271	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 272	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 273	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 274};
 275
 276static const u8 hs_rh_config_descriptor[] = {
 277
 278	/* one configuration */
 279	0x09,       /*  __u8  bLength; */
 280	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 281	0x19, 0x00, /*  __le16 wTotalLength; */
 282	0x01,       /*  __u8  bNumInterfaces; (1) */
 283	0x01,       /*  __u8  bConfigurationValue; */
 284	0x00,       /*  __u8  iConfiguration; */
 285	0xc0,       /*  __u8  bmAttributes;
 286				 Bit 7: must be set,
 287				     6: Self-powered,
 288				     5: Remote wakeup,
 289				     4..0: resvd */
 290	0x00,       /*  __u8  MaxPower; */
 291
 292	/* USB 1.1:
 293	 * USB 2.0, single TT organization (mandatory):
 294	 *	one interface, protocol 0
 295	 *
 296	 * USB 2.0, multiple TT organization (optional):
 297	 *	two interfaces, protocols 1 (like single TT)
 298	 *	and 2 (multiple TT mode) ... config is
 299	 *	sometimes settable
 300	 *	NOT IMPLEMENTED
 301	 */
 302
 303	/* one interface */
 304	0x09,       /*  __u8  if_bLength; */
 305	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 306	0x00,       /*  __u8  if_bInterfaceNumber; */
 307	0x00,       /*  __u8  if_bAlternateSetting; */
 308	0x01,       /*  __u8  if_bNumEndpoints; */
 309	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 310	0x00,       /*  __u8  if_bInterfaceSubClass; */
 311	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 312	0x00,       /*  __u8  if_iInterface; */
 313
 314	/* one endpoint (status change endpoint) */
 315	0x07,       /*  __u8  ep_bLength; */
 316	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 317	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 318	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 319		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 320		     * see hub.c:hub_configure() for details. */
 321	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 322	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 323};
 324
 325static const u8 ss_rh_config_descriptor[] = {
 326	/* one configuration */
 327	0x09,       /*  __u8  bLength; */
 328	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 329	0x1f, 0x00, /*  __le16 wTotalLength; */
 330	0x01,       /*  __u8  bNumInterfaces; (1) */
 331	0x01,       /*  __u8  bConfigurationValue; */
 332	0x00,       /*  __u8  iConfiguration; */
 333	0xc0,       /*  __u8  bmAttributes;
 334				 Bit 7: must be set,
 335				     6: Self-powered,
 336				     5: Remote wakeup,
 337				     4..0: resvd */
 338	0x00,       /*  __u8  MaxPower; */
 339
 340	/* one interface */
 341	0x09,       /*  __u8  if_bLength; */
 342	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 343	0x00,       /*  __u8  if_bInterfaceNumber; */
 344	0x00,       /*  __u8  if_bAlternateSetting; */
 345	0x01,       /*  __u8  if_bNumEndpoints; */
 346	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 347	0x00,       /*  __u8  if_bInterfaceSubClass; */
 348	0x00,       /*  __u8  if_bInterfaceProtocol; */
 349	0x00,       /*  __u8  if_iInterface; */
 350
 351	/* one endpoint (status change endpoint) */
 352	0x07,       /*  __u8  ep_bLength; */
 353	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 354	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 355	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 356		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 357		     * see hub.c:hub_configure() for details. */
 358	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 359	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 360
 361	/* one SuperSpeed endpoint companion descriptor */
 362	0x06,        /* __u8 ss_bLength */
 363	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 364		     /* Companion */
 365	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 366	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 367	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 368};
 369
 370/* authorized_default behaviour:
 371 * -1 is authorized for all devices except wireless (old behaviour)
 372 * 0 is unauthorized for all devices
 373 * 1 is authorized for all devices
 374 * 2 is authorized for internal devices
 375 */
 376#define USB_AUTHORIZE_WIRED	-1
 377#define USB_AUTHORIZE_NONE	0
 378#define USB_AUTHORIZE_ALL	1
 379#define USB_AUTHORIZE_INTERNAL	2
 380
 381static int authorized_default = USB_AUTHORIZE_WIRED;
 382module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 383MODULE_PARM_DESC(authorized_default,
 384		"Default USB device authorization: 0 is not authorized, 1 is "
 385		"authorized, 2 is authorized for internal devices, -1 is "
 386		"authorized except for wireless USB (default, old behaviour)");
 387/*-------------------------------------------------------------------------*/
 388
 389/**
 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 393 * @len: Length (in bytes; may be odd) of descriptor buffer.
 394 *
 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 396 * whichever is less.
 397 *
 398 * Note:
 399 * USB String descriptors can contain at most 126 characters; input
 400 * strings longer than that are truncated.
 401 */
 402static unsigned
 403ascii2desc(char const *s, u8 *buf, unsigned len)
 404{
 405	unsigned n, t = 2 + 2*strlen(s);
 406
 407	if (t > 254)
 408		t = 254;	/* Longest possible UTF string descriptor */
 409	if (len > t)
 410		len = t;
 411
 412	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 413
 414	n = len;
 415	while (n--) {
 416		*buf++ = t;
 417		if (!n--)
 418			break;
 419		*buf++ = t >> 8;
 420		t = (unsigned char)*s++;
 421	}
 422	return len;
 423}
 424
 425/**
 426 * rh_string() - provides string descriptors for root hub
 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 428 * @hcd: the host controller for this root hub
 429 * @data: buffer for output packet
 430 * @len: length of the provided buffer
 431 *
 432 * Produces either a manufacturer, product or serial number string for the
 433 * virtual root hub device.
 434 *
 435 * Return: The number of bytes filled in: the length of the descriptor or
 436 * of the provided buffer, whichever is less.
 437 */
 438static unsigned
 439rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 440{
 441	char buf[100];
 442	char const *s;
 443	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 444
 445	/* language ids */
 446	switch (id) {
 447	case 0:
 448		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 449		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 450		if (len > 4)
 451			len = 4;
 452		memcpy(data, langids, len);
 453		return len;
 454	case 1:
 455		/* Serial number */
 456		s = hcd->self.bus_name;
 457		break;
 458	case 2:
 459		/* Product name */
 460		s = hcd->product_desc;
 461		break;
 462	case 3:
 463		/* Manufacturer */
 464		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 465			init_utsname()->release, hcd->driver->description);
 466		s = buf;
 467		break;
 468	default:
 469		/* Can't happen; caller guarantees it */
 470		return 0;
 471	}
 472
 473	return ascii2desc(s, data, len);
 474}
 475
 476
 477/* Root hub control transfers execute synchronously */
 478static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 479{
 480	struct usb_ctrlrequest *cmd;
 481	u16		typeReq, wValue, wIndex, wLength;
 482	u8		*ubuf = urb->transfer_buffer;
 483	unsigned	len = 0;
 484	int		status;
 485	u8		patch_wakeup = 0;
 486	u8		patch_protocol = 0;
 487	u16		tbuf_size;
 488	u8		*tbuf = NULL;
 489	const u8	*bufp;
 490
 491	might_sleep();
 492
 493	spin_lock_irq(&hcd_root_hub_lock);
 494	status = usb_hcd_link_urb_to_ep(hcd, urb);
 495	spin_unlock_irq(&hcd_root_hub_lock);
 496	if (status)
 497		return status;
 498	urb->hcpriv = hcd;	/* Indicate it's queued */
 499
 500	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 501	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 502	wValue   = le16_to_cpu (cmd->wValue);
 503	wIndex   = le16_to_cpu (cmd->wIndex);
 504	wLength  = le16_to_cpu (cmd->wLength);
 505
 506	if (wLength > urb->transfer_buffer_length)
 507		goto error;
 508
 509	/*
 510	 * tbuf should be at least as big as the
 511	 * USB hub descriptor.
 512	 */
 513	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 514	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 515	if (!tbuf) {
 516		status = -ENOMEM;
 517		goto err_alloc;
 518	}
 519
 520	bufp = tbuf;
 521
 522
 523	urb->actual_length = 0;
 524	switch (typeReq) {
 525
 526	/* DEVICE REQUESTS */
 527
 528	/* The root hub's remote wakeup enable bit is implemented using
 529	 * driver model wakeup flags.  If this system supports wakeup
 530	 * through USB, userspace may change the default "allow wakeup"
 531	 * policy through sysfs or these calls.
 532	 *
 533	 * Most root hubs support wakeup from downstream devices, for
 534	 * runtime power management (disabling USB clocks and reducing
 535	 * VBUS power usage).  However, not all of them do so; silicon,
 536	 * board, and BIOS bugs here are not uncommon, so these can't
 537	 * be treated quite like external hubs.
 538	 *
 539	 * Likewise, not all root hubs will pass wakeup events upstream,
 540	 * to wake up the whole system.  So don't assume root hub and
 541	 * controller capabilities are identical.
 542	 */
 543
 544	case DeviceRequest | USB_REQ_GET_STATUS:
 545		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 546					<< USB_DEVICE_REMOTE_WAKEUP)
 547				| (1 << USB_DEVICE_SELF_POWERED);
 548		tbuf[1] = 0;
 549		len = 2;
 550		break;
 551	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 552		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 553			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 554		else
 555			goto error;
 556		break;
 557	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 558		if (device_can_wakeup(&hcd->self.root_hub->dev)
 559				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 560			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 561		else
 562			goto error;
 563		break;
 564	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 565		tbuf[0] = 1;
 566		len = 1;
 567		fallthrough;
 568	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 569		break;
 570	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 571		switch (wValue & 0xff00) {
 572		case USB_DT_DEVICE << 8:
 573			switch (hcd->speed) {
 574			case HCD_USB32:
 575			case HCD_USB31:
 576				bufp = usb31_rh_dev_descriptor;
 577				break;
 578			case HCD_USB3:
 579				bufp = usb3_rh_dev_descriptor;
 580				break;
 581			case HCD_USB25:
 582				bufp = usb25_rh_dev_descriptor;
 583				break;
 584			case HCD_USB2:
 585				bufp = usb2_rh_dev_descriptor;
 586				break;
 587			case HCD_USB11:
 588				bufp = usb11_rh_dev_descriptor;
 589				break;
 590			default:
 591				goto error;
 592			}
 593			len = 18;
 594			if (hcd->has_tt)
 595				patch_protocol = 1;
 596			break;
 597		case USB_DT_CONFIG << 8:
 598			switch (hcd->speed) {
 599			case HCD_USB32:
 600			case HCD_USB31:
 601			case HCD_USB3:
 602				bufp = ss_rh_config_descriptor;
 603				len = sizeof ss_rh_config_descriptor;
 604				break;
 605			case HCD_USB25:
 606			case HCD_USB2:
 607				bufp = hs_rh_config_descriptor;
 608				len = sizeof hs_rh_config_descriptor;
 609				break;
 610			case HCD_USB11:
 611				bufp = fs_rh_config_descriptor;
 612				len = sizeof fs_rh_config_descriptor;
 613				break;
 614			default:
 615				goto error;
 616			}
 617			if (device_can_wakeup(&hcd->self.root_hub->dev))
 618				patch_wakeup = 1;
 619			break;
 620		case USB_DT_STRING << 8:
 621			if ((wValue & 0xff) < 4)
 622				urb->actual_length = rh_string(wValue & 0xff,
 623						hcd, ubuf, wLength);
 624			else /* unsupported IDs --> "protocol stall" */
 625				goto error;
 626			break;
 627		case USB_DT_BOS << 8:
 628			goto nongeneric;
 629		default:
 630			goto error;
 631		}
 632		break;
 633	case DeviceRequest | USB_REQ_GET_INTERFACE:
 634		tbuf[0] = 0;
 635		len = 1;
 636		fallthrough;
 637	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 638		break;
 639	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 640		/* wValue == urb->dev->devaddr */
 641		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 642			wValue);
 643		break;
 644
 645	/* INTERFACE REQUESTS (no defined feature/status flags) */
 646
 647	/* ENDPOINT REQUESTS */
 648
 649	case EndpointRequest | USB_REQ_GET_STATUS:
 650		/* ENDPOINT_HALT flag */
 651		tbuf[0] = 0;
 652		tbuf[1] = 0;
 653		len = 2;
 654		fallthrough;
 655	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 656	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 657		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 658		break;
 659
 660	/* CLASS REQUESTS (and errors) */
 661
 662	default:
 663nongeneric:
 664		/* non-generic request */
 665		switch (typeReq) {
 666		case GetHubStatus:
 667			len = 4;
 668			break;
 669		case GetPortStatus:
 670			if (wValue == HUB_PORT_STATUS)
 671				len = 4;
 672			else
 673				/* other port status types return 8 bytes */
 674				len = 8;
 675			break;
 676		case GetHubDescriptor:
 677			len = sizeof (struct usb_hub_descriptor);
 678			break;
 679		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 680			/* len is returned by hub_control */
 681			break;
 682		}
 683		status = hcd->driver->hub_control (hcd,
 684			typeReq, wValue, wIndex,
 685			tbuf, wLength);
 686
 687		if (typeReq == GetHubDescriptor)
 688			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 689				(struct usb_hub_descriptor *)tbuf);
 690		break;
 691error:
 692		/* "protocol stall" on error */
 693		status = -EPIPE;
 694	}
 695
 696	if (status < 0) {
 697		len = 0;
 698		if (status != -EPIPE) {
 699			dev_dbg (hcd->self.controller,
 700				"CTRL: TypeReq=0x%x val=0x%x "
 701				"idx=0x%x len=%d ==> %d\n",
 702				typeReq, wValue, wIndex,
 703				wLength, status);
 704		}
 705	} else if (status > 0) {
 706		/* hub_control may return the length of data copied. */
 707		len = status;
 708		status = 0;
 709	}
 710	if (len) {
 711		if (urb->transfer_buffer_length < len)
 712			len = urb->transfer_buffer_length;
 713		urb->actual_length = len;
 714		/* always USB_DIR_IN, toward host */
 715		memcpy (ubuf, bufp, len);
 716
 717		/* report whether RH hardware supports remote wakeup */
 718		if (patch_wakeup &&
 719				len > offsetof (struct usb_config_descriptor,
 720						bmAttributes))
 721			((struct usb_config_descriptor *)ubuf)->bmAttributes
 722				|= USB_CONFIG_ATT_WAKEUP;
 723
 724		/* report whether RH hardware has an integrated TT */
 725		if (patch_protocol &&
 726				len > offsetof(struct usb_device_descriptor,
 727						bDeviceProtocol))
 728			((struct usb_device_descriptor *) ubuf)->
 729				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 730	}
 731
 732	kfree(tbuf);
 733 err_alloc:
 734
 735	/* any errors get returned through the urb completion */
 736	spin_lock_irq(&hcd_root_hub_lock);
 737	usb_hcd_unlink_urb_from_ep(hcd, urb);
 738	usb_hcd_giveback_urb(hcd, urb, status);
 739	spin_unlock_irq(&hcd_root_hub_lock);
 740	return 0;
 741}
 742
 743/*-------------------------------------------------------------------------*/
 744
 745/*
 746 * Root Hub interrupt transfers are polled using a timer if the
 747 * driver requests it; otherwise the driver is responsible for
 748 * calling usb_hcd_poll_rh_status() when an event occurs.
 749 *
 750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
 
 751 */
 752void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 753{
 754	struct urb	*urb;
 755	int		length;
 756	unsigned long	flags;
 757	char		buffer[6];	/* Any root hubs with > 31 ports? */
 758
 759	if (unlikely(!hcd->rh_pollable))
 760		return;
 761	if (!hcd->uses_new_polling && !hcd->status_urb)
 762		return;
 763
 764	length = hcd->driver->hub_status_data(hcd, buffer);
 765	if (length > 0) {
 766
 767		/* try to complete the status urb */
 768		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 769		urb = hcd->status_urb;
 770		if (urb) {
 771			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 772			hcd->status_urb = NULL;
 773			urb->actual_length = length;
 774			memcpy(urb->transfer_buffer, buffer, length);
 775
 776			usb_hcd_unlink_urb_from_ep(hcd, urb);
 777			usb_hcd_giveback_urb(hcd, urb, 0);
 778		} else {
 779			length = 0;
 780			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 781		}
 782		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 783	}
 784
 785	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 786	 * exceed that limit if HZ is 100. The math is more clunky than
 787	 * maybe expected, this is to make sure that all timers for USB devices
 788	 * fire at the same time to give the CPU a break in between */
 789	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 790			(length == 0 && hcd->status_urb != NULL))
 791		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 792}
 793EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 794
 795/* timer callback */
 796static void rh_timer_func (struct timer_list *t)
 797{
 798	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
 799
 800	usb_hcd_poll_rh_status(_hcd);
 801}
 802
 803/*-------------------------------------------------------------------------*/
 804
 805static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 806{
 807	int		retval;
 808	unsigned long	flags;
 809	unsigned	len = 1 + (urb->dev->maxchild / 8);
 810
 811	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 812	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 813		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 814		retval = -EINVAL;
 815		goto done;
 816	}
 817
 818	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 819	if (retval)
 820		goto done;
 821
 822	hcd->status_urb = urb;
 823	urb->hcpriv = hcd;	/* indicate it's queued */
 824	if (!hcd->uses_new_polling)
 825		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 826
 827	/* If a status change has already occurred, report it ASAP */
 828	else if (HCD_POLL_PENDING(hcd))
 829		mod_timer(&hcd->rh_timer, jiffies);
 830	retval = 0;
 831 done:
 832	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 833	return retval;
 834}
 835
 836static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 837{
 838	if (usb_endpoint_xfer_int(&urb->ep->desc))
 839		return rh_queue_status (hcd, urb);
 840	if (usb_endpoint_xfer_control(&urb->ep->desc))
 841		return rh_call_control (hcd, urb);
 842	return -EINVAL;
 843}
 844
 845/*-------------------------------------------------------------------------*/
 846
 847/* Unlinks of root-hub control URBs are legal, but they don't do anything
 848 * since these URBs always execute synchronously.
 849 */
 850static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 851{
 852	unsigned long	flags;
 853	int		rc;
 854
 855	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 856	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 857	if (rc)
 858		goto done;
 859
 860	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 861		;	/* Do nothing */
 862
 863	} else {				/* Status URB */
 864		if (!hcd->uses_new_polling)
 865			del_timer (&hcd->rh_timer);
 866		if (urb == hcd->status_urb) {
 867			hcd->status_urb = NULL;
 868			usb_hcd_unlink_urb_from_ep(hcd, urb);
 869			usb_hcd_giveback_urb(hcd, urb, status);
 870		}
 871	}
 872 done:
 873	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 874	return rc;
 875}
 876
 877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878/*-------------------------------------------------------------------------*/
 879
 880/**
 881 * usb_bus_init - shared initialization code
 882 * @bus: the bus structure being initialized
 883 *
 884 * This code is used to initialize a usb_bus structure, memory for which is
 885 * separately managed.
 886 */
 887static void usb_bus_init (struct usb_bus *bus)
 888{
 889	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 890
 891	bus->devnum_next = 1;
 892
 893	bus->root_hub = NULL;
 894	bus->busnum = -1;
 895	bus->bandwidth_allocated = 0;
 896	bus->bandwidth_int_reqs  = 0;
 897	bus->bandwidth_isoc_reqs = 0;
 898	mutex_init(&bus->devnum_next_mutex);
 899}
 900
 901/*-------------------------------------------------------------------------*/
 902
 903/**
 904 * usb_register_bus - registers the USB host controller with the usb core
 905 * @bus: pointer to the bus to register
 906 *
 907 * Context: task context, might sleep.
 908 *
 909 * Assigns a bus number, and links the controller into usbcore data
 910 * structures so that it can be seen by scanning the bus list.
 911 *
 912 * Return: 0 if successful. A negative error code otherwise.
 913 */
 914static int usb_register_bus(struct usb_bus *bus)
 915{
 916	int result = -E2BIG;
 917	int busnum;
 918
 919	mutex_lock(&usb_bus_idr_lock);
 920	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
 921	if (busnum < 0) {
 922		pr_err("%s: failed to get bus number\n", usbcore_name);
 923		goto error_find_busnum;
 924	}
 925	bus->busnum = busnum;
 926	mutex_unlock(&usb_bus_idr_lock);
 927
 928	usb_notify_add_bus(bus);
 929
 930	dev_info (bus->controller, "new USB bus registered, assigned bus "
 931		  "number %d\n", bus->busnum);
 932	return 0;
 933
 934error_find_busnum:
 935	mutex_unlock(&usb_bus_idr_lock);
 936	return result;
 937}
 938
 939/**
 940 * usb_deregister_bus - deregisters the USB host controller
 941 * @bus: pointer to the bus to deregister
 942 *
 943 * Context: task context, might sleep.
 944 *
 945 * Recycles the bus number, and unlinks the controller from usbcore data
 946 * structures so that it won't be seen by scanning the bus list.
 947 */
 948static void usb_deregister_bus (struct usb_bus *bus)
 949{
 950	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 951
 952	/*
 953	 * NOTE: make sure that all the devices are removed by the
 954	 * controller code, as well as having it call this when cleaning
 955	 * itself up
 956	 */
 957	mutex_lock(&usb_bus_idr_lock);
 958	idr_remove(&usb_bus_idr, bus->busnum);
 959	mutex_unlock(&usb_bus_idr_lock);
 960
 961	usb_notify_remove_bus(bus);
 962}
 963
 964/**
 965 * register_root_hub - called by usb_add_hcd() to register a root hub
 966 * @hcd: host controller for this root hub
 967 *
 968 * This function registers the root hub with the USB subsystem.  It sets up
 969 * the device properly in the device tree and then calls usb_new_device()
 970 * to register the usb device.  It also assigns the root hub's USB address
 971 * (always 1).
 972 *
 973 * Return: 0 if successful. A negative error code otherwise.
 974 */
 975static int register_root_hub(struct usb_hcd *hcd)
 976{
 977	struct device *parent_dev = hcd->self.controller;
 978	struct usb_device *usb_dev = hcd->self.root_hub;
 979	const int devnum = 1;
 980	int retval;
 981
 982	usb_dev->devnum = devnum;
 983	usb_dev->bus->devnum_next = devnum + 1;
 
 
 984	set_bit (devnum, usb_dev->bus->devmap.devicemap);
 985	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 986
 987	mutex_lock(&usb_bus_idr_lock);
 988
 989	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 990	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
 991	if (retval != sizeof usb_dev->descriptor) {
 992		mutex_unlock(&usb_bus_idr_lock);
 993		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 994				dev_name(&usb_dev->dev), retval);
 995		return (retval < 0) ? retval : -EMSGSIZE;
 996	}
 997
 998	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
 999		retval = usb_get_bos_descriptor(usb_dev);
1000		if (!retval) {
1001			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1002		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1003			mutex_unlock(&usb_bus_idr_lock);
1004			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1005					dev_name(&usb_dev->dev), retval);
1006			return retval;
1007		}
1008	}
1009
1010	retval = usb_new_device (usb_dev);
1011	if (retval) {
1012		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1013				dev_name(&usb_dev->dev), retval);
1014	} else {
1015		spin_lock_irq (&hcd_root_hub_lock);
1016		hcd->rh_registered = 1;
1017		spin_unlock_irq (&hcd_root_hub_lock);
1018
1019		/* Did the HC die before the root hub was registered? */
1020		if (HCD_DEAD(hcd))
1021			usb_hc_died (hcd);	/* This time clean up */
1022	}
1023	mutex_unlock(&usb_bus_idr_lock);
1024
1025	return retval;
1026}
1027
1028/*
1029 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1030 * @bus: the bus which the root hub belongs to
1031 * @portnum: the port which is being resumed
1032 *
1033 * HCDs should call this function when they know that a resume signal is
1034 * being sent to a root-hub port.  The root hub will be prevented from
1035 * going into autosuspend until usb_hcd_end_port_resume() is called.
1036 *
1037 * The bus's private lock must be held by the caller.
1038 */
1039void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1040{
1041	unsigned bit = 1 << portnum;
1042
1043	if (!(bus->resuming_ports & bit)) {
1044		bus->resuming_ports |= bit;
1045		pm_runtime_get_noresume(&bus->root_hub->dev);
1046	}
1047}
1048EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1049
1050/*
1051 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1052 * @bus: the bus which the root hub belongs to
1053 * @portnum: the port which is being resumed
1054 *
1055 * HCDs should call this function when they know that a resume signal has
1056 * stopped being sent to a root-hub port.  The root hub will be allowed to
1057 * autosuspend again.
1058 *
1059 * The bus's private lock must be held by the caller.
1060 */
1061void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1062{
1063	unsigned bit = 1 << portnum;
1064
1065	if (bus->resuming_ports & bit) {
1066		bus->resuming_ports &= ~bit;
1067		pm_runtime_put_noidle(&bus->root_hub->dev);
1068	}
1069}
1070EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1071
1072/*-------------------------------------------------------------------------*/
1073
1074/**
1075 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1076 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1077 * @is_input: true iff the transaction sends data to the host
1078 * @isoc: true for isochronous transactions, false for interrupt ones
1079 * @bytecount: how many bytes in the transaction.
1080 *
1081 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1082 *
1083 * Note:
1084 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1085 * scheduled in software, this function is only used for such scheduling.
1086 */
1087long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1088{
1089	unsigned long	tmp;
1090
1091	switch (speed) {
1092	case USB_SPEED_LOW: 	/* INTR only */
1093		if (is_input) {
1094			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1095			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1096		} else {
1097			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1098			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1099		}
1100	case USB_SPEED_FULL:	/* ISOC or INTR */
1101		if (isoc) {
1102			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1103			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1104		} else {
1105			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1106			return 9107L + BW_HOST_DELAY + tmp;
1107		}
1108	case USB_SPEED_HIGH:	/* ISOC or INTR */
1109		/* FIXME adjust for input vs output */
1110		if (isoc)
1111			tmp = HS_NSECS_ISO (bytecount);
1112		else
1113			tmp = HS_NSECS (bytecount);
1114		return tmp;
1115	default:
1116		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1117		return -1;
1118	}
1119}
1120EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1121
1122
1123/*-------------------------------------------------------------------------*/
1124
1125/*
1126 * Generic HC operations.
1127 */
1128
1129/*-------------------------------------------------------------------------*/
1130
1131/**
1132 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1133 * @hcd: host controller to which @urb was submitted
1134 * @urb: URB being submitted
1135 *
1136 * Host controller drivers should call this routine in their enqueue()
1137 * method.  The HCD's private spinlock must be held and interrupts must
1138 * be disabled.  The actions carried out here are required for URB
1139 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1140 *
1141 * Return: 0 for no error, otherwise a negative error code (in which case
1142 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1143 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1144 * the private spinlock and returning.
1145 */
1146int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1147{
1148	int		rc = 0;
1149
1150	spin_lock(&hcd_urb_list_lock);
1151
1152	/* Check that the URB isn't being killed */
1153	if (unlikely(atomic_read(&urb->reject))) {
1154		rc = -EPERM;
1155		goto done;
1156	}
1157
1158	if (unlikely(!urb->ep->enabled)) {
1159		rc = -ENOENT;
1160		goto done;
1161	}
1162
1163	if (unlikely(!urb->dev->can_submit)) {
1164		rc = -EHOSTUNREACH;
1165		goto done;
1166	}
1167
1168	/*
1169	 * Check the host controller's state and add the URB to the
1170	 * endpoint's queue.
1171	 */
1172	if (HCD_RH_RUNNING(hcd)) {
1173		urb->unlinked = 0;
1174		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1175	} else {
1176		rc = -ESHUTDOWN;
1177		goto done;
1178	}
1179 done:
1180	spin_unlock(&hcd_urb_list_lock);
1181	return rc;
1182}
1183EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1184
1185/**
1186 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1187 * @hcd: host controller to which @urb was submitted
1188 * @urb: URB being checked for unlinkability
1189 * @status: error code to store in @urb if the unlink succeeds
1190 *
1191 * Host controller drivers should call this routine in their dequeue()
1192 * method.  The HCD's private spinlock must be held and interrupts must
1193 * be disabled.  The actions carried out here are required for making
1194 * sure than an unlink is valid.
1195 *
1196 * Return: 0 for no error, otherwise a negative error code (in which case
1197 * the dequeue() method must fail).  The possible error codes are:
1198 *
1199 *	-EIDRM: @urb was not submitted or has already completed.
1200 *		The completion function may not have been called yet.
1201 *
1202 *	-EBUSY: @urb has already been unlinked.
1203 */
1204int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1205		int status)
1206{
1207	struct list_head	*tmp;
1208
1209	/* insist the urb is still queued */
1210	list_for_each(tmp, &urb->ep->urb_list) {
1211		if (tmp == &urb->urb_list)
1212			break;
1213	}
1214	if (tmp != &urb->urb_list)
1215		return -EIDRM;
1216
1217	/* Any status except -EINPROGRESS means something already started to
1218	 * unlink this URB from the hardware.  So there's no more work to do.
1219	 */
1220	if (urb->unlinked)
1221		return -EBUSY;
1222	urb->unlinked = status;
1223	return 0;
1224}
1225EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1226
1227/**
1228 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1229 * @hcd: host controller to which @urb was submitted
1230 * @urb: URB being unlinked
1231 *
1232 * Host controller drivers should call this routine before calling
1233 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1234 * interrupts must be disabled.  The actions carried out here are required
1235 * for URB completion.
1236 */
1237void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1238{
1239	/* clear all state linking urb to this dev (and hcd) */
1240	spin_lock(&hcd_urb_list_lock);
1241	list_del_init(&urb->urb_list);
1242	spin_unlock(&hcd_urb_list_lock);
1243}
1244EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1245
1246/*
1247 * Some usb host controllers can only perform dma using a small SRAM area.
1248 * The usb core itself is however optimized for host controllers that can dma
1249 * using regular system memory - like pci devices doing bus mastering.
1250 *
1251 * To support host controllers with limited dma capabilities we provide dma
1252 * bounce buffers. This feature can be enabled by initializing
1253 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1254 *
1255 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1256 * data for dma using the genalloc API.
 
 
 
1257 *
1258 * So, to summarize...
1259 *
1260 * - We need "local" memory, canonical example being
1261 *   a small SRAM on a discrete controller being the
1262 *   only memory that the controller can read ...
1263 *   (a) "normal" kernel memory is no good, and
1264 *   (b) there's not enough to share
1265 *
 
 
 
1266 * - So we use that, even though the primary requirement
1267 *   is that the memory be "local" (hence addressable
1268 *   by that device), not "coherent".
1269 *
1270 */
1271
1272static int hcd_alloc_coherent(struct usb_bus *bus,
1273			      gfp_t mem_flags, dma_addr_t *dma_handle,
1274			      void **vaddr_handle, size_t size,
1275			      enum dma_data_direction dir)
1276{
1277	unsigned char *vaddr;
1278
1279	if (*vaddr_handle == NULL) {
1280		WARN_ON_ONCE(1);
1281		return -EFAULT;
1282	}
1283
1284	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1285				 mem_flags, dma_handle);
1286	if (!vaddr)
1287		return -ENOMEM;
1288
1289	/*
1290	 * Store the virtual address of the buffer at the end
1291	 * of the allocated dma buffer. The size of the buffer
1292	 * may be uneven so use unaligned functions instead
1293	 * of just rounding up. It makes sense to optimize for
1294	 * memory footprint over access speed since the amount
1295	 * of memory available for dma may be limited.
1296	 */
1297	put_unaligned((unsigned long)*vaddr_handle,
1298		      (unsigned long *)(vaddr + size));
1299
1300	if (dir == DMA_TO_DEVICE)
1301		memcpy(vaddr, *vaddr_handle, size);
1302
1303	*vaddr_handle = vaddr;
1304	return 0;
1305}
1306
1307static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1308			      void **vaddr_handle, size_t size,
1309			      enum dma_data_direction dir)
1310{
1311	unsigned char *vaddr = *vaddr_handle;
1312
1313	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1314
1315	if (dir == DMA_FROM_DEVICE)
1316		memcpy(vaddr, *vaddr_handle, size);
1317
1318	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1319
1320	*vaddr_handle = vaddr;
1321	*dma_handle = 0;
1322}
1323
1324void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1325{
1326	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1327	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1328		dma_unmap_single(hcd->self.sysdev,
1329				urb->setup_dma,
1330				sizeof(struct usb_ctrlrequest),
1331				DMA_TO_DEVICE);
1332	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1333		hcd_free_coherent(urb->dev->bus,
1334				&urb->setup_dma,
1335				(void **) &urb->setup_packet,
1336				sizeof(struct usb_ctrlrequest),
1337				DMA_TO_DEVICE);
1338
1339	/* Make it safe to call this routine more than once */
1340	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1341}
1342EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1343
1344static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1345{
1346	if (hcd->driver->unmap_urb_for_dma)
1347		hcd->driver->unmap_urb_for_dma(hcd, urb);
1348	else
1349		usb_hcd_unmap_urb_for_dma(hcd, urb);
1350}
1351
1352void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353{
1354	enum dma_data_direction dir;
1355
1356	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1357
1358	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1359	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1360	    (urb->transfer_flags & URB_DMA_MAP_SG))
1361		dma_unmap_sg(hcd->self.sysdev,
1362				urb->sg,
1363				urb->num_sgs,
1364				dir);
1365	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1366		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1367		dma_unmap_page(hcd->self.sysdev,
1368				urb->transfer_dma,
1369				urb->transfer_buffer_length,
1370				dir);
1371	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1372		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1373		dma_unmap_single(hcd->self.sysdev,
1374				urb->transfer_dma,
1375				urb->transfer_buffer_length,
1376				dir);
1377	else if (urb->transfer_flags & URB_MAP_LOCAL)
1378		hcd_free_coherent(urb->dev->bus,
1379				&urb->transfer_dma,
1380				&urb->transfer_buffer,
1381				urb->transfer_buffer_length,
1382				dir);
1383
1384	/* Make it safe to call this routine more than once */
1385	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1386			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1387}
1388EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1389
1390static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1391			   gfp_t mem_flags)
1392{
1393	if (hcd->driver->map_urb_for_dma)
1394		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1395	else
1396		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1397}
1398
1399int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1400			    gfp_t mem_flags)
1401{
1402	enum dma_data_direction dir;
1403	int ret = 0;
1404
1405	/* Map the URB's buffers for DMA access.
1406	 * Lower level HCD code should use *_dma exclusively,
1407	 * unless it uses pio or talks to another transport,
1408	 * or uses the provided scatter gather list for bulk.
1409	 */
1410
1411	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1412		if (hcd->self.uses_pio_for_control)
1413			return ret;
1414		if (hcd->localmem_pool) {
 
 
 
 
 
 
 
 
 
 
1415			ret = hcd_alloc_coherent(
1416					urb->dev->bus, mem_flags,
1417					&urb->setup_dma,
1418					(void **)&urb->setup_packet,
1419					sizeof(struct usb_ctrlrequest),
1420					DMA_TO_DEVICE);
1421			if (ret)
1422				return ret;
1423			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1424		} else if (hcd_uses_dma(hcd)) {
1425			if (object_is_on_stack(urb->setup_packet)) {
1426				WARN_ONCE(1, "setup packet is on stack\n");
1427				return -EAGAIN;
1428			}
1429
1430			urb->setup_dma = dma_map_single(
1431					hcd->self.sysdev,
1432					urb->setup_packet,
1433					sizeof(struct usb_ctrlrequest),
1434					DMA_TO_DEVICE);
1435			if (dma_mapping_error(hcd->self.sysdev,
1436						urb->setup_dma))
1437				return -EAGAIN;
1438			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1439		}
1440	}
1441
1442	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1443	if (urb->transfer_buffer_length != 0
1444	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1445		if (hcd->localmem_pool) {
1446			ret = hcd_alloc_coherent(
1447					urb->dev->bus, mem_flags,
1448					&urb->transfer_dma,
1449					&urb->transfer_buffer,
1450					urb->transfer_buffer_length,
1451					dir);
1452			if (ret == 0)
1453				urb->transfer_flags |= URB_MAP_LOCAL;
1454		} else if (hcd_uses_dma(hcd)) {
1455			if (urb->num_sgs) {
1456				int n;
1457
1458				/* We don't support sg for isoc transfers ! */
1459				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1460					WARN_ON(1);
1461					return -EINVAL;
1462				}
1463
1464				n = dma_map_sg(
1465						hcd->self.sysdev,
1466						urb->sg,
1467						urb->num_sgs,
1468						dir);
1469				if (n <= 0)
1470					ret = -EAGAIN;
1471				else
1472					urb->transfer_flags |= URB_DMA_MAP_SG;
1473				urb->num_mapped_sgs = n;
1474				if (n != urb->num_sgs)
1475					urb->transfer_flags |=
1476							URB_DMA_SG_COMBINED;
1477			} else if (urb->sg) {
1478				struct scatterlist *sg = urb->sg;
1479				urb->transfer_dma = dma_map_page(
1480						hcd->self.sysdev,
1481						sg_page(sg),
1482						sg->offset,
1483						urb->transfer_buffer_length,
1484						dir);
1485				if (dma_mapping_error(hcd->self.sysdev,
1486						urb->transfer_dma))
1487					ret = -EAGAIN;
1488				else
1489					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1490			} else if (object_is_on_stack(urb->transfer_buffer)) {
1491				WARN_ONCE(1, "transfer buffer is on stack\n");
1492				ret = -EAGAIN;
1493			} else {
1494				urb->transfer_dma = dma_map_single(
1495						hcd->self.sysdev,
1496						urb->transfer_buffer,
1497						urb->transfer_buffer_length,
1498						dir);
1499				if (dma_mapping_error(hcd->self.sysdev,
1500						urb->transfer_dma))
1501					ret = -EAGAIN;
1502				else
1503					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1504			}
 
 
 
 
 
 
 
 
 
1505		}
1506		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1507				URB_SETUP_MAP_LOCAL)))
1508			usb_hcd_unmap_urb_for_dma(hcd, urb);
1509	}
1510	return ret;
1511}
1512EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1513
1514/*-------------------------------------------------------------------------*/
1515
1516/* may be called in any context with a valid urb->dev usecount
1517 * caller surrenders "ownership" of urb
1518 * expects usb_submit_urb() to have sanity checked and conditioned all
1519 * inputs in the urb
1520 */
1521int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1522{
1523	int			status;
1524	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1525
1526	/* increment urb's reference count as part of giving it to the HCD
1527	 * (which will control it).  HCD guarantees that it either returns
1528	 * an error or calls giveback(), but not both.
1529	 */
1530	usb_get_urb(urb);
1531	atomic_inc(&urb->use_count);
1532	atomic_inc(&urb->dev->urbnum);
1533	usbmon_urb_submit(&hcd->self, urb);
1534
1535	/* NOTE requirements on root-hub callers (usbfs and the hub
1536	 * driver, for now):  URBs' urb->transfer_buffer must be
1537	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1538	 * they could clobber root hub response data.  Also, control
1539	 * URBs must be submitted in process context with interrupts
1540	 * enabled.
1541	 */
1542
1543	if (is_root_hub(urb->dev)) {
1544		status = rh_urb_enqueue(hcd, urb);
1545	} else {
1546		status = map_urb_for_dma(hcd, urb, mem_flags);
1547		if (likely(status == 0)) {
1548			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1549			if (unlikely(status))
1550				unmap_urb_for_dma(hcd, urb);
1551		}
1552	}
1553
1554	if (unlikely(status)) {
1555		usbmon_urb_submit_error(&hcd->self, urb, status);
1556		urb->hcpriv = NULL;
1557		INIT_LIST_HEAD(&urb->urb_list);
1558		atomic_dec(&urb->use_count);
1559		atomic_dec(&urb->dev->urbnum);
1560		if (atomic_read(&urb->reject))
1561			wake_up(&usb_kill_urb_queue);
1562		usb_put_urb(urb);
1563	}
1564	return status;
1565}
1566
1567/*-------------------------------------------------------------------------*/
1568
1569/* this makes the hcd giveback() the urb more quickly, by kicking it
1570 * off hardware queues (which may take a while) and returning it as
1571 * soon as practical.  we've already set up the urb's return status,
1572 * but we can't know if the callback completed already.
1573 */
1574static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1575{
1576	int		value;
1577
1578	if (is_root_hub(urb->dev))
1579		value = usb_rh_urb_dequeue(hcd, urb, status);
1580	else {
1581
1582		/* The only reason an HCD might fail this call is if
1583		 * it has not yet fully queued the urb to begin with.
1584		 * Such failures should be harmless. */
1585		value = hcd->driver->urb_dequeue(hcd, urb, status);
1586	}
1587	return value;
1588}
1589
1590/*
1591 * called in any context
1592 *
1593 * caller guarantees urb won't be recycled till both unlink()
1594 * and the urb's completion function return
1595 */
1596int usb_hcd_unlink_urb (struct urb *urb, int status)
1597{
1598	struct usb_hcd		*hcd;
1599	struct usb_device	*udev = urb->dev;
1600	int			retval = -EIDRM;
1601	unsigned long		flags;
1602
1603	/* Prevent the device and bus from going away while
1604	 * the unlink is carried out.  If they are already gone
1605	 * then urb->use_count must be 0, since disconnected
1606	 * devices can't have any active URBs.
1607	 */
1608	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1609	if (atomic_read(&urb->use_count) > 0) {
1610		retval = 0;
1611		usb_get_dev(udev);
1612	}
1613	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1614	if (retval == 0) {
1615		hcd = bus_to_hcd(urb->dev->bus);
1616		retval = unlink1(hcd, urb, status);
1617		if (retval == 0)
1618			retval = -EINPROGRESS;
1619		else if (retval != -EIDRM && retval != -EBUSY)
1620			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1621					urb, retval);
1622		usb_put_dev(udev);
1623	}
1624	return retval;
1625}
1626
1627/*-------------------------------------------------------------------------*/
1628
1629static void __usb_hcd_giveback_urb(struct urb *urb)
1630{
1631	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1632	struct usb_anchor *anchor = urb->anchor;
1633	int status = urb->unlinked;
 
1634
1635	urb->hcpriv = NULL;
1636	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1637	    urb->actual_length < urb->transfer_buffer_length &&
1638	    !status))
1639		status = -EREMOTEIO;
1640
1641	unmap_urb_for_dma(hcd, urb);
1642	usbmon_urb_complete(&hcd->self, urb, status);
1643	usb_anchor_suspend_wakeups(anchor);
1644	usb_unanchor_urb(urb);
1645	if (likely(status == 0))
1646		usb_led_activity(USB_LED_EVENT_HOST);
1647
1648	/* pass ownership to the completion handler */
1649	urb->status = status;
 
1650	/*
1651	 * This function can be called in task context inside another remote
1652	 * coverage collection section, but kcov doesn't support that kind of
1653	 * recursion yet. Only collect coverage in softirq context for now.
 
 
 
 
 
1654	 */
1655	kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1656	urb->complete(urb);
1657	kcov_remote_stop_softirq();
1658
1659	usb_anchor_resume_wakeups(anchor);
1660	atomic_dec(&urb->use_count);
1661	if (unlikely(atomic_read(&urb->reject)))
1662		wake_up(&usb_kill_urb_queue);
1663	usb_put_urb(urb);
1664}
1665
1666static void usb_giveback_urb_bh(struct tasklet_struct *t)
1667{
1668	struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1669	struct list_head local_list;
1670
1671	spin_lock_irq(&bh->lock);
1672	bh->running = true;
1673 restart:
1674	list_replace_init(&bh->head, &local_list);
1675	spin_unlock_irq(&bh->lock);
1676
1677	while (!list_empty(&local_list)) {
1678		struct urb *urb;
1679
1680		urb = list_entry(local_list.next, struct urb, urb_list);
1681		list_del_init(&urb->urb_list);
1682		bh->completing_ep = urb->ep;
1683		__usb_hcd_giveback_urb(urb);
1684		bh->completing_ep = NULL;
1685	}
1686
1687	/* check if there are new URBs to giveback */
1688	spin_lock_irq(&bh->lock);
1689	if (!list_empty(&bh->head))
1690		goto restart;
1691	bh->running = false;
1692	spin_unlock_irq(&bh->lock);
1693}
1694
1695/**
1696 * usb_hcd_giveback_urb - return URB from HCD to device driver
1697 * @hcd: host controller returning the URB
1698 * @urb: urb being returned to the USB device driver.
1699 * @status: completion status code for the URB.
1700 *
1701 * Context: atomic. The completion callback is invoked in caller's context.
1702 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1703 * context (except for URBs submitted to the root hub which always complete in
1704 * caller's context).
1705 *
1706 * This hands the URB from HCD to its USB device driver, using its
1707 * completion function.  The HCD has freed all per-urb resources
1708 * (and is done using urb->hcpriv).  It also released all HCD locks;
1709 * the device driver won't cause problems if it frees, modifies,
1710 * or resubmits this URB.
1711 *
1712 * If @urb was unlinked, the value of @status will be overridden by
1713 * @urb->unlinked.  Erroneous short transfers are detected in case
1714 * the HCD hasn't checked for them.
1715 */
1716void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1717{
1718	struct giveback_urb_bh *bh;
1719	bool running, high_prio_bh;
1720
1721	/* pass status to tasklet via unlinked */
1722	if (likely(!urb->unlinked))
1723		urb->unlinked = status;
1724
1725	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1726		__usb_hcd_giveback_urb(urb);
1727		return;
1728	}
1729
1730	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1731		bh = &hcd->high_prio_bh;
1732		high_prio_bh = true;
1733	} else {
1734		bh = &hcd->low_prio_bh;
1735		high_prio_bh = false;
1736	}
1737
1738	spin_lock(&bh->lock);
1739	list_add_tail(&urb->urb_list, &bh->head);
1740	running = bh->running;
1741	spin_unlock(&bh->lock);
1742
1743	if (running)
1744		;
1745	else if (high_prio_bh)
1746		tasklet_hi_schedule(&bh->bh);
1747	else
1748		tasklet_schedule(&bh->bh);
1749}
1750EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1751
1752/*-------------------------------------------------------------------------*/
1753
1754/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1755 * queue to drain completely.  The caller must first insure that no more
1756 * URBs can be submitted for this endpoint.
1757 */
1758void usb_hcd_flush_endpoint(struct usb_device *udev,
1759		struct usb_host_endpoint *ep)
1760{
1761	struct usb_hcd		*hcd;
1762	struct urb		*urb;
1763
1764	if (!ep)
1765		return;
1766	might_sleep();
1767	hcd = bus_to_hcd(udev->bus);
1768
1769	/* No more submits can occur */
1770	spin_lock_irq(&hcd_urb_list_lock);
1771rescan:
1772	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1773		int	is_in;
1774
1775		if (urb->unlinked)
1776			continue;
1777		usb_get_urb (urb);
1778		is_in = usb_urb_dir_in(urb);
1779		spin_unlock(&hcd_urb_list_lock);
1780
1781		/* kick hcd */
1782		unlink1(hcd, urb, -ESHUTDOWN);
1783		dev_dbg (hcd->self.controller,
1784			"shutdown urb %pK ep%d%s-%s\n",
1785			urb, usb_endpoint_num(&ep->desc),
1786			is_in ? "in" : "out",
1787			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
 
 
 
 
 
 
 
 
 
 
 
 
 
1788		usb_put_urb (urb);
1789
1790		/* list contents may have changed */
1791		spin_lock(&hcd_urb_list_lock);
1792		goto rescan;
1793	}
1794	spin_unlock_irq(&hcd_urb_list_lock);
1795
1796	/* Wait until the endpoint queue is completely empty */
1797	while (!list_empty (&ep->urb_list)) {
1798		spin_lock_irq(&hcd_urb_list_lock);
1799
1800		/* The list may have changed while we acquired the spinlock */
1801		urb = NULL;
1802		if (!list_empty (&ep->urb_list)) {
1803			urb = list_entry (ep->urb_list.prev, struct urb,
1804					urb_list);
1805			usb_get_urb (urb);
1806		}
1807		spin_unlock_irq(&hcd_urb_list_lock);
1808
1809		if (urb) {
1810			usb_kill_urb (urb);
1811			usb_put_urb (urb);
1812		}
1813	}
1814}
1815
1816/**
1817 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1818 *				the bus bandwidth
1819 * @udev: target &usb_device
1820 * @new_config: new configuration to install
1821 * @cur_alt: the current alternate interface setting
1822 * @new_alt: alternate interface setting that is being installed
1823 *
1824 * To change configurations, pass in the new configuration in new_config,
1825 * and pass NULL for cur_alt and new_alt.
1826 *
1827 * To reset a device's configuration (put the device in the ADDRESSED state),
1828 * pass in NULL for new_config, cur_alt, and new_alt.
1829 *
1830 * To change alternate interface settings, pass in NULL for new_config,
1831 * pass in the current alternate interface setting in cur_alt,
1832 * and pass in the new alternate interface setting in new_alt.
1833 *
1834 * Return: An error if the requested bandwidth change exceeds the
1835 * bus bandwidth or host controller internal resources.
1836 */
1837int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1838		struct usb_host_config *new_config,
1839		struct usb_host_interface *cur_alt,
1840		struct usb_host_interface *new_alt)
1841{
1842	int num_intfs, i, j;
1843	struct usb_host_interface *alt = NULL;
1844	int ret = 0;
1845	struct usb_hcd *hcd;
1846	struct usb_host_endpoint *ep;
1847
1848	hcd = bus_to_hcd(udev->bus);
1849	if (!hcd->driver->check_bandwidth)
1850		return 0;
1851
1852	/* Configuration is being removed - set configuration 0 */
1853	if (!new_config && !cur_alt) {
1854		for (i = 1; i < 16; ++i) {
1855			ep = udev->ep_out[i];
1856			if (ep)
1857				hcd->driver->drop_endpoint(hcd, udev, ep);
1858			ep = udev->ep_in[i];
1859			if (ep)
1860				hcd->driver->drop_endpoint(hcd, udev, ep);
1861		}
1862		hcd->driver->check_bandwidth(hcd, udev);
1863		return 0;
1864	}
1865	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1866	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1867	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1868	 * ok to exclude it.
1869	 */
1870	if (new_config) {
1871		num_intfs = new_config->desc.bNumInterfaces;
1872		/* Remove endpoints (except endpoint 0, which is always on the
1873		 * schedule) from the old config from the schedule
1874		 */
1875		for (i = 1; i < 16; ++i) {
1876			ep = udev->ep_out[i];
1877			if (ep) {
1878				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1879				if (ret < 0)
1880					goto reset;
1881			}
1882			ep = udev->ep_in[i];
1883			if (ep) {
1884				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1885				if (ret < 0)
1886					goto reset;
1887			}
1888		}
1889		for (i = 0; i < num_intfs; ++i) {
1890			struct usb_host_interface *first_alt;
1891			int iface_num;
1892
1893			first_alt = &new_config->intf_cache[i]->altsetting[0];
1894			iface_num = first_alt->desc.bInterfaceNumber;
1895			/* Set up endpoints for alternate interface setting 0 */
1896			alt = usb_find_alt_setting(new_config, iface_num, 0);
1897			if (!alt)
1898				/* No alt setting 0? Pick the first setting. */
1899				alt = first_alt;
1900
1901			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1902				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1903				if (ret < 0)
1904					goto reset;
1905			}
1906		}
1907	}
1908	if (cur_alt && new_alt) {
1909		struct usb_interface *iface = usb_ifnum_to_if(udev,
1910				cur_alt->desc.bInterfaceNumber);
1911
1912		if (!iface)
1913			return -EINVAL;
1914		if (iface->resetting_device) {
1915			/*
1916			 * The USB core just reset the device, so the xHCI host
1917			 * and the device will think alt setting 0 is installed.
1918			 * However, the USB core will pass in the alternate
1919			 * setting installed before the reset as cur_alt.  Dig
1920			 * out the alternate setting 0 structure, or the first
1921			 * alternate setting if a broken device doesn't have alt
1922			 * setting 0.
1923			 */
1924			cur_alt = usb_altnum_to_altsetting(iface, 0);
1925			if (!cur_alt)
1926				cur_alt = &iface->altsetting[0];
1927		}
1928
1929		/* Drop all the endpoints in the current alt setting */
1930		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1931			ret = hcd->driver->drop_endpoint(hcd, udev,
1932					&cur_alt->endpoint[i]);
1933			if (ret < 0)
1934				goto reset;
1935		}
1936		/* Add all the endpoints in the new alt setting */
1937		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1938			ret = hcd->driver->add_endpoint(hcd, udev,
1939					&new_alt->endpoint[i]);
1940			if (ret < 0)
1941				goto reset;
1942		}
1943	}
1944	ret = hcd->driver->check_bandwidth(hcd, udev);
1945reset:
1946	if (ret < 0)
1947		hcd->driver->reset_bandwidth(hcd, udev);
1948	return ret;
1949}
1950
1951/* Disables the endpoint: synchronizes with the hcd to make sure all
1952 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1953 * have been called previously.  Use for set_configuration, set_interface,
1954 * driver removal, physical disconnect.
1955 *
1956 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1957 * type, maxpacket size, toggle, halt status, and scheduling.
1958 */
1959void usb_hcd_disable_endpoint(struct usb_device *udev,
1960		struct usb_host_endpoint *ep)
1961{
1962	struct usb_hcd		*hcd;
1963
1964	might_sleep();
1965	hcd = bus_to_hcd(udev->bus);
1966	if (hcd->driver->endpoint_disable)
1967		hcd->driver->endpoint_disable(hcd, ep);
1968}
1969
1970/**
1971 * usb_hcd_reset_endpoint - reset host endpoint state
1972 * @udev: USB device.
1973 * @ep:   the endpoint to reset.
1974 *
1975 * Resets any host endpoint state such as the toggle bit, sequence
1976 * number and current window.
1977 */
1978void usb_hcd_reset_endpoint(struct usb_device *udev,
1979			    struct usb_host_endpoint *ep)
1980{
1981	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1982
1983	if (hcd->driver->endpoint_reset)
1984		hcd->driver->endpoint_reset(hcd, ep);
1985	else {
1986		int epnum = usb_endpoint_num(&ep->desc);
1987		int is_out = usb_endpoint_dir_out(&ep->desc);
1988		int is_control = usb_endpoint_xfer_control(&ep->desc);
1989
1990		usb_settoggle(udev, epnum, is_out, 0);
1991		if (is_control)
1992			usb_settoggle(udev, epnum, !is_out, 0);
1993	}
1994}
1995
1996/**
1997 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1998 * @interface:		alternate setting that includes all endpoints.
1999 * @eps:		array of endpoints that need streams.
2000 * @num_eps:		number of endpoints in the array.
2001 * @num_streams:	number of streams to allocate.
2002 * @mem_flags:		flags hcd should use to allocate memory.
2003 *
2004 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2005 * Drivers may queue multiple transfers to different stream IDs, which may
2006 * complete in a different order than they were queued.
2007 *
2008 * Return: On success, the number of allocated streams. On failure, a negative
2009 * error code.
2010 */
2011int usb_alloc_streams(struct usb_interface *interface,
2012		struct usb_host_endpoint **eps, unsigned int num_eps,
2013		unsigned int num_streams, gfp_t mem_flags)
2014{
2015	struct usb_hcd *hcd;
2016	struct usb_device *dev;
2017	int i, ret;
2018
2019	dev = interface_to_usbdev(interface);
2020	hcd = bus_to_hcd(dev->bus);
2021	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2022		return -EINVAL;
2023	if (dev->speed < USB_SPEED_SUPER)
2024		return -EINVAL;
2025	if (dev->state < USB_STATE_CONFIGURED)
2026		return -ENODEV;
2027
2028	for (i = 0; i < num_eps; i++) {
2029		/* Streams only apply to bulk endpoints. */
2030		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2031			return -EINVAL;
2032		/* Re-alloc is not allowed */
2033		if (eps[i]->streams)
2034			return -EINVAL;
2035	}
2036
2037	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2038			num_streams, mem_flags);
2039	if (ret < 0)
2040		return ret;
2041
2042	for (i = 0; i < num_eps; i++)
2043		eps[i]->streams = ret;
2044
2045	return ret;
2046}
2047EXPORT_SYMBOL_GPL(usb_alloc_streams);
2048
2049/**
2050 * usb_free_streams - free bulk endpoint stream IDs.
2051 * @interface:	alternate setting that includes all endpoints.
2052 * @eps:	array of endpoints to remove streams from.
2053 * @num_eps:	number of endpoints in the array.
2054 * @mem_flags:	flags hcd should use to allocate memory.
2055 *
2056 * Reverts a group of bulk endpoints back to not using stream IDs.
2057 * Can fail if we are given bad arguments, or HCD is broken.
2058 *
2059 * Return: 0 on success. On failure, a negative error code.
2060 */
2061int usb_free_streams(struct usb_interface *interface,
2062		struct usb_host_endpoint **eps, unsigned int num_eps,
2063		gfp_t mem_flags)
2064{
2065	struct usb_hcd *hcd;
2066	struct usb_device *dev;
2067	int i, ret;
2068
2069	dev = interface_to_usbdev(interface);
2070	hcd = bus_to_hcd(dev->bus);
2071	if (dev->speed < USB_SPEED_SUPER)
2072		return -EINVAL;
2073
2074	/* Double-free is not allowed */
2075	for (i = 0; i < num_eps; i++)
2076		if (!eps[i] || !eps[i]->streams)
2077			return -EINVAL;
2078
2079	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2080	if (ret < 0)
2081		return ret;
2082
2083	for (i = 0; i < num_eps; i++)
2084		eps[i]->streams = 0;
2085
2086	return ret;
2087}
2088EXPORT_SYMBOL_GPL(usb_free_streams);
2089
2090/* Protect against drivers that try to unlink URBs after the device
2091 * is gone, by waiting until all unlinks for @udev are finished.
2092 * Since we don't currently track URBs by device, simply wait until
2093 * nothing is running in the locked region of usb_hcd_unlink_urb().
2094 */
2095void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2096{
2097	spin_lock_irq(&hcd_urb_unlink_lock);
2098	spin_unlock_irq(&hcd_urb_unlink_lock);
2099}
2100
2101/*-------------------------------------------------------------------------*/
2102
2103/* called in any context */
2104int usb_hcd_get_frame_number (struct usb_device *udev)
2105{
2106	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2107
2108	if (!HCD_RH_RUNNING(hcd))
2109		return -ESHUTDOWN;
2110	return hcd->driver->get_frame_number (hcd);
2111}
2112
2113/*-------------------------------------------------------------------------*/
2114#ifdef CONFIG_USB_HCD_TEST_MODE
2115
2116static void usb_ehset_completion(struct urb *urb)
2117{
2118	struct completion  *done = urb->context;
2119
2120	complete(done);
2121}
2122/*
2123 * Allocate and initialize a control URB. This request will be used by the
2124 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2125 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2126 * Return NULL if failed.
2127 */
2128static struct urb *request_single_step_set_feature_urb(
2129	struct usb_device	*udev,
2130	void			*dr,
2131	void			*buf,
2132	struct completion	*done)
2133{
2134	struct urb *urb;
2135	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2136	struct usb_host_endpoint *ep;
2137
2138	urb = usb_alloc_urb(0, GFP_KERNEL);
2139	if (!urb)
2140		return NULL;
2141
2142	urb->pipe = usb_rcvctrlpipe(udev, 0);
2143	ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out)
2144				[usb_pipeendpoint(urb->pipe)];
2145	if (!ep) {
2146		usb_free_urb(urb);
2147		return NULL;
2148	}
2149
2150	urb->ep = ep;
2151	urb->dev = udev;
2152	urb->setup_packet = (void *)dr;
2153	urb->transfer_buffer = buf;
2154	urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2155	urb->complete = usb_ehset_completion;
2156	urb->status = -EINPROGRESS;
2157	urb->actual_length = 0;
2158	urb->transfer_flags = URB_DIR_IN;
2159	usb_get_urb(urb);
2160	atomic_inc(&urb->use_count);
2161	atomic_inc(&urb->dev->urbnum);
2162	if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2163		usb_put_urb(urb);
2164		usb_free_urb(urb);
2165		return NULL;
2166	}
2167
2168	urb->context = done;
2169	return urb;
2170}
2171
2172int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2173{
2174	int retval = -ENOMEM;
2175	struct usb_ctrlrequest *dr;
2176	struct urb *urb;
2177	struct usb_device *udev;
2178	struct usb_device_descriptor *buf;
2179	DECLARE_COMPLETION_ONSTACK(done);
2180
2181	/* Obtain udev of the rhub's child port */
2182	udev = usb_hub_find_child(hcd->self.root_hub, port);
2183	if (!udev) {
2184		dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2185		return -ENODEV;
2186	}
2187	buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2188	if (!buf)
2189		return -ENOMEM;
2190
2191	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2192	if (!dr) {
2193		kfree(buf);
2194		return -ENOMEM;
2195	}
2196
2197	/* Fill Setup packet for GetDescriptor */
2198	dr->bRequestType = USB_DIR_IN;
2199	dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2200	dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2201	dr->wIndex = 0;
2202	dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2203	urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2204	if (!urb)
2205		goto cleanup;
2206
2207	/* Submit just the SETUP stage */
2208	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2209	if (retval)
2210		goto out1;
2211	if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2212		usb_kill_urb(urb);
2213		retval = -ETIMEDOUT;
2214		dev_err(hcd->self.controller,
2215			"%s SETUP stage timed out on ep0\n", __func__);
2216		goto out1;
2217	}
2218	msleep(15 * 1000);
2219
2220	/* Complete remaining DATA and STATUS stages using the same URB */
2221	urb->status = -EINPROGRESS;
2222	usb_get_urb(urb);
2223	atomic_inc(&urb->use_count);
2224	atomic_inc(&urb->dev->urbnum);
2225	retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2226	if (!retval && !wait_for_completion_timeout(&done,
2227						msecs_to_jiffies(2000))) {
2228		usb_kill_urb(urb);
2229		retval = -ETIMEDOUT;
2230		dev_err(hcd->self.controller,
2231			"%s IN stage timed out on ep0\n", __func__);
2232	}
2233out1:
2234	usb_free_urb(urb);
2235cleanup:
2236	kfree(dr);
2237	kfree(buf);
2238	return retval;
2239}
2240EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2241#endif /* CONFIG_USB_HCD_TEST_MODE */
2242
2243/*-------------------------------------------------------------------------*/
2244
2245#ifdef	CONFIG_PM
2246
2247int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2248{
2249	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2250	int		status;
2251	int		old_state = hcd->state;
2252
2253	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2254			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2255			rhdev->do_remote_wakeup);
2256	if (HCD_DEAD(hcd)) {
2257		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2258		return 0;
2259	}
2260
2261	if (!hcd->driver->bus_suspend) {
2262		status = -ENOENT;
2263	} else {
2264		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2265		hcd->state = HC_STATE_QUIESCING;
2266		status = hcd->driver->bus_suspend(hcd);
2267	}
2268	if (status == 0) {
2269		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2270		hcd->state = HC_STATE_SUSPENDED;
2271
2272		if (!PMSG_IS_AUTO(msg))
2273			usb_phy_roothub_suspend(hcd->self.sysdev,
2274						hcd->phy_roothub);
2275
2276		/* Did we race with a root-hub wakeup event? */
2277		if (rhdev->do_remote_wakeup) {
2278			char	buffer[6];
2279
2280			status = hcd->driver->hub_status_data(hcd, buffer);
2281			if (status != 0) {
2282				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2283				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2284				status = -EBUSY;
2285			}
2286		}
2287	} else {
2288		spin_lock_irq(&hcd_root_hub_lock);
2289		if (!HCD_DEAD(hcd)) {
2290			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2291			hcd->state = old_state;
2292		}
2293		spin_unlock_irq(&hcd_root_hub_lock);
2294		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2295				"suspend", status);
2296	}
2297	return status;
2298}
2299
2300int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2301{
2302	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2303	int		status;
2304	int		old_state = hcd->state;
2305
2306	dev_dbg(&rhdev->dev, "usb %sresume\n",
2307			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2308	if (HCD_DEAD(hcd)) {
2309		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2310		return 0;
2311	}
2312
2313	if (!PMSG_IS_AUTO(msg)) {
2314		status = usb_phy_roothub_resume(hcd->self.sysdev,
2315						hcd->phy_roothub);
2316		if (status)
2317			return status;
2318	}
2319
2320	if (!hcd->driver->bus_resume)
2321		return -ENOENT;
2322	if (HCD_RH_RUNNING(hcd))
2323		return 0;
2324
2325	hcd->state = HC_STATE_RESUMING;
2326	status = hcd->driver->bus_resume(hcd);
2327	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2328	if (status == 0)
2329		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2330
2331	if (status == 0) {
2332		struct usb_device *udev;
2333		int port1;
2334
2335		spin_lock_irq(&hcd_root_hub_lock);
2336		if (!HCD_DEAD(hcd)) {
2337			usb_set_device_state(rhdev, rhdev->actconfig
2338					? USB_STATE_CONFIGURED
2339					: USB_STATE_ADDRESS);
2340			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2341			hcd->state = HC_STATE_RUNNING;
2342		}
2343		spin_unlock_irq(&hcd_root_hub_lock);
2344
2345		/*
2346		 * Check whether any of the enabled ports on the root hub are
2347		 * unsuspended.  If they are then a TRSMRCY delay is needed
2348		 * (this is what the USB-2 spec calls a "global resume").
2349		 * Otherwise we can skip the delay.
2350		 */
2351		usb_hub_for_each_child(rhdev, port1, udev) {
2352			if (udev->state != USB_STATE_NOTATTACHED &&
2353					!udev->port_is_suspended) {
2354				usleep_range(10000, 11000);	/* TRSMRCY */
2355				break;
2356			}
2357		}
2358	} else {
2359		hcd->state = old_state;
2360		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2361		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2362				"resume", status);
2363		if (status != -ESHUTDOWN)
2364			usb_hc_died(hcd);
2365	}
2366	return status;
2367}
2368
2369/* Workqueue routine for root-hub remote wakeup */
2370static void hcd_resume_work(struct work_struct *work)
2371{
2372	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2373	struct usb_device *udev = hcd->self.root_hub;
2374
2375	usb_remote_wakeup(udev);
2376}
2377
2378/**
2379 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2380 * @hcd: host controller for this root hub
2381 *
2382 * The USB host controller calls this function when its root hub is
2383 * suspended (with the remote wakeup feature enabled) and a remote
2384 * wakeup request is received.  The routine submits a workqueue request
2385 * to resume the root hub (that is, manage its downstream ports again).
2386 */
2387void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2388{
2389	unsigned long flags;
2390
2391	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2392	if (hcd->rh_registered) {
2393		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2394		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2395		queue_work(pm_wq, &hcd->wakeup_work);
2396	}
2397	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2398}
2399EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2400
2401#endif	/* CONFIG_PM */
2402
2403/*-------------------------------------------------------------------------*/
2404
2405#ifdef	CONFIG_USB_OTG
2406
2407/**
2408 * usb_bus_start_enum - start immediate enumeration (for OTG)
2409 * @bus: the bus (must use hcd framework)
2410 * @port_num: 1-based number of port; usually bus->otg_port
2411 * Context: atomic
2412 *
2413 * Starts enumeration, with an immediate reset followed later by
2414 * hub_wq identifying and possibly configuring the device.
2415 * This is needed by OTG controller drivers, where it helps meet
2416 * HNP protocol timing requirements for starting a port reset.
2417 *
2418 * Return: 0 if successful.
2419 */
2420int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2421{
2422	struct usb_hcd		*hcd;
2423	int			status = -EOPNOTSUPP;
2424
2425	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2426	 * boards with root hubs hooked up to internal devices (instead of
2427	 * just the OTG port) may need more attention to resetting...
2428	 */
2429	hcd = bus_to_hcd(bus);
2430	if (port_num && hcd->driver->start_port_reset)
2431		status = hcd->driver->start_port_reset(hcd, port_num);
2432
2433	/* allocate hub_wq shortly after (first) root port reset finishes;
2434	 * it may issue others, until at least 50 msecs have passed.
2435	 */
2436	if (status == 0)
2437		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2438	return status;
2439}
2440EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2441
2442#endif
2443
2444/*-------------------------------------------------------------------------*/
2445
2446/**
2447 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2448 * @irq: the IRQ being raised
2449 * @__hcd: pointer to the HCD whose IRQ is being signaled
2450 *
2451 * If the controller isn't HALTed, calls the driver's irq handler.
2452 * Checks whether the controller is now dead.
2453 *
2454 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2455 */
2456irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2457{
2458	struct usb_hcd		*hcd = __hcd;
2459	irqreturn_t		rc;
2460
2461	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2462		rc = IRQ_NONE;
2463	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2464		rc = IRQ_NONE;
2465	else
2466		rc = IRQ_HANDLED;
2467
2468	return rc;
2469}
2470EXPORT_SYMBOL_GPL(usb_hcd_irq);
2471
2472/*-------------------------------------------------------------------------*/
2473
2474/* Workqueue routine for when the root-hub has died. */
2475static void hcd_died_work(struct work_struct *work)
2476{
2477	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2478	static char *env[] = {
2479		"ERROR=DEAD",
2480		NULL
2481	};
2482
2483	/* Notify user space that the host controller has died */
2484	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2485}
2486
2487/**
2488 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2489 * @hcd: pointer to the HCD representing the controller
2490 *
2491 * This is called by bus glue to report a USB host controller that died
2492 * while operations may still have been pending.  It's called automatically
2493 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2494 *
2495 * Only call this function with the primary HCD.
2496 */
2497void usb_hc_died (struct usb_hcd *hcd)
2498{
2499	unsigned long flags;
2500
2501	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2502
2503	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2504	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2505	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2506	if (hcd->rh_registered) {
2507		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2508
2509		/* make hub_wq clean up old urbs and devices */
2510		usb_set_device_state (hcd->self.root_hub,
2511				USB_STATE_NOTATTACHED);
2512		usb_kick_hub_wq(hcd->self.root_hub);
2513	}
2514	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2515		hcd = hcd->shared_hcd;
2516		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2517		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2518		if (hcd->rh_registered) {
2519			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2520
2521			/* make hub_wq clean up old urbs and devices */
2522			usb_set_device_state(hcd->self.root_hub,
2523					USB_STATE_NOTATTACHED);
2524			usb_kick_hub_wq(hcd->self.root_hub);
2525		}
2526	}
2527
2528	/* Handle the case where this function gets called with a shared HCD */
2529	if (usb_hcd_is_primary_hcd(hcd))
2530		schedule_work(&hcd->died_work);
2531	else
2532		schedule_work(&hcd->primary_hcd->died_work);
2533
2534	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2535	/* Make sure that the other roothub is also deallocated. */
2536}
2537EXPORT_SYMBOL_GPL (usb_hc_died);
2538
2539/*-------------------------------------------------------------------------*/
2540
2541static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2542{
2543
2544	spin_lock_init(&bh->lock);
2545	INIT_LIST_HEAD(&bh->head);
2546	tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2547}
2548
2549struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2550		struct device *sysdev, struct device *dev, const char *bus_name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551		struct usb_hcd *primary_hcd)
2552{
2553	struct usb_hcd *hcd;
2554
2555	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2556	if (!hcd)
 
2557		return NULL;
 
2558	if (primary_hcd == NULL) {
2559		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2560				GFP_KERNEL);
2561		if (!hcd->address0_mutex) {
2562			kfree(hcd);
2563			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2564			return NULL;
2565		}
2566		mutex_init(hcd->address0_mutex);
2567		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2568				GFP_KERNEL);
2569		if (!hcd->bandwidth_mutex) {
2570			kfree(hcd->address0_mutex);
2571			kfree(hcd);
2572			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2573			return NULL;
2574		}
2575		mutex_init(hcd->bandwidth_mutex);
2576		dev_set_drvdata(dev, hcd);
2577	} else {
2578		mutex_lock(&usb_port_peer_mutex);
2579		hcd->address0_mutex = primary_hcd->address0_mutex;
2580		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2581		hcd->primary_hcd = primary_hcd;
2582		primary_hcd->primary_hcd = primary_hcd;
2583		hcd->shared_hcd = primary_hcd;
2584		primary_hcd->shared_hcd = hcd;
2585		mutex_unlock(&usb_port_peer_mutex);
2586	}
2587
2588	kref_init(&hcd->kref);
2589
2590	usb_bus_init(&hcd->self);
2591	hcd->self.controller = dev;
2592	hcd->self.sysdev = sysdev;
2593	hcd->self.bus_name = bus_name;
 
2594
2595	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
 
 
2596#ifdef CONFIG_PM
2597	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2598#endif
2599
2600	INIT_WORK(&hcd->died_work, hcd_died_work);
2601
2602	hcd->driver = driver;
2603	hcd->speed = driver->flags & HCD_MASK;
2604	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2605			"USB Host Controller";
2606	return hcd;
2607}
2608EXPORT_SYMBOL_GPL(__usb_create_hcd);
2609
2610/**
2611 * usb_create_shared_hcd - create and initialize an HCD structure
2612 * @driver: HC driver that will use this hcd
2613 * @dev: device for this HC, stored in hcd->self.controller
2614 * @bus_name: value to store in hcd->self.bus_name
2615 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2616 *              PCI device.  Only allocate certain resources for the primary HCD
2617 *
2618 * Context: task context, might sleep.
2619 *
2620 * Allocate a struct usb_hcd, with extra space at the end for the
2621 * HC driver's private data.  Initialize the generic members of the
2622 * hcd structure.
2623 *
2624 * Return: On success, a pointer to the created and initialized HCD structure.
2625 * On failure (e.g. if memory is unavailable), %NULL.
2626 */
2627struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2628		struct device *dev, const char *bus_name,
2629		struct usb_hcd *primary_hcd)
2630{
2631	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2632}
2633EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2634
2635/**
2636 * usb_create_hcd - create and initialize an HCD structure
2637 * @driver: HC driver that will use this hcd
2638 * @dev: device for this HC, stored in hcd->self.controller
2639 * @bus_name: value to store in hcd->self.bus_name
2640 *
2641 * Context: task context, might sleep.
2642 *
2643 * Allocate a struct usb_hcd, with extra space at the end for the
2644 * HC driver's private data.  Initialize the generic members of the
2645 * hcd structure.
2646 *
2647 * Return: On success, a pointer to the created and initialized HCD
2648 * structure. On failure (e.g. if memory is unavailable), %NULL.
2649 */
2650struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2651		struct device *dev, const char *bus_name)
2652{
2653	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2654}
2655EXPORT_SYMBOL_GPL(usb_create_hcd);
2656
2657/*
2658 * Roothubs that share one PCI device must also share the bandwidth mutex.
2659 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2660 * deallocated.
2661 *
2662 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2663 * freed.  When hcd_release() is called for either hcd in a peer set,
2664 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
 
2665 */
2666static void hcd_release(struct kref *kref)
2667{
2668	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2669
2670	mutex_lock(&usb_port_peer_mutex);
 
 
2671	if (hcd->shared_hcd) {
2672		struct usb_hcd *peer = hcd->shared_hcd;
2673
2674		peer->shared_hcd = NULL;
2675		peer->primary_hcd = NULL;
2676	} else {
2677		kfree(hcd->address0_mutex);
2678		kfree(hcd->bandwidth_mutex);
2679	}
2680	mutex_unlock(&usb_port_peer_mutex);
2681	kfree(hcd);
2682}
2683
2684struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2685{
2686	if (hcd)
2687		kref_get (&hcd->kref);
2688	return hcd;
2689}
2690EXPORT_SYMBOL_GPL(usb_get_hcd);
2691
2692void usb_put_hcd (struct usb_hcd *hcd)
2693{
2694	if (hcd)
2695		kref_put (&hcd->kref, hcd_release);
2696}
2697EXPORT_SYMBOL_GPL(usb_put_hcd);
2698
2699int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2700{
2701	if (!hcd->primary_hcd)
2702		return 1;
2703	return hcd == hcd->primary_hcd;
2704}
2705EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2706
2707int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2708{
2709	if (!hcd->driver->find_raw_port_number)
2710		return port1;
2711
2712	return hcd->driver->find_raw_port_number(hcd, port1);
2713}
2714
2715static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2716		unsigned int irqnum, unsigned long irqflags)
2717{
2718	int retval;
2719
2720	if (hcd->driver->irq) {
2721
2722		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2723				hcd->driver->description, hcd->self.busnum);
2724		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2725				hcd->irq_descr, hcd);
2726		if (retval != 0) {
2727			dev_err(hcd->self.controller,
2728					"request interrupt %d failed\n",
2729					irqnum);
2730			return retval;
2731		}
2732		hcd->irq = irqnum;
2733		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2734				(hcd->driver->flags & HCD_MEMORY) ?
2735					"io mem" : "io base",
2736					(unsigned long long)hcd->rsrc_start);
2737	} else {
2738		hcd->irq = 0;
2739		if (hcd->rsrc_start)
2740			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2741					(hcd->driver->flags & HCD_MEMORY) ?
2742					"io mem" : "io base",
2743					(unsigned long long)hcd->rsrc_start);
2744	}
2745	return 0;
2746}
2747
2748/*
2749 * Before we free this root hub, flush in-flight peering attempts
2750 * and disable peer lookups
2751 */
2752static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2753{
2754	struct usb_device *rhdev;
2755
2756	mutex_lock(&usb_port_peer_mutex);
2757	rhdev = hcd->self.root_hub;
2758	hcd->self.root_hub = NULL;
2759	mutex_unlock(&usb_port_peer_mutex);
2760	usb_put_dev(rhdev);
2761}
2762
2763/**
2764 * usb_add_hcd - finish generic HCD structure initialization and register
2765 * @hcd: the usb_hcd structure to initialize
2766 * @irqnum: Interrupt line to allocate
2767 * @irqflags: Interrupt type flags
2768 *
2769 * Finish the remaining parts of generic HCD initialization: allocate the
2770 * buffers of consistent memory, register the bus, request the IRQ line,
2771 * and call the driver's reset() and start() routines.
2772 */
2773int usb_add_hcd(struct usb_hcd *hcd,
2774		unsigned int irqnum, unsigned long irqflags)
2775{
2776	int retval;
2777	struct usb_device *rhdev;
2778	struct usb_hcd *shared_hcd;
2779
2780	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2781		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2782		if (IS_ERR(hcd->phy_roothub))
2783			return PTR_ERR(hcd->phy_roothub);
2784
2785		retval = usb_phy_roothub_init(hcd->phy_roothub);
2786		if (retval)
2787			return retval;
 
 
 
 
 
 
 
 
 
 
 
2788
2789		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2790						  PHY_MODE_USB_HOST_SS);
2791		if (retval)
2792			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2793							  PHY_MODE_USB_HOST);
2794		if (retval)
2795			goto err_usb_phy_roothub_power_on;
2796
2797		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2798		if (retval)
2799			goto err_usb_phy_roothub_power_on;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2800	}
2801
2802	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2803
2804	switch (authorized_default) {
2805	case USB_AUTHORIZE_NONE:
2806		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2807		break;
2808
2809	case USB_AUTHORIZE_ALL:
2810		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2811		break;
2812
2813	case USB_AUTHORIZE_INTERNAL:
2814		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2815		break;
2816
2817	case USB_AUTHORIZE_WIRED:
2818	default:
2819		hcd->dev_policy = hcd->wireless ?
2820			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2821		break;
2822	}
2823
2824	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2825
2826	/* per default all interfaces are authorized */
2827	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2828
2829	/* HC is in reset state, but accessible.  Now do the one-time init,
2830	 * bottom up so that hcds can customize the root hubs before hub_wq
2831	 * starts talking to them.  (Note, bus id is assigned early too.)
2832	 */
2833	retval = hcd_buffer_create(hcd);
2834	if (retval != 0) {
2835		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2836		goto err_create_buf;
2837	}
2838
2839	retval = usb_register_bus(&hcd->self);
2840	if (retval < 0)
2841		goto err_register_bus;
2842
2843	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2844	if (rhdev == NULL) {
2845		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2846		retval = -ENOMEM;
2847		goto err_allocate_root_hub;
2848	}
2849	mutex_lock(&usb_port_peer_mutex);
2850	hcd->self.root_hub = rhdev;
2851	mutex_unlock(&usb_port_peer_mutex);
2852
2853	rhdev->rx_lanes = 1;
2854	rhdev->tx_lanes = 1;
2855	rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2856
2857	switch (hcd->speed) {
2858	case HCD_USB11:
2859		rhdev->speed = USB_SPEED_FULL;
2860		break;
2861	case HCD_USB2:
2862		rhdev->speed = USB_SPEED_HIGH;
2863		break;
2864	case HCD_USB25:
2865		rhdev->speed = USB_SPEED_WIRELESS;
2866		break;
2867	case HCD_USB3:
2868		rhdev->speed = USB_SPEED_SUPER;
2869		break;
2870	case HCD_USB32:
2871		rhdev->rx_lanes = 2;
2872		rhdev->tx_lanes = 2;
2873		rhdev->ssp_rate = USB_SSP_GEN_2x2;
2874		rhdev->speed = USB_SPEED_SUPER_PLUS;
2875		break;
2876	case HCD_USB31:
2877		rhdev->ssp_rate = USB_SSP_GEN_2x1;
2878		rhdev->speed = USB_SPEED_SUPER_PLUS;
2879		break;
2880	default:
2881		retval = -EINVAL;
2882		goto err_set_rh_speed;
2883	}
2884
2885	/* wakeup flag init defaults to "everything works" for root hubs,
2886	 * but drivers can override it in reset() if needed, along with
2887	 * recording the overall controller's system wakeup capability.
2888	 */
2889	device_set_wakeup_capable(&rhdev->dev, 1);
2890
2891	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2892	 * registered.  But since the controller can die at any time,
2893	 * let's initialize the flag before touching the hardware.
2894	 */
2895	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2896
2897	/* "reset" is misnamed; its role is now one-time init. the controller
2898	 * should already have been reset (and boot firmware kicked off etc).
2899	 */
2900	if (hcd->driver->reset) {
2901		retval = hcd->driver->reset(hcd);
2902		if (retval < 0) {
2903			dev_err(hcd->self.controller, "can't setup: %d\n",
2904					retval);
2905			goto err_hcd_driver_setup;
2906		}
2907	}
2908	hcd->rh_pollable = 1;
2909
2910	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2911	if (retval)
2912		goto err_hcd_driver_setup;
2913
2914	/* NOTE: root hub and controller capabilities may not be the same */
2915	if (device_can_wakeup(hcd->self.controller)
2916			&& device_can_wakeup(&hcd->self.root_hub->dev))
2917		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2918
2919	/* initialize tasklets */
2920	init_giveback_urb_bh(&hcd->high_prio_bh);
2921	init_giveback_urb_bh(&hcd->low_prio_bh);
2922
2923	/* enable irqs just before we start the controller,
2924	 * if the BIOS provides legacy PCI irqs.
2925	 */
2926	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2927		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2928		if (retval)
2929			goto err_request_irq;
2930	}
2931
2932	hcd->state = HC_STATE_RUNNING;
2933	retval = hcd->driver->start(hcd);
2934	if (retval < 0) {
2935		dev_err(hcd->self.controller, "startup error %d\n", retval);
2936		goto err_hcd_driver_start;
2937	}
2938
2939	/* starting here, usbcore will pay attention to the shared HCD roothub */
2940	shared_hcd = hcd->shared_hcd;
2941	if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2942		retval = register_root_hub(shared_hcd);
2943		if (retval != 0)
2944			goto err_register_root_hub;
2945
2946		if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2947			usb_hcd_poll_rh_status(shared_hcd);
2948	}
2949
2950	/* starting here, usbcore will pay attention to this root hub */
2951	if (!HCD_DEFER_RH_REGISTER(hcd)) {
2952		retval = register_root_hub(hcd);
2953		if (retval != 0)
2954			goto err_register_root_hub;
2955
2956		if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2957			usb_hcd_poll_rh_status(hcd);
 
 
 
2958	}
 
 
2959
2960	return retval;
2961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962err_register_root_hub:
2963	hcd->rh_pollable = 0;
2964	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2965	del_timer_sync(&hcd->rh_timer);
2966	hcd->driver->stop(hcd);
2967	hcd->state = HC_STATE_HALT;
2968	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2969	del_timer_sync(&hcd->rh_timer);
2970err_hcd_driver_start:
2971	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2972		free_irq(irqnum, hcd);
2973err_request_irq:
2974err_hcd_driver_setup:
2975err_set_rh_speed:
2976	usb_put_invalidate_rhdev(hcd);
2977err_allocate_root_hub:
2978	usb_deregister_bus(&hcd->self);
2979err_register_bus:
2980	hcd_buffer_destroy(hcd);
2981err_create_buf:
2982	usb_phy_roothub_power_off(hcd->phy_roothub);
2983err_usb_phy_roothub_power_on:
2984	usb_phy_roothub_exit(hcd->phy_roothub);
2985
 
 
 
 
 
 
 
 
2986	return retval;
2987}
2988EXPORT_SYMBOL_GPL(usb_add_hcd);
2989
2990/**
2991 * usb_remove_hcd - shutdown processing for generic HCDs
2992 * @hcd: the usb_hcd structure to remove
2993 *
2994 * Context: task context, might sleep.
2995 *
2996 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2997 * invoking the HCD's stop() method.
2998 */
2999void usb_remove_hcd(struct usb_hcd *hcd)
3000{
3001	struct usb_device *rhdev = hcd->self.root_hub;
3002	bool rh_registered;
3003
3004	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3005
3006	usb_get_dev(rhdev);
 
 
3007	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3008	if (HC_IS_RUNNING (hcd->state))
3009		hcd->state = HC_STATE_QUIESCING;
3010
3011	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3012	spin_lock_irq (&hcd_root_hub_lock);
3013	rh_registered = hcd->rh_registered;
3014	hcd->rh_registered = 0;
3015	spin_unlock_irq (&hcd_root_hub_lock);
3016
3017#ifdef CONFIG_PM
3018	cancel_work_sync(&hcd->wakeup_work);
3019#endif
3020	cancel_work_sync(&hcd->died_work);
3021
3022	mutex_lock(&usb_bus_idr_lock);
3023	if (rh_registered)
3024		usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
3025	mutex_unlock(&usb_bus_idr_lock);
3026
3027	/*
3028	 * tasklet_kill() isn't needed here because:
3029	 * - driver's disconnect() called from usb_disconnect() should
3030	 *   make sure its URBs are completed during the disconnect()
3031	 *   callback
3032	 *
3033	 * - it is too late to run complete() here since driver may have
3034	 *   been removed already now
3035	 */
3036
3037	/* Prevent any more root-hub status calls from the timer.
3038	 * The HCD might still restart the timer (if a port status change
3039	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3040	 * the hub_status_data() callback.
3041	 */
3042	hcd->rh_pollable = 0;
3043	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3044	del_timer_sync(&hcd->rh_timer);
3045
3046	hcd->driver->stop(hcd);
3047	hcd->state = HC_STATE_HALT;
3048
3049	/* In case the HCD restarted the timer, stop it again. */
3050	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3051	del_timer_sync(&hcd->rh_timer);
3052
3053	if (usb_hcd_is_primary_hcd(hcd)) {
3054		if (hcd->irq > 0)
3055			free_irq(hcd->irq, hcd);
3056	}
3057
3058	usb_deregister_bus(&hcd->self);
3059	hcd_buffer_destroy(hcd);
3060
3061	usb_phy_roothub_power_off(hcd->phy_roothub);
3062	usb_phy_roothub_exit(hcd->phy_roothub);
 
 
 
 
 
 
 
 
 
3063
3064	usb_put_invalidate_rhdev(hcd);
3065	hcd->flags = 0;
3066}
3067EXPORT_SYMBOL_GPL(usb_remove_hcd);
3068
3069void
3070usb_hcd_platform_shutdown(struct platform_device *dev)
3071{
3072	struct usb_hcd *hcd = platform_get_drvdata(dev);
3073
3074	/* No need for pm_runtime_put(), we're shutting down */
3075	pm_runtime_get_sync(&dev->dev);
3076
3077	if (hcd->driver->shutdown)
3078		hcd->driver->shutdown(hcd);
3079}
3080EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3081
3082int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3083			    dma_addr_t dma, size_t size)
3084{
3085	int err;
3086	void *local_mem;
3087
3088	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3089						  dev_to_node(hcd->self.sysdev),
3090						  dev_name(hcd->self.sysdev));
3091	if (IS_ERR(hcd->localmem_pool))
3092		return PTR_ERR(hcd->localmem_pool);
3093
3094	local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3095				  size, MEMREMAP_WC);
3096	if (IS_ERR(local_mem))
3097		return PTR_ERR(local_mem);
3098
3099	/*
3100	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3101	 * It's not backed by system memory and thus there's no kernel mapping
3102	 * for it.
3103	 */
3104	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3105				dma, size, dev_to_node(hcd->self.sysdev));
3106	if (err < 0) {
3107		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3108			err);
3109		return err;
3110	}
3111
3112	return 0;
3113}
3114EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3115
3116/*-------------------------------------------------------------------------*/
3117
3118#if IS_ENABLED(CONFIG_USB_MON)
3119
3120const struct usb_mon_operations *mon_ops;
3121
3122/*
3123 * The registration is unlocked.
3124 * We do it this way because we do not want to lock in hot paths.
3125 *
3126 * Notice that the code is minimally error-proof. Because usbmon needs
3127 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3128 */
3129
3130int usb_mon_register(const struct usb_mon_operations *ops)
3131{
3132
3133	if (mon_ops)
3134		return -EBUSY;
3135
3136	mon_ops = ops;
3137	mb();
3138	return 0;
3139}
3140EXPORT_SYMBOL_GPL (usb_mon_register);
3141
3142void usb_mon_deregister (void)
3143{
3144
3145	if (mon_ops == NULL) {
3146		printk(KERN_ERR "USB: monitor was not registered\n");
3147		return;
3148	}
3149	mon_ops = NULL;
3150	mb();
3151}
3152EXPORT_SYMBOL_GPL (usb_mon_deregister);
3153
3154#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */