Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <drm/drm_atomic_helper.h>
  25
  26#include "display/intel_dp.h"
  27
  28#include "i915_drv.h"
  29#include "intel_display_types.h"
  30#include "intel_psr.h"
  31#include "intel_sprite.h"
  32
  33/**
  34 * DOC: Panel Self Refresh (PSR/SRD)
  35 *
  36 * Since Haswell Display controller supports Panel Self-Refresh on display
  37 * panels witch have a remote frame buffer (RFB) implemented according to PSR
  38 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
  39 * when system is idle but display is on as it eliminates display refresh
  40 * request to DDR memory completely as long as the frame buffer for that
  41 * display is unchanged.
  42 *
  43 * Panel Self Refresh must be supported by both Hardware (source) and
  44 * Panel (sink).
  45 *
  46 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
  47 * to power down the link and memory controller. For DSI panels the same idea
  48 * is called "manual mode".
  49 *
  50 * The implementation uses the hardware-based PSR support which automatically
  51 * enters/exits self-refresh mode. The hardware takes care of sending the
  52 * required DP aux message and could even retrain the link (that part isn't
  53 * enabled yet though). The hardware also keeps track of any frontbuffer
  54 * changes to know when to exit self-refresh mode again. Unfortunately that
  55 * part doesn't work too well, hence why the i915 PSR support uses the
  56 * software frontbuffer tracking to make sure it doesn't miss a screen
  57 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
  58 * get called by the frontbuffer tracking code. Note that because of locking
  59 * issues the self-refresh re-enable code is done from a work queue, which
  60 * must be correctly synchronized/cancelled when shutting down the pipe."
  61 */
  62
  63static bool psr_global_enabled(u32 debug)
  64{
  65	switch (debug & I915_PSR_DEBUG_MODE_MASK) {
  66	case I915_PSR_DEBUG_DEFAULT:
  67		return i915_modparams.enable_psr;
  68	case I915_PSR_DEBUG_DISABLE:
  69		return false;
  70	default:
  71		return true;
  72	}
  73}
  74
  75static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
  76			       const struct intel_crtc_state *crtc_state)
  77{
  78	/* Cannot enable DSC and PSR2 simultaneously */
  79	WARN_ON(crtc_state->dsc_params.compression_enable &&
  80		crtc_state->has_psr2);
  81
  82	switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
  83	case I915_PSR_DEBUG_DISABLE:
  84	case I915_PSR_DEBUG_FORCE_PSR1:
  85		return false;
  86	default:
  87		return crtc_state->has_psr2;
  88	}
  89}
  90
  91static int edp_psr_shift(enum transcoder cpu_transcoder)
  92{
  93	switch (cpu_transcoder) {
  94	case TRANSCODER_A:
  95		return EDP_PSR_TRANSCODER_A_SHIFT;
  96	case TRANSCODER_B:
  97		return EDP_PSR_TRANSCODER_B_SHIFT;
  98	case TRANSCODER_C:
  99		return EDP_PSR_TRANSCODER_C_SHIFT;
 100	default:
 101		MISSING_CASE(cpu_transcoder);
 102		/* fallthrough */
 103	case TRANSCODER_EDP:
 104		return EDP_PSR_TRANSCODER_EDP_SHIFT;
 105	}
 106}
 107
 108void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug)
 109{
 110	u32 debug_mask, mask;
 111	enum transcoder cpu_transcoder;
 112	u32 transcoders = BIT(TRANSCODER_EDP);
 113
 114	if (INTEL_GEN(dev_priv) >= 8)
 115		transcoders |= BIT(TRANSCODER_A) |
 116			       BIT(TRANSCODER_B) |
 117			       BIT(TRANSCODER_C);
 118
 119	debug_mask = 0;
 120	mask = 0;
 121	for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
 122		int shift = edp_psr_shift(cpu_transcoder);
 123
 124		mask |= EDP_PSR_ERROR(shift);
 125		debug_mask |= EDP_PSR_POST_EXIT(shift) |
 126			      EDP_PSR_PRE_ENTRY(shift);
 127	}
 128
 129	if (debug & I915_PSR_DEBUG_IRQ)
 130		mask |= debug_mask;
 131
 132	I915_WRITE(EDP_PSR_IMR, ~mask);
 133}
 134
 135static void psr_event_print(u32 val, bool psr2_enabled)
 136{
 137	DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
 138	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
 139		DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
 140	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
 141		DRM_DEBUG_KMS("\tPSR2 disabled\n");
 142	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
 143		DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
 144	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
 145		DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
 146	if (val & PSR_EVENT_GRAPHICS_RESET)
 147		DRM_DEBUG_KMS("\tGraphics reset\n");
 148	if (val & PSR_EVENT_PCH_INTERRUPT)
 149		DRM_DEBUG_KMS("\tPCH interrupt\n");
 150	if (val & PSR_EVENT_MEMORY_UP)
 151		DRM_DEBUG_KMS("\tMemory up\n");
 152	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
 153		DRM_DEBUG_KMS("\tFront buffer modification\n");
 154	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
 155		DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
 156	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
 157		DRM_DEBUG_KMS("\tPIPE registers updated\n");
 158	if (val & PSR_EVENT_REGISTER_UPDATE)
 159		DRM_DEBUG_KMS("\tRegister updated\n");
 160	if (val & PSR_EVENT_HDCP_ENABLE)
 161		DRM_DEBUG_KMS("\tHDCP enabled\n");
 162	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
 163		DRM_DEBUG_KMS("\tKVMR session enabled\n");
 164	if (val & PSR_EVENT_VBI_ENABLE)
 165		DRM_DEBUG_KMS("\tVBI enabled\n");
 166	if (val & PSR_EVENT_LPSP_MODE_EXIT)
 167		DRM_DEBUG_KMS("\tLPSP mode exited\n");
 168	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
 169		DRM_DEBUG_KMS("\tPSR disabled\n");
 170}
 171
 172void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
 173{
 174	u32 transcoders = BIT(TRANSCODER_EDP);
 175	enum transcoder cpu_transcoder;
 176	ktime_t time_ns =  ktime_get();
 177	u32 mask = 0;
 178
 179	if (INTEL_GEN(dev_priv) >= 8)
 180		transcoders |= BIT(TRANSCODER_A) |
 181			       BIT(TRANSCODER_B) |
 182			       BIT(TRANSCODER_C);
 183
 184	for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
 185		int shift = edp_psr_shift(cpu_transcoder);
 186
 187		if (psr_iir & EDP_PSR_ERROR(shift)) {
 188			DRM_WARN("[transcoder %s] PSR aux error\n",
 189				 transcoder_name(cpu_transcoder));
 190
 191			dev_priv->psr.irq_aux_error = true;
 192
 193			/*
 194			 * If this interruption is not masked it will keep
 195			 * interrupting so fast that it prevents the scheduled
 196			 * work to run.
 197			 * Also after a PSR error, we don't want to arm PSR
 198			 * again so we don't care about unmask the interruption
 199			 * or unset irq_aux_error.
 200			 */
 201			mask |= EDP_PSR_ERROR(shift);
 202		}
 203
 204		if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) {
 205			dev_priv->psr.last_entry_attempt = time_ns;
 206			DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
 207				      transcoder_name(cpu_transcoder));
 208		}
 209
 210		if (psr_iir & EDP_PSR_POST_EXIT(shift)) {
 211			dev_priv->psr.last_exit = time_ns;
 212			DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
 213				      transcoder_name(cpu_transcoder));
 214
 215			if (INTEL_GEN(dev_priv) >= 9) {
 216				u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
 217				bool psr2_enabled = dev_priv->psr.psr2_enabled;
 218
 219				I915_WRITE(PSR_EVENT(cpu_transcoder), val);
 220				psr_event_print(val, psr2_enabled);
 221			}
 222		}
 223	}
 224
 225	if (mask) {
 226		mask |= I915_READ(EDP_PSR_IMR);
 227		I915_WRITE(EDP_PSR_IMR, mask);
 228
 229		schedule_work(&dev_priv->psr.work);
 230	}
 231}
 232
 233static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
 234{
 235	u8 alpm_caps = 0;
 236
 237	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
 238			      &alpm_caps) != 1)
 239		return false;
 240	return alpm_caps & DP_ALPM_CAP;
 241}
 242
 243static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
 244{
 245	u8 val = 8; /* assume the worst if we can't read the value */
 246
 247	if (drm_dp_dpcd_readb(&intel_dp->aux,
 248			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
 249		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
 250	else
 251		DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
 252	return val;
 253}
 254
 255static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
 256{
 257	u16 val;
 258	ssize_t r;
 259
 260	/*
 261	 * Returning the default X granularity if granularity not required or
 262	 * if DPCD read fails
 263	 */
 264	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
 265		return 4;
 266
 267	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
 268	if (r != 2)
 269		DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
 270
 271	/*
 272	 * Spec says that if the value read is 0 the default granularity should
 273	 * be used instead.
 274	 */
 275	if (r != 2 || val == 0)
 276		val = 4;
 277
 278	return val;
 279}
 280
 281void intel_psr_init_dpcd(struct intel_dp *intel_dp)
 282{
 283	struct drm_i915_private *dev_priv =
 284		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
 285
 286	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
 287			 sizeof(intel_dp->psr_dpcd));
 288
 289	if (!intel_dp->psr_dpcd[0])
 290		return;
 291	DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
 292		      intel_dp->psr_dpcd[0]);
 293
 294	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
 295		DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
 296		return;
 297	}
 298
 299	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
 300		DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
 301		return;
 302	}
 303
 304	dev_priv->psr.sink_support = true;
 305	dev_priv->psr.sink_sync_latency =
 306		intel_dp_get_sink_sync_latency(intel_dp);
 307
 308	WARN_ON(dev_priv->psr.dp);
 309	dev_priv->psr.dp = intel_dp;
 310
 311	if (INTEL_GEN(dev_priv) >= 9 &&
 312	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
 313		bool y_req = intel_dp->psr_dpcd[1] &
 314			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
 315		bool alpm = intel_dp_get_alpm_status(intel_dp);
 316
 317		/*
 318		 * All panels that supports PSR version 03h (PSR2 +
 319		 * Y-coordinate) can handle Y-coordinates in VSC but we are
 320		 * only sure that it is going to be used when required by the
 321		 * panel. This way panel is capable to do selective update
 322		 * without a aux frame sync.
 323		 *
 324		 * To support PSR version 02h and PSR version 03h without
 325		 * Y-coordinate requirement panels we would need to enable
 326		 * GTC first.
 327		 */
 328		dev_priv->psr.sink_psr2_support = y_req && alpm;
 329		DRM_DEBUG_KMS("PSR2 %ssupported\n",
 330			      dev_priv->psr.sink_psr2_support ? "" : "not ");
 331
 332		if (dev_priv->psr.sink_psr2_support) {
 333			dev_priv->psr.colorimetry_support =
 334				intel_dp_get_colorimetry_status(intel_dp);
 335			dev_priv->psr.su_x_granularity =
 336				intel_dp_get_su_x_granulartiy(intel_dp);
 337		}
 338	}
 339}
 340
 341static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
 342				const struct intel_crtc_state *crtc_state)
 343{
 344	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 345	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 346	struct dp_sdp psr_vsc;
 347
 348	if (dev_priv->psr.psr2_enabled) {
 349		/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
 350		memset(&psr_vsc, 0, sizeof(psr_vsc));
 351		psr_vsc.sdp_header.HB0 = 0;
 352		psr_vsc.sdp_header.HB1 = 0x7;
 353		if (dev_priv->psr.colorimetry_support) {
 354			psr_vsc.sdp_header.HB2 = 0x5;
 355			psr_vsc.sdp_header.HB3 = 0x13;
 356		} else {
 357			psr_vsc.sdp_header.HB2 = 0x4;
 358			psr_vsc.sdp_header.HB3 = 0xe;
 359		}
 360	} else {
 361		/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
 362		memset(&psr_vsc, 0, sizeof(psr_vsc));
 363		psr_vsc.sdp_header.HB0 = 0;
 364		psr_vsc.sdp_header.HB1 = 0x7;
 365		psr_vsc.sdp_header.HB2 = 0x2;
 366		psr_vsc.sdp_header.HB3 = 0x8;
 367	}
 368
 369	intel_dig_port->write_infoframe(&intel_dig_port->base,
 370					crtc_state,
 371					DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
 372}
 373
 374static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
 375{
 376	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 377	u32 aux_clock_divider, aux_ctl;
 378	int i;
 379	static const u8 aux_msg[] = {
 380		[0] = DP_AUX_NATIVE_WRITE << 4,
 381		[1] = DP_SET_POWER >> 8,
 382		[2] = DP_SET_POWER & 0xff,
 383		[3] = 1 - 1,
 384		[4] = DP_SET_POWER_D0,
 385	};
 386	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
 387			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
 388			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
 389			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
 390
 391	BUILD_BUG_ON(sizeof(aux_msg) > 20);
 392	for (i = 0; i < sizeof(aux_msg); i += 4)
 393		I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
 394			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
 395
 396	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
 397
 398	/* Start with bits set for DDI_AUX_CTL register */
 399	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
 400					     aux_clock_divider);
 401
 402	/* Select only valid bits for SRD_AUX_CTL */
 403	aux_ctl &= psr_aux_mask;
 404	I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
 405}
 406
 407static void intel_psr_enable_sink(struct intel_dp *intel_dp)
 408{
 409	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 410	u8 dpcd_val = DP_PSR_ENABLE;
 411
 412	/* Enable ALPM at sink for psr2 */
 413	if (dev_priv->psr.psr2_enabled) {
 414		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
 415				   DP_ALPM_ENABLE);
 416		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
 417	} else {
 418		if (dev_priv->psr.link_standby)
 419			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
 420
 421		if (INTEL_GEN(dev_priv) >= 8)
 422			dpcd_val |= DP_PSR_CRC_VERIFICATION;
 423	}
 424
 425	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
 426
 427	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
 428}
 429
 430static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
 431{
 432	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 433	u32 val = 0;
 434
 435	if (INTEL_GEN(dev_priv) >= 11)
 436		val |= EDP_PSR_TP4_TIME_0US;
 437
 438	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
 439		val |= EDP_PSR_TP1_TIME_0us;
 440	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
 441		val |= EDP_PSR_TP1_TIME_100us;
 442	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
 443		val |= EDP_PSR_TP1_TIME_500us;
 444	else
 445		val |= EDP_PSR_TP1_TIME_2500us;
 446
 447	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
 448		val |= EDP_PSR_TP2_TP3_TIME_0us;
 449	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
 450		val |= EDP_PSR_TP2_TP3_TIME_100us;
 451	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
 452		val |= EDP_PSR_TP2_TP3_TIME_500us;
 453	else
 454		val |= EDP_PSR_TP2_TP3_TIME_2500us;
 455
 456	if (intel_dp_source_supports_hbr2(intel_dp) &&
 457	    drm_dp_tps3_supported(intel_dp->dpcd))
 458		val |= EDP_PSR_TP1_TP3_SEL;
 459	else
 460		val |= EDP_PSR_TP1_TP2_SEL;
 461
 462	return val;
 463}
 464
 465static void hsw_activate_psr1(struct intel_dp *intel_dp)
 466{
 467	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 468	u32 max_sleep_time = 0x1f;
 469	u32 val = EDP_PSR_ENABLE;
 470
 471	/* Let's use 6 as the minimum to cover all known cases including the
 472	 * off-by-one issue that HW has in some cases.
 473	 */
 474	int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
 475
 476	/* sink_sync_latency of 8 means source has to wait for more than 8
 477	 * frames, we'll go with 9 frames for now
 478	 */
 479	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
 480	val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
 481
 482	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
 483	if (IS_HASWELL(dev_priv))
 484		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
 485
 486	if (dev_priv->psr.link_standby)
 487		val |= EDP_PSR_LINK_STANDBY;
 488
 489	val |= intel_psr1_get_tp_time(intel_dp);
 490
 491	if (INTEL_GEN(dev_priv) >= 8)
 492		val |= EDP_PSR_CRC_ENABLE;
 493
 494	val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
 495	I915_WRITE(EDP_PSR_CTL, val);
 496}
 497
 498static void hsw_activate_psr2(struct intel_dp *intel_dp)
 499{
 500	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 501	u32 val;
 502
 503	/* Let's use 6 as the minimum to cover all known cases including the
 504	 * off-by-one issue that HW has in some cases.
 505	 */
 506	int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
 507
 508	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
 509	val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
 510
 511	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
 512	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
 513		val |= EDP_Y_COORDINATE_ENABLE;
 514
 515	val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
 516
 517	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
 518	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
 519		val |= EDP_PSR2_TP2_TIME_50us;
 520	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
 521		val |= EDP_PSR2_TP2_TIME_100us;
 522	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
 523		val |= EDP_PSR2_TP2_TIME_500us;
 524	else
 525		val |= EDP_PSR2_TP2_TIME_2500us;
 526
 527	/*
 528	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
 529	 * recommending keep this bit unset while PSR2 is enabled.
 530	 */
 531	I915_WRITE(EDP_PSR_CTL, 0);
 532
 533	I915_WRITE(EDP_PSR2_CTL, val);
 534}
 535
 536static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
 537				    struct intel_crtc_state *crtc_state)
 538{
 539	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 540	int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
 541	int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
 542	int psr_max_h = 0, psr_max_v = 0;
 543
 544	if (!dev_priv->psr.sink_psr2_support)
 545		return false;
 546
 547	/*
 548	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
 549	 * resolution requires DSC to be enabled, priority is given to DSC
 550	 * over PSR2.
 551	 */
 552	if (crtc_state->dsc_params.compression_enable) {
 553		DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
 554		return false;
 555	}
 556
 557	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
 558		psr_max_h = 4096;
 559		psr_max_v = 2304;
 560	} else if (IS_GEN(dev_priv, 9)) {
 561		psr_max_h = 3640;
 562		psr_max_v = 2304;
 563	}
 564
 565	if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
 566		DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
 567			      crtc_hdisplay, crtc_vdisplay,
 568			      psr_max_h, psr_max_v);
 569		return false;
 570	}
 571
 572	/*
 573	 * HW sends SU blocks of size four scan lines, which means the starting
 574	 * X coordinate and Y granularity requirements will always be met. We
 575	 * only need to validate the SU block width is a multiple of
 576	 * x granularity.
 577	 */
 578	if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
 579		DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
 580			      crtc_hdisplay, dev_priv->psr.su_x_granularity);
 581		return false;
 582	}
 583
 584	if (crtc_state->crc_enabled) {
 585		DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n");
 586		return false;
 587	}
 588
 589	return true;
 590}
 591
 592void intel_psr_compute_config(struct intel_dp *intel_dp,
 593			      struct intel_crtc_state *crtc_state)
 594{
 595	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 596	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 597	const struct drm_display_mode *adjusted_mode =
 598		&crtc_state->base.adjusted_mode;
 599	int psr_setup_time;
 600
 601	if (!CAN_PSR(dev_priv))
 602		return;
 603
 604	if (intel_dp != dev_priv->psr.dp)
 605		return;
 606
 607	/*
 608	 * HSW spec explicitly says PSR is tied to port A.
 609	 * BDW+ platforms with DDI implementation of PSR have different
 610	 * PSR registers per transcoder and we only implement transcoder EDP
 611	 * ones. Since by Display design transcoder EDP is tied to port A
 612	 * we can safely escape based on the port A.
 613	 */
 614	if (dig_port->base.port != PORT_A) {
 615		DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
 616		return;
 617	}
 618
 619	if (dev_priv->psr.sink_not_reliable) {
 620		DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
 621		return;
 622	}
 623
 624	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
 625		DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n");
 626		return;
 627	}
 628
 629	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
 630	if (psr_setup_time < 0) {
 631		DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
 632			      intel_dp->psr_dpcd[1]);
 633		return;
 634	}
 635
 636	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
 637	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
 638		DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
 639			      psr_setup_time);
 640		return;
 641	}
 642
 643	crtc_state->has_psr = true;
 644	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
 645}
 646
 647static void intel_psr_activate(struct intel_dp *intel_dp)
 648{
 649	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 650
 651	if (INTEL_GEN(dev_priv) >= 9)
 652		WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
 653	WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
 654	WARN_ON(dev_priv->psr.active);
 655	lockdep_assert_held(&dev_priv->psr.lock);
 656
 657	/* psr1 and psr2 are mutually exclusive.*/
 658	if (dev_priv->psr.psr2_enabled)
 659		hsw_activate_psr2(intel_dp);
 660	else
 661		hsw_activate_psr1(intel_dp);
 662
 663	dev_priv->psr.active = true;
 664}
 665
 666static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv,
 667					 enum transcoder cpu_transcoder)
 668{
 669	static const i915_reg_t regs[] = {
 670		[TRANSCODER_A] = CHICKEN_TRANS_A,
 671		[TRANSCODER_B] = CHICKEN_TRANS_B,
 672		[TRANSCODER_C] = CHICKEN_TRANS_C,
 673		[TRANSCODER_EDP] = CHICKEN_TRANS_EDP,
 674	};
 675
 676	WARN_ON(INTEL_GEN(dev_priv) < 9);
 677
 678	if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) ||
 679		    !regs[cpu_transcoder].reg))
 680		cpu_transcoder = TRANSCODER_A;
 681
 682	return regs[cpu_transcoder];
 683}
 684
 685static void intel_psr_enable_source(struct intel_dp *intel_dp,
 686				    const struct intel_crtc_state *crtc_state)
 687{
 688	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 689	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 690	u32 mask;
 691
 692	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
 693	 * use hardcoded values PSR AUX transactions
 694	 */
 695	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 696		hsw_psr_setup_aux(intel_dp);
 697
 698	if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
 699					   !IS_GEMINILAKE(dev_priv))) {
 700		i915_reg_t reg = gen9_chicken_trans_reg(dev_priv,
 701							cpu_transcoder);
 702		u32 chicken = I915_READ(reg);
 703
 704		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
 705			   PSR2_ADD_VERTICAL_LINE_COUNT;
 706		I915_WRITE(reg, chicken);
 707	}
 708
 709	/*
 710	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
 711	 * mask LPSP to avoid dependency on other drivers that might block
 712	 * runtime_pm besides preventing  other hw tracking issues now we
 713	 * can rely on frontbuffer tracking.
 714	 */
 715	mask = EDP_PSR_DEBUG_MASK_MEMUP |
 716	       EDP_PSR_DEBUG_MASK_HPD |
 717	       EDP_PSR_DEBUG_MASK_LPSP |
 718	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
 719
 720	if (INTEL_GEN(dev_priv) < 11)
 721		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
 722
 723	I915_WRITE(EDP_PSR_DEBUG, mask);
 724}
 725
 726static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
 727				    const struct intel_crtc_state *crtc_state)
 728{
 729	struct intel_dp *intel_dp = dev_priv->psr.dp;
 730
 731	WARN_ON(dev_priv->psr.enabled);
 732
 733	dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
 734	dev_priv->psr.busy_frontbuffer_bits = 0;
 735	dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe;
 736
 737	DRM_DEBUG_KMS("Enabling PSR%s\n",
 738		      dev_priv->psr.psr2_enabled ? "2" : "1");
 739	intel_psr_setup_vsc(intel_dp, crtc_state);
 740	intel_psr_enable_sink(intel_dp);
 741	intel_psr_enable_source(intel_dp, crtc_state);
 742	dev_priv->psr.enabled = true;
 743
 744	intel_psr_activate(intel_dp);
 745}
 746
 747/**
 748 * intel_psr_enable - Enable PSR
 749 * @intel_dp: Intel DP
 750 * @crtc_state: new CRTC state
 751 *
 752 * This function can only be called after the pipe is fully trained and enabled.
 753 */
 754void intel_psr_enable(struct intel_dp *intel_dp,
 755		      const struct intel_crtc_state *crtc_state)
 756{
 757	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 758
 759	if (!crtc_state->has_psr)
 760		return;
 761
 762	if (WARN_ON(!CAN_PSR(dev_priv)))
 763		return;
 764
 765	WARN_ON(dev_priv->drrs.dp);
 766
 767	mutex_lock(&dev_priv->psr.lock);
 768
 769	if (!psr_global_enabled(dev_priv->psr.debug)) {
 770		DRM_DEBUG_KMS("PSR disabled by flag\n");
 771		goto unlock;
 772	}
 773
 774	intel_psr_enable_locked(dev_priv, crtc_state);
 775
 776unlock:
 777	mutex_unlock(&dev_priv->psr.lock);
 778}
 779
 780static void intel_psr_exit(struct drm_i915_private *dev_priv)
 781{
 782	u32 val;
 783
 784	if (!dev_priv->psr.active) {
 785		if (INTEL_GEN(dev_priv) >= 9)
 786			WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
 787		WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
 788		return;
 789	}
 790
 791	if (dev_priv->psr.psr2_enabled) {
 792		val = I915_READ(EDP_PSR2_CTL);
 793		WARN_ON(!(val & EDP_PSR2_ENABLE));
 794		I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
 795	} else {
 796		val = I915_READ(EDP_PSR_CTL);
 797		WARN_ON(!(val & EDP_PSR_ENABLE));
 798		I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
 799	}
 800	dev_priv->psr.active = false;
 801}
 802
 803static void intel_psr_disable_locked(struct intel_dp *intel_dp)
 804{
 805	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 806	i915_reg_t psr_status;
 807	u32 psr_status_mask;
 808
 809	lockdep_assert_held(&dev_priv->psr.lock);
 810
 811	if (!dev_priv->psr.enabled)
 812		return;
 813
 814	DRM_DEBUG_KMS("Disabling PSR%s\n",
 815		      dev_priv->psr.psr2_enabled ? "2" : "1");
 816
 817	intel_psr_exit(dev_priv);
 818
 819	if (dev_priv->psr.psr2_enabled) {
 820		psr_status = EDP_PSR2_STATUS;
 821		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
 822	} else {
 823		psr_status = EDP_PSR_STATUS;
 824		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
 825	}
 826
 827	/* Wait till PSR is idle */
 828	if (intel_de_wait_for_clear(dev_priv, psr_status,
 829				    psr_status_mask, 2000))
 830		DRM_ERROR("Timed out waiting PSR idle state\n");
 831
 832	/* Disable PSR on Sink */
 833	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
 834
 835	dev_priv->psr.enabled = false;
 836}
 837
 838/**
 839 * intel_psr_disable - Disable PSR
 840 * @intel_dp: Intel DP
 841 * @old_crtc_state: old CRTC state
 842 *
 843 * This function needs to be called before disabling pipe.
 844 */
 845void intel_psr_disable(struct intel_dp *intel_dp,
 846		       const struct intel_crtc_state *old_crtc_state)
 847{
 848	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 849
 850	if (!old_crtc_state->has_psr)
 851		return;
 852
 853	if (WARN_ON(!CAN_PSR(dev_priv)))
 854		return;
 855
 856	mutex_lock(&dev_priv->psr.lock);
 857
 858	intel_psr_disable_locked(intel_dp);
 859
 860	mutex_unlock(&dev_priv->psr.lock);
 861	cancel_work_sync(&dev_priv->psr.work);
 862}
 863
 864static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
 865{
 866	if (INTEL_GEN(dev_priv) >= 9)
 867		/*
 868		 * Display WA #0884: skl+
 869		 * This documented WA for bxt can be safely applied
 870		 * broadly so we can force HW tracking to exit PSR
 871		 * instead of disabling and re-enabling.
 872		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
 873		 * but it makes more sense write to the current active
 874		 * pipe.
 875		 */
 876		I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
 877	else
 878		/*
 879		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
 880		 * on older gens so doing the manual exit instead.
 881		 */
 882		intel_psr_exit(dev_priv);
 883}
 884
 885/**
 886 * intel_psr_update - Update PSR state
 887 * @intel_dp: Intel DP
 888 * @crtc_state: new CRTC state
 889 *
 890 * This functions will update PSR states, disabling, enabling or switching PSR
 891 * version when executing fastsets. For full modeset, intel_psr_disable() and
 892 * intel_psr_enable() should be called instead.
 893 */
 894void intel_psr_update(struct intel_dp *intel_dp,
 895		      const struct intel_crtc_state *crtc_state)
 896{
 897	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 898	struct i915_psr *psr = &dev_priv->psr;
 899	bool enable, psr2_enable;
 900
 901	if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
 902		return;
 903
 904	mutex_lock(&dev_priv->psr.lock);
 905
 906	enable = crtc_state->has_psr && psr_global_enabled(psr->debug);
 907	psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
 908
 909	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
 910		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
 911		if (crtc_state->crc_enabled && psr->enabled)
 912			psr_force_hw_tracking_exit(dev_priv);
 913		else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
 914			/*
 915			 * Activate PSR again after a force exit when enabling
 916			 * CRC in older gens
 917			 */
 918			if (!dev_priv->psr.active &&
 919			    !dev_priv->psr.busy_frontbuffer_bits)
 920				schedule_work(&dev_priv->psr.work);
 921		}
 922
 923		goto unlock;
 924	}
 925
 926	if (psr->enabled)
 927		intel_psr_disable_locked(intel_dp);
 928
 929	if (enable)
 930		intel_psr_enable_locked(dev_priv, crtc_state);
 931
 932unlock:
 933	mutex_unlock(&dev_priv->psr.lock);
 934}
 935
 936/**
 937 * intel_psr_wait_for_idle - wait for PSR1 to idle
 938 * @new_crtc_state: new CRTC state
 939 * @out_value: PSR status in case of failure
 940 *
 941 * This function is expected to be called from pipe_update_start() where it is
 942 * not expected to race with PSR enable or disable.
 943 *
 944 * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
 945 */
 946int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
 947			    u32 *out_value)
 948{
 949	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
 950	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 951
 952	if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
 953		return 0;
 954
 955	/* FIXME: Update this for PSR2 if we need to wait for idle */
 956	if (READ_ONCE(dev_priv->psr.psr2_enabled))
 957		return 0;
 958
 959	/*
 960	 * From bspec: Panel Self Refresh (BDW+)
 961	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
 962	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
 963	 * defensive enough to cover everything.
 964	 */
 965
 966	return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS,
 967					 EDP_PSR_STATUS_STATE_MASK,
 968					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
 969					 out_value);
 970}
 971
 972static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
 973{
 974	i915_reg_t reg;
 975	u32 mask;
 976	int err;
 977
 978	if (!dev_priv->psr.enabled)
 979		return false;
 980
 981	if (dev_priv->psr.psr2_enabled) {
 982		reg = EDP_PSR2_STATUS;
 983		mask = EDP_PSR2_STATUS_STATE_MASK;
 984	} else {
 985		reg = EDP_PSR_STATUS;
 986		mask = EDP_PSR_STATUS_STATE_MASK;
 987	}
 988
 989	mutex_unlock(&dev_priv->psr.lock);
 990
 991	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
 992	if (err)
 993		DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
 994
 995	/* After the unlocked wait, verify that PSR is still wanted! */
 996	mutex_lock(&dev_priv->psr.lock);
 997	return err == 0 && dev_priv->psr.enabled;
 998}
 999
1000static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1001{
1002	struct drm_device *dev = &dev_priv->drm;
1003	struct drm_modeset_acquire_ctx ctx;
1004	struct drm_atomic_state *state;
1005	struct drm_crtc *crtc;
1006	int err;
1007
1008	state = drm_atomic_state_alloc(dev);
1009	if (!state)
1010		return -ENOMEM;
1011
1012	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1013	state->acquire_ctx = &ctx;
1014
1015retry:
1016	drm_for_each_crtc(crtc, dev) {
1017		struct drm_crtc_state *crtc_state;
1018		struct intel_crtc_state *intel_crtc_state;
1019
1020		crtc_state = drm_atomic_get_crtc_state(state, crtc);
1021		if (IS_ERR(crtc_state)) {
1022			err = PTR_ERR(crtc_state);
1023			goto error;
1024		}
1025
1026		intel_crtc_state = to_intel_crtc_state(crtc_state);
1027
1028		if (crtc_state->active && intel_crtc_state->has_psr) {
1029			/* Mark mode as changed to trigger a pipe->update() */
1030			crtc_state->mode_changed = true;
1031			break;
1032		}
1033	}
1034
1035	err = drm_atomic_commit(state);
1036
1037error:
1038	if (err == -EDEADLK) {
1039		drm_atomic_state_clear(state);
1040		err = drm_modeset_backoff(&ctx);
1041		if (!err)
1042			goto retry;
1043	}
1044
1045	drm_modeset_drop_locks(&ctx);
1046	drm_modeset_acquire_fini(&ctx);
1047	drm_atomic_state_put(state);
1048
1049	return err;
1050}
1051
1052int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1053{
1054	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1055	u32 old_mode;
1056	int ret;
1057
1058	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1059	    mode > I915_PSR_DEBUG_FORCE_PSR1) {
1060		DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
1061		return -EINVAL;
1062	}
1063
1064	ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1065	if (ret)
1066		return ret;
1067
1068	old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1069	dev_priv->psr.debug = val;
1070	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
1071
1072	mutex_unlock(&dev_priv->psr.lock);
1073
1074	if (old_mode != mode)
1075		ret = intel_psr_fastset_force(dev_priv);
1076
1077	return ret;
1078}
1079
1080static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1081{
1082	struct i915_psr *psr = &dev_priv->psr;
1083
1084	intel_psr_disable_locked(psr->dp);
1085	psr->sink_not_reliable = true;
1086	/* let's make sure that sink is awaken */
1087	drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1088}
1089
1090static void intel_psr_work(struct work_struct *work)
1091{
1092	struct drm_i915_private *dev_priv =
1093		container_of(work, typeof(*dev_priv), psr.work);
1094
1095	mutex_lock(&dev_priv->psr.lock);
1096
1097	if (!dev_priv->psr.enabled)
1098		goto unlock;
1099
1100	if (READ_ONCE(dev_priv->psr.irq_aux_error))
1101		intel_psr_handle_irq(dev_priv);
1102
1103	/*
1104	 * We have to make sure PSR is ready for re-enable
1105	 * otherwise it keeps disabled until next full enable/disable cycle.
1106	 * PSR might take some time to get fully disabled
1107	 * and be ready for re-enable.
1108	 */
1109	if (!__psr_wait_for_idle_locked(dev_priv))
1110		goto unlock;
1111
1112	/*
1113	 * The delayed work can race with an invalidate hence we need to
1114	 * recheck. Since psr_flush first clears this and then reschedules we
1115	 * won't ever miss a flush when bailing out here.
1116	 */
1117	if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1118		goto unlock;
1119
1120	intel_psr_activate(dev_priv->psr.dp);
1121unlock:
1122	mutex_unlock(&dev_priv->psr.lock);
1123}
1124
1125/**
1126 * intel_psr_invalidate - Invalidade PSR
1127 * @dev_priv: i915 device
1128 * @frontbuffer_bits: frontbuffer plane tracking bits
1129 * @origin: which operation caused the invalidate
1130 *
1131 * Since the hardware frontbuffer tracking has gaps we need to integrate
1132 * with the software frontbuffer tracking. This function gets called every
1133 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1134 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1135 *
1136 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1137 */
1138void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1139			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1140{
1141	if (!CAN_PSR(dev_priv))
1142		return;
1143
1144	if (origin == ORIGIN_FLIP)
1145		return;
1146
1147	mutex_lock(&dev_priv->psr.lock);
1148	if (!dev_priv->psr.enabled) {
1149		mutex_unlock(&dev_priv->psr.lock);
1150		return;
1151	}
1152
1153	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1154	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1155
1156	if (frontbuffer_bits)
1157		intel_psr_exit(dev_priv);
1158
1159	mutex_unlock(&dev_priv->psr.lock);
1160}
1161
1162/**
1163 * intel_psr_flush - Flush PSR
1164 * @dev_priv: i915 device
1165 * @frontbuffer_bits: frontbuffer plane tracking bits
1166 * @origin: which operation caused the flush
1167 *
1168 * Since the hardware frontbuffer tracking has gaps we need to integrate
1169 * with the software frontbuffer tracking. This function gets called every
1170 * time frontbuffer rendering has completed and flushed out to memory. PSR
1171 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1172 *
1173 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1174 */
1175void intel_psr_flush(struct drm_i915_private *dev_priv,
1176		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1177{
1178	if (!CAN_PSR(dev_priv))
1179		return;
1180
1181	if (origin == ORIGIN_FLIP)
1182		return;
1183
1184	mutex_lock(&dev_priv->psr.lock);
1185	if (!dev_priv->psr.enabled) {
1186		mutex_unlock(&dev_priv->psr.lock);
1187		return;
1188	}
1189
1190	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1191	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1192
1193	/* By definition flush = invalidate + flush */
1194	if (frontbuffer_bits)
1195		psr_force_hw_tracking_exit(dev_priv);
1196
1197	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1198		schedule_work(&dev_priv->psr.work);
1199	mutex_unlock(&dev_priv->psr.lock);
1200}
1201
1202/**
1203 * intel_psr_init - Init basic PSR work and mutex.
1204 * @dev_priv: i915 device private
1205 *
1206 * This function is  called only once at driver load to initialize basic
1207 * PSR stuff.
1208 */
1209void intel_psr_init(struct drm_i915_private *dev_priv)
1210{
1211	u32 val;
1212
1213	if (!HAS_PSR(dev_priv))
1214		return;
1215
1216	dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
1217		HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
1218
1219	if (!dev_priv->psr.sink_support)
1220		return;
1221
1222	if (i915_modparams.enable_psr == -1)
1223		if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1224			i915_modparams.enable_psr = 0;
1225
1226	/*
1227	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1228	 * will still keep the error set even after the reset done in the
1229	 * irq_preinstall and irq_uninstall hooks.
1230	 * And enabling in this situation cause the screen to freeze in the
1231	 * first time that PSR HW tries to activate so lets keep PSR disabled
1232	 * to avoid any rendering problems.
1233	 */
1234	val = I915_READ(EDP_PSR_IIR);
1235	val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP));
1236	if (val) {
1237		DRM_DEBUG_KMS("PSR interruption error set\n");
1238		dev_priv->psr.sink_not_reliable = true;
1239	}
1240
1241	/* Set link_standby x link_off defaults */
1242	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1243		/* HSW and BDW require workarounds that we don't implement. */
1244		dev_priv->psr.link_standby = false;
1245	else
1246		/* For new platforms let's respect VBT back again */
1247		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1248
1249	INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1250	mutex_init(&dev_priv->psr.lock);
1251}
1252
1253void intel_psr_short_pulse(struct intel_dp *intel_dp)
1254{
1255	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1256	struct i915_psr *psr = &dev_priv->psr;
1257	u8 val;
1258	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1259			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1260			  DP_PSR_LINK_CRC_ERROR;
1261
1262	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1263		return;
1264
1265	mutex_lock(&psr->lock);
1266
1267	if (!psr->enabled || psr->dp != intel_dp)
1268		goto exit;
1269
1270	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
1271		DRM_ERROR("PSR_STATUS dpcd read failed\n");
1272		goto exit;
1273	}
1274
1275	if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
1276		DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1277		intel_psr_disable_locked(intel_dp);
1278		psr->sink_not_reliable = true;
1279	}
1280
1281	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
1282		DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
1283		goto exit;
1284	}
1285
1286	if (val & DP_PSR_RFB_STORAGE_ERROR)
1287		DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1288	if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1289		DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1290	if (val & DP_PSR_LINK_CRC_ERROR)
1291		DRM_ERROR("PSR Link CRC error, disabling PSR\n");
1292
1293	if (val & ~errors)
1294		DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1295			  val & ~errors);
1296	if (val & errors) {
1297		intel_psr_disable_locked(intel_dp);
1298		psr->sink_not_reliable = true;
1299	}
1300	/* clear status register */
1301	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
1302exit:
1303	mutex_unlock(&psr->lock);
1304}
1305
1306bool intel_psr_enabled(struct intel_dp *intel_dp)
1307{
1308	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1309	bool ret;
1310
1311	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1312		return false;
1313
1314	mutex_lock(&dev_priv->psr.lock);
1315	ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1316	mutex_unlock(&dev_priv->psr.lock);
1317
1318	return ret;
1319}