Loading...
1/*
2 * Copyright (C) 2011-2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24#include <linux/errno.h>
25#include <linux/export.h>
26#include <linux/kernel.h>
27#include <drm/drmP.h>
28#include <drm/drm_rect.h>
29
30/**
31 * drm_rect_intersect - intersect two rectangles
32 * @r1: first rectangle
33 * @r2: second rectangle
34 *
35 * Calculate the intersection of rectangles @r1 and @r2.
36 * @r1 will be overwritten with the intersection.
37 *
38 * RETURNS:
39 * %true if rectangle @r1 is still visible after the operation,
40 * %false otherwise.
41 */
42bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
43{
44 r1->x1 = max(r1->x1, r2->x1);
45 r1->y1 = max(r1->y1, r2->y1);
46 r1->x2 = min(r1->x2, r2->x2);
47 r1->y2 = min(r1->y2, r2->y2);
48
49 return drm_rect_visible(r1);
50}
51EXPORT_SYMBOL(drm_rect_intersect);
52
53/**
54 * drm_rect_clip_scaled - perform a scaled clip operation
55 * @src: source window rectangle
56 * @dst: destination window rectangle
57 * @clip: clip rectangle
58 * @hscale: horizontal scaling factor
59 * @vscale: vertical scaling factor
60 *
61 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
62 * same amounts multiplied by @hscale and @vscale.
63 *
64 * RETURNS:
65 * %true if rectangle @dst is still visible after being clipped,
66 * %false otherwise
67 */
68bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
69 const struct drm_rect *clip,
70 int hscale, int vscale)
71{
72 int diff;
73
74 diff = clip->x1 - dst->x1;
75 if (diff > 0) {
76 int64_t tmp = src->x1 + (int64_t) diff * hscale;
77 src->x1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
78 }
79 diff = clip->y1 - dst->y1;
80 if (diff > 0) {
81 int64_t tmp = src->y1 + (int64_t) diff * vscale;
82 src->y1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
83 }
84 diff = dst->x2 - clip->x2;
85 if (diff > 0) {
86 int64_t tmp = src->x2 - (int64_t) diff * hscale;
87 src->x2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
88 }
89 diff = dst->y2 - clip->y2;
90 if (diff > 0) {
91 int64_t tmp = src->y2 - (int64_t) diff * vscale;
92 src->y2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
93 }
94
95 return drm_rect_intersect(dst, clip);
96}
97EXPORT_SYMBOL(drm_rect_clip_scaled);
98
99static int drm_calc_scale(int src, int dst)
100{
101 int scale = 0;
102
103 if (src < 0 || dst < 0)
104 return -EINVAL;
105
106 if (dst == 0)
107 return 0;
108
109 scale = src / dst;
110
111 return scale;
112}
113
114/**
115 * drm_rect_calc_hscale - calculate the horizontal scaling factor
116 * @src: source window rectangle
117 * @dst: destination window rectangle
118 * @min_hscale: minimum allowed horizontal scaling factor
119 * @max_hscale: maximum allowed horizontal scaling factor
120 *
121 * Calculate the horizontal scaling factor as
122 * (@src width) / (@dst width).
123 *
124 * RETURNS:
125 * The horizontal scaling factor, or errno of out of limits.
126 */
127int drm_rect_calc_hscale(const struct drm_rect *src,
128 const struct drm_rect *dst,
129 int min_hscale, int max_hscale)
130{
131 int src_w = drm_rect_width(src);
132 int dst_w = drm_rect_width(dst);
133 int hscale = drm_calc_scale(src_w, dst_w);
134
135 if (hscale < 0 || dst_w == 0)
136 return hscale;
137
138 if (hscale < min_hscale || hscale > max_hscale)
139 return -ERANGE;
140
141 return hscale;
142}
143EXPORT_SYMBOL(drm_rect_calc_hscale);
144
145/**
146 * drm_rect_calc_vscale - calculate the vertical scaling factor
147 * @src: source window rectangle
148 * @dst: destination window rectangle
149 * @min_vscale: minimum allowed vertical scaling factor
150 * @max_vscale: maximum allowed vertical scaling factor
151 *
152 * Calculate the vertical scaling factor as
153 * (@src height) / (@dst height).
154 *
155 * RETURNS:
156 * The vertical scaling factor, or errno of out of limits.
157 */
158int drm_rect_calc_vscale(const struct drm_rect *src,
159 const struct drm_rect *dst,
160 int min_vscale, int max_vscale)
161{
162 int src_h = drm_rect_height(src);
163 int dst_h = drm_rect_height(dst);
164 int vscale = drm_calc_scale(src_h, dst_h);
165
166 if (vscale < 0 || dst_h == 0)
167 return vscale;
168
169 if (vscale < min_vscale || vscale > max_vscale)
170 return -ERANGE;
171
172 return vscale;
173}
174EXPORT_SYMBOL(drm_rect_calc_vscale);
175
176/**
177 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor
178 * @src: source window rectangle
179 * @dst: destination window rectangle
180 * @min_hscale: minimum allowed horizontal scaling factor
181 * @max_hscale: maximum allowed horizontal scaling factor
182 *
183 * Calculate the horizontal scaling factor as
184 * (@src width) / (@dst width).
185 *
186 * If the calculated scaling factor is below @min_vscale,
187 * decrease the height of rectangle @dst to compensate.
188 *
189 * If the calculated scaling factor is above @max_vscale,
190 * decrease the height of rectangle @src to compensate.
191 *
192 * RETURNS:
193 * The horizontal scaling factor.
194 */
195int drm_rect_calc_hscale_relaxed(struct drm_rect *src,
196 struct drm_rect *dst,
197 int min_hscale, int max_hscale)
198{
199 int src_w = drm_rect_width(src);
200 int dst_w = drm_rect_width(dst);
201 int hscale = drm_calc_scale(src_w, dst_w);
202
203 if (hscale < 0 || dst_w == 0)
204 return hscale;
205
206 if (hscale < min_hscale) {
207 int max_dst_w = src_w / min_hscale;
208
209 drm_rect_adjust_size(dst, max_dst_w - dst_w, 0);
210
211 return min_hscale;
212 }
213
214 if (hscale > max_hscale) {
215 int max_src_w = dst_w * max_hscale;
216
217 drm_rect_adjust_size(src, max_src_w - src_w, 0);
218
219 return max_hscale;
220 }
221
222 return hscale;
223}
224EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed);
225
226/**
227 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor
228 * @src: source window rectangle
229 * @dst: destination window rectangle
230 * @min_vscale: minimum allowed vertical scaling factor
231 * @max_vscale: maximum allowed vertical scaling factor
232 *
233 * Calculate the vertical scaling factor as
234 * (@src height) / (@dst height).
235 *
236 * If the calculated scaling factor is below @min_vscale,
237 * decrease the height of rectangle @dst to compensate.
238 *
239 * If the calculated scaling factor is above @max_vscale,
240 * decrease the height of rectangle @src to compensate.
241 *
242 * RETURNS:
243 * The vertical scaling factor.
244 */
245int drm_rect_calc_vscale_relaxed(struct drm_rect *src,
246 struct drm_rect *dst,
247 int min_vscale, int max_vscale)
248{
249 int src_h = drm_rect_height(src);
250 int dst_h = drm_rect_height(dst);
251 int vscale = drm_calc_scale(src_h, dst_h);
252
253 if (vscale < 0 || dst_h == 0)
254 return vscale;
255
256 if (vscale < min_vscale) {
257 int max_dst_h = src_h / min_vscale;
258
259 drm_rect_adjust_size(dst, 0, max_dst_h - dst_h);
260
261 return min_vscale;
262 }
263
264 if (vscale > max_vscale) {
265 int max_src_h = dst_h * max_vscale;
266
267 drm_rect_adjust_size(src, 0, max_src_h - src_h);
268
269 return max_vscale;
270 }
271
272 return vscale;
273}
274EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed);
275
276/**
277 * drm_rect_debug_print - print the rectangle information
278 * @prefix: prefix string
279 * @r: rectangle to print
280 * @fixed_point: rectangle is in 16.16 fixed point format
281 */
282void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point)
283{
284 int w = drm_rect_width(r);
285 int h = drm_rect_height(r);
286
287 if (fixed_point)
288 DRM_DEBUG_KMS("%s%d.%06ux%d.%06u%+d.%06u%+d.%06u\n", prefix,
289 w >> 16, ((w & 0xffff) * 15625) >> 10,
290 h >> 16, ((h & 0xffff) * 15625) >> 10,
291 r->x1 >> 16, ((r->x1 & 0xffff) * 15625) >> 10,
292 r->y1 >> 16, ((r->y1 & 0xffff) * 15625) >> 10);
293 else
294 DRM_DEBUG_KMS("%s%dx%d%+d%+d\n", prefix, w, h, r->x1, r->y1);
295}
296EXPORT_SYMBOL(drm_rect_debug_print);
297
298/**
299 * drm_rect_rotate - Rotate the rectangle
300 * @r: rectangle to be rotated
301 * @width: Width of the coordinate space
302 * @height: Height of the coordinate space
303 * @rotation: Transformation to be applied
304 *
305 * Apply @rotation to the coordinates of rectangle @r.
306 *
307 * @width and @height combined with @rotation define
308 * the location of the new origin.
309 *
310 * @width correcsponds to the horizontal and @height
311 * to the vertical axis of the untransformed coordinate
312 * space.
313 */
314void drm_rect_rotate(struct drm_rect *r,
315 int width, int height,
316 unsigned int rotation)
317{
318 struct drm_rect tmp;
319
320 if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
321 tmp = *r;
322
323 if (rotation & BIT(DRM_REFLECT_X)) {
324 r->x1 = width - tmp.x2;
325 r->x2 = width - tmp.x1;
326 }
327
328 if (rotation & BIT(DRM_REFLECT_Y)) {
329 r->y1 = height - tmp.y2;
330 r->y2 = height - tmp.y1;
331 }
332 }
333
334 switch (rotation & DRM_ROTATE_MASK) {
335 case BIT(DRM_ROTATE_0):
336 break;
337 case BIT(DRM_ROTATE_90):
338 tmp = *r;
339 r->x1 = tmp.y1;
340 r->x2 = tmp.y2;
341 r->y1 = width - tmp.x2;
342 r->y2 = width - tmp.x1;
343 break;
344 case BIT(DRM_ROTATE_180):
345 tmp = *r;
346 r->x1 = width - tmp.x2;
347 r->x2 = width - tmp.x1;
348 r->y1 = height - tmp.y2;
349 r->y2 = height - tmp.y1;
350 break;
351 case BIT(DRM_ROTATE_270):
352 tmp = *r;
353 r->x1 = height - tmp.y2;
354 r->x2 = height - tmp.y1;
355 r->y1 = tmp.x1;
356 r->y2 = tmp.x2;
357 break;
358 default:
359 break;
360 }
361}
362EXPORT_SYMBOL(drm_rect_rotate);
363
364/**
365 * drm_rect_rotate_inv - Inverse rotate the rectangle
366 * @r: rectangle to be rotated
367 * @width: Width of the coordinate space
368 * @height: Height of the coordinate space
369 * @rotation: Transformation whose inverse is to be applied
370 *
371 * Apply the inverse of @rotation to the coordinates
372 * of rectangle @r.
373 *
374 * @width and @height combined with @rotation define
375 * the location of the new origin.
376 *
377 * @width correcsponds to the horizontal and @height
378 * to the vertical axis of the original untransformed
379 * coordinate space, so that you never have to flip
380 * them when doing a rotatation and its inverse.
381 * That is, if you do:
382 *
383 * drm_rotate(&r, width, height, rotation);
384 * drm_rotate_inv(&r, width, height, rotation);
385 *
386 * you will always get back the original rectangle.
387 */
388void drm_rect_rotate_inv(struct drm_rect *r,
389 int width, int height,
390 unsigned int rotation)
391{
392 struct drm_rect tmp;
393
394 switch (rotation & DRM_ROTATE_MASK) {
395 case BIT(DRM_ROTATE_0):
396 break;
397 case BIT(DRM_ROTATE_90):
398 tmp = *r;
399 r->x1 = width - tmp.y2;
400 r->x2 = width - tmp.y1;
401 r->y1 = tmp.x1;
402 r->y2 = tmp.x2;
403 break;
404 case BIT(DRM_ROTATE_180):
405 tmp = *r;
406 r->x1 = width - tmp.x2;
407 r->x2 = width - tmp.x1;
408 r->y1 = height - tmp.y2;
409 r->y2 = height - tmp.y1;
410 break;
411 case BIT(DRM_ROTATE_270):
412 tmp = *r;
413 r->x1 = tmp.y1;
414 r->x2 = tmp.y2;
415 r->y1 = height - tmp.x2;
416 r->y2 = height - tmp.x1;
417 break;
418 default:
419 break;
420 }
421
422 if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
423 tmp = *r;
424
425 if (rotation & BIT(DRM_REFLECT_X)) {
426 r->x1 = width - tmp.x2;
427 r->x2 = width - tmp.x1;
428 }
429
430 if (rotation & BIT(DRM_REFLECT_Y)) {
431 r->y1 = height - tmp.y2;
432 r->y2 = height - tmp.y1;
433 }
434 }
435}
436EXPORT_SYMBOL(drm_rect_rotate_inv);
1/*
2 * Copyright (C) 2011-2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24#include <linux/errno.h>
25#include <linux/export.h>
26#include <linux/kernel.h>
27
28#include <drm/drm_mode.h>
29#include <drm/drm_print.h>
30#include <drm/drm_rect.h>
31
32/**
33 * drm_rect_intersect - intersect two rectangles
34 * @r1: first rectangle
35 * @r2: second rectangle
36 *
37 * Calculate the intersection of rectangles @r1 and @r2.
38 * @r1 will be overwritten with the intersection.
39 *
40 * RETURNS:
41 * %true if rectangle @r1 is still visible after the operation,
42 * %false otherwise.
43 */
44bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
45{
46 r1->x1 = max(r1->x1, r2->x1);
47 r1->y1 = max(r1->y1, r2->y1);
48 r1->x2 = min(r1->x2, r2->x2);
49 r1->y2 = min(r1->y2, r2->y2);
50
51 return drm_rect_visible(r1);
52}
53EXPORT_SYMBOL(drm_rect_intersect);
54
55static u32 clip_scaled(u32 src, u32 dst, u32 clip)
56{
57 u64 tmp = mul_u32_u32(src, dst - clip);
58
59 /*
60 * Round toward 1.0 when clipping so that we don't accidentally
61 * change upscaling to downscaling or vice versa.
62 */
63 if (src < (dst << 16))
64 return DIV_ROUND_UP_ULL(tmp, dst);
65 else
66 return DIV_ROUND_DOWN_ULL(tmp, dst);
67}
68
69/**
70 * drm_rect_clip_scaled - perform a scaled clip operation
71 * @src: source window rectangle
72 * @dst: destination window rectangle
73 * @clip: clip rectangle
74 *
75 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
76 * same amounts multiplied by @hscale and @vscale.
77 *
78 * RETURNS:
79 * %true if rectangle @dst is still visible after being clipped,
80 * %false otherwise
81 */
82bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
83 const struct drm_rect *clip)
84{
85 int diff;
86
87 diff = clip->x1 - dst->x1;
88 if (diff > 0) {
89 u32 new_src_w = clip_scaled(drm_rect_width(src),
90 drm_rect_width(dst), diff);
91
92 src->x1 = clamp_t(int64_t, src->x2 - new_src_w, INT_MIN, INT_MAX);
93 dst->x1 = clip->x1;
94 }
95 diff = clip->y1 - dst->y1;
96 if (diff > 0) {
97 u32 new_src_h = clip_scaled(drm_rect_height(src),
98 drm_rect_height(dst), diff);
99
100 src->y1 = clamp_t(int64_t, src->y2 - new_src_h, INT_MIN, INT_MAX);
101 dst->y1 = clip->y1;
102 }
103 diff = dst->x2 - clip->x2;
104 if (diff > 0) {
105 u32 new_src_w = clip_scaled(drm_rect_width(src),
106 drm_rect_width(dst), diff);
107
108 src->x2 = clamp_t(int64_t, src->x1 + new_src_w, INT_MIN, INT_MAX);
109 dst->x2 = clip->x2;
110 }
111 diff = dst->y2 - clip->y2;
112 if (diff > 0) {
113 u32 new_src_h = clip_scaled(drm_rect_height(src),
114 drm_rect_height(dst), diff);
115
116 src->y2 = clamp_t(int64_t, src->y1 + new_src_h, INT_MIN, INT_MAX);
117 dst->y2 = clip->y2;
118 }
119
120 return drm_rect_visible(dst);
121}
122EXPORT_SYMBOL(drm_rect_clip_scaled);
123
124static int drm_calc_scale(int src, int dst)
125{
126 int scale = 0;
127
128 if (WARN_ON(src < 0 || dst < 0))
129 return -EINVAL;
130
131 if (dst == 0)
132 return 0;
133
134 if (src > (dst << 16))
135 return DIV_ROUND_UP(src, dst);
136 else
137 scale = src / dst;
138
139 return scale;
140}
141
142/**
143 * drm_rect_calc_hscale - calculate the horizontal scaling factor
144 * @src: source window rectangle
145 * @dst: destination window rectangle
146 * @min_hscale: minimum allowed horizontal scaling factor
147 * @max_hscale: maximum allowed horizontal scaling factor
148 *
149 * Calculate the horizontal scaling factor as
150 * (@src width) / (@dst width).
151 *
152 * If the scale is below 1 << 16, round down. If the scale is above
153 * 1 << 16, round up. This will calculate the scale with the most
154 * pessimistic limit calculation.
155 *
156 * RETURNS:
157 * The horizontal scaling factor, or errno of out of limits.
158 */
159int drm_rect_calc_hscale(const struct drm_rect *src,
160 const struct drm_rect *dst,
161 int min_hscale, int max_hscale)
162{
163 int src_w = drm_rect_width(src);
164 int dst_w = drm_rect_width(dst);
165 int hscale = drm_calc_scale(src_w, dst_w);
166
167 if (hscale < 0 || dst_w == 0)
168 return hscale;
169
170 if (hscale < min_hscale || hscale > max_hscale)
171 return -ERANGE;
172
173 return hscale;
174}
175EXPORT_SYMBOL(drm_rect_calc_hscale);
176
177/**
178 * drm_rect_calc_vscale - calculate the vertical scaling factor
179 * @src: source window rectangle
180 * @dst: destination window rectangle
181 * @min_vscale: minimum allowed vertical scaling factor
182 * @max_vscale: maximum allowed vertical scaling factor
183 *
184 * Calculate the vertical scaling factor as
185 * (@src height) / (@dst height).
186 *
187 * If the scale is below 1 << 16, round down. If the scale is above
188 * 1 << 16, round up. This will calculate the scale with the most
189 * pessimistic limit calculation.
190 *
191 * RETURNS:
192 * The vertical scaling factor, or errno of out of limits.
193 */
194int drm_rect_calc_vscale(const struct drm_rect *src,
195 const struct drm_rect *dst,
196 int min_vscale, int max_vscale)
197{
198 int src_h = drm_rect_height(src);
199 int dst_h = drm_rect_height(dst);
200 int vscale = drm_calc_scale(src_h, dst_h);
201
202 if (vscale < 0 || dst_h == 0)
203 return vscale;
204
205 if (vscale < min_vscale || vscale > max_vscale)
206 return -ERANGE;
207
208 return vscale;
209}
210EXPORT_SYMBOL(drm_rect_calc_vscale);
211
212/**
213 * drm_rect_debug_print - print the rectangle information
214 * @prefix: prefix string
215 * @r: rectangle to print
216 * @fixed_point: rectangle is in 16.16 fixed point format
217 */
218void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point)
219{
220 if (fixed_point)
221 DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT "\n", prefix, DRM_RECT_FP_ARG(r));
222 else
223 DRM_DEBUG_KMS("%s" DRM_RECT_FMT "\n", prefix, DRM_RECT_ARG(r));
224}
225EXPORT_SYMBOL(drm_rect_debug_print);
226
227/**
228 * drm_rect_rotate - Rotate the rectangle
229 * @r: rectangle to be rotated
230 * @width: Width of the coordinate space
231 * @height: Height of the coordinate space
232 * @rotation: Transformation to be applied
233 *
234 * Apply @rotation to the coordinates of rectangle @r.
235 *
236 * @width and @height combined with @rotation define
237 * the location of the new origin.
238 *
239 * @width correcsponds to the horizontal and @height
240 * to the vertical axis of the untransformed coordinate
241 * space.
242 */
243void drm_rect_rotate(struct drm_rect *r,
244 int width, int height,
245 unsigned int rotation)
246{
247 struct drm_rect tmp;
248
249 if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
250 tmp = *r;
251
252 if (rotation & DRM_MODE_REFLECT_X) {
253 r->x1 = width - tmp.x2;
254 r->x2 = width - tmp.x1;
255 }
256
257 if (rotation & DRM_MODE_REFLECT_Y) {
258 r->y1 = height - tmp.y2;
259 r->y2 = height - tmp.y1;
260 }
261 }
262
263 switch (rotation & DRM_MODE_ROTATE_MASK) {
264 case DRM_MODE_ROTATE_0:
265 break;
266 case DRM_MODE_ROTATE_90:
267 tmp = *r;
268 r->x1 = tmp.y1;
269 r->x2 = tmp.y2;
270 r->y1 = width - tmp.x2;
271 r->y2 = width - tmp.x1;
272 break;
273 case DRM_MODE_ROTATE_180:
274 tmp = *r;
275 r->x1 = width - tmp.x2;
276 r->x2 = width - tmp.x1;
277 r->y1 = height - tmp.y2;
278 r->y2 = height - tmp.y1;
279 break;
280 case DRM_MODE_ROTATE_270:
281 tmp = *r;
282 r->x1 = height - tmp.y2;
283 r->x2 = height - tmp.y1;
284 r->y1 = tmp.x1;
285 r->y2 = tmp.x2;
286 break;
287 default:
288 break;
289 }
290}
291EXPORT_SYMBOL(drm_rect_rotate);
292
293/**
294 * drm_rect_rotate_inv - Inverse rotate the rectangle
295 * @r: rectangle to be rotated
296 * @width: Width of the coordinate space
297 * @height: Height of the coordinate space
298 * @rotation: Transformation whose inverse is to be applied
299 *
300 * Apply the inverse of @rotation to the coordinates
301 * of rectangle @r.
302 *
303 * @width and @height combined with @rotation define
304 * the location of the new origin.
305 *
306 * @width correcsponds to the horizontal and @height
307 * to the vertical axis of the original untransformed
308 * coordinate space, so that you never have to flip
309 * them when doing a rotatation and its inverse.
310 * That is, if you do ::
311 *
312 * drm_rect_rotate(&r, width, height, rotation);
313 * drm_rect_rotate_inv(&r, width, height, rotation);
314 *
315 * you will always get back the original rectangle.
316 */
317void drm_rect_rotate_inv(struct drm_rect *r,
318 int width, int height,
319 unsigned int rotation)
320{
321 struct drm_rect tmp;
322
323 switch (rotation & DRM_MODE_ROTATE_MASK) {
324 case DRM_MODE_ROTATE_0:
325 break;
326 case DRM_MODE_ROTATE_90:
327 tmp = *r;
328 r->x1 = width - tmp.y2;
329 r->x2 = width - tmp.y1;
330 r->y1 = tmp.x1;
331 r->y2 = tmp.x2;
332 break;
333 case DRM_MODE_ROTATE_180:
334 tmp = *r;
335 r->x1 = width - tmp.x2;
336 r->x2 = width - tmp.x1;
337 r->y1 = height - tmp.y2;
338 r->y2 = height - tmp.y1;
339 break;
340 case DRM_MODE_ROTATE_270:
341 tmp = *r;
342 r->x1 = tmp.y1;
343 r->x2 = tmp.y2;
344 r->y1 = height - tmp.x2;
345 r->y2 = height - tmp.x1;
346 break;
347 default:
348 break;
349 }
350
351 if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
352 tmp = *r;
353
354 if (rotation & DRM_MODE_REFLECT_X) {
355 r->x1 = width - tmp.x2;
356 r->x2 = width - tmp.x1;
357 }
358
359 if (rotation & DRM_MODE_REFLECT_Y) {
360 r->y1 = height - tmp.y2;
361 r->y2 = height - tmp.y1;
362 }
363 }
364}
365EXPORT_SYMBOL(drm_rect_rotate_inv);