Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright (C) 2011-2013 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 21 * SOFTWARE.
 22 */
 23
 24#include <linux/errno.h>
 25#include <linux/export.h>
 26#include <linux/kernel.h>
 27#include <drm/drmP.h>
 
 
 28#include <drm/drm_rect.h>
 29
 30/**
 31 * drm_rect_intersect - intersect two rectangles
 32 * @r1: first rectangle
 33 * @r2: second rectangle
 34 *
 35 * Calculate the intersection of rectangles @r1 and @r2.
 36 * @r1 will be overwritten with the intersection.
 37 *
 38 * RETURNS:
 39 * %true if rectangle @r1 is still visible after the operation,
 40 * %false otherwise.
 41 */
 42bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
 43{
 44	r1->x1 = max(r1->x1, r2->x1);
 45	r1->y1 = max(r1->y1, r2->y1);
 46	r1->x2 = min(r1->x2, r2->x2);
 47	r1->y2 = min(r1->y2, r2->y2);
 48
 49	return drm_rect_visible(r1);
 50}
 51EXPORT_SYMBOL(drm_rect_intersect);
 52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53/**
 54 * drm_rect_clip_scaled - perform a scaled clip operation
 55 * @src: source window rectangle
 56 * @dst: destination window rectangle
 57 * @clip: clip rectangle
 58 * @hscale: horizontal scaling factor
 59 * @vscale: vertical scaling factor
 60 *
 61 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
 62 * same amounts multiplied by @hscale and @vscale.
 
 63 *
 64 * RETURNS:
 65 * %true if rectangle @dst is still visible after being clipped,
 66 * %false otherwise
 67 */
 68bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
 69			  const struct drm_rect *clip,
 70			  int hscale, int vscale)
 71{
 72	int diff;
 73
 74	diff = clip->x1 - dst->x1;
 75	if (diff > 0) {
 76		int64_t tmp = src->x1 + (int64_t) diff * hscale;
 77		src->x1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
 
 
 
 78	}
 79	diff = clip->y1 - dst->y1;
 80	if (diff > 0) {
 81		int64_t tmp = src->y1 + (int64_t) diff * vscale;
 82		src->y1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
 
 
 
 83	}
 84	diff = dst->x2 - clip->x2;
 85	if (diff > 0) {
 86		int64_t tmp = src->x2 - (int64_t) diff * hscale;
 87		src->x2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
 
 
 
 88	}
 89	diff = dst->y2 - clip->y2;
 90	if (diff > 0) {
 91		int64_t tmp = src->y2 - (int64_t) diff * vscale;
 92		src->y2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
 
 
 
 93	}
 94
 95	return drm_rect_intersect(dst, clip);
 96}
 97EXPORT_SYMBOL(drm_rect_clip_scaled);
 98
 99static int drm_calc_scale(int src, int dst)
100{
101	int scale = 0;
102
103	if (src < 0 || dst < 0)
104		return -EINVAL;
105
106	if (dst == 0)
107		return 0;
108
109	scale = src / dst;
 
 
 
110
111	return scale;
112}
113
114/**
115 * drm_rect_calc_hscale - calculate the horizontal scaling factor
116 * @src: source window rectangle
117 * @dst: destination window rectangle
118 * @min_hscale: minimum allowed horizontal scaling factor
119 * @max_hscale: maximum allowed horizontal scaling factor
120 *
121 * Calculate the horizontal scaling factor as
122 * (@src width) / (@dst width).
123 *
 
 
 
 
124 * RETURNS:
125 * The horizontal scaling factor, or errno of out of limits.
126 */
127int drm_rect_calc_hscale(const struct drm_rect *src,
128			 const struct drm_rect *dst,
129			 int min_hscale, int max_hscale)
130{
131	int src_w = drm_rect_width(src);
132	int dst_w = drm_rect_width(dst);
133	int hscale = drm_calc_scale(src_w, dst_w);
134
135	if (hscale < 0 || dst_w == 0)
136		return hscale;
137
138	if (hscale < min_hscale || hscale > max_hscale)
139		return -ERANGE;
140
141	return hscale;
142}
143EXPORT_SYMBOL(drm_rect_calc_hscale);
144
145/**
146 * drm_rect_calc_vscale - calculate the vertical scaling factor
147 * @src: source window rectangle
148 * @dst: destination window rectangle
149 * @min_vscale: minimum allowed vertical scaling factor
150 * @max_vscale: maximum allowed vertical scaling factor
151 *
152 * Calculate the vertical scaling factor as
153 * (@src height) / (@dst height).
154 *
 
 
 
 
155 * RETURNS:
156 * The vertical scaling factor, or errno of out of limits.
157 */
158int drm_rect_calc_vscale(const struct drm_rect *src,
159			 const struct drm_rect *dst,
160			 int min_vscale, int max_vscale)
161{
162	int src_h = drm_rect_height(src);
163	int dst_h = drm_rect_height(dst);
164	int vscale = drm_calc_scale(src_h, dst_h);
165
166	if (vscale < 0 || dst_h == 0)
167		return vscale;
168
169	if (vscale < min_vscale || vscale > max_vscale)
170		return -ERANGE;
171
172	return vscale;
173}
174EXPORT_SYMBOL(drm_rect_calc_vscale);
175
176/**
177 * drm_calc_hscale_relaxed - calculate the horizontal scaling factor
178 * @src: source window rectangle
179 * @dst: destination window rectangle
180 * @min_hscale: minimum allowed horizontal scaling factor
181 * @max_hscale: maximum allowed horizontal scaling factor
182 *
183 * Calculate the horizontal scaling factor as
184 * (@src width) / (@dst width).
185 *
186 * If the calculated scaling factor is below @min_vscale,
187 * decrease the height of rectangle @dst to compensate.
188 *
189 * If the calculated scaling factor is above @max_vscale,
190 * decrease the height of rectangle @src to compensate.
191 *
192 * RETURNS:
193 * The horizontal scaling factor.
194 */
195int drm_rect_calc_hscale_relaxed(struct drm_rect *src,
196				 struct drm_rect *dst,
197				 int min_hscale, int max_hscale)
198{
199	int src_w = drm_rect_width(src);
200	int dst_w = drm_rect_width(dst);
201	int hscale = drm_calc_scale(src_w, dst_w);
202
203	if (hscale < 0 || dst_w == 0)
204		return hscale;
205
206	if (hscale < min_hscale) {
207		int max_dst_w = src_w / min_hscale;
208
209		drm_rect_adjust_size(dst, max_dst_w - dst_w, 0);
210
211		return min_hscale;
212	}
213
214	if (hscale > max_hscale) {
215		int max_src_w = dst_w * max_hscale;
216
217		drm_rect_adjust_size(src, max_src_w - src_w, 0);
218
219		return max_hscale;
220	}
221
222	return hscale;
223}
224EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed);
225
226/**
227 * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor
228 * @src: source window rectangle
229 * @dst: destination window rectangle
230 * @min_vscale: minimum allowed vertical scaling factor
231 * @max_vscale: maximum allowed vertical scaling factor
232 *
233 * Calculate the vertical scaling factor as
234 * (@src height) / (@dst height).
235 *
236 * If the calculated scaling factor is below @min_vscale,
237 * decrease the height of rectangle @dst to compensate.
238 *
239 * If the calculated scaling factor is above @max_vscale,
240 * decrease the height of rectangle @src to compensate.
241 *
242 * RETURNS:
243 * The vertical scaling factor.
244 */
245int drm_rect_calc_vscale_relaxed(struct drm_rect *src,
246				 struct drm_rect *dst,
247				 int min_vscale, int max_vscale)
248{
249	int src_h = drm_rect_height(src);
250	int dst_h = drm_rect_height(dst);
251	int vscale = drm_calc_scale(src_h, dst_h);
252
253	if (vscale < 0 || dst_h == 0)
254		return vscale;
255
256	if (vscale < min_vscale) {
257		int max_dst_h = src_h / min_vscale;
258
259		drm_rect_adjust_size(dst, 0, max_dst_h - dst_h);
260
261		return min_vscale;
262	}
263
264	if (vscale > max_vscale) {
265		int max_src_h = dst_h * max_vscale;
266
267		drm_rect_adjust_size(src, 0, max_src_h - src_h);
268
269		return max_vscale;
270	}
271
272	return vscale;
273}
274EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed);
275
276/**
277 * drm_rect_debug_print - print the rectangle information
278 * @prefix: prefix string
279 * @r: rectangle to print
280 * @fixed_point: rectangle is in 16.16 fixed point format
281 */
282void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point)
283{
284	int w = drm_rect_width(r);
285	int h = drm_rect_height(r);
286
287	if (fixed_point)
288		DRM_DEBUG_KMS("%s%d.%06ux%d.%06u%+d.%06u%+d.%06u\n", prefix,
289			      w >> 16, ((w & 0xffff) * 15625) >> 10,
290			      h >> 16, ((h & 0xffff) * 15625) >> 10,
291			      r->x1 >> 16, ((r->x1 & 0xffff) * 15625) >> 10,
292			      r->y1 >> 16, ((r->y1 & 0xffff) * 15625) >> 10);
293	else
294		DRM_DEBUG_KMS("%s%dx%d%+d%+d\n", prefix, w, h, r->x1, r->y1);
295}
296EXPORT_SYMBOL(drm_rect_debug_print);
297
298/**
299 * drm_rect_rotate - Rotate the rectangle
300 * @r: rectangle to be rotated
301 * @width: Width of the coordinate space
302 * @height: Height of the coordinate space
303 * @rotation: Transformation to be applied
304 *
305 * Apply @rotation to the coordinates of rectangle @r.
306 *
307 * @width and @height combined with @rotation define
308 * the location of the new origin.
309 *
310 * @width correcsponds to the horizontal and @height
311 * to the vertical axis of the untransformed coordinate
312 * space.
313 */
314void drm_rect_rotate(struct drm_rect *r,
315		     int width, int height,
316		     unsigned int rotation)
317{
318	struct drm_rect tmp;
319
320	if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
321		tmp = *r;
322
323		if (rotation & BIT(DRM_REFLECT_X)) {
324			r->x1 = width - tmp.x2;
325			r->x2 = width - tmp.x1;
326		}
327
328		if (rotation & BIT(DRM_REFLECT_Y)) {
329			r->y1 = height - tmp.y2;
330			r->y2 = height - tmp.y1;
331		}
332	}
333
334	switch (rotation & DRM_ROTATE_MASK) {
335	case BIT(DRM_ROTATE_0):
336		break;
337	case BIT(DRM_ROTATE_90):
338		tmp = *r;
339		r->x1 = tmp.y1;
340		r->x2 = tmp.y2;
341		r->y1 = width - tmp.x2;
342		r->y2 = width - tmp.x1;
343		break;
344	case BIT(DRM_ROTATE_180):
345		tmp = *r;
346		r->x1 = width - tmp.x2;
347		r->x2 = width - tmp.x1;
348		r->y1 = height - tmp.y2;
349		r->y2 = height - tmp.y1;
350		break;
351	case BIT(DRM_ROTATE_270):
352		tmp = *r;
353		r->x1 = height - tmp.y2;
354		r->x2 = height - tmp.y1;
355		r->y1 = tmp.x1;
356		r->y2 = tmp.x2;
357		break;
358	default:
359		break;
360	}
361}
362EXPORT_SYMBOL(drm_rect_rotate);
363
364/**
365 * drm_rect_rotate_inv - Inverse rotate the rectangle
366 * @r: rectangle to be rotated
367 * @width: Width of the coordinate space
368 * @height: Height of the coordinate space
369 * @rotation: Transformation whose inverse is to be applied
370 *
371 * Apply the inverse of @rotation to the coordinates
372 * of rectangle @r.
373 *
374 * @width and @height combined with @rotation define
375 * the location of the new origin.
376 *
377 * @width correcsponds to the horizontal and @height
378 * to the vertical axis of the original untransformed
379 * coordinate space, so that you never have to flip
380 * them when doing a rotatation and its inverse.
381 * That is, if you do:
382 *
383 * drm_rotate(&r, width, height, rotation);
384 * drm_rotate_inv(&r, width, height, rotation);
385 *
386 * you will always get back the original rectangle.
387 */
388void drm_rect_rotate_inv(struct drm_rect *r,
389			 int width, int height,
390			 unsigned int rotation)
391{
392	struct drm_rect tmp;
393
394	switch (rotation & DRM_ROTATE_MASK) {
395	case BIT(DRM_ROTATE_0):
396		break;
397	case BIT(DRM_ROTATE_90):
398		tmp = *r;
399		r->x1 = width - tmp.y2;
400		r->x2 = width - tmp.y1;
401		r->y1 = tmp.x1;
402		r->y2 = tmp.x2;
403		break;
404	case BIT(DRM_ROTATE_180):
405		tmp = *r;
406		r->x1 = width - tmp.x2;
407		r->x2 = width - tmp.x1;
408		r->y1 = height - tmp.y2;
409		r->y2 = height - tmp.y1;
410		break;
411	case BIT(DRM_ROTATE_270):
412		tmp = *r;
413		r->x1 = tmp.y1;
414		r->x2 = tmp.y2;
415		r->y1 = height - tmp.x2;
416		r->y2 = height - tmp.x1;
417		break;
418	default:
419		break;
420	}
421
422	if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
423		tmp = *r;
424
425		if (rotation & BIT(DRM_REFLECT_X)) {
426			r->x1 = width - tmp.x2;
427			r->x2 = width - tmp.x1;
428		}
429
430		if (rotation & BIT(DRM_REFLECT_Y)) {
431			r->y1 = height - tmp.y2;
432			r->y2 = height - tmp.y1;
433		}
434	}
435}
436EXPORT_SYMBOL(drm_rect_rotate_inv);
v6.13.7
  1/*
  2 * Copyright (C) 2011-2013 Intel Corporation
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice (including the next
 12 * paragraph) shall be included in all copies or substantial portions of the
 13 * Software.
 14 *
 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 21 * SOFTWARE.
 22 */
 23
 24#include <linux/errno.h>
 25#include <linux/export.h>
 26#include <linux/kernel.h>
 27
 28#include <drm/drm_mode.h>
 29#include <drm/drm_print.h>
 30#include <drm/drm_rect.h>
 31
 32/**
 33 * drm_rect_intersect - intersect two rectangles
 34 * @r1: first rectangle
 35 * @r2: second rectangle
 36 *
 37 * Calculate the intersection of rectangles @r1 and @r2.
 38 * @r1 will be overwritten with the intersection.
 39 *
 40 * RETURNS:
 41 * %true if rectangle @r1 is still visible after the operation,
 42 * %false otherwise.
 43 */
 44bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
 45{
 46	r1->x1 = max(r1->x1, r2->x1);
 47	r1->y1 = max(r1->y1, r2->y1);
 48	r1->x2 = min(r1->x2, r2->x2);
 49	r1->y2 = min(r1->y2, r2->y2);
 50
 51	return drm_rect_visible(r1);
 52}
 53EXPORT_SYMBOL(drm_rect_intersect);
 54
 55static u32 clip_scaled(int src, int dst, int *clip)
 56{
 57	u64 tmp;
 58
 59	if (dst == 0)
 60		return 0;
 61
 62	/* Only clip what we have. Keeps the result bounded. */
 63	*clip = min(*clip, dst);
 64
 65	tmp = mul_u32_u32(src, dst - *clip);
 66
 67	/*
 68	 * Round toward 1.0 when clipping so that we don't accidentally
 69	 * change upscaling to downscaling or vice versa.
 70	 */
 71	if (src < (dst << 16))
 72		return DIV_ROUND_UP_ULL(tmp, dst);
 73	else
 74		return DIV_ROUND_DOWN_ULL(tmp, dst);
 75}
 76
 77/**
 78 * drm_rect_clip_scaled - perform a scaled clip operation
 79 * @src: source window rectangle
 80 * @dst: destination window rectangle
 81 * @clip: clip rectangle
 
 
 82 *
 83 * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by
 84 * the corresponding amounts, retaining the vertical and horizontal scaling
 85 * factors from @src to @dst.
 86 *
 87 * RETURNS:
 88 * %true if rectangle @dst is still visible after being clipped,
 89 * %false otherwise.
 90 */
 91bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
 92			  const struct drm_rect *clip)
 
 93{
 94	int diff;
 95
 96	diff = clip->x1 - dst->x1;
 97	if (diff > 0) {
 98		u32 new_src_w = clip_scaled(drm_rect_width(src),
 99					    drm_rect_width(dst), &diff);
100
101		src->x1 = src->x2 - new_src_w;
102		dst->x1 += diff;
103	}
104	diff = clip->y1 - dst->y1;
105	if (diff > 0) {
106		u32 new_src_h = clip_scaled(drm_rect_height(src),
107					    drm_rect_height(dst), &diff);
108
109		src->y1 = src->y2 - new_src_h;
110		dst->y1 += diff;
111	}
112	diff = dst->x2 - clip->x2;
113	if (diff > 0) {
114		u32 new_src_w = clip_scaled(drm_rect_width(src),
115					    drm_rect_width(dst), &diff);
116
117		src->x2 = src->x1 + new_src_w;
118		dst->x2 -= diff;
119	}
120	diff = dst->y2 - clip->y2;
121	if (diff > 0) {
122		u32 new_src_h = clip_scaled(drm_rect_height(src),
123					    drm_rect_height(dst), &diff);
124
125		src->y2 = src->y1 + new_src_h;
126		dst->y2 -= diff;
127	}
128
129	return drm_rect_visible(dst);
130}
131EXPORT_SYMBOL(drm_rect_clip_scaled);
132
133static int drm_calc_scale(int src, int dst)
134{
135	int scale = 0;
136
137	if (WARN_ON(src < 0 || dst < 0))
138		return -EINVAL;
139
140	if (dst == 0)
141		return 0;
142
143	if (src > (dst << 16))
144		return DIV_ROUND_UP(src, dst);
145	else
146		scale = src / dst;
147
148	return scale;
149}
150
151/**
152 * drm_rect_calc_hscale - calculate the horizontal scaling factor
153 * @src: source window rectangle
154 * @dst: destination window rectangle
155 * @min_hscale: minimum allowed horizontal scaling factor
156 * @max_hscale: maximum allowed horizontal scaling factor
157 *
158 * Calculate the horizontal scaling factor as
159 * (@src width) / (@dst width).
160 *
161 * If the scale is below 1 << 16, round down. If the scale is above
162 * 1 << 16, round up. This will calculate the scale with the most
163 * pessimistic limit calculation.
164 *
165 * RETURNS:
166 * The horizontal scaling factor, or errno of out of limits.
167 */
168int drm_rect_calc_hscale(const struct drm_rect *src,
169			 const struct drm_rect *dst,
170			 int min_hscale, int max_hscale)
171{
172	int src_w = drm_rect_width(src);
173	int dst_w = drm_rect_width(dst);
174	int hscale = drm_calc_scale(src_w, dst_w);
175
176	if (hscale < 0 || dst_w == 0)
177		return hscale;
178
179	if (hscale < min_hscale || hscale > max_hscale)
180		return -ERANGE;
181
182	return hscale;
183}
184EXPORT_SYMBOL(drm_rect_calc_hscale);
185
186/**
187 * drm_rect_calc_vscale - calculate the vertical scaling factor
188 * @src: source window rectangle
189 * @dst: destination window rectangle
190 * @min_vscale: minimum allowed vertical scaling factor
191 * @max_vscale: maximum allowed vertical scaling factor
192 *
193 * Calculate the vertical scaling factor as
194 * (@src height) / (@dst height).
195 *
196 * If the scale is below 1 << 16, round down. If the scale is above
197 * 1 << 16, round up. This will calculate the scale with the most
198 * pessimistic limit calculation.
199 *
200 * RETURNS:
201 * The vertical scaling factor, or errno of out of limits.
202 */
203int drm_rect_calc_vscale(const struct drm_rect *src,
204			 const struct drm_rect *dst,
205			 int min_vscale, int max_vscale)
206{
207	int src_h = drm_rect_height(src);
208	int dst_h = drm_rect_height(dst);
209	int vscale = drm_calc_scale(src_h, dst_h);
210
211	if (vscale < 0 || dst_h == 0)
212		return vscale;
213
214	if (vscale < min_vscale || vscale > max_vscale)
215		return -ERANGE;
216
217	return vscale;
218}
219EXPORT_SYMBOL(drm_rect_calc_vscale);
220
221/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222 * drm_rect_debug_print - print the rectangle information
223 * @prefix: prefix string
224 * @r: rectangle to print
225 * @fixed_point: rectangle is in 16.16 fixed point format
226 */
227void drm_rect_debug_print(const char *prefix, const struct drm_rect *r, bool fixed_point)
228{
 
 
 
229	if (fixed_point)
230		DRM_DEBUG_KMS("%s" DRM_RECT_FP_FMT "\n", prefix, DRM_RECT_FP_ARG(r));
 
 
 
 
231	else
232		DRM_DEBUG_KMS("%s" DRM_RECT_FMT "\n", prefix, DRM_RECT_ARG(r));
233}
234EXPORT_SYMBOL(drm_rect_debug_print);
235
236/**
237 * drm_rect_rotate - Rotate the rectangle
238 * @r: rectangle to be rotated
239 * @width: Width of the coordinate space
240 * @height: Height of the coordinate space
241 * @rotation: Transformation to be applied
242 *
243 * Apply @rotation to the coordinates of rectangle @r.
244 *
245 * @width and @height combined with @rotation define
246 * the location of the new origin.
247 *
248 * @width correcsponds to the horizontal and @height
249 * to the vertical axis of the untransformed coordinate
250 * space.
251 */
252void drm_rect_rotate(struct drm_rect *r,
253		     int width, int height,
254		     unsigned int rotation)
255{
256	struct drm_rect tmp;
257
258	if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
259		tmp = *r;
260
261		if (rotation & DRM_MODE_REFLECT_X) {
262			r->x1 = width - tmp.x2;
263			r->x2 = width - tmp.x1;
264		}
265
266		if (rotation & DRM_MODE_REFLECT_Y) {
267			r->y1 = height - tmp.y2;
268			r->y2 = height - tmp.y1;
269		}
270	}
271
272	switch (rotation & DRM_MODE_ROTATE_MASK) {
273	case DRM_MODE_ROTATE_0:
274		break;
275	case DRM_MODE_ROTATE_90:
276		tmp = *r;
277		r->x1 = tmp.y1;
278		r->x2 = tmp.y2;
279		r->y1 = width - tmp.x2;
280		r->y2 = width - tmp.x1;
281		break;
282	case DRM_MODE_ROTATE_180:
283		tmp = *r;
284		r->x1 = width - tmp.x2;
285		r->x2 = width - tmp.x1;
286		r->y1 = height - tmp.y2;
287		r->y2 = height - tmp.y1;
288		break;
289	case DRM_MODE_ROTATE_270:
290		tmp = *r;
291		r->x1 = height - tmp.y2;
292		r->x2 = height - tmp.y1;
293		r->y1 = tmp.x1;
294		r->y2 = tmp.x2;
295		break;
296	default:
297		break;
298	}
299}
300EXPORT_SYMBOL(drm_rect_rotate);
301
302/**
303 * drm_rect_rotate_inv - Inverse rotate the rectangle
304 * @r: rectangle to be rotated
305 * @width: Width of the coordinate space
306 * @height: Height of the coordinate space
307 * @rotation: Transformation whose inverse is to be applied
308 *
309 * Apply the inverse of @rotation to the coordinates
310 * of rectangle @r.
311 *
312 * @width and @height combined with @rotation define
313 * the location of the new origin.
314 *
315 * @width correcsponds to the horizontal and @height
316 * to the vertical axis of the original untransformed
317 * coordinate space, so that you never have to flip
318 * them when doing a rotatation and its inverse.
319 * That is, if you do ::
320 *
321 *     drm_rect_rotate(&r, width, height, rotation);
322 *     drm_rect_rotate_inv(&r, width, height, rotation);
323 *
324 * you will always get back the original rectangle.
325 */
326void drm_rect_rotate_inv(struct drm_rect *r,
327			 int width, int height,
328			 unsigned int rotation)
329{
330	struct drm_rect tmp;
331
332	switch (rotation & DRM_MODE_ROTATE_MASK) {
333	case DRM_MODE_ROTATE_0:
334		break;
335	case DRM_MODE_ROTATE_90:
336		tmp = *r;
337		r->x1 = width - tmp.y2;
338		r->x2 = width - tmp.y1;
339		r->y1 = tmp.x1;
340		r->y2 = tmp.x2;
341		break;
342	case DRM_MODE_ROTATE_180:
343		tmp = *r;
344		r->x1 = width - tmp.x2;
345		r->x2 = width - tmp.x1;
346		r->y1 = height - tmp.y2;
347		r->y2 = height - tmp.y1;
348		break;
349	case DRM_MODE_ROTATE_270:
350		tmp = *r;
351		r->x1 = tmp.y1;
352		r->x2 = tmp.y2;
353		r->y1 = height - tmp.x2;
354		r->y2 = height - tmp.x1;
355		break;
356	default:
357		break;
358	}
359
360	if (rotation & (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y)) {
361		tmp = *r;
362
363		if (rotation & DRM_MODE_REFLECT_X) {
364			r->x1 = width - tmp.x2;
365			r->x2 = width - tmp.x1;
366		}
367
368		if (rotation & DRM_MODE_REFLECT_Y) {
369			r->y1 = height - tmp.y2;
370			r->y2 = height - tmp.y1;
371		}
372	}
373}
374EXPORT_SYMBOL(drm_rect_rotate_inv);