Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* Support for MMIO probes.
  2 * Benfit many code from kprobes
  3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  4 *     2007 Alexander Eichner
  5 *     2008 Pekka Paalanen <pq@iki.fi>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/list.h>
 11#include <linux/rculist.h>
 12#include <linux/spinlock.h>
 13#include <linux/hash.h>
 14#include <linux/module.h>
 15#include <linux/kernel.h>
 16#include <linux/uaccess.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/percpu.h>
 20#include <linux/kdebug.h>
 21#include <linux/mutex.h>
 22#include <linux/io.h>
 23#include <linux/slab.h>
 24#include <asm/cacheflush.h>
 25#include <asm/tlbflush.h>
 26#include <linux/errno.h>
 27#include <asm/debugreg.h>
 28#include <linux/mmiotrace.h>
 29
 30#define KMMIO_PAGE_HASH_BITS 4
 31#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 32
 33struct kmmio_fault_page {
 34	struct list_head list;
 35	struct kmmio_fault_page *release_next;
 36	unsigned long addr; /* the requested address */
 37	pteval_t old_presence; /* page presence prior to arming */
 38	bool armed;
 39
 40	/*
 41	 * Number of times this page has been registered as a part
 42	 * of a probe. If zero, page is disarmed and this may be freed.
 43	 * Used only by writers (RCU) and post_kmmio_handler().
 44	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 45	 */
 46	int count;
 47
 48	bool scheduled_for_release;
 49};
 50
 51struct kmmio_delayed_release {
 52	struct rcu_head rcu;
 53	struct kmmio_fault_page *release_list;
 54};
 55
 56struct kmmio_context {
 57	struct kmmio_fault_page *fpage;
 58	struct kmmio_probe *probe;
 59	unsigned long saved_flags;
 60	unsigned long addr;
 61	int active;
 62};
 63
 64static DEFINE_SPINLOCK(kmmio_lock);
 65
 66/* Protected by kmmio_lock */
 67unsigned int kmmio_count;
 68
 69/* Read-protected by RCU, write-protected by kmmio_lock. */
 70static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 71static LIST_HEAD(kmmio_probes);
 72
 73static struct list_head *kmmio_page_list(unsigned long addr)
 74{
 75	unsigned int l;
 76	pte_t *pte = lookup_address(addr, &l);
 77
 78	if (!pte)
 79		return NULL;
 80	addr &= page_level_mask(l);
 81
 82	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
 83}
 84
 85/* Accessed per-cpu */
 86static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 87
 88/*
 89 * this is basically a dynamic stabbing problem:
 90 * Could use the existing prio tree code or
 91 * Possible better implementations:
 92 * The Interval Skip List: A Data Structure for Finding All Intervals That
 93 * Overlap a Point (might be simple)
 94 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 95 */
 96/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 97static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 98{
 99	struct kmmio_probe *p;
100	list_for_each_entry_rcu(p, &kmmio_probes, list) {
101		if (addr >= p->addr && addr < (p->addr + p->len))
102			return p;
103	}
104	return NULL;
105}
106
107/* You must be holding RCU read lock. */
108static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
109{
110	struct list_head *head;
111	struct kmmio_fault_page *f;
112	unsigned int l;
113	pte_t *pte = lookup_address(addr, &l);
114
115	if (!pte)
116		return NULL;
117	addr &= page_level_mask(l);
118	head = kmmio_page_list(addr);
119	list_for_each_entry_rcu(f, head, list) {
120		if (f->addr == addr)
121			return f;
122	}
123	return NULL;
124}
125
126static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
127{
 
128	pmdval_t v = pmd_val(*pmd);
129	if (clear) {
130		*old = v & _PAGE_PRESENT;
131		v &= ~_PAGE_PRESENT;
132	} else	/* presume this has been called with clear==true previously */
133		v |= *old;
134	set_pmd(pmd, __pmd(v));
 
 
135}
136
137static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
138{
139	pteval_t v = pte_val(*pte);
140	if (clear) {
141		*old = v & _PAGE_PRESENT;
142		v &= ~_PAGE_PRESENT;
143	} else	/* presume this has been called with clear==true previously */
144		v |= *old;
145	set_pte_atomic(pte, __pte(v));
 
 
146}
147
148static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
149{
150	unsigned int level;
151	pte_t *pte = lookup_address(f->addr, &level);
152
153	if (!pte) {
154		pr_err("no pte for addr 0x%08lx\n", f->addr);
155		return -1;
156	}
157
158	switch (level) {
159	case PG_LEVEL_2M:
160		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
161		break;
162	case PG_LEVEL_4K:
163		clear_pte_presence(pte, clear, &f->old_presence);
164		break;
165	default:
166		pr_err("unexpected page level 0x%x.\n", level);
167		return -1;
168	}
169
170	__flush_tlb_one(f->addr);
171	return 0;
172}
173
174/*
175 * Mark the given page as not present. Access to it will trigger a fault.
176 *
177 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
178 * protection is ignored here. RCU read lock is assumed held, so the struct
179 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
180 * that double arming the same virtual address (page) cannot occur.
181 *
182 * Double disarming on the other hand is allowed, and may occur when a fault
183 * and mmiotrace shutdown happen simultaneously.
184 */
185static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
186{
187	int ret;
188	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
189	if (f->armed) {
190		pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
191			   f->addr, f->count, !!f->old_presence);
192	}
193	ret = clear_page_presence(f, true);
194	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
195		  f->addr);
196	f->armed = true;
197	return ret;
198}
199
200/** Restore the given page to saved presence state. */
201static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
202{
203	int ret = clear_page_presence(f, false);
204	WARN_ONCE(ret < 0,
205			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
206	f->armed = false;
207}
208
209/*
210 * This is being called from do_page_fault().
211 *
212 * We may be in an interrupt or a critical section. Also prefecthing may
213 * trigger a page fault. We may be in the middle of process switch.
214 * We cannot take any locks, because we could be executing especially
215 * within a kmmio critical section.
216 *
217 * Local interrupts are disabled, so preemption cannot happen.
218 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
219 */
220/*
221 * Interrupts are disabled on entry as trap3 is an interrupt gate
222 * and they remain disabled throughout this function.
223 */
224int kmmio_handler(struct pt_regs *regs, unsigned long addr)
225{
226	struct kmmio_context *ctx;
227	struct kmmio_fault_page *faultpage;
228	int ret = 0; /* default to fault not handled */
229	unsigned long page_base = addr;
230	unsigned int l;
231	pte_t *pte = lookup_address(addr, &l);
232	if (!pte)
233		return -EINVAL;
234	page_base &= page_level_mask(l);
235
236	/*
237	 * Preemption is now disabled to prevent process switch during
238	 * single stepping. We can only handle one active kmmio trace
239	 * per cpu, so ensure that we finish it before something else
240	 * gets to run. We also hold the RCU read lock over single
241	 * stepping to avoid looking up the probe and kmmio_fault_page
242	 * again.
243	 */
244	preempt_disable();
245	rcu_read_lock();
246
247	faultpage = get_kmmio_fault_page(page_base);
248	if (!faultpage) {
249		/*
250		 * Either this page fault is not caused by kmmio, or
251		 * another CPU just pulled the kmmio probe from under
252		 * our feet. The latter case should not be possible.
253		 */
254		goto no_kmmio;
255	}
256
257	ctx = &get_cpu_var(kmmio_ctx);
258	if (ctx->active) {
259		if (page_base == ctx->addr) {
260			/*
261			 * A second fault on the same page means some other
262			 * condition needs handling by do_page_fault(), the
263			 * page really not being present is the most common.
264			 */
265			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
266				 addr, smp_processor_id());
267
268			if (!faultpage->old_presence)
269				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
270					addr, smp_processor_id());
271		} else {
272			/*
273			 * Prevent overwriting already in-flight context.
274			 * This should not happen, let's hope disarming at
275			 * least prevents a panic.
276			 */
277			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
278				 smp_processor_id(), addr);
279			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
280			disarm_kmmio_fault_page(faultpage);
281		}
282		goto no_kmmio_ctx;
283	}
284	ctx->active++;
285
286	ctx->fpage = faultpage;
287	ctx->probe = get_kmmio_probe(page_base);
288	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
289	ctx->addr = page_base;
290
291	if (ctx->probe && ctx->probe->pre_handler)
292		ctx->probe->pre_handler(ctx->probe, regs, addr);
293
294	/*
295	 * Enable single-stepping and disable interrupts for the faulting
296	 * context. Local interrupts must not get enabled during stepping.
297	 */
298	regs->flags |= X86_EFLAGS_TF;
299	regs->flags &= ~X86_EFLAGS_IF;
300
301	/* Now we set present bit in PTE and single step. */
302	disarm_kmmio_fault_page(ctx->fpage);
303
304	/*
305	 * If another cpu accesses the same page while we are stepping,
306	 * the access will not be caught. It will simply succeed and the
307	 * only downside is we lose the event. If this becomes a problem,
308	 * the user should drop to single cpu before tracing.
309	 */
310
311	put_cpu_var(kmmio_ctx);
312	return 1; /* fault handled */
313
314no_kmmio_ctx:
315	put_cpu_var(kmmio_ctx);
316no_kmmio:
317	rcu_read_unlock();
318	preempt_enable_no_resched();
319	return ret;
320}
321
322/*
323 * Interrupts are disabled on entry as trap1 is an interrupt gate
324 * and they remain disabled throughout this function.
325 * This must always get called as the pair to kmmio_handler().
326 */
327static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
328{
329	int ret = 0;
330	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
331
332	if (!ctx->active) {
333		/*
334		 * debug traps without an active context are due to either
335		 * something external causing them (f.e. using a debugger while
336		 * mmio tracing enabled), or erroneous behaviour
337		 */
338		pr_warning("unexpected debug trap on CPU %d.\n",
339			   smp_processor_id());
340		goto out;
341	}
342
343	if (ctx->probe && ctx->probe->post_handler)
344		ctx->probe->post_handler(ctx->probe, condition, regs);
345
346	/* Prevent racing against release_kmmio_fault_page(). */
347	spin_lock(&kmmio_lock);
348	if (ctx->fpage->count)
349		arm_kmmio_fault_page(ctx->fpage);
350	spin_unlock(&kmmio_lock);
351
352	regs->flags &= ~X86_EFLAGS_TF;
353	regs->flags |= ctx->saved_flags;
354
355	/* These were acquired in kmmio_handler(). */
356	ctx->active--;
357	BUG_ON(ctx->active);
358	rcu_read_unlock();
359	preempt_enable_no_resched();
360
361	/*
362	 * if somebody else is singlestepping across a probe point, flags
363	 * will have TF set, in which case, continue the remaining processing
364	 * of do_debug, as if this is not a probe hit.
365	 */
366	if (!(regs->flags & X86_EFLAGS_TF))
367		ret = 1;
368out:
369	put_cpu_var(kmmio_ctx);
370	return ret;
371}
372
373/* You must be holding kmmio_lock. */
374static int add_kmmio_fault_page(unsigned long addr)
375{
376	struct kmmio_fault_page *f;
377
378	f = get_kmmio_fault_page(addr);
379	if (f) {
380		if (!f->count)
381			arm_kmmio_fault_page(f);
382		f->count++;
383		return 0;
384	}
385
386	f = kzalloc(sizeof(*f), GFP_ATOMIC);
387	if (!f)
388		return -1;
389
390	f->count = 1;
391	f->addr = addr;
392
393	if (arm_kmmio_fault_page(f)) {
394		kfree(f);
395		return -1;
396	}
397
398	list_add_rcu(&f->list, kmmio_page_list(f->addr));
399
400	return 0;
401}
402
403/* You must be holding kmmio_lock. */
404static void release_kmmio_fault_page(unsigned long addr,
405				struct kmmio_fault_page **release_list)
406{
407	struct kmmio_fault_page *f;
408
409	f = get_kmmio_fault_page(addr);
410	if (!f)
411		return;
412
413	f->count--;
414	BUG_ON(f->count < 0);
415	if (!f->count) {
416		disarm_kmmio_fault_page(f);
417		if (!f->scheduled_for_release) {
418			f->release_next = *release_list;
419			*release_list = f;
420			f->scheduled_for_release = true;
421		}
422	}
423}
424
425/*
426 * With page-unaligned ioremaps, one or two armed pages may contain
427 * addresses from outside the intended mapping. Events for these addresses
428 * are currently silently dropped. The events may result only from programming
429 * mistakes by accessing addresses before the beginning or past the end of a
430 * mapping.
431 */
432int register_kmmio_probe(struct kmmio_probe *p)
433{
434	unsigned long flags;
435	int ret = 0;
436	unsigned long size = 0;
 
437	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
438	unsigned int l;
439	pte_t *pte;
440
441	spin_lock_irqsave(&kmmio_lock, flags);
442	if (get_kmmio_probe(p->addr)) {
443		ret = -EEXIST;
444		goto out;
445	}
446
447	pte = lookup_address(p->addr, &l);
448	if (!pte) {
449		ret = -EINVAL;
450		goto out;
451	}
452
453	kmmio_count++;
454	list_add_rcu(&p->list, &kmmio_probes);
455	while (size < size_lim) {
456		if (add_kmmio_fault_page(p->addr + size))
457			pr_err("Unable to set page fault.\n");
458		size += page_level_size(l);
459	}
460out:
461	spin_unlock_irqrestore(&kmmio_lock, flags);
462	/*
463	 * XXX: What should I do here?
464	 * Here was a call to global_flush_tlb(), but it does not exist
465	 * anymore. It seems it's not needed after all.
466	 */
467	return ret;
468}
469EXPORT_SYMBOL(register_kmmio_probe);
470
471static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
472{
473	struct kmmio_delayed_release *dr = container_of(
474						head,
475						struct kmmio_delayed_release,
476						rcu);
477	struct kmmio_fault_page *f = dr->release_list;
478	while (f) {
479		struct kmmio_fault_page *next = f->release_next;
480		BUG_ON(f->count);
481		kfree(f);
482		f = next;
483	}
484	kfree(dr);
485}
486
487static void remove_kmmio_fault_pages(struct rcu_head *head)
488{
489	struct kmmio_delayed_release *dr =
490		container_of(head, struct kmmio_delayed_release, rcu);
491	struct kmmio_fault_page *f = dr->release_list;
492	struct kmmio_fault_page **prevp = &dr->release_list;
493	unsigned long flags;
494
495	spin_lock_irqsave(&kmmio_lock, flags);
496	while (f) {
497		if (!f->count) {
498			list_del_rcu(&f->list);
499			prevp = &f->release_next;
500		} else {
501			*prevp = f->release_next;
502			f->release_next = NULL;
503			f->scheduled_for_release = false;
504		}
505		f = *prevp;
506	}
507	spin_unlock_irqrestore(&kmmio_lock, flags);
508
509	/* This is the real RCU destroy call. */
510	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
511}
512
513/*
514 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
515 * sure that the callbacks will not be called anymore. Only after that
516 * you may actually release your struct kmmio_probe.
517 *
518 * Unregistering a kmmio fault page has three steps:
519 * 1. release_kmmio_fault_page()
520 *    Disarm the page, wait a grace period to let all faults finish.
521 * 2. remove_kmmio_fault_pages()
522 *    Remove the pages from kmmio_page_table.
523 * 3. rcu_free_kmmio_fault_pages()
524 *    Actually free the kmmio_fault_page structs as with RCU.
525 */
526void unregister_kmmio_probe(struct kmmio_probe *p)
527{
528	unsigned long flags;
529	unsigned long size = 0;
 
530	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
531	struct kmmio_fault_page *release_list = NULL;
532	struct kmmio_delayed_release *drelease;
533	unsigned int l;
534	pte_t *pte;
535
536	pte = lookup_address(p->addr, &l);
537	if (!pte)
538		return;
539
540	spin_lock_irqsave(&kmmio_lock, flags);
541	while (size < size_lim) {
542		release_kmmio_fault_page(p->addr + size, &release_list);
543		size += page_level_size(l);
544	}
545	list_del_rcu(&p->list);
546	kmmio_count--;
547	spin_unlock_irqrestore(&kmmio_lock, flags);
548
549	if (!release_list)
550		return;
551
552	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
553	if (!drelease) {
554		pr_crit("leaking kmmio_fault_page objects.\n");
555		return;
556	}
557	drelease->release_list = release_list;
558
559	/*
560	 * This is not really RCU here. We have just disarmed a set of
561	 * pages so that they cannot trigger page faults anymore. However,
562	 * we cannot remove the pages from kmmio_page_table,
563	 * because a probe hit might be in flight on another CPU. The
564	 * pages are collected into a list, and they will be removed from
565	 * kmmio_page_table when it is certain that no probe hit related to
566	 * these pages can be in flight. RCU grace period sounds like a
567	 * good choice.
568	 *
569	 * If we removed the pages too early, kmmio page fault handler might
570	 * not find the respective kmmio_fault_page and determine it's not
571	 * a kmmio fault, when it actually is. This would lead to madness.
572	 */
573	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
574}
575EXPORT_SYMBOL(unregister_kmmio_probe);
576
577static int
578kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
579{
580	struct die_args *arg = args;
581	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
582
583	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
584		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
585			/*
586			 * Reset the BS bit in dr6 (pointed by args->err) to
587			 * denote completion of processing
588			 */
589			*dr6_p &= ~DR_STEP;
590			return NOTIFY_STOP;
591		}
592
593	return NOTIFY_DONE;
594}
595
596static struct notifier_block nb_die = {
597	.notifier_call = kmmio_die_notifier
598};
599
600int kmmio_init(void)
601{
602	int i;
603
604	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
605		INIT_LIST_HEAD(&kmmio_page_table[i]);
606
607	return register_die_notifier(&nb_die);
608}
609
610void kmmio_cleanup(void)
611{
612	int i;
613
614	unregister_die_notifier(&nb_die);
615	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
616		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
617			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
618	}
619}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/* Support for MMIO probes.
  3 * Benfit many code from kprobes
  4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  5 *     2007 Alexander Eichner
  6 *     2008 Pekka Paalanen <pq@iki.fi>
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/list.h>
 12#include <linux/rculist.h>
 13#include <linux/spinlock.h>
 14#include <linux/hash.h>
 15#include <linux/export.h>
 16#include <linux/kernel.h>
 17#include <linux/uaccess.h>
 18#include <linux/ptrace.h>
 19#include <linux/preempt.h>
 20#include <linux/percpu.h>
 21#include <linux/kdebug.h>
 22#include <linux/mutex.h>
 23#include <linux/io.h>
 24#include <linux/slab.h>
 25#include <asm/cacheflush.h>
 26#include <asm/tlbflush.h>
 27#include <linux/errno.h>
 28#include <asm/debugreg.h>
 29#include <linux/mmiotrace.h>
 30
 31#define KMMIO_PAGE_HASH_BITS 4
 32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 33
 34struct kmmio_fault_page {
 35	struct list_head list;
 36	struct kmmio_fault_page *release_next;
 37	unsigned long addr; /* the requested address */
 38	pteval_t old_presence; /* page presence prior to arming */
 39	bool armed;
 40
 41	/*
 42	 * Number of times this page has been registered as a part
 43	 * of a probe. If zero, page is disarmed and this may be freed.
 44	 * Used only by writers (RCU) and post_kmmio_handler().
 45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 46	 */
 47	int count;
 48
 49	bool scheduled_for_release;
 50};
 51
 52struct kmmio_delayed_release {
 53	struct rcu_head rcu;
 54	struct kmmio_fault_page *release_list;
 55};
 56
 57struct kmmio_context {
 58	struct kmmio_fault_page *fpage;
 59	struct kmmio_probe *probe;
 60	unsigned long saved_flags;
 61	unsigned long addr;
 62	int active;
 63};
 64
 65static DEFINE_SPINLOCK(kmmio_lock);
 66
 67/* Protected by kmmio_lock */
 68unsigned int kmmio_count;
 69
 70/* Read-protected by RCU, write-protected by kmmio_lock. */
 71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 72static LIST_HEAD(kmmio_probes);
 73
 74static struct list_head *kmmio_page_list(unsigned long addr)
 75{
 76	unsigned int l;
 77	pte_t *pte = lookup_address(addr, &l);
 78
 79	if (!pte)
 80		return NULL;
 81	addr &= page_level_mask(l);
 82
 83	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
 84}
 85
 86/* Accessed per-cpu */
 87static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 88
 89/*
 90 * this is basically a dynamic stabbing problem:
 91 * Could use the existing prio tree code or
 92 * Possible better implementations:
 93 * The Interval Skip List: A Data Structure for Finding All Intervals That
 94 * Overlap a Point (might be simple)
 95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 96 */
 97/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 98static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 99{
100	struct kmmio_probe *p;
101	list_for_each_entry_rcu(p, &kmmio_probes, list) {
102		if (addr >= p->addr && addr < (p->addr + p->len))
103			return p;
104	}
105	return NULL;
106}
107
108/* You must be holding RCU read lock. */
109static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
110{
111	struct list_head *head;
112	struct kmmio_fault_page *f;
113	unsigned int l;
114	pte_t *pte = lookup_address(addr, &l);
115
116	if (!pte)
117		return NULL;
118	addr &= page_level_mask(l);
119	head = kmmio_page_list(addr);
120	list_for_each_entry_rcu(f, head, list) {
121		if (f->addr == addr)
122			return f;
123	}
124	return NULL;
125}
126
127static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
128{
129	pmd_t new_pmd;
130	pmdval_t v = pmd_val(*pmd);
131	if (clear) {
132		*old = v;
133		new_pmd = pmd_mknotpresent(*pmd);
134	} else {
135		/* Presume this has been called with clear==true previously */
136		new_pmd = __pmd(*old);
137	}
138	set_pmd(pmd, new_pmd);
139}
140
141static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
142{
143	pteval_t v = pte_val(*pte);
144	if (clear) {
145		*old = v;
146		/* Nothing should care about address */
147		pte_clear(&init_mm, 0, pte);
148	} else {
149		/* Presume this has been called with clear==true previously */
150		set_pte_atomic(pte, __pte(*old));
151	}
152}
153
154static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
155{
156	unsigned int level;
157	pte_t *pte = lookup_address(f->addr, &level);
158
159	if (!pte) {
160		pr_err("no pte for addr 0x%08lx\n", f->addr);
161		return -1;
162	}
163
164	switch (level) {
165	case PG_LEVEL_2M:
166		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
167		break;
168	case PG_LEVEL_4K:
169		clear_pte_presence(pte, clear, &f->old_presence);
170		break;
171	default:
172		pr_err("unexpected page level 0x%x.\n", level);
173		return -1;
174	}
175
176	__flush_tlb_one_kernel(f->addr);
177	return 0;
178}
179
180/*
181 * Mark the given page as not present. Access to it will trigger a fault.
182 *
183 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
184 * protection is ignored here. RCU read lock is assumed held, so the struct
185 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
186 * that double arming the same virtual address (page) cannot occur.
187 *
188 * Double disarming on the other hand is allowed, and may occur when a fault
189 * and mmiotrace shutdown happen simultaneously.
190 */
191static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
192{
193	int ret;
194	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
195	if (f->armed) {
196		pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
197			   f->addr, f->count, !!f->old_presence);
198	}
199	ret = clear_page_presence(f, true);
200	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
201		  f->addr);
202	f->armed = true;
203	return ret;
204}
205
206/** Restore the given page to saved presence state. */
207static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
208{
209	int ret = clear_page_presence(f, false);
210	WARN_ONCE(ret < 0,
211			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
212	f->armed = false;
213}
214
215/*
216 * This is being called from do_page_fault().
217 *
218 * We may be in an interrupt or a critical section. Also prefecthing may
219 * trigger a page fault. We may be in the middle of process switch.
220 * We cannot take any locks, because we could be executing especially
221 * within a kmmio critical section.
222 *
223 * Local interrupts are disabled, so preemption cannot happen.
224 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
225 */
226/*
227 * Interrupts are disabled on entry as trap3 is an interrupt gate
228 * and they remain disabled throughout this function.
229 */
230int kmmio_handler(struct pt_regs *regs, unsigned long addr)
231{
232	struct kmmio_context *ctx;
233	struct kmmio_fault_page *faultpage;
234	int ret = 0; /* default to fault not handled */
235	unsigned long page_base = addr;
236	unsigned int l;
237	pte_t *pte = lookup_address(addr, &l);
238	if (!pte)
239		return -EINVAL;
240	page_base &= page_level_mask(l);
241
242	/*
243	 * Preemption is now disabled to prevent process switch during
244	 * single stepping. We can only handle one active kmmio trace
245	 * per cpu, so ensure that we finish it before something else
246	 * gets to run. We also hold the RCU read lock over single
247	 * stepping to avoid looking up the probe and kmmio_fault_page
248	 * again.
249	 */
250	preempt_disable();
251	rcu_read_lock();
252
253	faultpage = get_kmmio_fault_page(page_base);
254	if (!faultpage) {
255		/*
256		 * Either this page fault is not caused by kmmio, or
257		 * another CPU just pulled the kmmio probe from under
258		 * our feet. The latter case should not be possible.
259		 */
260		goto no_kmmio;
261	}
262
263	ctx = &get_cpu_var(kmmio_ctx);
264	if (ctx->active) {
265		if (page_base == ctx->addr) {
266			/*
267			 * A second fault on the same page means some other
268			 * condition needs handling by do_page_fault(), the
269			 * page really not being present is the most common.
270			 */
271			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
272				 addr, smp_processor_id());
273
274			if (!faultpage->old_presence)
275				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
276					addr, smp_processor_id());
277		} else {
278			/*
279			 * Prevent overwriting already in-flight context.
280			 * This should not happen, let's hope disarming at
281			 * least prevents a panic.
282			 */
283			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
284				 smp_processor_id(), addr);
285			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
286			disarm_kmmio_fault_page(faultpage);
287		}
288		goto no_kmmio_ctx;
289	}
290	ctx->active++;
291
292	ctx->fpage = faultpage;
293	ctx->probe = get_kmmio_probe(page_base);
294	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
295	ctx->addr = page_base;
296
297	if (ctx->probe && ctx->probe->pre_handler)
298		ctx->probe->pre_handler(ctx->probe, regs, addr);
299
300	/*
301	 * Enable single-stepping and disable interrupts for the faulting
302	 * context. Local interrupts must not get enabled during stepping.
303	 */
304	regs->flags |= X86_EFLAGS_TF;
305	regs->flags &= ~X86_EFLAGS_IF;
306
307	/* Now we set present bit in PTE and single step. */
308	disarm_kmmio_fault_page(ctx->fpage);
309
310	/*
311	 * If another cpu accesses the same page while we are stepping,
312	 * the access will not be caught. It will simply succeed and the
313	 * only downside is we lose the event. If this becomes a problem,
314	 * the user should drop to single cpu before tracing.
315	 */
316
317	put_cpu_var(kmmio_ctx);
318	return 1; /* fault handled */
319
320no_kmmio_ctx:
321	put_cpu_var(kmmio_ctx);
322no_kmmio:
323	rcu_read_unlock();
324	preempt_enable_no_resched();
325	return ret;
326}
327
328/*
329 * Interrupts are disabled on entry as trap1 is an interrupt gate
330 * and they remain disabled throughout this function.
331 * This must always get called as the pair to kmmio_handler().
332 */
333static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
334{
335	int ret = 0;
336	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
337
338	if (!ctx->active) {
339		/*
340		 * debug traps without an active context are due to either
341		 * something external causing them (f.e. using a debugger while
342		 * mmio tracing enabled), or erroneous behaviour
343		 */
344		pr_warning("unexpected debug trap on CPU %d.\n",
345			   smp_processor_id());
346		goto out;
347	}
348
349	if (ctx->probe && ctx->probe->post_handler)
350		ctx->probe->post_handler(ctx->probe, condition, regs);
351
352	/* Prevent racing against release_kmmio_fault_page(). */
353	spin_lock(&kmmio_lock);
354	if (ctx->fpage->count)
355		arm_kmmio_fault_page(ctx->fpage);
356	spin_unlock(&kmmio_lock);
357
358	regs->flags &= ~X86_EFLAGS_TF;
359	regs->flags |= ctx->saved_flags;
360
361	/* These were acquired in kmmio_handler(). */
362	ctx->active--;
363	BUG_ON(ctx->active);
364	rcu_read_unlock();
365	preempt_enable_no_resched();
366
367	/*
368	 * if somebody else is singlestepping across a probe point, flags
369	 * will have TF set, in which case, continue the remaining processing
370	 * of do_debug, as if this is not a probe hit.
371	 */
372	if (!(regs->flags & X86_EFLAGS_TF))
373		ret = 1;
374out:
375	put_cpu_var(kmmio_ctx);
376	return ret;
377}
378
379/* You must be holding kmmio_lock. */
380static int add_kmmio_fault_page(unsigned long addr)
381{
382	struct kmmio_fault_page *f;
383
384	f = get_kmmio_fault_page(addr);
385	if (f) {
386		if (!f->count)
387			arm_kmmio_fault_page(f);
388		f->count++;
389		return 0;
390	}
391
392	f = kzalloc(sizeof(*f), GFP_ATOMIC);
393	if (!f)
394		return -1;
395
396	f->count = 1;
397	f->addr = addr;
398
399	if (arm_kmmio_fault_page(f)) {
400		kfree(f);
401		return -1;
402	}
403
404	list_add_rcu(&f->list, kmmio_page_list(f->addr));
405
406	return 0;
407}
408
409/* You must be holding kmmio_lock. */
410static void release_kmmio_fault_page(unsigned long addr,
411				struct kmmio_fault_page **release_list)
412{
413	struct kmmio_fault_page *f;
414
415	f = get_kmmio_fault_page(addr);
416	if (!f)
417		return;
418
419	f->count--;
420	BUG_ON(f->count < 0);
421	if (!f->count) {
422		disarm_kmmio_fault_page(f);
423		if (!f->scheduled_for_release) {
424			f->release_next = *release_list;
425			*release_list = f;
426			f->scheduled_for_release = true;
427		}
428	}
429}
430
431/*
432 * With page-unaligned ioremaps, one or two armed pages may contain
433 * addresses from outside the intended mapping. Events for these addresses
434 * are currently silently dropped. The events may result only from programming
435 * mistakes by accessing addresses before the beginning or past the end of a
436 * mapping.
437 */
438int register_kmmio_probe(struct kmmio_probe *p)
439{
440	unsigned long flags;
441	int ret = 0;
442	unsigned long size = 0;
443	unsigned long addr = p->addr & PAGE_MASK;
444	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
445	unsigned int l;
446	pte_t *pte;
447
448	spin_lock_irqsave(&kmmio_lock, flags);
449	if (get_kmmio_probe(addr)) {
450		ret = -EEXIST;
451		goto out;
452	}
453
454	pte = lookup_address(addr, &l);
455	if (!pte) {
456		ret = -EINVAL;
457		goto out;
458	}
459
460	kmmio_count++;
461	list_add_rcu(&p->list, &kmmio_probes);
462	while (size < size_lim) {
463		if (add_kmmio_fault_page(addr + size))
464			pr_err("Unable to set page fault.\n");
465		size += page_level_size(l);
466	}
467out:
468	spin_unlock_irqrestore(&kmmio_lock, flags);
469	/*
470	 * XXX: What should I do here?
471	 * Here was a call to global_flush_tlb(), but it does not exist
472	 * anymore. It seems it's not needed after all.
473	 */
474	return ret;
475}
476EXPORT_SYMBOL(register_kmmio_probe);
477
478static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
479{
480	struct kmmio_delayed_release *dr = container_of(
481						head,
482						struct kmmio_delayed_release,
483						rcu);
484	struct kmmio_fault_page *f = dr->release_list;
485	while (f) {
486		struct kmmio_fault_page *next = f->release_next;
487		BUG_ON(f->count);
488		kfree(f);
489		f = next;
490	}
491	kfree(dr);
492}
493
494static void remove_kmmio_fault_pages(struct rcu_head *head)
495{
496	struct kmmio_delayed_release *dr =
497		container_of(head, struct kmmio_delayed_release, rcu);
498	struct kmmio_fault_page *f = dr->release_list;
499	struct kmmio_fault_page **prevp = &dr->release_list;
500	unsigned long flags;
501
502	spin_lock_irqsave(&kmmio_lock, flags);
503	while (f) {
504		if (!f->count) {
505			list_del_rcu(&f->list);
506			prevp = &f->release_next;
507		} else {
508			*prevp = f->release_next;
509			f->release_next = NULL;
510			f->scheduled_for_release = false;
511		}
512		f = *prevp;
513	}
514	spin_unlock_irqrestore(&kmmio_lock, flags);
515
516	/* This is the real RCU destroy call. */
517	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
518}
519
520/*
521 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
522 * sure that the callbacks will not be called anymore. Only after that
523 * you may actually release your struct kmmio_probe.
524 *
525 * Unregistering a kmmio fault page has three steps:
526 * 1. release_kmmio_fault_page()
527 *    Disarm the page, wait a grace period to let all faults finish.
528 * 2. remove_kmmio_fault_pages()
529 *    Remove the pages from kmmio_page_table.
530 * 3. rcu_free_kmmio_fault_pages()
531 *    Actually free the kmmio_fault_page structs as with RCU.
532 */
533void unregister_kmmio_probe(struct kmmio_probe *p)
534{
535	unsigned long flags;
536	unsigned long size = 0;
537	unsigned long addr = p->addr & PAGE_MASK;
538	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
539	struct kmmio_fault_page *release_list = NULL;
540	struct kmmio_delayed_release *drelease;
541	unsigned int l;
542	pte_t *pte;
543
544	pte = lookup_address(addr, &l);
545	if (!pte)
546		return;
547
548	spin_lock_irqsave(&kmmio_lock, flags);
549	while (size < size_lim) {
550		release_kmmio_fault_page(addr + size, &release_list);
551		size += page_level_size(l);
552	}
553	list_del_rcu(&p->list);
554	kmmio_count--;
555	spin_unlock_irqrestore(&kmmio_lock, flags);
556
557	if (!release_list)
558		return;
559
560	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
561	if (!drelease) {
562		pr_crit("leaking kmmio_fault_page objects.\n");
563		return;
564	}
565	drelease->release_list = release_list;
566
567	/*
568	 * This is not really RCU here. We have just disarmed a set of
569	 * pages so that they cannot trigger page faults anymore. However,
570	 * we cannot remove the pages from kmmio_page_table,
571	 * because a probe hit might be in flight on another CPU. The
572	 * pages are collected into a list, and they will be removed from
573	 * kmmio_page_table when it is certain that no probe hit related to
574	 * these pages can be in flight. RCU grace period sounds like a
575	 * good choice.
576	 *
577	 * If we removed the pages too early, kmmio page fault handler might
578	 * not find the respective kmmio_fault_page and determine it's not
579	 * a kmmio fault, when it actually is. This would lead to madness.
580	 */
581	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
582}
583EXPORT_SYMBOL(unregister_kmmio_probe);
584
585static int
586kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
587{
588	struct die_args *arg = args;
589	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
590
591	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
592		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
593			/*
594			 * Reset the BS bit in dr6 (pointed by args->err) to
595			 * denote completion of processing
596			 */
597			*dr6_p &= ~DR_STEP;
598			return NOTIFY_STOP;
599		}
600
601	return NOTIFY_DONE;
602}
603
604static struct notifier_block nb_die = {
605	.notifier_call = kmmio_die_notifier
606};
607
608int kmmio_init(void)
609{
610	int i;
611
612	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
613		INIT_LIST_HEAD(&kmmio_page_table[i]);
614
615	return register_die_notifier(&nb_die);
616}
617
618void kmmio_cleanup(void)
619{
620	int i;
621
622	unregister_die_notifier(&nb_die);
623	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
624		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
625			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
626	}
627}