Linux Audio

Check our new training course

Loading...
v4.6
  1/* Support for MMIO probes.
  2 * Benfit many code from kprobes
  3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  4 *     2007 Alexander Eichner
  5 *     2008 Pekka Paalanen <pq@iki.fi>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/list.h>
 11#include <linux/rculist.h>
 12#include <linux/spinlock.h>
 13#include <linux/hash.h>
 
 14#include <linux/module.h>
 15#include <linux/kernel.h>
 16#include <linux/uaccess.h>
 17#include <linux/ptrace.h>
 18#include <linux/preempt.h>
 19#include <linux/percpu.h>
 20#include <linux/kdebug.h>
 21#include <linux/mutex.h>
 22#include <linux/io.h>
 23#include <linux/slab.h>
 24#include <asm/cacheflush.h>
 25#include <asm/tlbflush.h>
 26#include <linux/errno.h>
 27#include <asm/debugreg.h>
 28#include <linux/mmiotrace.h>
 29
 30#define KMMIO_PAGE_HASH_BITS 4
 31#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 32
 33struct kmmio_fault_page {
 34	struct list_head list;
 35	struct kmmio_fault_page *release_next;
 36	unsigned long addr; /* the requested address */
 37	pteval_t old_presence; /* page presence prior to arming */
 38	bool armed;
 39
 40	/*
 41	 * Number of times this page has been registered as a part
 42	 * of a probe. If zero, page is disarmed and this may be freed.
 43	 * Used only by writers (RCU) and post_kmmio_handler().
 44	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 45	 */
 46	int count;
 47
 48	bool scheduled_for_release;
 49};
 50
 51struct kmmio_delayed_release {
 52	struct rcu_head rcu;
 53	struct kmmio_fault_page *release_list;
 54};
 55
 56struct kmmio_context {
 57	struct kmmio_fault_page *fpage;
 58	struct kmmio_probe *probe;
 59	unsigned long saved_flags;
 60	unsigned long addr;
 61	int active;
 62};
 63
 64static DEFINE_SPINLOCK(kmmio_lock);
 65
 66/* Protected by kmmio_lock */
 67unsigned int kmmio_count;
 68
 69/* Read-protected by RCU, write-protected by kmmio_lock. */
 70static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 71static LIST_HEAD(kmmio_probes);
 72
 73static struct list_head *kmmio_page_list(unsigned long addr)
 74{
 75	unsigned int l;
 76	pte_t *pte = lookup_address(addr, &l);
 77
 78	if (!pte)
 79		return NULL;
 80	addr &= page_level_mask(l);
 81
 82	return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
 83}
 84
 85/* Accessed per-cpu */
 86static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 87
 88/*
 89 * this is basically a dynamic stabbing problem:
 90 * Could use the existing prio tree code or
 91 * Possible better implementations:
 92 * The Interval Skip List: A Data Structure for Finding All Intervals That
 93 * Overlap a Point (might be simple)
 94 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 95 */
 96/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 97static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 98{
 99	struct kmmio_probe *p;
100	list_for_each_entry_rcu(p, &kmmio_probes, list) {
101		if (addr >= p->addr && addr < (p->addr + p->len))
102			return p;
103	}
104	return NULL;
105}
106
107/* You must be holding RCU read lock. */
108static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
109{
110	struct list_head *head;
111	struct kmmio_fault_page *f;
112	unsigned int l;
113	pte_t *pte = lookup_address(addr, &l);
114
115	if (!pte)
116		return NULL;
117	addr &= page_level_mask(l);
118	head = kmmio_page_list(addr);
119	list_for_each_entry_rcu(f, head, list) {
120		if (f->addr == addr)
121			return f;
122	}
123	return NULL;
124}
125
126static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
127{
128	pmdval_t v = pmd_val(*pmd);
129	if (clear) {
130		*old = v & _PAGE_PRESENT;
131		v &= ~_PAGE_PRESENT;
132	} else	/* presume this has been called with clear==true previously */
133		v |= *old;
134	set_pmd(pmd, __pmd(v));
135}
136
137static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
138{
139	pteval_t v = pte_val(*pte);
140	if (clear) {
141		*old = v & _PAGE_PRESENT;
142		v &= ~_PAGE_PRESENT;
143	} else	/* presume this has been called with clear==true previously */
144		v |= *old;
145	set_pte_atomic(pte, __pte(v));
146}
147
148static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
149{
150	unsigned int level;
151	pte_t *pte = lookup_address(f->addr, &level);
152
153	if (!pte) {
154		pr_err("no pte for addr 0x%08lx\n", f->addr);
155		return -1;
156	}
157
158	switch (level) {
159	case PG_LEVEL_2M:
160		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
161		break;
162	case PG_LEVEL_4K:
163		clear_pte_presence(pte, clear, &f->old_presence);
164		break;
165	default:
166		pr_err("unexpected page level 0x%x.\n", level);
167		return -1;
168	}
169
170	__flush_tlb_one(f->addr);
171	return 0;
172}
173
174/*
175 * Mark the given page as not present. Access to it will trigger a fault.
176 *
177 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
178 * protection is ignored here. RCU read lock is assumed held, so the struct
179 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
180 * that double arming the same virtual address (page) cannot occur.
181 *
182 * Double disarming on the other hand is allowed, and may occur when a fault
183 * and mmiotrace shutdown happen simultaneously.
184 */
185static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
186{
187	int ret;
188	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
189	if (f->armed) {
190		pr_warning("double-arm: addr 0x%08lx, ref %d, old %d\n",
191			   f->addr, f->count, !!f->old_presence);
192	}
193	ret = clear_page_presence(f, true);
194	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
195		  f->addr);
196	f->armed = true;
197	return ret;
198}
199
200/** Restore the given page to saved presence state. */
201static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
202{
203	int ret = clear_page_presence(f, false);
204	WARN_ONCE(ret < 0,
205			KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
206	f->armed = false;
207}
208
209/*
210 * This is being called from do_page_fault().
211 *
212 * We may be in an interrupt or a critical section. Also prefecthing may
213 * trigger a page fault. We may be in the middle of process switch.
214 * We cannot take any locks, because we could be executing especially
215 * within a kmmio critical section.
216 *
217 * Local interrupts are disabled, so preemption cannot happen.
218 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
219 */
220/*
221 * Interrupts are disabled on entry as trap3 is an interrupt gate
222 * and they remain disabled throughout this function.
223 */
224int kmmio_handler(struct pt_regs *regs, unsigned long addr)
225{
226	struct kmmio_context *ctx;
227	struct kmmio_fault_page *faultpage;
228	int ret = 0; /* default to fault not handled */
229	unsigned long page_base = addr;
230	unsigned int l;
231	pte_t *pte = lookup_address(addr, &l);
232	if (!pte)
233		return -EINVAL;
234	page_base &= page_level_mask(l);
235
236	/*
237	 * Preemption is now disabled to prevent process switch during
238	 * single stepping. We can only handle one active kmmio trace
239	 * per cpu, so ensure that we finish it before something else
240	 * gets to run. We also hold the RCU read lock over single
241	 * stepping to avoid looking up the probe and kmmio_fault_page
242	 * again.
243	 */
244	preempt_disable();
245	rcu_read_lock();
246
247	faultpage = get_kmmio_fault_page(page_base);
248	if (!faultpage) {
249		/*
250		 * Either this page fault is not caused by kmmio, or
251		 * another CPU just pulled the kmmio probe from under
252		 * our feet. The latter case should not be possible.
253		 */
254		goto no_kmmio;
255	}
256
257	ctx = &get_cpu_var(kmmio_ctx);
258	if (ctx->active) {
259		if (page_base == ctx->addr) {
260			/*
261			 * A second fault on the same page means some other
262			 * condition needs handling by do_page_fault(), the
263			 * page really not being present is the most common.
264			 */
265			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
266				 addr, smp_processor_id());
267
268			if (!faultpage->old_presence)
269				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
270					addr, smp_processor_id());
271		} else {
272			/*
273			 * Prevent overwriting already in-flight context.
274			 * This should not happen, let's hope disarming at
275			 * least prevents a panic.
276			 */
277			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
278				 smp_processor_id(), addr);
279			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
280			disarm_kmmio_fault_page(faultpage);
281		}
282		goto no_kmmio_ctx;
283	}
284	ctx->active++;
285
286	ctx->fpage = faultpage;
287	ctx->probe = get_kmmio_probe(page_base);
288	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
289	ctx->addr = page_base;
290
291	if (ctx->probe && ctx->probe->pre_handler)
292		ctx->probe->pre_handler(ctx->probe, regs, addr);
293
294	/*
295	 * Enable single-stepping and disable interrupts for the faulting
296	 * context. Local interrupts must not get enabled during stepping.
297	 */
298	regs->flags |= X86_EFLAGS_TF;
299	regs->flags &= ~X86_EFLAGS_IF;
300
301	/* Now we set present bit in PTE and single step. */
302	disarm_kmmio_fault_page(ctx->fpage);
303
304	/*
305	 * If another cpu accesses the same page while we are stepping,
306	 * the access will not be caught. It will simply succeed and the
307	 * only downside is we lose the event. If this becomes a problem,
308	 * the user should drop to single cpu before tracing.
309	 */
310
311	put_cpu_var(kmmio_ctx);
312	return 1; /* fault handled */
313
314no_kmmio_ctx:
315	put_cpu_var(kmmio_ctx);
316no_kmmio:
317	rcu_read_unlock();
318	preempt_enable_no_resched();
319	return ret;
320}
321
322/*
323 * Interrupts are disabled on entry as trap1 is an interrupt gate
324 * and they remain disabled throughout this function.
325 * This must always get called as the pair to kmmio_handler().
326 */
327static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
328{
329	int ret = 0;
330	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
331
332	if (!ctx->active) {
333		/*
334		 * debug traps without an active context are due to either
335		 * something external causing them (f.e. using a debugger while
336		 * mmio tracing enabled), or erroneous behaviour
337		 */
338		pr_warning("unexpected debug trap on CPU %d.\n",
339			   smp_processor_id());
340		goto out;
341	}
342
343	if (ctx->probe && ctx->probe->post_handler)
344		ctx->probe->post_handler(ctx->probe, condition, regs);
345
346	/* Prevent racing against release_kmmio_fault_page(). */
347	spin_lock(&kmmio_lock);
348	if (ctx->fpage->count)
349		arm_kmmio_fault_page(ctx->fpage);
350	spin_unlock(&kmmio_lock);
351
352	regs->flags &= ~X86_EFLAGS_TF;
353	regs->flags |= ctx->saved_flags;
354
355	/* These were acquired in kmmio_handler(). */
356	ctx->active--;
357	BUG_ON(ctx->active);
358	rcu_read_unlock();
359	preempt_enable_no_resched();
360
361	/*
362	 * if somebody else is singlestepping across a probe point, flags
363	 * will have TF set, in which case, continue the remaining processing
364	 * of do_debug, as if this is not a probe hit.
365	 */
366	if (!(regs->flags & X86_EFLAGS_TF))
367		ret = 1;
368out:
369	put_cpu_var(kmmio_ctx);
370	return ret;
371}
372
373/* You must be holding kmmio_lock. */
374static int add_kmmio_fault_page(unsigned long addr)
375{
376	struct kmmio_fault_page *f;
377
378	f = get_kmmio_fault_page(addr);
 
379	if (f) {
380		if (!f->count)
381			arm_kmmio_fault_page(f);
382		f->count++;
383		return 0;
384	}
385
386	f = kzalloc(sizeof(*f), GFP_ATOMIC);
387	if (!f)
388		return -1;
389
390	f->count = 1;
391	f->addr = addr;
392
393	if (arm_kmmio_fault_page(f)) {
394		kfree(f);
395		return -1;
396	}
397
398	list_add_rcu(&f->list, kmmio_page_list(f->addr));
399
400	return 0;
401}
402
403/* You must be holding kmmio_lock. */
404static void release_kmmio_fault_page(unsigned long addr,
405				struct kmmio_fault_page **release_list)
406{
407	struct kmmio_fault_page *f;
408
409	f = get_kmmio_fault_page(addr);
 
410	if (!f)
411		return;
412
413	f->count--;
414	BUG_ON(f->count < 0);
415	if (!f->count) {
416		disarm_kmmio_fault_page(f);
417		if (!f->scheduled_for_release) {
418			f->release_next = *release_list;
419			*release_list = f;
420			f->scheduled_for_release = true;
421		}
422	}
423}
424
425/*
426 * With page-unaligned ioremaps, one or two armed pages may contain
427 * addresses from outside the intended mapping. Events for these addresses
428 * are currently silently dropped. The events may result only from programming
429 * mistakes by accessing addresses before the beginning or past the end of a
430 * mapping.
431 */
432int register_kmmio_probe(struct kmmio_probe *p)
433{
434	unsigned long flags;
435	int ret = 0;
436	unsigned long size = 0;
437	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
438	unsigned int l;
439	pte_t *pte;
440
441	spin_lock_irqsave(&kmmio_lock, flags);
442	if (get_kmmio_probe(p->addr)) {
443		ret = -EEXIST;
444		goto out;
445	}
446
447	pte = lookup_address(p->addr, &l);
448	if (!pte) {
449		ret = -EINVAL;
450		goto out;
451	}
452
453	kmmio_count++;
454	list_add_rcu(&p->list, &kmmio_probes);
455	while (size < size_lim) {
456		if (add_kmmio_fault_page(p->addr + size))
457			pr_err("Unable to set page fault.\n");
458		size += page_level_size(l);
459	}
460out:
461	spin_unlock_irqrestore(&kmmio_lock, flags);
462	/*
463	 * XXX: What should I do here?
464	 * Here was a call to global_flush_tlb(), but it does not exist
465	 * anymore. It seems it's not needed after all.
466	 */
467	return ret;
468}
469EXPORT_SYMBOL(register_kmmio_probe);
470
471static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
472{
473	struct kmmio_delayed_release *dr = container_of(
474						head,
475						struct kmmio_delayed_release,
476						rcu);
477	struct kmmio_fault_page *f = dr->release_list;
478	while (f) {
479		struct kmmio_fault_page *next = f->release_next;
480		BUG_ON(f->count);
481		kfree(f);
482		f = next;
483	}
484	kfree(dr);
485}
486
487static void remove_kmmio_fault_pages(struct rcu_head *head)
488{
489	struct kmmio_delayed_release *dr =
490		container_of(head, struct kmmio_delayed_release, rcu);
491	struct kmmio_fault_page *f = dr->release_list;
492	struct kmmio_fault_page **prevp = &dr->release_list;
493	unsigned long flags;
494
495	spin_lock_irqsave(&kmmio_lock, flags);
496	while (f) {
497		if (!f->count) {
498			list_del_rcu(&f->list);
499			prevp = &f->release_next;
500		} else {
501			*prevp = f->release_next;
502			f->release_next = NULL;
503			f->scheduled_for_release = false;
504		}
505		f = *prevp;
506	}
507	spin_unlock_irqrestore(&kmmio_lock, flags);
508
509	/* This is the real RCU destroy call. */
510	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
511}
512
513/*
514 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
515 * sure that the callbacks will not be called anymore. Only after that
516 * you may actually release your struct kmmio_probe.
517 *
518 * Unregistering a kmmio fault page has three steps:
519 * 1. release_kmmio_fault_page()
520 *    Disarm the page, wait a grace period to let all faults finish.
521 * 2. remove_kmmio_fault_pages()
522 *    Remove the pages from kmmio_page_table.
523 * 3. rcu_free_kmmio_fault_pages()
524 *    Actually free the kmmio_fault_page structs as with RCU.
525 */
526void unregister_kmmio_probe(struct kmmio_probe *p)
527{
528	unsigned long flags;
529	unsigned long size = 0;
530	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
531	struct kmmio_fault_page *release_list = NULL;
532	struct kmmio_delayed_release *drelease;
533	unsigned int l;
534	pte_t *pte;
535
536	pte = lookup_address(p->addr, &l);
537	if (!pte)
538		return;
539
540	spin_lock_irqsave(&kmmio_lock, flags);
541	while (size < size_lim) {
542		release_kmmio_fault_page(p->addr + size, &release_list);
543		size += page_level_size(l);
544	}
545	list_del_rcu(&p->list);
546	kmmio_count--;
547	spin_unlock_irqrestore(&kmmio_lock, flags);
548
549	if (!release_list)
550		return;
551
552	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
553	if (!drelease) {
554		pr_crit("leaking kmmio_fault_page objects.\n");
555		return;
556	}
557	drelease->release_list = release_list;
558
559	/*
560	 * This is not really RCU here. We have just disarmed a set of
561	 * pages so that they cannot trigger page faults anymore. However,
562	 * we cannot remove the pages from kmmio_page_table,
563	 * because a probe hit might be in flight on another CPU. The
564	 * pages are collected into a list, and they will be removed from
565	 * kmmio_page_table when it is certain that no probe hit related to
566	 * these pages can be in flight. RCU grace period sounds like a
567	 * good choice.
568	 *
569	 * If we removed the pages too early, kmmio page fault handler might
570	 * not find the respective kmmio_fault_page and determine it's not
571	 * a kmmio fault, when it actually is. This would lead to madness.
572	 */
573	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
574}
575EXPORT_SYMBOL(unregister_kmmio_probe);
576
577static int
578kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
579{
580	struct die_args *arg = args;
581	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
582
583	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
584		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
585			/*
586			 * Reset the BS bit in dr6 (pointed by args->err) to
587			 * denote completion of processing
588			 */
589			*dr6_p &= ~DR_STEP;
590			return NOTIFY_STOP;
591		}
592
593	return NOTIFY_DONE;
594}
595
596static struct notifier_block nb_die = {
597	.notifier_call = kmmio_die_notifier
598};
599
600int kmmio_init(void)
601{
602	int i;
603
604	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
605		INIT_LIST_HEAD(&kmmio_page_table[i]);
606
607	return register_die_notifier(&nb_die);
608}
609
610void kmmio_cleanup(void)
611{
612	int i;
613
614	unregister_die_notifier(&nb_die);
615	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
616		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
617			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
618	}
619}
v3.1
  1/* Support for MMIO probes.
  2 * Benfit many code from kprobes
  3 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
  4 *     2007 Alexander Eichner
  5 *     2008 Pekka Paalanen <pq@iki.fi>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/list.h>
 11#include <linux/rculist.h>
 12#include <linux/spinlock.h>
 13#include <linux/hash.h>
 14#include <linux/init.h>
 15#include <linux/module.h>
 16#include <linux/kernel.h>
 17#include <linux/uaccess.h>
 18#include <linux/ptrace.h>
 19#include <linux/preempt.h>
 20#include <linux/percpu.h>
 21#include <linux/kdebug.h>
 22#include <linux/mutex.h>
 23#include <linux/io.h>
 24#include <linux/slab.h>
 25#include <asm/cacheflush.h>
 26#include <asm/tlbflush.h>
 27#include <linux/errno.h>
 28#include <asm/debugreg.h>
 29#include <linux/mmiotrace.h>
 30
 31#define KMMIO_PAGE_HASH_BITS 4
 32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 33
 34struct kmmio_fault_page {
 35	struct list_head list;
 36	struct kmmio_fault_page *release_next;
 37	unsigned long page; /* location of the fault page */
 38	pteval_t old_presence; /* page presence prior to arming */
 39	bool armed;
 40
 41	/*
 42	 * Number of times this page has been registered as a part
 43	 * of a probe. If zero, page is disarmed and this may be freed.
 44	 * Used only by writers (RCU) and post_kmmio_handler().
 45	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 46	 */
 47	int count;
 48
 49	bool scheduled_for_release;
 50};
 51
 52struct kmmio_delayed_release {
 53	struct rcu_head rcu;
 54	struct kmmio_fault_page *release_list;
 55};
 56
 57struct kmmio_context {
 58	struct kmmio_fault_page *fpage;
 59	struct kmmio_probe *probe;
 60	unsigned long saved_flags;
 61	unsigned long addr;
 62	int active;
 63};
 64
 65static DEFINE_SPINLOCK(kmmio_lock);
 66
 67/* Protected by kmmio_lock */
 68unsigned int kmmio_count;
 69
 70/* Read-protected by RCU, write-protected by kmmio_lock. */
 71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 72static LIST_HEAD(kmmio_probes);
 73
 74static struct list_head *kmmio_page_list(unsigned long page)
 75{
 76	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
 
 
 
 
 
 
 
 77}
 78
 79/* Accessed per-cpu */
 80static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 81
 82/*
 83 * this is basically a dynamic stabbing problem:
 84 * Could use the existing prio tree code or
 85 * Possible better implementations:
 86 * The Interval Skip List: A Data Structure for Finding All Intervals That
 87 * Overlap a Point (might be simple)
 88 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 89 */
 90/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 91static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 92{
 93	struct kmmio_probe *p;
 94	list_for_each_entry_rcu(p, &kmmio_probes, list) {
 95		if (addr >= p->addr && addr < (p->addr + p->len))
 96			return p;
 97	}
 98	return NULL;
 99}
100
101/* You must be holding RCU read lock. */
102static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
103{
104	struct list_head *head;
105	struct kmmio_fault_page *f;
 
 
106
107	page &= PAGE_MASK;
108	head = kmmio_page_list(page);
 
 
109	list_for_each_entry_rcu(f, head, list) {
110		if (f->page == page)
111			return f;
112	}
113	return NULL;
114}
115
116static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
117{
118	pmdval_t v = pmd_val(*pmd);
119	if (clear) {
120		*old = v & _PAGE_PRESENT;
121		v &= ~_PAGE_PRESENT;
122	} else	/* presume this has been called with clear==true previously */
123		v |= *old;
124	set_pmd(pmd, __pmd(v));
125}
126
127static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
128{
129	pteval_t v = pte_val(*pte);
130	if (clear) {
131		*old = v & _PAGE_PRESENT;
132		v &= ~_PAGE_PRESENT;
133	} else	/* presume this has been called with clear==true previously */
134		v |= *old;
135	set_pte_atomic(pte, __pte(v));
136}
137
138static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
139{
140	unsigned int level;
141	pte_t *pte = lookup_address(f->page, &level);
142
143	if (!pte) {
144		pr_err("no pte for page 0x%08lx\n", f->page);
145		return -1;
146	}
147
148	switch (level) {
149	case PG_LEVEL_2M:
150		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
151		break;
152	case PG_LEVEL_4K:
153		clear_pte_presence(pte, clear, &f->old_presence);
154		break;
155	default:
156		pr_err("unexpected page level 0x%x.\n", level);
157		return -1;
158	}
159
160	__flush_tlb_one(f->page);
161	return 0;
162}
163
164/*
165 * Mark the given page as not present. Access to it will trigger a fault.
166 *
167 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
168 * protection is ignored here. RCU read lock is assumed held, so the struct
169 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
170 * that double arming the same virtual address (page) cannot occur.
171 *
172 * Double disarming on the other hand is allowed, and may occur when a fault
173 * and mmiotrace shutdown happen simultaneously.
174 */
175static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
176{
177	int ret;
178	WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
179	if (f->armed) {
180		pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
181			   f->page, f->count, !!f->old_presence);
182	}
183	ret = clear_page_presence(f, true);
184	WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
185		  f->page);
186	f->armed = true;
187	return ret;
188}
189
190/** Restore the given page to saved presence state. */
191static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
192{
193	int ret = clear_page_presence(f, false);
194	WARN_ONCE(ret < 0,
195			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
196	f->armed = false;
197}
198
199/*
200 * This is being called from do_page_fault().
201 *
202 * We may be in an interrupt or a critical section. Also prefecthing may
203 * trigger a page fault. We may be in the middle of process switch.
204 * We cannot take any locks, because we could be executing especially
205 * within a kmmio critical section.
206 *
207 * Local interrupts are disabled, so preemption cannot happen.
208 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
209 */
210/*
211 * Interrupts are disabled on entry as trap3 is an interrupt gate
212 * and they remain disabled throughout this function.
213 */
214int kmmio_handler(struct pt_regs *regs, unsigned long addr)
215{
216	struct kmmio_context *ctx;
217	struct kmmio_fault_page *faultpage;
218	int ret = 0; /* default to fault not handled */
 
 
 
 
 
 
219
220	/*
221	 * Preemption is now disabled to prevent process switch during
222	 * single stepping. We can only handle one active kmmio trace
223	 * per cpu, so ensure that we finish it before something else
224	 * gets to run. We also hold the RCU read lock over single
225	 * stepping to avoid looking up the probe and kmmio_fault_page
226	 * again.
227	 */
228	preempt_disable();
229	rcu_read_lock();
230
231	faultpage = get_kmmio_fault_page(addr);
232	if (!faultpage) {
233		/*
234		 * Either this page fault is not caused by kmmio, or
235		 * another CPU just pulled the kmmio probe from under
236		 * our feet. The latter case should not be possible.
237		 */
238		goto no_kmmio;
239	}
240
241	ctx = &get_cpu_var(kmmio_ctx);
242	if (ctx->active) {
243		if (addr == ctx->addr) {
244			/*
245			 * A second fault on the same page means some other
246			 * condition needs handling by do_page_fault(), the
247			 * page really not being present is the most common.
248			 */
249			pr_debug("secondary hit for 0x%08lx CPU %d.\n",
250				 addr, smp_processor_id());
251
252			if (!faultpage->old_presence)
253				pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
254					addr, smp_processor_id());
255		} else {
256			/*
257			 * Prevent overwriting already in-flight context.
258			 * This should not happen, let's hope disarming at
259			 * least prevents a panic.
260			 */
261			pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
262				 smp_processor_id(), addr);
263			pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
264			disarm_kmmio_fault_page(faultpage);
265		}
266		goto no_kmmio_ctx;
267	}
268	ctx->active++;
269
270	ctx->fpage = faultpage;
271	ctx->probe = get_kmmio_probe(addr);
272	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
273	ctx->addr = addr;
274
275	if (ctx->probe && ctx->probe->pre_handler)
276		ctx->probe->pre_handler(ctx->probe, regs, addr);
277
278	/*
279	 * Enable single-stepping and disable interrupts for the faulting
280	 * context. Local interrupts must not get enabled during stepping.
281	 */
282	regs->flags |= X86_EFLAGS_TF;
283	regs->flags &= ~X86_EFLAGS_IF;
284
285	/* Now we set present bit in PTE and single step. */
286	disarm_kmmio_fault_page(ctx->fpage);
287
288	/*
289	 * If another cpu accesses the same page while we are stepping,
290	 * the access will not be caught. It will simply succeed and the
291	 * only downside is we lose the event. If this becomes a problem,
292	 * the user should drop to single cpu before tracing.
293	 */
294
295	put_cpu_var(kmmio_ctx);
296	return 1; /* fault handled */
297
298no_kmmio_ctx:
299	put_cpu_var(kmmio_ctx);
300no_kmmio:
301	rcu_read_unlock();
302	preempt_enable_no_resched();
303	return ret;
304}
305
306/*
307 * Interrupts are disabled on entry as trap1 is an interrupt gate
308 * and they remain disabled throughout this function.
309 * This must always get called as the pair to kmmio_handler().
310 */
311static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
312{
313	int ret = 0;
314	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
315
316	if (!ctx->active) {
317		/*
318		 * debug traps without an active context are due to either
319		 * something external causing them (f.e. using a debugger while
320		 * mmio tracing enabled), or erroneous behaviour
321		 */
322		pr_warning("unexpected debug trap on CPU %d.\n",
323			   smp_processor_id());
324		goto out;
325	}
326
327	if (ctx->probe && ctx->probe->post_handler)
328		ctx->probe->post_handler(ctx->probe, condition, regs);
329
330	/* Prevent racing against release_kmmio_fault_page(). */
331	spin_lock(&kmmio_lock);
332	if (ctx->fpage->count)
333		arm_kmmio_fault_page(ctx->fpage);
334	spin_unlock(&kmmio_lock);
335
336	regs->flags &= ~X86_EFLAGS_TF;
337	regs->flags |= ctx->saved_flags;
338
339	/* These were acquired in kmmio_handler(). */
340	ctx->active--;
341	BUG_ON(ctx->active);
342	rcu_read_unlock();
343	preempt_enable_no_resched();
344
345	/*
346	 * if somebody else is singlestepping across a probe point, flags
347	 * will have TF set, in which case, continue the remaining processing
348	 * of do_debug, as if this is not a probe hit.
349	 */
350	if (!(regs->flags & X86_EFLAGS_TF))
351		ret = 1;
352out:
353	put_cpu_var(kmmio_ctx);
354	return ret;
355}
356
357/* You must be holding kmmio_lock. */
358static int add_kmmio_fault_page(unsigned long page)
359{
360	struct kmmio_fault_page *f;
361
362	page &= PAGE_MASK;
363	f = get_kmmio_fault_page(page);
364	if (f) {
365		if (!f->count)
366			arm_kmmio_fault_page(f);
367		f->count++;
368		return 0;
369	}
370
371	f = kzalloc(sizeof(*f), GFP_ATOMIC);
372	if (!f)
373		return -1;
374
375	f->count = 1;
376	f->page = page;
377
378	if (arm_kmmio_fault_page(f)) {
379		kfree(f);
380		return -1;
381	}
382
383	list_add_rcu(&f->list, kmmio_page_list(f->page));
384
385	return 0;
386}
387
388/* You must be holding kmmio_lock. */
389static void release_kmmio_fault_page(unsigned long page,
390				struct kmmio_fault_page **release_list)
391{
392	struct kmmio_fault_page *f;
393
394	page &= PAGE_MASK;
395	f = get_kmmio_fault_page(page);
396	if (!f)
397		return;
398
399	f->count--;
400	BUG_ON(f->count < 0);
401	if (!f->count) {
402		disarm_kmmio_fault_page(f);
403		if (!f->scheduled_for_release) {
404			f->release_next = *release_list;
405			*release_list = f;
406			f->scheduled_for_release = true;
407		}
408	}
409}
410
411/*
412 * With page-unaligned ioremaps, one or two armed pages may contain
413 * addresses from outside the intended mapping. Events for these addresses
414 * are currently silently dropped. The events may result only from programming
415 * mistakes by accessing addresses before the beginning or past the end of a
416 * mapping.
417 */
418int register_kmmio_probe(struct kmmio_probe *p)
419{
420	unsigned long flags;
421	int ret = 0;
422	unsigned long size = 0;
423	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 
 
424
425	spin_lock_irqsave(&kmmio_lock, flags);
426	if (get_kmmio_probe(p->addr)) {
427		ret = -EEXIST;
428		goto out;
429	}
 
 
 
 
 
 
 
430	kmmio_count++;
431	list_add_rcu(&p->list, &kmmio_probes);
432	while (size < size_lim) {
433		if (add_kmmio_fault_page(p->addr + size))
434			pr_err("Unable to set page fault.\n");
435		size += PAGE_SIZE;
436	}
437out:
438	spin_unlock_irqrestore(&kmmio_lock, flags);
439	/*
440	 * XXX: What should I do here?
441	 * Here was a call to global_flush_tlb(), but it does not exist
442	 * anymore. It seems it's not needed after all.
443	 */
444	return ret;
445}
446EXPORT_SYMBOL(register_kmmio_probe);
447
448static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
449{
450	struct kmmio_delayed_release *dr = container_of(
451						head,
452						struct kmmio_delayed_release,
453						rcu);
454	struct kmmio_fault_page *f = dr->release_list;
455	while (f) {
456		struct kmmio_fault_page *next = f->release_next;
457		BUG_ON(f->count);
458		kfree(f);
459		f = next;
460	}
461	kfree(dr);
462}
463
464static void remove_kmmio_fault_pages(struct rcu_head *head)
465{
466	struct kmmio_delayed_release *dr =
467		container_of(head, struct kmmio_delayed_release, rcu);
468	struct kmmio_fault_page *f = dr->release_list;
469	struct kmmio_fault_page **prevp = &dr->release_list;
470	unsigned long flags;
471
472	spin_lock_irqsave(&kmmio_lock, flags);
473	while (f) {
474		if (!f->count) {
475			list_del_rcu(&f->list);
476			prevp = &f->release_next;
477		} else {
478			*prevp = f->release_next;
479			f->release_next = NULL;
480			f->scheduled_for_release = false;
481		}
482		f = *prevp;
483	}
484	spin_unlock_irqrestore(&kmmio_lock, flags);
485
486	/* This is the real RCU destroy call. */
487	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
488}
489
490/*
491 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
492 * sure that the callbacks will not be called anymore. Only after that
493 * you may actually release your struct kmmio_probe.
494 *
495 * Unregistering a kmmio fault page has three steps:
496 * 1. release_kmmio_fault_page()
497 *    Disarm the page, wait a grace period to let all faults finish.
498 * 2. remove_kmmio_fault_pages()
499 *    Remove the pages from kmmio_page_table.
500 * 3. rcu_free_kmmio_fault_pages()
501 *    Actually free the kmmio_fault_page structs as with RCU.
502 */
503void unregister_kmmio_probe(struct kmmio_probe *p)
504{
505	unsigned long flags;
506	unsigned long size = 0;
507	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
508	struct kmmio_fault_page *release_list = NULL;
509	struct kmmio_delayed_release *drelease;
 
 
 
 
 
 
510
511	spin_lock_irqsave(&kmmio_lock, flags);
512	while (size < size_lim) {
513		release_kmmio_fault_page(p->addr + size, &release_list);
514		size += PAGE_SIZE;
515	}
516	list_del_rcu(&p->list);
517	kmmio_count--;
518	spin_unlock_irqrestore(&kmmio_lock, flags);
519
520	if (!release_list)
521		return;
522
523	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
524	if (!drelease) {
525		pr_crit("leaking kmmio_fault_page objects.\n");
526		return;
527	}
528	drelease->release_list = release_list;
529
530	/*
531	 * This is not really RCU here. We have just disarmed a set of
532	 * pages so that they cannot trigger page faults anymore. However,
533	 * we cannot remove the pages from kmmio_page_table,
534	 * because a probe hit might be in flight on another CPU. The
535	 * pages are collected into a list, and they will be removed from
536	 * kmmio_page_table when it is certain that no probe hit related to
537	 * these pages can be in flight. RCU grace period sounds like a
538	 * good choice.
539	 *
540	 * If we removed the pages too early, kmmio page fault handler might
541	 * not find the respective kmmio_fault_page and determine it's not
542	 * a kmmio fault, when it actually is. This would lead to madness.
543	 */
544	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
545}
546EXPORT_SYMBOL(unregister_kmmio_probe);
547
548static int
549kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
550{
551	struct die_args *arg = args;
552	unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
553
554	if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
555		if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
556			/*
557			 * Reset the BS bit in dr6 (pointed by args->err) to
558			 * denote completion of processing
559			 */
560			*dr6_p &= ~DR_STEP;
561			return NOTIFY_STOP;
562		}
563
564	return NOTIFY_DONE;
565}
566
567static struct notifier_block nb_die = {
568	.notifier_call = kmmio_die_notifier
569};
570
571int kmmio_init(void)
572{
573	int i;
574
575	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
576		INIT_LIST_HEAD(&kmmio_page_table[i]);
577
578	return register_die_notifier(&nb_die);
579}
580
581void kmmio_cleanup(void)
582{
583	int i;
584
585	unregister_die_notifier(&nb_die);
586	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
587		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
588			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
589	}
590}