Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.6
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
 
 
 
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 
 
 
 
 
 20
 21/*
 22 * We need to define the tracepoints somewhere, and tlb.c
 23 * is only compied when SMP=y.
 24 */
 25#define CREATE_TRACE_POINTS
 26#include <trace/events/tlb.h>
 27
 28#include "mm_internal.h"
 29
 30/*
 31 * Tables translating between page_cache_type_t and pte encoding.
 32 *
 33 * The default values are defined statically as minimal supported mode;
 34 * WC and WT fall back to UC-.  pat_init() updates these values to support
 35 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 36 * for the details.  Note, __early_ioremap() used during early boot-time
 37 * takes pgprot_t (pte encoding) and does not use these tables.
 38 *
 39 *   Index into __cachemode2pte_tbl[] is the cachemode.
 40 *
 41 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 42 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 43 */
 44uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 45	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 46	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 47	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 48	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 49	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 50	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 51};
 52EXPORT_SYMBOL(__cachemode2pte_tbl);
 53
 54uint8_t __pte2cachemode_tbl[8] = {
 55	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 56	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 57	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 58	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 59	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 60	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 61	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 63};
 64EXPORT_SYMBOL(__pte2cachemode_tbl);
 65
 66static unsigned long __initdata pgt_buf_start;
 67static unsigned long __initdata pgt_buf_end;
 68static unsigned long __initdata pgt_buf_top;
 69
 70static unsigned long min_pfn_mapped;
 71
 72static bool __initdata can_use_brk_pgt = true;
 73
 74/*
 75 * Pages returned are already directly mapped.
 76 *
 77 * Changing that is likely to break Xen, see commit:
 78 *
 79 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 80 *
 81 * for detailed information.
 82 */
 83__ref void *alloc_low_pages(unsigned int num)
 84{
 85	unsigned long pfn;
 86	int i;
 87
 88	if (after_bootmem) {
 89		unsigned int order;
 90
 91		order = get_order((unsigned long)num << PAGE_SHIFT);
 92		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 93						__GFP_ZERO, order);
 94	}
 95
 96	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 97		unsigned long ret;
 98		if (min_pfn_mapped >= max_pfn_mapped)
 99			panic("alloc_low_pages: ran out of memory");
100		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
 
101					max_pfn_mapped << PAGE_SHIFT,
102					PAGE_SIZE * num , PAGE_SIZE);
 
 
 
 
 
 
103		if (!ret)
104			panic("alloc_low_pages: can not alloc memory");
105		memblock_reserve(ret, PAGE_SIZE * num);
106		pfn = ret >> PAGE_SHIFT;
107	} else {
108		pfn = pgt_buf_end;
109		pgt_buf_end += num;
110		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
111			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
112	}
113
114	for (i = 0; i < num; i++) {
115		void *adr;
116
117		adr = __va((pfn + i) << PAGE_SHIFT);
118		clear_page(adr);
119	}
120
121	return __va(pfn << PAGE_SHIFT);
122}
123
124/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
125#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
126RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
127void  __init early_alloc_pgt_buf(void)
128{
129	unsigned long tables = INIT_PGT_BUF_SIZE;
130	phys_addr_t base;
131
132	base = __pa(extend_brk(tables, PAGE_SIZE));
133
134	pgt_buf_start = base >> PAGE_SHIFT;
135	pgt_buf_end = pgt_buf_start;
136	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
137}
138
139int after_bootmem;
140
141early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142
143struct map_range {
144	unsigned long start;
145	unsigned long end;
146	unsigned page_size_mask;
147};
148
149static int page_size_mask;
150
151static void __init probe_page_size_mask(void)
152{
153#if !defined(CONFIG_KMEMCHECK)
154	/*
155	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
156	 * use small pages.
157	 * This will simplify cpa(), which otherwise needs to support splitting
158	 * large pages into small in interrupt context, etc.
159	 */
160	if (cpu_has_pse && !debug_pagealloc_enabled())
161		page_size_mask |= 1 << PG_LEVEL_2M;
162#endif
 
163
164	/* Enable PSE if available */
165	if (cpu_has_pse)
166		cr4_set_bits_and_update_boot(X86_CR4_PSE);
167
168	/* Enable PGE if available */
169	if (cpu_has_pge) {
 
170		cr4_set_bits_and_update_boot(X86_CR4_PGE);
171		__supported_pte_mask |= _PAGE_GLOBAL;
172	} else
173		__supported_pte_mask &= ~_PAGE_GLOBAL;
 
 
 
 
 
174
175	/* Enable 1 GB linear kernel mappings if available: */
176	if (direct_gbpages && cpu_has_gbpages) {
177		printk(KERN_INFO "Using GB pages for direct mapping\n");
178		page_size_mask |= 1 << PG_LEVEL_1G;
179	} else {
180		direct_gbpages = 0;
181	}
182}
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184#ifdef CONFIG_X86_32
185#define NR_RANGE_MR 3
186#else /* CONFIG_X86_64 */
187#define NR_RANGE_MR 5
188#endif
189
190static int __meminit save_mr(struct map_range *mr, int nr_range,
191			     unsigned long start_pfn, unsigned long end_pfn,
192			     unsigned long page_size_mask)
193{
194	if (start_pfn < end_pfn) {
195		if (nr_range >= NR_RANGE_MR)
196			panic("run out of range for init_memory_mapping\n");
197		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
198		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
199		mr[nr_range].page_size_mask = page_size_mask;
200		nr_range++;
201	}
202
203	return nr_range;
204}
205
206/*
207 * adjust the page_size_mask for small range to go with
208 *	big page size instead small one if nearby are ram too.
209 */
210static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
211							 int nr_range)
212{
213	int i;
214
215	for (i = 0; i < nr_range; i++) {
216		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
217		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
218			unsigned long start = round_down(mr[i].start, PMD_SIZE);
219			unsigned long end = round_up(mr[i].end, PMD_SIZE);
220
221#ifdef CONFIG_X86_32
222			if ((end >> PAGE_SHIFT) > max_low_pfn)
223				continue;
224#endif
225
226			if (memblock_is_region_memory(start, end - start))
227				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
228		}
229		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
230		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
231			unsigned long start = round_down(mr[i].start, PUD_SIZE);
232			unsigned long end = round_up(mr[i].end, PUD_SIZE);
233
234			if (memblock_is_region_memory(start, end - start))
235				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
236		}
237	}
238}
239
240static const char *page_size_string(struct map_range *mr)
241{
242	static const char str_1g[] = "1G";
243	static const char str_2m[] = "2M";
244	static const char str_4m[] = "4M";
245	static const char str_4k[] = "4k";
246
247	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
248		return str_1g;
249	/*
250	 * 32-bit without PAE has a 4M large page size.
251	 * PG_LEVEL_2M is misnamed, but we can at least
252	 * print out the right size in the string.
253	 */
254	if (IS_ENABLED(CONFIG_X86_32) &&
255	    !IS_ENABLED(CONFIG_X86_PAE) &&
256	    mr->page_size_mask & (1<<PG_LEVEL_2M))
257		return str_4m;
258
259	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
260		return str_2m;
261
262	return str_4k;
263}
264
265static int __meminit split_mem_range(struct map_range *mr, int nr_range,
266				     unsigned long start,
267				     unsigned long end)
268{
269	unsigned long start_pfn, end_pfn, limit_pfn;
270	unsigned long pfn;
271	int i;
272
273	limit_pfn = PFN_DOWN(end);
274
275	/* head if not big page alignment ? */
276	pfn = start_pfn = PFN_DOWN(start);
277#ifdef CONFIG_X86_32
278	/*
279	 * Don't use a large page for the first 2/4MB of memory
280	 * because there are often fixed size MTRRs in there
281	 * and overlapping MTRRs into large pages can cause
282	 * slowdowns.
283	 */
284	if (pfn == 0)
285		end_pfn = PFN_DOWN(PMD_SIZE);
286	else
287		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
288#else /* CONFIG_X86_64 */
289	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
290#endif
291	if (end_pfn > limit_pfn)
292		end_pfn = limit_pfn;
293	if (start_pfn < end_pfn) {
294		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
295		pfn = end_pfn;
296	}
297
298	/* big page (2M) range */
299	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
300#ifdef CONFIG_X86_32
301	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
302#else /* CONFIG_X86_64 */
303	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
304	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
305		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
306#endif
307
308	if (start_pfn < end_pfn) {
309		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
310				page_size_mask & (1<<PG_LEVEL_2M));
311		pfn = end_pfn;
312	}
313
314#ifdef CONFIG_X86_64
315	/* big page (1G) range */
316	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
317	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
318	if (start_pfn < end_pfn) {
319		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
320				page_size_mask &
321				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
322		pfn = end_pfn;
323	}
324
325	/* tail is not big page (1G) alignment */
326	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
327	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
328	if (start_pfn < end_pfn) {
329		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
330				page_size_mask & (1<<PG_LEVEL_2M));
331		pfn = end_pfn;
332	}
333#endif
334
335	/* tail is not big page (2M) alignment */
336	start_pfn = pfn;
337	end_pfn = limit_pfn;
338	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
339
340	if (!after_bootmem)
341		adjust_range_page_size_mask(mr, nr_range);
342
343	/* try to merge same page size and continuous */
344	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
345		unsigned long old_start;
346		if (mr[i].end != mr[i+1].start ||
347		    mr[i].page_size_mask != mr[i+1].page_size_mask)
348			continue;
349		/* move it */
350		old_start = mr[i].start;
351		memmove(&mr[i], &mr[i+1],
352			(nr_range - 1 - i) * sizeof(struct map_range));
353		mr[i--].start = old_start;
354		nr_range--;
355	}
356
357	for (i = 0; i < nr_range; i++)
358		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
359				mr[i].start, mr[i].end - 1,
360				page_size_string(&mr[i]));
361
362	return nr_range;
363}
364
365struct range pfn_mapped[E820_X_MAX];
366int nr_pfn_mapped;
367
368static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
369{
370	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
371					     nr_pfn_mapped, start_pfn, end_pfn);
372	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
373
374	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
375
376	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
377		max_low_pfn_mapped = max(max_low_pfn_mapped,
378					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
379}
380
381bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
382{
383	int i;
384
385	for (i = 0; i < nr_pfn_mapped; i++)
386		if ((start_pfn >= pfn_mapped[i].start) &&
387		    (end_pfn <= pfn_mapped[i].end))
388			return true;
389
390	return false;
391}
392
393/*
394 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
395 * This runs before bootmem is initialized and gets pages directly from
396 * the physical memory. To access them they are temporarily mapped.
397 */
398unsigned long __init_refok init_memory_mapping(unsigned long start,
399					       unsigned long end)
400{
401	struct map_range mr[NR_RANGE_MR];
402	unsigned long ret = 0;
403	int nr_range, i;
404
405	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
406	       start, end - 1);
407
408	memset(mr, 0, sizeof(mr));
409	nr_range = split_mem_range(mr, 0, start, end);
410
411	for (i = 0; i < nr_range; i++)
412		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
413						   mr[i].page_size_mask);
414
415	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
416
417	return ret >> PAGE_SHIFT;
418}
419
420/*
421 * We need to iterate through the E820 memory map and create direct mappings
422 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
423 * create direct mappings for all pfns from [0 to max_low_pfn) and
424 * [4GB to max_pfn) because of possible memory holes in high addresses
425 * that cannot be marked as UC by fixed/variable range MTRRs.
426 * Depending on the alignment of E820 ranges, this may possibly result
427 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
428 *
429 * init_mem_mapping() calls init_range_memory_mapping() with big range.
430 * That range would have hole in the middle or ends, and only ram parts
431 * will be mapped in init_range_memory_mapping().
432 */
433static unsigned long __init init_range_memory_mapping(
434					   unsigned long r_start,
435					   unsigned long r_end)
436{
437	unsigned long start_pfn, end_pfn;
438	unsigned long mapped_ram_size = 0;
439	int i;
440
441	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
442		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
443		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
444		if (start >= end)
445			continue;
446
447		/*
448		 * if it is overlapping with brk pgt, we need to
449		 * alloc pgt buf from memblock instead.
450		 */
451		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
452				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
453		init_memory_mapping(start, end);
454		mapped_ram_size += end - start;
455		can_use_brk_pgt = true;
456	}
457
458	return mapped_ram_size;
459}
460
461static unsigned long __init get_new_step_size(unsigned long step_size)
462{
463	/*
464	 * Initial mapped size is PMD_SIZE (2M).
465	 * We can not set step_size to be PUD_SIZE (1G) yet.
466	 * In worse case, when we cross the 1G boundary, and
467	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
468	 * to map 1G range with PTE. Hence we use one less than the
469	 * difference of page table level shifts.
470	 *
471	 * Don't need to worry about overflow in the top-down case, on 32bit,
472	 * when step_size is 0, round_down() returns 0 for start, and that
473	 * turns it into 0x100000000ULL.
474	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
475	 * needs to be taken into consideration by the code below.
476	 */
477	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
478}
479
480/**
481 * memory_map_top_down - Map [map_start, map_end) top down
482 * @map_start: start address of the target memory range
483 * @map_end: end address of the target memory range
484 *
485 * This function will setup direct mapping for memory range
486 * [map_start, map_end) in top-down. That said, the page tables
487 * will be allocated at the end of the memory, and we map the
488 * memory in top-down.
489 */
490static void __init memory_map_top_down(unsigned long map_start,
491				       unsigned long map_end)
492{
493	unsigned long real_end, start, last_start;
494	unsigned long step_size;
495	unsigned long addr;
496	unsigned long mapped_ram_size = 0;
497
498	/* xen has big range in reserved near end of ram, skip it at first.*/
499	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
500	real_end = addr + PMD_SIZE;
501
502	/* step_size need to be small so pgt_buf from BRK could cover it */
503	step_size = PMD_SIZE;
504	max_pfn_mapped = 0; /* will get exact value next */
505	min_pfn_mapped = real_end >> PAGE_SHIFT;
506	last_start = start = real_end;
507
508	/*
509	 * We start from the top (end of memory) and go to the bottom.
510	 * The memblock_find_in_range() gets us a block of RAM from the
511	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
512	 * for page table.
513	 */
514	while (last_start > map_start) {
515		if (last_start > step_size) {
516			start = round_down(last_start - 1, step_size);
517			if (start < map_start)
518				start = map_start;
519		} else
520			start = map_start;
521		mapped_ram_size += init_range_memory_mapping(start,
522							last_start);
523		last_start = start;
524		min_pfn_mapped = last_start >> PAGE_SHIFT;
525		if (mapped_ram_size >= step_size)
526			step_size = get_new_step_size(step_size);
527	}
528
529	if (real_end < map_end)
530		init_range_memory_mapping(real_end, map_end);
531}
532
533/**
534 * memory_map_bottom_up - Map [map_start, map_end) bottom up
535 * @map_start: start address of the target memory range
536 * @map_end: end address of the target memory range
537 *
538 * This function will setup direct mapping for memory range
539 * [map_start, map_end) in bottom-up. Since we have limited the
540 * bottom-up allocation above the kernel, the page tables will
541 * be allocated just above the kernel and we map the memory
542 * in [map_start, map_end) in bottom-up.
543 */
544static void __init memory_map_bottom_up(unsigned long map_start,
545					unsigned long map_end)
546{
547	unsigned long next, start;
548	unsigned long mapped_ram_size = 0;
549	/* step_size need to be small so pgt_buf from BRK could cover it */
550	unsigned long step_size = PMD_SIZE;
551
552	start = map_start;
553	min_pfn_mapped = start >> PAGE_SHIFT;
554
555	/*
556	 * We start from the bottom (@map_start) and go to the top (@map_end).
557	 * The memblock_find_in_range() gets us a block of RAM from the
558	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
559	 * for page table.
560	 */
561	while (start < map_end) {
562		if (step_size && map_end - start > step_size) {
563			next = round_up(start + 1, step_size);
564			if (next > map_end)
565				next = map_end;
566		} else {
567			next = map_end;
568		}
569
570		mapped_ram_size += init_range_memory_mapping(start, next);
571		start = next;
572
573		if (mapped_ram_size >= step_size)
574			step_size = get_new_step_size(step_size);
575	}
576}
577
578void __init init_mem_mapping(void)
579{
580	unsigned long end;
581
 
582	probe_page_size_mask();
 
583
584#ifdef CONFIG_X86_64
585	end = max_pfn << PAGE_SHIFT;
586#else
587	end = max_low_pfn << PAGE_SHIFT;
588#endif
589
590	/* the ISA range is always mapped regardless of memory holes */
591	init_memory_mapping(0, ISA_END_ADDRESS);
592
 
 
 
593	/*
594	 * If the allocation is in bottom-up direction, we setup direct mapping
595	 * in bottom-up, otherwise we setup direct mapping in top-down.
596	 */
597	if (memblock_bottom_up()) {
598		unsigned long kernel_end = __pa_symbol(_end);
599
600		/*
601		 * we need two separate calls here. This is because we want to
602		 * allocate page tables above the kernel. So we first map
603		 * [kernel_end, end) to make memory above the kernel be mapped
604		 * as soon as possible. And then use page tables allocated above
605		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
606		 */
607		memory_map_bottom_up(kernel_end, end);
608		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
609	} else {
610		memory_map_top_down(ISA_END_ADDRESS, end);
611	}
612
613#ifdef CONFIG_X86_64
614	if (max_pfn > max_low_pfn) {
615		/* can we preseve max_low_pfn ?*/
616		max_low_pfn = max_pfn;
617	}
618#else
619	early_ioremap_page_table_range_init();
620#endif
621
622	load_cr3(swapper_pg_dir);
623	__flush_tlb_all();
624
 
 
625	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
626}
627
628/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
630 * is valid. The argument is a physical page number.
631 *
632 *
633 * On x86, access has to be given to the first megabyte of ram because that area
634 * contains BIOS code and data regions used by X and dosemu and similar apps.
635 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
636 * mmio resources as well as potential bios/acpi data regions.
 
 
637 */
638int devmem_is_allowed(unsigned long pagenr)
639{
640	if (pagenr < 256)
641		return 1;
642	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
 
 
 
 
 
 
 
643		return 0;
644	if (!page_is_ram(pagenr))
645		return 1;
646	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
647}
648
649void free_init_pages(char *what, unsigned long begin, unsigned long end)
650{
651	unsigned long begin_aligned, end_aligned;
652
653	/* Make sure boundaries are page aligned */
654	begin_aligned = PAGE_ALIGN(begin);
655	end_aligned   = end & PAGE_MASK;
656
657	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
658		begin = begin_aligned;
659		end   = end_aligned;
660	}
661
662	if (begin >= end)
663		return;
664
665	/*
666	 * If debugging page accesses then do not free this memory but
667	 * mark them not present - any buggy init-section access will
668	 * create a kernel page fault:
669	 */
670	if (debug_pagealloc_enabled()) {
671		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
672			begin, end - 1);
 
 
 
 
 
673		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
674	} else {
675		/*
676		 * We just marked the kernel text read only above, now that
677		 * we are going to free part of that, we need to make that
678		 * writeable and non-executable first.
679		 */
680		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
681		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
682
683		free_reserved_area((void *)begin, (void *)end,
684				   POISON_FREE_INITMEM, what);
685	}
686}
687
688void free_initmem(void)
 
 
 
 
 
689{
690	free_init_pages("unused kernel",
691			(unsigned long)(&__init_begin),
692			(unsigned long)(&__init_end));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693}
694
695#ifdef CONFIG_BLK_DEV_INITRD
696void __init free_initrd_mem(unsigned long start, unsigned long end)
697{
698	/*
699	 * Remember, initrd memory may contain microcode or other useful things.
700	 * Before we lose initrd mem, we need to find a place to hold them
701	 * now that normal virtual memory is enabled.
702	 */
703	save_microcode_in_initrd();
704
705	/*
706	 * end could be not aligned, and We can not align that,
707	 * decompresser could be confused by aligned initrd_end
708	 * We already reserve the end partial page before in
709	 *   - i386_start_kernel()
710	 *   - x86_64_start_kernel()
711	 *   - relocate_initrd()
712	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
713	 */
714	free_init_pages("initrd", start, PAGE_ALIGN(end));
715}
716#endif
717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718void __init zone_sizes_init(void)
719{
720	unsigned long max_zone_pfns[MAX_NR_ZONES];
721
722	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
723
724#ifdef CONFIG_ZONE_DMA
725	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
726#endif
727#ifdef CONFIG_ZONE_DMA32
728	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
729#endif
730	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
731#ifdef CONFIG_HIGHMEM
732	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
733#endif
734
735	free_area_init_nodes(max_zone_pfns);
736}
737
738DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
739#ifdef CONFIG_SMP
740	.active_mm = &init_mm,
741	.state = 0,
742#endif
743	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
744};
745EXPORT_SYMBOL_GPL(cpu_tlbstate);
746
747void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
748{
749	/* entry 0 MUST be WB (hardwired to speed up translations) */
750	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
751
752	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
753	__pte2cachemode_tbl[entry] = cache;
754}
v5.4
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/swapfile.h>
  7#include <linux/swapops.h>
  8#include <linux/kmemleak.h>
  9#include <linux/sched/task.h>
 10
 11#include <asm/set_memory.h>
 12#include <asm/e820/api.h>
 13#include <asm/init.h>
 14#include <asm/page.h>
 15#include <asm/page_types.h>
 16#include <asm/sections.h>
 17#include <asm/setup.h>
 18#include <asm/tlbflush.h>
 19#include <asm/tlb.h>
 20#include <asm/proto.h>
 21#include <asm/dma.h>		/* for MAX_DMA_PFN */
 22#include <asm/microcode.h>
 23#include <asm/kaslr.h>
 24#include <asm/hypervisor.h>
 25#include <asm/cpufeature.h>
 26#include <asm/pti.h>
 27#include <asm/text-patching.h>
 28
 29/*
 30 * We need to define the tracepoints somewhere, and tlb.c
 31 * is only compied when SMP=y.
 32 */
 33#define CREATE_TRACE_POINTS
 34#include <trace/events/tlb.h>
 35
 36#include "mm_internal.h"
 37
 38/*
 39 * Tables translating between page_cache_type_t and pte encoding.
 40 *
 41 * The default values are defined statically as minimal supported mode;
 42 * WC and WT fall back to UC-.  pat_init() updates these values to support
 43 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 44 * for the details.  Note, __early_ioremap() used during early boot-time
 45 * takes pgprot_t (pte encoding) and does not use these tables.
 46 *
 47 *   Index into __cachemode2pte_tbl[] is the cachemode.
 48 *
 49 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 50 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 51 */
 52uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 53	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 54	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 55	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 56	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 57	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 58	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 59};
 60EXPORT_SYMBOL(__cachemode2pte_tbl);
 61
 62uint8_t __pte2cachemode_tbl[8] = {
 63	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 64	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 65	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 66	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 67	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 68	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 69	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 70	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 71};
 72EXPORT_SYMBOL(__pte2cachemode_tbl);
 73
 74static unsigned long __initdata pgt_buf_start;
 75static unsigned long __initdata pgt_buf_end;
 76static unsigned long __initdata pgt_buf_top;
 77
 78static unsigned long min_pfn_mapped;
 79
 80static bool __initdata can_use_brk_pgt = true;
 81
 82/*
 83 * Pages returned are already directly mapped.
 84 *
 85 * Changing that is likely to break Xen, see commit:
 86 *
 87 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 88 *
 89 * for detailed information.
 90 */
 91__ref void *alloc_low_pages(unsigned int num)
 92{
 93	unsigned long pfn;
 94	int i;
 95
 96	if (after_bootmem) {
 97		unsigned int order;
 98
 99		order = get_order((unsigned long)num << PAGE_SHIFT);
100		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 
101	}
102
103	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
104		unsigned long ret = 0;
105
106		if (min_pfn_mapped < max_pfn_mapped) {
107			ret = memblock_find_in_range(
108					min_pfn_mapped << PAGE_SHIFT,
109					max_pfn_mapped << PAGE_SHIFT,
110					PAGE_SIZE * num , PAGE_SIZE);
111		}
112		if (ret)
113			memblock_reserve(ret, PAGE_SIZE * num);
114		else if (can_use_brk_pgt)
115			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
116
117		if (!ret)
118			panic("alloc_low_pages: can not alloc memory");
119
120		pfn = ret >> PAGE_SHIFT;
121	} else {
122		pfn = pgt_buf_end;
123		pgt_buf_end += num;
124		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
125			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
126	}
127
128	for (i = 0; i < num; i++) {
129		void *adr;
130
131		adr = __va((pfn + i) << PAGE_SHIFT);
132		clear_page(adr);
133	}
134
135	return __va(pfn << PAGE_SHIFT);
136}
137
138/*
139 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
140 * With KASLR memory randomization, depending on the machine e820 memory
141 * and the PUD alignment. We may need twice more pages when KASLR memory
142 * randomization is enabled.
143 */
144#ifndef CONFIG_RANDOMIZE_MEMORY
145#define INIT_PGD_PAGE_COUNT      6
146#else
147#define INIT_PGD_PAGE_COUNT      12
148#endif
149#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
150RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
151void  __init early_alloc_pgt_buf(void)
152{
153	unsigned long tables = INIT_PGT_BUF_SIZE;
154	phys_addr_t base;
155
156	base = __pa(extend_brk(tables, PAGE_SIZE));
157
158	pgt_buf_start = base >> PAGE_SHIFT;
159	pgt_buf_end = pgt_buf_start;
160	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
161}
162
163int after_bootmem;
164
165early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
166
167struct map_range {
168	unsigned long start;
169	unsigned long end;
170	unsigned page_size_mask;
171};
172
173static int page_size_mask;
174
175static void __init probe_page_size_mask(void)
176{
 
177	/*
178	 * For pagealloc debugging, identity mapping will use small pages.
 
179	 * This will simplify cpa(), which otherwise needs to support splitting
180	 * large pages into small in interrupt context, etc.
181	 */
182	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
183		page_size_mask |= 1 << PG_LEVEL_2M;
184	else
185		direct_gbpages = 0;
186
187	/* Enable PSE if available */
188	if (boot_cpu_has(X86_FEATURE_PSE))
189		cr4_set_bits_and_update_boot(X86_CR4_PSE);
190
191	/* Enable PGE if available */
192	__supported_pte_mask &= ~_PAGE_GLOBAL;
193	if (boot_cpu_has(X86_FEATURE_PGE)) {
194		cr4_set_bits_and_update_boot(X86_CR4_PGE);
195		__supported_pte_mask |= _PAGE_GLOBAL;
196	}
197
198	/* By the default is everything supported: */
199	__default_kernel_pte_mask = __supported_pte_mask;
200	/* Except when with PTI where the kernel is mostly non-Global: */
201	if (cpu_feature_enabled(X86_FEATURE_PTI))
202		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
203
204	/* Enable 1 GB linear kernel mappings if available: */
205	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
206		printk(KERN_INFO "Using GB pages for direct mapping\n");
207		page_size_mask |= 1 << PG_LEVEL_1G;
208	} else {
209		direct_gbpages = 0;
210	}
211}
212
213static void setup_pcid(void)
214{
215	if (!IS_ENABLED(CONFIG_X86_64))
216		return;
217
218	if (!boot_cpu_has(X86_FEATURE_PCID))
219		return;
220
221	if (boot_cpu_has(X86_FEATURE_PGE)) {
222		/*
223		 * This can't be cr4_set_bits_and_update_boot() -- the
224		 * trampoline code can't handle CR4.PCIDE and it wouldn't
225		 * do any good anyway.  Despite the name,
226		 * cr4_set_bits_and_update_boot() doesn't actually cause
227		 * the bits in question to remain set all the way through
228		 * the secondary boot asm.
229		 *
230		 * Instead, we brute-force it and set CR4.PCIDE manually in
231		 * start_secondary().
232		 */
233		cr4_set_bits(X86_CR4_PCIDE);
234
235		/*
236		 * INVPCID's single-context modes (2/3) only work if we set
237		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
238		 * on systems that have X86_CR4_PCIDE clear, or that have
239		 * no INVPCID support at all.
240		 */
241		if (boot_cpu_has(X86_FEATURE_INVPCID))
242			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
243	} else {
244		/*
245		 * flush_tlb_all(), as currently implemented, won't work if
246		 * PCID is on but PGE is not.  Since that combination
247		 * doesn't exist on real hardware, there's no reason to try
248		 * to fully support it, but it's polite to avoid corrupting
249		 * data if we're on an improperly configured VM.
250		 */
251		setup_clear_cpu_cap(X86_FEATURE_PCID);
252	}
253}
254
255#ifdef CONFIG_X86_32
256#define NR_RANGE_MR 3
257#else /* CONFIG_X86_64 */
258#define NR_RANGE_MR 5
259#endif
260
261static int __meminit save_mr(struct map_range *mr, int nr_range,
262			     unsigned long start_pfn, unsigned long end_pfn,
263			     unsigned long page_size_mask)
264{
265	if (start_pfn < end_pfn) {
266		if (nr_range >= NR_RANGE_MR)
267			panic("run out of range for init_memory_mapping\n");
268		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
269		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
270		mr[nr_range].page_size_mask = page_size_mask;
271		nr_range++;
272	}
273
274	return nr_range;
275}
276
277/*
278 * adjust the page_size_mask for small range to go with
279 *	big page size instead small one if nearby are ram too.
280 */
281static void __ref adjust_range_page_size_mask(struct map_range *mr,
282							 int nr_range)
283{
284	int i;
285
286	for (i = 0; i < nr_range; i++) {
287		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
288		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
289			unsigned long start = round_down(mr[i].start, PMD_SIZE);
290			unsigned long end = round_up(mr[i].end, PMD_SIZE);
291
292#ifdef CONFIG_X86_32
293			if ((end >> PAGE_SHIFT) > max_low_pfn)
294				continue;
295#endif
296
297			if (memblock_is_region_memory(start, end - start))
298				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
299		}
300		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
301		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
302			unsigned long start = round_down(mr[i].start, PUD_SIZE);
303			unsigned long end = round_up(mr[i].end, PUD_SIZE);
304
305			if (memblock_is_region_memory(start, end - start))
306				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
307		}
308	}
309}
310
311static const char *page_size_string(struct map_range *mr)
312{
313	static const char str_1g[] = "1G";
314	static const char str_2m[] = "2M";
315	static const char str_4m[] = "4M";
316	static const char str_4k[] = "4k";
317
318	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
319		return str_1g;
320	/*
321	 * 32-bit without PAE has a 4M large page size.
322	 * PG_LEVEL_2M is misnamed, but we can at least
323	 * print out the right size in the string.
324	 */
325	if (IS_ENABLED(CONFIG_X86_32) &&
326	    !IS_ENABLED(CONFIG_X86_PAE) &&
327	    mr->page_size_mask & (1<<PG_LEVEL_2M))
328		return str_4m;
329
330	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
331		return str_2m;
332
333	return str_4k;
334}
335
336static int __meminit split_mem_range(struct map_range *mr, int nr_range,
337				     unsigned long start,
338				     unsigned long end)
339{
340	unsigned long start_pfn, end_pfn, limit_pfn;
341	unsigned long pfn;
342	int i;
343
344	limit_pfn = PFN_DOWN(end);
345
346	/* head if not big page alignment ? */
347	pfn = start_pfn = PFN_DOWN(start);
348#ifdef CONFIG_X86_32
349	/*
350	 * Don't use a large page for the first 2/4MB of memory
351	 * because there are often fixed size MTRRs in there
352	 * and overlapping MTRRs into large pages can cause
353	 * slowdowns.
354	 */
355	if (pfn == 0)
356		end_pfn = PFN_DOWN(PMD_SIZE);
357	else
358		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
359#else /* CONFIG_X86_64 */
360	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
361#endif
362	if (end_pfn > limit_pfn)
363		end_pfn = limit_pfn;
364	if (start_pfn < end_pfn) {
365		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
366		pfn = end_pfn;
367	}
368
369	/* big page (2M) range */
370	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
371#ifdef CONFIG_X86_32
372	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
373#else /* CONFIG_X86_64 */
374	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
375	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
376		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
377#endif
378
379	if (start_pfn < end_pfn) {
380		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
381				page_size_mask & (1<<PG_LEVEL_2M));
382		pfn = end_pfn;
383	}
384
385#ifdef CONFIG_X86_64
386	/* big page (1G) range */
387	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
388	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
389	if (start_pfn < end_pfn) {
390		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
391				page_size_mask &
392				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
393		pfn = end_pfn;
394	}
395
396	/* tail is not big page (1G) alignment */
397	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
398	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
399	if (start_pfn < end_pfn) {
400		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
401				page_size_mask & (1<<PG_LEVEL_2M));
402		pfn = end_pfn;
403	}
404#endif
405
406	/* tail is not big page (2M) alignment */
407	start_pfn = pfn;
408	end_pfn = limit_pfn;
409	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
410
411	if (!after_bootmem)
412		adjust_range_page_size_mask(mr, nr_range);
413
414	/* try to merge same page size and continuous */
415	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
416		unsigned long old_start;
417		if (mr[i].end != mr[i+1].start ||
418		    mr[i].page_size_mask != mr[i+1].page_size_mask)
419			continue;
420		/* move it */
421		old_start = mr[i].start;
422		memmove(&mr[i], &mr[i+1],
423			(nr_range - 1 - i) * sizeof(struct map_range));
424		mr[i--].start = old_start;
425		nr_range--;
426	}
427
428	for (i = 0; i < nr_range; i++)
429		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
430				mr[i].start, mr[i].end - 1,
431				page_size_string(&mr[i]));
432
433	return nr_range;
434}
435
436struct range pfn_mapped[E820_MAX_ENTRIES];
437int nr_pfn_mapped;
438
439static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
440{
441	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
442					     nr_pfn_mapped, start_pfn, end_pfn);
443	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
444
445	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
446
447	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
448		max_low_pfn_mapped = max(max_low_pfn_mapped,
449					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
450}
451
452bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
453{
454	int i;
455
456	for (i = 0; i < nr_pfn_mapped; i++)
457		if ((start_pfn >= pfn_mapped[i].start) &&
458		    (end_pfn <= pfn_mapped[i].end))
459			return true;
460
461	return false;
462}
463
464/*
465 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
466 * This runs before bootmem is initialized and gets pages directly from
467 * the physical memory. To access them they are temporarily mapped.
468 */
469unsigned long __ref init_memory_mapping(unsigned long start,
470					       unsigned long end)
471{
472	struct map_range mr[NR_RANGE_MR];
473	unsigned long ret = 0;
474	int nr_range, i;
475
476	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
477	       start, end - 1);
478
479	memset(mr, 0, sizeof(mr));
480	nr_range = split_mem_range(mr, 0, start, end);
481
482	for (i = 0; i < nr_range; i++)
483		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
484						   mr[i].page_size_mask);
485
486	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
487
488	return ret >> PAGE_SHIFT;
489}
490
491/*
492 * We need to iterate through the E820 memory map and create direct mappings
493 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
494 * create direct mappings for all pfns from [0 to max_low_pfn) and
495 * [4GB to max_pfn) because of possible memory holes in high addresses
496 * that cannot be marked as UC by fixed/variable range MTRRs.
497 * Depending on the alignment of E820 ranges, this may possibly result
498 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
499 *
500 * init_mem_mapping() calls init_range_memory_mapping() with big range.
501 * That range would have hole in the middle or ends, and only ram parts
502 * will be mapped in init_range_memory_mapping().
503 */
504static unsigned long __init init_range_memory_mapping(
505					   unsigned long r_start,
506					   unsigned long r_end)
507{
508	unsigned long start_pfn, end_pfn;
509	unsigned long mapped_ram_size = 0;
510	int i;
511
512	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
513		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
514		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
515		if (start >= end)
516			continue;
517
518		/*
519		 * if it is overlapping with brk pgt, we need to
520		 * alloc pgt buf from memblock instead.
521		 */
522		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
523				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
524		init_memory_mapping(start, end);
525		mapped_ram_size += end - start;
526		can_use_brk_pgt = true;
527	}
528
529	return mapped_ram_size;
530}
531
532static unsigned long __init get_new_step_size(unsigned long step_size)
533{
534	/*
535	 * Initial mapped size is PMD_SIZE (2M).
536	 * We can not set step_size to be PUD_SIZE (1G) yet.
537	 * In worse case, when we cross the 1G boundary, and
538	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
539	 * to map 1G range with PTE. Hence we use one less than the
540	 * difference of page table level shifts.
541	 *
542	 * Don't need to worry about overflow in the top-down case, on 32bit,
543	 * when step_size is 0, round_down() returns 0 for start, and that
544	 * turns it into 0x100000000ULL.
545	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
546	 * needs to be taken into consideration by the code below.
547	 */
548	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
549}
550
551/**
552 * memory_map_top_down - Map [map_start, map_end) top down
553 * @map_start: start address of the target memory range
554 * @map_end: end address of the target memory range
555 *
556 * This function will setup direct mapping for memory range
557 * [map_start, map_end) in top-down. That said, the page tables
558 * will be allocated at the end of the memory, and we map the
559 * memory in top-down.
560 */
561static void __init memory_map_top_down(unsigned long map_start,
562				       unsigned long map_end)
563{
564	unsigned long real_end, start, last_start;
565	unsigned long step_size;
566	unsigned long addr;
567	unsigned long mapped_ram_size = 0;
568
569	/* xen has big range in reserved near end of ram, skip it at first.*/
570	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
571	real_end = addr + PMD_SIZE;
572
573	/* step_size need to be small so pgt_buf from BRK could cover it */
574	step_size = PMD_SIZE;
575	max_pfn_mapped = 0; /* will get exact value next */
576	min_pfn_mapped = real_end >> PAGE_SHIFT;
577	last_start = start = real_end;
578
579	/*
580	 * We start from the top (end of memory) and go to the bottom.
581	 * The memblock_find_in_range() gets us a block of RAM from the
582	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
583	 * for page table.
584	 */
585	while (last_start > map_start) {
586		if (last_start > step_size) {
587			start = round_down(last_start - 1, step_size);
588			if (start < map_start)
589				start = map_start;
590		} else
591			start = map_start;
592		mapped_ram_size += init_range_memory_mapping(start,
593							last_start);
594		last_start = start;
595		min_pfn_mapped = last_start >> PAGE_SHIFT;
596		if (mapped_ram_size >= step_size)
597			step_size = get_new_step_size(step_size);
598	}
599
600	if (real_end < map_end)
601		init_range_memory_mapping(real_end, map_end);
602}
603
604/**
605 * memory_map_bottom_up - Map [map_start, map_end) bottom up
606 * @map_start: start address of the target memory range
607 * @map_end: end address of the target memory range
608 *
609 * This function will setup direct mapping for memory range
610 * [map_start, map_end) in bottom-up. Since we have limited the
611 * bottom-up allocation above the kernel, the page tables will
612 * be allocated just above the kernel and we map the memory
613 * in [map_start, map_end) in bottom-up.
614 */
615static void __init memory_map_bottom_up(unsigned long map_start,
616					unsigned long map_end)
617{
618	unsigned long next, start;
619	unsigned long mapped_ram_size = 0;
620	/* step_size need to be small so pgt_buf from BRK could cover it */
621	unsigned long step_size = PMD_SIZE;
622
623	start = map_start;
624	min_pfn_mapped = start >> PAGE_SHIFT;
625
626	/*
627	 * We start from the bottom (@map_start) and go to the top (@map_end).
628	 * The memblock_find_in_range() gets us a block of RAM from the
629	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
630	 * for page table.
631	 */
632	while (start < map_end) {
633		if (step_size && map_end - start > step_size) {
634			next = round_up(start + 1, step_size);
635			if (next > map_end)
636				next = map_end;
637		} else {
638			next = map_end;
639		}
640
641		mapped_ram_size += init_range_memory_mapping(start, next);
642		start = next;
643
644		if (mapped_ram_size >= step_size)
645			step_size = get_new_step_size(step_size);
646	}
647}
648
649void __init init_mem_mapping(void)
650{
651	unsigned long end;
652
653	pti_check_boottime_disable();
654	probe_page_size_mask();
655	setup_pcid();
656
657#ifdef CONFIG_X86_64
658	end = max_pfn << PAGE_SHIFT;
659#else
660	end = max_low_pfn << PAGE_SHIFT;
661#endif
662
663	/* the ISA range is always mapped regardless of memory holes */
664	init_memory_mapping(0, ISA_END_ADDRESS);
665
666	/* Init the trampoline, possibly with KASLR memory offset */
667	init_trampoline();
668
669	/*
670	 * If the allocation is in bottom-up direction, we setup direct mapping
671	 * in bottom-up, otherwise we setup direct mapping in top-down.
672	 */
673	if (memblock_bottom_up()) {
674		unsigned long kernel_end = __pa_symbol(_end);
675
676		/*
677		 * we need two separate calls here. This is because we want to
678		 * allocate page tables above the kernel. So we first map
679		 * [kernel_end, end) to make memory above the kernel be mapped
680		 * as soon as possible. And then use page tables allocated above
681		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
682		 */
683		memory_map_bottom_up(kernel_end, end);
684		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
685	} else {
686		memory_map_top_down(ISA_END_ADDRESS, end);
687	}
688
689#ifdef CONFIG_X86_64
690	if (max_pfn > max_low_pfn) {
691		/* can we preseve max_low_pfn ?*/
692		max_low_pfn = max_pfn;
693	}
694#else
695	early_ioremap_page_table_range_init();
696#endif
697
698	load_cr3(swapper_pg_dir);
699	__flush_tlb_all();
700
701	x86_init.hyper.init_mem_mapping();
702
703	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
704}
705
706/*
707 * Initialize an mm_struct to be used during poking and a pointer to be used
708 * during patching.
709 */
710void __init poking_init(void)
711{
712	spinlock_t *ptl;
713	pte_t *ptep;
714
715	poking_mm = copy_init_mm();
716	BUG_ON(!poking_mm);
717
718	/*
719	 * Randomize the poking address, but make sure that the following page
720	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
721	 * and adjust the address if the PMD ends after the first one.
722	 */
723	poking_addr = TASK_UNMAPPED_BASE;
724	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
725		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
726			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
727
728	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
729		poking_addr += PAGE_SIZE;
730
731	/*
732	 * We need to trigger the allocation of the page-tables that will be
733	 * needed for poking now. Later, poking may be performed in an atomic
734	 * section, which might cause allocation to fail.
735	 */
736	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
737	BUG_ON(!ptep);
738	pte_unmap_unlock(ptep, ptl);
739}
740
741/*
742 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
743 * is valid. The argument is a physical page number.
744 *
745 * On x86, access has to be given to the first megabyte of RAM because that
746 * area traditionally contains BIOS code and data regions used by X, dosemu,
747 * and similar apps. Since they map the entire memory range, the whole range
748 * must be allowed (for mapping), but any areas that would otherwise be
749 * disallowed are flagged as being "zero filled" instead of rejected.
750 * Access has to be given to non-kernel-ram areas as well, these contain the
751 * PCI mmio resources as well as potential bios/acpi data regions.
752 */
753int devmem_is_allowed(unsigned long pagenr)
754{
755	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
756				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
757			!= REGION_DISJOINT) {
758		/*
759		 * For disallowed memory regions in the low 1MB range,
760		 * request that the page be shown as all zeros.
761		 */
762		if (pagenr < 256)
763			return 2;
764
765		return 0;
766	}
767
768	/*
769	 * This must follow RAM test, since System RAM is considered a
770	 * restricted resource under CONFIG_STRICT_IOMEM.
771	 */
772	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
773		/* Low 1MB bypasses iomem restrictions. */
774		if (pagenr < 256)
775			return 1;
776
777		return 0;
778	}
779
780	return 1;
781}
782
783void free_init_pages(const char *what, unsigned long begin, unsigned long end)
784{
785	unsigned long begin_aligned, end_aligned;
786
787	/* Make sure boundaries are page aligned */
788	begin_aligned = PAGE_ALIGN(begin);
789	end_aligned   = end & PAGE_MASK;
790
791	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
792		begin = begin_aligned;
793		end   = end_aligned;
794	}
795
796	if (begin >= end)
797		return;
798
799	/*
800	 * If debugging page accesses then do not free this memory but
801	 * mark them not present - any buggy init-section access will
802	 * create a kernel page fault:
803	 */
804	if (debug_pagealloc_enabled()) {
805		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
806			begin, end - 1);
807		/*
808		 * Inform kmemleak about the hole in the memory since the
809		 * corresponding pages will be unmapped.
810		 */
811		kmemleak_free_part((void *)begin, end - begin);
812		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
813	} else {
814		/*
815		 * We just marked the kernel text read only above, now that
816		 * we are going to free part of that, we need to make that
817		 * writeable and non-executable first.
818		 */
819		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
820		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
821
822		free_reserved_area((void *)begin, (void *)end,
823				   POISON_FREE_INITMEM, what);
824	}
825}
826
827/*
828 * begin/end can be in the direct map or the "high kernel mapping"
829 * used for the kernel image only.  free_init_pages() will do the
830 * right thing for either kind of address.
831 */
832void free_kernel_image_pages(void *begin, void *end)
833{
834	unsigned long begin_ul = (unsigned long)begin;
835	unsigned long end_ul = (unsigned long)end;
836	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
837
838
839	free_init_pages("unused kernel image", begin_ul, end_ul);
840
841	/*
842	 * PTI maps some of the kernel into userspace.  For performance,
843	 * this includes some kernel areas that do not contain secrets.
844	 * Those areas might be adjacent to the parts of the kernel image
845	 * being freed, which may contain secrets.  Remove the "high kernel
846	 * image mapping" for these freed areas, ensuring they are not even
847	 * potentially vulnerable to Meltdown regardless of the specific
848	 * optimizations PTI is currently using.
849	 *
850	 * The "noalias" prevents unmapping the direct map alias which is
851	 * needed to access the freed pages.
852	 *
853	 * This is only valid for 64bit kernels. 32bit has only one mapping
854	 * which can't be treated in this way for obvious reasons.
855	 */
856	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
857		set_memory_np_noalias(begin_ul, len_pages);
858}
859
860void __weak mem_encrypt_free_decrypted_mem(void) { }
861
862void __ref free_initmem(void)
863{
864	e820__reallocate_tables();
865
866	mem_encrypt_free_decrypted_mem();
867
868	free_kernel_image_pages(&__init_begin, &__init_end);
869}
870
871#ifdef CONFIG_BLK_DEV_INITRD
872void __init free_initrd_mem(unsigned long start, unsigned long end)
873{
874	/*
 
 
 
 
 
 
 
875	 * end could be not aligned, and We can not align that,
876	 * decompresser could be confused by aligned initrd_end
877	 * We already reserve the end partial page before in
878	 *   - i386_start_kernel()
879	 *   - x86_64_start_kernel()
880	 *   - relocate_initrd()
881	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
882	 */
883	free_init_pages("initrd", start, PAGE_ALIGN(end));
884}
885#endif
886
887/*
888 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
889 * and pass it to the MM layer - to help it set zone watermarks more
890 * accurately.
891 *
892 * Done on 64-bit systems only for the time being, although 32-bit systems
893 * might benefit from this as well.
894 */
895void __init memblock_find_dma_reserve(void)
896{
897#ifdef CONFIG_X86_64
898	u64 nr_pages = 0, nr_free_pages = 0;
899	unsigned long start_pfn, end_pfn;
900	phys_addr_t start_addr, end_addr;
901	int i;
902	u64 u;
903
904	/*
905	 * Iterate over all memory ranges (free and reserved ones alike),
906	 * to calculate the total number of pages in the first 16 MB of RAM:
907	 */
908	nr_pages = 0;
909	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
910		start_pfn = min(start_pfn, MAX_DMA_PFN);
911		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
912
913		nr_pages += end_pfn - start_pfn;
914	}
915
916	/*
917	 * Iterate over free memory ranges to calculate the number of free
918	 * pages in the DMA zone, while not counting potential partial
919	 * pages at the beginning or the end of the range:
920	 */
921	nr_free_pages = 0;
922	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
923		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
924		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
925
926		if (start_pfn < end_pfn)
927			nr_free_pages += end_pfn - start_pfn;
928	}
929
930	set_dma_reserve(nr_pages - nr_free_pages);
931#endif
932}
933
934void __init zone_sizes_init(void)
935{
936	unsigned long max_zone_pfns[MAX_NR_ZONES];
937
938	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
939
940#ifdef CONFIG_ZONE_DMA
941	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
942#endif
943#ifdef CONFIG_ZONE_DMA32
944	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
945#endif
946	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
947#ifdef CONFIG_HIGHMEM
948	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
949#endif
950
951	free_area_init_nodes(max_zone_pfns);
952}
953
954__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
955	.loaded_mm = &init_mm,
956	.next_asid = 1,
 
 
957	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
958};
959EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
960
961void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
962{
963	/* entry 0 MUST be WB (hardwired to speed up translations) */
964	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
965
966	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
967	__pte2cachemode_tbl[entry] = cache;
968}
969
970#ifdef CONFIG_SWAP
971unsigned long max_swapfile_size(void)
972{
973	unsigned long pages;
974
975	pages = generic_max_swapfile_size();
976
977	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
978		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
979		unsigned long long l1tf_limit = l1tf_pfn_limit();
980		/*
981		 * We encode swap offsets also with 3 bits below those for pfn
982		 * which makes the usable limit higher.
983		 */
984#if CONFIG_PGTABLE_LEVELS > 2
985		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
986#endif
987		pages = min_t(unsigned long long, l1tf_limit, pages);
988	}
989	return pages;
990}
991#endif