Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 
 20
 21/*
 22 * We need to define the tracepoints somewhere, and tlb.c
 23 * is only compied when SMP=y.
 24 */
 25#define CREATE_TRACE_POINTS
 26#include <trace/events/tlb.h>
 27
 28#include "mm_internal.h"
 29
 30/*
 31 * Tables translating between page_cache_type_t and pte encoding.
 32 *
 33 * The default values are defined statically as minimal supported mode;
 34 * WC and WT fall back to UC-.  pat_init() updates these values to support
 35 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 36 * for the details.  Note, __early_ioremap() used during early boot-time
 37 * takes pgprot_t (pte encoding) and does not use these tables.
 38 *
 39 *   Index into __cachemode2pte_tbl[] is the cachemode.
 40 *
 41 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 42 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 43 */
 44uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 45	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 46	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 47	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 48	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 49	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 50	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 51};
 52EXPORT_SYMBOL(__cachemode2pte_tbl);
 53
 54uint8_t __pte2cachemode_tbl[8] = {
 55	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 56	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 57	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 58	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 59	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 60	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 61	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 63};
 64EXPORT_SYMBOL(__pte2cachemode_tbl);
 65
 66static unsigned long __initdata pgt_buf_start;
 67static unsigned long __initdata pgt_buf_end;
 68static unsigned long __initdata pgt_buf_top;
 69
 70static unsigned long min_pfn_mapped;
 71
 72static bool __initdata can_use_brk_pgt = true;
 73
 74/*
 75 * Pages returned are already directly mapped.
 76 *
 77 * Changing that is likely to break Xen, see commit:
 78 *
 79 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 80 *
 81 * for detailed information.
 82 */
 83__ref void *alloc_low_pages(unsigned int num)
 84{
 85	unsigned long pfn;
 86	int i;
 87
 88	if (after_bootmem) {
 89		unsigned int order;
 90
 91		order = get_order((unsigned long)num << PAGE_SHIFT);
 92		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 93						__GFP_ZERO, order);
 94	}
 95
 96	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 97		unsigned long ret;
 98		if (min_pfn_mapped >= max_pfn_mapped)
 99			panic("alloc_low_pages: ran out of memory");
100		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
101					max_pfn_mapped << PAGE_SHIFT,
102					PAGE_SIZE * num , PAGE_SIZE);
103		if (!ret)
104			panic("alloc_low_pages: can not alloc memory");
105		memblock_reserve(ret, PAGE_SIZE * num);
106		pfn = ret >> PAGE_SHIFT;
107	} else {
108		pfn = pgt_buf_end;
109		pgt_buf_end += num;
110		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
111			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
112	}
113
114	for (i = 0; i < num; i++) {
115		void *adr;
116
117		adr = __va((pfn + i) << PAGE_SHIFT);
118		clear_page(adr);
119	}
120
121	return __va(pfn << PAGE_SHIFT);
122}
123
124/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
125#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
126RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
127void  __init early_alloc_pgt_buf(void)
128{
129	unsigned long tables = INIT_PGT_BUF_SIZE;
130	phys_addr_t base;
131
132	base = __pa(extend_brk(tables, PAGE_SIZE));
133
134	pgt_buf_start = base >> PAGE_SHIFT;
135	pgt_buf_end = pgt_buf_start;
136	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
137}
138
139int after_bootmem;
140
141early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142
143struct map_range {
144	unsigned long start;
145	unsigned long end;
146	unsigned page_size_mask;
147};
148
149static int page_size_mask;
150
151static void __init probe_page_size_mask(void)
152{
153#if !defined(CONFIG_KMEMCHECK)
154	/*
155	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
156	 * use small pages.
157	 * This will simplify cpa(), which otherwise needs to support splitting
158	 * large pages into small in interrupt context, etc.
159	 */
160	if (cpu_has_pse && !debug_pagealloc_enabled())
161		page_size_mask |= 1 << PG_LEVEL_2M;
162#endif
163
164	/* Enable PSE if available */
165	if (cpu_has_pse)
166		cr4_set_bits_and_update_boot(X86_CR4_PSE);
167
168	/* Enable PGE if available */
169	if (cpu_has_pge) {
170		cr4_set_bits_and_update_boot(X86_CR4_PGE);
171		__supported_pte_mask |= _PAGE_GLOBAL;
172	} else
173		__supported_pte_mask &= ~_PAGE_GLOBAL;
174
175	/* Enable 1 GB linear kernel mappings if available: */
176	if (direct_gbpages && cpu_has_gbpages) {
177		printk(KERN_INFO "Using GB pages for direct mapping\n");
178		page_size_mask |= 1 << PG_LEVEL_1G;
179	} else {
180		direct_gbpages = 0;
181	}
182}
183
184#ifdef CONFIG_X86_32
185#define NR_RANGE_MR 3
186#else /* CONFIG_X86_64 */
187#define NR_RANGE_MR 5
188#endif
189
190static int __meminit save_mr(struct map_range *mr, int nr_range,
191			     unsigned long start_pfn, unsigned long end_pfn,
192			     unsigned long page_size_mask)
193{
194	if (start_pfn < end_pfn) {
195		if (nr_range >= NR_RANGE_MR)
196			panic("run out of range for init_memory_mapping\n");
197		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
198		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
199		mr[nr_range].page_size_mask = page_size_mask;
200		nr_range++;
201	}
202
203	return nr_range;
204}
205
206/*
207 * adjust the page_size_mask for small range to go with
208 *	big page size instead small one if nearby are ram too.
209 */
210static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
211							 int nr_range)
212{
213	int i;
214
215	for (i = 0; i < nr_range; i++) {
216		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
217		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
218			unsigned long start = round_down(mr[i].start, PMD_SIZE);
219			unsigned long end = round_up(mr[i].end, PMD_SIZE);
220
221#ifdef CONFIG_X86_32
222			if ((end >> PAGE_SHIFT) > max_low_pfn)
223				continue;
224#endif
225
226			if (memblock_is_region_memory(start, end - start))
227				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
228		}
229		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
230		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
231			unsigned long start = round_down(mr[i].start, PUD_SIZE);
232			unsigned long end = round_up(mr[i].end, PUD_SIZE);
233
234			if (memblock_is_region_memory(start, end - start))
235				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
236		}
237	}
238}
239
240static const char *page_size_string(struct map_range *mr)
241{
242	static const char str_1g[] = "1G";
243	static const char str_2m[] = "2M";
244	static const char str_4m[] = "4M";
245	static const char str_4k[] = "4k";
246
247	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
248		return str_1g;
249	/*
250	 * 32-bit without PAE has a 4M large page size.
251	 * PG_LEVEL_2M is misnamed, but we can at least
252	 * print out the right size in the string.
253	 */
254	if (IS_ENABLED(CONFIG_X86_32) &&
255	    !IS_ENABLED(CONFIG_X86_PAE) &&
256	    mr->page_size_mask & (1<<PG_LEVEL_2M))
257		return str_4m;
258
259	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
260		return str_2m;
261
262	return str_4k;
263}
264
265static int __meminit split_mem_range(struct map_range *mr, int nr_range,
266				     unsigned long start,
267				     unsigned long end)
268{
269	unsigned long start_pfn, end_pfn, limit_pfn;
270	unsigned long pfn;
271	int i;
272
273	limit_pfn = PFN_DOWN(end);
274
275	/* head if not big page alignment ? */
276	pfn = start_pfn = PFN_DOWN(start);
277#ifdef CONFIG_X86_32
278	/*
279	 * Don't use a large page for the first 2/4MB of memory
280	 * because there are often fixed size MTRRs in there
281	 * and overlapping MTRRs into large pages can cause
282	 * slowdowns.
283	 */
284	if (pfn == 0)
285		end_pfn = PFN_DOWN(PMD_SIZE);
286	else
287		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
288#else /* CONFIG_X86_64 */
289	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
290#endif
291	if (end_pfn > limit_pfn)
292		end_pfn = limit_pfn;
293	if (start_pfn < end_pfn) {
294		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
295		pfn = end_pfn;
296	}
297
298	/* big page (2M) range */
299	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
300#ifdef CONFIG_X86_32
301	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
302#else /* CONFIG_X86_64 */
303	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
304	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
305		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
306#endif
307
308	if (start_pfn < end_pfn) {
309		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
310				page_size_mask & (1<<PG_LEVEL_2M));
311		pfn = end_pfn;
312	}
313
314#ifdef CONFIG_X86_64
315	/* big page (1G) range */
316	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
317	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
318	if (start_pfn < end_pfn) {
319		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
320				page_size_mask &
321				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
322		pfn = end_pfn;
323	}
324
325	/* tail is not big page (1G) alignment */
326	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
327	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
328	if (start_pfn < end_pfn) {
329		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
330				page_size_mask & (1<<PG_LEVEL_2M));
331		pfn = end_pfn;
332	}
333#endif
334
335	/* tail is not big page (2M) alignment */
336	start_pfn = pfn;
337	end_pfn = limit_pfn;
338	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
339
340	if (!after_bootmem)
341		adjust_range_page_size_mask(mr, nr_range);
342
343	/* try to merge same page size and continuous */
344	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
345		unsigned long old_start;
346		if (mr[i].end != mr[i+1].start ||
347		    mr[i].page_size_mask != mr[i+1].page_size_mask)
348			continue;
349		/* move it */
350		old_start = mr[i].start;
351		memmove(&mr[i], &mr[i+1],
352			(nr_range - 1 - i) * sizeof(struct map_range));
353		mr[i--].start = old_start;
354		nr_range--;
355	}
356
357	for (i = 0; i < nr_range; i++)
358		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
359				mr[i].start, mr[i].end - 1,
360				page_size_string(&mr[i]));
361
362	return nr_range;
363}
364
365struct range pfn_mapped[E820_X_MAX];
366int nr_pfn_mapped;
367
368static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
369{
370	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
371					     nr_pfn_mapped, start_pfn, end_pfn);
372	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
373
374	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
375
376	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
377		max_low_pfn_mapped = max(max_low_pfn_mapped,
378					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
379}
380
381bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
382{
383	int i;
384
385	for (i = 0; i < nr_pfn_mapped; i++)
386		if ((start_pfn >= pfn_mapped[i].start) &&
387		    (end_pfn <= pfn_mapped[i].end))
388			return true;
389
390	return false;
391}
392
393/*
394 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
395 * This runs before bootmem is initialized and gets pages directly from
396 * the physical memory. To access them they are temporarily mapped.
397 */
398unsigned long __init_refok init_memory_mapping(unsigned long start,
399					       unsigned long end)
400{
401	struct map_range mr[NR_RANGE_MR];
402	unsigned long ret = 0;
403	int nr_range, i;
404
405	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
406	       start, end - 1);
407
408	memset(mr, 0, sizeof(mr));
409	nr_range = split_mem_range(mr, 0, start, end);
410
411	for (i = 0; i < nr_range; i++)
412		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
413						   mr[i].page_size_mask);
414
415	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
416
417	return ret >> PAGE_SHIFT;
418}
419
420/*
421 * We need to iterate through the E820 memory map and create direct mappings
422 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
423 * create direct mappings for all pfns from [0 to max_low_pfn) and
424 * [4GB to max_pfn) because of possible memory holes in high addresses
425 * that cannot be marked as UC by fixed/variable range MTRRs.
426 * Depending on the alignment of E820 ranges, this may possibly result
427 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
428 *
429 * init_mem_mapping() calls init_range_memory_mapping() with big range.
430 * That range would have hole in the middle or ends, and only ram parts
431 * will be mapped in init_range_memory_mapping().
432 */
433static unsigned long __init init_range_memory_mapping(
434					   unsigned long r_start,
435					   unsigned long r_end)
436{
437	unsigned long start_pfn, end_pfn;
438	unsigned long mapped_ram_size = 0;
439	int i;
440
441	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
442		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
443		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
444		if (start >= end)
445			continue;
446
447		/*
448		 * if it is overlapping with brk pgt, we need to
449		 * alloc pgt buf from memblock instead.
450		 */
451		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
452				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
453		init_memory_mapping(start, end);
454		mapped_ram_size += end - start;
455		can_use_brk_pgt = true;
456	}
457
458	return mapped_ram_size;
459}
460
461static unsigned long __init get_new_step_size(unsigned long step_size)
462{
463	/*
464	 * Initial mapped size is PMD_SIZE (2M).
465	 * We can not set step_size to be PUD_SIZE (1G) yet.
466	 * In worse case, when we cross the 1G boundary, and
467	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
468	 * to map 1G range with PTE. Hence we use one less than the
469	 * difference of page table level shifts.
470	 *
471	 * Don't need to worry about overflow in the top-down case, on 32bit,
472	 * when step_size is 0, round_down() returns 0 for start, and that
473	 * turns it into 0x100000000ULL.
474	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
475	 * needs to be taken into consideration by the code below.
476	 */
477	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
478}
479
480/**
481 * memory_map_top_down - Map [map_start, map_end) top down
482 * @map_start: start address of the target memory range
483 * @map_end: end address of the target memory range
484 *
485 * This function will setup direct mapping for memory range
486 * [map_start, map_end) in top-down. That said, the page tables
487 * will be allocated at the end of the memory, and we map the
488 * memory in top-down.
489 */
490static void __init memory_map_top_down(unsigned long map_start,
491				       unsigned long map_end)
492{
493	unsigned long real_end, start, last_start;
494	unsigned long step_size;
495	unsigned long addr;
496	unsigned long mapped_ram_size = 0;
497
498	/* xen has big range in reserved near end of ram, skip it at first.*/
499	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
500	real_end = addr + PMD_SIZE;
501
502	/* step_size need to be small so pgt_buf from BRK could cover it */
503	step_size = PMD_SIZE;
504	max_pfn_mapped = 0; /* will get exact value next */
505	min_pfn_mapped = real_end >> PAGE_SHIFT;
506	last_start = start = real_end;
507
508	/*
509	 * We start from the top (end of memory) and go to the bottom.
510	 * The memblock_find_in_range() gets us a block of RAM from the
511	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
512	 * for page table.
513	 */
514	while (last_start > map_start) {
515		if (last_start > step_size) {
516			start = round_down(last_start - 1, step_size);
517			if (start < map_start)
518				start = map_start;
519		} else
520			start = map_start;
521		mapped_ram_size += init_range_memory_mapping(start,
522							last_start);
523		last_start = start;
524		min_pfn_mapped = last_start >> PAGE_SHIFT;
525		if (mapped_ram_size >= step_size)
526			step_size = get_new_step_size(step_size);
527	}
528
529	if (real_end < map_end)
530		init_range_memory_mapping(real_end, map_end);
531}
532
533/**
534 * memory_map_bottom_up - Map [map_start, map_end) bottom up
535 * @map_start: start address of the target memory range
536 * @map_end: end address of the target memory range
537 *
538 * This function will setup direct mapping for memory range
539 * [map_start, map_end) in bottom-up. Since we have limited the
540 * bottom-up allocation above the kernel, the page tables will
541 * be allocated just above the kernel and we map the memory
542 * in [map_start, map_end) in bottom-up.
543 */
544static void __init memory_map_bottom_up(unsigned long map_start,
545					unsigned long map_end)
546{
547	unsigned long next, start;
548	unsigned long mapped_ram_size = 0;
549	/* step_size need to be small so pgt_buf from BRK could cover it */
550	unsigned long step_size = PMD_SIZE;
551
552	start = map_start;
553	min_pfn_mapped = start >> PAGE_SHIFT;
554
555	/*
556	 * We start from the bottom (@map_start) and go to the top (@map_end).
557	 * The memblock_find_in_range() gets us a block of RAM from the
558	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
559	 * for page table.
560	 */
561	while (start < map_end) {
562		if (step_size && map_end - start > step_size) {
563			next = round_up(start + 1, step_size);
564			if (next > map_end)
565				next = map_end;
566		} else {
567			next = map_end;
568		}
569
570		mapped_ram_size += init_range_memory_mapping(start, next);
571		start = next;
572
573		if (mapped_ram_size >= step_size)
574			step_size = get_new_step_size(step_size);
575	}
576}
577
578void __init init_mem_mapping(void)
579{
580	unsigned long end;
581
582	probe_page_size_mask();
583
584#ifdef CONFIG_X86_64
585	end = max_pfn << PAGE_SHIFT;
586#else
587	end = max_low_pfn << PAGE_SHIFT;
588#endif
589
590	/* the ISA range is always mapped regardless of memory holes */
591	init_memory_mapping(0, ISA_END_ADDRESS);
592
 
 
 
593	/*
594	 * If the allocation is in bottom-up direction, we setup direct mapping
595	 * in bottom-up, otherwise we setup direct mapping in top-down.
596	 */
597	if (memblock_bottom_up()) {
598		unsigned long kernel_end = __pa_symbol(_end);
599
600		/*
601		 * we need two separate calls here. This is because we want to
602		 * allocate page tables above the kernel. So we first map
603		 * [kernel_end, end) to make memory above the kernel be mapped
604		 * as soon as possible. And then use page tables allocated above
605		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
606		 */
607		memory_map_bottom_up(kernel_end, end);
608		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
609	} else {
610		memory_map_top_down(ISA_END_ADDRESS, end);
611	}
612
613#ifdef CONFIG_X86_64
614	if (max_pfn > max_low_pfn) {
615		/* can we preseve max_low_pfn ?*/
616		max_low_pfn = max_pfn;
617	}
618#else
619	early_ioremap_page_table_range_init();
620#endif
621
622	load_cr3(swapper_pg_dir);
623	__flush_tlb_all();
624
625	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
626}
627
628/*
629 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
630 * is valid. The argument is a physical page number.
631 *
632 *
633 * On x86, access has to be given to the first megabyte of ram because that area
634 * contains BIOS code and data regions used by X and dosemu and similar apps.
635 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
636 * mmio resources as well as potential bios/acpi data regions.
637 */
638int devmem_is_allowed(unsigned long pagenr)
639{
640	if (pagenr < 256)
641		return 1;
642	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
643		return 0;
644	if (!page_is_ram(pagenr))
645		return 1;
646	return 0;
647}
648
649void free_init_pages(char *what, unsigned long begin, unsigned long end)
650{
651	unsigned long begin_aligned, end_aligned;
652
653	/* Make sure boundaries are page aligned */
654	begin_aligned = PAGE_ALIGN(begin);
655	end_aligned   = end & PAGE_MASK;
656
657	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
658		begin = begin_aligned;
659		end   = end_aligned;
660	}
661
662	if (begin >= end)
663		return;
664
665	/*
666	 * If debugging page accesses then do not free this memory but
667	 * mark them not present - any buggy init-section access will
668	 * create a kernel page fault:
669	 */
670	if (debug_pagealloc_enabled()) {
671		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
672			begin, end - 1);
673		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
674	} else {
675		/*
676		 * We just marked the kernel text read only above, now that
677		 * we are going to free part of that, we need to make that
678		 * writeable and non-executable first.
679		 */
680		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
681		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
682
683		free_reserved_area((void *)begin, (void *)end,
684				   POISON_FREE_INITMEM, what);
685	}
686}
687
688void free_initmem(void)
689{
 
 
690	free_init_pages("unused kernel",
691			(unsigned long)(&__init_begin),
692			(unsigned long)(&__init_end));
693}
694
695#ifdef CONFIG_BLK_DEV_INITRD
696void __init free_initrd_mem(unsigned long start, unsigned long end)
697{
698	/*
699	 * Remember, initrd memory may contain microcode or other useful things.
700	 * Before we lose initrd mem, we need to find a place to hold them
701	 * now that normal virtual memory is enabled.
702	 */
703	save_microcode_in_initrd();
704
705	/*
706	 * end could be not aligned, and We can not align that,
707	 * decompresser could be confused by aligned initrd_end
708	 * We already reserve the end partial page before in
709	 *   - i386_start_kernel()
710	 *   - x86_64_start_kernel()
711	 *   - relocate_initrd()
712	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
713	 */
714	free_init_pages("initrd", start, PAGE_ALIGN(end));
715}
716#endif
717
718void __init zone_sizes_init(void)
719{
720	unsigned long max_zone_pfns[MAX_NR_ZONES];
721
722	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
723
724#ifdef CONFIG_ZONE_DMA
725	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
726#endif
727#ifdef CONFIG_ZONE_DMA32
728	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
729#endif
730	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
731#ifdef CONFIG_HIGHMEM
732	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
733#endif
734
735	free_area_init_nodes(max_zone_pfns);
736}
737
738DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
739#ifdef CONFIG_SMP
740	.active_mm = &init_mm,
741	.state = 0,
742#endif
743	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
744};
745EXPORT_SYMBOL_GPL(cpu_tlbstate);
746
747void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
748{
749	/* entry 0 MUST be WB (hardwired to speed up translations) */
750	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
751
752	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
753	__pte2cachemode_tbl[entry] = cache;
754}
v4.10.11
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 20#include <asm/kaslr.h>
 21
 22/*
 23 * We need to define the tracepoints somewhere, and tlb.c
 24 * is only compied when SMP=y.
 25 */
 26#define CREATE_TRACE_POINTS
 27#include <trace/events/tlb.h>
 28
 29#include "mm_internal.h"
 30
 31/*
 32 * Tables translating between page_cache_type_t and pte encoding.
 33 *
 34 * The default values are defined statically as minimal supported mode;
 35 * WC and WT fall back to UC-.  pat_init() updates these values to support
 36 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 37 * for the details.  Note, __early_ioremap() used during early boot-time
 38 * takes pgprot_t (pte encoding) and does not use these tables.
 39 *
 40 *   Index into __cachemode2pte_tbl[] is the cachemode.
 41 *
 42 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 43 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 44 */
 45uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 46	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 47	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 48	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 49	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 50	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 51	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 52};
 53EXPORT_SYMBOL(__cachemode2pte_tbl);
 54
 55uint8_t __pte2cachemode_tbl[8] = {
 56	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 57	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 58	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 59	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 60	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 61	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 63	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 64};
 65EXPORT_SYMBOL(__pte2cachemode_tbl);
 66
 67static unsigned long __initdata pgt_buf_start;
 68static unsigned long __initdata pgt_buf_end;
 69static unsigned long __initdata pgt_buf_top;
 70
 71static unsigned long min_pfn_mapped;
 72
 73static bool __initdata can_use_brk_pgt = true;
 74
 75/*
 76 * Pages returned are already directly mapped.
 77 *
 78 * Changing that is likely to break Xen, see commit:
 79 *
 80 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 81 *
 82 * for detailed information.
 83 */
 84__ref void *alloc_low_pages(unsigned int num)
 85{
 86	unsigned long pfn;
 87	int i;
 88
 89	if (after_bootmem) {
 90		unsigned int order;
 91
 92		order = get_order((unsigned long)num << PAGE_SHIFT);
 93		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 94						__GFP_ZERO, order);
 95	}
 96
 97	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 98		unsigned long ret;
 99		if (min_pfn_mapped >= max_pfn_mapped)
100			panic("alloc_low_pages: ran out of memory");
101		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
102					max_pfn_mapped << PAGE_SHIFT,
103					PAGE_SIZE * num , PAGE_SIZE);
104		if (!ret)
105			panic("alloc_low_pages: can not alloc memory");
106		memblock_reserve(ret, PAGE_SIZE * num);
107		pfn = ret >> PAGE_SHIFT;
108	} else {
109		pfn = pgt_buf_end;
110		pgt_buf_end += num;
111		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
112			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
113	}
114
115	for (i = 0; i < num; i++) {
116		void *adr;
117
118		adr = __va((pfn + i) << PAGE_SHIFT);
119		clear_page(adr);
120	}
121
122	return __va(pfn << PAGE_SHIFT);
123}
124
125/*
126 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
127 * With KASLR memory randomization, depending on the machine e820 memory
128 * and the PUD alignment. We may need twice more pages when KASLR memory
129 * randomization is enabled.
130 */
131#ifndef CONFIG_RANDOMIZE_MEMORY
132#define INIT_PGD_PAGE_COUNT      6
133#else
134#define INIT_PGD_PAGE_COUNT      12
135#endif
136#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
137RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
138void  __init early_alloc_pgt_buf(void)
139{
140	unsigned long tables = INIT_PGT_BUF_SIZE;
141	phys_addr_t base;
142
143	base = __pa(extend_brk(tables, PAGE_SIZE));
144
145	pgt_buf_start = base >> PAGE_SHIFT;
146	pgt_buf_end = pgt_buf_start;
147	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
148}
149
150int after_bootmem;
151
152early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
153
154struct map_range {
155	unsigned long start;
156	unsigned long end;
157	unsigned page_size_mask;
158};
159
160static int page_size_mask;
161
162static void __init probe_page_size_mask(void)
163{
164#if !defined(CONFIG_KMEMCHECK)
165	/*
166	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
167	 * use small pages.
168	 * This will simplify cpa(), which otherwise needs to support splitting
169	 * large pages into small in interrupt context, etc.
170	 */
171	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
172		page_size_mask |= 1 << PG_LEVEL_2M;
173#endif
174
175	/* Enable PSE if available */
176	if (boot_cpu_has(X86_FEATURE_PSE))
177		cr4_set_bits_and_update_boot(X86_CR4_PSE);
178
179	/* Enable PGE if available */
180	if (boot_cpu_has(X86_FEATURE_PGE)) {
181		cr4_set_bits_and_update_boot(X86_CR4_PGE);
182		__supported_pte_mask |= _PAGE_GLOBAL;
183	} else
184		__supported_pte_mask &= ~_PAGE_GLOBAL;
185
186	/* Enable 1 GB linear kernel mappings if available: */
187	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
188		printk(KERN_INFO "Using GB pages for direct mapping\n");
189		page_size_mask |= 1 << PG_LEVEL_1G;
190	} else {
191		direct_gbpages = 0;
192	}
193}
194
195#ifdef CONFIG_X86_32
196#define NR_RANGE_MR 3
197#else /* CONFIG_X86_64 */
198#define NR_RANGE_MR 5
199#endif
200
201static int __meminit save_mr(struct map_range *mr, int nr_range,
202			     unsigned long start_pfn, unsigned long end_pfn,
203			     unsigned long page_size_mask)
204{
205	if (start_pfn < end_pfn) {
206		if (nr_range >= NR_RANGE_MR)
207			panic("run out of range for init_memory_mapping\n");
208		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
209		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
210		mr[nr_range].page_size_mask = page_size_mask;
211		nr_range++;
212	}
213
214	return nr_range;
215}
216
217/*
218 * adjust the page_size_mask for small range to go with
219 *	big page size instead small one if nearby are ram too.
220 */
221static void __ref adjust_range_page_size_mask(struct map_range *mr,
222							 int nr_range)
223{
224	int i;
225
226	for (i = 0; i < nr_range; i++) {
227		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
228		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
229			unsigned long start = round_down(mr[i].start, PMD_SIZE);
230			unsigned long end = round_up(mr[i].end, PMD_SIZE);
231
232#ifdef CONFIG_X86_32
233			if ((end >> PAGE_SHIFT) > max_low_pfn)
234				continue;
235#endif
236
237			if (memblock_is_region_memory(start, end - start))
238				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
239		}
240		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
241		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
242			unsigned long start = round_down(mr[i].start, PUD_SIZE);
243			unsigned long end = round_up(mr[i].end, PUD_SIZE);
244
245			if (memblock_is_region_memory(start, end - start))
246				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
247		}
248	}
249}
250
251static const char *page_size_string(struct map_range *mr)
252{
253	static const char str_1g[] = "1G";
254	static const char str_2m[] = "2M";
255	static const char str_4m[] = "4M";
256	static const char str_4k[] = "4k";
257
258	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
259		return str_1g;
260	/*
261	 * 32-bit without PAE has a 4M large page size.
262	 * PG_LEVEL_2M is misnamed, but we can at least
263	 * print out the right size in the string.
264	 */
265	if (IS_ENABLED(CONFIG_X86_32) &&
266	    !IS_ENABLED(CONFIG_X86_PAE) &&
267	    mr->page_size_mask & (1<<PG_LEVEL_2M))
268		return str_4m;
269
270	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
271		return str_2m;
272
273	return str_4k;
274}
275
276static int __meminit split_mem_range(struct map_range *mr, int nr_range,
277				     unsigned long start,
278				     unsigned long end)
279{
280	unsigned long start_pfn, end_pfn, limit_pfn;
281	unsigned long pfn;
282	int i;
283
284	limit_pfn = PFN_DOWN(end);
285
286	/* head if not big page alignment ? */
287	pfn = start_pfn = PFN_DOWN(start);
288#ifdef CONFIG_X86_32
289	/*
290	 * Don't use a large page for the first 2/4MB of memory
291	 * because there are often fixed size MTRRs in there
292	 * and overlapping MTRRs into large pages can cause
293	 * slowdowns.
294	 */
295	if (pfn == 0)
296		end_pfn = PFN_DOWN(PMD_SIZE);
297	else
298		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
299#else /* CONFIG_X86_64 */
300	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
301#endif
302	if (end_pfn > limit_pfn)
303		end_pfn = limit_pfn;
304	if (start_pfn < end_pfn) {
305		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
306		pfn = end_pfn;
307	}
308
309	/* big page (2M) range */
310	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
311#ifdef CONFIG_X86_32
312	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
313#else /* CONFIG_X86_64 */
314	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
315	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
316		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
317#endif
318
319	if (start_pfn < end_pfn) {
320		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
321				page_size_mask & (1<<PG_LEVEL_2M));
322		pfn = end_pfn;
323	}
324
325#ifdef CONFIG_X86_64
326	/* big page (1G) range */
327	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
328	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
329	if (start_pfn < end_pfn) {
330		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
331				page_size_mask &
332				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
333		pfn = end_pfn;
334	}
335
336	/* tail is not big page (1G) alignment */
337	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
338	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
339	if (start_pfn < end_pfn) {
340		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
341				page_size_mask & (1<<PG_LEVEL_2M));
342		pfn = end_pfn;
343	}
344#endif
345
346	/* tail is not big page (2M) alignment */
347	start_pfn = pfn;
348	end_pfn = limit_pfn;
349	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
350
351	if (!after_bootmem)
352		adjust_range_page_size_mask(mr, nr_range);
353
354	/* try to merge same page size and continuous */
355	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
356		unsigned long old_start;
357		if (mr[i].end != mr[i+1].start ||
358		    mr[i].page_size_mask != mr[i+1].page_size_mask)
359			continue;
360		/* move it */
361		old_start = mr[i].start;
362		memmove(&mr[i], &mr[i+1],
363			(nr_range - 1 - i) * sizeof(struct map_range));
364		mr[i--].start = old_start;
365		nr_range--;
366	}
367
368	for (i = 0; i < nr_range; i++)
369		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
370				mr[i].start, mr[i].end - 1,
371				page_size_string(&mr[i]));
372
373	return nr_range;
374}
375
376struct range pfn_mapped[E820_X_MAX];
377int nr_pfn_mapped;
378
379static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
380{
381	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
382					     nr_pfn_mapped, start_pfn, end_pfn);
383	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
384
385	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
386
387	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
388		max_low_pfn_mapped = max(max_low_pfn_mapped,
389					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
390}
391
392bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
393{
394	int i;
395
396	for (i = 0; i < nr_pfn_mapped; i++)
397		if ((start_pfn >= pfn_mapped[i].start) &&
398		    (end_pfn <= pfn_mapped[i].end))
399			return true;
400
401	return false;
402}
403
404/*
405 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
406 * This runs before bootmem is initialized and gets pages directly from
407 * the physical memory. To access them they are temporarily mapped.
408 */
409unsigned long __ref init_memory_mapping(unsigned long start,
410					       unsigned long end)
411{
412	struct map_range mr[NR_RANGE_MR];
413	unsigned long ret = 0;
414	int nr_range, i;
415
416	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
417	       start, end - 1);
418
419	memset(mr, 0, sizeof(mr));
420	nr_range = split_mem_range(mr, 0, start, end);
421
422	for (i = 0; i < nr_range; i++)
423		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
424						   mr[i].page_size_mask);
425
426	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
427
428	return ret >> PAGE_SHIFT;
429}
430
431/*
432 * We need to iterate through the E820 memory map and create direct mappings
433 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
434 * create direct mappings for all pfns from [0 to max_low_pfn) and
435 * [4GB to max_pfn) because of possible memory holes in high addresses
436 * that cannot be marked as UC by fixed/variable range MTRRs.
437 * Depending on the alignment of E820 ranges, this may possibly result
438 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
439 *
440 * init_mem_mapping() calls init_range_memory_mapping() with big range.
441 * That range would have hole in the middle or ends, and only ram parts
442 * will be mapped in init_range_memory_mapping().
443 */
444static unsigned long __init init_range_memory_mapping(
445					   unsigned long r_start,
446					   unsigned long r_end)
447{
448	unsigned long start_pfn, end_pfn;
449	unsigned long mapped_ram_size = 0;
450	int i;
451
452	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
453		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
454		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
455		if (start >= end)
456			continue;
457
458		/*
459		 * if it is overlapping with brk pgt, we need to
460		 * alloc pgt buf from memblock instead.
461		 */
462		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
463				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
464		init_memory_mapping(start, end);
465		mapped_ram_size += end - start;
466		can_use_brk_pgt = true;
467	}
468
469	return mapped_ram_size;
470}
471
472static unsigned long __init get_new_step_size(unsigned long step_size)
473{
474	/*
475	 * Initial mapped size is PMD_SIZE (2M).
476	 * We can not set step_size to be PUD_SIZE (1G) yet.
477	 * In worse case, when we cross the 1G boundary, and
478	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
479	 * to map 1G range with PTE. Hence we use one less than the
480	 * difference of page table level shifts.
481	 *
482	 * Don't need to worry about overflow in the top-down case, on 32bit,
483	 * when step_size is 0, round_down() returns 0 for start, and that
484	 * turns it into 0x100000000ULL.
485	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
486	 * needs to be taken into consideration by the code below.
487	 */
488	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
489}
490
491/**
492 * memory_map_top_down - Map [map_start, map_end) top down
493 * @map_start: start address of the target memory range
494 * @map_end: end address of the target memory range
495 *
496 * This function will setup direct mapping for memory range
497 * [map_start, map_end) in top-down. That said, the page tables
498 * will be allocated at the end of the memory, and we map the
499 * memory in top-down.
500 */
501static void __init memory_map_top_down(unsigned long map_start,
502				       unsigned long map_end)
503{
504	unsigned long real_end, start, last_start;
505	unsigned long step_size;
506	unsigned long addr;
507	unsigned long mapped_ram_size = 0;
508
509	/* xen has big range in reserved near end of ram, skip it at first.*/
510	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
511	real_end = addr + PMD_SIZE;
512
513	/* step_size need to be small so pgt_buf from BRK could cover it */
514	step_size = PMD_SIZE;
515	max_pfn_mapped = 0; /* will get exact value next */
516	min_pfn_mapped = real_end >> PAGE_SHIFT;
517	last_start = start = real_end;
518
519	/*
520	 * We start from the top (end of memory) and go to the bottom.
521	 * The memblock_find_in_range() gets us a block of RAM from the
522	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
523	 * for page table.
524	 */
525	while (last_start > map_start) {
526		if (last_start > step_size) {
527			start = round_down(last_start - 1, step_size);
528			if (start < map_start)
529				start = map_start;
530		} else
531			start = map_start;
532		mapped_ram_size += init_range_memory_mapping(start,
533							last_start);
534		last_start = start;
535		min_pfn_mapped = last_start >> PAGE_SHIFT;
536		if (mapped_ram_size >= step_size)
537			step_size = get_new_step_size(step_size);
538	}
539
540	if (real_end < map_end)
541		init_range_memory_mapping(real_end, map_end);
542}
543
544/**
545 * memory_map_bottom_up - Map [map_start, map_end) bottom up
546 * @map_start: start address of the target memory range
547 * @map_end: end address of the target memory range
548 *
549 * This function will setup direct mapping for memory range
550 * [map_start, map_end) in bottom-up. Since we have limited the
551 * bottom-up allocation above the kernel, the page tables will
552 * be allocated just above the kernel and we map the memory
553 * in [map_start, map_end) in bottom-up.
554 */
555static void __init memory_map_bottom_up(unsigned long map_start,
556					unsigned long map_end)
557{
558	unsigned long next, start;
559	unsigned long mapped_ram_size = 0;
560	/* step_size need to be small so pgt_buf from BRK could cover it */
561	unsigned long step_size = PMD_SIZE;
562
563	start = map_start;
564	min_pfn_mapped = start >> PAGE_SHIFT;
565
566	/*
567	 * We start from the bottom (@map_start) and go to the top (@map_end).
568	 * The memblock_find_in_range() gets us a block of RAM from the
569	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
570	 * for page table.
571	 */
572	while (start < map_end) {
573		if (step_size && map_end - start > step_size) {
574			next = round_up(start + 1, step_size);
575			if (next > map_end)
576				next = map_end;
577		} else {
578			next = map_end;
579		}
580
581		mapped_ram_size += init_range_memory_mapping(start, next);
582		start = next;
583
584		if (mapped_ram_size >= step_size)
585			step_size = get_new_step_size(step_size);
586	}
587}
588
589void __init init_mem_mapping(void)
590{
591	unsigned long end;
592
593	probe_page_size_mask();
594
595#ifdef CONFIG_X86_64
596	end = max_pfn << PAGE_SHIFT;
597#else
598	end = max_low_pfn << PAGE_SHIFT;
599#endif
600
601	/* the ISA range is always mapped regardless of memory holes */
602	init_memory_mapping(0, ISA_END_ADDRESS);
603
604	/* Init the trampoline, possibly with KASLR memory offset */
605	init_trampoline();
606
607	/*
608	 * If the allocation is in bottom-up direction, we setup direct mapping
609	 * in bottom-up, otherwise we setup direct mapping in top-down.
610	 */
611	if (memblock_bottom_up()) {
612		unsigned long kernel_end = __pa_symbol(_end);
613
614		/*
615		 * we need two separate calls here. This is because we want to
616		 * allocate page tables above the kernel. So we first map
617		 * [kernel_end, end) to make memory above the kernel be mapped
618		 * as soon as possible. And then use page tables allocated above
619		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
620		 */
621		memory_map_bottom_up(kernel_end, end);
622		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
623	} else {
624		memory_map_top_down(ISA_END_ADDRESS, end);
625	}
626
627#ifdef CONFIG_X86_64
628	if (max_pfn > max_low_pfn) {
629		/* can we preseve max_low_pfn ?*/
630		max_low_pfn = max_pfn;
631	}
632#else
633	early_ioremap_page_table_range_init();
634#endif
635
636	load_cr3(swapper_pg_dir);
637	__flush_tlb_all();
638
639	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
640}
641
642/*
643 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
644 * is valid. The argument is a physical page number.
645 *
646 *
647 * On x86, access has to be given to the first megabyte of ram because that area
648 * contains BIOS code and data regions used by X and dosemu and similar apps.
649 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
650 * mmio resources as well as potential bios/acpi data regions.
651 */
652int devmem_is_allowed(unsigned long pagenr)
653{
654	if (pagenr < 256)
655		return 1;
656	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
657		return 0;
658	if (!page_is_ram(pagenr))
659		return 1;
660	return 0;
661}
662
663void free_init_pages(char *what, unsigned long begin, unsigned long end)
664{
665	unsigned long begin_aligned, end_aligned;
666
667	/* Make sure boundaries are page aligned */
668	begin_aligned = PAGE_ALIGN(begin);
669	end_aligned   = end & PAGE_MASK;
670
671	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
672		begin = begin_aligned;
673		end   = end_aligned;
674	}
675
676	if (begin >= end)
677		return;
678
679	/*
680	 * If debugging page accesses then do not free this memory but
681	 * mark them not present - any buggy init-section access will
682	 * create a kernel page fault:
683	 */
684	if (debug_pagealloc_enabled()) {
685		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
686			begin, end - 1);
687		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
688	} else {
689		/*
690		 * We just marked the kernel text read only above, now that
691		 * we are going to free part of that, we need to make that
692		 * writeable and non-executable first.
693		 */
694		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
695		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
696
697		free_reserved_area((void *)begin, (void *)end,
698				   POISON_FREE_INITMEM, what);
699	}
700}
701
702void __ref free_initmem(void)
703{
704	e820_reallocate_tables();
705
706	free_init_pages("unused kernel",
707			(unsigned long)(&__init_begin),
708			(unsigned long)(&__init_end));
709}
710
711#ifdef CONFIG_BLK_DEV_INITRD
712void __init free_initrd_mem(unsigned long start, unsigned long end)
713{
 
 
 
 
 
 
 
714	/*
715	 * end could be not aligned, and We can not align that,
716	 * decompresser could be confused by aligned initrd_end
717	 * We already reserve the end partial page before in
718	 *   - i386_start_kernel()
719	 *   - x86_64_start_kernel()
720	 *   - relocate_initrd()
721	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
722	 */
723	free_init_pages("initrd", start, PAGE_ALIGN(end));
724}
725#endif
726
727void __init zone_sizes_init(void)
728{
729	unsigned long max_zone_pfns[MAX_NR_ZONES];
730
731	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
732
733#ifdef CONFIG_ZONE_DMA
734	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
735#endif
736#ifdef CONFIG_ZONE_DMA32
737	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
738#endif
739	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
740#ifdef CONFIG_HIGHMEM
741	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
742#endif
743
744	free_area_init_nodes(max_zone_pfns);
745}
746
747DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
748#ifdef CONFIG_SMP
749	.active_mm = &init_mm,
750	.state = 0,
751#endif
752	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
753};
754EXPORT_SYMBOL_GPL(cpu_tlbstate);
755
756void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
757{
758	/* entry 0 MUST be WB (hardwired to speed up translations) */
759	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
760
761	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
762	__pte2cachemode_tbl[entry] = cache;
763}