Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * guest access functions
  3 *
  4 * Copyright IBM Corp. 2014
  5 *
  6 */
  7
  8#include <linux/vmalloc.h>
 
  9#include <linux/err.h>
 
 10#include <asm/pgtable.h>
 
 11#include "kvm-s390.h"
 12#include "gaccess.h"
 13#include <asm/switch_to.h>
 14
 15union asce {
 16	unsigned long val;
 17	struct {
 18		unsigned long origin : 52; /* Region- or Segment-Table Origin */
 19		unsigned long	 : 2;
 20		unsigned long g  : 1; /* Subspace Group Control */
 21		unsigned long p  : 1; /* Private Space Control */
 22		unsigned long s  : 1; /* Storage-Alteration-Event Control */
 23		unsigned long x  : 1; /* Space-Switch-Event Control */
 24		unsigned long r  : 1; /* Real-Space Control */
 25		unsigned long	 : 1;
 26		unsigned long dt : 2; /* Designation-Type Control */
 27		unsigned long tl : 2; /* Region- or Segment-Table Length */
 28	};
 29};
 30
 31enum {
 32	ASCE_TYPE_SEGMENT = 0,
 33	ASCE_TYPE_REGION3 = 1,
 34	ASCE_TYPE_REGION2 = 2,
 35	ASCE_TYPE_REGION1 = 3
 36};
 37
 38union region1_table_entry {
 39	unsigned long val;
 40	struct {
 41		unsigned long rto: 52;/* Region-Table Origin */
 42		unsigned long	 : 2;
 43		unsigned long p  : 1; /* DAT-Protection Bit */
 44		unsigned long	 : 1;
 45		unsigned long tf : 2; /* Region-Second-Table Offset */
 46		unsigned long i  : 1; /* Region-Invalid Bit */
 47		unsigned long	 : 1;
 48		unsigned long tt : 2; /* Table-Type Bits */
 49		unsigned long tl : 2; /* Region-Second-Table Length */
 50	};
 51};
 52
 53union region2_table_entry {
 54	unsigned long val;
 55	struct {
 56		unsigned long rto: 52;/* Region-Table Origin */
 57		unsigned long	 : 2;
 58		unsigned long p  : 1; /* DAT-Protection Bit */
 59		unsigned long	 : 1;
 60		unsigned long tf : 2; /* Region-Third-Table Offset */
 61		unsigned long i  : 1; /* Region-Invalid Bit */
 62		unsigned long	 : 1;
 63		unsigned long tt : 2; /* Table-Type Bits */
 64		unsigned long tl : 2; /* Region-Third-Table Length */
 65	};
 66};
 67
 68struct region3_table_entry_fc0 {
 69	unsigned long sto: 52;/* Segment-Table Origin */
 70	unsigned long	 : 1;
 71	unsigned long fc : 1; /* Format-Control */
 72	unsigned long p  : 1; /* DAT-Protection Bit */
 73	unsigned long	 : 1;
 74	unsigned long tf : 2; /* Segment-Table Offset */
 75	unsigned long i  : 1; /* Region-Invalid Bit */
 76	unsigned long cr : 1; /* Common-Region Bit */
 77	unsigned long tt : 2; /* Table-Type Bits */
 78	unsigned long tl : 2; /* Segment-Table Length */
 79};
 80
 81struct region3_table_entry_fc1 {
 82	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
 83	unsigned long	 : 14;
 84	unsigned long av : 1; /* ACCF-Validity Control */
 85	unsigned long acc: 4; /* Access-Control Bits */
 86	unsigned long f  : 1; /* Fetch-Protection Bit */
 87	unsigned long fc : 1; /* Format-Control */
 88	unsigned long p  : 1; /* DAT-Protection Bit */
 89	unsigned long co : 1; /* Change-Recording Override */
 90	unsigned long	 : 2;
 91	unsigned long i  : 1; /* Region-Invalid Bit */
 92	unsigned long cr : 1; /* Common-Region Bit */
 93	unsigned long tt : 2; /* Table-Type Bits */
 94	unsigned long	 : 2;
 95};
 96
 97union region3_table_entry {
 98	unsigned long val;
 99	struct region3_table_entry_fc0 fc0;
100	struct region3_table_entry_fc1 fc1;
101	struct {
102		unsigned long	 : 53;
103		unsigned long fc : 1; /* Format-Control */
104		unsigned long	 : 4;
105		unsigned long i  : 1; /* Region-Invalid Bit */
106		unsigned long cr : 1; /* Common-Region Bit */
107		unsigned long tt : 2; /* Table-Type Bits */
108		unsigned long	 : 2;
109	};
110};
111
112struct segment_entry_fc0 {
113	unsigned long pto: 53;/* Page-Table Origin */
114	unsigned long fc : 1; /* Format-Control */
115	unsigned long p  : 1; /* DAT-Protection Bit */
116	unsigned long	 : 3;
117	unsigned long i  : 1; /* Segment-Invalid Bit */
118	unsigned long cs : 1; /* Common-Segment Bit */
119	unsigned long tt : 2; /* Table-Type Bits */
120	unsigned long	 : 2;
121};
122
123struct segment_entry_fc1 {
124	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
125	unsigned long	 : 3;
126	unsigned long av : 1; /* ACCF-Validity Control */
127	unsigned long acc: 4; /* Access-Control Bits */
128	unsigned long f  : 1; /* Fetch-Protection Bit */
129	unsigned long fc : 1; /* Format-Control */
130	unsigned long p  : 1; /* DAT-Protection Bit */
131	unsigned long co : 1; /* Change-Recording Override */
132	unsigned long	 : 2;
133	unsigned long i  : 1; /* Segment-Invalid Bit */
134	unsigned long cs : 1; /* Common-Segment Bit */
135	unsigned long tt : 2; /* Table-Type Bits */
136	unsigned long	 : 2;
137};
138
139union segment_table_entry {
140	unsigned long val;
141	struct segment_entry_fc0 fc0;
142	struct segment_entry_fc1 fc1;
143	struct {
144		unsigned long	 : 53;
145		unsigned long fc : 1; /* Format-Control */
146		unsigned long	 : 4;
147		unsigned long i  : 1; /* Segment-Invalid Bit */
148		unsigned long cs : 1; /* Common-Segment Bit */
149		unsigned long tt : 2; /* Table-Type Bits */
150		unsigned long	 : 2;
151	};
152};
153
154enum {
155	TABLE_TYPE_SEGMENT = 0,
156	TABLE_TYPE_REGION3 = 1,
157	TABLE_TYPE_REGION2 = 2,
158	TABLE_TYPE_REGION1 = 3
159};
160
161union page_table_entry {
162	unsigned long val;
163	struct {
164		unsigned long pfra : 52; /* Page-Frame Real Address */
165		unsigned long z  : 1; /* Zero Bit */
166		unsigned long i  : 1; /* Page-Invalid Bit */
167		unsigned long p  : 1; /* DAT-Protection Bit */
168		unsigned long co : 1; /* Change-Recording Override */
169		unsigned long	 : 8;
170	};
171};
172
173/*
174 * vaddress union in order to easily decode a virtual address into its
175 * region first index, region second index etc. parts.
176 */
177union vaddress {
178	unsigned long addr;
179	struct {
180		unsigned long rfx : 11;
181		unsigned long rsx : 11;
182		unsigned long rtx : 11;
183		unsigned long sx  : 11;
184		unsigned long px  : 8;
185		unsigned long bx  : 12;
186	};
187	struct {
188		unsigned long rfx01 : 2;
189		unsigned long	    : 9;
190		unsigned long rsx01 : 2;
191		unsigned long	    : 9;
192		unsigned long rtx01 : 2;
193		unsigned long	    : 9;
194		unsigned long sx01  : 2;
195		unsigned long	    : 29;
196	};
197};
198
199/*
200 * raddress union which will contain the result (real or absolute address)
201 * after a page table walk. The rfaa, sfaa and pfra members are used to
202 * simply assign them the value of a region, segment or page table entry.
203 */
204union raddress {
205	unsigned long addr;
206	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
207	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
208	unsigned long pfra : 52; /* Page-Frame Real Address */
209};
210
211union alet {
212	u32 val;
213	struct {
214		u32 reserved : 7;
215		u32 p        : 1;
216		u32 alesn    : 8;
217		u32 alen     : 16;
218	};
219};
220
221union ald {
222	u32 val;
223	struct {
224		u32     : 1;
225		u32 alo : 24;
226		u32 all : 7;
227	};
228};
229
230struct ale {
231	unsigned long i      : 1; /* ALEN-Invalid Bit */
232	unsigned long        : 5;
233	unsigned long fo     : 1; /* Fetch-Only Bit */
234	unsigned long p      : 1; /* Private Bit */
235	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
236	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
237	unsigned long        : 32;
238	unsigned long        : 1;
239	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
240	unsigned long        : 6;
241	unsigned long astesn : 32; /* ASTE Sequence Number */
242} __packed;
243
244struct aste {
245	unsigned long i      : 1; /* ASX-Invalid Bit */
246	unsigned long ato    : 29; /* Authority-Table Origin */
247	unsigned long        : 1;
248	unsigned long b      : 1; /* Base-Space Bit */
249	unsigned long ax     : 16; /* Authorization Index */
250	unsigned long atl    : 12; /* Authority-Table Length */
251	unsigned long        : 2;
252	unsigned long ca     : 1; /* Controlled-ASN Bit */
253	unsigned long ra     : 1; /* Reusable-ASN Bit */
254	unsigned long asce   : 64; /* Address-Space-Control Element */
255	unsigned long ald    : 32;
256	unsigned long astesn : 32;
257	/* .. more fields there */
258} __packed;
259
260int ipte_lock_held(struct kvm_vcpu *vcpu)
261{
262	if (vcpu->arch.sie_block->eca & 1) {
263		int rc;
264
265		read_lock(&vcpu->kvm->arch.sca_lock);
266		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
267		read_unlock(&vcpu->kvm->arch.sca_lock);
268		return rc;
269	}
270	return vcpu->kvm->arch.ipte_lock_count != 0;
271}
272
273static void ipte_lock_simple(struct kvm_vcpu *vcpu)
274{
275	union ipte_control old, new, *ic;
276
277	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
278	vcpu->kvm->arch.ipte_lock_count++;
279	if (vcpu->kvm->arch.ipte_lock_count > 1)
280		goto out;
281retry:
282	read_lock(&vcpu->kvm->arch.sca_lock);
283	ic = kvm_s390_get_ipte_control(vcpu->kvm);
284	do {
285		old = READ_ONCE(*ic);
286		if (old.k) {
287			read_unlock(&vcpu->kvm->arch.sca_lock);
288			cond_resched();
289			goto retry;
290		}
291		new = old;
292		new.k = 1;
293	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
294	read_unlock(&vcpu->kvm->arch.sca_lock);
295out:
296	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
297}
298
299static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
300{
301	union ipte_control old, new, *ic;
302
303	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
304	vcpu->kvm->arch.ipte_lock_count--;
305	if (vcpu->kvm->arch.ipte_lock_count)
306		goto out;
307	read_lock(&vcpu->kvm->arch.sca_lock);
308	ic = kvm_s390_get_ipte_control(vcpu->kvm);
309	do {
310		old = READ_ONCE(*ic);
311		new = old;
312		new.k = 0;
313	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
314	read_unlock(&vcpu->kvm->arch.sca_lock);
315	wake_up(&vcpu->kvm->arch.ipte_wq);
316out:
317	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
318}
319
320static void ipte_lock_siif(struct kvm_vcpu *vcpu)
321{
322	union ipte_control old, new, *ic;
323
324retry:
325	read_lock(&vcpu->kvm->arch.sca_lock);
326	ic = kvm_s390_get_ipte_control(vcpu->kvm);
327	do {
328		old = READ_ONCE(*ic);
329		if (old.kg) {
330			read_unlock(&vcpu->kvm->arch.sca_lock);
331			cond_resched();
332			goto retry;
333		}
334		new = old;
335		new.k = 1;
336		new.kh++;
337	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
338	read_unlock(&vcpu->kvm->arch.sca_lock);
339}
340
341static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
342{
343	union ipte_control old, new, *ic;
344
345	read_lock(&vcpu->kvm->arch.sca_lock);
346	ic = kvm_s390_get_ipte_control(vcpu->kvm);
347	do {
348		old = READ_ONCE(*ic);
349		new = old;
350		new.kh--;
351		if (!new.kh)
352			new.k = 0;
353	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
354	read_unlock(&vcpu->kvm->arch.sca_lock);
355	if (!new.kh)
356		wake_up(&vcpu->kvm->arch.ipte_wq);
357}
358
359void ipte_lock(struct kvm_vcpu *vcpu)
360{
361	if (vcpu->arch.sie_block->eca & 1)
362		ipte_lock_siif(vcpu);
363	else
364		ipte_lock_simple(vcpu);
365}
366
367void ipte_unlock(struct kvm_vcpu *vcpu)
368{
369	if (vcpu->arch.sie_block->eca & 1)
370		ipte_unlock_siif(vcpu);
371	else
372		ipte_unlock_simple(vcpu);
373}
374
375static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
376			  enum gacc_mode mode)
377{
378	union alet alet;
379	struct ale ale;
380	struct aste aste;
381	unsigned long ald_addr, authority_table_addr;
382	union ald ald;
383	int eax, rc;
384	u8 authority_table;
385
386	if (ar >= NUM_ACRS)
387		return -EINVAL;
388
389	save_access_regs(vcpu->run->s.regs.acrs);
390	alet.val = vcpu->run->s.regs.acrs[ar];
391
392	if (ar == 0 || alet.val == 0) {
393		asce->val = vcpu->arch.sie_block->gcr[1];
394		return 0;
395	} else if (alet.val == 1) {
396		asce->val = vcpu->arch.sie_block->gcr[7];
397		return 0;
398	}
399
400	if (alet.reserved)
401		return PGM_ALET_SPECIFICATION;
402
403	if (alet.p)
404		ald_addr = vcpu->arch.sie_block->gcr[5];
405	else
406		ald_addr = vcpu->arch.sie_block->gcr[2];
407	ald_addr &= 0x7fffffc0;
408
409	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
410	if (rc)
411		return rc;
412
413	if (alet.alen / 8 > ald.all)
414		return PGM_ALEN_TRANSLATION;
415
416	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
417		return PGM_ADDRESSING;
418
419	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
420			     sizeof(struct ale));
421	if (rc)
422		return rc;
423
424	if (ale.i == 1)
425		return PGM_ALEN_TRANSLATION;
426	if (ale.alesn != alet.alesn)
427		return PGM_ALE_SEQUENCE;
428
429	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
430	if (rc)
431		return rc;
432
433	if (aste.i)
434		return PGM_ASTE_VALIDITY;
435	if (aste.astesn != ale.astesn)
436		return PGM_ASTE_SEQUENCE;
437
438	if (ale.p == 1) {
439		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
440		if (ale.aleax != eax) {
441			if (eax / 16 > aste.atl)
442				return PGM_EXTENDED_AUTHORITY;
443
444			authority_table_addr = aste.ato * 4 + eax / 4;
445
446			rc = read_guest_real(vcpu, authority_table_addr,
447					     &authority_table,
448					     sizeof(u8));
449			if (rc)
450				return rc;
451
452			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
453				return PGM_EXTENDED_AUTHORITY;
454		}
455	}
456
457	if (ale.fo == 1 && mode == GACC_STORE)
458		return PGM_PROTECTION;
459
460	asce->val = aste.asce;
461	return 0;
462}
463
464struct trans_exc_code_bits {
465	unsigned long addr : 52; /* Translation-exception Address */
466	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
467	unsigned long	   : 6;
 
 
468	unsigned long b60  : 1;
469	unsigned long b61  : 1;
470	unsigned long as   : 2;  /* ASCE Identifier */
471};
472
473enum {
474	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
475	FSI_STORE   = 1, /* Exception was due to store operation */
476	FSI_FETCH   = 2  /* Exception was due to fetch operation */
477};
478
479static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
480			 ar_t ar, enum gacc_mode mode)
 
 
 
 
 
 
 
 
481{
482	int rc;
483	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
484	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
485	struct trans_exc_code_bits *tec_bits;
486
487	memset(pgm, 0, sizeof(*pgm));
488	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
489	tec_bits->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
490	tec_bits->as = psw.as;
491
492	if (!psw.t) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493		asce->val = 0;
494		asce->r = 1;
495		return 0;
496	}
497
498	if (mode == GACC_IFETCH)
499		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;
500
501	switch (psw.as) {
502	case PSW_AS_PRIMARY:
503		asce->val = vcpu->arch.sie_block->gcr[1];
504		return 0;
505	case PSW_AS_SECONDARY:
506		asce->val = vcpu->arch.sie_block->gcr[7];
507		return 0;
508	case PSW_AS_HOME:
509		asce->val = vcpu->arch.sie_block->gcr[13];
510		return 0;
511	case PSW_AS_ACCREG:
512		rc = ar_translation(vcpu, asce, ar, mode);
513		switch (rc) {
514		case PGM_ALEN_TRANSLATION:
515		case PGM_ALE_SEQUENCE:
516		case PGM_ASTE_VALIDITY:
517		case PGM_ASTE_SEQUENCE:
518		case PGM_EXTENDED_AUTHORITY:
519			vcpu->arch.pgm.exc_access_id = ar;
520			break;
521		case PGM_PROTECTION:
522			tec_bits->b60 = 1;
523			tec_bits->b61 = 1;
524			break;
525		}
526		if (rc > 0)
527			pgm->code = rc;
528		return rc;
529	}
530	return 0;
531}
532
533static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
534{
535	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
536}
537
538/**
539 * guest_translate - translate a guest virtual into a guest absolute address
540 * @vcpu: virtual cpu
541 * @gva: guest virtual address
542 * @gpa: points to where guest physical (absolute) address should be stored
543 * @asce: effective asce
544 * @mode: indicates the access mode to be used
 
545 *
546 * Translate a guest virtual address into a guest absolute address by means
547 * of dynamic address translation as specified by the architecture.
548 * If the resulting absolute address is not available in the configuration
549 * an addressing exception is indicated and @gpa will not be changed.
550 *
551 * Returns: - zero on success; @gpa contains the resulting absolute address
552 *	    - a negative value if guest access failed due to e.g. broken
553 *	      guest mapping
554 *	    - a positve value if an access exception happened. In this case
555 *	      the returned value is the program interruption code as defined
556 *	      by the architecture
557 */
558static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
559				     unsigned long *gpa, const union asce asce,
560				     enum gacc_mode mode)
561{
562	union vaddress vaddr = {.addr = gva};
563	union raddress raddr = {.addr = gva};
564	union page_table_entry pte;
565	int dat_protection = 0;
 
566	union ctlreg0 ctlreg0;
567	unsigned long ptr;
568	int edat1, edat2;
569
570	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
571	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
572	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
 
573	if (asce.r)
574		goto real_address;
575	ptr = asce.origin * 4096;
576	switch (asce.dt) {
577	case ASCE_TYPE_REGION1:
578		if (vaddr.rfx01 > asce.tl)
579			return PGM_REGION_FIRST_TRANS;
580		ptr += vaddr.rfx * 8;
581		break;
582	case ASCE_TYPE_REGION2:
583		if (vaddr.rfx)
584			return PGM_ASCE_TYPE;
585		if (vaddr.rsx01 > asce.tl)
586			return PGM_REGION_SECOND_TRANS;
587		ptr += vaddr.rsx * 8;
588		break;
589	case ASCE_TYPE_REGION3:
590		if (vaddr.rfx || vaddr.rsx)
591			return PGM_ASCE_TYPE;
592		if (vaddr.rtx01 > asce.tl)
593			return PGM_REGION_THIRD_TRANS;
594		ptr += vaddr.rtx * 8;
595		break;
596	case ASCE_TYPE_SEGMENT:
597		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
598			return PGM_ASCE_TYPE;
599		if (vaddr.sx01 > asce.tl)
600			return PGM_SEGMENT_TRANSLATION;
601		ptr += vaddr.sx * 8;
602		break;
603	}
604	switch (asce.dt) {
605	case ASCE_TYPE_REGION1:	{
606		union region1_table_entry rfte;
607
608		if (kvm_is_error_gpa(vcpu->kvm, ptr))
609			return PGM_ADDRESSING;
610		if (deref_table(vcpu->kvm, ptr, &rfte.val))
611			return -EFAULT;
612		if (rfte.i)
613			return PGM_REGION_FIRST_TRANS;
614		if (rfte.tt != TABLE_TYPE_REGION1)
615			return PGM_TRANSLATION_SPEC;
616		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
617			return PGM_REGION_SECOND_TRANS;
618		if (edat1)
619			dat_protection |= rfte.p;
620		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
621	}
622		/* fallthrough */
623	case ASCE_TYPE_REGION2: {
624		union region2_table_entry rste;
625
626		if (kvm_is_error_gpa(vcpu->kvm, ptr))
627			return PGM_ADDRESSING;
628		if (deref_table(vcpu->kvm, ptr, &rste.val))
629			return -EFAULT;
630		if (rste.i)
631			return PGM_REGION_SECOND_TRANS;
632		if (rste.tt != TABLE_TYPE_REGION2)
633			return PGM_TRANSLATION_SPEC;
634		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
635			return PGM_REGION_THIRD_TRANS;
636		if (edat1)
637			dat_protection |= rste.p;
638		ptr = rste.rto * 4096 + vaddr.rtx * 8;
639	}
640		/* fallthrough */
641	case ASCE_TYPE_REGION3: {
642		union region3_table_entry rtte;
643
644		if (kvm_is_error_gpa(vcpu->kvm, ptr))
645			return PGM_ADDRESSING;
646		if (deref_table(vcpu->kvm, ptr, &rtte.val))
647			return -EFAULT;
648		if (rtte.i)
649			return PGM_REGION_THIRD_TRANS;
650		if (rtte.tt != TABLE_TYPE_REGION3)
651			return PGM_TRANSLATION_SPEC;
652		if (rtte.cr && asce.p && edat2)
653			return PGM_TRANSLATION_SPEC;
654		if (rtte.fc && edat2) {
655			dat_protection |= rtte.fc1.p;
 
656			raddr.rfaa = rtte.fc1.rfaa;
657			goto absolute_address;
658		}
659		if (vaddr.sx01 < rtte.fc0.tf)
660			return PGM_SEGMENT_TRANSLATION;
661		if (vaddr.sx01 > rtte.fc0.tl)
662			return PGM_SEGMENT_TRANSLATION;
663		if (edat1)
664			dat_protection |= rtte.fc0.p;
665		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
666	}
667		/* fallthrough */
668	case ASCE_TYPE_SEGMENT: {
669		union segment_table_entry ste;
670
671		if (kvm_is_error_gpa(vcpu->kvm, ptr))
672			return PGM_ADDRESSING;
673		if (deref_table(vcpu->kvm, ptr, &ste.val))
674			return -EFAULT;
675		if (ste.i)
676			return PGM_SEGMENT_TRANSLATION;
677		if (ste.tt != TABLE_TYPE_SEGMENT)
678			return PGM_TRANSLATION_SPEC;
679		if (ste.cs && asce.p)
680			return PGM_TRANSLATION_SPEC;
681		if (ste.fc && edat1) {
682			dat_protection |= ste.fc1.p;
 
683			raddr.sfaa = ste.fc1.sfaa;
684			goto absolute_address;
685		}
686		dat_protection |= ste.fc0.p;
687		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
688	}
689	}
690	if (kvm_is_error_gpa(vcpu->kvm, ptr))
691		return PGM_ADDRESSING;
692	if (deref_table(vcpu->kvm, ptr, &pte.val))
693		return -EFAULT;
694	if (pte.i)
695		return PGM_PAGE_TRANSLATION;
696	if (pte.z)
697		return PGM_TRANSLATION_SPEC;
698	if (pte.co && !edat1)
699		return PGM_TRANSLATION_SPEC;
700	dat_protection |= pte.p;
 
701	raddr.pfra = pte.pfra;
702real_address:
703	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
704absolute_address:
705	if (mode == GACC_STORE && dat_protection)
 
 
 
 
 
706		return PGM_PROTECTION;
 
707	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
708		return PGM_ADDRESSING;
709	*gpa = raddr.addr;
710	return 0;
711}
712
713static inline int is_low_address(unsigned long ga)
714{
715	/* Check for address ranges 0..511 and 4096..4607 */
716	return (ga & ~0x11fful) == 0;
717}
718
719static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
720					  const union asce asce)
721{
722	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
723	psw_t *psw = &vcpu->arch.sie_block->gpsw;
724
725	if (!ctlreg0.lap)
726		return 0;
727	if (psw_bits(*psw).t && asce.p)
728		return 0;
729	return 1;
730}
731
732static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga,
733			    unsigned long *pages, unsigned long nr_pages,
734			    const union asce asce, enum gacc_mode mode)
735{
736	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
737	psw_t *psw = &vcpu->arch.sie_block->gpsw;
738	struct trans_exc_code_bits *tec_bits;
739	int lap_enabled, rc;
740
741	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
742	lap_enabled = low_address_protection_enabled(vcpu, asce);
743	while (nr_pages) {
744		ga = kvm_s390_logical_to_effective(vcpu, ga);
745		tec_bits->addr = ga >> PAGE_SHIFT;
746		if (mode == GACC_STORE && lap_enabled && is_low_address(ga)) {
747			pgm->code = PGM_PROTECTION;
748			return pgm->code;
749		}
750		ga &= PAGE_MASK;
751		if (psw_bits(*psw).t) {
752			rc = guest_translate(vcpu, ga, pages, asce, mode);
753			if (rc < 0)
754				return rc;
755			if (rc == PGM_PROTECTION)
756				tec_bits->b61 = 1;
757			if (rc)
758				pgm->code = rc;
759		} else {
760			*pages = kvm_s390_real_to_abs(vcpu, ga);
761			if (kvm_is_error_gpa(vcpu->kvm, *pages))
762				pgm->code = PGM_ADDRESSING;
763		}
764		if (pgm->code)
765			return pgm->code;
766		ga += PAGE_SIZE;
767		pages++;
768		nr_pages--;
769	}
770	return 0;
771}
772
773int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
774		 unsigned long len, enum gacc_mode mode)
775{
776	psw_t *psw = &vcpu->arch.sie_block->gpsw;
777	unsigned long _len, nr_pages, gpa, idx;
778	unsigned long pages_array[2];
779	unsigned long *pages;
780	int need_ipte_lock;
781	union asce asce;
782	int rc;
783
784	if (!len)
785		return 0;
786	rc = get_vcpu_asce(vcpu, &asce, ar, mode);
 
787	if (rc)
788		return rc;
789	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
790	pages = pages_array;
791	if (nr_pages > ARRAY_SIZE(pages_array))
792		pages = vmalloc(nr_pages * sizeof(unsigned long));
793	if (!pages)
794		return -ENOMEM;
795	need_ipte_lock = psw_bits(*psw).t && !asce.r;
796	if (need_ipte_lock)
797		ipte_lock(vcpu);
798	rc = guest_page_range(vcpu, ga, pages, nr_pages, asce, mode);
799	for (idx = 0; idx < nr_pages && !rc; idx++) {
800		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
801		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
802		if (mode == GACC_STORE)
803			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
804		else
805			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
806		len -= _len;
807		ga += _len;
808		data += _len;
809	}
810	if (need_ipte_lock)
811		ipte_unlock(vcpu);
812	if (nr_pages > ARRAY_SIZE(pages_array))
813		vfree(pages);
814	return rc;
815}
816
817int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
818		      void *data, unsigned long len, enum gacc_mode mode)
819{
820	unsigned long _len, gpa;
821	int rc = 0;
822
823	while (len && !rc) {
824		gpa = kvm_s390_real_to_abs(vcpu, gra);
825		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
826		if (mode)
827			rc = write_guest_abs(vcpu, gpa, data, _len);
828		else
829			rc = read_guest_abs(vcpu, gpa, data, _len);
830		len -= _len;
831		gra += _len;
832		data += _len;
833	}
834	return rc;
835}
836
837/**
838 * guest_translate_address - translate guest logical into guest absolute address
839 *
840 * Parameter semantics are the same as the ones from guest_translate.
841 * The memory contents at the guest address are not changed.
842 *
843 * Note: The IPTE lock is not taken during this function, so the caller
844 * has to take care of this.
845 */
846int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
847			    unsigned long *gpa, enum gacc_mode mode)
848{
849	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
850	psw_t *psw = &vcpu->arch.sie_block->gpsw;
851	struct trans_exc_code_bits *tec;
852	union asce asce;
853	int rc;
854
855	gva = kvm_s390_logical_to_effective(vcpu, gva);
856	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
857	rc = get_vcpu_asce(vcpu, &asce, ar, mode);
858	tec->addr = gva >> PAGE_SHIFT;
859	if (rc)
860		return rc;
861	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
862		if (mode == GACC_STORE) {
863			rc = pgm->code = PGM_PROTECTION;
864			return rc;
865		}
866	}
867
868	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
869		rc = guest_translate(vcpu, gva, gpa, asce, mode);
870		if (rc > 0) {
871			if (rc == PGM_PROTECTION)
872				tec->b61 = 1;
873			pgm->code = rc;
874		}
875	} else {
876		rc = 0;
877		*gpa = kvm_s390_real_to_abs(vcpu, gva);
878		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
879			rc = pgm->code = PGM_ADDRESSING;
880	}
881
882	return rc;
883}
884
885/**
886 * check_gva_range - test a range of guest virtual addresses for accessibility
887 */
888int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
889		    unsigned long length, enum gacc_mode mode)
890{
891	unsigned long gpa;
892	unsigned long currlen;
893	int rc = 0;
894
895	ipte_lock(vcpu);
896	while (length > 0 && !rc) {
897		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
898		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
899		gva += currlen;
900		length -= currlen;
901	}
902	ipte_unlock(vcpu);
903
904	return rc;
905}
906
907/**
908 * kvm_s390_check_low_addr_prot_real - check for low-address protection
909 * @gra: Guest real address
910 *
911 * Checks whether an address is subject to low-address protection and set
912 * up vcpu->arch.pgm accordingly if necessary.
913 *
914 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
915 */
916int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
917{
918	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
919	psw_t *psw = &vcpu->arch.sie_block->gpsw;
920	struct trans_exc_code_bits *tec_bits;
921	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
922
923	if (!ctlreg0.lap || !is_low_address(gra))
924		return 0;
 
 
925
926	memset(pgm, 0, sizeof(*pgm));
927	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
928	tec_bits->fsi = FSI_STORE;
929	tec_bits->as = psw_bits(*psw).as;
930	tec_bits->addr = gra >> PAGE_SHIFT;
931	pgm->code = PGM_PROTECTION;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
932
933	return pgm->code;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * guest access functions
   4 *
   5 * Copyright IBM Corp. 2014
   6 *
   7 */
   8
   9#include <linux/vmalloc.h>
  10#include <linux/mm_types.h>
  11#include <linux/err.h>
  12
  13#include <asm/pgtable.h>
  14#include <asm/gmap.h>
  15#include "kvm-s390.h"
  16#include "gaccess.h"
  17#include <asm/switch_to.h>
  18
  19union asce {
  20	unsigned long val;
  21	struct {
  22		unsigned long origin : 52; /* Region- or Segment-Table Origin */
  23		unsigned long	 : 2;
  24		unsigned long g  : 1; /* Subspace Group Control */
  25		unsigned long p  : 1; /* Private Space Control */
  26		unsigned long s  : 1; /* Storage-Alteration-Event Control */
  27		unsigned long x  : 1; /* Space-Switch-Event Control */
  28		unsigned long r  : 1; /* Real-Space Control */
  29		unsigned long	 : 1;
  30		unsigned long dt : 2; /* Designation-Type Control */
  31		unsigned long tl : 2; /* Region- or Segment-Table Length */
  32	};
  33};
  34
  35enum {
  36	ASCE_TYPE_SEGMENT = 0,
  37	ASCE_TYPE_REGION3 = 1,
  38	ASCE_TYPE_REGION2 = 2,
  39	ASCE_TYPE_REGION1 = 3
  40};
  41
  42union region1_table_entry {
  43	unsigned long val;
  44	struct {
  45		unsigned long rto: 52;/* Region-Table Origin */
  46		unsigned long	 : 2;
  47		unsigned long p  : 1; /* DAT-Protection Bit */
  48		unsigned long	 : 1;
  49		unsigned long tf : 2; /* Region-Second-Table Offset */
  50		unsigned long i  : 1; /* Region-Invalid Bit */
  51		unsigned long	 : 1;
  52		unsigned long tt : 2; /* Table-Type Bits */
  53		unsigned long tl : 2; /* Region-Second-Table Length */
  54	};
  55};
  56
  57union region2_table_entry {
  58	unsigned long val;
  59	struct {
  60		unsigned long rto: 52;/* Region-Table Origin */
  61		unsigned long	 : 2;
  62		unsigned long p  : 1; /* DAT-Protection Bit */
  63		unsigned long	 : 1;
  64		unsigned long tf : 2; /* Region-Third-Table Offset */
  65		unsigned long i  : 1; /* Region-Invalid Bit */
  66		unsigned long	 : 1;
  67		unsigned long tt : 2; /* Table-Type Bits */
  68		unsigned long tl : 2; /* Region-Third-Table Length */
  69	};
  70};
  71
  72struct region3_table_entry_fc0 {
  73	unsigned long sto: 52;/* Segment-Table Origin */
  74	unsigned long	 : 1;
  75	unsigned long fc : 1; /* Format-Control */
  76	unsigned long p  : 1; /* DAT-Protection Bit */
  77	unsigned long	 : 1;
  78	unsigned long tf : 2; /* Segment-Table Offset */
  79	unsigned long i  : 1; /* Region-Invalid Bit */
  80	unsigned long cr : 1; /* Common-Region Bit */
  81	unsigned long tt : 2; /* Table-Type Bits */
  82	unsigned long tl : 2; /* Segment-Table Length */
  83};
  84
  85struct region3_table_entry_fc1 {
  86	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
  87	unsigned long	 : 14;
  88	unsigned long av : 1; /* ACCF-Validity Control */
  89	unsigned long acc: 4; /* Access-Control Bits */
  90	unsigned long f  : 1; /* Fetch-Protection Bit */
  91	unsigned long fc : 1; /* Format-Control */
  92	unsigned long p  : 1; /* DAT-Protection Bit */
  93	unsigned long iep: 1; /* Instruction-Execution-Protection */
  94	unsigned long	 : 2;
  95	unsigned long i  : 1; /* Region-Invalid Bit */
  96	unsigned long cr : 1; /* Common-Region Bit */
  97	unsigned long tt : 2; /* Table-Type Bits */
  98	unsigned long	 : 2;
  99};
 100
 101union region3_table_entry {
 102	unsigned long val;
 103	struct region3_table_entry_fc0 fc0;
 104	struct region3_table_entry_fc1 fc1;
 105	struct {
 106		unsigned long	 : 53;
 107		unsigned long fc : 1; /* Format-Control */
 108		unsigned long	 : 4;
 109		unsigned long i  : 1; /* Region-Invalid Bit */
 110		unsigned long cr : 1; /* Common-Region Bit */
 111		unsigned long tt : 2; /* Table-Type Bits */
 112		unsigned long	 : 2;
 113	};
 114};
 115
 116struct segment_entry_fc0 {
 117	unsigned long pto: 53;/* Page-Table Origin */
 118	unsigned long fc : 1; /* Format-Control */
 119	unsigned long p  : 1; /* DAT-Protection Bit */
 120	unsigned long	 : 3;
 121	unsigned long i  : 1; /* Segment-Invalid Bit */
 122	unsigned long cs : 1; /* Common-Segment Bit */
 123	unsigned long tt : 2; /* Table-Type Bits */
 124	unsigned long	 : 2;
 125};
 126
 127struct segment_entry_fc1 {
 128	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
 129	unsigned long	 : 3;
 130	unsigned long av : 1; /* ACCF-Validity Control */
 131	unsigned long acc: 4; /* Access-Control Bits */
 132	unsigned long f  : 1; /* Fetch-Protection Bit */
 133	unsigned long fc : 1; /* Format-Control */
 134	unsigned long p  : 1; /* DAT-Protection Bit */
 135	unsigned long iep: 1; /* Instruction-Execution-Protection */
 136	unsigned long	 : 2;
 137	unsigned long i  : 1; /* Segment-Invalid Bit */
 138	unsigned long cs : 1; /* Common-Segment Bit */
 139	unsigned long tt : 2; /* Table-Type Bits */
 140	unsigned long	 : 2;
 141};
 142
 143union segment_table_entry {
 144	unsigned long val;
 145	struct segment_entry_fc0 fc0;
 146	struct segment_entry_fc1 fc1;
 147	struct {
 148		unsigned long	 : 53;
 149		unsigned long fc : 1; /* Format-Control */
 150		unsigned long	 : 4;
 151		unsigned long i  : 1; /* Segment-Invalid Bit */
 152		unsigned long cs : 1; /* Common-Segment Bit */
 153		unsigned long tt : 2; /* Table-Type Bits */
 154		unsigned long	 : 2;
 155	};
 156};
 157
 158enum {
 159	TABLE_TYPE_SEGMENT = 0,
 160	TABLE_TYPE_REGION3 = 1,
 161	TABLE_TYPE_REGION2 = 2,
 162	TABLE_TYPE_REGION1 = 3
 163};
 164
 165union page_table_entry {
 166	unsigned long val;
 167	struct {
 168		unsigned long pfra : 52; /* Page-Frame Real Address */
 169		unsigned long z  : 1; /* Zero Bit */
 170		unsigned long i  : 1; /* Page-Invalid Bit */
 171		unsigned long p  : 1; /* DAT-Protection Bit */
 172		unsigned long iep: 1; /* Instruction-Execution-Protection */
 173		unsigned long	 : 8;
 174	};
 175};
 176
 177/*
 178 * vaddress union in order to easily decode a virtual address into its
 179 * region first index, region second index etc. parts.
 180 */
 181union vaddress {
 182	unsigned long addr;
 183	struct {
 184		unsigned long rfx : 11;
 185		unsigned long rsx : 11;
 186		unsigned long rtx : 11;
 187		unsigned long sx  : 11;
 188		unsigned long px  : 8;
 189		unsigned long bx  : 12;
 190	};
 191	struct {
 192		unsigned long rfx01 : 2;
 193		unsigned long	    : 9;
 194		unsigned long rsx01 : 2;
 195		unsigned long	    : 9;
 196		unsigned long rtx01 : 2;
 197		unsigned long	    : 9;
 198		unsigned long sx01  : 2;
 199		unsigned long	    : 29;
 200	};
 201};
 202
 203/*
 204 * raddress union which will contain the result (real or absolute address)
 205 * after a page table walk. The rfaa, sfaa and pfra members are used to
 206 * simply assign them the value of a region, segment or page table entry.
 207 */
 208union raddress {
 209	unsigned long addr;
 210	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
 211	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
 212	unsigned long pfra : 52; /* Page-Frame Real Address */
 213};
 214
 215union alet {
 216	u32 val;
 217	struct {
 218		u32 reserved : 7;
 219		u32 p        : 1;
 220		u32 alesn    : 8;
 221		u32 alen     : 16;
 222	};
 223};
 224
 225union ald {
 226	u32 val;
 227	struct {
 228		u32     : 1;
 229		u32 alo : 24;
 230		u32 all : 7;
 231	};
 232};
 233
 234struct ale {
 235	unsigned long i      : 1; /* ALEN-Invalid Bit */
 236	unsigned long        : 5;
 237	unsigned long fo     : 1; /* Fetch-Only Bit */
 238	unsigned long p      : 1; /* Private Bit */
 239	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
 240	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
 241	unsigned long        : 32;
 242	unsigned long        : 1;
 243	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
 244	unsigned long        : 6;
 245	unsigned long astesn : 32; /* ASTE Sequence Number */
 246};
 247
 248struct aste {
 249	unsigned long i      : 1; /* ASX-Invalid Bit */
 250	unsigned long ato    : 29; /* Authority-Table Origin */
 251	unsigned long        : 1;
 252	unsigned long b      : 1; /* Base-Space Bit */
 253	unsigned long ax     : 16; /* Authorization Index */
 254	unsigned long atl    : 12; /* Authority-Table Length */
 255	unsigned long        : 2;
 256	unsigned long ca     : 1; /* Controlled-ASN Bit */
 257	unsigned long ra     : 1; /* Reusable-ASN Bit */
 258	unsigned long asce   : 64; /* Address-Space-Control Element */
 259	unsigned long ald    : 32;
 260	unsigned long astesn : 32;
 261	/* .. more fields there */
 262};
 263
 264int ipte_lock_held(struct kvm_vcpu *vcpu)
 265{
 266	if (vcpu->arch.sie_block->eca & ECA_SII) {
 267		int rc;
 268
 269		read_lock(&vcpu->kvm->arch.sca_lock);
 270		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
 271		read_unlock(&vcpu->kvm->arch.sca_lock);
 272		return rc;
 273	}
 274	return vcpu->kvm->arch.ipte_lock_count != 0;
 275}
 276
 277static void ipte_lock_simple(struct kvm_vcpu *vcpu)
 278{
 279	union ipte_control old, new, *ic;
 280
 281	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
 282	vcpu->kvm->arch.ipte_lock_count++;
 283	if (vcpu->kvm->arch.ipte_lock_count > 1)
 284		goto out;
 285retry:
 286	read_lock(&vcpu->kvm->arch.sca_lock);
 287	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 288	do {
 289		old = READ_ONCE(*ic);
 290		if (old.k) {
 291			read_unlock(&vcpu->kvm->arch.sca_lock);
 292			cond_resched();
 293			goto retry;
 294		}
 295		new = old;
 296		new.k = 1;
 297	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 298	read_unlock(&vcpu->kvm->arch.sca_lock);
 299out:
 300	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
 301}
 302
 303static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
 304{
 305	union ipte_control old, new, *ic;
 306
 307	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
 308	vcpu->kvm->arch.ipte_lock_count--;
 309	if (vcpu->kvm->arch.ipte_lock_count)
 310		goto out;
 311	read_lock(&vcpu->kvm->arch.sca_lock);
 312	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 313	do {
 314		old = READ_ONCE(*ic);
 315		new = old;
 316		new.k = 0;
 317	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 318	read_unlock(&vcpu->kvm->arch.sca_lock);
 319	wake_up(&vcpu->kvm->arch.ipte_wq);
 320out:
 321	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
 322}
 323
 324static void ipte_lock_siif(struct kvm_vcpu *vcpu)
 325{
 326	union ipte_control old, new, *ic;
 327
 328retry:
 329	read_lock(&vcpu->kvm->arch.sca_lock);
 330	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 331	do {
 332		old = READ_ONCE(*ic);
 333		if (old.kg) {
 334			read_unlock(&vcpu->kvm->arch.sca_lock);
 335			cond_resched();
 336			goto retry;
 337		}
 338		new = old;
 339		new.k = 1;
 340		new.kh++;
 341	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 342	read_unlock(&vcpu->kvm->arch.sca_lock);
 343}
 344
 345static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
 346{
 347	union ipte_control old, new, *ic;
 348
 349	read_lock(&vcpu->kvm->arch.sca_lock);
 350	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 351	do {
 352		old = READ_ONCE(*ic);
 353		new = old;
 354		new.kh--;
 355		if (!new.kh)
 356			new.k = 0;
 357	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 358	read_unlock(&vcpu->kvm->arch.sca_lock);
 359	if (!new.kh)
 360		wake_up(&vcpu->kvm->arch.ipte_wq);
 361}
 362
 363void ipte_lock(struct kvm_vcpu *vcpu)
 364{
 365	if (vcpu->arch.sie_block->eca & ECA_SII)
 366		ipte_lock_siif(vcpu);
 367	else
 368		ipte_lock_simple(vcpu);
 369}
 370
 371void ipte_unlock(struct kvm_vcpu *vcpu)
 372{
 373	if (vcpu->arch.sie_block->eca & ECA_SII)
 374		ipte_unlock_siif(vcpu);
 375	else
 376		ipte_unlock_simple(vcpu);
 377}
 378
 379static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
 380			  enum gacc_mode mode)
 381{
 382	union alet alet;
 383	struct ale ale;
 384	struct aste aste;
 385	unsigned long ald_addr, authority_table_addr;
 386	union ald ald;
 387	int eax, rc;
 388	u8 authority_table;
 389
 390	if (ar >= NUM_ACRS)
 391		return -EINVAL;
 392
 393	save_access_regs(vcpu->run->s.regs.acrs);
 394	alet.val = vcpu->run->s.regs.acrs[ar];
 395
 396	if (ar == 0 || alet.val == 0) {
 397		asce->val = vcpu->arch.sie_block->gcr[1];
 398		return 0;
 399	} else if (alet.val == 1) {
 400		asce->val = vcpu->arch.sie_block->gcr[7];
 401		return 0;
 402	}
 403
 404	if (alet.reserved)
 405		return PGM_ALET_SPECIFICATION;
 406
 407	if (alet.p)
 408		ald_addr = vcpu->arch.sie_block->gcr[5];
 409	else
 410		ald_addr = vcpu->arch.sie_block->gcr[2];
 411	ald_addr &= 0x7fffffc0;
 412
 413	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
 414	if (rc)
 415		return rc;
 416
 417	if (alet.alen / 8 > ald.all)
 418		return PGM_ALEN_TRANSLATION;
 419
 420	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
 421		return PGM_ADDRESSING;
 422
 423	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
 424			     sizeof(struct ale));
 425	if (rc)
 426		return rc;
 427
 428	if (ale.i == 1)
 429		return PGM_ALEN_TRANSLATION;
 430	if (ale.alesn != alet.alesn)
 431		return PGM_ALE_SEQUENCE;
 432
 433	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
 434	if (rc)
 435		return rc;
 436
 437	if (aste.i)
 438		return PGM_ASTE_VALIDITY;
 439	if (aste.astesn != ale.astesn)
 440		return PGM_ASTE_SEQUENCE;
 441
 442	if (ale.p == 1) {
 443		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
 444		if (ale.aleax != eax) {
 445			if (eax / 16 > aste.atl)
 446				return PGM_EXTENDED_AUTHORITY;
 447
 448			authority_table_addr = aste.ato * 4 + eax / 4;
 449
 450			rc = read_guest_real(vcpu, authority_table_addr,
 451					     &authority_table,
 452					     sizeof(u8));
 453			if (rc)
 454				return rc;
 455
 456			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
 457				return PGM_EXTENDED_AUTHORITY;
 458		}
 459	}
 460
 461	if (ale.fo == 1 && mode == GACC_STORE)
 462		return PGM_PROTECTION;
 463
 464	asce->val = aste.asce;
 465	return 0;
 466}
 467
 468struct trans_exc_code_bits {
 469	unsigned long addr : 52; /* Translation-exception Address */
 470	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
 471	unsigned long	   : 2;
 472	unsigned long b56  : 1;
 473	unsigned long	   : 3;
 474	unsigned long b60  : 1;
 475	unsigned long b61  : 1;
 476	unsigned long as   : 2;  /* ASCE Identifier */
 477};
 478
 479enum {
 480	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
 481	FSI_STORE   = 1, /* Exception was due to store operation */
 482	FSI_FETCH   = 2  /* Exception was due to fetch operation */
 483};
 484
 485enum prot_type {
 486	PROT_TYPE_LA   = 0,
 487	PROT_TYPE_KEYC = 1,
 488	PROT_TYPE_ALC  = 2,
 489	PROT_TYPE_DAT  = 3,
 490	PROT_TYPE_IEP  = 4,
 491};
 492
 493static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
 494		     u8 ar, enum gacc_mode mode, enum prot_type prot)
 495{
 
 
 496	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
 497	struct trans_exc_code_bits *tec;
 498
 499	memset(pgm, 0, sizeof(*pgm));
 500	pgm->code = code;
 501	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
 
 502
 503	switch (code) {
 504	case PGM_PROTECTION:
 505		switch (prot) {
 506		case PROT_TYPE_IEP:
 507			tec->b61 = 1;
 508			/* FALL THROUGH */
 509		case PROT_TYPE_LA:
 510			tec->b56 = 1;
 511			break;
 512		case PROT_TYPE_KEYC:
 513			tec->b60 = 1;
 514			break;
 515		case PROT_TYPE_ALC:
 516			tec->b60 = 1;
 517			/* FALL THROUGH */
 518		case PROT_TYPE_DAT:
 519			tec->b61 = 1;
 520			break;
 521		}
 522		/* FALL THROUGH */
 523	case PGM_ASCE_TYPE:
 524	case PGM_PAGE_TRANSLATION:
 525	case PGM_REGION_FIRST_TRANS:
 526	case PGM_REGION_SECOND_TRANS:
 527	case PGM_REGION_THIRD_TRANS:
 528	case PGM_SEGMENT_TRANSLATION:
 529		/*
 530		 * op_access_id only applies to MOVE_PAGE -> set bit 61
 531		 * exc_access_id has to be set to 0 for some instructions. Both
 532		 * cases have to be handled by the caller.
 533		 */
 534		tec->addr = gva >> PAGE_SHIFT;
 535		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
 536		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
 537		/* FALL THROUGH */
 538	case PGM_ALEN_TRANSLATION:
 539	case PGM_ALE_SEQUENCE:
 540	case PGM_ASTE_VALIDITY:
 541	case PGM_ASTE_SEQUENCE:
 542	case PGM_EXTENDED_AUTHORITY:
 543		/*
 544		 * We can always store exc_access_id, as it is
 545		 * undefined for non-ar cases. It is undefined for
 546		 * most DAT protection exceptions.
 547		 */
 548		pgm->exc_access_id = ar;
 549		break;
 550	}
 551	return code;
 552}
 553
 554static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
 555			 unsigned long ga, u8 ar, enum gacc_mode mode)
 556{
 557	int rc;
 558	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
 559
 560	if (!psw.dat) {
 561		asce->val = 0;
 562		asce->r = 1;
 563		return 0;
 564	}
 565
 566	if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
 567		psw.as = PSW_BITS_AS_PRIMARY;
 568
 569	switch (psw.as) {
 570	case PSW_BITS_AS_PRIMARY:
 571		asce->val = vcpu->arch.sie_block->gcr[1];
 572		return 0;
 573	case PSW_BITS_AS_SECONDARY:
 574		asce->val = vcpu->arch.sie_block->gcr[7];
 575		return 0;
 576	case PSW_BITS_AS_HOME:
 577		asce->val = vcpu->arch.sie_block->gcr[13];
 578		return 0;
 579	case PSW_BITS_AS_ACCREG:
 580		rc = ar_translation(vcpu, asce, ar, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 581		if (rc > 0)
 582			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
 583		return rc;
 584	}
 585	return 0;
 586}
 587
 588static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
 589{
 590	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
 591}
 592
 593/**
 594 * guest_translate - translate a guest virtual into a guest absolute address
 595 * @vcpu: virtual cpu
 596 * @gva: guest virtual address
 597 * @gpa: points to where guest physical (absolute) address should be stored
 598 * @asce: effective asce
 599 * @mode: indicates the access mode to be used
 600 * @prot: returns the type for protection exceptions
 601 *
 602 * Translate a guest virtual address into a guest absolute address by means
 603 * of dynamic address translation as specified by the architecture.
 604 * If the resulting absolute address is not available in the configuration
 605 * an addressing exception is indicated and @gpa will not be changed.
 606 *
 607 * Returns: - zero on success; @gpa contains the resulting absolute address
 608 *	    - a negative value if guest access failed due to e.g. broken
 609 *	      guest mapping
 610 *	    - a positve value if an access exception happened. In this case
 611 *	      the returned value is the program interruption code as defined
 612 *	      by the architecture
 613 */
 614static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
 615				     unsigned long *gpa, const union asce asce,
 616				     enum gacc_mode mode, enum prot_type *prot)
 617{
 618	union vaddress vaddr = {.addr = gva};
 619	union raddress raddr = {.addr = gva};
 620	union page_table_entry pte;
 621	int dat_protection = 0;
 622	int iep_protection = 0;
 623	union ctlreg0 ctlreg0;
 624	unsigned long ptr;
 625	int edat1, edat2, iep;
 626
 627	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
 628	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
 629	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
 630	iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
 631	if (asce.r)
 632		goto real_address;
 633	ptr = asce.origin * PAGE_SIZE;
 634	switch (asce.dt) {
 635	case ASCE_TYPE_REGION1:
 636		if (vaddr.rfx01 > asce.tl)
 637			return PGM_REGION_FIRST_TRANS;
 638		ptr += vaddr.rfx * 8;
 639		break;
 640	case ASCE_TYPE_REGION2:
 641		if (vaddr.rfx)
 642			return PGM_ASCE_TYPE;
 643		if (vaddr.rsx01 > asce.tl)
 644			return PGM_REGION_SECOND_TRANS;
 645		ptr += vaddr.rsx * 8;
 646		break;
 647	case ASCE_TYPE_REGION3:
 648		if (vaddr.rfx || vaddr.rsx)
 649			return PGM_ASCE_TYPE;
 650		if (vaddr.rtx01 > asce.tl)
 651			return PGM_REGION_THIRD_TRANS;
 652		ptr += vaddr.rtx * 8;
 653		break;
 654	case ASCE_TYPE_SEGMENT:
 655		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
 656			return PGM_ASCE_TYPE;
 657		if (vaddr.sx01 > asce.tl)
 658			return PGM_SEGMENT_TRANSLATION;
 659		ptr += vaddr.sx * 8;
 660		break;
 661	}
 662	switch (asce.dt) {
 663	case ASCE_TYPE_REGION1:	{
 664		union region1_table_entry rfte;
 665
 666		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 667			return PGM_ADDRESSING;
 668		if (deref_table(vcpu->kvm, ptr, &rfte.val))
 669			return -EFAULT;
 670		if (rfte.i)
 671			return PGM_REGION_FIRST_TRANS;
 672		if (rfte.tt != TABLE_TYPE_REGION1)
 673			return PGM_TRANSLATION_SPEC;
 674		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
 675			return PGM_REGION_SECOND_TRANS;
 676		if (edat1)
 677			dat_protection |= rfte.p;
 678		ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
 679	}
 680		/* fallthrough */
 681	case ASCE_TYPE_REGION2: {
 682		union region2_table_entry rste;
 683
 684		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 685			return PGM_ADDRESSING;
 686		if (deref_table(vcpu->kvm, ptr, &rste.val))
 687			return -EFAULT;
 688		if (rste.i)
 689			return PGM_REGION_SECOND_TRANS;
 690		if (rste.tt != TABLE_TYPE_REGION2)
 691			return PGM_TRANSLATION_SPEC;
 692		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
 693			return PGM_REGION_THIRD_TRANS;
 694		if (edat1)
 695			dat_protection |= rste.p;
 696		ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
 697	}
 698		/* fallthrough */
 699	case ASCE_TYPE_REGION3: {
 700		union region3_table_entry rtte;
 701
 702		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 703			return PGM_ADDRESSING;
 704		if (deref_table(vcpu->kvm, ptr, &rtte.val))
 705			return -EFAULT;
 706		if (rtte.i)
 707			return PGM_REGION_THIRD_TRANS;
 708		if (rtte.tt != TABLE_TYPE_REGION3)
 709			return PGM_TRANSLATION_SPEC;
 710		if (rtte.cr && asce.p && edat2)
 711			return PGM_TRANSLATION_SPEC;
 712		if (rtte.fc && edat2) {
 713			dat_protection |= rtte.fc1.p;
 714			iep_protection = rtte.fc1.iep;
 715			raddr.rfaa = rtte.fc1.rfaa;
 716			goto absolute_address;
 717		}
 718		if (vaddr.sx01 < rtte.fc0.tf)
 719			return PGM_SEGMENT_TRANSLATION;
 720		if (vaddr.sx01 > rtte.fc0.tl)
 721			return PGM_SEGMENT_TRANSLATION;
 722		if (edat1)
 723			dat_protection |= rtte.fc0.p;
 724		ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
 725	}
 726		/* fallthrough */
 727	case ASCE_TYPE_SEGMENT: {
 728		union segment_table_entry ste;
 729
 730		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 731			return PGM_ADDRESSING;
 732		if (deref_table(vcpu->kvm, ptr, &ste.val))
 733			return -EFAULT;
 734		if (ste.i)
 735			return PGM_SEGMENT_TRANSLATION;
 736		if (ste.tt != TABLE_TYPE_SEGMENT)
 737			return PGM_TRANSLATION_SPEC;
 738		if (ste.cs && asce.p)
 739			return PGM_TRANSLATION_SPEC;
 740		if (ste.fc && edat1) {
 741			dat_protection |= ste.fc1.p;
 742			iep_protection = ste.fc1.iep;
 743			raddr.sfaa = ste.fc1.sfaa;
 744			goto absolute_address;
 745		}
 746		dat_protection |= ste.fc0.p;
 747		ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
 748	}
 749	}
 750	if (kvm_is_error_gpa(vcpu->kvm, ptr))
 751		return PGM_ADDRESSING;
 752	if (deref_table(vcpu->kvm, ptr, &pte.val))
 753		return -EFAULT;
 754	if (pte.i)
 755		return PGM_PAGE_TRANSLATION;
 756	if (pte.z)
 757		return PGM_TRANSLATION_SPEC;
 
 
 758	dat_protection |= pte.p;
 759	iep_protection = pte.iep;
 760	raddr.pfra = pte.pfra;
 761real_address:
 762	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
 763absolute_address:
 764	if (mode == GACC_STORE && dat_protection) {
 765		*prot = PROT_TYPE_DAT;
 766		return PGM_PROTECTION;
 767	}
 768	if (mode == GACC_IFETCH && iep_protection && iep) {
 769		*prot = PROT_TYPE_IEP;
 770		return PGM_PROTECTION;
 771	}
 772	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
 773		return PGM_ADDRESSING;
 774	*gpa = raddr.addr;
 775	return 0;
 776}
 777
 778static inline int is_low_address(unsigned long ga)
 779{
 780	/* Check for address ranges 0..511 and 4096..4607 */
 781	return (ga & ~0x11fful) == 0;
 782}
 783
 784static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
 785					  const union asce asce)
 786{
 787	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
 788	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 789
 790	if (!ctlreg0.lap)
 791		return 0;
 792	if (psw_bits(*psw).dat && asce.p)
 793		return 0;
 794	return 1;
 795}
 796
 797static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
 798			    unsigned long *pages, unsigned long nr_pages,
 799			    const union asce asce, enum gacc_mode mode)
 800{
 
 801	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 802	int lap_enabled, rc = 0;
 803	enum prot_type prot;
 804
 
 805	lap_enabled = low_address_protection_enabled(vcpu, asce);
 806	while (nr_pages) {
 807		ga = kvm_s390_logical_to_effective(vcpu, ga);
 808		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
 809			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
 810					 PROT_TYPE_LA);
 
 
 811		ga &= PAGE_MASK;
 812		if (psw_bits(*psw).dat) {
 813			rc = guest_translate(vcpu, ga, pages, asce, mode, &prot);
 814			if (rc < 0)
 815				return rc;
 
 
 
 
 816		} else {
 817			*pages = kvm_s390_real_to_abs(vcpu, ga);
 818			if (kvm_is_error_gpa(vcpu->kvm, *pages))
 819				rc = PGM_ADDRESSING;
 820		}
 821		if (rc)
 822			return trans_exc(vcpu, rc, ga, ar, mode, prot);
 823		ga += PAGE_SIZE;
 824		pages++;
 825		nr_pages--;
 826	}
 827	return 0;
 828}
 829
 830int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
 831		 unsigned long len, enum gacc_mode mode)
 832{
 833	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 834	unsigned long _len, nr_pages, gpa, idx;
 835	unsigned long pages_array[2];
 836	unsigned long *pages;
 837	int need_ipte_lock;
 838	union asce asce;
 839	int rc;
 840
 841	if (!len)
 842		return 0;
 843	ga = kvm_s390_logical_to_effective(vcpu, ga);
 844	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
 845	if (rc)
 846		return rc;
 847	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
 848	pages = pages_array;
 849	if (nr_pages > ARRAY_SIZE(pages_array))
 850		pages = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
 851	if (!pages)
 852		return -ENOMEM;
 853	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
 854	if (need_ipte_lock)
 855		ipte_lock(vcpu);
 856	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
 857	for (idx = 0; idx < nr_pages && !rc; idx++) {
 858		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
 859		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
 860		if (mode == GACC_STORE)
 861			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
 862		else
 863			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
 864		len -= _len;
 865		ga += _len;
 866		data += _len;
 867	}
 868	if (need_ipte_lock)
 869		ipte_unlock(vcpu);
 870	if (nr_pages > ARRAY_SIZE(pages_array))
 871		vfree(pages);
 872	return rc;
 873}
 874
 875int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
 876		      void *data, unsigned long len, enum gacc_mode mode)
 877{
 878	unsigned long _len, gpa;
 879	int rc = 0;
 880
 881	while (len && !rc) {
 882		gpa = kvm_s390_real_to_abs(vcpu, gra);
 883		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
 884		if (mode)
 885			rc = write_guest_abs(vcpu, gpa, data, _len);
 886		else
 887			rc = read_guest_abs(vcpu, gpa, data, _len);
 888		len -= _len;
 889		gra += _len;
 890		data += _len;
 891	}
 892	return rc;
 893}
 894
 895/**
 896 * guest_translate_address - translate guest logical into guest absolute address
 897 *
 898 * Parameter semantics are the same as the ones from guest_translate.
 899 * The memory contents at the guest address are not changed.
 900 *
 901 * Note: The IPTE lock is not taken during this function, so the caller
 902 * has to take care of this.
 903 */
 904int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
 905			    unsigned long *gpa, enum gacc_mode mode)
 906{
 
 907	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 908	enum prot_type prot;
 909	union asce asce;
 910	int rc;
 911
 912	gva = kvm_s390_logical_to_effective(vcpu, gva);
 913	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
 
 
 914	if (rc)
 915		return rc;
 916	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
 917		if (mode == GACC_STORE)
 918			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
 919					 mode, PROT_TYPE_LA);
 
 920	}
 921
 922	if (psw_bits(*psw).dat && !asce.r) {	/* Use DAT? */
 923		rc = guest_translate(vcpu, gva, gpa, asce, mode, &prot);
 924		if (rc > 0)
 925			return trans_exc(vcpu, rc, gva, 0, mode, prot);
 
 
 
 926	} else {
 
 927		*gpa = kvm_s390_real_to_abs(vcpu, gva);
 928		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
 929			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
 930	}
 931
 932	return rc;
 933}
 934
 935/**
 936 * check_gva_range - test a range of guest virtual addresses for accessibility
 937 */
 938int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
 939		    unsigned long length, enum gacc_mode mode)
 940{
 941	unsigned long gpa;
 942	unsigned long currlen;
 943	int rc = 0;
 944
 945	ipte_lock(vcpu);
 946	while (length > 0 && !rc) {
 947		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
 948		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
 949		gva += currlen;
 950		length -= currlen;
 951	}
 952	ipte_unlock(vcpu);
 953
 954	return rc;
 955}
 956
 957/**
 958 * kvm_s390_check_low_addr_prot_real - check for low-address protection
 959 * @gra: Guest real address
 960 *
 961 * Checks whether an address is subject to low-address protection and set
 962 * up vcpu->arch.pgm accordingly if necessary.
 963 *
 964 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
 965 */
 966int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
 967{
 
 
 
 968	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
 969
 970	if (!ctlreg0.lap || !is_low_address(gra))
 971		return 0;
 972	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
 973}
 974
 975/**
 976 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
 977 * @sg: pointer to the shadow guest address space structure
 978 * @saddr: faulting address in the shadow gmap
 979 * @pgt: pointer to the page table address result
 980 * @fake: pgt references contiguous guest memory block, not a pgtable
 981 */
 982static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
 983				  unsigned long *pgt, int *dat_protection,
 984				  int *fake)
 985{
 986	struct gmap *parent;
 987	union asce asce;
 988	union vaddress vaddr;
 989	unsigned long ptr;
 990	int rc;
 991
 992	*fake = 0;
 993	*dat_protection = 0;
 994	parent = sg->parent;
 995	vaddr.addr = saddr;
 996	asce.val = sg->orig_asce;
 997	ptr = asce.origin * PAGE_SIZE;
 998	if (asce.r) {
 999		*fake = 1;
1000		ptr = 0;
1001		asce.dt = ASCE_TYPE_REGION1;
1002	}
1003	switch (asce.dt) {
1004	case ASCE_TYPE_REGION1:
1005		if (vaddr.rfx01 > asce.tl && !*fake)
1006			return PGM_REGION_FIRST_TRANS;
1007		break;
1008	case ASCE_TYPE_REGION2:
1009		if (vaddr.rfx)
1010			return PGM_ASCE_TYPE;
1011		if (vaddr.rsx01 > asce.tl)
1012			return PGM_REGION_SECOND_TRANS;
1013		break;
1014	case ASCE_TYPE_REGION3:
1015		if (vaddr.rfx || vaddr.rsx)
1016			return PGM_ASCE_TYPE;
1017		if (vaddr.rtx01 > asce.tl)
1018			return PGM_REGION_THIRD_TRANS;
1019		break;
1020	case ASCE_TYPE_SEGMENT:
1021		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1022			return PGM_ASCE_TYPE;
1023		if (vaddr.sx01 > asce.tl)
1024			return PGM_SEGMENT_TRANSLATION;
1025		break;
1026	}
1027
1028	switch (asce.dt) {
1029	case ASCE_TYPE_REGION1: {
1030		union region1_table_entry rfte;
1031
1032		if (*fake) {
1033			ptr += vaddr.rfx * _REGION1_SIZE;
1034			rfte.val = ptr;
1035			goto shadow_r2t;
1036		}
1037		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1038		if (rc)
1039			return rc;
1040		if (rfte.i)
1041			return PGM_REGION_FIRST_TRANS;
1042		if (rfte.tt != TABLE_TYPE_REGION1)
1043			return PGM_TRANSLATION_SPEC;
1044		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1045			return PGM_REGION_SECOND_TRANS;
1046		if (sg->edat_level >= 1)
1047			*dat_protection |= rfte.p;
1048		ptr = rfte.rto * PAGE_SIZE;
1049shadow_r2t:
1050		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1051		if (rc)
1052			return rc;
1053	} /* fallthrough */
1054	case ASCE_TYPE_REGION2: {
1055		union region2_table_entry rste;
1056
1057		if (*fake) {
1058			ptr += vaddr.rsx * _REGION2_SIZE;
1059			rste.val = ptr;
1060			goto shadow_r3t;
1061		}
1062		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1063		if (rc)
1064			return rc;
1065		if (rste.i)
1066			return PGM_REGION_SECOND_TRANS;
1067		if (rste.tt != TABLE_TYPE_REGION2)
1068			return PGM_TRANSLATION_SPEC;
1069		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1070			return PGM_REGION_THIRD_TRANS;
1071		if (sg->edat_level >= 1)
1072			*dat_protection |= rste.p;
1073		ptr = rste.rto * PAGE_SIZE;
1074shadow_r3t:
1075		rste.p |= *dat_protection;
1076		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1077		if (rc)
1078			return rc;
1079	} /* fallthrough */
1080	case ASCE_TYPE_REGION3: {
1081		union region3_table_entry rtte;
1082
1083		if (*fake) {
1084			ptr += vaddr.rtx * _REGION3_SIZE;
1085			rtte.val = ptr;
1086			goto shadow_sgt;
1087		}
1088		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1089		if (rc)
1090			return rc;
1091		if (rtte.i)
1092			return PGM_REGION_THIRD_TRANS;
1093		if (rtte.tt != TABLE_TYPE_REGION3)
1094			return PGM_TRANSLATION_SPEC;
1095		if (rtte.cr && asce.p && sg->edat_level >= 2)
1096			return PGM_TRANSLATION_SPEC;
1097		if (rtte.fc && sg->edat_level >= 2) {
1098			*dat_protection |= rtte.fc0.p;
1099			*fake = 1;
1100			ptr = rtte.fc1.rfaa * _REGION3_SIZE;
1101			rtte.val = ptr;
1102			goto shadow_sgt;
1103		}
1104		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1105			return PGM_SEGMENT_TRANSLATION;
1106		if (sg->edat_level >= 1)
1107			*dat_protection |= rtte.fc0.p;
1108		ptr = rtte.fc0.sto * PAGE_SIZE;
1109shadow_sgt:
1110		rtte.fc0.p |= *dat_protection;
1111		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1112		if (rc)
1113			return rc;
1114	} /* fallthrough */
1115	case ASCE_TYPE_SEGMENT: {
1116		union segment_table_entry ste;
1117
1118		if (*fake) {
1119			ptr += vaddr.sx * _SEGMENT_SIZE;
1120			ste.val = ptr;
1121			goto shadow_pgt;
1122		}
1123		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1124		if (rc)
1125			return rc;
1126		if (ste.i)
1127			return PGM_SEGMENT_TRANSLATION;
1128		if (ste.tt != TABLE_TYPE_SEGMENT)
1129			return PGM_TRANSLATION_SPEC;
1130		if (ste.cs && asce.p)
1131			return PGM_TRANSLATION_SPEC;
1132		*dat_protection |= ste.fc0.p;
1133		if (ste.fc && sg->edat_level >= 1) {
1134			*fake = 1;
1135			ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
1136			ste.val = ptr;
1137			goto shadow_pgt;
1138		}
1139		ptr = ste.fc0.pto * (PAGE_SIZE / 2);
1140shadow_pgt:
1141		ste.fc0.p |= *dat_protection;
1142		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1143		if (rc)
1144			return rc;
1145	}
1146	}
1147	/* Return the parent address of the page table */
1148	*pgt = ptr;
1149	return 0;
1150}
1151
1152/**
1153 * kvm_s390_shadow_fault - handle fault on a shadow page table
1154 * @vcpu: virtual cpu
1155 * @sg: pointer to the shadow guest address space structure
1156 * @saddr: faulting address in the shadow gmap
1157 *
1158 * Returns: - 0 if the shadow fault was successfully resolved
1159 *	    - > 0 (pgm exception code) on exceptions while faulting
1160 *	    - -EAGAIN if the caller can retry immediately
1161 *	    - -EFAULT when accessing invalid guest addresses
1162 *	    - -ENOMEM if out of memory
1163 */
1164int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1165			  unsigned long saddr)
1166{
1167	union vaddress vaddr;
1168	union page_table_entry pte;
1169	unsigned long pgt;
1170	int dat_protection, fake;
1171	int rc;
1172
1173	down_read(&sg->mm->mmap_sem);
1174	/*
1175	 * We don't want any guest-2 tables to change - so the parent
1176	 * tables/pointers we read stay valid - unshadowing is however
1177	 * always possible - only guest_table_lock protects us.
1178	 */
1179	ipte_lock(vcpu);
1180
1181	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1182	if (rc)
1183		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1184					    &fake);
1185
1186	vaddr.addr = saddr;
1187	if (fake) {
1188		pte.val = pgt + vaddr.px * PAGE_SIZE;
1189		goto shadow_page;
1190	}
1191	if (!rc)
1192		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1193	if (!rc && pte.i)
1194		rc = PGM_PAGE_TRANSLATION;
1195	if (!rc && pte.z)
1196		rc = PGM_TRANSLATION_SPEC;
1197shadow_page:
1198	pte.p |= dat_protection;
1199	if (!rc)
1200		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1201	ipte_unlock(vcpu);
1202	up_read(&sg->mm->mmap_sem);
1203	return rc;
1204}