Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * guest access functions
  3 *
  4 * Copyright IBM Corp. 2014
  5 *
  6 */
  7
  8#include <linux/vmalloc.h>
  9#include <linux/err.h>
 10#include <asm/pgtable.h>
 
 11#include "kvm-s390.h"
 12#include "gaccess.h"
 13#include <asm/switch_to.h>
 14
 15union asce {
 16	unsigned long val;
 17	struct {
 18		unsigned long origin : 52; /* Region- or Segment-Table Origin */
 19		unsigned long	 : 2;
 20		unsigned long g  : 1; /* Subspace Group Control */
 21		unsigned long p  : 1; /* Private Space Control */
 22		unsigned long s  : 1; /* Storage-Alteration-Event Control */
 23		unsigned long x  : 1; /* Space-Switch-Event Control */
 24		unsigned long r  : 1; /* Real-Space Control */
 25		unsigned long	 : 1;
 26		unsigned long dt : 2; /* Designation-Type Control */
 27		unsigned long tl : 2; /* Region- or Segment-Table Length */
 28	};
 29};
 30
 31enum {
 32	ASCE_TYPE_SEGMENT = 0,
 33	ASCE_TYPE_REGION3 = 1,
 34	ASCE_TYPE_REGION2 = 2,
 35	ASCE_TYPE_REGION1 = 3
 36};
 37
 38union region1_table_entry {
 39	unsigned long val;
 40	struct {
 41		unsigned long rto: 52;/* Region-Table Origin */
 42		unsigned long	 : 2;
 43		unsigned long p  : 1; /* DAT-Protection Bit */
 44		unsigned long	 : 1;
 45		unsigned long tf : 2; /* Region-Second-Table Offset */
 46		unsigned long i  : 1; /* Region-Invalid Bit */
 47		unsigned long	 : 1;
 48		unsigned long tt : 2; /* Table-Type Bits */
 49		unsigned long tl : 2; /* Region-Second-Table Length */
 50	};
 51};
 52
 53union region2_table_entry {
 54	unsigned long val;
 55	struct {
 56		unsigned long rto: 52;/* Region-Table Origin */
 57		unsigned long	 : 2;
 58		unsigned long p  : 1; /* DAT-Protection Bit */
 59		unsigned long	 : 1;
 60		unsigned long tf : 2; /* Region-Third-Table Offset */
 61		unsigned long i  : 1; /* Region-Invalid Bit */
 62		unsigned long	 : 1;
 63		unsigned long tt : 2; /* Table-Type Bits */
 64		unsigned long tl : 2; /* Region-Third-Table Length */
 65	};
 66};
 67
 68struct region3_table_entry_fc0 {
 69	unsigned long sto: 52;/* Segment-Table Origin */
 70	unsigned long	 : 1;
 71	unsigned long fc : 1; /* Format-Control */
 72	unsigned long p  : 1; /* DAT-Protection Bit */
 73	unsigned long	 : 1;
 74	unsigned long tf : 2; /* Segment-Table Offset */
 75	unsigned long i  : 1; /* Region-Invalid Bit */
 76	unsigned long cr : 1; /* Common-Region Bit */
 77	unsigned long tt : 2; /* Table-Type Bits */
 78	unsigned long tl : 2; /* Segment-Table Length */
 79};
 80
 81struct region3_table_entry_fc1 {
 82	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
 83	unsigned long	 : 14;
 84	unsigned long av : 1; /* ACCF-Validity Control */
 85	unsigned long acc: 4; /* Access-Control Bits */
 86	unsigned long f  : 1; /* Fetch-Protection Bit */
 87	unsigned long fc : 1; /* Format-Control */
 88	unsigned long p  : 1; /* DAT-Protection Bit */
 89	unsigned long co : 1; /* Change-Recording Override */
 90	unsigned long	 : 2;
 91	unsigned long i  : 1; /* Region-Invalid Bit */
 92	unsigned long cr : 1; /* Common-Region Bit */
 93	unsigned long tt : 2; /* Table-Type Bits */
 94	unsigned long	 : 2;
 95};
 96
 97union region3_table_entry {
 98	unsigned long val;
 99	struct region3_table_entry_fc0 fc0;
100	struct region3_table_entry_fc1 fc1;
101	struct {
102		unsigned long	 : 53;
103		unsigned long fc : 1; /* Format-Control */
104		unsigned long	 : 4;
105		unsigned long i  : 1; /* Region-Invalid Bit */
106		unsigned long cr : 1; /* Common-Region Bit */
107		unsigned long tt : 2; /* Table-Type Bits */
108		unsigned long	 : 2;
109	};
110};
111
112struct segment_entry_fc0 {
113	unsigned long pto: 53;/* Page-Table Origin */
114	unsigned long fc : 1; /* Format-Control */
115	unsigned long p  : 1; /* DAT-Protection Bit */
116	unsigned long	 : 3;
117	unsigned long i  : 1; /* Segment-Invalid Bit */
118	unsigned long cs : 1; /* Common-Segment Bit */
119	unsigned long tt : 2; /* Table-Type Bits */
120	unsigned long	 : 2;
121};
122
123struct segment_entry_fc1 {
124	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
125	unsigned long	 : 3;
126	unsigned long av : 1; /* ACCF-Validity Control */
127	unsigned long acc: 4; /* Access-Control Bits */
128	unsigned long f  : 1; /* Fetch-Protection Bit */
129	unsigned long fc : 1; /* Format-Control */
130	unsigned long p  : 1; /* DAT-Protection Bit */
131	unsigned long co : 1; /* Change-Recording Override */
132	unsigned long	 : 2;
133	unsigned long i  : 1; /* Segment-Invalid Bit */
134	unsigned long cs : 1; /* Common-Segment Bit */
135	unsigned long tt : 2; /* Table-Type Bits */
136	unsigned long	 : 2;
137};
138
139union segment_table_entry {
140	unsigned long val;
141	struct segment_entry_fc0 fc0;
142	struct segment_entry_fc1 fc1;
143	struct {
144		unsigned long	 : 53;
145		unsigned long fc : 1; /* Format-Control */
146		unsigned long	 : 4;
147		unsigned long i  : 1; /* Segment-Invalid Bit */
148		unsigned long cs : 1; /* Common-Segment Bit */
149		unsigned long tt : 2; /* Table-Type Bits */
150		unsigned long	 : 2;
151	};
152};
153
154enum {
155	TABLE_TYPE_SEGMENT = 0,
156	TABLE_TYPE_REGION3 = 1,
157	TABLE_TYPE_REGION2 = 2,
158	TABLE_TYPE_REGION1 = 3
159};
160
161union page_table_entry {
162	unsigned long val;
163	struct {
164		unsigned long pfra : 52; /* Page-Frame Real Address */
165		unsigned long z  : 1; /* Zero Bit */
166		unsigned long i  : 1; /* Page-Invalid Bit */
167		unsigned long p  : 1; /* DAT-Protection Bit */
168		unsigned long co : 1; /* Change-Recording Override */
169		unsigned long	 : 8;
170	};
171};
172
173/*
174 * vaddress union in order to easily decode a virtual address into its
175 * region first index, region second index etc. parts.
176 */
177union vaddress {
178	unsigned long addr;
179	struct {
180		unsigned long rfx : 11;
181		unsigned long rsx : 11;
182		unsigned long rtx : 11;
183		unsigned long sx  : 11;
184		unsigned long px  : 8;
185		unsigned long bx  : 12;
186	};
187	struct {
188		unsigned long rfx01 : 2;
189		unsigned long	    : 9;
190		unsigned long rsx01 : 2;
191		unsigned long	    : 9;
192		unsigned long rtx01 : 2;
193		unsigned long	    : 9;
194		unsigned long sx01  : 2;
195		unsigned long	    : 29;
196	};
197};
198
199/*
200 * raddress union which will contain the result (real or absolute address)
201 * after a page table walk. The rfaa, sfaa and pfra members are used to
202 * simply assign them the value of a region, segment or page table entry.
203 */
204union raddress {
205	unsigned long addr;
206	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
207	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
208	unsigned long pfra : 52; /* Page-Frame Real Address */
209};
210
211union alet {
212	u32 val;
213	struct {
214		u32 reserved : 7;
215		u32 p        : 1;
216		u32 alesn    : 8;
217		u32 alen     : 16;
218	};
219};
220
221union ald {
222	u32 val;
223	struct {
224		u32     : 1;
225		u32 alo : 24;
226		u32 all : 7;
227	};
228};
229
230struct ale {
231	unsigned long i      : 1; /* ALEN-Invalid Bit */
232	unsigned long        : 5;
233	unsigned long fo     : 1; /* Fetch-Only Bit */
234	unsigned long p      : 1; /* Private Bit */
235	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
236	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
237	unsigned long        : 32;
238	unsigned long        : 1;
239	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
240	unsigned long        : 6;
241	unsigned long astesn : 32; /* ASTE Sequence Number */
242} __packed;
243
244struct aste {
245	unsigned long i      : 1; /* ASX-Invalid Bit */
246	unsigned long ato    : 29; /* Authority-Table Origin */
247	unsigned long        : 1;
248	unsigned long b      : 1; /* Base-Space Bit */
249	unsigned long ax     : 16; /* Authorization Index */
250	unsigned long atl    : 12; /* Authority-Table Length */
251	unsigned long        : 2;
252	unsigned long ca     : 1; /* Controlled-ASN Bit */
253	unsigned long ra     : 1; /* Reusable-ASN Bit */
254	unsigned long asce   : 64; /* Address-Space-Control Element */
255	unsigned long ald    : 32;
256	unsigned long astesn : 32;
257	/* .. more fields there */
258} __packed;
259
260int ipte_lock_held(struct kvm_vcpu *vcpu)
261{
262	if (vcpu->arch.sie_block->eca & 1) {
263		int rc;
264
265		read_lock(&vcpu->kvm->arch.sca_lock);
266		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
267		read_unlock(&vcpu->kvm->arch.sca_lock);
268		return rc;
269	}
270	return vcpu->kvm->arch.ipte_lock_count != 0;
271}
272
273static void ipte_lock_simple(struct kvm_vcpu *vcpu)
274{
275	union ipte_control old, new, *ic;
276
277	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
278	vcpu->kvm->arch.ipte_lock_count++;
279	if (vcpu->kvm->arch.ipte_lock_count > 1)
280		goto out;
281retry:
282	read_lock(&vcpu->kvm->arch.sca_lock);
283	ic = kvm_s390_get_ipte_control(vcpu->kvm);
284	do {
285		old = READ_ONCE(*ic);
286		if (old.k) {
287			read_unlock(&vcpu->kvm->arch.sca_lock);
288			cond_resched();
289			goto retry;
290		}
291		new = old;
292		new.k = 1;
293	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
294	read_unlock(&vcpu->kvm->arch.sca_lock);
295out:
296	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
297}
298
299static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
300{
301	union ipte_control old, new, *ic;
302
303	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
304	vcpu->kvm->arch.ipte_lock_count--;
305	if (vcpu->kvm->arch.ipte_lock_count)
306		goto out;
307	read_lock(&vcpu->kvm->arch.sca_lock);
308	ic = kvm_s390_get_ipte_control(vcpu->kvm);
309	do {
310		old = READ_ONCE(*ic);
311		new = old;
312		new.k = 0;
313	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
314	read_unlock(&vcpu->kvm->arch.sca_lock);
315	wake_up(&vcpu->kvm->arch.ipte_wq);
316out:
317	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
318}
319
320static void ipte_lock_siif(struct kvm_vcpu *vcpu)
321{
322	union ipte_control old, new, *ic;
323
324retry:
325	read_lock(&vcpu->kvm->arch.sca_lock);
326	ic = kvm_s390_get_ipte_control(vcpu->kvm);
327	do {
328		old = READ_ONCE(*ic);
329		if (old.kg) {
330			read_unlock(&vcpu->kvm->arch.sca_lock);
331			cond_resched();
332			goto retry;
333		}
334		new = old;
335		new.k = 1;
336		new.kh++;
337	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
338	read_unlock(&vcpu->kvm->arch.sca_lock);
339}
340
341static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
342{
343	union ipte_control old, new, *ic;
344
345	read_lock(&vcpu->kvm->arch.sca_lock);
346	ic = kvm_s390_get_ipte_control(vcpu->kvm);
347	do {
348		old = READ_ONCE(*ic);
349		new = old;
350		new.kh--;
351		if (!new.kh)
352			new.k = 0;
353	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
354	read_unlock(&vcpu->kvm->arch.sca_lock);
355	if (!new.kh)
356		wake_up(&vcpu->kvm->arch.ipte_wq);
357}
358
359void ipte_lock(struct kvm_vcpu *vcpu)
360{
361	if (vcpu->arch.sie_block->eca & 1)
362		ipte_lock_siif(vcpu);
363	else
364		ipte_lock_simple(vcpu);
365}
366
367void ipte_unlock(struct kvm_vcpu *vcpu)
368{
369	if (vcpu->arch.sie_block->eca & 1)
370		ipte_unlock_siif(vcpu);
371	else
372		ipte_unlock_simple(vcpu);
373}
374
375static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
376			  enum gacc_mode mode)
377{
378	union alet alet;
379	struct ale ale;
380	struct aste aste;
381	unsigned long ald_addr, authority_table_addr;
382	union ald ald;
383	int eax, rc;
384	u8 authority_table;
385
386	if (ar >= NUM_ACRS)
387		return -EINVAL;
388
389	save_access_regs(vcpu->run->s.regs.acrs);
390	alet.val = vcpu->run->s.regs.acrs[ar];
391
392	if (ar == 0 || alet.val == 0) {
393		asce->val = vcpu->arch.sie_block->gcr[1];
394		return 0;
395	} else if (alet.val == 1) {
396		asce->val = vcpu->arch.sie_block->gcr[7];
397		return 0;
398	}
399
400	if (alet.reserved)
401		return PGM_ALET_SPECIFICATION;
402
403	if (alet.p)
404		ald_addr = vcpu->arch.sie_block->gcr[5];
405	else
406		ald_addr = vcpu->arch.sie_block->gcr[2];
407	ald_addr &= 0x7fffffc0;
408
409	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
410	if (rc)
411		return rc;
412
413	if (alet.alen / 8 > ald.all)
414		return PGM_ALEN_TRANSLATION;
415
416	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
417		return PGM_ADDRESSING;
418
419	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
420			     sizeof(struct ale));
421	if (rc)
422		return rc;
423
424	if (ale.i == 1)
425		return PGM_ALEN_TRANSLATION;
426	if (ale.alesn != alet.alesn)
427		return PGM_ALE_SEQUENCE;
428
429	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
430	if (rc)
431		return rc;
432
433	if (aste.i)
434		return PGM_ASTE_VALIDITY;
435	if (aste.astesn != ale.astesn)
436		return PGM_ASTE_SEQUENCE;
437
438	if (ale.p == 1) {
439		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
440		if (ale.aleax != eax) {
441			if (eax / 16 > aste.atl)
442				return PGM_EXTENDED_AUTHORITY;
443
444			authority_table_addr = aste.ato * 4 + eax / 4;
445
446			rc = read_guest_real(vcpu, authority_table_addr,
447					     &authority_table,
448					     sizeof(u8));
449			if (rc)
450				return rc;
451
452			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
453				return PGM_EXTENDED_AUTHORITY;
454		}
455	}
456
457	if (ale.fo == 1 && mode == GACC_STORE)
458		return PGM_PROTECTION;
459
460	asce->val = aste.asce;
461	return 0;
462}
463
464struct trans_exc_code_bits {
465	unsigned long addr : 52; /* Translation-exception Address */
466	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
467	unsigned long	   : 6;
468	unsigned long b60  : 1;
469	unsigned long b61  : 1;
470	unsigned long as   : 2;  /* ASCE Identifier */
471};
472
473enum {
474	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
475	FSI_STORE   = 1, /* Exception was due to store operation */
476	FSI_FETCH   = 2  /* Exception was due to fetch operation */
477};
478
479static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
480			 ar_t ar, enum gacc_mode mode)
 
 
 
 
 
 
 
481{
482	int rc;
483	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
484	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
485	struct trans_exc_code_bits *tec_bits;
486
487	memset(pgm, 0, sizeof(*pgm));
488	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
489	tec_bits->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
490	tec_bits->as = psw.as;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
491
492	if (!psw.t) {
493		asce->val = 0;
494		asce->r = 1;
495		return 0;
496	}
497
498	if (mode == GACC_IFETCH)
499		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;
500
501	switch (psw.as) {
502	case PSW_AS_PRIMARY:
503		asce->val = vcpu->arch.sie_block->gcr[1];
504		return 0;
505	case PSW_AS_SECONDARY:
506		asce->val = vcpu->arch.sie_block->gcr[7];
507		return 0;
508	case PSW_AS_HOME:
509		asce->val = vcpu->arch.sie_block->gcr[13];
510		return 0;
511	case PSW_AS_ACCREG:
512		rc = ar_translation(vcpu, asce, ar, mode);
513		switch (rc) {
514		case PGM_ALEN_TRANSLATION:
515		case PGM_ALE_SEQUENCE:
516		case PGM_ASTE_VALIDITY:
517		case PGM_ASTE_SEQUENCE:
518		case PGM_EXTENDED_AUTHORITY:
519			vcpu->arch.pgm.exc_access_id = ar;
520			break;
521		case PGM_PROTECTION:
522			tec_bits->b60 = 1;
523			tec_bits->b61 = 1;
524			break;
525		}
526		if (rc > 0)
527			pgm->code = rc;
528		return rc;
529	}
530	return 0;
531}
532
533static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
534{
535	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
536}
537
538/**
539 * guest_translate - translate a guest virtual into a guest absolute address
540 * @vcpu: virtual cpu
541 * @gva: guest virtual address
542 * @gpa: points to where guest physical (absolute) address should be stored
543 * @asce: effective asce
544 * @mode: indicates the access mode to be used
545 *
546 * Translate a guest virtual address into a guest absolute address by means
547 * of dynamic address translation as specified by the architecture.
548 * If the resulting absolute address is not available in the configuration
549 * an addressing exception is indicated and @gpa will not be changed.
550 *
551 * Returns: - zero on success; @gpa contains the resulting absolute address
552 *	    - a negative value if guest access failed due to e.g. broken
553 *	      guest mapping
554 *	    - a positve value if an access exception happened. In this case
555 *	      the returned value is the program interruption code as defined
556 *	      by the architecture
557 */
558static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
559				     unsigned long *gpa, const union asce asce,
560				     enum gacc_mode mode)
561{
562	union vaddress vaddr = {.addr = gva};
563	union raddress raddr = {.addr = gva};
564	union page_table_entry pte;
565	int dat_protection = 0;
566	union ctlreg0 ctlreg0;
567	unsigned long ptr;
568	int edat1, edat2;
569
570	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
571	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
572	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
573	if (asce.r)
574		goto real_address;
575	ptr = asce.origin * 4096;
576	switch (asce.dt) {
577	case ASCE_TYPE_REGION1:
578		if (vaddr.rfx01 > asce.tl)
579			return PGM_REGION_FIRST_TRANS;
580		ptr += vaddr.rfx * 8;
581		break;
582	case ASCE_TYPE_REGION2:
583		if (vaddr.rfx)
584			return PGM_ASCE_TYPE;
585		if (vaddr.rsx01 > asce.tl)
586			return PGM_REGION_SECOND_TRANS;
587		ptr += vaddr.rsx * 8;
588		break;
589	case ASCE_TYPE_REGION3:
590		if (vaddr.rfx || vaddr.rsx)
591			return PGM_ASCE_TYPE;
592		if (vaddr.rtx01 > asce.tl)
593			return PGM_REGION_THIRD_TRANS;
594		ptr += vaddr.rtx * 8;
595		break;
596	case ASCE_TYPE_SEGMENT:
597		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
598			return PGM_ASCE_TYPE;
599		if (vaddr.sx01 > asce.tl)
600			return PGM_SEGMENT_TRANSLATION;
601		ptr += vaddr.sx * 8;
602		break;
603	}
604	switch (asce.dt) {
605	case ASCE_TYPE_REGION1:	{
606		union region1_table_entry rfte;
607
608		if (kvm_is_error_gpa(vcpu->kvm, ptr))
609			return PGM_ADDRESSING;
610		if (deref_table(vcpu->kvm, ptr, &rfte.val))
611			return -EFAULT;
612		if (rfte.i)
613			return PGM_REGION_FIRST_TRANS;
614		if (rfte.tt != TABLE_TYPE_REGION1)
615			return PGM_TRANSLATION_SPEC;
616		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
617			return PGM_REGION_SECOND_TRANS;
618		if (edat1)
619			dat_protection |= rfte.p;
620		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
621	}
622		/* fallthrough */
623	case ASCE_TYPE_REGION2: {
624		union region2_table_entry rste;
625
626		if (kvm_is_error_gpa(vcpu->kvm, ptr))
627			return PGM_ADDRESSING;
628		if (deref_table(vcpu->kvm, ptr, &rste.val))
629			return -EFAULT;
630		if (rste.i)
631			return PGM_REGION_SECOND_TRANS;
632		if (rste.tt != TABLE_TYPE_REGION2)
633			return PGM_TRANSLATION_SPEC;
634		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
635			return PGM_REGION_THIRD_TRANS;
636		if (edat1)
637			dat_protection |= rste.p;
638		ptr = rste.rto * 4096 + vaddr.rtx * 8;
639	}
640		/* fallthrough */
641	case ASCE_TYPE_REGION3: {
642		union region3_table_entry rtte;
643
644		if (kvm_is_error_gpa(vcpu->kvm, ptr))
645			return PGM_ADDRESSING;
646		if (deref_table(vcpu->kvm, ptr, &rtte.val))
647			return -EFAULT;
648		if (rtte.i)
649			return PGM_REGION_THIRD_TRANS;
650		if (rtte.tt != TABLE_TYPE_REGION3)
651			return PGM_TRANSLATION_SPEC;
652		if (rtte.cr && asce.p && edat2)
653			return PGM_TRANSLATION_SPEC;
654		if (rtte.fc && edat2) {
655			dat_protection |= rtte.fc1.p;
656			raddr.rfaa = rtte.fc1.rfaa;
657			goto absolute_address;
658		}
659		if (vaddr.sx01 < rtte.fc0.tf)
660			return PGM_SEGMENT_TRANSLATION;
661		if (vaddr.sx01 > rtte.fc0.tl)
662			return PGM_SEGMENT_TRANSLATION;
663		if (edat1)
664			dat_protection |= rtte.fc0.p;
665		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
666	}
667		/* fallthrough */
668	case ASCE_TYPE_SEGMENT: {
669		union segment_table_entry ste;
670
671		if (kvm_is_error_gpa(vcpu->kvm, ptr))
672			return PGM_ADDRESSING;
673		if (deref_table(vcpu->kvm, ptr, &ste.val))
674			return -EFAULT;
675		if (ste.i)
676			return PGM_SEGMENT_TRANSLATION;
677		if (ste.tt != TABLE_TYPE_SEGMENT)
678			return PGM_TRANSLATION_SPEC;
679		if (ste.cs && asce.p)
680			return PGM_TRANSLATION_SPEC;
681		if (ste.fc && edat1) {
682			dat_protection |= ste.fc1.p;
683			raddr.sfaa = ste.fc1.sfaa;
684			goto absolute_address;
685		}
686		dat_protection |= ste.fc0.p;
687		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
688	}
689	}
690	if (kvm_is_error_gpa(vcpu->kvm, ptr))
691		return PGM_ADDRESSING;
692	if (deref_table(vcpu->kvm, ptr, &pte.val))
693		return -EFAULT;
694	if (pte.i)
695		return PGM_PAGE_TRANSLATION;
696	if (pte.z)
697		return PGM_TRANSLATION_SPEC;
698	if (pte.co && !edat1)
699		return PGM_TRANSLATION_SPEC;
700	dat_protection |= pte.p;
701	raddr.pfra = pte.pfra;
702real_address:
703	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
704absolute_address:
705	if (mode == GACC_STORE && dat_protection)
706		return PGM_PROTECTION;
707	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
708		return PGM_ADDRESSING;
709	*gpa = raddr.addr;
710	return 0;
711}
712
713static inline int is_low_address(unsigned long ga)
714{
715	/* Check for address ranges 0..511 and 4096..4607 */
716	return (ga & ~0x11fful) == 0;
717}
718
719static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
720					  const union asce asce)
721{
722	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
723	psw_t *psw = &vcpu->arch.sie_block->gpsw;
724
725	if (!ctlreg0.lap)
726		return 0;
727	if (psw_bits(*psw).t && asce.p)
728		return 0;
729	return 1;
730}
731
732static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga,
733			    unsigned long *pages, unsigned long nr_pages,
734			    const union asce asce, enum gacc_mode mode)
735{
736	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
737	psw_t *psw = &vcpu->arch.sie_block->gpsw;
738	struct trans_exc_code_bits *tec_bits;
739	int lap_enabled, rc;
740
741	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
742	lap_enabled = low_address_protection_enabled(vcpu, asce);
743	while (nr_pages) {
744		ga = kvm_s390_logical_to_effective(vcpu, ga);
745		tec_bits->addr = ga >> PAGE_SHIFT;
746		if (mode == GACC_STORE && lap_enabled && is_low_address(ga)) {
747			pgm->code = PGM_PROTECTION;
748			return pgm->code;
749		}
750		ga &= PAGE_MASK;
751		if (psw_bits(*psw).t) {
752			rc = guest_translate(vcpu, ga, pages, asce, mode);
753			if (rc < 0)
754				return rc;
755			if (rc == PGM_PROTECTION)
756				tec_bits->b61 = 1;
757			if (rc)
758				pgm->code = rc;
759		} else {
760			*pages = kvm_s390_real_to_abs(vcpu, ga);
761			if (kvm_is_error_gpa(vcpu->kvm, *pages))
762				pgm->code = PGM_ADDRESSING;
763		}
764		if (pgm->code)
765			return pgm->code;
766		ga += PAGE_SIZE;
767		pages++;
768		nr_pages--;
769	}
770	return 0;
771}
772
773int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
774		 unsigned long len, enum gacc_mode mode)
775{
776	psw_t *psw = &vcpu->arch.sie_block->gpsw;
777	unsigned long _len, nr_pages, gpa, idx;
778	unsigned long pages_array[2];
779	unsigned long *pages;
780	int need_ipte_lock;
781	union asce asce;
782	int rc;
783
784	if (!len)
785		return 0;
786	rc = get_vcpu_asce(vcpu, &asce, ar, mode);
 
787	if (rc)
788		return rc;
789	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
790	pages = pages_array;
791	if (nr_pages > ARRAY_SIZE(pages_array))
792		pages = vmalloc(nr_pages * sizeof(unsigned long));
793	if (!pages)
794		return -ENOMEM;
795	need_ipte_lock = psw_bits(*psw).t && !asce.r;
796	if (need_ipte_lock)
797		ipte_lock(vcpu);
798	rc = guest_page_range(vcpu, ga, pages, nr_pages, asce, mode);
799	for (idx = 0; idx < nr_pages && !rc; idx++) {
800		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
801		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
802		if (mode == GACC_STORE)
803			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
804		else
805			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
806		len -= _len;
807		ga += _len;
808		data += _len;
809	}
810	if (need_ipte_lock)
811		ipte_unlock(vcpu);
812	if (nr_pages > ARRAY_SIZE(pages_array))
813		vfree(pages);
814	return rc;
815}
816
817int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
818		      void *data, unsigned long len, enum gacc_mode mode)
819{
820	unsigned long _len, gpa;
821	int rc = 0;
822
823	while (len && !rc) {
824		gpa = kvm_s390_real_to_abs(vcpu, gra);
825		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
826		if (mode)
827			rc = write_guest_abs(vcpu, gpa, data, _len);
828		else
829			rc = read_guest_abs(vcpu, gpa, data, _len);
830		len -= _len;
831		gra += _len;
832		data += _len;
833	}
834	return rc;
835}
836
837/**
838 * guest_translate_address - translate guest logical into guest absolute address
839 *
840 * Parameter semantics are the same as the ones from guest_translate.
841 * The memory contents at the guest address are not changed.
842 *
843 * Note: The IPTE lock is not taken during this function, so the caller
844 * has to take care of this.
845 */
846int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
847			    unsigned long *gpa, enum gacc_mode mode)
848{
849	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
850	psw_t *psw = &vcpu->arch.sie_block->gpsw;
851	struct trans_exc_code_bits *tec;
852	union asce asce;
853	int rc;
854
855	gva = kvm_s390_logical_to_effective(vcpu, gva);
856	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
857	rc = get_vcpu_asce(vcpu, &asce, ar, mode);
858	tec->addr = gva >> PAGE_SHIFT;
859	if (rc)
860		return rc;
861	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
862		if (mode == GACC_STORE) {
863			rc = pgm->code = PGM_PROTECTION;
864			return rc;
865		}
866	}
867
868	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
869		rc = guest_translate(vcpu, gva, gpa, asce, mode);
870		if (rc > 0) {
871			if (rc == PGM_PROTECTION)
872				tec->b61 = 1;
873			pgm->code = rc;
874		}
875	} else {
876		rc = 0;
877		*gpa = kvm_s390_real_to_abs(vcpu, gva);
878		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
879			rc = pgm->code = PGM_ADDRESSING;
880	}
881
882	return rc;
883}
884
885/**
886 * check_gva_range - test a range of guest virtual addresses for accessibility
887 */
888int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
889		    unsigned long length, enum gacc_mode mode)
890{
891	unsigned long gpa;
892	unsigned long currlen;
893	int rc = 0;
894
895	ipte_lock(vcpu);
896	while (length > 0 && !rc) {
897		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
898		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
899		gva += currlen;
900		length -= currlen;
901	}
902	ipte_unlock(vcpu);
903
904	return rc;
905}
906
907/**
908 * kvm_s390_check_low_addr_prot_real - check for low-address protection
909 * @gra: Guest real address
910 *
911 * Checks whether an address is subject to low-address protection and set
912 * up vcpu->arch.pgm accordingly if necessary.
913 *
914 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
915 */
916int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
917{
918	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
919	psw_t *psw = &vcpu->arch.sie_block->gpsw;
920	struct trans_exc_code_bits *tec_bits;
921	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
922
923	if (!ctlreg0.lap || !is_low_address(gra))
924		return 0;
 
 
925
926	memset(pgm, 0, sizeof(*pgm));
927	tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
928	tec_bits->fsi = FSI_STORE;
929	tec_bits->as = psw_bits(*psw).as;
930	tec_bits->addr = gra >> PAGE_SHIFT;
931	pgm->code = PGM_PROTECTION;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
932
933	return pgm->code;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934}
v4.10.11
   1/*
   2 * guest access functions
   3 *
   4 * Copyright IBM Corp. 2014
   5 *
   6 */
   7
   8#include <linux/vmalloc.h>
   9#include <linux/err.h>
  10#include <asm/pgtable.h>
  11#include <asm/gmap.h>
  12#include "kvm-s390.h"
  13#include "gaccess.h"
  14#include <asm/switch_to.h>
  15
  16union asce {
  17	unsigned long val;
  18	struct {
  19		unsigned long origin : 52; /* Region- or Segment-Table Origin */
  20		unsigned long	 : 2;
  21		unsigned long g  : 1; /* Subspace Group Control */
  22		unsigned long p  : 1; /* Private Space Control */
  23		unsigned long s  : 1; /* Storage-Alteration-Event Control */
  24		unsigned long x  : 1; /* Space-Switch-Event Control */
  25		unsigned long r  : 1; /* Real-Space Control */
  26		unsigned long	 : 1;
  27		unsigned long dt : 2; /* Designation-Type Control */
  28		unsigned long tl : 2; /* Region- or Segment-Table Length */
  29	};
  30};
  31
  32enum {
  33	ASCE_TYPE_SEGMENT = 0,
  34	ASCE_TYPE_REGION3 = 1,
  35	ASCE_TYPE_REGION2 = 2,
  36	ASCE_TYPE_REGION1 = 3
  37};
  38
  39union region1_table_entry {
  40	unsigned long val;
  41	struct {
  42		unsigned long rto: 52;/* Region-Table Origin */
  43		unsigned long	 : 2;
  44		unsigned long p  : 1; /* DAT-Protection Bit */
  45		unsigned long	 : 1;
  46		unsigned long tf : 2; /* Region-Second-Table Offset */
  47		unsigned long i  : 1; /* Region-Invalid Bit */
  48		unsigned long	 : 1;
  49		unsigned long tt : 2; /* Table-Type Bits */
  50		unsigned long tl : 2; /* Region-Second-Table Length */
  51	};
  52};
  53
  54union region2_table_entry {
  55	unsigned long val;
  56	struct {
  57		unsigned long rto: 52;/* Region-Table Origin */
  58		unsigned long	 : 2;
  59		unsigned long p  : 1; /* DAT-Protection Bit */
  60		unsigned long	 : 1;
  61		unsigned long tf : 2; /* Region-Third-Table Offset */
  62		unsigned long i  : 1; /* Region-Invalid Bit */
  63		unsigned long	 : 1;
  64		unsigned long tt : 2; /* Table-Type Bits */
  65		unsigned long tl : 2; /* Region-Third-Table Length */
  66	};
  67};
  68
  69struct region3_table_entry_fc0 {
  70	unsigned long sto: 52;/* Segment-Table Origin */
  71	unsigned long	 : 1;
  72	unsigned long fc : 1; /* Format-Control */
  73	unsigned long p  : 1; /* DAT-Protection Bit */
  74	unsigned long	 : 1;
  75	unsigned long tf : 2; /* Segment-Table Offset */
  76	unsigned long i  : 1; /* Region-Invalid Bit */
  77	unsigned long cr : 1; /* Common-Region Bit */
  78	unsigned long tt : 2; /* Table-Type Bits */
  79	unsigned long tl : 2; /* Segment-Table Length */
  80};
  81
  82struct region3_table_entry_fc1 {
  83	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
  84	unsigned long	 : 14;
  85	unsigned long av : 1; /* ACCF-Validity Control */
  86	unsigned long acc: 4; /* Access-Control Bits */
  87	unsigned long f  : 1; /* Fetch-Protection Bit */
  88	unsigned long fc : 1; /* Format-Control */
  89	unsigned long p  : 1; /* DAT-Protection Bit */
  90	unsigned long co : 1; /* Change-Recording Override */
  91	unsigned long	 : 2;
  92	unsigned long i  : 1; /* Region-Invalid Bit */
  93	unsigned long cr : 1; /* Common-Region Bit */
  94	unsigned long tt : 2; /* Table-Type Bits */
  95	unsigned long	 : 2;
  96};
  97
  98union region3_table_entry {
  99	unsigned long val;
 100	struct region3_table_entry_fc0 fc0;
 101	struct region3_table_entry_fc1 fc1;
 102	struct {
 103		unsigned long	 : 53;
 104		unsigned long fc : 1; /* Format-Control */
 105		unsigned long	 : 4;
 106		unsigned long i  : 1; /* Region-Invalid Bit */
 107		unsigned long cr : 1; /* Common-Region Bit */
 108		unsigned long tt : 2; /* Table-Type Bits */
 109		unsigned long	 : 2;
 110	};
 111};
 112
 113struct segment_entry_fc0 {
 114	unsigned long pto: 53;/* Page-Table Origin */
 115	unsigned long fc : 1; /* Format-Control */
 116	unsigned long p  : 1; /* DAT-Protection Bit */
 117	unsigned long	 : 3;
 118	unsigned long i  : 1; /* Segment-Invalid Bit */
 119	unsigned long cs : 1; /* Common-Segment Bit */
 120	unsigned long tt : 2; /* Table-Type Bits */
 121	unsigned long	 : 2;
 122};
 123
 124struct segment_entry_fc1 {
 125	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
 126	unsigned long	 : 3;
 127	unsigned long av : 1; /* ACCF-Validity Control */
 128	unsigned long acc: 4; /* Access-Control Bits */
 129	unsigned long f  : 1; /* Fetch-Protection Bit */
 130	unsigned long fc : 1; /* Format-Control */
 131	unsigned long p  : 1; /* DAT-Protection Bit */
 132	unsigned long co : 1; /* Change-Recording Override */
 133	unsigned long	 : 2;
 134	unsigned long i  : 1; /* Segment-Invalid Bit */
 135	unsigned long cs : 1; /* Common-Segment Bit */
 136	unsigned long tt : 2; /* Table-Type Bits */
 137	unsigned long	 : 2;
 138};
 139
 140union segment_table_entry {
 141	unsigned long val;
 142	struct segment_entry_fc0 fc0;
 143	struct segment_entry_fc1 fc1;
 144	struct {
 145		unsigned long	 : 53;
 146		unsigned long fc : 1; /* Format-Control */
 147		unsigned long	 : 4;
 148		unsigned long i  : 1; /* Segment-Invalid Bit */
 149		unsigned long cs : 1; /* Common-Segment Bit */
 150		unsigned long tt : 2; /* Table-Type Bits */
 151		unsigned long	 : 2;
 152	};
 153};
 154
 155enum {
 156	TABLE_TYPE_SEGMENT = 0,
 157	TABLE_TYPE_REGION3 = 1,
 158	TABLE_TYPE_REGION2 = 2,
 159	TABLE_TYPE_REGION1 = 3
 160};
 161
 162union page_table_entry {
 163	unsigned long val;
 164	struct {
 165		unsigned long pfra : 52; /* Page-Frame Real Address */
 166		unsigned long z  : 1; /* Zero Bit */
 167		unsigned long i  : 1; /* Page-Invalid Bit */
 168		unsigned long p  : 1; /* DAT-Protection Bit */
 169		unsigned long co : 1; /* Change-Recording Override */
 170		unsigned long	 : 8;
 171	};
 172};
 173
 174/*
 175 * vaddress union in order to easily decode a virtual address into its
 176 * region first index, region second index etc. parts.
 177 */
 178union vaddress {
 179	unsigned long addr;
 180	struct {
 181		unsigned long rfx : 11;
 182		unsigned long rsx : 11;
 183		unsigned long rtx : 11;
 184		unsigned long sx  : 11;
 185		unsigned long px  : 8;
 186		unsigned long bx  : 12;
 187	};
 188	struct {
 189		unsigned long rfx01 : 2;
 190		unsigned long	    : 9;
 191		unsigned long rsx01 : 2;
 192		unsigned long	    : 9;
 193		unsigned long rtx01 : 2;
 194		unsigned long	    : 9;
 195		unsigned long sx01  : 2;
 196		unsigned long	    : 29;
 197	};
 198};
 199
 200/*
 201 * raddress union which will contain the result (real or absolute address)
 202 * after a page table walk. The rfaa, sfaa and pfra members are used to
 203 * simply assign them the value of a region, segment or page table entry.
 204 */
 205union raddress {
 206	unsigned long addr;
 207	unsigned long rfaa : 33; /* Region-Frame Absolute Address */
 208	unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
 209	unsigned long pfra : 52; /* Page-Frame Real Address */
 210};
 211
 212union alet {
 213	u32 val;
 214	struct {
 215		u32 reserved : 7;
 216		u32 p        : 1;
 217		u32 alesn    : 8;
 218		u32 alen     : 16;
 219	};
 220};
 221
 222union ald {
 223	u32 val;
 224	struct {
 225		u32     : 1;
 226		u32 alo : 24;
 227		u32 all : 7;
 228	};
 229};
 230
 231struct ale {
 232	unsigned long i      : 1; /* ALEN-Invalid Bit */
 233	unsigned long        : 5;
 234	unsigned long fo     : 1; /* Fetch-Only Bit */
 235	unsigned long p      : 1; /* Private Bit */
 236	unsigned long alesn  : 8; /* Access-List-Entry Sequence Number */
 237	unsigned long aleax  : 16; /* Access-List-Entry Authorization Index */
 238	unsigned long        : 32;
 239	unsigned long        : 1;
 240	unsigned long asteo  : 25; /* ASN-Second-Table-Entry Origin */
 241	unsigned long        : 6;
 242	unsigned long astesn : 32; /* ASTE Sequence Number */
 243} __packed;
 244
 245struct aste {
 246	unsigned long i      : 1; /* ASX-Invalid Bit */
 247	unsigned long ato    : 29; /* Authority-Table Origin */
 248	unsigned long        : 1;
 249	unsigned long b      : 1; /* Base-Space Bit */
 250	unsigned long ax     : 16; /* Authorization Index */
 251	unsigned long atl    : 12; /* Authority-Table Length */
 252	unsigned long        : 2;
 253	unsigned long ca     : 1; /* Controlled-ASN Bit */
 254	unsigned long ra     : 1; /* Reusable-ASN Bit */
 255	unsigned long asce   : 64; /* Address-Space-Control Element */
 256	unsigned long ald    : 32;
 257	unsigned long astesn : 32;
 258	/* .. more fields there */
 259} __packed;
 260
 261int ipte_lock_held(struct kvm_vcpu *vcpu)
 262{
 263	if (vcpu->arch.sie_block->eca & 1) {
 264		int rc;
 265
 266		read_lock(&vcpu->kvm->arch.sca_lock);
 267		rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
 268		read_unlock(&vcpu->kvm->arch.sca_lock);
 269		return rc;
 270	}
 271	return vcpu->kvm->arch.ipte_lock_count != 0;
 272}
 273
 274static void ipte_lock_simple(struct kvm_vcpu *vcpu)
 275{
 276	union ipte_control old, new, *ic;
 277
 278	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
 279	vcpu->kvm->arch.ipte_lock_count++;
 280	if (vcpu->kvm->arch.ipte_lock_count > 1)
 281		goto out;
 282retry:
 283	read_lock(&vcpu->kvm->arch.sca_lock);
 284	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 285	do {
 286		old = READ_ONCE(*ic);
 287		if (old.k) {
 288			read_unlock(&vcpu->kvm->arch.sca_lock);
 289			cond_resched();
 290			goto retry;
 291		}
 292		new = old;
 293		new.k = 1;
 294	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 295	read_unlock(&vcpu->kvm->arch.sca_lock);
 296out:
 297	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
 298}
 299
 300static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
 301{
 302	union ipte_control old, new, *ic;
 303
 304	mutex_lock(&vcpu->kvm->arch.ipte_mutex);
 305	vcpu->kvm->arch.ipte_lock_count--;
 306	if (vcpu->kvm->arch.ipte_lock_count)
 307		goto out;
 308	read_lock(&vcpu->kvm->arch.sca_lock);
 309	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 310	do {
 311		old = READ_ONCE(*ic);
 312		new = old;
 313		new.k = 0;
 314	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 315	read_unlock(&vcpu->kvm->arch.sca_lock);
 316	wake_up(&vcpu->kvm->arch.ipte_wq);
 317out:
 318	mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
 319}
 320
 321static void ipte_lock_siif(struct kvm_vcpu *vcpu)
 322{
 323	union ipte_control old, new, *ic;
 324
 325retry:
 326	read_lock(&vcpu->kvm->arch.sca_lock);
 327	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 328	do {
 329		old = READ_ONCE(*ic);
 330		if (old.kg) {
 331			read_unlock(&vcpu->kvm->arch.sca_lock);
 332			cond_resched();
 333			goto retry;
 334		}
 335		new = old;
 336		new.k = 1;
 337		new.kh++;
 338	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 339	read_unlock(&vcpu->kvm->arch.sca_lock);
 340}
 341
 342static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
 343{
 344	union ipte_control old, new, *ic;
 345
 346	read_lock(&vcpu->kvm->arch.sca_lock);
 347	ic = kvm_s390_get_ipte_control(vcpu->kvm);
 348	do {
 349		old = READ_ONCE(*ic);
 350		new = old;
 351		new.kh--;
 352		if (!new.kh)
 353			new.k = 0;
 354	} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
 355	read_unlock(&vcpu->kvm->arch.sca_lock);
 356	if (!new.kh)
 357		wake_up(&vcpu->kvm->arch.ipte_wq);
 358}
 359
 360void ipte_lock(struct kvm_vcpu *vcpu)
 361{
 362	if (vcpu->arch.sie_block->eca & 1)
 363		ipte_lock_siif(vcpu);
 364	else
 365		ipte_lock_simple(vcpu);
 366}
 367
 368void ipte_unlock(struct kvm_vcpu *vcpu)
 369{
 370	if (vcpu->arch.sie_block->eca & 1)
 371		ipte_unlock_siif(vcpu);
 372	else
 373		ipte_unlock_simple(vcpu);
 374}
 375
 376static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar,
 377			  enum gacc_mode mode)
 378{
 379	union alet alet;
 380	struct ale ale;
 381	struct aste aste;
 382	unsigned long ald_addr, authority_table_addr;
 383	union ald ald;
 384	int eax, rc;
 385	u8 authority_table;
 386
 387	if (ar >= NUM_ACRS)
 388		return -EINVAL;
 389
 390	save_access_regs(vcpu->run->s.regs.acrs);
 391	alet.val = vcpu->run->s.regs.acrs[ar];
 392
 393	if (ar == 0 || alet.val == 0) {
 394		asce->val = vcpu->arch.sie_block->gcr[1];
 395		return 0;
 396	} else if (alet.val == 1) {
 397		asce->val = vcpu->arch.sie_block->gcr[7];
 398		return 0;
 399	}
 400
 401	if (alet.reserved)
 402		return PGM_ALET_SPECIFICATION;
 403
 404	if (alet.p)
 405		ald_addr = vcpu->arch.sie_block->gcr[5];
 406	else
 407		ald_addr = vcpu->arch.sie_block->gcr[2];
 408	ald_addr &= 0x7fffffc0;
 409
 410	rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
 411	if (rc)
 412		return rc;
 413
 414	if (alet.alen / 8 > ald.all)
 415		return PGM_ALEN_TRANSLATION;
 416
 417	if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
 418		return PGM_ADDRESSING;
 419
 420	rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
 421			     sizeof(struct ale));
 422	if (rc)
 423		return rc;
 424
 425	if (ale.i == 1)
 426		return PGM_ALEN_TRANSLATION;
 427	if (ale.alesn != alet.alesn)
 428		return PGM_ALE_SEQUENCE;
 429
 430	rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
 431	if (rc)
 432		return rc;
 433
 434	if (aste.i)
 435		return PGM_ASTE_VALIDITY;
 436	if (aste.astesn != ale.astesn)
 437		return PGM_ASTE_SEQUENCE;
 438
 439	if (ale.p == 1) {
 440		eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
 441		if (ale.aleax != eax) {
 442			if (eax / 16 > aste.atl)
 443				return PGM_EXTENDED_AUTHORITY;
 444
 445			authority_table_addr = aste.ato * 4 + eax / 4;
 446
 447			rc = read_guest_real(vcpu, authority_table_addr,
 448					     &authority_table,
 449					     sizeof(u8));
 450			if (rc)
 451				return rc;
 452
 453			if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
 454				return PGM_EXTENDED_AUTHORITY;
 455		}
 456	}
 457
 458	if (ale.fo == 1 && mode == GACC_STORE)
 459		return PGM_PROTECTION;
 460
 461	asce->val = aste.asce;
 462	return 0;
 463}
 464
 465struct trans_exc_code_bits {
 466	unsigned long addr : 52; /* Translation-exception Address */
 467	unsigned long fsi  : 2;  /* Access Exception Fetch/Store Indication */
 468	unsigned long	   : 6;
 469	unsigned long b60  : 1;
 470	unsigned long b61  : 1;
 471	unsigned long as   : 2;  /* ASCE Identifier */
 472};
 473
 474enum {
 475	FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
 476	FSI_STORE   = 1, /* Exception was due to store operation */
 477	FSI_FETCH   = 2  /* Exception was due to fetch operation */
 478};
 479
 480enum prot_type {
 481	PROT_TYPE_LA   = 0,
 482	PROT_TYPE_KEYC = 1,
 483	PROT_TYPE_ALC  = 2,
 484	PROT_TYPE_DAT  = 3,
 485};
 486
 487static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
 488		     ar_t ar, enum gacc_mode mode, enum prot_type prot)
 489{
 
 
 490	struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
 491	struct trans_exc_code_bits *tec;
 492
 493	memset(pgm, 0, sizeof(*pgm));
 494	pgm->code = code;
 495	tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
 496
 497	switch (code) {
 498	case PGM_PROTECTION:
 499		switch (prot) {
 500		case PROT_TYPE_ALC:
 501			tec->b60 = 1;
 502			/* FALL THROUGH */
 503		case PROT_TYPE_DAT:
 504			tec->b61 = 1;
 505			break;
 506		default: /* LA and KEYC set b61 to 0, other params undefined */
 507			return code;
 508		}
 509		/* FALL THROUGH */
 510	case PGM_ASCE_TYPE:
 511	case PGM_PAGE_TRANSLATION:
 512	case PGM_REGION_FIRST_TRANS:
 513	case PGM_REGION_SECOND_TRANS:
 514	case PGM_REGION_THIRD_TRANS:
 515	case PGM_SEGMENT_TRANSLATION:
 516		/*
 517		 * op_access_id only applies to MOVE_PAGE -> set bit 61
 518		 * exc_access_id has to be set to 0 for some instructions. Both
 519		 * cases have to be handled by the caller.
 520		 */
 521		tec->addr = gva >> PAGE_SHIFT;
 522		tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
 523		tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
 524		/* FALL THROUGH */
 525	case PGM_ALEN_TRANSLATION:
 526	case PGM_ALE_SEQUENCE:
 527	case PGM_ASTE_VALIDITY:
 528	case PGM_ASTE_SEQUENCE:
 529	case PGM_EXTENDED_AUTHORITY:
 530		/*
 531		 * We can always store exc_access_id, as it is
 532		 * undefined for non-ar cases. It is undefined for
 533		 * most DAT protection exceptions.
 534		 */
 535		pgm->exc_access_id = ar;
 536		break;
 537	}
 538	return code;
 539}
 540
 541static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
 542			 unsigned long ga, ar_t ar, enum gacc_mode mode)
 543{
 544	int rc;
 545	struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
 546
 547	if (!psw.t) {
 548		asce->val = 0;
 549		asce->r = 1;
 550		return 0;
 551	}
 552
 553	if (mode == GACC_IFETCH)
 554		psw.as = psw.as == PSW_AS_HOME ? PSW_AS_HOME : PSW_AS_PRIMARY;
 555
 556	switch (psw.as) {
 557	case PSW_AS_PRIMARY:
 558		asce->val = vcpu->arch.sie_block->gcr[1];
 559		return 0;
 560	case PSW_AS_SECONDARY:
 561		asce->val = vcpu->arch.sie_block->gcr[7];
 562		return 0;
 563	case PSW_AS_HOME:
 564		asce->val = vcpu->arch.sie_block->gcr[13];
 565		return 0;
 566	case PSW_AS_ACCREG:
 567		rc = ar_translation(vcpu, asce, ar, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 568		if (rc > 0)
 569			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
 570		return rc;
 571	}
 572	return 0;
 573}
 574
 575static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
 576{
 577	return kvm_read_guest(kvm, gpa, val, sizeof(*val));
 578}
 579
 580/**
 581 * guest_translate - translate a guest virtual into a guest absolute address
 582 * @vcpu: virtual cpu
 583 * @gva: guest virtual address
 584 * @gpa: points to where guest physical (absolute) address should be stored
 585 * @asce: effective asce
 586 * @mode: indicates the access mode to be used
 587 *
 588 * Translate a guest virtual address into a guest absolute address by means
 589 * of dynamic address translation as specified by the architecture.
 590 * If the resulting absolute address is not available in the configuration
 591 * an addressing exception is indicated and @gpa will not be changed.
 592 *
 593 * Returns: - zero on success; @gpa contains the resulting absolute address
 594 *	    - a negative value if guest access failed due to e.g. broken
 595 *	      guest mapping
 596 *	    - a positve value if an access exception happened. In this case
 597 *	      the returned value is the program interruption code as defined
 598 *	      by the architecture
 599 */
 600static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
 601				     unsigned long *gpa, const union asce asce,
 602				     enum gacc_mode mode)
 603{
 604	union vaddress vaddr = {.addr = gva};
 605	union raddress raddr = {.addr = gva};
 606	union page_table_entry pte;
 607	int dat_protection = 0;
 608	union ctlreg0 ctlreg0;
 609	unsigned long ptr;
 610	int edat1, edat2;
 611
 612	ctlreg0.val = vcpu->arch.sie_block->gcr[0];
 613	edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
 614	edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
 615	if (asce.r)
 616		goto real_address;
 617	ptr = asce.origin * 4096;
 618	switch (asce.dt) {
 619	case ASCE_TYPE_REGION1:
 620		if (vaddr.rfx01 > asce.tl)
 621			return PGM_REGION_FIRST_TRANS;
 622		ptr += vaddr.rfx * 8;
 623		break;
 624	case ASCE_TYPE_REGION2:
 625		if (vaddr.rfx)
 626			return PGM_ASCE_TYPE;
 627		if (vaddr.rsx01 > asce.tl)
 628			return PGM_REGION_SECOND_TRANS;
 629		ptr += vaddr.rsx * 8;
 630		break;
 631	case ASCE_TYPE_REGION3:
 632		if (vaddr.rfx || vaddr.rsx)
 633			return PGM_ASCE_TYPE;
 634		if (vaddr.rtx01 > asce.tl)
 635			return PGM_REGION_THIRD_TRANS;
 636		ptr += vaddr.rtx * 8;
 637		break;
 638	case ASCE_TYPE_SEGMENT:
 639		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
 640			return PGM_ASCE_TYPE;
 641		if (vaddr.sx01 > asce.tl)
 642			return PGM_SEGMENT_TRANSLATION;
 643		ptr += vaddr.sx * 8;
 644		break;
 645	}
 646	switch (asce.dt) {
 647	case ASCE_TYPE_REGION1:	{
 648		union region1_table_entry rfte;
 649
 650		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 651			return PGM_ADDRESSING;
 652		if (deref_table(vcpu->kvm, ptr, &rfte.val))
 653			return -EFAULT;
 654		if (rfte.i)
 655			return PGM_REGION_FIRST_TRANS;
 656		if (rfte.tt != TABLE_TYPE_REGION1)
 657			return PGM_TRANSLATION_SPEC;
 658		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
 659			return PGM_REGION_SECOND_TRANS;
 660		if (edat1)
 661			dat_protection |= rfte.p;
 662		ptr = rfte.rto * 4096 + vaddr.rsx * 8;
 663	}
 664		/* fallthrough */
 665	case ASCE_TYPE_REGION2: {
 666		union region2_table_entry rste;
 667
 668		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 669			return PGM_ADDRESSING;
 670		if (deref_table(vcpu->kvm, ptr, &rste.val))
 671			return -EFAULT;
 672		if (rste.i)
 673			return PGM_REGION_SECOND_TRANS;
 674		if (rste.tt != TABLE_TYPE_REGION2)
 675			return PGM_TRANSLATION_SPEC;
 676		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
 677			return PGM_REGION_THIRD_TRANS;
 678		if (edat1)
 679			dat_protection |= rste.p;
 680		ptr = rste.rto * 4096 + vaddr.rtx * 8;
 681	}
 682		/* fallthrough */
 683	case ASCE_TYPE_REGION3: {
 684		union region3_table_entry rtte;
 685
 686		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 687			return PGM_ADDRESSING;
 688		if (deref_table(vcpu->kvm, ptr, &rtte.val))
 689			return -EFAULT;
 690		if (rtte.i)
 691			return PGM_REGION_THIRD_TRANS;
 692		if (rtte.tt != TABLE_TYPE_REGION3)
 693			return PGM_TRANSLATION_SPEC;
 694		if (rtte.cr && asce.p && edat2)
 695			return PGM_TRANSLATION_SPEC;
 696		if (rtte.fc && edat2) {
 697			dat_protection |= rtte.fc1.p;
 698			raddr.rfaa = rtte.fc1.rfaa;
 699			goto absolute_address;
 700		}
 701		if (vaddr.sx01 < rtte.fc0.tf)
 702			return PGM_SEGMENT_TRANSLATION;
 703		if (vaddr.sx01 > rtte.fc0.tl)
 704			return PGM_SEGMENT_TRANSLATION;
 705		if (edat1)
 706			dat_protection |= rtte.fc0.p;
 707		ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
 708	}
 709		/* fallthrough */
 710	case ASCE_TYPE_SEGMENT: {
 711		union segment_table_entry ste;
 712
 713		if (kvm_is_error_gpa(vcpu->kvm, ptr))
 714			return PGM_ADDRESSING;
 715		if (deref_table(vcpu->kvm, ptr, &ste.val))
 716			return -EFAULT;
 717		if (ste.i)
 718			return PGM_SEGMENT_TRANSLATION;
 719		if (ste.tt != TABLE_TYPE_SEGMENT)
 720			return PGM_TRANSLATION_SPEC;
 721		if (ste.cs && asce.p)
 722			return PGM_TRANSLATION_SPEC;
 723		if (ste.fc && edat1) {
 724			dat_protection |= ste.fc1.p;
 725			raddr.sfaa = ste.fc1.sfaa;
 726			goto absolute_address;
 727		}
 728		dat_protection |= ste.fc0.p;
 729		ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
 730	}
 731	}
 732	if (kvm_is_error_gpa(vcpu->kvm, ptr))
 733		return PGM_ADDRESSING;
 734	if (deref_table(vcpu->kvm, ptr, &pte.val))
 735		return -EFAULT;
 736	if (pte.i)
 737		return PGM_PAGE_TRANSLATION;
 738	if (pte.z)
 739		return PGM_TRANSLATION_SPEC;
 740	if (pte.co && !edat1)
 741		return PGM_TRANSLATION_SPEC;
 742	dat_protection |= pte.p;
 743	raddr.pfra = pte.pfra;
 744real_address:
 745	raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
 746absolute_address:
 747	if (mode == GACC_STORE && dat_protection)
 748		return PGM_PROTECTION;
 749	if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
 750		return PGM_ADDRESSING;
 751	*gpa = raddr.addr;
 752	return 0;
 753}
 754
 755static inline int is_low_address(unsigned long ga)
 756{
 757	/* Check for address ranges 0..511 and 4096..4607 */
 758	return (ga & ~0x11fful) == 0;
 759}
 760
 761static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
 762					  const union asce asce)
 763{
 764	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
 765	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 766
 767	if (!ctlreg0.lap)
 768		return 0;
 769	if (psw_bits(*psw).t && asce.p)
 770		return 0;
 771	return 1;
 772}
 773
 774static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar,
 775			    unsigned long *pages, unsigned long nr_pages,
 776			    const union asce asce, enum gacc_mode mode)
 777{
 
 778	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 779	int lap_enabled, rc = 0;
 
 780
 
 781	lap_enabled = low_address_protection_enabled(vcpu, asce);
 782	while (nr_pages) {
 783		ga = kvm_s390_logical_to_effective(vcpu, ga);
 784		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
 785			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
 786					 PROT_TYPE_LA);
 
 
 787		ga &= PAGE_MASK;
 788		if (psw_bits(*psw).t) {
 789			rc = guest_translate(vcpu, ga, pages, asce, mode);
 790			if (rc < 0)
 791				return rc;
 
 
 
 
 792		} else {
 793			*pages = kvm_s390_real_to_abs(vcpu, ga);
 794			if (kvm_is_error_gpa(vcpu->kvm, *pages))
 795				rc = PGM_ADDRESSING;
 796		}
 797		if (rc)
 798			return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_DAT);
 799		ga += PAGE_SIZE;
 800		pages++;
 801		nr_pages--;
 802	}
 803	return 0;
 804}
 805
 806int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data,
 807		 unsigned long len, enum gacc_mode mode)
 808{
 809	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 810	unsigned long _len, nr_pages, gpa, idx;
 811	unsigned long pages_array[2];
 812	unsigned long *pages;
 813	int need_ipte_lock;
 814	union asce asce;
 815	int rc;
 816
 817	if (!len)
 818		return 0;
 819	ga = kvm_s390_logical_to_effective(vcpu, ga);
 820	rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
 821	if (rc)
 822		return rc;
 823	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
 824	pages = pages_array;
 825	if (nr_pages > ARRAY_SIZE(pages_array))
 826		pages = vmalloc(nr_pages * sizeof(unsigned long));
 827	if (!pages)
 828		return -ENOMEM;
 829	need_ipte_lock = psw_bits(*psw).t && !asce.r;
 830	if (need_ipte_lock)
 831		ipte_lock(vcpu);
 832	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
 833	for (idx = 0; idx < nr_pages && !rc; idx++) {
 834		gpa = *(pages + idx) + (ga & ~PAGE_MASK);
 835		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
 836		if (mode == GACC_STORE)
 837			rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
 838		else
 839			rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
 840		len -= _len;
 841		ga += _len;
 842		data += _len;
 843	}
 844	if (need_ipte_lock)
 845		ipte_unlock(vcpu);
 846	if (nr_pages > ARRAY_SIZE(pages_array))
 847		vfree(pages);
 848	return rc;
 849}
 850
 851int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
 852		      void *data, unsigned long len, enum gacc_mode mode)
 853{
 854	unsigned long _len, gpa;
 855	int rc = 0;
 856
 857	while (len && !rc) {
 858		gpa = kvm_s390_real_to_abs(vcpu, gra);
 859		_len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
 860		if (mode)
 861			rc = write_guest_abs(vcpu, gpa, data, _len);
 862		else
 863			rc = read_guest_abs(vcpu, gpa, data, _len);
 864		len -= _len;
 865		gra += _len;
 866		data += _len;
 867	}
 868	return rc;
 869}
 870
 871/**
 872 * guest_translate_address - translate guest logical into guest absolute address
 873 *
 874 * Parameter semantics are the same as the ones from guest_translate.
 875 * The memory contents at the guest address are not changed.
 876 *
 877 * Note: The IPTE lock is not taken during this function, so the caller
 878 * has to take care of this.
 879 */
 880int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
 881			    unsigned long *gpa, enum gacc_mode mode)
 882{
 
 883	psw_t *psw = &vcpu->arch.sie_block->gpsw;
 
 884	union asce asce;
 885	int rc;
 886
 887	gva = kvm_s390_logical_to_effective(vcpu, gva);
 888	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
 
 
 889	if (rc)
 890		return rc;
 891	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
 892		if (mode == GACC_STORE)
 893			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
 894					 mode, PROT_TYPE_LA);
 
 895	}
 896
 897	if (psw_bits(*psw).t && !asce.r) {	/* Use DAT? */
 898		rc = guest_translate(vcpu, gva, gpa, asce, mode);
 899		if (rc > 0)
 900			return trans_exc(vcpu, rc, gva, 0, mode, PROT_TYPE_DAT);
 
 
 
 901	} else {
 
 902		*gpa = kvm_s390_real_to_abs(vcpu, gva);
 903		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
 904			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
 905	}
 906
 907	return rc;
 908}
 909
 910/**
 911 * check_gva_range - test a range of guest virtual addresses for accessibility
 912 */
 913int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar,
 914		    unsigned long length, enum gacc_mode mode)
 915{
 916	unsigned long gpa;
 917	unsigned long currlen;
 918	int rc = 0;
 919
 920	ipte_lock(vcpu);
 921	while (length > 0 && !rc) {
 922		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
 923		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
 924		gva += currlen;
 925		length -= currlen;
 926	}
 927	ipte_unlock(vcpu);
 928
 929	return rc;
 930}
 931
 932/**
 933 * kvm_s390_check_low_addr_prot_real - check for low-address protection
 934 * @gra: Guest real address
 935 *
 936 * Checks whether an address is subject to low-address protection and set
 937 * up vcpu->arch.pgm accordingly if necessary.
 938 *
 939 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
 940 */
 941int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
 942{
 
 
 
 943	union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
 944
 945	if (!ctlreg0.lap || !is_low_address(gra))
 946		return 0;
 947	return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
 948}
 949
 950/**
 951 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
 952 * @sg: pointer to the shadow guest address space structure
 953 * @saddr: faulting address in the shadow gmap
 954 * @pgt: pointer to the page table address result
 955 * @fake: pgt references contiguous guest memory block, not a pgtable
 956 */
 957static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
 958				  unsigned long *pgt, int *dat_protection,
 959				  int *fake)
 960{
 961	struct gmap *parent;
 962	union asce asce;
 963	union vaddress vaddr;
 964	unsigned long ptr;
 965	int rc;
 966
 967	*fake = 0;
 968	*dat_protection = 0;
 969	parent = sg->parent;
 970	vaddr.addr = saddr;
 971	asce.val = sg->orig_asce;
 972	ptr = asce.origin * 4096;
 973	if (asce.r) {
 974		*fake = 1;
 975		asce.dt = ASCE_TYPE_REGION1;
 976	}
 977	switch (asce.dt) {
 978	case ASCE_TYPE_REGION1:
 979		if (vaddr.rfx01 > asce.tl && !asce.r)
 980			return PGM_REGION_FIRST_TRANS;
 981		break;
 982	case ASCE_TYPE_REGION2:
 983		if (vaddr.rfx)
 984			return PGM_ASCE_TYPE;
 985		if (vaddr.rsx01 > asce.tl)
 986			return PGM_REGION_SECOND_TRANS;
 987		break;
 988	case ASCE_TYPE_REGION3:
 989		if (vaddr.rfx || vaddr.rsx)
 990			return PGM_ASCE_TYPE;
 991		if (vaddr.rtx01 > asce.tl)
 992			return PGM_REGION_THIRD_TRANS;
 993		break;
 994	case ASCE_TYPE_SEGMENT:
 995		if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
 996			return PGM_ASCE_TYPE;
 997		if (vaddr.sx01 > asce.tl)
 998			return PGM_SEGMENT_TRANSLATION;
 999		break;
1000	}
1001
1002	switch (asce.dt) {
1003	case ASCE_TYPE_REGION1: {
1004		union region1_table_entry rfte;
1005
1006		if (*fake) {
1007			/* offset in 16EB guest memory block */
1008			ptr = ptr + ((unsigned long) vaddr.rsx << 53UL);
1009			rfte.val = ptr;
1010			goto shadow_r2t;
1011		}
1012		rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1013		if (rc)
1014			return rc;
1015		if (rfte.i)
1016			return PGM_REGION_FIRST_TRANS;
1017		if (rfte.tt != TABLE_TYPE_REGION1)
1018			return PGM_TRANSLATION_SPEC;
1019		if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1020			return PGM_REGION_SECOND_TRANS;
1021		if (sg->edat_level >= 1)
1022			*dat_protection |= rfte.p;
1023		ptr = rfte.rto << 12UL;
1024shadow_r2t:
1025		rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1026		if (rc)
1027			return rc;
1028		/* fallthrough */
1029	}
1030	case ASCE_TYPE_REGION2: {
1031		union region2_table_entry rste;
1032
1033		if (*fake) {
1034			/* offset in 8PB guest memory block */
1035			ptr = ptr + ((unsigned long) vaddr.rtx << 42UL);
1036			rste.val = ptr;
1037			goto shadow_r3t;
1038		}
1039		rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1040		if (rc)
1041			return rc;
1042		if (rste.i)
1043			return PGM_REGION_SECOND_TRANS;
1044		if (rste.tt != TABLE_TYPE_REGION2)
1045			return PGM_TRANSLATION_SPEC;
1046		if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1047			return PGM_REGION_THIRD_TRANS;
1048		if (sg->edat_level >= 1)
1049			*dat_protection |= rste.p;
1050		ptr = rste.rto << 12UL;
1051shadow_r3t:
1052		rste.p |= *dat_protection;
1053		rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1054		if (rc)
1055			return rc;
1056		/* fallthrough */
1057	}
1058	case ASCE_TYPE_REGION3: {
1059		union region3_table_entry rtte;
1060
1061		if (*fake) {
1062			/* offset in 4TB guest memory block */
1063			ptr = ptr + ((unsigned long) vaddr.sx << 31UL);
1064			rtte.val = ptr;
1065			goto shadow_sgt;
1066		}
1067		rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1068		if (rc)
1069			return rc;
1070		if (rtte.i)
1071			return PGM_REGION_THIRD_TRANS;
1072		if (rtte.tt != TABLE_TYPE_REGION3)
1073			return PGM_TRANSLATION_SPEC;
1074		if (rtte.cr && asce.p && sg->edat_level >= 2)
1075			return PGM_TRANSLATION_SPEC;
1076		if (rtte.fc && sg->edat_level >= 2) {
1077			*dat_protection |= rtte.fc0.p;
1078			*fake = 1;
1079			ptr = rtte.fc1.rfaa << 31UL;
1080			rtte.val = ptr;
1081			goto shadow_sgt;
1082		}
1083		if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1084			return PGM_SEGMENT_TRANSLATION;
1085		if (sg->edat_level >= 1)
1086			*dat_protection |= rtte.fc0.p;
1087		ptr = rtte.fc0.sto << 12UL;
1088shadow_sgt:
1089		rtte.fc0.p |= *dat_protection;
1090		rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1091		if (rc)
1092			return rc;
1093		/* fallthrough */
1094	}
1095	case ASCE_TYPE_SEGMENT: {
1096		union segment_table_entry ste;
1097
1098		if (*fake) {
1099			/* offset in 2G guest memory block */
1100			ptr = ptr + ((unsigned long) vaddr.sx << 20UL);
1101			ste.val = ptr;
1102			goto shadow_pgt;
1103		}
1104		rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1105		if (rc)
1106			return rc;
1107		if (ste.i)
1108			return PGM_SEGMENT_TRANSLATION;
1109		if (ste.tt != TABLE_TYPE_SEGMENT)
1110			return PGM_TRANSLATION_SPEC;
1111		if (ste.cs && asce.p)
1112			return PGM_TRANSLATION_SPEC;
1113		*dat_protection |= ste.fc0.p;
1114		if (ste.fc && sg->edat_level >= 1) {
1115			*fake = 1;
1116			ptr = ste.fc1.sfaa << 20UL;
1117			ste.val = ptr;
1118			goto shadow_pgt;
1119		}
1120		ptr = ste.fc0.pto << 11UL;
1121shadow_pgt:
1122		ste.fc0.p |= *dat_protection;
1123		rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1124		if (rc)
1125			return rc;
1126	}
1127	}
1128	/* Return the parent address of the page table */
1129	*pgt = ptr;
1130	return 0;
1131}
1132
1133/**
1134 * kvm_s390_shadow_fault - handle fault on a shadow page table
1135 * @vcpu: virtual cpu
1136 * @sg: pointer to the shadow guest address space structure
1137 * @saddr: faulting address in the shadow gmap
1138 *
1139 * Returns: - 0 if the shadow fault was successfully resolved
1140 *	    - > 0 (pgm exception code) on exceptions while faulting
1141 *	    - -EAGAIN if the caller can retry immediately
1142 *	    - -EFAULT when accessing invalid guest addresses
1143 *	    - -ENOMEM if out of memory
1144 */
1145int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1146			  unsigned long saddr)
1147{
1148	union vaddress vaddr;
1149	union page_table_entry pte;
1150	unsigned long pgt;
1151	int dat_protection, fake;
1152	int rc;
1153
1154	down_read(&sg->mm->mmap_sem);
1155	/*
1156	 * We don't want any guest-2 tables to change - so the parent
1157	 * tables/pointers we read stay valid - unshadowing is however
1158	 * always possible - only guest_table_lock protects us.
1159	 */
1160	ipte_lock(vcpu);
1161
1162	rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1163	if (rc)
1164		rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1165					    &fake);
1166
1167	vaddr.addr = saddr;
1168	if (fake) {
1169		/* offset in 1MB guest memory block */
1170		pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
1171		goto shadow_page;
1172	}
1173	if (!rc)
1174		rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1175	if (!rc && pte.i)
1176		rc = PGM_PAGE_TRANSLATION;
1177	if (!rc && (pte.z || (pte.co && sg->edat_level < 1)))
1178		rc = PGM_TRANSLATION_SPEC;
1179shadow_page:
1180	pte.p |= dat_protection;
1181	if (!rc)
1182		rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1183	ipte_unlock(vcpu);
1184	up_read(&sg->mm->mmap_sem);
1185	return rc;
1186}