Loading...
1/*
2 * Copyright (C) 2009 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "volumes.h"
29#include "locking.h"
30#include "btrfs_inode.h"
31#include "async-thread.h"
32#include "free-space-cache.h"
33#include "inode-map.h"
34
35/*
36 * backref_node, mapping_node and tree_block start with this
37 */
38struct tree_entry {
39 struct rb_node rb_node;
40 u64 bytenr;
41};
42
43/*
44 * present a tree block in the backref cache
45 */
46struct backref_node {
47 struct rb_node rb_node;
48 u64 bytenr;
49
50 u64 new_bytenr;
51 /* objectid of tree block owner, can be not uptodate */
52 u64 owner;
53 /* link to pending, changed or detached list */
54 struct list_head list;
55 /* list of upper level blocks reference this block */
56 struct list_head upper;
57 /* list of child blocks in the cache */
58 struct list_head lower;
59 /* NULL if this node is not tree root */
60 struct btrfs_root *root;
61 /* extent buffer got by COW the block */
62 struct extent_buffer *eb;
63 /* level of tree block */
64 unsigned int level:8;
65 /* is the block in non-reference counted tree */
66 unsigned int cowonly:1;
67 /* 1 if no child node in the cache */
68 unsigned int lowest:1;
69 /* is the extent buffer locked */
70 unsigned int locked:1;
71 /* has the block been processed */
72 unsigned int processed:1;
73 /* have backrefs of this block been checked */
74 unsigned int checked:1;
75 /*
76 * 1 if corresponding block has been cowed but some upper
77 * level block pointers may not point to the new location
78 */
79 unsigned int pending:1;
80 /*
81 * 1 if the backref node isn't connected to any other
82 * backref node.
83 */
84 unsigned int detached:1;
85};
86
87/*
88 * present a block pointer in the backref cache
89 */
90struct backref_edge {
91 struct list_head list[2];
92 struct backref_node *node[2];
93};
94
95#define LOWER 0
96#define UPPER 1
97#define RELOCATION_RESERVED_NODES 256
98
99struct backref_cache {
100 /* red black tree of all backref nodes in the cache */
101 struct rb_root rb_root;
102 /* for passing backref nodes to btrfs_reloc_cow_block */
103 struct backref_node *path[BTRFS_MAX_LEVEL];
104 /*
105 * list of blocks that have been cowed but some block
106 * pointers in upper level blocks may not reflect the
107 * new location
108 */
109 struct list_head pending[BTRFS_MAX_LEVEL];
110 /* list of backref nodes with no child node */
111 struct list_head leaves;
112 /* list of blocks that have been cowed in current transaction */
113 struct list_head changed;
114 /* list of detached backref node. */
115 struct list_head detached;
116
117 u64 last_trans;
118
119 int nr_nodes;
120 int nr_edges;
121};
122
123/*
124 * map address of tree root to tree
125 */
126struct mapping_node {
127 struct rb_node rb_node;
128 u64 bytenr;
129 void *data;
130};
131
132struct mapping_tree {
133 struct rb_root rb_root;
134 spinlock_t lock;
135};
136
137/*
138 * present a tree block to process
139 */
140struct tree_block {
141 struct rb_node rb_node;
142 u64 bytenr;
143 struct btrfs_key key;
144 unsigned int level:8;
145 unsigned int key_ready:1;
146};
147
148#define MAX_EXTENTS 128
149
150struct file_extent_cluster {
151 u64 start;
152 u64 end;
153 u64 boundary[MAX_EXTENTS];
154 unsigned int nr;
155};
156
157struct reloc_control {
158 /* block group to relocate */
159 struct btrfs_block_group_cache *block_group;
160 /* extent tree */
161 struct btrfs_root *extent_root;
162 /* inode for moving data */
163 struct inode *data_inode;
164
165 struct btrfs_block_rsv *block_rsv;
166
167 struct backref_cache backref_cache;
168
169 struct file_extent_cluster cluster;
170 /* tree blocks have been processed */
171 struct extent_io_tree processed_blocks;
172 /* map start of tree root to corresponding reloc tree */
173 struct mapping_tree reloc_root_tree;
174 /* list of reloc trees */
175 struct list_head reloc_roots;
176 /* size of metadata reservation for merging reloc trees */
177 u64 merging_rsv_size;
178 /* size of relocated tree nodes */
179 u64 nodes_relocated;
180 /* reserved size for block group relocation*/
181 u64 reserved_bytes;
182
183 u64 search_start;
184 u64 extents_found;
185
186 unsigned int stage:8;
187 unsigned int create_reloc_tree:1;
188 unsigned int merge_reloc_tree:1;
189 unsigned int found_file_extent:1;
190};
191
192/* stages of data relocation */
193#define MOVE_DATA_EXTENTS 0
194#define UPDATE_DATA_PTRS 1
195
196static void remove_backref_node(struct backref_cache *cache,
197 struct backref_node *node);
198static void __mark_block_processed(struct reloc_control *rc,
199 struct backref_node *node);
200
201static void mapping_tree_init(struct mapping_tree *tree)
202{
203 tree->rb_root = RB_ROOT;
204 spin_lock_init(&tree->lock);
205}
206
207static void backref_cache_init(struct backref_cache *cache)
208{
209 int i;
210 cache->rb_root = RB_ROOT;
211 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 INIT_LIST_HEAD(&cache->pending[i]);
213 INIT_LIST_HEAD(&cache->changed);
214 INIT_LIST_HEAD(&cache->detached);
215 INIT_LIST_HEAD(&cache->leaves);
216}
217
218static void backref_cache_cleanup(struct backref_cache *cache)
219{
220 struct backref_node *node;
221 int i;
222
223 while (!list_empty(&cache->detached)) {
224 node = list_entry(cache->detached.next,
225 struct backref_node, list);
226 remove_backref_node(cache, node);
227 }
228
229 while (!list_empty(&cache->leaves)) {
230 node = list_entry(cache->leaves.next,
231 struct backref_node, lower);
232 remove_backref_node(cache, node);
233 }
234
235 cache->last_trans = 0;
236
237 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 BUG_ON(!list_empty(&cache->pending[i]));
239 BUG_ON(!list_empty(&cache->changed));
240 BUG_ON(!list_empty(&cache->detached));
241 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
242 BUG_ON(cache->nr_nodes);
243 BUG_ON(cache->nr_edges);
244}
245
246static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247{
248 struct backref_node *node;
249
250 node = kzalloc(sizeof(*node), GFP_NOFS);
251 if (node) {
252 INIT_LIST_HEAD(&node->list);
253 INIT_LIST_HEAD(&node->upper);
254 INIT_LIST_HEAD(&node->lower);
255 RB_CLEAR_NODE(&node->rb_node);
256 cache->nr_nodes++;
257 }
258 return node;
259}
260
261static void free_backref_node(struct backref_cache *cache,
262 struct backref_node *node)
263{
264 if (node) {
265 cache->nr_nodes--;
266 kfree(node);
267 }
268}
269
270static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271{
272 struct backref_edge *edge;
273
274 edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 if (edge)
276 cache->nr_edges++;
277 return edge;
278}
279
280static void free_backref_edge(struct backref_cache *cache,
281 struct backref_edge *edge)
282{
283 if (edge) {
284 cache->nr_edges--;
285 kfree(edge);
286 }
287}
288
289static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 struct rb_node *node)
291{
292 struct rb_node **p = &root->rb_node;
293 struct rb_node *parent = NULL;
294 struct tree_entry *entry;
295
296 while (*p) {
297 parent = *p;
298 entry = rb_entry(parent, struct tree_entry, rb_node);
299
300 if (bytenr < entry->bytenr)
301 p = &(*p)->rb_left;
302 else if (bytenr > entry->bytenr)
303 p = &(*p)->rb_right;
304 else
305 return parent;
306 }
307
308 rb_link_node(node, parent, p);
309 rb_insert_color(node, root);
310 return NULL;
311}
312
313static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314{
315 struct rb_node *n = root->rb_node;
316 struct tree_entry *entry;
317
318 while (n) {
319 entry = rb_entry(n, struct tree_entry, rb_node);
320
321 if (bytenr < entry->bytenr)
322 n = n->rb_left;
323 else if (bytenr > entry->bytenr)
324 n = n->rb_right;
325 else
326 return n;
327 }
328 return NULL;
329}
330
331static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332{
333
334 struct btrfs_fs_info *fs_info = NULL;
335 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 rb_node);
337 if (bnode->root)
338 fs_info = bnode->root->fs_info;
339 btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 "found at offset %llu", bytenr);
341}
342
343/*
344 * walk up backref nodes until reach node presents tree root
345 */
346static struct backref_node *walk_up_backref(struct backref_node *node,
347 struct backref_edge *edges[],
348 int *index)
349{
350 struct backref_edge *edge;
351 int idx = *index;
352
353 while (!list_empty(&node->upper)) {
354 edge = list_entry(node->upper.next,
355 struct backref_edge, list[LOWER]);
356 edges[idx++] = edge;
357 node = edge->node[UPPER];
358 }
359 BUG_ON(node->detached);
360 *index = idx;
361 return node;
362}
363
364/*
365 * walk down backref nodes to find start of next reference path
366 */
367static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 int *index)
369{
370 struct backref_edge *edge;
371 struct backref_node *lower;
372 int idx = *index;
373
374 while (idx > 0) {
375 edge = edges[idx - 1];
376 lower = edge->node[LOWER];
377 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 idx--;
379 continue;
380 }
381 edge = list_entry(edge->list[LOWER].next,
382 struct backref_edge, list[LOWER]);
383 edges[idx - 1] = edge;
384 *index = idx;
385 return edge->node[UPPER];
386 }
387 *index = 0;
388 return NULL;
389}
390
391static void unlock_node_buffer(struct backref_node *node)
392{
393 if (node->locked) {
394 btrfs_tree_unlock(node->eb);
395 node->locked = 0;
396 }
397}
398
399static void drop_node_buffer(struct backref_node *node)
400{
401 if (node->eb) {
402 unlock_node_buffer(node);
403 free_extent_buffer(node->eb);
404 node->eb = NULL;
405 }
406}
407
408static void drop_backref_node(struct backref_cache *tree,
409 struct backref_node *node)
410{
411 BUG_ON(!list_empty(&node->upper));
412
413 drop_node_buffer(node);
414 list_del(&node->list);
415 list_del(&node->lower);
416 if (!RB_EMPTY_NODE(&node->rb_node))
417 rb_erase(&node->rb_node, &tree->rb_root);
418 free_backref_node(tree, node);
419}
420
421/*
422 * remove a backref node from the backref cache
423 */
424static void remove_backref_node(struct backref_cache *cache,
425 struct backref_node *node)
426{
427 struct backref_node *upper;
428 struct backref_edge *edge;
429
430 if (!node)
431 return;
432
433 BUG_ON(!node->lowest && !node->detached);
434 while (!list_empty(&node->upper)) {
435 edge = list_entry(node->upper.next, struct backref_edge,
436 list[LOWER]);
437 upper = edge->node[UPPER];
438 list_del(&edge->list[LOWER]);
439 list_del(&edge->list[UPPER]);
440 free_backref_edge(cache, edge);
441
442 if (RB_EMPTY_NODE(&upper->rb_node)) {
443 BUG_ON(!list_empty(&node->upper));
444 drop_backref_node(cache, node);
445 node = upper;
446 node->lowest = 1;
447 continue;
448 }
449 /*
450 * add the node to leaf node list if no other
451 * child block cached.
452 */
453 if (list_empty(&upper->lower)) {
454 list_add_tail(&upper->lower, &cache->leaves);
455 upper->lowest = 1;
456 }
457 }
458
459 drop_backref_node(cache, node);
460}
461
462static void update_backref_node(struct backref_cache *cache,
463 struct backref_node *node, u64 bytenr)
464{
465 struct rb_node *rb_node;
466 rb_erase(&node->rb_node, &cache->rb_root);
467 node->bytenr = bytenr;
468 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 if (rb_node)
470 backref_tree_panic(rb_node, -EEXIST, bytenr);
471}
472
473/*
474 * update backref cache after a transaction commit
475 */
476static int update_backref_cache(struct btrfs_trans_handle *trans,
477 struct backref_cache *cache)
478{
479 struct backref_node *node;
480 int level = 0;
481
482 if (cache->last_trans == 0) {
483 cache->last_trans = trans->transid;
484 return 0;
485 }
486
487 if (cache->last_trans == trans->transid)
488 return 0;
489
490 /*
491 * detached nodes are used to avoid unnecessary backref
492 * lookup. transaction commit changes the extent tree.
493 * so the detached nodes are no longer useful.
494 */
495 while (!list_empty(&cache->detached)) {
496 node = list_entry(cache->detached.next,
497 struct backref_node, list);
498 remove_backref_node(cache, node);
499 }
500
501 while (!list_empty(&cache->changed)) {
502 node = list_entry(cache->changed.next,
503 struct backref_node, list);
504 list_del_init(&node->list);
505 BUG_ON(node->pending);
506 update_backref_node(cache, node, node->new_bytenr);
507 }
508
509 /*
510 * some nodes can be left in the pending list if there were
511 * errors during processing the pending nodes.
512 */
513 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 list_for_each_entry(node, &cache->pending[level], list) {
515 BUG_ON(!node->pending);
516 if (node->bytenr == node->new_bytenr)
517 continue;
518 update_backref_node(cache, node, node->new_bytenr);
519 }
520 }
521
522 cache->last_trans = 0;
523 return 1;
524}
525
526
527static int should_ignore_root(struct btrfs_root *root)
528{
529 struct btrfs_root *reloc_root;
530
531 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
532 return 0;
533
534 reloc_root = root->reloc_root;
535 if (!reloc_root)
536 return 0;
537
538 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 root->fs_info->running_transaction->transid - 1)
540 return 0;
541 /*
542 * if there is reloc tree and it was created in previous
543 * transaction backref lookup can find the reloc tree,
544 * so backref node for the fs tree root is useless for
545 * relocation.
546 */
547 return 1;
548}
549/*
550 * find reloc tree by address of tree root
551 */
552static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 u64 bytenr)
554{
555 struct rb_node *rb_node;
556 struct mapping_node *node;
557 struct btrfs_root *root = NULL;
558
559 spin_lock(&rc->reloc_root_tree.lock);
560 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 if (rb_node) {
562 node = rb_entry(rb_node, struct mapping_node, rb_node);
563 root = (struct btrfs_root *)node->data;
564 }
565 spin_unlock(&rc->reloc_root_tree.lock);
566 return root;
567}
568
569static int is_cowonly_root(u64 root_objectid)
570{
571 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
579 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
580 return 1;
581 return 0;
582}
583
584static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
585 u64 root_objectid)
586{
587 struct btrfs_key key;
588
589 key.objectid = root_objectid;
590 key.type = BTRFS_ROOT_ITEM_KEY;
591 if (is_cowonly_root(root_objectid))
592 key.offset = 0;
593 else
594 key.offset = (u64)-1;
595
596 return btrfs_get_fs_root(fs_info, &key, false);
597}
598
599#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
600static noinline_for_stack
601struct btrfs_root *find_tree_root(struct reloc_control *rc,
602 struct extent_buffer *leaf,
603 struct btrfs_extent_ref_v0 *ref0)
604{
605 struct btrfs_root *root;
606 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
607 u64 generation = btrfs_ref_generation_v0(leaf, ref0);
608
609 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
610
611 root = read_fs_root(rc->extent_root->fs_info, root_objectid);
612 BUG_ON(IS_ERR(root));
613
614 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
615 generation != btrfs_root_generation(&root->root_item))
616 return NULL;
617
618 return root;
619}
620#endif
621
622static noinline_for_stack
623int find_inline_backref(struct extent_buffer *leaf, int slot,
624 unsigned long *ptr, unsigned long *end)
625{
626 struct btrfs_key key;
627 struct btrfs_extent_item *ei;
628 struct btrfs_tree_block_info *bi;
629 u32 item_size;
630
631 btrfs_item_key_to_cpu(leaf, &key, slot);
632
633 item_size = btrfs_item_size_nr(leaf, slot);
634#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
635 if (item_size < sizeof(*ei)) {
636 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
637 return 1;
638 }
639#endif
640 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
641 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
642 BTRFS_EXTENT_FLAG_TREE_BLOCK));
643
644 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
645 item_size <= sizeof(*ei) + sizeof(*bi)) {
646 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
647 return 1;
648 }
649 if (key.type == BTRFS_METADATA_ITEM_KEY &&
650 item_size <= sizeof(*ei)) {
651 WARN_ON(item_size < sizeof(*ei));
652 return 1;
653 }
654
655 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
656 bi = (struct btrfs_tree_block_info *)(ei + 1);
657 *ptr = (unsigned long)(bi + 1);
658 } else {
659 *ptr = (unsigned long)(ei + 1);
660 }
661 *end = (unsigned long)ei + item_size;
662 return 0;
663}
664
665/*
666 * build backref tree for a given tree block. root of the backref tree
667 * corresponds the tree block, leaves of the backref tree correspond
668 * roots of b-trees that reference the tree block.
669 *
670 * the basic idea of this function is check backrefs of a given block
671 * to find upper level blocks that refernece the block, and then check
672 * bakcrefs of these upper level blocks recursively. the recursion stop
673 * when tree root is reached or backrefs for the block is cached.
674 *
675 * NOTE: if we find backrefs for a block are cached, we know backrefs
676 * for all upper level blocks that directly/indirectly reference the
677 * block are also cached.
678 */
679static noinline_for_stack
680struct backref_node *build_backref_tree(struct reloc_control *rc,
681 struct btrfs_key *node_key,
682 int level, u64 bytenr)
683{
684 struct backref_cache *cache = &rc->backref_cache;
685 struct btrfs_path *path1;
686 struct btrfs_path *path2;
687 struct extent_buffer *eb;
688 struct btrfs_root *root;
689 struct backref_node *cur;
690 struct backref_node *upper;
691 struct backref_node *lower;
692 struct backref_node *node = NULL;
693 struct backref_node *exist = NULL;
694 struct backref_edge *edge;
695 struct rb_node *rb_node;
696 struct btrfs_key key;
697 unsigned long end;
698 unsigned long ptr;
699 LIST_HEAD(list);
700 LIST_HEAD(useless);
701 int cowonly;
702 int ret;
703 int err = 0;
704 bool need_check = true;
705
706 path1 = btrfs_alloc_path();
707 path2 = btrfs_alloc_path();
708 if (!path1 || !path2) {
709 err = -ENOMEM;
710 goto out;
711 }
712 path1->reada = READA_FORWARD;
713 path2->reada = READA_FORWARD;
714
715 node = alloc_backref_node(cache);
716 if (!node) {
717 err = -ENOMEM;
718 goto out;
719 }
720
721 node->bytenr = bytenr;
722 node->level = level;
723 node->lowest = 1;
724 cur = node;
725again:
726 end = 0;
727 ptr = 0;
728 key.objectid = cur->bytenr;
729 key.type = BTRFS_METADATA_ITEM_KEY;
730 key.offset = (u64)-1;
731
732 path1->search_commit_root = 1;
733 path1->skip_locking = 1;
734 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
735 0, 0);
736 if (ret < 0) {
737 err = ret;
738 goto out;
739 }
740 ASSERT(ret);
741 ASSERT(path1->slots[0]);
742
743 path1->slots[0]--;
744
745 WARN_ON(cur->checked);
746 if (!list_empty(&cur->upper)) {
747 /*
748 * the backref was added previously when processing
749 * backref of type BTRFS_TREE_BLOCK_REF_KEY
750 */
751 ASSERT(list_is_singular(&cur->upper));
752 edge = list_entry(cur->upper.next, struct backref_edge,
753 list[LOWER]);
754 ASSERT(list_empty(&edge->list[UPPER]));
755 exist = edge->node[UPPER];
756 /*
757 * add the upper level block to pending list if we need
758 * check its backrefs
759 */
760 if (!exist->checked)
761 list_add_tail(&edge->list[UPPER], &list);
762 } else {
763 exist = NULL;
764 }
765
766 while (1) {
767 cond_resched();
768 eb = path1->nodes[0];
769
770 if (ptr >= end) {
771 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
772 ret = btrfs_next_leaf(rc->extent_root, path1);
773 if (ret < 0) {
774 err = ret;
775 goto out;
776 }
777 if (ret > 0)
778 break;
779 eb = path1->nodes[0];
780 }
781
782 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
783 if (key.objectid != cur->bytenr) {
784 WARN_ON(exist);
785 break;
786 }
787
788 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
789 key.type == BTRFS_METADATA_ITEM_KEY) {
790 ret = find_inline_backref(eb, path1->slots[0],
791 &ptr, &end);
792 if (ret)
793 goto next;
794 }
795 }
796
797 if (ptr < end) {
798 /* update key for inline back ref */
799 struct btrfs_extent_inline_ref *iref;
800 iref = (struct btrfs_extent_inline_ref *)ptr;
801 key.type = btrfs_extent_inline_ref_type(eb, iref);
802 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
803 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
804 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
805 }
806
807 if (exist &&
808 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
809 exist->owner == key.offset) ||
810 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
811 exist->bytenr == key.offset))) {
812 exist = NULL;
813 goto next;
814 }
815
816#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
817 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
818 key.type == BTRFS_EXTENT_REF_V0_KEY) {
819 if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
820 struct btrfs_extent_ref_v0 *ref0;
821 ref0 = btrfs_item_ptr(eb, path1->slots[0],
822 struct btrfs_extent_ref_v0);
823 if (key.objectid == key.offset) {
824 root = find_tree_root(rc, eb, ref0);
825 if (root && !should_ignore_root(root))
826 cur->root = root;
827 else
828 list_add(&cur->list, &useless);
829 break;
830 }
831 if (is_cowonly_root(btrfs_ref_root_v0(eb,
832 ref0)))
833 cur->cowonly = 1;
834 }
835#else
836 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
837 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
838#endif
839 if (key.objectid == key.offset) {
840 /*
841 * only root blocks of reloc trees use
842 * backref of this type.
843 */
844 root = find_reloc_root(rc, cur->bytenr);
845 ASSERT(root);
846 cur->root = root;
847 break;
848 }
849
850 edge = alloc_backref_edge(cache);
851 if (!edge) {
852 err = -ENOMEM;
853 goto out;
854 }
855 rb_node = tree_search(&cache->rb_root, key.offset);
856 if (!rb_node) {
857 upper = alloc_backref_node(cache);
858 if (!upper) {
859 free_backref_edge(cache, edge);
860 err = -ENOMEM;
861 goto out;
862 }
863 upper->bytenr = key.offset;
864 upper->level = cur->level + 1;
865 /*
866 * backrefs for the upper level block isn't
867 * cached, add the block to pending list
868 */
869 list_add_tail(&edge->list[UPPER], &list);
870 } else {
871 upper = rb_entry(rb_node, struct backref_node,
872 rb_node);
873 ASSERT(upper->checked);
874 INIT_LIST_HEAD(&edge->list[UPPER]);
875 }
876 list_add_tail(&edge->list[LOWER], &cur->upper);
877 edge->node[LOWER] = cur;
878 edge->node[UPPER] = upper;
879
880 goto next;
881 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
882 goto next;
883 }
884
885 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
886 root = read_fs_root(rc->extent_root->fs_info, key.offset);
887 if (IS_ERR(root)) {
888 err = PTR_ERR(root);
889 goto out;
890 }
891
892 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
893 cur->cowonly = 1;
894
895 if (btrfs_root_level(&root->root_item) == cur->level) {
896 /* tree root */
897 ASSERT(btrfs_root_bytenr(&root->root_item) ==
898 cur->bytenr);
899 if (should_ignore_root(root))
900 list_add(&cur->list, &useless);
901 else
902 cur->root = root;
903 break;
904 }
905
906 level = cur->level + 1;
907
908 /*
909 * searching the tree to find upper level blocks
910 * reference the block.
911 */
912 path2->search_commit_root = 1;
913 path2->skip_locking = 1;
914 path2->lowest_level = level;
915 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
916 path2->lowest_level = 0;
917 if (ret < 0) {
918 err = ret;
919 goto out;
920 }
921 if (ret > 0 && path2->slots[level] > 0)
922 path2->slots[level]--;
923
924 eb = path2->nodes[level];
925 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
926 cur->bytenr);
927
928 lower = cur;
929 need_check = true;
930 for (; level < BTRFS_MAX_LEVEL; level++) {
931 if (!path2->nodes[level]) {
932 ASSERT(btrfs_root_bytenr(&root->root_item) ==
933 lower->bytenr);
934 if (should_ignore_root(root))
935 list_add(&lower->list, &useless);
936 else
937 lower->root = root;
938 break;
939 }
940
941 edge = alloc_backref_edge(cache);
942 if (!edge) {
943 err = -ENOMEM;
944 goto out;
945 }
946
947 eb = path2->nodes[level];
948 rb_node = tree_search(&cache->rb_root, eb->start);
949 if (!rb_node) {
950 upper = alloc_backref_node(cache);
951 if (!upper) {
952 free_backref_edge(cache, edge);
953 err = -ENOMEM;
954 goto out;
955 }
956 upper->bytenr = eb->start;
957 upper->owner = btrfs_header_owner(eb);
958 upper->level = lower->level + 1;
959 if (!test_bit(BTRFS_ROOT_REF_COWS,
960 &root->state))
961 upper->cowonly = 1;
962
963 /*
964 * if we know the block isn't shared
965 * we can void checking its backrefs.
966 */
967 if (btrfs_block_can_be_shared(root, eb))
968 upper->checked = 0;
969 else
970 upper->checked = 1;
971
972 /*
973 * add the block to pending list if we
974 * need check its backrefs, we only do this once
975 * while walking up a tree as we will catch
976 * anything else later on.
977 */
978 if (!upper->checked && need_check) {
979 need_check = false;
980 list_add_tail(&edge->list[UPPER],
981 &list);
982 } else {
983 if (upper->checked)
984 need_check = true;
985 INIT_LIST_HEAD(&edge->list[UPPER]);
986 }
987 } else {
988 upper = rb_entry(rb_node, struct backref_node,
989 rb_node);
990 ASSERT(upper->checked);
991 INIT_LIST_HEAD(&edge->list[UPPER]);
992 if (!upper->owner)
993 upper->owner = btrfs_header_owner(eb);
994 }
995 list_add_tail(&edge->list[LOWER], &lower->upper);
996 edge->node[LOWER] = lower;
997 edge->node[UPPER] = upper;
998
999 if (rb_node)
1000 break;
1001 lower = upper;
1002 upper = NULL;
1003 }
1004 btrfs_release_path(path2);
1005next:
1006 if (ptr < end) {
1007 ptr += btrfs_extent_inline_ref_size(key.type);
1008 if (ptr >= end) {
1009 WARN_ON(ptr > end);
1010 ptr = 0;
1011 end = 0;
1012 }
1013 }
1014 if (ptr >= end)
1015 path1->slots[0]++;
1016 }
1017 btrfs_release_path(path1);
1018
1019 cur->checked = 1;
1020 WARN_ON(exist);
1021
1022 /* the pending list isn't empty, take the first block to process */
1023 if (!list_empty(&list)) {
1024 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1025 list_del_init(&edge->list[UPPER]);
1026 cur = edge->node[UPPER];
1027 goto again;
1028 }
1029
1030 /*
1031 * everything goes well, connect backref nodes and insert backref nodes
1032 * into the cache.
1033 */
1034 ASSERT(node->checked);
1035 cowonly = node->cowonly;
1036 if (!cowonly) {
1037 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1038 &node->rb_node);
1039 if (rb_node)
1040 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1041 list_add_tail(&node->lower, &cache->leaves);
1042 }
1043
1044 list_for_each_entry(edge, &node->upper, list[LOWER])
1045 list_add_tail(&edge->list[UPPER], &list);
1046
1047 while (!list_empty(&list)) {
1048 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1049 list_del_init(&edge->list[UPPER]);
1050 upper = edge->node[UPPER];
1051 if (upper->detached) {
1052 list_del(&edge->list[LOWER]);
1053 lower = edge->node[LOWER];
1054 free_backref_edge(cache, edge);
1055 if (list_empty(&lower->upper))
1056 list_add(&lower->list, &useless);
1057 continue;
1058 }
1059
1060 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1061 if (upper->lowest) {
1062 list_del_init(&upper->lower);
1063 upper->lowest = 0;
1064 }
1065
1066 list_add_tail(&edge->list[UPPER], &upper->lower);
1067 continue;
1068 }
1069
1070 if (!upper->checked) {
1071 /*
1072 * Still want to blow up for developers since this is a
1073 * logic bug.
1074 */
1075 ASSERT(0);
1076 err = -EINVAL;
1077 goto out;
1078 }
1079 if (cowonly != upper->cowonly) {
1080 ASSERT(0);
1081 err = -EINVAL;
1082 goto out;
1083 }
1084
1085 if (!cowonly) {
1086 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1087 &upper->rb_node);
1088 if (rb_node)
1089 backref_tree_panic(rb_node, -EEXIST,
1090 upper->bytenr);
1091 }
1092
1093 list_add_tail(&edge->list[UPPER], &upper->lower);
1094
1095 list_for_each_entry(edge, &upper->upper, list[LOWER])
1096 list_add_tail(&edge->list[UPPER], &list);
1097 }
1098 /*
1099 * process useless backref nodes. backref nodes for tree leaves
1100 * are deleted from the cache. backref nodes for upper level
1101 * tree blocks are left in the cache to avoid unnecessary backref
1102 * lookup.
1103 */
1104 while (!list_empty(&useless)) {
1105 upper = list_entry(useless.next, struct backref_node, list);
1106 list_del_init(&upper->list);
1107 ASSERT(list_empty(&upper->upper));
1108 if (upper == node)
1109 node = NULL;
1110 if (upper->lowest) {
1111 list_del_init(&upper->lower);
1112 upper->lowest = 0;
1113 }
1114 while (!list_empty(&upper->lower)) {
1115 edge = list_entry(upper->lower.next,
1116 struct backref_edge, list[UPPER]);
1117 list_del(&edge->list[UPPER]);
1118 list_del(&edge->list[LOWER]);
1119 lower = edge->node[LOWER];
1120 free_backref_edge(cache, edge);
1121
1122 if (list_empty(&lower->upper))
1123 list_add(&lower->list, &useless);
1124 }
1125 __mark_block_processed(rc, upper);
1126 if (upper->level > 0) {
1127 list_add(&upper->list, &cache->detached);
1128 upper->detached = 1;
1129 } else {
1130 rb_erase(&upper->rb_node, &cache->rb_root);
1131 free_backref_node(cache, upper);
1132 }
1133 }
1134out:
1135 btrfs_free_path(path1);
1136 btrfs_free_path(path2);
1137 if (err) {
1138 while (!list_empty(&useless)) {
1139 lower = list_entry(useless.next,
1140 struct backref_node, list);
1141 list_del_init(&lower->list);
1142 }
1143 while (!list_empty(&list)) {
1144 edge = list_first_entry(&list, struct backref_edge,
1145 list[UPPER]);
1146 list_del(&edge->list[UPPER]);
1147 list_del(&edge->list[LOWER]);
1148 lower = edge->node[LOWER];
1149 upper = edge->node[UPPER];
1150 free_backref_edge(cache, edge);
1151
1152 /*
1153 * Lower is no longer linked to any upper backref nodes
1154 * and isn't in the cache, we can free it ourselves.
1155 */
1156 if (list_empty(&lower->upper) &&
1157 RB_EMPTY_NODE(&lower->rb_node))
1158 list_add(&lower->list, &useless);
1159
1160 if (!RB_EMPTY_NODE(&upper->rb_node))
1161 continue;
1162
1163 /* Add this guy's upper edges to the list to proces */
1164 list_for_each_entry(edge, &upper->upper, list[LOWER])
1165 list_add_tail(&edge->list[UPPER], &list);
1166 if (list_empty(&upper->upper))
1167 list_add(&upper->list, &useless);
1168 }
1169
1170 while (!list_empty(&useless)) {
1171 lower = list_entry(useless.next,
1172 struct backref_node, list);
1173 list_del_init(&lower->list);
1174 free_backref_node(cache, lower);
1175 }
1176 return ERR_PTR(err);
1177 }
1178 ASSERT(!node || !node->detached);
1179 return node;
1180}
1181
1182/*
1183 * helper to add backref node for the newly created snapshot.
1184 * the backref node is created by cloning backref node that
1185 * corresponds to root of source tree
1186 */
1187static int clone_backref_node(struct btrfs_trans_handle *trans,
1188 struct reloc_control *rc,
1189 struct btrfs_root *src,
1190 struct btrfs_root *dest)
1191{
1192 struct btrfs_root *reloc_root = src->reloc_root;
1193 struct backref_cache *cache = &rc->backref_cache;
1194 struct backref_node *node = NULL;
1195 struct backref_node *new_node;
1196 struct backref_edge *edge;
1197 struct backref_edge *new_edge;
1198 struct rb_node *rb_node;
1199
1200 if (cache->last_trans > 0)
1201 update_backref_cache(trans, cache);
1202
1203 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1204 if (rb_node) {
1205 node = rb_entry(rb_node, struct backref_node, rb_node);
1206 if (node->detached)
1207 node = NULL;
1208 else
1209 BUG_ON(node->new_bytenr != reloc_root->node->start);
1210 }
1211
1212 if (!node) {
1213 rb_node = tree_search(&cache->rb_root,
1214 reloc_root->commit_root->start);
1215 if (rb_node) {
1216 node = rb_entry(rb_node, struct backref_node,
1217 rb_node);
1218 BUG_ON(node->detached);
1219 }
1220 }
1221
1222 if (!node)
1223 return 0;
1224
1225 new_node = alloc_backref_node(cache);
1226 if (!new_node)
1227 return -ENOMEM;
1228
1229 new_node->bytenr = dest->node->start;
1230 new_node->level = node->level;
1231 new_node->lowest = node->lowest;
1232 new_node->checked = 1;
1233 new_node->root = dest;
1234
1235 if (!node->lowest) {
1236 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1237 new_edge = alloc_backref_edge(cache);
1238 if (!new_edge)
1239 goto fail;
1240
1241 new_edge->node[UPPER] = new_node;
1242 new_edge->node[LOWER] = edge->node[LOWER];
1243 list_add_tail(&new_edge->list[UPPER],
1244 &new_node->lower);
1245 }
1246 } else {
1247 list_add_tail(&new_node->lower, &cache->leaves);
1248 }
1249
1250 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1251 &new_node->rb_node);
1252 if (rb_node)
1253 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1254
1255 if (!new_node->lowest) {
1256 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1257 list_add_tail(&new_edge->list[LOWER],
1258 &new_edge->node[LOWER]->upper);
1259 }
1260 }
1261 return 0;
1262fail:
1263 while (!list_empty(&new_node->lower)) {
1264 new_edge = list_entry(new_node->lower.next,
1265 struct backref_edge, list[UPPER]);
1266 list_del(&new_edge->list[UPPER]);
1267 free_backref_edge(cache, new_edge);
1268 }
1269 free_backref_node(cache, new_node);
1270 return -ENOMEM;
1271}
1272
1273/*
1274 * helper to add 'address of tree root -> reloc tree' mapping
1275 */
1276static int __must_check __add_reloc_root(struct btrfs_root *root)
1277{
1278 struct rb_node *rb_node;
1279 struct mapping_node *node;
1280 struct reloc_control *rc = root->fs_info->reloc_ctl;
1281
1282 node = kmalloc(sizeof(*node), GFP_NOFS);
1283 if (!node)
1284 return -ENOMEM;
1285
1286 node->bytenr = root->node->start;
1287 node->data = root;
1288
1289 spin_lock(&rc->reloc_root_tree.lock);
1290 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1291 node->bytenr, &node->rb_node);
1292 spin_unlock(&rc->reloc_root_tree.lock);
1293 if (rb_node) {
1294 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1295 "for start=%llu while inserting into relocation "
1296 "tree", node->bytenr);
1297 kfree(node);
1298 return -EEXIST;
1299 }
1300
1301 list_add_tail(&root->root_list, &rc->reloc_roots);
1302 return 0;
1303}
1304
1305/*
1306 * helper to delete the 'address of tree root -> reloc tree'
1307 * mapping
1308 */
1309static void __del_reloc_root(struct btrfs_root *root)
1310{
1311 struct rb_node *rb_node;
1312 struct mapping_node *node = NULL;
1313 struct reloc_control *rc = root->fs_info->reloc_ctl;
1314
1315 spin_lock(&rc->reloc_root_tree.lock);
1316 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1317 root->node->start);
1318 if (rb_node) {
1319 node = rb_entry(rb_node, struct mapping_node, rb_node);
1320 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1321 }
1322 spin_unlock(&rc->reloc_root_tree.lock);
1323
1324 if (!node)
1325 return;
1326 BUG_ON((struct btrfs_root *)node->data != root);
1327
1328 spin_lock(&root->fs_info->trans_lock);
1329 list_del_init(&root->root_list);
1330 spin_unlock(&root->fs_info->trans_lock);
1331 kfree(node);
1332}
1333
1334/*
1335 * helper to update the 'address of tree root -> reloc tree'
1336 * mapping
1337 */
1338static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1339{
1340 struct rb_node *rb_node;
1341 struct mapping_node *node = NULL;
1342 struct reloc_control *rc = root->fs_info->reloc_ctl;
1343
1344 spin_lock(&rc->reloc_root_tree.lock);
1345 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1346 root->node->start);
1347 if (rb_node) {
1348 node = rb_entry(rb_node, struct mapping_node, rb_node);
1349 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1350 }
1351 spin_unlock(&rc->reloc_root_tree.lock);
1352
1353 if (!node)
1354 return 0;
1355 BUG_ON((struct btrfs_root *)node->data != root);
1356
1357 spin_lock(&rc->reloc_root_tree.lock);
1358 node->bytenr = new_bytenr;
1359 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1360 node->bytenr, &node->rb_node);
1361 spin_unlock(&rc->reloc_root_tree.lock);
1362 if (rb_node)
1363 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1364 return 0;
1365}
1366
1367static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1368 struct btrfs_root *root, u64 objectid)
1369{
1370 struct btrfs_root *reloc_root;
1371 struct extent_buffer *eb;
1372 struct btrfs_root_item *root_item;
1373 struct btrfs_key root_key;
1374 u64 last_snap = 0;
1375 int ret;
1376
1377 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1378 BUG_ON(!root_item);
1379
1380 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1381 root_key.type = BTRFS_ROOT_ITEM_KEY;
1382 root_key.offset = objectid;
1383
1384 if (root->root_key.objectid == objectid) {
1385 /* called by btrfs_init_reloc_root */
1386 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1387 BTRFS_TREE_RELOC_OBJECTID);
1388 BUG_ON(ret);
1389
1390 last_snap = btrfs_root_last_snapshot(&root->root_item);
1391 btrfs_set_root_last_snapshot(&root->root_item,
1392 trans->transid - 1);
1393 } else {
1394 /*
1395 * called by btrfs_reloc_post_snapshot_hook.
1396 * the source tree is a reloc tree, all tree blocks
1397 * modified after it was created have RELOC flag
1398 * set in their headers. so it's OK to not update
1399 * the 'last_snapshot'.
1400 */
1401 ret = btrfs_copy_root(trans, root, root->node, &eb,
1402 BTRFS_TREE_RELOC_OBJECTID);
1403 BUG_ON(ret);
1404 }
1405
1406 memcpy(root_item, &root->root_item, sizeof(*root_item));
1407 btrfs_set_root_bytenr(root_item, eb->start);
1408 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1409 btrfs_set_root_generation(root_item, trans->transid);
1410
1411 if (root->root_key.objectid == objectid) {
1412 btrfs_set_root_refs(root_item, 0);
1413 memset(&root_item->drop_progress, 0,
1414 sizeof(struct btrfs_disk_key));
1415 root_item->drop_level = 0;
1416 /*
1417 * abuse rtransid, it is safe because it is impossible to
1418 * receive data into a relocation tree.
1419 */
1420 btrfs_set_root_rtransid(root_item, last_snap);
1421 btrfs_set_root_otransid(root_item, trans->transid);
1422 }
1423
1424 btrfs_tree_unlock(eb);
1425 free_extent_buffer(eb);
1426
1427 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1428 &root_key, root_item);
1429 BUG_ON(ret);
1430 kfree(root_item);
1431
1432 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1433 BUG_ON(IS_ERR(reloc_root));
1434 reloc_root->last_trans = trans->transid;
1435 return reloc_root;
1436}
1437
1438/*
1439 * create reloc tree for a given fs tree. reloc tree is just a
1440 * snapshot of the fs tree with special root objectid.
1441 */
1442int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1443 struct btrfs_root *root)
1444{
1445 struct btrfs_root *reloc_root;
1446 struct reloc_control *rc = root->fs_info->reloc_ctl;
1447 struct btrfs_block_rsv *rsv;
1448 int clear_rsv = 0;
1449 int ret;
1450
1451 if (root->reloc_root) {
1452 reloc_root = root->reloc_root;
1453 reloc_root->last_trans = trans->transid;
1454 return 0;
1455 }
1456
1457 if (!rc || !rc->create_reloc_tree ||
1458 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1459 return 0;
1460
1461 if (!trans->reloc_reserved) {
1462 rsv = trans->block_rsv;
1463 trans->block_rsv = rc->block_rsv;
1464 clear_rsv = 1;
1465 }
1466 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1467 if (clear_rsv)
1468 trans->block_rsv = rsv;
1469
1470 ret = __add_reloc_root(reloc_root);
1471 BUG_ON(ret < 0);
1472 root->reloc_root = reloc_root;
1473 return 0;
1474}
1475
1476/*
1477 * update root item of reloc tree
1478 */
1479int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1480 struct btrfs_root *root)
1481{
1482 struct btrfs_root *reloc_root;
1483 struct btrfs_root_item *root_item;
1484 int ret;
1485
1486 if (!root->reloc_root)
1487 goto out;
1488
1489 reloc_root = root->reloc_root;
1490 root_item = &reloc_root->root_item;
1491
1492 if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1493 btrfs_root_refs(root_item) == 0) {
1494 root->reloc_root = NULL;
1495 __del_reloc_root(reloc_root);
1496 }
1497
1498 if (reloc_root->commit_root != reloc_root->node) {
1499 btrfs_set_root_node(root_item, reloc_root->node);
1500 free_extent_buffer(reloc_root->commit_root);
1501 reloc_root->commit_root = btrfs_root_node(reloc_root);
1502 }
1503
1504 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1505 &reloc_root->root_key, root_item);
1506 BUG_ON(ret);
1507
1508out:
1509 return 0;
1510}
1511
1512/*
1513 * helper to find first cached inode with inode number >= objectid
1514 * in a subvolume
1515 */
1516static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1517{
1518 struct rb_node *node;
1519 struct rb_node *prev;
1520 struct btrfs_inode *entry;
1521 struct inode *inode;
1522
1523 spin_lock(&root->inode_lock);
1524again:
1525 node = root->inode_tree.rb_node;
1526 prev = NULL;
1527 while (node) {
1528 prev = node;
1529 entry = rb_entry(node, struct btrfs_inode, rb_node);
1530
1531 if (objectid < btrfs_ino(&entry->vfs_inode))
1532 node = node->rb_left;
1533 else if (objectid > btrfs_ino(&entry->vfs_inode))
1534 node = node->rb_right;
1535 else
1536 break;
1537 }
1538 if (!node) {
1539 while (prev) {
1540 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1541 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1542 node = prev;
1543 break;
1544 }
1545 prev = rb_next(prev);
1546 }
1547 }
1548 while (node) {
1549 entry = rb_entry(node, struct btrfs_inode, rb_node);
1550 inode = igrab(&entry->vfs_inode);
1551 if (inode) {
1552 spin_unlock(&root->inode_lock);
1553 return inode;
1554 }
1555
1556 objectid = btrfs_ino(&entry->vfs_inode) + 1;
1557 if (cond_resched_lock(&root->inode_lock))
1558 goto again;
1559
1560 node = rb_next(node);
1561 }
1562 spin_unlock(&root->inode_lock);
1563 return NULL;
1564}
1565
1566static int in_block_group(u64 bytenr,
1567 struct btrfs_block_group_cache *block_group)
1568{
1569 if (bytenr >= block_group->key.objectid &&
1570 bytenr < block_group->key.objectid + block_group->key.offset)
1571 return 1;
1572 return 0;
1573}
1574
1575/*
1576 * get new location of data
1577 */
1578static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1579 u64 bytenr, u64 num_bytes)
1580{
1581 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1582 struct btrfs_path *path;
1583 struct btrfs_file_extent_item *fi;
1584 struct extent_buffer *leaf;
1585 int ret;
1586
1587 path = btrfs_alloc_path();
1588 if (!path)
1589 return -ENOMEM;
1590
1591 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1592 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1593 bytenr, 0);
1594 if (ret < 0)
1595 goto out;
1596 if (ret > 0) {
1597 ret = -ENOENT;
1598 goto out;
1599 }
1600
1601 leaf = path->nodes[0];
1602 fi = btrfs_item_ptr(leaf, path->slots[0],
1603 struct btrfs_file_extent_item);
1604
1605 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1606 btrfs_file_extent_compression(leaf, fi) ||
1607 btrfs_file_extent_encryption(leaf, fi) ||
1608 btrfs_file_extent_other_encoding(leaf, fi));
1609
1610 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1611 ret = -EINVAL;
1612 goto out;
1613 }
1614
1615 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1616 ret = 0;
1617out:
1618 btrfs_free_path(path);
1619 return ret;
1620}
1621
1622/*
1623 * update file extent items in the tree leaf to point to
1624 * the new locations.
1625 */
1626static noinline_for_stack
1627int replace_file_extents(struct btrfs_trans_handle *trans,
1628 struct reloc_control *rc,
1629 struct btrfs_root *root,
1630 struct extent_buffer *leaf)
1631{
1632 struct btrfs_key key;
1633 struct btrfs_file_extent_item *fi;
1634 struct inode *inode = NULL;
1635 u64 parent;
1636 u64 bytenr;
1637 u64 new_bytenr = 0;
1638 u64 num_bytes;
1639 u64 end;
1640 u32 nritems;
1641 u32 i;
1642 int ret = 0;
1643 int first = 1;
1644 int dirty = 0;
1645
1646 if (rc->stage != UPDATE_DATA_PTRS)
1647 return 0;
1648
1649 /* reloc trees always use full backref */
1650 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1651 parent = leaf->start;
1652 else
1653 parent = 0;
1654
1655 nritems = btrfs_header_nritems(leaf);
1656 for (i = 0; i < nritems; i++) {
1657 cond_resched();
1658 btrfs_item_key_to_cpu(leaf, &key, i);
1659 if (key.type != BTRFS_EXTENT_DATA_KEY)
1660 continue;
1661 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662 if (btrfs_file_extent_type(leaf, fi) ==
1663 BTRFS_FILE_EXTENT_INLINE)
1664 continue;
1665 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667 if (bytenr == 0)
1668 continue;
1669 if (!in_block_group(bytenr, rc->block_group))
1670 continue;
1671
1672 /*
1673 * if we are modifying block in fs tree, wait for readpage
1674 * to complete and drop the extent cache
1675 */
1676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677 if (first) {
1678 inode = find_next_inode(root, key.objectid);
1679 first = 0;
1680 } else if (inode && btrfs_ino(inode) < key.objectid) {
1681 btrfs_add_delayed_iput(inode);
1682 inode = find_next_inode(root, key.objectid);
1683 }
1684 if (inode && btrfs_ino(inode) == key.objectid) {
1685 end = key.offset +
1686 btrfs_file_extent_num_bytes(leaf, fi);
1687 WARN_ON(!IS_ALIGNED(key.offset,
1688 root->sectorsize));
1689 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1690 end--;
1691 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692 key.offset, end);
1693 if (!ret)
1694 continue;
1695
1696 btrfs_drop_extent_cache(inode, key.offset, end,
1697 1);
1698 unlock_extent(&BTRFS_I(inode)->io_tree,
1699 key.offset, end);
1700 }
1701 }
1702
1703 ret = get_new_location(rc->data_inode, &new_bytenr,
1704 bytenr, num_bytes);
1705 if (ret) {
1706 /*
1707 * Don't have to abort since we've not changed anything
1708 * in the file extent yet.
1709 */
1710 break;
1711 }
1712
1713 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714 dirty = 1;
1715
1716 key.offset -= btrfs_file_extent_offset(leaf, fi);
1717 ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1718 num_bytes, parent,
1719 btrfs_header_owner(leaf),
1720 key.objectid, key.offset);
1721 if (ret) {
1722 btrfs_abort_transaction(trans, root, ret);
1723 break;
1724 }
1725
1726 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1727 parent, btrfs_header_owner(leaf),
1728 key.objectid, key.offset);
1729 if (ret) {
1730 btrfs_abort_transaction(trans, root, ret);
1731 break;
1732 }
1733 }
1734 if (dirty)
1735 btrfs_mark_buffer_dirty(leaf);
1736 if (inode)
1737 btrfs_add_delayed_iput(inode);
1738 return ret;
1739}
1740
1741static noinline_for_stack
1742int memcmp_node_keys(struct extent_buffer *eb, int slot,
1743 struct btrfs_path *path, int level)
1744{
1745 struct btrfs_disk_key key1;
1746 struct btrfs_disk_key key2;
1747 btrfs_node_key(eb, &key1, slot);
1748 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1749 return memcmp(&key1, &key2, sizeof(key1));
1750}
1751
1752/*
1753 * try to replace tree blocks in fs tree with the new blocks
1754 * in reloc tree. tree blocks haven't been modified since the
1755 * reloc tree was create can be replaced.
1756 *
1757 * if a block was replaced, level of the block + 1 is returned.
1758 * if no block got replaced, 0 is returned. if there are other
1759 * errors, a negative error number is returned.
1760 */
1761static noinline_for_stack
1762int replace_path(struct btrfs_trans_handle *trans,
1763 struct btrfs_root *dest, struct btrfs_root *src,
1764 struct btrfs_path *path, struct btrfs_key *next_key,
1765 int lowest_level, int max_level)
1766{
1767 struct extent_buffer *eb;
1768 struct extent_buffer *parent;
1769 struct btrfs_key key;
1770 u64 old_bytenr;
1771 u64 new_bytenr;
1772 u64 old_ptr_gen;
1773 u64 new_ptr_gen;
1774 u64 last_snapshot;
1775 u32 blocksize;
1776 int cow = 0;
1777 int level;
1778 int ret;
1779 int slot;
1780
1781 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1782 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1783
1784 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1785again:
1786 slot = path->slots[lowest_level];
1787 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1788
1789 eb = btrfs_lock_root_node(dest);
1790 btrfs_set_lock_blocking(eb);
1791 level = btrfs_header_level(eb);
1792
1793 if (level < lowest_level) {
1794 btrfs_tree_unlock(eb);
1795 free_extent_buffer(eb);
1796 return 0;
1797 }
1798
1799 if (cow) {
1800 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1801 BUG_ON(ret);
1802 }
1803 btrfs_set_lock_blocking(eb);
1804
1805 if (next_key) {
1806 next_key->objectid = (u64)-1;
1807 next_key->type = (u8)-1;
1808 next_key->offset = (u64)-1;
1809 }
1810
1811 parent = eb;
1812 while (1) {
1813 level = btrfs_header_level(parent);
1814 BUG_ON(level < lowest_level);
1815
1816 ret = btrfs_bin_search(parent, &key, level, &slot);
1817 if (ret && slot > 0)
1818 slot--;
1819
1820 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1821 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1822
1823 old_bytenr = btrfs_node_blockptr(parent, slot);
1824 blocksize = dest->nodesize;
1825 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1826
1827 if (level <= max_level) {
1828 eb = path->nodes[level];
1829 new_bytenr = btrfs_node_blockptr(eb,
1830 path->slots[level]);
1831 new_ptr_gen = btrfs_node_ptr_generation(eb,
1832 path->slots[level]);
1833 } else {
1834 new_bytenr = 0;
1835 new_ptr_gen = 0;
1836 }
1837
1838 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1839 ret = level;
1840 break;
1841 }
1842
1843 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1844 memcmp_node_keys(parent, slot, path, level)) {
1845 if (level <= lowest_level) {
1846 ret = 0;
1847 break;
1848 }
1849
1850 eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1851 if (IS_ERR(eb)) {
1852 ret = PTR_ERR(eb);
1853 break;
1854 } else if (!extent_buffer_uptodate(eb)) {
1855 ret = -EIO;
1856 free_extent_buffer(eb);
1857 break;
1858 }
1859 btrfs_tree_lock(eb);
1860 if (cow) {
1861 ret = btrfs_cow_block(trans, dest, eb, parent,
1862 slot, &eb);
1863 BUG_ON(ret);
1864 }
1865 btrfs_set_lock_blocking(eb);
1866
1867 btrfs_tree_unlock(parent);
1868 free_extent_buffer(parent);
1869
1870 parent = eb;
1871 continue;
1872 }
1873
1874 if (!cow) {
1875 btrfs_tree_unlock(parent);
1876 free_extent_buffer(parent);
1877 cow = 1;
1878 goto again;
1879 }
1880
1881 btrfs_node_key_to_cpu(path->nodes[level], &key,
1882 path->slots[level]);
1883 btrfs_release_path(path);
1884
1885 path->lowest_level = level;
1886 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1887 path->lowest_level = 0;
1888 BUG_ON(ret);
1889
1890 /*
1891 * swap blocks in fs tree and reloc tree.
1892 */
1893 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1894 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1895 btrfs_mark_buffer_dirty(parent);
1896
1897 btrfs_set_node_blockptr(path->nodes[level],
1898 path->slots[level], old_bytenr);
1899 btrfs_set_node_ptr_generation(path->nodes[level],
1900 path->slots[level], old_ptr_gen);
1901 btrfs_mark_buffer_dirty(path->nodes[level]);
1902
1903 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1904 path->nodes[level]->start,
1905 src->root_key.objectid, level - 1, 0);
1906 BUG_ON(ret);
1907 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1908 0, dest->root_key.objectid, level - 1,
1909 0);
1910 BUG_ON(ret);
1911
1912 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1913 path->nodes[level]->start,
1914 src->root_key.objectid, level - 1, 0);
1915 BUG_ON(ret);
1916
1917 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1918 0, dest->root_key.objectid, level - 1,
1919 0);
1920 BUG_ON(ret);
1921
1922 btrfs_unlock_up_safe(path, 0);
1923
1924 ret = level;
1925 break;
1926 }
1927 btrfs_tree_unlock(parent);
1928 free_extent_buffer(parent);
1929 return ret;
1930}
1931
1932/*
1933 * helper to find next relocated block in reloc tree
1934 */
1935static noinline_for_stack
1936int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1937 int *level)
1938{
1939 struct extent_buffer *eb;
1940 int i;
1941 u64 last_snapshot;
1942 u32 nritems;
1943
1944 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1945
1946 for (i = 0; i < *level; i++) {
1947 free_extent_buffer(path->nodes[i]);
1948 path->nodes[i] = NULL;
1949 }
1950
1951 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1952 eb = path->nodes[i];
1953 nritems = btrfs_header_nritems(eb);
1954 while (path->slots[i] + 1 < nritems) {
1955 path->slots[i]++;
1956 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1957 last_snapshot)
1958 continue;
1959
1960 *level = i;
1961 return 0;
1962 }
1963 free_extent_buffer(path->nodes[i]);
1964 path->nodes[i] = NULL;
1965 }
1966 return 1;
1967}
1968
1969/*
1970 * walk down reloc tree to find relocated block of lowest level
1971 */
1972static noinline_for_stack
1973int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1974 int *level)
1975{
1976 struct extent_buffer *eb = NULL;
1977 int i;
1978 u64 bytenr;
1979 u64 ptr_gen = 0;
1980 u64 last_snapshot;
1981 u32 nritems;
1982
1983 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1984
1985 for (i = *level; i > 0; i--) {
1986 eb = path->nodes[i];
1987 nritems = btrfs_header_nritems(eb);
1988 while (path->slots[i] < nritems) {
1989 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1990 if (ptr_gen > last_snapshot)
1991 break;
1992 path->slots[i]++;
1993 }
1994 if (path->slots[i] >= nritems) {
1995 if (i == *level)
1996 break;
1997 *level = i + 1;
1998 return 0;
1999 }
2000 if (i == 1) {
2001 *level = i;
2002 return 0;
2003 }
2004
2005 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2006 eb = read_tree_block(root, bytenr, ptr_gen);
2007 if (IS_ERR(eb)) {
2008 return PTR_ERR(eb);
2009 } else if (!extent_buffer_uptodate(eb)) {
2010 free_extent_buffer(eb);
2011 return -EIO;
2012 }
2013 BUG_ON(btrfs_header_level(eb) != i - 1);
2014 path->nodes[i - 1] = eb;
2015 path->slots[i - 1] = 0;
2016 }
2017 return 1;
2018}
2019
2020/*
2021 * invalidate extent cache for file extents whose key in range of
2022 * [min_key, max_key)
2023 */
2024static int invalidate_extent_cache(struct btrfs_root *root,
2025 struct btrfs_key *min_key,
2026 struct btrfs_key *max_key)
2027{
2028 struct inode *inode = NULL;
2029 u64 objectid;
2030 u64 start, end;
2031 u64 ino;
2032
2033 objectid = min_key->objectid;
2034 while (1) {
2035 cond_resched();
2036 iput(inode);
2037
2038 if (objectid > max_key->objectid)
2039 break;
2040
2041 inode = find_next_inode(root, objectid);
2042 if (!inode)
2043 break;
2044 ino = btrfs_ino(inode);
2045
2046 if (ino > max_key->objectid) {
2047 iput(inode);
2048 break;
2049 }
2050
2051 objectid = ino + 1;
2052 if (!S_ISREG(inode->i_mode))
2053 continue;
2054
2055 if (unlikely(min_key->objectid == ino)) {
2056 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2057 continue;
2058 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2059 start = 0;
2060 else {
2061 start = min_key->offset;
2062 WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2063 }
2064 } else {
2065 start = 0;
2066 }
2067
2068 if (unlikely(max_key->objectid == ino)) {
2069 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2070 continue;
2071 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2072 end = (u64)-1;
2073 } else {
2074 if (max_key->offset == 0)
2075 continue;
2076 end = max_key->offset;
2077 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2078 end--;
2079 }
2080 } else {
2081 end = (u64)-1;
2082 }
2083
2084 /* the lock_extent waits for readpage to complete */
2085 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2086 btrfs_drop_extent_cache(inode, start, end, 1);
2087 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2088 }
2089 return 0;
2090}
2091
2092static int find_next_key(struct btrfs_path *path, int level,
2093 struct btrfs_key *key)
2094
2095{
2096 while (level < BTRFS_MAX_LEVEL) {
2097 if (!path->nodes[level])
2098 break;
2099 if (path->slots[level] + 1 <
2100 btrfs_header_nritems(path->nodes[level])) {
2101 btrfs_node_key_to_cpu(path->nodes[level], key,
2102 path->slots[level] + 1);
2103 return 0;
2104 }
2105 level++;
2106 }
2107 return 1;
2108}
2109
2110/*
2111 * merge the relocated tree blocks in reloc tree with corresponding
2112 * fs tree.
2113 */
2114static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2115 struct btrfs_root *root)
2116{
2117 LIST_HEAD(inode_list);
2118 struct btrfs_key key;
2119 struct btrfs_key next_key;
2120 struct btrfs_trans_handle *trans = NULL;
2121 struct btrfs_root *reloc_root;
2122 struct btrfs_root_item *root_item;
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 int level;
2126 int max_level;
2127 int replaced = 0;
2128 int ret;
2129 int err = 0;
2130 u32 min_reserved;
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135 path->reada = READA_FORWARD;
2136
2137 reloc_root = root->reloc_root;
2138 root_item = &reloc_root->root_item;
2139
2140 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2141 level = btrfs_root_level(root_item);
2142 extent_buffer_get(reloc_root->node);
2143 path->nodes[level] = reloc_root->node;
2144 path->slots[level] = 0;
2145 } else {
2146 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2147
2148 level = root_item->drop_level;
2149 BUG_ON(level == 0);
2150 path->lowest_level = level;
2151 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2152 path->lowest_level = 0;
2153 if (ret < 0) {
2154 btrfs_free_path(path);
2155 return ret;
2156 }
2157
2158 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2159 path->slots[level]);
2160 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2161
2162 btrfs_unlock_up_safe(path, 0);
2163 }
2164
2165 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2166 memset(&next_key, 0, sizeof(next_key));
2167
2168 while (1) {
2169 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2170 BTRFS_RESERVE_FLUSH_ALL);
2171 if (ret) {
2172 err = ret;
2173 goto out;
2174 }
2175 trans = btrfs_start_transaction(root, 0);
2176 if (IS_ERR(trans)) {
2177 err = PTR_ERR(trans);
2178 trans = NULL;
2179 goto out;
2180 }
2181 trans->block_rsv = rc->block_rsv;
2182
2183 replaced = 0;
2184 max_level = level;
2185
2186 ret = walk_down_reloc_tree(reloc_root, path, &level);
2187 if (ret < 0) {
2188 err = ret;
2189 goto out;
2190 }
2191 if (ret > 0)
2192 break;
2193
2194 if (!find_next_key(path, level, &key) &&
2195 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2196 ret = 0;
2197 } else {
2198 ret = replace_path(trans, root, reloc_root, path,
2199 &next_key, level, max_level);
2200 }
2201 if (ret < 0) {
2202 err = ret;
2203 goto out;
2204 }
2205
2206 if (ret > 0) {
2207 level = ret;
2208 btrfs_node_key_to_cpu(path->nodes[level], &key,
2209 path->slots[level]);
2210 replaced = 1;
2211 }
2212
2213 ret = walk_up_reloc_tree(reloc_root, path, &level);
2214 if (ret > 0)
2215 break;
2216
2217 BUG_ON(level == 0);
2218 /*
2219 * save the merging progress in the drop_progress.
2220 * this is OK since root refs == 1 in this case.
2221 */
2222 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2223 path->slots[level]);
2224 root_item->drop_level = level;
2225
2226 btrfs_end_transaction_throttle(trans, root);
2227 trans = NULL;
2228
2229 btrfs_btree_balance_dirty(root);
2230
2231 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2232 invalidate_extent_cache(root, &key, &next_key);
2233 }
2234
2235 /*
2236 * handle the case only one block in the fs tree need to be
2237 * relocated and the block is tree root.
2238 */
2239 leaf = btrfs_lock_root_node(root);
2240 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2241 btrfs_tree_unlock(leaf);
2242 free_extent_buffer(leaf);
2243 if (ret < 0)
2244 err = ret;
2245out:
2246 btrfs_free_path(path);
2247
2248 if (err == 0) {
2249 memset(&root_item->drop_progress, 0,
2250 sizeof(root_item->drop_progress));
2251 root_item->drop_level = 0;
2252 btrfs_set_root_refs(root_item, 0);
2253 btrfs_update_reloc_root(trans, root);
2254 }
2255
2256 if (trans)
2257 btrfs_end_transaction_throttle(trans, root);
2258
2259 btrfs_btree_balance_dirty(root);
2260
2261 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2262 invalidate_extent_cache(root, &key, &next_key);
2263
2264 return err;
2265}
2266
2267static noinline_for_stack
2268int prepare_to_merge(struct reloc_control *rc, int err)
2269{
2270 struct btrfs_root *root = rc->extent_root;
2271 struct btrfs_root *reloc_root;
2272 struct btrfs_trans_handle *trans;
2273 LIST_HEAD(reloc_roots);
2274 u64 num_bytes = 0;
2275 int ret;
2276
2277 mutex_lock(&root->fs_info->reloc_mutex);
2278 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2279 rc->merging_rsv_size += rc->nodes_relocated * 2;
2280 mutex_unlock(&root->fs_info->reloc_mutex);
2281
2282again:
2283 if (!err) {
2284 num_bytes = rc->merging_rsv_size;
2285 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2286 BTRFS_RESERVE_FLUSH_ALL);
2287 if (ret)
2288 err = ret;
2289 }
2290
2291 trans = btrfs_join_transaction(rc->extent_root);
2292 if (IS_ERR(trans)) {
2293 if (!err)
2294 btrfs_block_rsv_release(rc->extent_root,
2295 rc->block_rsv, num_bytes);
2296 return PTR_ERR(trans);
2297 }
2298
2299 if (!err) {
2300 if (num_bytes != rc->merging_rsv_size) {
2301 btrfs_end_transaction(trans, rc->extent_root);
2302 btrfs_block_rsv_release(rc->extent_root,
2303 rc->block_rsv, num_bytes);
2304 goto again;
2305 }
2306 }
2307
2308 rc->merge_reloc_tree = 1;
2309
2310 while (!list_empty(&rc->reloc_roots)) {
2311 reloc_root = list_entry(rc->reloc_roots.next,
2312 struct btrfs_root, root_list);
2313 list_del_init(&reloc_root->root_list);
2314
2315 root = read_fs_root(reloc_root->fs_info,
2316 reloc_root->root_key.offset);
2317 BUG_ON(IS_ERR(root));
2318 BUG_ON(root->reloc_root != reloc_root);
2319
2320 /*
2321 * set reference count to 1, so btrfs_recover_relocation
2322 * knows it should resumes merging
2323 */
2324 if (!err)
2325 btrfs_set_root_refs(&reloc_root->root_item, 1);
2326 btrfs_update_reloc_root(trans, root);
2327
2328 list_add(&reloc_root->root_list, &reloc_roots);
2329 }
2330
2331 list_splice(&reloc_roots, &rc->reloc_roots);
2332
2333 if (!err)
2334 btrfs_commit_transaction(trans, rc->extent_root);
2335 else
2336 btrfs_end_transaction(trans, rc->extent_root);
2337 return err;
2338}
2339
2340static noinline_for_stack
2341void free_reloc_roots(struct list_head *list)
2342{
2343 struct btrfs_root *reloc_root;
2344
2345 while (!list_empty(list)) {
2346 reloc_root = list_entry(list->next, struct btrfs_root,
2347 root_list);
2348 __del_reloc_root(reloc_root);
2349 }
2350}
2351
2352static noinline_for_stack
2353void merge_reloc_roots(struct reloc_control *rc)
2354{
2355 struct btrfs_root *root;
2356 struct btrfs_root *reloc_root;
2357 u64 last_snap;
2358 u64 otransid;
2359 u64 objectid;
2360 LIST_HEAD(reloc_roots);
2361 int found = 0;
2362 int ret = 0;
2363again:
2364 root = rc->extent_root;
2365
2366 /*
2367 * this serializes us with btrfs_record_root_in_transaction,
2368 * we have to make sure nobody is in the middle of
2369 * adding their roots to the list while we are
2370 * doing this splice
2371 */
2372 mutex_lock(&root->fs_info->reloc_mutex);
2373 list_splice_init(&rc->reloc_roots, &reloc_roots);
2374 mutex_unlock(&root->fs_info->reloc_mutex);
2375
2376 while (!list_empty(&reloc_roots)) {
2377 found = 1;
2378 reloc_root = list_entry(reloc_roots.next,
2379 struct btrfs_root, root_list);
2380
2381 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2382 root = read_fs_root(reloc_root->fs_info,
2383 reloc_root->root_key.offset);
2384 BUG_ON(IS_ERR(root));
2385 BUG_ON(root->reloc_root != reloc_root);
2386
2387 ret = merge_reloc_root(rc, root);
2388 if (ret) {
2389 if (list_empty(&reloc_root->root_list))
2390 list_add_tail(&reloc_root->root_list,
2391 &reloc_roots);
2392 goto out;
2393 }
2394 } else {
2395 list_del_init(&reloc_root->root_list);
2396 }
2397
2398 /*
2399 * we keep the old last snapshod transid in rtranid when we
2400 * created the relocation tree.
2401 */
2402 last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2403 otransid = btrfs_root_otransid(&reloc_root->root_item);
2404 objectid = reloc_root->root_key.offset;
2405
2406 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2407 if (ret < 0) {
2408 if (list_empty(&reloc_root->root_list))
2409 list_add_tail(&reloc_root->root_list,
2410 &reloc_roots);
2411 goto out;
2412 }
2413 }
2414
2415 if (found) {
2416 found = 0;
2417 goto again;
2418 }
2419out:
2420 if (ret) {
2421 btrfs_std_error(root->fs_info, ret, NULL);
2422 if (!list_empty(&reloc_roots))
2423 free_reloc_roots(&reloc_roots);
2424
2425 /* new reloc root may be added */
2426 mutex_lock(&root->fs_info->reloc_mutex);
2427 list_splice_init(&rc->reloc_roots, &reloc_roots);
2428 mutex_unlock(&root->fs_info->reloc_mutex);
2429 if (!list_empty(&reloc_roots))
2430 free_reloc_roots(&reloc_roots);
2431 }
2432
2433 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2434}
2435
2436static void free_block_list(struct rb_root *blocks)
2437{
2438 struct tree_block *block;
2439 struct rb_node *rb_node;
2440 while ((rb_node = rb_first(blocks))) {
2441 block = rb_entry(rb_node, struct tree_block, rb_node);
2442 rb_erase(rb_node, blocks);
2443 kfree(block);
2444 }
2445}
2446
2447static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2448 struct btrfs_root *reloc_root)
2449{
2450 struct btrfs_root *root;
2451
2452 if (reloc_root->last_trans == trans->transid)
2453 return 0;
2454
2455 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2456 BUG_ON(IS_ERR(root));
2457 BUG_ON(root->reloc_root != reloc_root);
2458
2459 return btrfs_record_root_in_trans(trans, root);
2460}
2461
2462static noinline_for_stack
2463struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2464 struct reloc_control *rc,
2465 struct backref_node *node,
2466 struct backref_edge *edges[])
2467{
2468 struct backref_node *next;
2469 struct btrfs_root *root;
2470 int index = 0;
2471
2472 next = node;
2473 while (1) {
2474 cond_resched();
2475 next = walk_up_backref(next, edges, &index);
2476 root = next->root;
2477 BUG_ON(!root);
2478 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2479
2480 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2481 record_reloc_root_in_trans(trans, root);
2482 break;
2483 }
2484
2485 btrfs_record_root_in_trans(trans, root);
2486 root = root->reloc_root;
2487
2488 if (next->new_bytenr != root->node->start) {
2489 BUG_ON(next->new_bytenr);
2490 BUG_ON(!list_empty(&next->list));
2491 next->new_bytenr = root->node->start;
2492 next->root = root;
2493 list_add_tail(&next->list,
2494 &rc->backref_cache.changed);
2495 __mark_block_processed(rc, next);
2496 break;
2497 }
2498
2499 WARN_ON(1);
2500 root = NULL;
2501 next = walk_down_backref(edges, &index);
2502 if (!next || next->level <= node->level)
2503 break;
2504 }
2505 if (!root)
2506 return NULL;
2507
2508 next = node;
2509 /* setup backref node path for btrfs_reloc_cow_block */
2510 while (1) {
2511 rc->backref_cache.path[next->level] = next;
2512 if (--index < 0)
2513 break;
2514 next = edges[index]->node[UPPER];
2515 }
2516 return root;
2517}
2518
2519/*
2520 * select a tree root for relocation. return NULL if the block
2521 * is reference counted. we should use do_relocation() in this
2522 * case. return a tree root pointer if the block isn't reference
2523 * counted. return -ENOENT if the block is root of reloc tree.
2524 */
2525static noinline_for_stack
2526struct btrfs_root *select_one_root(struct backref_node *node)
2527{
2528 struct backref_node *next;
2529 struct btrfs_root *root;
2530 struct btrfs_root *fs_root = NULL;
2531 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2532 int index = 0;
2533
2534 next = node;
2535 while (1) {
2536 cond_resched();
2537 next = walk_up_backref(next, edges, &index);
2538 root = next->root;
2539 BUG_ON(!root);
2540
2541 /* no other choice for non-references counted tree */
2542 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2543 return root;
2544
2545 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2546 fs_root = root;
2547
2548 if (next != node)
2549 return NULL;
2550
2551 next = walk_down_backref(edges, &index);
2552 if (!next || next->level <= node->level)
2553 break;
2554 }
2555
2556 if (!fs_root)
2557 return ERR_PTR(-ENOENT);
2558 return fs_root;
2559}
2560
2561static noinline_for_stack
2562u64 calcu_metadata_size(struct reloc_control *rc,
2563 struct backref_node *node, int reserve)
2564{
2565 struct backref_node *next = node;
2566 struct backref_edge *edge;
2567 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2568 u64 num_bytes = 0;
2569 int index = 0;
2570
2571 BUG_ON(reserve && node->processed);
2572
2573 while (next) {
2574 cond_resched();
2575 while (1) {
2576 if (next->processed && (reserve || next != node))
2577 break;
2578
2579 num_bytes += rc->extent_root->nodesize;
2580
2581 if (list_empty(&next->upper))
2582 break;
2583
2584 edge = list_entry(next->upper.next,
2585 struct backref_edge, list[LOWER]);
2586 edges[index++] = edge;
2587 next = edge->node[UPPER];
2588 }
2589 next = walk_down_backref(edges, &index);
2590 }
2591 return num_bytes;
2592}
2593
2594static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2595 struct reloc_control *rc,
2596 struct backref_node *node)
2597{
2598 struct btrfs_root *root = rc->extent_root;
2599 u64 num_bytes;
2600 int ret;
2601 u64 tmp;
2602
2603 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2604
2605 trans->block_rsv = rc->block_rsv;
2606 rc->reserved_bytes += num_bytes;
2607 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2608 BTRFS_RESERVE_FLUSH_ALL);
2609 if (ret) {
2610 if (ret == -EAGAIN) {
2611 tmp = rc->extent_root->nodesize *
2612 RELOCATION_RESERVED_NODES;
2613 while (tmp <= rc->reserved_bytes)
2614 tmp <<= 1;
2615 /*
2616 * only one thread can access block_rsv at this point,
2617 * so we don't need hold lock to protect block_rsv.
2618 * we expand more reservation size here to allow enough
2619 * space for relocation and we will return eailer in
2620 * enospc case.
2621 */
2622 rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2623 RELOCATION_RESERVED_NODES;
2624 }
2625 return ret;
2626 }
2627
2628 return 0;
2629}
2630
2631/*
2632 * relocate a block tree, and then update pointers in upper level
2633 * blocks that reference the block to point to the new location.
2634 *
2635 * if called by link_to_upper, the block has already been relocated.
2636 * in that case this function just updates pointers.
2637 */
2638static int do_relocation(struct btrfs_trans_handle *trans,
2639 struct reloc_control *rc,
2640 struct backref_node *node,
2641 struct btrfs_key *key,
2642 struct btrfs_path *path, int lowest)
2643{
2644 struct backref_node *upper;
2645 struct backref_edge *edge;
2646 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2647 struct btrfs_root *root;
2648 struct extent_buffer *eb;
2649 u32 blocksize;
2650 u64 bytenr;
2651 u64 generation;
2652 int slot;
2653 int ret;
2654 int err = 0;
2655
2656 BUG_ON(lowest && node->eb);
2657
2658 path->lowest_level = node->level + 1;
2659 rc->backref_cache.path[node->level] = node;
2660 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2661 cond_resched();
2662
2663 upper = edge->node[UPPER];
2664 root = select_reloc_root(trans, rc, upper, edges);
2665 BUG_ON(!root);
2666
2667 if (upper->eb && !upper->locked) {
2668 if (!lowest) {
2669 ret = btrfs_bin_search(upper->eb, key,
2670 upper->level, &slot);
2671 BUG_ON(ret);
2672 bytenr = btrfs_node_blockptr(upper->eb, slot);
2673 if (node->eb->start == bytenr)
2674 goto next;
2675 }
2676 drop_node_buffer(upper);
2677 }
2678
2679 if (!upper->eb) {
2680 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2681 if (ret < 0) {
2682 err = ret;
2683 break;
2684 }
2685 BUG_ON(ret > 0);
2686
2687 if (!upper->eb) {
2688 upper->eb = path->nodes[upper->level];
2689 path->nodes[upper->level] = NULL;
2690 } else {
2691 BUG_ON(upper->eb != path->nodes[upper->level]);
2692 }
2693
2694 upper->locked = 1;
2695 path->locks[upper->level] = 0;
2696
2697 slot = path->slots[upper->level];
2698 btrfs_release_path(path);
2699 } else {
2700 ret = btrfs_bin_search(upper->eb, key, upper->level,
2701 &slot);
2702 BUG_ON(ret);
2703 }
2704
2705 bytenr = btrfs_node_blockptr(upper->eb, slot);
2706 if (lowest) {
2707 BUG_ON(bytenr != node->bytenr);
2708 } else {
2709 if (node->eb->start == bytenr)
2710 goto next;
2711 }
2712
2713 blocksize = root->nodesize;
2714 generation = btrfs_node_ptr_generation(upper->eb, slot);
2715 eb = read_tree_block(root, bytenr, generation);
2716 if (IS_ERR(eb)) {
2717 err = PTR_ERR(eb);
2718 goto next;
2719 } else if (!extent_buffer_uptodate(eb)) {
2720 free_extent_buffer(eb);
2721 err = -EIO;
2722 goto next;
2723 }
2724 btrfs_tree_lock(eb);
2725 btrfs_set_lock_blocking(eb);
2726
2727 if (!node->eb) {
2728 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2729 slot, &eb);
2730 btrfs_tree_unlock(eb);
2731 free_extent_buffer(eb);
2732 if (ret < 0) {
2733 err = ret;
2734 goto next;
2735 }
2736 BUG_ON(node->eb != eb);
2737 } else {
2738 btrfs_set_node_blockptr(upper->eb, slot,
2739 node->eb->start);
2740 btrfs_set_node_ptr_generation(upper->eb, slot,
2741 trans->transid);
2742 btrfs_mark_buffer_dirty(upper->eb);
2743
2744 ret = btrfs_inc_extent_ref(trans, root,
2745 node->eb->start, blocksize,
2746 upper->eb->start,
2747 btrfs_header_owner(upper->eb),
2748 node->level, 0);
2749 BUG_ON(ret);
2750
2751 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2752 BUG_ON(ret);
2753 }
2754next:
2755 if (!upper->pending)
2756 drop_node_buffer(upper);
2757 else
2758 unlock_node_buffer(upper);
2759 if (err)
2760 break;
2761 }
2762
2763 if (!err && node->pending) {
2764 drop_node_buffer(node);
2765 list_move_tail(&node->list, &rc->backref_cache.changed);
2766 node->pending = 0;
2767 }
2768
2769 path->lowest_level = 0;
2770 BUG_ON(err == -ENOSPC);
2771 return err;
2772}
2773
2774static int link_to_upper(struct btrfs_trans_handle *trans,
2775 struct reloc_control *rc,
2776 struct backref_node *node,
2777 struct btrfs_path *path)
2778{
2779 struct btrfs_key key;
2780
2781 btrfs_node_key_to_cpu(node->eb, &key, 0);
2782 return do_relocation(trans, rc, node, &key, path, 0);
2783}
2784
2785static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2786 struct reloc_control *rc,
2787 struct btrfs_path *path, int err)
2788{
2789 LIST_HEAD(list);
2790 struct backref_cache *cache = &rc->backref_cache;
2791 struct backref_node *node;
2792 int level;
2793 int ret;
2794
2795 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2796 while (!list_empty(&cache->pending[level])) {
2797 node = list_entry(cache->pending[level].next,
2798 struct backref_node, list);
2799 list_move_tail(&node->list, &list);
2800 BUG_ON(!node->pending);
2801
2802 if (!err) {
2803 ret = link_to_upper(trans, rc, node, path);
2804 if (ret < 0)
2805 err = ret;
2806 }
2807 }
2808 list_splice_init(&list, &cache->pending[level]);
2809 }
2810 return err;
2811}
2812
2813static void mark_block_processed(struct reloc_control *rc,
2814 u64 bytenr, u32 blocksize)
2815{
2816 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2817 EXTENT_DIRTY, GFP_NOFS);
2818}
2819
2820static void __mark_block_processed(struct reloc_control *rc,
2821 struct backref_node *node)
2822{
2823 u32 blocksize;
2824 if (node->level == 0 ||
2825 in_block_group(node->bytenr, rc->block_group)) {
2826 blocksize = rc->extent_root->nodesize;
2827 mark_block_processed(rc, node->bytenr, blocksize);
2828 }
2829 node->processed = 1;
2830}
2831
2832/*
2833 * mark a block and all blocks directly/indirectly reference the block
2834 * as processed.
2835 */
2836static void update_processed_blocks(struct reloc_control *rc,
2837 struct backref_node *node)
2838{
2839 struct backref_node *next = node;
2840 struct backref_edge *edge;
2841 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2842 int index = 0;
2843
2844 while (next) {
2845 cond_resched();
2846 while (1) {
2847 if (next->processed)
2848 break;
2849
2850 __mark_block_processed(rc, next);
2851
2852 if (list_empty(&next->upper))
2853 break;
2854
2855 edge = list_entry(next->upper.next,
2856 struct backref_edge, list[LOWER]);
2857 edges[index++] = edge;
2858 next = edge->node[UPPER];
2859 }
2860 next = walk_down_backref(edges, &index);
2861 }
2862}
2863
2864static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2865{
2866 u32 blocksize = rc->extent_root->nodesize;
2867
2868 if (test_range_bit(&rc->processed_blocks, bytenr,
2869 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2870 return 1;
2871 return 0;
2872}
2873
2874static int get_tree_block_key(struct reloc_control *rc,
2875 struct tree_block *block)
2876{
2877 struct extent_buffer *eb;
2878
2879 BUG_ON(block->key_ready);
2880 eb = read_tree_block(rc->extent_root, block->bytenr,
2881 block->key.offset);
2882 if (IS_ERR(eb)) {
2883 return PTR_ERR(eb);
2884 } else if (!extent_buffer_uptodate(eb)) {
2885 free_extent_buffer(eb);
2886 return -EIO;
2887 }
2888 WARN_ON(btrfs_header_level(eb) != block->level);
2889 if (block->level == 0)
2890 btrfs_item_key_to_cpu(eb, &block->key, 0);
2891 else
2892 btrfs_node_key_to_cpu(eb, &block->key, 0);
2893 free_extent_buffer(eb);
2894 block->key_ready = 1;
2895 return 0;
2896}
2897
2898/*
2899 * helper function to relocate a tree block
2900 */
2901static int relocate_tree_block(struct btrfs_trans_handle *trans,
2902 struct reloc_control *rc,
2903 struct backref_node *node,
2904 struct btrfs_key *key,
2905 struct btrfs_path *path)
2906{
2907 struct btrfs_root *root;
2908 int ret = 0;
2909
2910 if (!node)
2911 return 0;
2912
2913 BUG_ON(node->processed);
2914 root = select_one_root(node);
2915 if (root == ERR_PTR(-ENOENT)) {
2916 update_processed_blocks(rc, node);
2917 goto out;
2918 }
2919
2920 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2921 ret = reserve_metadata_space(trans, rc, node);
2922 if (ret)
2923 goto out;
2924 }
2925
2926 if (root) {
2927 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2928 BUG_ON(node->new_bytenr);
2929 BUG_ON(!list_empty(&node->list));
2930 btrfs_record_root_in_trans(trans, root);
2931 root = root->reloc_root;
2932 node->new_bytenr = root->node->start;
2933 node->root = root;
2934 list_add_tail(&node->list, &rc->backref_cache.changed);
2935 } else {
2936 path->lowest_level = node->level;
2937 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2938 btrfs_release_path(path);
2939 if (ret > 0)
2940 ret = 0;
2941 }
2942 if (!ret)
2943 update_processed_blocks(rc, node);
2944 } else {
2945 ret = do_relocation(trans, rc, node, key, path, 1);
2946 }
2947out:
2948 if (ret || node->level == 0 || node->cowonly)
2949 remove_backref_node(&rc->backref_cache, node);
2950 return ret;
2951}
2952
2953/*
2954 * relocate a list of blocks
2955 */
2956static noinline_for_stack
2957int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2958 struct reloc_control *rc, struct rb_root *blocks)
2959{
2960 struct backref_node *node;
2961 struct btrfs_path *path;
2962 struct tree_block *block;
2963 struct rb_node *rb_node;
2964 int ret;
2965 int err = 0;
2966
2967 path = btrfs_alloc_path();
2968 if (!path) {
2969 err = -ENOMEM;
2970 goto out_free_blocks;
2971 }
2972
2973 rb_node = rb_first(blocks);
2974 while (rb_node) {
2975 block = rb_entry(rb_node, struct tree_block, rb_node);
2976 if (!block->key_ready)
2977 readahead_tree_block(rc->extent_root, block->bytenr);
2978 rb_node = rb_next(rb_node);
2979 }
2980
2981 rb_node = rb_first(blocks);
2982 while (rb_node) {
2983 block = rb_entry(rb_node, struct tree_block, rb_node);
2984 if (!block->key_ready) {
2985 err = get_tree_block_key(rc, block);
2986 if (err)
2987 goto out_free_path;
2988 }
2989 rb_node = rb_next(rb_node);
2990 }
2991
2992 rb_node = rb_first(blocks);
2993 while (rb_node) {
2994 block = rb_entry(rb_node, struct tree_block, rb_node);
2995
2996 node = build_backref_tree(rc, &block->key,
2997 block->level, block->bytenr);
2998 if (IS_ERR(node)) {
2999 err = PTR_ERR(node);
3000 goto out;
3001 }
3002
3003 ret = relocate_tree_block(trans, rc, node, &block->key,
3004 path);
3005 if (ret < 0) {
3006 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3007 err = ret;
3008 goto out;
3009 }
3010 rb_node = rb_next(rb_node);
3011 }
3012out:
3013 err = finish_pending_nodes(trans, rc, path, err);
3014
3015out_free_path:
3016 btrfs_free_path(path);
3017out_free_blocks:
3018 free_block_list(blocks);
3019 return err;
3020}
3021
3022static noinline_for_stack
3023int prealloc_file_extent_cluster(struct inode *inode,
3024 struct file_extent_cluster *cluster)
3025{
3026 u64 alloc_hint = 0;
3027 u64 start;
3028 u64 end;
3029 u64 offset = BTRFS_I(inode)->index_cnt;
3030 u64 num_bytes;
3031 int nr = 0;
3032 int ret = 0;
3033
3034 BUG_ON(cluster->start != cluster->boundary[0]);
3035 inode_lock(inode);
3036
3037 ret = btrfs_check_data_free_space(inode, cluster->start,
3038 cluster->end + 1 - cluster->start);
3039 if (ret)
3040 goto out;
3041
3042 while (nr < cluster->nr) {
3043 start = cluster->boundary[nr] - offset;
3044 if (nr + 1 < cluster->nr)
3045 end = cluster->boundary[nr + 1] - 1 - offset;
3046 else
3047 end = cluster->end - offset;
3048
3049 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3050 num_bytes = end + 1 - start;
3051 ret = btrfs_prealloc_file_range(inode, 0, start,
3052 num_bytes, num_bytes,
3053 end + 1, &alloc_hint);
3054 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3055 if (ret)
3056 break;
3057 nr++;
3058 }
3059 btrfs_free_reserved_data_space(inode, cluster->start,
3060 cluster->end + 1 - cluster->start);
3061out:
3062 inode_unlock(inode);
3063 return ret;
3064}
3065
3066static noinline_for_stack
3067int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3068 u64 block_start)
3069{
3070 struct btrfs_root *root = BTRFS_I(inode)->root;
3071 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3072 struct extent_map *em;
3073 int ret = 0;
3074
3075 em = alloc_extent_map();
3076 if (!em)
3077 return -ENOMEM;
3078
3079 em->start = start;
3080 em->len = end + 1 - start;
3081 em->block_len = em->len;
3082 em->block_start = block_start;
3083 em->bdev = root->fs_info->fs_devices->latest_bdev;
3084 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3085
3086 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3087 while (1) {
3088 write_lock(&em_tree->lock);
3089 ret = add_extent_mapping(em_tree, em, 0);
3090 write_unlock(&em_tree->lock);
3091 if (ret != -EEXIST) {
3092 free_extent_map(em);
3093 break;
3094 }
3095 btrfs_drop_extent_cache(inode, start, end, 0);
3096 }
3097 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3098 return ret;
3099}
3100
3101static int relocate_file_extent_cluster(struct inode *inode,
3102 struct file_extent_cluster *cluster)
3103{
3104 u64 page_start;
3105 u64 page_end;
3106 u64 offset = BTRFS_I(inode)->index_cnt;
3107 unsigned long index;
3108 unsigned long last_index;
3109 struct page *page;
3110 struct file_ra_state *ra;
3111 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3112 int nr = 0;
3113 int ret = 0;
3114
3115 if (!cluster->nr)
3116 return 0;
3117
3118 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3119 if (!ra)
3120 return -ENOMEM;
3121
3122 ret = prealloc_file_extent_cluster(inode, cluster);
3123 if (ret)
3124 goto out;
3125
3126 file_ra_state_init(ra, inode->i_mapping);
3127
3128 ret = setup_extent_mapping(inode, cluster->start - offset,
3129 cluster->end - offset, cluster->start);
3130 if (ret)
3131 goto out;
3132
3133 index = (cluster->start - offset) >> PAGE_SHIFT;
3134 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3135 while (index <= last_index) {
3136 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3137 if (ret)
3138 goto out;
3139
3140 page = find_lock_page(inode->i_mapping, index);
3141 if (!page) {
3142 page_cache_sync_readahead(inode->i_mapping,
3143 ra, NULL, index,
3144 last_index + 1 - index);
3145 page = find_or_create_page(inode->i_mapping, index,
3146 mask);
3147 if (!page) {
3148 btrfs_delalloc_release_metadata(inode,
3149 PAGE_SIZE);
3150 ret = -ENOMEM;
3151 goto out;
3152 }
3153 }
3154
3155 if (PageReadahead(page)) {
3156 page_cache_async_readahead(inode->i_mapping,
3157 ra, NULL, page, index,
3158 last_index + 1 - index);
3159 }
3160
3161 if (!PageUptodate(page)) {
3162 btrfs_readpage(NULL, page);
3163 lock_page(page);
3164 if (!PageUptodate(page)) {
3165 unlock_page(page);
3166 put_page(page);
3167 btrfs_delalloc_release_metadata(inode,
3168 PAGE_SIZE);
3169 ret = -EIO;
3170 goto out;
3171 }
3172 }
3173
3174 page_start = page_offset(page);
3175 page_end = page_start + PAGE_SIZE - 1;
3176
3177 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3178
3179 set_page_extent_mapped(page);
3180
3181 if (nr < cluster->nr &&
3182 page_start + offset == cluster->boundary[nr]) {
3183 set_extent_bits(&BTRFS_I(inode)->io_tree,
3184 page_start, page_end,
3185 EXTENT_BOUNDARY, GFP_NOFS);
3186 nr++;
3187 }
3188
3189 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3190 set_page_dirty(page);
3191
3192 unlock_extent(&BTRFS_I(inode)->io_tree,
3193 page_start, page_end);
3194 unlock_page(page);
3195 put_page(page);
3196
3197 index++;
3198 balance_dirty_pages_ratelimited(inode->i_mapping);
3199 btrfs_throttle(BTRFS_I(inode)->root);
3200 }
3201 WARN_ON(nr != cluster->nr);
3202out:
3203 kfree(ra);
3204 return ret;
3205}
3206
3207static noinline_for_stack
3208int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3209 struct file_extent_cluster *cluster)
3210{
3211 int ret;
3212
3213 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3214 ret = relocate_file_extent_cluster(inode, cluster);
3215 if (ret)
3216 return ret;
3217 cluster->nr = 0;
3218 }
3219
3220 if (!cluster->nr)
3221 cluster->start = extent_key->objectid;
3222 else
3223 BUG_ON(cluster->nr >= MAX_EXTENTS);
3224 cluster->end = extent_key->objectid + extent_key->offset - 1;
3225 cluster->boundary[cluster->nr] = extent_key->objectid;
3226 cluster->nr++;
3227
3228 if (cluster->nr >= MAX_EXTENTS) {
3229 ret = relocate_file_extent_cluster(inode, cluster);
3230 if (ret)
3231 return ret;
3232 cluster->nr = 0;
3233 }
3234 return 0;
3235}
3236
3237#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3238static int get_ref_objectid_v0(struct reloc_control *rc,
3239 struct btrfs_path *path,
3240 struct btrfs_key *extent_key,
3241 u64 *ref_objectid, int *path_change)
3242{
3243 struct btrfs_key key;
3244 struct extent_buffer *leaf;
3245 struct btrfs_extent_ref_v0 *ref0;
3246 int ret;
3247 int slot;
3248
3249 leaf = path->nodes[0];
3250 slot = path->slots[0];
3251 while (1) {
3252 if (slot >= btrfs_header_nritems(leaf)) {
3253 ret = btrfs_next_leaf(rc->extent_root, path);
3254 if (ret < 0)
3255 return ret;
3256 BUG_ON(ret > 0);
3257 leaf = path->nodes[0];
3258 slot = path->slots[0];
3259 if (path_change)
3260 *path_change = 1;
3261 }
3262 btrfs_item_key_to_cpu(leaf, &key, slot);
3263 if (key.objectid != extent_key->objectid)
3264 return -ENOENT;
3265
3266 if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3267 slot++;
3268 continue;
3269 }
3270 ref0 = btrfs_item_ptr(leaf, slot,
3271 struct btrfs_extent_ref_v0);
3272 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3273 break;
3274 }
3275 return 0;
3276}
3277#endif
3278
3279/*
3280 * helper to add a tree block to the list.
3281 * the major work is getting the generation and level of the block
3282 */
3283static int add_tree_block(struct reloc_control *rc,
3284 struct btrfs_key *extent_key,
3285 struct btrfs_path *path,
3286 struct rb_root *blocks)
3287{
3288 struct extent_buffer *eb;
3289 struct btrfs_extent_item *ei;
3290 struct btrfs_tree_block_info *bi;
3291 struct tree_block *block;
3292 struct rb_node *rb_node;
3293 u32 item_size;
3294 int level = -1;
3295 u64 generation;
3296
3297 eb = path->nodes[0];
3298 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3299
3300 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3301 item_size >= sizeof(*ei) + sizeof(*bi)) {
3302 ei = btrfs_item_ptr(eb, path->slots[0],
3303 struct btrfs_extent_item);
3304 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3305 bi = (struct btrfs_tree_block_info *)(ei + 1);
3306 level = btrfs_tree_block_level(eb, bi);
3307 } else {
3308 level = (int)extent_key->offset;
3309 }
3310 generation = btrfs_extent_generation(eb, ei);
3311 } else {
3312#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3313 u64 ref_owner;
3314 int ret;
3315
3316 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3317 ret = get_ref_objectid_v0(rc, path, extent_key,
3318 &ref_owner, NULL);
3319 if (ret < 0)
3320 return ret;
3321 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3322 level = (int)ref_owner;
3323 /* FIXME: get real generation */
3324 generation = 0;
3325#else
3326 BUG();
3327#endif
3328 }
3329
3330 btrfs_release_path(path);
3331
3332 BUG_ON(level == -1);
3333
3334 block = kmalloc(sizeof(*block), GFP_NOFS);
3335 if (!block)
3336 return -ENOMEM;
3337
3338 block->bytenr = extent_key->objectid;
3339 block->key.objectid = rc->extent_root->nodesize;
3340 block->key.offset = generation;
3341 block->level = level;
3342 block->key_ready = 0;
3343
3344 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3345 if (rb_node)
3346 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3347
3348 return 0;
3349}
3350
3351/*
3352 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3353 */
3354static int __add_tree_block(struct reloc_control *rc,
3355 u64 bytenr, u32 blocksize,
3356 struct rb_root *blocks)
3357{
3358 struct btrfs_path *path;
3359 struct btrfs_key key;
3360 int ret;
3361 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3362 SKINNY_METADATA);
3363
3364 if (tree_block_processed(bytenr, rc))
3365 return 0;
3366
3367 if (tree_search(blocks, bytenr))
3368 return 0;
3369
3370 path = btrfs_alloc_path();
3371 if (!path)
3372 return -ENOMEM;
3373again:
3374 key.objectid = bytenr;
3375 if (skinny) {
3376 key.type = BTRFS_METADATA_ITEM_KEY;
3377 key.offset = (u64)-1;
3378 } else {
3379 key.type = BTRFS_EXTENT_ITEM_KEY;
3380 key.offset = blocksize;
3381 }
3382
3383 path->search_commit_root = 1;
3384 path->skip_locking = 1;
3385 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3386 if (ret < 0)
3387 goto out;
3388
3389 if (ret > 0 && skinny) {
3390 if (path->slots[0]) {
3391 path->slots[0]--;
3392 btrfs_item_key_to_cpu(path->nodes[0], &key,
3393 path->slots[0]);
3394 if (key.objectid == bytenr &&
3395 (key.type == BTRFS_METADATA_ITEM_KEY ||
3396 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3397 key.offset == blocksize)))
3398 ret = 0;
3399 }
3400
3401 if (ret) {
3402 skinny = false;
3403 btrfs_release_path(path);
3404 goto again;
3405 }
3406 }
3407 BUG_ON(ret);
3408
3409 ret = add_tree_block(rc, &key, path, blocks);
3410out:
3411 btrfs_free_path(path);
3412 return ret;
3413}
3414
3415/*
3416 * helper to check if the block use full backrefs for pointers in it
3417 */
3418static int block_use_full_backref(struct reloc_control *rc,
3419 struct extent_buffer *eb)
3420{
3421 u64 flags;
3422 int ret;
3423
3424 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3425 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3426 return 1;
3427
3428 ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3429 eb->start, btrfs_header_level(eb), 1,
3430 NULL, &flags);
3431 BUG_ON(ret);
3432
3433 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3434 ret = 1;
3435 else
3436 ret = 0;
3437 return ret;
3438}
3439
3440static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3441 struct btrfs_block_group_cache *block_group,
3442 struct inode *inode,
3443 u64 ino)
3444{
3445 struct btrfs_key key;
3446 struct btrfs_root *root = fs_info->tree_root;
3447 struct btrfs_trans_handle *trans;
3448 int ret = 0;
3449
3450 if (inode)
3451 goto truncate;
3452
3453 key.objectid = ino;
3454 key.type = BTRFS_INODE_ITEM_KEY;
3455 key.offset = 0;
3456
3457 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3458 if (IS_ERR(inode) || is_bad_inode(inode)) {
3459 if (!IS_ERR(inode))
3460 iput(inode);
3461 return -ENOENT;
3462 }
3463
3464truncate:
3465 ret = btrfs_check_trunc_cache_free_space(root,
3466 &fs_info->global_block_rsv);
3467 if (ret)
3468 goto out;
3469
3470 trans = btrfs_join_transaction(root);
3471 if (IS_ERR(trans)) {
3472 ret = PTR_ERR(trans);
3473 goto out;
3474 }
3475
3476 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3477
3478 btrfs_end_transaction(trans, root);
3479 btrfs_btree_balance_dirty(root);
3480out:
3481 iput(inode);
3482 return ret;
3483}
3484
3485/*
3486 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3487 * this function scans fs tree to find blocks reference the data extent
3488 */
3489static int find_data_references(struct reloc_control *rc,
3490 struct btrfs_key *extent_key,
3491 struct extent_buffer *leaf,
3492 struct btrfs_extent_data_ref *ref,
3493 struct rb_root *blocks)
3494{
3495 struct btrfs_path *path;
3496 struct tree_block *block;
3497 struct btrfs_root *root;
3498 struct btrfs_file_extent_item *fi;
3499 struct rb_node *rb_node;
3500 struct btrfs_key key;
3501 u64 ref_root;
3502 u64 ref_objectid;
3503 u64 ref_offset;
3504 u32 ref_count;
3505 u32 nritems;
3506 int err = 0;
3507 int added = 0;
3508 int counted;
3509 int ret;
3510
3511 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3512 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3513 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3514 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3515
3516 /*
3517 * This is an extent belonging to the free space cache, lets just delete
3518 * it and redo the search.
3519 */
3520 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3521 ret = delete_block_group_cache(rc->extent_root->fs_info,
3522 rc->block_group,
3523 NULL, ref_objectid);
3524 if (ret != -ENOENT)
3525 return ret;
3526 ret = 0;
3527 }
3528
3529 path = btrfs_alloc_path();
3530 if (!path)
3531 return -ENOMEM;
3532 path->reada = READA_FORWARD;
3533
3534 root = read_fs_root(rc->extent_root->fs_info, ref_root);
3535 if (IS_ERR(root)) {
3536 err = PTR_ERR(root);
3537 goto out;
3538 }
3539
3540 key.objectid = ref_objectid;
3541 key.type = BTRFS_EXTENT_DATA_KEY;
3542 if (ref_offset > ((u64)-1 << 32))
3543 key.offset = 0;
3544 else
3545 key.offset = ref_offset;
3546
3547 path->search_commit_root = 1;
3548 path->skip_locking = 1;
3549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3550 if (ret < 0) {
3551 err = ret;
3552 goto out;
3553 }
3554
3555 leaf = path->nodes[0];
3556 nritems = btrfs_header_nritems(leaf);
3557 /*
3558 * the references in tree blocks that use full backrefs
3559 * are not counted in
3560 */
3561 if (block_use_full_backref(rc, leaf))
3562 counted = 0;
3563 else
3564 counted = 1;
3565 rb_node = tree_search(blocks, leaf->start);
3566 if (rb_node) {
3567 if (counted)
3568 added = 1;
3569 else
3570 path->slots[0] = nritems;
3571 }
3572
3573 while (ref_count > 0) {
3574 while (path->slots[0] >= nritems) {
3575 ret = btrfs_next_leaf(root, path);
3576 if (ret < 0) {
3577 err = ret;
3578 goto out;
3579 }
3580 if (WARN_ON(ret > 0))
3581 goto out;
3582
3583 leaf = path->nodes[0];
3584 nritems = btrfs_header_nritems(leaf);
3585 added = 0;
3586
3587 if (block_use_full_backref(rc, leaf))
3588 counted = 0;
3589 else
3590 counted = 1;
3591 rb_node = tree_search(blocks, leaf->start);
3592 if (rb_node) {
3593 if (counted)
3594 added = 1;
3595 else
3596 path->slots[0] = nritems;
3597 }
3598 }
3599
3600 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3601 if (WARN_ON(key.objectid != ref_objectid ||
3602 key.type != BTRFS_EXTENT_DATA_KEY))
3603 break;
3604
3605 fi = btrfs_item_ptr(leaf, path->slots[0],
3606 struct btrfs_file_extent_item);
3607
3608 if (btrfs_file_extent_type(leaf, fi) ==
3609 BTRFS_FILE_EXTENT_INLINE)
3610 goto next;
3611
3612 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3613 extent_key->objectid)
3614 goto next;
3615
3616 key.offset -= btrfs_file_extent_offset(leaf, fi);
3617 if (key.offset != ref_offset)
3618 goto next;
3619
3620 if (counted)
3621 ref_count--;
3622 if (added)
3623 goto next;
3624
3625 if (!tree_block_processed(leaf->start, rc)) {
3626 block = kmalloc(sizeof(*block), GFP_NOFS);
3627 if (!block) {
3628 err = -ENOMEM;
3629 break;
3630 }
3631 block->bytenr = leaf->start;
3632 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3633 block->level = 0;
3634 block->key_ready = 1;
3635 rb_node = tree_insert(blocks, block->bytenr,
3636 &block->rb_node);
3637 if (rb_node)
3638 backref_tree_panic(rb_node, -EEXIST,
3639 block->bytenr);
3640 }
3641 if (counted)
3642 added = 1;
3643 else
3644 path->slots[0] = nritems;
3645next:
3646 path->slots[0]++;
3647
3648 }
3649out:
3650 btrfs_free_path(path);
3651 return err;
3652}
3653
3654/*
3655 * helper to find all tree blocks that reference a given data extent
3656 */
3657static noinline_for_stack
3658int add_data_references(struct reloc_control *rc,
3659 struct btrfs_key *extent_key,
3660 struct btrfs_path *path,
3661 struct rb_root *blocks)
3662{
3663 struct btrfs_key key;
3664 struct extent_buffer *eb;
3665 struct btrfs_extent_data_ref *dref;
3666 struct btrfs_extent_inline_ref *iref;
3667 unsigned long ptr;
3668 unsigned long end;
3669 u32 blocksize = rc->extent_root->nodesize;
3670 int ret = 0;
3671 int err = 0;
3672
3673 eb = path->nodes[0];
3674 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3675 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3676#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3677 if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3678 ptr = end;
3679 else
3680#endif
3681 ptr += sizeof(struct btrfs_extent_item);
3682
3683 while (ptr < end) {
3684 iref = (struct btrfs_extent_inline_ref *)ptr;
3685 key.type = btrfs_extent_inline_ref_type(eb, iref);
3686 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3687 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3688 ret = __add_tree_block(rc, key.offset, blocksize,
3689 blocks);
3690 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3691 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3692 ret = find_data_references(rc, extent_key,
3693 eb, dref, blocks);
3694 } else {
3695 BUG();
3696 }
3697 if (ret) {
3698 err = ret;
3699 goto out;
3700 }
3701 ptr += btrfs_extent_inline_ref_size(key.type);
3702 }
3703 WARN_ON(ptr > end);
3704
3705 while (1) {
3706 cond_resched();
3707 eb = path->nodes[0];
3708 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3709 ret = btrfs_next_leaf(rc->extent_root, path);
3710 if (ret < 0) {
3711 err = ret;
3712 break;
3713 }
3714 if (ret > 0)
3715 break;
3716 eb = path->nodes[0];
3717 }
3718
3719 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3720 if (key.objectid != extent_key->objectid)
3721 break;
3722
3723#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3724 if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3725 key.type == BTRFS_EXTENT_REF_V0_KEY) {
3726#else
3727 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3728 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3729#endif
3730 ret = __add_tree_block(rc, key.offset, blocksize,
3731 blocks);
3732 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3733 dref = btrfs_item_ptr(eb, path->slots[0],
3734 struct btrfs_extent_data_ref);
3735 ret = find_data_references(rc, extent_key,
3736 eb, dref, blocks);
3737 } else {
3738 ret = 0;
3739 }
3740 if (ret) {
3741 err = ret;
3742 break;
3743 }
3744 path->slots[0]++;
3745 }
3746out:
3747 btrfs_release_path(path);
3748 if (err)
3749 free_block_list(blocks);
3750 return err;
3751}
3752
3753/*
3754 * helper to find next unprocessed extent
3755 */
3756static noinline_for_stack
3757int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3758 struct btrfs_key *extent_key)
3759{
3760 struct btrfs_key key;
3761 struct extent_buffer *leaf;
3762 u64 start, end, last;
3763 int ret;
3764
3765 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3766 while (1) {
3767 cond_resched();
3768 if (rc->search_start >= last) {
3769 ret = 1;
3770 break;
3771 }
3772
3773 key.objectid = rc->search_start;
3774 key.type = BTRFS_EXTENT_ITEM_KEY;
3775 key.offset = 0;
3776
3777 path->search_commit_root = 1;
3778 path->skip_locking = 1;
3779 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3780 0, 0);
3781 if (ret < 0)
3782 break;
3783next:
3784 leaf = path->nodes[0];
3785 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3786 ret = btrfs_next_leaf(rc->extent_root, path);
3787 if (ret != 0)
3788 break;
3789 leaf = path->nodes[0];
3790 }
3791
3792 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3793 if (key.objectid >= last) {
3794 ret = 1;
3795 break;
3796 }
3797
3798 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3799 key.type != BTRFS_METADATA_ITEM_KEY) {
3800 path->slots[0]++;
3801 goto next;
3802 }
3803
3804 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3805 key.objectid + key.offset <= rc->search_start) {
3806 path->slots[0]++;
3807 goto next;
3808 }
3809
3810 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3811 key.objectid + rc->extent_root->nodesize <=
3812 rc->search_start) {
3813 path->slots[0]++;
3814 goto next;
3815 }
3816
3817 ret = find_first_extent_bit(&rc->processed_blocks,
3818 key.objectid, &start, &end,
3819 EXTENT_DIRTY, NULL);
3820
3821 if (ret == 0 && start <= key.objectid) {
3822 btrfs_release_path(path);
3823 rc->search_start = end + 1;
3824 } else {
3825 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3826 rc->search_start = key.objectid + key.offset;
3827 else
3828 rc->search_start = key.objectid +
3829 rc->extent_root->nodesize;
3830 memcpy(extent_key, &key, sizeof(key));
3831 return 0;
3832 }
3833 }
3834 btrfs_release_path(path);
3835 return ret;
3836}
3837
3838static void set_reloc_control(struct reloc_control *rc)
3839{
3840 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3841
3842 mutex_lock(&fs_info->reloc_mutex);
3843 fs_info->reloc_ctl = rc;
3844 mutex_unlock(&fs_info->reloc_mutex);
3845}
3846
3847static void unset_reloc_control(struct reloc_control *rc)
3848{
3849 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3850
3851 mutex_lock(&fs_info->reloc_mutex);
3852 fs_info->reloc_ctl = NULL;
3853 mutex_unlock(&fs_info->reloc_mutex);
3854}
3855
3856static int check_extent_flags(u64 flags)
3857{
3858 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3859 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3860 return 1;
3861 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3862 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3863 return 1;
3864 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3865 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3866 return 1;
3867 return 0;
3868}
3869
3870static noinline_for_stack
3871int prepare_to_relocate(struct reloc_control *rc)
3872{
3873 struct btrfs_trans_handle *trans;
3874
3875 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3876 BTRFS_BLOCK_RSV_TEMP);
3877 if (!rc->block_rsv)
3878 return -ENOMEM;
3879
3880 memset(&rc->cluster, 0, sizeof(rc->cluster));
3881 rc->search_start = rc->block_group->key.objectid;
3882 rc->extents_found = 0;
3883 rc->nodes_relocated = 0;
3884 rc->merging_rsv_size = 0;
3885 rc->reserved_bytes = 0;
3886 rc->block_rsv->size = rc->extent_root->nodesize *
3887 RELOCATION_RESERVED_NODES;
3888
3889 rc->create_reloc_tree = 1;
3890 set_reloc_control(rc);
3891
3892 trans = btrfs_join_transaction(rc->extent_root);
3893 if (IS_ERR(trans)) {
3894 unset_reloc_control(rc);
3895 /*
3896 * extent tree is not a ref_cow tree and has no reloc_root to
3897 * cleanup. And callers are responsible to free the above
3898 * block rsv.
3899 */
3900 return PTR_ERR(trans);
3901 }
3902 btrfs_commit_transaction(trans, rc->extent_root);
3903 return 0;
3904}
3905
3906static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3907{
3908 struct rb_root blocks = RB_ROOT;
3909 struct btrfs_key key;
3910 struct btrfs_trans_handle *trans = NULL;
3911 struct btrfs_path *path;
3912 struct btrfs_extent_item *ei;
3913 u64 flags;
3914 u32 item_size;
3915 int ret;
3916 int err = 0;
3917 int progress = 0;
3918
3919 path = btrfs_alloc_path();
3920 if (!path)
3921 return -ENOMEM;
3922 path->reada = READA_FORWARD;
3923
3924 ret = prepare_to_relocate(rc);
3925 if (ret) {
3926 err = ret;
3927 goto out_free;
3928 }
3929
3930 while (1) {
3931 rc->reserved_bytes = 0;
3932 ret = btrfs_block_rsv_refill(rc->extent_root,
3933 rc->block_rsv, rc->block_rsv->size,
3934 BTRFS_RESERVE_FLUSH_ALL);
3935 if (ret) {
3936 err = ret;
3937 break;
3938 }
3939 progress++;
3940 trans = btrfs_start_transaction(rc->extent_root, 0);
3941 if (IS_ERR(trans)) {
3942 err = PTR_ERR(trans);
3943 trans = NULL;
3944 break;
3945 }
3946restart:
3947 if (update_backref_cache(trans, &rc->backref_cache)) {
3948 btrfs_end_transaction(trans, rc->extent_root);
3949 continue;
3950 }
3951
3952 ret = find_next_extent(rc, path, &key);
3953 if (ret < 0)
3954 err = ret;
3955 if (ret != 0)
3956 break;
3957
3958 rc->extents_found++;
3959
3960 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3961 struct btrfs_extent_item);
3962 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3963 if (item_size >= sizeof(*ei)) {
3964 flags = btrfs_extent_flags(path->nodes[0], ei);
3965 ret = check_extent_flags(flags);
3966 BUG_ON(ret);
3967
3968 } else {
3969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3970 u64 ref_owner;
3971 int path_change = 0;
3972
3973 BUG_ON(item_size !=
3974 sizeof(struct btrfs_extent_item_v0));
3975 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3976 &path_change);
3977 if (ret < 0) {
3978 err = ret;
3979 break;
3980 }
3981 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3982 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3983 else
3984 flags = BTRFS_EXTENT_FLAG_DATA;
3985
3986 if (path_change) {
3987 btrfs_release_path(path);
3988
3989 path->search_commit_root = 1;
3990 path->skip_locking = 1;
3991 ret = btrfs_search_slot(NULL, rc->extent_root,
3992 &key, path, 0, 0);
3993 if (ret < 0) {
3994 err = ret;
3995 break;
3996 }
3997 BUG_ON(ret > 0);
3998 }
3999#else
4000 BUG();
4001#endif
4002 }
4003
4004 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4005 ret = add_tree_block(rc, &key, path, &blocks);
4006 } else if (rc->stage == UPDATE_DATA_PTRS &&
4007 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4008 ret = add_data_references(rc, &key, path, &blocks);
4009 } else {
4010 btrfs_release_path(path);
4011 ret = 0;
4012 }
4013 if (ret < 0) {
4014 err = ret;
4015 break;
4016 }
4017
4018 if (!RB_EMPTY_ROOT(&blocks)) {
4019 ret = relocate_tree_blocks(trans, rc, &blocks);
4020 if (ret < 0) {
4021 /*
4022 * if we fail to relocate tree blocks, force to update
4023 * backref cache when committing transaction.
4024 */
4025 rc->backref_cache.last_trans = trans->transid - 1;
4026
4027 if (ret != -EAGAIN) {
4028 err = ret;
4029 break;
4030 }
4031 rc->extents_found--;
4032 rc->search_start = key.objectid;
4033 }
4034 }
4035
4036 btrfs_end_transaction_throttle(trans, rc->extent_root);
4037 btrfs_btree_balance_dirty(rc->extent_root);
4038 trans = NULL;
4039
4040 if (rc->stage == MOVE_DATA_EXTENTS &&
4041 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4042 rc->found_file_extent = 1;
4043 ret = relocate_data_extent(rc->data_inode,
4044 &key, &rc->cluster);
4045 if (ret < 0) {
4046 err = ret;
4047 break;
4048 }
4049 }
4050 }
4051 if (trans && progress && err == -ENOSPC) {
4052 ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4053 rc->block_group->flags);
4054 if (ret == 1) {
4055 err = 0;
4056 progress = 0;
4057 goto restart;
4058 }
4059 }
4060
4061 btrfs_release_path(path);
4062 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4063 GFP_NOFS);
4064
4065 if (trans) {
4066 btrfs_end_transaction_throttle(trans, rc->extent_root);
4067 btrfs_btree_balance_dirty(rc->extent_root);
4068 }
4069
4070 if (!err) {
4071 ret = relocate_file_extent_cluster(rc->data_inode,
4072 &rc->cluster);
4073 if (ret < 0)
4074 err = ret;
4075 }
4076
4077 rc->create_reloc_tree = 0;
4078 set_reloc_control(rc);
4079
4080 backref_cache_cleanup(&rc->backref_cache);
4081 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4082
4083 err = prepare_to_merge(rc, err);
4084
4085 merge_reloc_roots(rc);
4086
4087 rc->merge_reloc_tree = 0;
4088 unset_reloc_control(rc);
4089 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4090
4091 /* get rid of pinned extents */
4092 trans = btrfs_join_transaction(rc->extent_root);
4093 if (IS_ERR(trans))
4094 err = PTR_ERR(trans);
4095 else
4096 btrfs_commit_transaction(trans, rc->extent_root);
4097out_free:
4098 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4099 btrfs_free_path(path);
4100 return err;
4101}
4102
4103static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4104 struct btrfs_root *root, u64 objectid)
4105{
4106 struct btrfs_path *path;
4107 struct btrfs_inode_item *item;
4108 struct extent_buffer *leaf;
4109 int ret;
4110
4111 path = btrfs_alloc_path();
4112 if (!path)
4113 return -ENOMEM;
4114
4115 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4116 if (ret)
4117 goto out;
4118
4119 leaf = path->nodes[0];
4120 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4121 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4122 btrfs_set_inode_generation(leaf, item, 1);
4123 btrfs_set_inode_size(leaf, item, 0);
4124 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4125 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4126 BTRFS_INODE_PREALLOC);
4127 btrfs_mark_buffer_dirty(leaf);
4128out:
4129 btrfs_free_path(path);
4130 return ret;
4131}
4132
4133/*
4134 * helper to create inode for data relocation.
4135 * the inode is in data relocation tree and its link count is 0
4136 */
4137static noinline_for_stack
4138struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4139 struct btrfs_block_group_cache *group)
4140{
4141 struct inode *inode = NULL;
4142 struct btrfs_trans_handle *trans;
4143 struct btrfs_root *root;
4144 struct btrfs_key key;
4145 u64 objectid;
4146 int err = 0;
4147
4148 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4149 if (IS_ERR(root))
4150 return ERR_CAST(root);
4151
4152 trans = btrfs_start_transaction(root, 6);
4153 if (IS_ERR(trans))
4154 return ERR_CAST(trans);
4155
4156 err = btrfs_find_free_objectid(root, &objectid);
4157 if (err)
4158 goto out;
4159
4160 err = __insert_orphan_inode(trans, root, objectid);
4161 BUG_ON(err);
4162
4163 key.objectid = objectid;
4164 key.type = BTRFS_INODE_ITEM_KEY;
4165 key.offset = 0;
4166 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4167 BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4168 BTRFS_I(inode)->index_cnt = group->key.objectid;
4169
4170 err = btrfs_orphan_add(trans, inode);
4171out:
4172 btrfs_end_transaction(trans, root);
4173 btrfs_btree_balance_dirty(root);
4174 if (err) {
4175 if (inode)
4176 iput(inode);
4177 inode = ERR_PTR(err);
4178 }
4179 return inode;
4180}
4181
4182static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4183{
4184 struct reloc_control *rc;
4185
4186 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4187 if (!rc)
4188 return NULL;
4189
4190 INIT_LIST_HEAD(&rc->reloc_roots);
4191 backref_cache_init(&rc->backref_cache);
4192 mapping_tree_init(&rc->reloc_root_tree);
4193 extent_io_tree_init(&rc->processed_blocks,
4194 fs_info->btree_inode->i_mapping);
4195 return rc;
4196}
4197
4198/*
4199 * function to relocate all extents in a block group.
4200 */
4201int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4202{
4203 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4204 struct reloc_control *rc;
4205 struct inode *inode;
4206 struct btrfs_path *path;
4207 int ret;
4208 int rw = 0;
4209 int err = 0;
4210
4211 rc = alloc_reloc_control(fs_info);
4212 if (!rc)
4213 return -ENOMEM;
4214
4215 rc->extent_root = extent_root;
4216
4217 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4218 BUG_ON(!rc->block_group);
4219
4220 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4221 if (ret) {
4222 err = ret;
4223 goto out;
4224 }
4225 rw = 1;
4226
4227 path = btrfs_alloc_path();
4228 if (!path) {
4229 err = -ENOMEM;
4230 goto out;
4231 }
4232
4233 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4234 path);
4235 btrfs_free_path(path);
4236
4237 if (!IS_ERR(inode))
4238 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4239 else
4240 ret = PTR_ERR(inode);
4241
4242 if (ret && ret != -ENOENT) {
4243 err = ret;
4244 goto out;
4245 }
4246
4247 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4248 if (IS_ERR(rc->data_inode)) {
4249 err = PTR_ERR(rc->data_inode);
4250 rc->data_inode = NULL;
4251 goto out;
4252 }
4253
4254 btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4255 rc->block_group->key.objectid, rc->block_group->flags);
4256
4257 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4258 if (ret < 0) {
4259 err = ret;
4260 goto out;
4261 }
4262 btrfs_wait_ordered_roots(fs_info, -1);
4263
4264 while (1) {
4265 mutex_lock(&fs_info->cleaner_mutex);
4266 ret = relocate_block_group(rc);
4267 mutex_unlock(&fs_info->cleaner_mutex);
4268 if (ret < 0) {
4269 err = ret;
4270 goto out;
4271 }
4272
4273 if (rc->extents_found == 0)
4274 break;
4275
4276 btrfs_info(extent_root->fs_info, "found %llu extents",
4277 rc->extents_found);
4278
4279 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4280 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4281 (u64)-1);
4282 if (ret) {
4283 err = ret;
4284 goto out;
4285 }
4286 invalidate_mapping_pages(rc->data_inode->i_mapping,
4287 0, -1);
4288 rc->stage = UPDATE_DATA_PTRS;
4289 }
4290 }
4291
4292 WARN_ON(rc->block_group->pinned > 0);
4293 WARN_ON(rc->block_group->reserved > 0);
4294 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4295out:
4296 if (err && rw)
4297 btrfs_dec_block_group_ro(extent_root, rc->block_group);
4298 iput(rc->data_inode);
4299 btrfs_put_block_group(rc->block_group);
4300 kfree(rc);
4301 return err;
4302}
4303
4304static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4305{
4306 struct btrfs_trans_handle *trans;
4307 int ret, err;
4308
4309 trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4310 if (IS_ERR(trans))
4311 return PTR_ERR(trans);
4312
4313 memset(&root->root_item.drop_progress, 0,
4314 sizeof(root->root_item.drop_progress));
4315 root->root_item.drop_level = 0;
4316 btrfs_set_root_refs(&root->root_item, 0);
4317 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4318 &root->root_key, &root->root_item);
4319
4320 err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4321 if (err)
4322 return err;
4323 return ret;
4324}
4325
4326/*
4327 * recover relocation interrupted by system crash.
4328 *
4329 * this function resumes merging reloc trees with corresponding fs trees.
4330 * this is important for keeping the sharing of tree blocks
4331 */
4332int btrfs_recover_relocation(struct btrfs_root *root)
4333{
4334 LIST_HEAD(reloc_roots);
4335 struct btrfs_key key;
4336 struct btrfs_root *fs_root;
4337 struct btrfs_root *reloc_root;
4338 struct btrfs_path *path;
4339 struct extent_buffer *leaf;
4340 struct reloc_control *rc = NULL;
4341 struct btrfs_trans_handle *trans;
4342 int ret;
4343 int err = 0;
4344
4345 path = btrfs_alloc_path();
4346 if (!path)
4347 return -ENOMEM;
4348 path->reada = READA_BACK;
4349
4350 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4351 key.type = BTRFS_ROOT_ITEM_KEY;
4352 key.offset = (u64)-1;
4353
4354 while (1) {
4355 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4356 path, 0, 0);
4357 if (ret < 0) {
4358 err = ret;
4359 goto out;
4360 }
4361 if (ret > 0) {
4362 if (path->slots[0] == 0)
4363 break;
4364 path->slots[0]--;
4365 }
4366 leaf = path->nodes[0];
4367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4368 btrfs_release_path(path);
4369
4370 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4371 key.type != BTRFS_ROOT_ITEM_KEY)
4372 break;
4373
4374 reloc_root = btrfs_read_fs_root(root, &key);
4375 if (IS_ERR(reloc_root)) {
4376 err = PTR_ERR(reloc_root);
4377 goto out;
4378 }
4379
4380 list_add(&reloc_root->root_list, &reloc_roots);
4381
4382 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4383 fs_root = read_fs_root(root->fs_info,
4384 reloc_root->root_key.offset);
4385 if (IS_ERR(fs_root)) {
4386 ret = PTR_ERR(fs_root);
4387 if (ret != -ENOENT) {
4388 err = ret;
4389 goto out;
4390 }
4391 ret = mark_garbage_root(reloc_root);
4392 if (ret < 0) {
4393 err = ret;
4394 goto out;
4395 }
4396 }
4397 }
4398
4399 if (key.offset == 0)
4400 break;
4401
4402 key.offset--;
4403 }
4404 btrfs_release_path(path);
4405
4406 if (list_empty(&reloc_roots))
4407 goto out;
4408
4409 rc = alloc_reloc_control(root->fs_info);
4410 if (!rc) {
4411 err = -ENOMEM;
4412 goto out;
4413 }
4414
4415 rc->extent_root = root->fs_info->extent_root;
4416
4417 set_reloc_control(rc);
4418
4419 trans = btrfs_join_transaction(rc->extent_root);
4420 if (IS_ERR(trans)) {
4421 unset_reloc_control(rc);
4422 err = PTR_ERR(trans);
4423 goto out_free;
4424 }
4425
4426 rc->merge_reloc_tree = 1;
4427
4428 while (!list_empty(&reloc_roots)) {
4429 reloc_root = list_entry(reloc_roots.next,
4430 struct btrfs_root, root_list);
4431 list_del(&reloc_root->root_list);
4432
4433 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4434 list_add_tail(&reloc_root->root_list,
4435 &rc->reloc_roots);
4436 continue;
4437 }
4438
4439 fs_root = read_fs_root(root->fs_info,
4440 reloc_root->root_key.offset);
4441 if (IS_ERR(fs_root)) {
4442 err = PTR_ERR(fs_root);
4443 goto out_free;
4444 }
4445
4446 err = __add_reloc_root(reloc_root);
4447 BUG_ON(err < 0); /* -ENOMEM or logic error */
4448 fs_root->reloc_root = reloc_root;
4449 }
4450
4451 err = btrfs_commit_transaction(trans, rc->extent_root);
4452 if (err)
4453 goto out_free;
4454
4455 merge_reloc_roots(rc);
4456
4457 unset_reloc_control(rc);
4458
4459 trans = btrfs_join_transaction(rc->extent_root);
4460 if (IS_ERR(trans))
4461 err = PTR_ERR(trans);
4462 else
4463 err = btrfs_commit_transaction(trans, rc->extent_root);
4464out_free:
4465 kfree(rc);
4466out:
4467 if (!list_empty(&reloc_roots))
4468 free_reloc_roots(&reloc_roots);
4469
4470 btrfs_free_path(path);
4471
4472 if (err == 0) {
4473 /* cleanup orphan inode in data relocation tree */
4474 fs_root = read_fs_root(root->fs_info,
4475 BTRFS_DATA_RELOC_TREE_OBJECTID);
4476 if (IS_ERR(fs_root))
4477 err = PTR_ERR(fs_root);
4478 else
4479 err = btrfs_orphan_cleanup(fs_root);
4480 }
4481 return err;
4482}
4483
4484/*
4485 * helper to add ordered checksum for data relocation.
4486 *
4487 * cloning checksum properly handles the nodatasum extents.
4488 * it also saves CPU time to re-calculate the checksum.
4489 */
4490int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4491{
4492 struct btrfs_ordered_sum *sums;
4493 struct btrfs_ordered_extent *ordered;
4494 struct btrfs_root *root = BTRFS_I(inode)->root;
4495 int ret;
4496 u64 disk_bytenr;
4497 u64 new_bytenr;
4498 LIST_HEAD(list);
4499
4500 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4501 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4502
4503 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4504 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4505 disk_bytenr + len - 1, &list, 0);
4506 if (ret)
4507 goto out;
4508
4509 while (!list_empty(&list)) {
4510 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4511 list_del_init(&sums->list);
4512
4513 /*
4514 * We need to offset the new_bytenr based on where the csum is.
4515 * We need to do this because we will read in entire prealloc
4516 * extents but we may have written to say the middle of the
4517 * prealloc extent, so we need to make sure the csum goes with
4518 * the right disk offset.
4519 *
4520 * We can do this because the data reloc inode refers strictly
4521 * to the on disk bytes, so we don't have to worry about
4522 * disk_len vs real len like with real inodes since it's all
4523 * disk length.
4524 */
4525 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4526 sums->bytenr = new_bytenr;
4527
4528 btrfs_add_ordered_sum(inode, ordered, sums);
4529 }
4530out:
4531 btrfs_put_ordered_extent(ordered);
4532 return ret;
4533}
4534
4535int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4536 struct btrfs_root *root, struct extent_buffer *buf,
4537 struct extent_buffer *cow)
4538{
4539 struct reloc_control *rc;
4540 struct backref_node *node;
4541 int first_cow = 0;
4542 int level;
4543 int ret = 0;
4544
4545 rc = root->fs_info->reloc_ctl;
4546 if (!rc)
4547 return 0;
4548
4549 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4550 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4551
4552 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4553 if (buf == root->node)
4554 __update_reloc_root(root, cow->start);
4555 }
4556
4557 level = btrfs_header_level(buf);
4558 if (btrfs_header_generation(buf) <=
4559 btrfs_root_last_snapshot(&root->root_item))
4560 first_cow = 1;
4561
4562 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4563 rc->create_reloc_tree) {
4564 WARN_ON(!first_cow && level == 0);
4565
4566 node = rc->backref_cache.path[level];
4567 BUG_ON(node->bytenr != buf->start &&
4568 node->new_bytenr != buf->start);
4569
4570 drop_node_buffer(node);
4571 extent_buffer_get(cow);
4572 node->eb = cow;
4573 node->new_bytenr = cow->start;
4574
4575 if (!node->pending) {
4576 list_move_tail(&node->list,
4577 &rc->backref_cache.pending[level]);
4578 node->pending = 1;
4579 }
4580
4581 if (first_cow)
4582 __mark_block_processed(rc, node);
4583
4584 if (first_cow && level > 0)
4585 rc->nodes_relocated += buf->len;
4586 }
4587
4588 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4589 ret = replace_file_extents(trans, rc, root, cow);
4590 return ret;
4591}
4592
4593/*
4594 * called before creating snapshot. it calculates metadata reservation
4595 * requried for relocating tree blocks in the snapshot
4596 */
4597void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4598 u64 *bytes_to_reserve)
4599{
4600 struct btrfs_root *root;
4601 struct reloc_control *rc;
4602
4603 root = pending->root;
4604 if (!root->reloc_root)
4605 return;
4606
4607 rc = root->fs_info->reloc_ctl;
4608 if (!rc->merge_reloc_tree)
4609 return;
4610
4611 root = root->reloc_root;
4612 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4613 /*
4614 * relocation is in the stage of merging trees. the space
4615 * used by merging a reloc tree is twice the size of
4616 * relocated tree nodes in the worst case. half for cowing
4617 * the reloc tree, half for cowing the fs tree. the space
4618 * used by cowing the reloc tree will be freed after the
4619 * tree is dropped. if we create snapshot, cowing the fs
4620 * tree may use more space than it frees. so we need
4621 * reserve extra space.
4622 */
4623 *bytes_to_reserve += rc->nodes_relocated;
4624}
4625
4626/*
4627 * called after snapshot is created. migrate block reservation
4628 * and create reloc root for the newly created snapshot
4629 */
4630int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4631 struct btrfs_pending_snapshot *pending)
4632{
4633 struct btrfs_root *root = pending->root;
4634 struct btrfs_root *reloc_root;
4635 struct btrfs_root *new_root;
4636 struct reloc_control *rc;
4637 int ret;
4638
4639 if (!root->reloc_root)
4640 return 0;
4641
4642 rc = root->fs_info->reloc_ctl;
4643 rc->merging_rsv_size += rc->nodes_relocated;
4644
4645 if (rc->merge_reloc_tree) {
4646 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4647 rc->block_rsv,
4648 rc->nodes_relocated);
4649 if (ret)
4650 return ret;
4651 }
4652
4653 new_root = pending->snap;
4654 reloc_root = create_reloc_root(trans, root->reloc_root,
4655 new_root->root_key.objectid);
4656 if (IS_ERR(reloc_root))
4657 return PTR_ERR(reloc_root);
4658
4659 ret = __add_reloc_root(reloc_root);
4660 BUG_ON(ret < 0);
4661 new_root->reloc_root = reloc_root;
4662
4663 if (rc->create_reloc_tree)
4664 ret = clone_backref_node(trans, rc, root, reloc_root);
4665 return ret;
4666}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include "ctree.h"
13#include "disk-io.h"
14#include "transaction.h"
15#include "volumes.h"
16#include "locking.h"
17#include "btrfs_inode.h"
18#include "async-thread.h"
19#include "free-space-cache.h"
20#include "inode-map.h"
21#include "qgroup.h"
22#include "print-tree.h"
23#include "delalloc-space.h"
24#include "block-group.h"
25
26/*
27 * backref_node, mapping_node and tree_block start with this
28 */
29struct tree_entry {
30 struct rb_node rb_node;
31 u64 bytenr;
32};
33
34/*
35 * present a tree block in the backref cache
36 */
37struct backref_node {
38 struct rb_node rb_node;
39 u64 bytenr;
40
41 u64 new_bytenr;
42 /* objectid of tree block owner, can be not uptodate */
43 u64 owner;
44 /* link to pending, changed or detached list */
45 struct list_head list;
46 /* list of upper level blocks reference this block */
47 struct list_head upper;
48 /* list of child blocks in the cache */
49 struct list_head lower;
50 /* NULL if this node is not tree root */
51 struct btrfs_root *root;
52 /* extent buffer got by COW the block */
53 struct extent_buffer *eb;
54 /* level of tree block */
55 unsigned int level:8;
56 /* is the block in non-reference counted tree */
57 unsigned int cowonly:1;
58 /* 1 if no child node in the cache */
59 unsigned int lowest:1;
60 /* is the extent buffer locked */
61 unsigned int locked:1;
62 /* has the block been processed */
63 unsigned int processed:1;
64 /* have backrefs of this block been checked */
65 unsigned int checked:1;
66 /*
67 * 1 if corresponding block has been cowed but some upper
68 * level block pointers may not point to the new location
69 */
70 unsigned int pending:1;
71 /*
72 * 1 if the backref node isn't connected to any other
73 * backref node.
74 */
75 unsigned int detached:1;
76};
77
78/*
79 * present a block pointer in the backref cache
80 */
81struct backref_edge {
82 struct list_head list[2];
83 struct backref_node *node[2];
84};
85
86#define LOWER 0
87#define UPPER 1
88#define RELOCATION_RESERVED_NODES 256
89
90struct backref_cache {
91 /* red black tree of all backref nodes in the cache */
92 struct rb_root rb_root;
93 /* for passing backref nodes to btrfs_reloc_cow_block */
94 struct backref_node *path[BTRFS_MAX_LEVEL];
95 /*
96 * list of blocks that have been cowed but some block
97 * pointers in upper level blocks may not reflect the
98 * new location
99 */
100 struct list_head pending[BTRFS_MAX_LEVEL];
101 /* list of backref nodes with no child node */
102 struct list_head leaves;
103 /* list of blocks that have been cowed in current transaction */
104 struct list_head changed;
105 /* list of detached backref node. */
106 struct list_head detached;
107
108 u64 last_trans;
109
110 int nr_nodes;
111 int nr_edges;
112};
113
114/*
115 * map address of tree root to tree
116 */
117struct mapping_node {
118 struct rb_node rb_node;
119 u64 bytenr;
120 void *data;
121};
122
123struct mapping_tree {
124 struct rb_root rb_root;
125 spinlock_t lock;
126};
127
128/*
129 * present a tree block to process
130 */
131struct tree_block {
132 struct rb_node rb_node;
133 u64 bytenr;
134 struct btrfs_key key;
135 unsigned int level:8;
136 unsigned int key_ready:1;
137};
138
139#define MAX_EXTENTS 128
140
141struct file_extent_cluster {
142 u64 start;
143 u64 end;
144 u64 boundary[MAX_EXTENTS];
145 unsigned int nr;
146};
147
148struct reloc_control {
149 /* block group to relocate */
150 struct btrfs_block_group_cache *block_group;
151 /* extent tree */
152 struct btrfs_root *extent_root;
153 /* inode for moving data */
154 struct inode *data_inode;
155
156 struct btrfs_block_rsv *block_rsv;
157
158 struct backref_cache backref_cache;
159
160 struct file_extent_cluster cluster;
161 /* tree blocks have been processed */
162 struct extent_io_tree processed_blocks;
163 /* map start of tree root to corresponding reloc tree */
164 struct mapping_tree reloc_root_tree;
165 /* list of reloc trees */
166 struct list_head reloc_roots;
167 /* list of subvolume trees that get relocated */
168 struct list_head dirty_subvol_roots;
169 /* size of metadata reservation for merging reloc trees */
170 u64 merging_rsv_size;
171 /* size of relocated tree nodes */
172 u64 nodes_relocated;
173 /* reserved size for block group relocation*/
174 u64 reserved_bytes;
175
176 u64 search_start;
177 u64 extents_found;
178
179 unsigned int stage:8;
180 unsigned int create_reloc_tree:1;
181 unsigned int merge_reloc_tree:1;
182 unsigned int found_file_extent:1;
183};
184
185/* stages of data relocation */
186#define MOVE_DATA_EXTENTS 0
187#define UPDATE_DATA_PTRS 1
188
189static void remove_backref_node(struct backref_cache *cache,
190 struct backref_node *node);
191static void __mark_block_processed(struct reloc_control *rc,
192 struct backref_node *node);
193
194static void mapping_tree_init(struct mapping_tree *tree)
195{
196 tree->rb_root = RB_ROOT;
197 spin_lock_init(&tree->lock);
198}
199
200static void backref_cache_init(struct backref_cache *cache)
201{
202 int i;
203 cache->rb_root = RB_ROOT;
204 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
205 INIT_LIST_HEAD(&cache->pending[i]);
206 INIT_LIST_HEAD(&cache->changed);
207 INIT_LIST_HEAD(&cache->detached);
208 INIT_LIST_HEAD(&cache->leaves);
209}
210
211static void backref_cache_cleanup(struct backref_cache *cache)
212{
213 struct backref_node *node;
214 int i;
215
216 while (!list_empty(&cache->detached)) {
217 node = list_entry(cache->detached.next,
218 struct backref_node, list);
219 remove_backref_node(cache, node);
220 }
221
222 while (!list_empty(&cache->leaves)) {
223 node = list_entry(cache->leaves.next,
224 struct backref_node, lower);
225 remove_backref_node(cache, node);
226 }
227
228 cache->last_trans = 0;
229
230 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
231 ASSERT(list_empty(&cache->pending[i]));
232 ASSERT(list_empty(&cache->changed));
233 ASSERT(list_empty(&cache->detached));
234 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
235 ASSERT(!cache->nr_nodes);
236 ASSERT(!cache->nr_edges);
237}
238
239static struct backref_node *alloc_backref_node(struct backref_cache *cache)
240{
241 struct backref_node *node;
242
243 node = kzalloc(sizeof(*node), GFP_NOFS);
244 if (node) {
245 INIT_LIST_HEAD(&node->list);
246 INIT_LIST_HEAD(&node->upper);
247 INIT_LIST_HEAD(&node->lower);
248 RB_CLEAR_NODE(&node->rb_node);
249 cache->nr_nodes++;
250 }
251 return node;
252}
253
254static void free_backref_node(struct backref_cache *cache,
255 struct backref_node *node)
256{
257 if (node) {
258 cache->nr_nodes--;
259 kfree(node);
260 }
261}
262
263static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
264{
265 struct backref_edge *edge;
266
267 edge = kzalloc(sizeof(*edge), GFP_NOFS);
268 if (edge)
269 cache->nr_edges++;
270 return edge;
271}
272
273static void free_backref_edge(struct backref_cache *cache,
274 struct backref_edge *edge)
275{
276 if (edge) {
277 cache->nr_edges--;
278 kfree(edge);
279 }
280}
281
282static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
283 struct rb_node *node)
284{
285 struct rb_node **p = &root->rb_node;
286 struct rb_node *parent = NULL;
287 struct tree_entry *entry;
288
289 while (*p) {
290 parent = *p;
291 entry = rb_entry(parent, struct tree_entry, rb_node);
292
293 if (bytenr < entry->bytenr)
294 p = &(*p)->rb_left;
295 else if (bytenr > entry->bytenr)
296 p = &(*p)->rb_right;
297 else
298 return parent;
299 }
300
301 rb_link_node(node, parent, p);
302 rb_insert_color(node, root);
303 return NULL;
304}
305
306static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
307{
308 struct rb_node *n = root->rb_node;
309 struct tree_entry *entry;
310
311 while (n) {
312 entry = rb_entry(n, struct tree_entry, rb_node);
313
314 if (bytenr < entry->bytenr)
315 n = n->rb_left;
316 else if (bytenr > entry->bytenr)
317 n = n->rb_right;
318 else
319 return n;
320 }
321 return NULL;
322}
323
324static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
325{
326
327 struct btrfs_fs_info *fs_info = NULL;
328 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
329 rb_node);
330 if (bnode->root)
331 fs_info = bnode->root->fs_info;
332 btrfs_panic(fs_info, errno,
333 "Inconsistency in backref cache found at offset %llu",
334 bytenr);
335}
336
337/*
338 * walk up backref nodes until reach node presents tree root
339 */
340static struct backref_node *walk_up_backref(struct backref_node *node,
341 struct backref_edge *edges[],
342 int *index)
343{
344 struct backref_edge *edge;
345 int idx = *index;
346
347 while (!list_empty(&node->upper)) {
348 edge = list_entry(node->upper.next,
349 struct backref_edge, list[LOWER]);
350 edges[idx++] = edge;
351 node = edge->node[UPPER];
352 }
353 BUG_ON(node->detached);
354 *index = idx;
355 return node;
356}
357
358/*
359 * walk down backref nodes to find start of next reference path
360 */
361static struct backref_node *walk_down_backref(struct backref_edge *edges[],
362 int *index)
363{
364 struct backref_edge *edge;
365 struct backref_node *lower;
366 int idx = *index;
367
368 while (idx > 0) {
369 edge = edges[idx - 1];
370 lower = edge->node[LOWER];
371 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
372 idx--;
373 continue;
374 }
375 edge = list_entry(edge->list[LOWER].next,
376 struct backref_edge, list[LOWER]);
377 edges[idx - 1] = edge;
378 *index = idx;
379 return edge->node[UPPER];
380 }
381 *index = 0;
382 return NULL;
383}
384
385static void unlock_node_buffer(struct backref_node *node)
386{
387 if (node->locked) {
388 btrfs_tree_unlock(node->eb);
389 node->locked = 0;
390 }
391}
392
393static void drop_node_buffer(struct backref_node *node)
394{
395 if (node->eb) {
396 unlock_node_buffer(node);
397 free_extent_buffer(node->eb);
398 node->eb = NULL;
399 }
400}
401
402static void drop_backref_node(struct backref_cache *tree,
403 struct backref_node *node)
404{
405 BUG_ON(!list_empty(&node->upper));
406
407 drop_node_buffer(node);
408 list_del(&node->list);
409 list_del(&node->lower);
410 if (!RB_EMPTY_NODE(&node->rb_node))
411 rb_erase(&node->rb_node, &tree->rb_root);
412 free_backref_node(tree, node);
413}
414
415/*
416 * remove a backref node from the backref cache
417 */
418static void remove_backref_node(struct backref_cache *cache,
419 struct backref_node *node)
420{
421 struct backref_node *upper;
422 struct backref_edge *edge;
423
424 if (!node)
425 return;
426
427 BUG_ON(!node->lowest && !node->detached);
428 while (!list_empty(&node->upper)) {
429 edge = list_entry(node->upper.next, struct backref_edge,
430 list[LOWER]);
431 upper = edge->node[UPPER];
432 list_del(&edge->list[LOWER]);
433 list_del(&edge->list[UPPER]);
434 free_backref_edge(cache, edge);
435
436 if (RB_EMPTY_NODE(&upper->rb_node)) {
437 BUG_ON(!list_empty(&node->upper));
438 drop_backref_node(cache, node);
439 node = upper;
440 node->lowest = 1;
441 continue;
442 }
443 /*
444 * add the node to leaf node list if no other
445 * child block cached.
446 */
447 if (list_empty(&upper->lower)) {
448 list_add_tail(&upper->lower, &cache->leaves);
449 upper->lowest = 1;
450 }
451 }
452
453 drop_backref_node(cache, node);
454}
455
456static void update_backref_node(struct backref_cache *cache,
457 struct backref_node *node, u64 bytenr)
458{
459 struct rb_node *rb_node;
460 rb_erase(&node->rb_node, &cache->rb_root);
461 node->bytenr = bytenr;
462 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
463 if (rb_node)
464 backref_tree_panic(rb_node, -EEXIST, bytenr);
465}
466
467/*
468 * update backref cache after a transaction commit
469 */
470static int update_backref_cache(struct btrfs_trans_handle *trans,
471 struct backref_cache *cache)
472{
473 struct backref_node *node;
474 int level = 0;
475
476 if (cache->last_trans == 0) {
477 cache->last_trans = trans->transid;
478 return 0;
479 }
480
481 if (cache->last_trans == trans->transid)
482 return 0;
483
484 /*
485 * detached nodes are used to avoid unnecessary backref
486 * lookup. transaction commit changes the extent tree.
487 * so the detached nodes are no longer useful.
488 */
489 while (!list_empty(&cache->detached)) {
490 node = list_entry(cache->detached.next,
491 struct backref_node, list);
492 remove_backref_node(cache, node);
493 }
494
495 while (!list_empty(&cache->changed)) {
496 node = list_entry(cache->changed.next,
497 struct backref_node, list);
498 list_del_init(&node->list);
499 BUG_ON(node->pending);
500 update_backref_node(cache, node, node->new_bytenr);
501 }
502
503 /*
504 * some nodes can be left in the pending list if there were
505 * errors during processing the pending nodes.
506 */
507 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
508 list_for_each_entry(node, &cache->pending[level], list) {
509 BUG_ON(!node->pending);
510 if (node->bytenr == node->new_bytenr)
511 continue;
512 update_backref_node(cache, node, node->new_bytenr);
513 }
514 }
515
516 cache->last_trans = 0;
517 return 1;
518}
519
520
521static int should_ignore_root(struct btrfs_root *root)
522{
523 struct btrfs_root *reloc_root;
524
525 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
526 return 0;
527
528 reloc_root = root->reloc_root;
529 if (!reloc_root)
530 return 0;
531
532 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
533 root->fs_info->running_transaction->transid - 1)
534 return 0;
535 /*
536 * if there is reloc tree and it was created in previous
537 * transaction backref lookup can find the reloc tree,
538 * so backref node for the fs tree root is useless for
539 * relocation.
540 */
541 return 1;
542}
543/*
544 * find reloc tree by address of tree root
545 */
546static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
547 u64 bytenr)
548{
549 struct rb_node *rb_node;
550 struct mapping_node *node;
551 struct btrfs_root *root = NULL;
552
553 spin_lock(&rc->reloc_root_tree.lock);
554 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
555 if (rb_node) {
556 node = rb_entry(rb_node, struct mapping_node, rb_node);
557 root = (struct btrfs_root *)node->data;
558 }
559 spin_unlock(&rc->reloc_root_tree.lock);
560 return root;
561}
562
563static int is_cowonly_root(u64 root_objectid)
564{
565 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
566 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
567 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
568 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
569 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
570 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
571 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
572 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
573 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
574 return 1;
575 return 0;
576}
577
578static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
579 u64 root_objectid)
580{
581 struct btrfs_key key;
582
583 key.objectid = root_objectid;
584 key.type = BTRFS_ROOT_ITEM_KEY;
585 if (is_cowonly_root(root_objectid))
586 key.offset = 0;
587 else
588 key.offset = (u64)-1;
589
590 return btrfs_get_fs_root(fs_info, &key, false);
591}
592
593static noinline_for_stack
594int find_inline_backref(struct extent_buffer *leaf, int slot,
595 unsigned long *ptr, unsigned long *end)
596{
597 struct btrfs_key key;
598 struct btrfs_extent_item *ei;
599 struct btrfs_tree_block_info *bi;
600 u32 item_size;
601
602 btrfs_item_key_to_cpu(leaf, &key, slot);
603
604 item_size = btrfs_item_size_nr(leaf, slot);
605 if (item_size < sizeof(*ei)) {
606 btrfs_print_v0_err(leaf->fs_info);
607 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
608 return 1;
609 }
610 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
611 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
612 BTRFS_EXTENT_FLAG_TREE_BLOCK));
613
614 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
615 item_size <= sizeof(*ei) + sizeof(*bi)) {
616 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
617 return 1;
618 }
619 if (key.type == BTRFS_METADATA_ITEM_KEY &&
620 item_size <= sizeof(*ei)) {
621 WARN_ON(item_size < sizeof(*ei));
622 return 1;
623 }
624
625 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
626 bi = (struct btrfs_tree_block_info *)(ei + 1);
627 *ptr = (unsigned long)(bi + 1);
628 } else {
629 *ptr = (unsigned long)(ei + 1);
630 }
631 *end = (unsigned long)ei + item_size;
632 return 0;
633}
634
635/*
636 * build backref tree for a given tree block. root of the backref tree
637 * corresponds the tree block, leaves of the backref tree correspond
638 * roots of b-trees that reference the tree block.
639 *
640 * the basic idea of this function is check backrefs of a given block
641 * to find upper level blocks that reference the block, and then check
642 * backrefs of these upper level blocks recursively. the recursion stop
643 * when tree root is reached or backrefs for the block is cached.
644 *
645 * NOTE: if we find backrefs for a block are cached, we know backrefs
646 * for all upper level blocks that directly/indirectly reference the
647 * block are also cached.
648 */
649static noinline_for_stack
650struct backref_node *build_backref_tree(struct reloc_control *rc,
651 struct btrfs_key *node_key,
652 int level, u64 bytenr)
653{
654 struct backref_cache *cache = &rc->backref_cache;
655 struct btrfs_path *path1; /* For searching extent root */
656 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
657 struct extent_buffer *eb;
658 struct btrfs_root *root;
659 struct backref_node *cur;
660 struct backref_node *upper;
661 struct backref_node *lower;
662 struct backref_node *node = NULL;
663 struct backref_node *exist = NULL;
664 struct backref_edge *edge;
665 struct rb_node *rb_node;
666 struct btrfs_key key;
667 unsigned long end;
668 unsigned long ptr;
669 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
670 LIST_HEAD(useless);
671 int cowonly;
672 int ret;
673 int err = 0;
674 bool need_check = true;
675
676 path1 = btrfs_alloc_path();
677 path2 = btrfs_alloc_path();
678 if (!path1 || !path2) {
679 err = -ENOMEM;
680 goto out;
681 }
682 path1->reada = READA_FORWARD;
683 path2->reada = READA_FORWARD;
684
685 node = alloc_backref_node(cache);
686 if (!node) {
687 err = -ENOMEM;
688 goto out;
689 }
690
691 node->bytenr = bytenr;
692 node->level = level;
693 node->lowest = 1;
694 cur = node;
695again:
696 end = 0;
697 ptr = 0;
698 key.objectid = cur->bytenr;
699 key.type = BTRFS_METADATA_ITEM_KEY;
700 key.offset = (u64)-1;
701
702 path1->search_commit_root = 1;
703 path1->skip_locking = 1;
704 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
705 0, 0);
706 if (ret < 0) {
707 err = ret;
708 goto out;
709 }
710 ASSERT(ret);
711 ASSERT(path1->slots[0]);
712
713 path1->slots[0]--;
714
715 WARN_ON(cur->checked);
716 if (!list_empty(&cur->upper)) {
717 /*
718 * the backref was added previously when processing
719 * backref of type BTRFS_TREE_BLOCK_REF_KEY
720 */
721 ASSERT(list_is_singular(&cur->upper));
722 edge = list_entry(cur->upper.next, struct backref_edge,
723 list[LOWER]);
724 ASSERT(list_empty(&edge->list[UPPER]));
725 exist = edge->node[UPPER];
726 /*
727 * add the upper level block to pending list if we need
728 * check its backrefs
729 */
730 if (!exist->checked)
731 list_add_tail(&edge->list[UPPER], &list);
732 } else {
733 exist = NULL;
734 }
735
736 while (1) {
737 cond_resched();
738 eb = path1->nodes[0];
739
740 if (ptr >= end) {
741 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
742 ret = btrfs_next_leaf(rc->extent_root, path1);
743 if (ret < 0) {
744 err = ret;
745 goto out;
746 }
747 if (ret > 0)
748 break;
749 eb = path1->nodes[0];
750 }
751
752 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
753 if (key.objectid != cur->bytenr) {
754 WARN_ON(exist);
755 break;
756 }
757
758 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
759 key.type == BTRFS_METADATA_ITEM_KEY) {
760 ret = find_inline_backref(eb, path1->slots[0],
761 &ptr, &end);
762 if (ret)
763 goto next;
764 }
765 }
766
767 if (ptr < end) {
768 /* update key for inline back ref */
769 struct btrfs_extent_inline_ref *iref;
770 int type;
771 iref = (struct btrfs_extent_inline_ref *)ptr;
772 type = btrfs_get_extent_inline_ref_type(eb, iref,
773 BTRFS_REF_TYPE_BLOCK);
774 if (type == BTRFS_REF_TYPE_INVALID) {
775 err = -EUCLEAN;
776 goto out;
777 }
778 key.type = type;
779 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
780
781 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
782 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
783 }
784
785 /*
786 * Parent node found and matches current inline ref, no need to
787 * rebuild this node for this inline ref.
788 */
789 if (exist &&
790 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
791 exist->owner == key.offset) ||
792 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
793 exist->bytenr == key.offset))) {
794 exist = NULL;
795 goto next;
796 }
797
798 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
799 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
800 if (key.objectid == key.offset) {
801 /*
802 * Only root blocks of reloc trees use backref
803 * pointing to itself.
804 */
805 root = find_reloc_root(rc, cur->bytenr);
806 ASSERT(root);
807 cur->root = root;
808 break;
809 }
810
811 edge = alloc_backref_edge(cache);
812 if (!edge) {
813 err = -ENOMEM;
814 goto out;
815 }
816 rb_node = tree_search(&cache->rb_root, key.offset);
817 if (!rb_node) {
818 upper = alloc_backref_node(cache);
819 if (!upper) {
820 free_backref_edge(cache, edge);
821 err = -ENOMEM;
822 goto out;
823 }
824 upper->bytenr = key.offset;
825 upper->level = cur->level + 1;
826 /*
827 * backrefs for the upper level block isn't
828 * cached, add the block to pending list
829 */
830 list_add_tail(&edge->list[UPPER], &list);
831 } else {
832 upper = rb_entry(rb_node, struct backref_node,
833 rb_node);
834 ASSERT(upper->checked);
835 INIT_LIST_HEAD(&edge->list[UPPER]);
836 }
837 list_add_tail(&edge->list[LOWER], &cur->upper);
838 edge->node[LOWER] = cur;
839 edge->node[UPPER] = upper;
840
841 goto next;
842 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
843 err = -EINVAL;
844 btrfs_print_v0_err(rc->extent_root->fs_info);
845 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
846 NULL);
847 goto out;
848 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
849 goto next;
850 }
851
852 /*
853 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
854 * means the root objectid. We need to search the tree to get
855 * its parent bytenr.
856 */
857 root = read_fs_root(rc->extent_root->fs_info, key.offset);
858 if (IS_ERR(root)) {
859 err = PTR_ERR(root);
860 goto out;
861 }
862
863 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
864 cur->cowonly = 1;
865
866 if (btrfs_root_level(&root->root_item) == cur->level) {
867 /* tree root */
868 ASSERT(btrfs_root_bytenr(&root->root_item) ==
869 cur->bytenr);
870 if (should_ignore_root(root))
871 list_add(&cur->list, &useless);
872 else
873 cur->root = root;
874 break;
875 }
876
877 level = cur->level + 1;
878
879 /* Search the tree to find parent blocks referring the block. */
880 path2->search_commit_root = 1;
881 path2->skip_locking = 1;
882 path2->lowest_level = level;
883 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
884 path2->lowest_level = 0;
885 if (ret < 0) {
886 err = ret;
887 goto out;
888 }
889 if (ret > 0 && path2->slots[level] > 0)
890 path2->slots[level]--;
891
892 eb = path2->nodes[level];
893 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
894 cur->bytenr) {
895 btrfs_err(root->fs_info,
896 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
897 cur->bytenr, level - 1,
898 root->root_key.objectid,
899 node_key->objectid, node_key->type,
900 node_key->offset);
901 err = -ENOENT;
902 goto out;
903 }
904 lower = cur;
905 need_check = true;
906
907 /* Add all nodes and edges in the path */
908 for (; level < BTRFS_MAX_LEVEL; level++) {
909 if (!path2->nodes[level]) {
910 ASSERT(btrfs_root_bytenr(&root->root_item) ==
911 lower->bytenr);
912 if (should_ignore_root(root))
913 list_add(&lower->list, &useless);
914 else
915 lower->root = root;
916 break;
917 }
918
919 edge = alloc_backref_edge(cache);
920 if (!edge) {
921 err = -ENOMEM;
922 goto out;
923 }
924
925 eb = path2->nodes[level];
926 rb_node = tree_search(&cache->rb_root, eb->start);
927 if (!rb_node) {
928 upper = alloc_backref_node(cache);
929 if (!upper) {
930 free_backref_edge(cache, edge);
931 err = -ENOMEM;
932 goto out;
933 }
934 upper->bytenr = eb->start;
935 upper->owner = btrfs_header_owner(eb);
936 upper->level = lower->level + 1;
937 if (!test_bit(BTRFS_ROOT_REF_COWS,
938 &root->state))
939 upper->cowonly = 1;
940
941 /*
942 * if we know the block isn't shared
943 * we can void checking its backrefs.
944 */
945 if (btrfs_block_can_be_shared(root, eb))
946 upper->checked = 0;
947 else
948 upper->checked = 1;
949
950 /*
951 * add the block to pending list if we
952 * need check its backrefs, we only do this once
953 * while walking up a tree as we will catch
954 * anything else later on.
955 */
956 if (!upper->checked && need_check) {
957 need_check = false;
958 list_add_tail(&edge->list[UPPER],
959 &list);
960 } else {
961 if (upper->checked)
962 need_check = true;
963 INIT_LIST_HEAD(&edge->list[UPPER]);
964 }
965 } else {
966 upper = rb_entry(rb_node, struct backref_node,
967 rb_node);
968 ASSERT(upper->checked);
969 INIT_LIST_HEAD(&edge->list[UPPER]);
970 if (!upper->owner)
971 upper->owner = btrfs_header_owner(eb);
972 }
973 list_add_tail(&edge->list[LOWER], &lower->upper);
974 edge->node[LOWER] = lower;
975 edge->node[UPPER] = upper;
976
977 if (rb_node)
978 break;
979 lower = upper;
980 upper = NULL;
981 }
982 btrfs_release_path(path2);
983next:
984 if (ptr < end) {
985 ptr += btrfs_extent_inline_ref_size(key.type);
986 if (ptr >= end) {
987 WARN_ON(ptr > end);
988 ptr = 0;
989 end = 0;
990 }
991 }
992 if (ptr >= end)
993 path1->slots[0]++;
994 }
995 btrfs_release_path(path1);
996
997 cur->checked = 1;
998 WARN_ON(exist);
999
1000 /* the pending list isn't empty, take the first block to process */
1001 if (!list_empty(&list)) {
1002 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1003 list_del_init(&edge->list[UPPER]);
1004 cur = edge->node[UPPER];
1005 goto again;
1006 }
1007
1008 /*
1009 * everything goes well, connect backref nodes and insert backref nodes
1010 * into the cache.
1011 */
1012 ASSERT(node->checked);
1013 cowonly = node->cowonly;
1014 if (!cowonly) {
1015 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1016 &node->rb_node);
1017 if (rb_node)
1018 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1019 list_add_tail(&node->lower, &cache->leaves);
1020 }
1021
1022 list_for_each_entry(edge, &node->upper, list[LOWER])
1023 list_add_tail(&edge->list[UPPER], &list);
1024
1025 while (!list_empty(&list)) {
1026 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1027 list_del_init(&edge->list[UPPER]);
1028 upper = edge->node[UPPER];
1029 if (upper->detached) {
1030 list_del(&edge->list[LOWER]);
1031 lower = edge->node[LOWER];
1032 free_backref_edge(cache, edge);
1033 if (list_empty(&lower->upper))
1034 list_add(&lower->list, &useless);
1035 continue;
1036 }
1037
1038 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1039 if (upper->lowest) {
1040 list_del_init(&upper->lower);
1041 upper->lowest = 0;
1042 }
1043
1044 list_add_tail(&edge->list[UPPER], &upper->lower);
1045 continue;
1046 }
1047
1048 if (!upper->checked) {
1049 /*
1050 * Still want to blow up for developers since this is a
1051 * logic bug.
1052 */
1053 ASSERT(0);
1054 err = -EINVAL;
1055 goto out;
1056 }
1057 if (cowonly != upper->cowonly) {
1058 ASSERT(0);
1059 err = -EINVAL;
1060 goto out;
1061 }
1062
1063 if (!cowonly) {
1064 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1065 &upper->rb_node);
1066 if (rb_node)
1067 backref_tree_panic(rb_node, -EEXIST,
1068 upper->bytenr);
1069 }
1070
1071 list_add_tail(&edge->list[UPPER], &upper->lower);
1072
1073 list_for_each_entry(edge, &upper->upper, list[LOWER])
1074 list_add_tail(&edge->list[UPPER], &list);
1075 }
1076 /*
1077 * process useless backref nodes. backref nodes for tree leaves
1078 * are deleted from the cache. backref nodes for upper level
1079 * tree blocks are left in the cache to avoid unnecessary backref
1080 * lookup.
1081 */
1082 while (!list_empty(&useless)) {
1083 upper = list_entry(useless.next, struct backref_node, list);
1084 list_del_init(&upper->list);
1085 ASSERT(list_empty(&upper->upper));
1086 if (upper == node)
1087 node = NULL;
1088 if (upper->lowest) {
1089 list_del_init(&upper->lower);
1090 upper->lowest = 0;
1091 }
1092 while (!list_empty(&upper->lower)) {
1093 edge = list_entry(upper->lower.next,
1094 struct backref_edge, list[UPPER]);
1095 list_del(&edge->list[UPPER]);
1096 list_del(&edge->list[LOWER]);
1097 lower = edge->node[LOWER];
1098 free_backref_edge(cache, edge);
1099
1100 if (list_empty(&lower->upper))
1101 list_add(&lower->list, &useless);
1102 }
1103 __mark_block_processed(rc, upper);
1104 if (upper->level > 0) {
1105 list_add(&upper->list, &cache->detached);
1106 upper->detached = 1;
1107 } else {
1108 rb_erase(&upper->rb_node, &cache->rb_root);
1109 free_backref_node(cache, upper);
1110 }
1111 }
1112out:
1113 btrfs_free_path(path1);
1114 btrfs_free_path(path2);
1115 if (err) {
1116 while (!list_empty(&useless)) {
1117 lower = list_entry(useless.next,
1118 struct backref_node, list);
1119 list_del_init(&lower->list);
1120 }
1121 while (!list_empty(&list)) {
1122 edge = list_first_entry(&list, struct backref_edge,
1123 list[UPPER]);
1124 list_del(&edge->list[UPPER]);
1125 list_del(&edge->list[LOWER]);
1126 lower = edge->node[LOWER];
1127 upper = edge->node[UPPER];
1128 free_backref_edge(cache, edge);
1129
1130 /*
1131 * Lower is no longer linked to any upper backref nodes
1132 * and isn't in the cache, we can free it ourselves.
1133 */
1134 if (list_empty(&lower->upper) &&
1135 RB_EMPTY_NODE(&lower->rb_node))
1136 list_add(&lower->list, &useless);
1137
1138 if (!RB_EMPTY_NODE(&upper->rb_node))
1139 continue;
1140
1141 /* Add this guy's upper edges to the list to process */
1142 list_for_each_entry(edge, &upper->upper, list[LOWER])
1143 list_add_tail(&edge->list[UPPER], &list);
1144 if (list_empty(&upper->upper))
1145 list_add(&upper->list, &useless);
1146 }
1147
1148 while (!list_empty(&useless)) {
1149 lower = list_entry(useless.next,
1150 struct backref_node, list);
1151 list_del_init(&lower->list);
1152 if (lower == node)
1153 node = NULL;
1154 free_backref_node(cache, lower);
1155 }
1156
1157 free_backref_node(cache, node);
1158 return ERR_PTR(err);
1159 }
1160 ASSERT(!node || !node->detached);
1161 return node;
1162}
1163
1164/*
1165 * helper to add backref node for the newly created snapshot.
1166 * the backref node is created by cloning backref node that
1167 * corresponds to root of source tree
1168 */
1169static int clone_backref_node(struct btrfs_trans_handle *trans,
1170 struct reloc_control *rc,
1171 struct btrfs_root *src,
1172 struct btrfs_root *dest)
1173{
1174 struct btrfs_root *reloc_root = src->reloc_root;
1175 struct backref_cache *cache = &rc->backref_cache;
1176 struct backref_node *node = NULL;
1177 struct backref_node *new_node;
1178 struct backref_edge *edge;
1179 struct backref_edge *new_edge;
1180 struct rb_node *rb_node;
1181
1182 if (cache->last_trans > 0)
1183 update_backref_cache(trans, cache);
1184
1185 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1186 if (rb_node) {
1187 node = rb_entry(rb_node, struct backref_node, rb_node);
1188 if (node->detached)
1189 node = NULL;
1190 else
1191 BUG_ON(node->new_bytenr != reloc_root->node->start);
1192 }
1193
1194 if (!node) {
1195 rb_node = tree_search(&cache->rb_root,
1196 reloc_root->commit_root->start);
1197 if (rb_node) {
1198 node = rb_entry(rb_node, struct backref_node,
1199 rb_node);
1200 BUG_ON(node->detached);
1201 }
1202 }
1203
1204 if (!node)
1205 return 0;
1206
1207 new_node = alloc_backref_node(cache);
1208 if (!new_node)
1209 return -ENOMEM;
1210
1211 new_node->bytenr = dest->node->start;
1212 new_node->level = node->level;
1213 new_node->lowest = node->lowest;
1214 new_node->checked = 1;
1215 new_node->root = dest;
1216
1217 if (!node->lowest) {
1218 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1219 new_edge = alloc_backref_edge(cache);
1220 if (!new_edge)
1221 goto fail;
1222
1223 new_edge->node[UPPER] = new_node;
1224 new_edge->node[LOWER] = edge->node[LOWER];
1225 list_add_tail(&new_edge->list[UPPER],
1226 &new_node->lower);
1227 }
1228 } else {
1229 list_add_tail(&new_node->lower, &cache->leaves);
1230 }
1231
1232 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1233 &new_node->rb_node);
1234 if (rb_node)
1235 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1236
1237 if (!new_node->lowest) {
1238 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1239 list_add_tail(&new_edge->list[LOWER],
1240 &new_edge->node[LOWER]->upper);
1241 }
1242 }
1243 return 0;
1244fail:
1245 while (!list_empty(&new_node->lower)) {
1246 new_edge = list_entry(new_node->lower.next,
1247 struct backref_edge, list[UPPER]);
1248 list_del(&new_edge->list[UPPER]);
1249 free_backref_edge(cache, new_edge);
1250 }
1251 free_backref_node(cache, new_node);
1252 return -ENOMEM;
1253}
1254
1255/*
1256 * helper to add 'address of tree root -> reloc tree' mapping
1257 */
1258static int __must_check __add_reloc_root(struct btrfs_root *root)
1259{
1260 struct btrfs_fs_info *fs_info = root->fs_info;
1261 struct rb_node *rb_node;
1262 struct mapping_node *node;
1263 struct reloc_control *rc = fs_info->reloc_ctl;
1264
1265 node = kmalloc(sizeof(*node), GFP_NOFS);
1266 if (!node)
1267 return -ENOMEM;
1268
1269 node->bytenr = root->node->start;
1270 node->data = root;
1271
1272 spin_lock(&rc->reloc_root_tree.lock);
1273 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1274 node->bytenr, &node->rb_node);
1275 spin_unlock(&rc->reloc_root_tree.lock);
1276 if (rb_node) {
1277 btrfs_panic(fs_info, -EEXIST,
1278 "Duplicate root found for start=%llu while inserting into relocation tree",
1279 node->bytenr);
1280 }
1281
1282 list_add_tail(&root->root_list, &rc->reloc_roots);
1283 return 0;
1284}
1285
1286/*
1287 * helper to delete the 'address of tree root -> reloc tree'
1288 * mapping
1289 */
1290static void __del_reloc_root(struct btrfs_root *root)
1291{
1292 struct btrfs_fs_info *fs_info = root->fs_info;
1293 struct rb_node *rb_node;
1294 struct mapping_node *node = NULL;
1295 struct reloc_control *rc = fs_info->reloc_ctl;
1296
1297 if (rc && root->node) {
1298 spin_lock(&rc->reloc_root_tree.lock);
1299 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1300 root->node->start);
1301 if (rb_node) {
1302 node = rb_entry(rb_node, struct mapping_node, rb_node);
1303 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1304 }
1305 spin_unlock(&rc->reloc_root_tree.lock);
1306 if (!node)
1307 return;
1308 BUG_ON((struct btrfs_root *)node->data != root);
1309 }
1310
1311 spin_lock(&fs_info->trans_lock);
1312 list_del_init(&root->root_list);
1313 spin_unlock(&fs_info->trans_lock);
1314 kfree(node);
1315}
1316
1317/*
1318 * helper to update the 'address of tree root -> reloc tree'
1319 * mapping
1320 */
1321static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1322{
1323 struct btrfs_fs_info *fs_info = root->fs_info;
1324 struct rb_node *rb_node;
1325 struct mapping_node *node = NULL;
1326 struct reloc_control *rc = fs_info->reloc_ctl;
1327
1328 spin_lock(&rc->reloc_root_tree.lock);
1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330 root->node->start);
1331 if (rb_node) {
1332 node = rb_entry(rb_node, struct mapping_node, rb_node);
1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334 }
1335 spin_unlock(&rc->reloc_root_tree.lock);
1336
1337 if (!node)
1338 return 0;
1339 BUG_ON((struct btrfs_root *)node->data != root);
1340
1341 spin_lock(&rc->reloc_root_tree.lock);
1342 node->bytenr = new_bytenr;
1343 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1344 node->bytenr, &node->rb_node);
1345 spin_unlock(&rc->reloc_root_tree.lock);
1346 if (rb_node)
1347 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1348 return 0;
1349}
1350
1351static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1352 struct btrfs_root *root, u64 objectid)
1353{
1354 struct btrfs_fs_info *fs_info = root->fs_info;
1355 struct btrfs_root *reloc_root;
1356 struct extent_buffer *eb;
1357 struct btrfs_root_item *root_item;
1358 struct btrfs_key root_key;
1359 int ret;
1360
1361 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1362 BUG_ON(!root_item);
1363
1364 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1365 root_key.type = BTRFS_ROOT_ITEM_KEY;
1366 root_key.offset = objectid;
1367
1368 if (root->root_key.objectid == objectid) {
1369 u64 commit_root_gen;
1370
1371 /* called by btrfs_init_reloc_root */
1372 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1373 BTRFS_TREE_RELOC_OBJECTID);
1374 BUG_ON(ret);
1375 /*
1376 * Set the last_snapshot field to the generation of the commit
1377 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1378 * correctly (returns true) when the relocation root is created
1379 * either inside the critical section of a transaction commit
1380 * (through transaction.c:qgroup_account_snapshot()) and when
1381 * it's created before the transaction commit is started.
1382 */
1383 commit_root_gen = btrfs_header_generation(root->commit_root);
1384 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1385 } else {
1386 /*
1387 * called by btrfs_reloc_post_snapshot_hook.
1388 * the source tree is a reloc tree, all tree blocks
1389 * modified after it was created have RELOC flag
1390 * set in their headers. so it's OK to not update
1391 * the 'last_snapshot'.
1392 */
1393 ret = btrfs_copy_root(trans, root, root->node, &eb,
1394 BTRFS_TREE_RELOC_OBJECTID);
1395 BUG_ON(ret);
1396 }
1397
1398 memcpy(root_item, &root->root_item, sizeof(*root_item));
1399 btrfs_set_root_bytenr(root_item, eb->start);
1400 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1401 btrfs_set_root_generation(root_item, trans->transid);
1402
1403 if (root->root_key.objectid == objectid) {
1404 btrfs_set_root_refs(root_item, 0);
1405 memset(&root_item->drop_progress, 0,
1406 sizeof(struct btrfs_disk_key));
1407 root_item->drop_level = 0;
1408 }
1409
1410 btrfs_tree_unlock(eb);
1411 free_extent_buffer(eb);
1412
1413 ret = btrfs_insert_root(trans, fs_info->tree_root,
1414 &root_key, root_item);
1415 BUG_ON(ret);
1416 kfree(root_item);
1417
1418 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1419 BUG_ON(IS_ERR(reloc_root));
1420 reloc_root->last_trans = trans->transid;
1421 return reloc_root;
1422}
1423
1424/*
1425 * create reloc tree for a given fs tree. reloc tree is just a
1426 * snapshot of the fs tree with special root objectid.
1427 */
1428int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1429 struct btrfs_root *root)
1430{
1431 struct btrfs_fs_info *fs_info = root->fs_info;
1432 struct btrfs_root *reloc_root;
1433 struct reloc_control *rc = fs_info->reloc_ctl;
1434 struct btrfs_block_rsv *rsv;
1435 int clear_rsv = 0;
1436 int ret;
1437
1438 /*
1439 * The subvolume has reloc tree but the swap is finished, no need to
1440 * create/update the dead reloc tree
1441 */
1442 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
1443 return 0;
1444
1445 if (root->reloc_root) {
1446 reloc_root = root->reloc_root;
1447 reloc_root->last_trans = trans->transid;
1448 return 0;
1449 }
1450
1451 if (!rc || !rc->create_reloc_tree ||
1452 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1453 return 0;
1454
1455 if (!trans->reloc_reserved) {
1456 rsv = trans->block_rsv;
1457 trans->block_rsv = rc->block_rsv;
1458 clear_rsv = 1;
1459 }
1460 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1461 if (clear_rsv)
1462 trans->block_rsv = rsv;
1463
1464 ret = __add_reloc_root(reloc_root);
1465 BUG_ON(ret < 0);
1466 root->reloc_root = reloc_root;
1467 return 0;
1468}
1469
1470/*
1471 * update root item of reloc tree
1472 */
1473int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1474 struct btrfs_root *root)
1475{
1476 struct btrfs_fs_info *fs_info = root->fs_info;
1477 struct btrfs_root *reloc_root;
1478 struct btrfs_root_item *root_item;
1479 int ret;
1480
1481 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1482 !root->reloc_root)
1483 goto out;
1484
1485 reloc_root = root->reloc_root;
1486 root_item = &reloc_root->root_item;
1487
1488 /* root->reloc_root will stay until current relocation finished */
1489 if (fs_info->reloc_ctl->merge_reloc_tree &&
1490 btrfs_root_refs(root_item) == 0) {
1491 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1492 __del_reloc_root(reloc_root);
1493 }
1494
1495 if (reloc_root->commit_root != reloc_root->node) {
1496 btrfs_set_root_node(root_item, reloc_root->node);
1497 free_extent_buffer(reloc_root->commit_root);
1498 reloc_root->commit_root = btrfs_root_node(reloc_root);
1499 }
1500
1501 ret = btrfs_update_root(trans, fs_info->tree_root,
1502 &reloc_root->root_key, root_item);
1503 BUG_ON(ret);
1504
1505out:
1506 return 0;
1507}
1508
1509/*
1510 * helper to find first cached inode with inode number >= objectid
1511 * in a subvolume
1512 */
1513static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1514{
1515 struct rb_node *node;
1516 struct rb_node *prev;
1517 struct btrfs_inode *entry;
1518 struct inode *inode;
1519
1520 spin_lock(&root->inode_lock);
1521again:
1522 node = root->inode_tree.rb_node;
1523 prev = NULL;
1524 while (node) {
1525 prev = node;
1526 entry = rb_entry(node, struct btrfs_inode, rb_node);
1527
1528 if (objectid < btrfs_ino(entry))
1529 node = node->rb_left;
1530 else if (objectid > btrfs_ino(entry))
1531 node = node->rb_right;
1532 else
1533 break;
1534 }
1535 if (!node) {
1536 while (prev) {
1537 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1538 if (objectid <= btrfs_ino(entry)) {
1539 node = prev;
1540 break;
1541 }
1542 prev = rb_next(prev);
1543 }
1544 }
1545 while (node) {
1546 entry = rb_entry(node, struct btrfs_inode, rb_node);
1547 inode = igrab(&entry->vfs_inode);
1548 if (inode) {
1549 spin_unlock(&root->inode_lock);
1550 return inode;
1551 }
1552
1553 objectid = btrfs_ino(entry) + 1;
1554 if (cond_resched_lock(&root->inode_lock))
1555 goto again;
1556
1557 node = rb_next(node);
1558 }
1559 spin_unlock(&root->inode_lock);
1560 return NULL;
1561}
1562
1563static int in_block_group(u64 bytenr,
1564 struct btrfs_block_group_cache *block_group)
1565{
1566 if (bytenr >= block_group->key.objectid &&
1567 bytenr < block_group->key.objectid + block_group->key.offset)
1568 return 1;
1569 return 0;
1570}
1571
1572/*
1573 * get new location of data
1574 */
1575static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1576 u64 bytenr, u64 num_bytes)
1577{
1578 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1579 struct btrfs_path *path;
1580 struct btrfs_file_extent_item *fi;
1581 struct extent_buffer *leaf;
1582 int ret;
1583
1584 path = btrfs_alloc_path();
1585 if (!path)
1586 return -ENOMEM;
1587
1588 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1589 ret = btrfs_lookup_file_extent(NULL, root, path,
1590 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1591 if (ret < 0)
1592 goto out;
1593 if (ret > 0) {
1594 ret = -ENOENT;
1595 goto out;
1596 }
1597
1598 leaf = path->nodes[0];
1599 fi = btrfs_item_ptr(leaf, path->slots[0],
1600 struct btrfs_file_extent_item);
1601
1602 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1603 btrfs_file_extent_compression(leaf, fi) ||
1604 btrfs_file_extent_encryption(leaf, fi) ||
1605 btrfs_file_extent_other_encoding(leaf, fi));
1606
1607 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1608 ret = -EINVAL;
1609 goto out;
1610 }
1611
1612 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1613 ret = 0;
1614out:
1615 btrfs_free_path(path);
1616 return ret;
1617}
1618
1619/*
1620 * update file extent items in the tree leaf to point to
1621 * the new locations.
1622 */
1623static noinline_for_stack
1624int replace_file_extents(struct btrfs_trans_handle *trans,
1625 struct reloc_control *rc,
1626 struct btrfs_root *root,
1627 struct extent_buffer *leaf)
1628{
1629 struct btrfs_fs_info *fs_info = root->fs_info;
1630 struct btrfs_key key;
1631 struct btrfs_file_extent_item *fi;
1632 struct inode *inode = NULL;
1633 u64 parent;
1634 u64 bytenr;
1635 u64 new_bytenr = 0;
1636 u64 num_bytes;
1637 u64 end;
1638 u32 nritems;
1639 u32 i;
1640 int ret = 0;
1641 int first = 1;
1642 int dirty = 0;
1643
1644 if (rc->stage != UPDATE_DATA_PTRS)
1645 return 0;
1646
1647 /* reloc trees always use full backref */
1648 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1649 parent = leaf->start;
1650 else
1651 parent = 0;
1652
1653 nritems = btrfs_header_nritems(leaf);
1654 for (i = 0; i < nritems; i++) {
1655 struct btrfs_ref ref = { 0 };
1656
1657 cond_resched();
1658 btrfs_item_key_to_cpu(leaf, &key, i);
1659 if (key.type != BTRFS_EXTENT_DATA_KEY)
1660 continue;
1661 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662 if (btrfs_file_extent_type(leaf, fi) ==
1663 BTRFS_FILE_EXTENT_INLINE)
1664 continue;
1665 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667 if (bytenr == 0)
1668 continue;
1669 if (!in_block_group(bytenr, rc->block_group))
1670 continue;
1671
1672 /*
1673 * if we are modifying block in fs tree, wait for readpage
1674 * to complete and drop the extent cache
1675 */
1676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677 if (first) {
1678 inode = find_next_inode(root, key.objectid);
1679 first = 0;
1680 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1681 btrfs_add_delayed_iput(inode);
1682 inode = find_next_inode(root, key.objectid);
1683 }
1684 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1685 end = key.offset +
1686 btrfs_file_extent_num_bytes(leaf, fi);
1687 WARN_ON(!IS_ALIGNED(key.offset,
1688 fs_info->sectorsize));
1689 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1690 end--;
1691 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692 key.offset, end);
1693 if (!ret)
1694 continue;
1695
1696 btrfs_drop_extent_cache(BTRFS_I(inode),
1697 key.offset, end, 1);
1698 unlock_extent(&BTRFS_I(inode)->io_tree,
1699 key.offset, end);
1700 }
1701 }
1702
1703 ret = get_new_location(rc->data_inode, &new_bytenr,
1704 bytenr, num_bytes);
1705 if (ret) {
1706 /*
1707 * Don't have to abort since we've not changed anything
1708 * in the file extent yet.
1709 */
1710 break;
1711 }
1712
1713 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714 dirty = 1;
1715
1716 key.offset -= btrfs_file_extent_offset(leaf, fi);
1717 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1718 num_bytes, parent);
1719 ref.real_root = root->root_key.objectid;
1720 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1721 key.objectid, key.offset);
1722 ret = btrfs_inc_extent_ref(trans, &ref);
1723 if (ret) {
1724 btrfs_abort_transaction(trans, ret);
1725 break;
1726 }
1727
1728 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1729 num_bytes, parent);
1730 ref.real_root = root->root_key.objectid;
1731 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1732 key.objectid, key.offset);
1733 ret = btrfs_free_extent(trans, &ref);
1734 if (ret) {
1735 btrfs_abort_transaction(trans, ret);
1736 break;
1737 }
1738 }
1739 if (dirty)
1740 btrfs_mark_buffer_dirty(leaf);
1741 if (inode)
1742 btrfs_add_delayed_iput(inode);
1743 return ret;
1744}
1745
1746static noinline_for_stack
1747int memcmp_node_keys(struct extent_buffer *eb, int slot,
1748 struct btrfs_path *path, int level)
1749{
1750 struct btrfs_disk_key key1;
1751 struct btrfs_disk_key key2;
1752 btrfs_node_key(eb, &key1, slot);
1753 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1754 return memcmp(&key1, &key2, sizeof(key1));
1755}
1756
1757/*
1758 * try to replace tree blocks in fs tree with the new blocks
1759 * in reloc tree. tree blocks haven't been modified since the
1760 * reloc tree was create can be replaced.
1761 *
1762 * if a block was replaced, level of the block + 1 is returned.
1763 * if no block got replaced, 0 is returned. if there are other
1764 * errors, a negative error number is returned.
1765 */
1766static noinline_for_stack
1767int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1768 struct btrfs_root *dest, struct btrfs_root *src,
1769 struct btrfs_path *path, struct btrfs_key *next_key,
1770 int lowest_level, int max_level)
1771{
1772 struct btrfs_fs_info *fs_info = dest->fs_info;
1773 struct extent_buffer *eb;
1774 struct extent_buffer *parent;
1775 struct btrfs_ref ref = { 0 };
1776 struct btrfs_key key;
1777 u64 old_bytenr;
1778 u64 new_bytenr;
1779 u64 old_ptr_gen;
1780 u64 new_ptr_gen;
1781 u64 last_snapshot;
1782 u32 blocksize;
1783 int cow = 0;
1784 int level;
1785 int ret;
1786 int slot;
1787
1788 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1789 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1790
1791 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1792again:
1793 slot = path->slots[lowest_level];
1794 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1795
1796 eb = btrfs_lock_root_node(dest);
1797 btrfs_set_lock_blocking_write(eb);
1798 level = btrfs_header_level(eb);
1799
1800 if (level < lowest_level) {
1801 btrfs_tree_unlock(eb);
1802 free_extent_buffer(eb);
1803 return 0;
1804 }
1805
1806 if (cow) {
1807 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1808 BUG_ON(ret);
1809 }
1810 btrfs_set_lock_blocking_write(eb);
1811
1812 if (next_key) {
1813 next_key->objectid = (u64)-1;
1814 next_key->type = (u8)-1;
1815 next_key->offset = (u64)-1;
1816 }
1817
1818 parent = eb;
1819 while (1) {
1820 struct btrfs_key first_key;
1821
1822 level = btrfs_header_level(parent);
1823 BUG_ON(level < lowest_level);
1824
1825 ret = btrfs_bin_search(parent, &key, level, &slot);
1826 if (ret < 0)
1827 break;
1828 if (ret && slot > 0)
1829 slot--;
1830
1831 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1832 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1833
1834 old_bytenr = btrfs_node_blockptr(parent, slot);
1835 blocksize = fs_info->nodesize;
1836 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1837 btrfs_node_key_to_cpu(parent, &first_key, slot);
1838
1839 if (level <= max_level) {
1840 eb = path->nodes[level];
1841 new_bytenr = btrfs_node_blockptr(eb,
1842 path->slots[level]);
1843 new_ptr_gen = btrfs_node_ptr_generation(eb,
1844 path->slots[level]);
1845 } else {
1846 new_bytenr = 0;
1847 new_ptr_gen = 0;
1848 }
1849
1850 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1851 ret = level;
1852 break;
1853 }
1854
1855 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1856 memcmp_node_keys(parent, slot, path, level)) {
1857 if (level <= lowest_level) {
1858 ret = 0;
1859 break;
1860 }
1861
1862 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1863 level - 1, &first_key);
1864 if (IS_ERR(eb)) {
1865 ret = PTR_ERR(eb);
1866 break;
1867 } else if (!extent_buffer_uptodate(eb)) {
1868 ret = -EIO;
1869 free_extent_buffer(eb);
1870 break;
1871 }
1872 btrfs_tree_lock(eb);
1873 if (cow) {
1874 ret = btrfs_cow_block(trans, dest, eb, parent,
1875 slot, &eb);
1876 BUG_ON(ret);
1877 }
1878 btrfs_set_lock_blocking_write(eb);
1879
1880 btrfs_tree_unlock(parent);
1881 free_extent_buffer(parent);
1882
1883 parent = eb;
1884 continue;
1885 }
1886
1887 if (!cow) {
1888 btrfs_tree_unlock(parent);
1889 free_extent_buffer(parent);
1890 cow = 1;
1891 goto again;
1892 }
1893
1894 btrfs_node_key_to_cpu(path->nodes[level], &key,
1895 path->slots[level]);
1896 btrfs_release_path(path);
1897
1898 path->lowest_level = level;
1899 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1900 path->lowest_level = 0;
1901 BUG_ON(ret);
1902
1903 /*
1904 * Info qgroup to trace both subtrees.
1905 *
1906 * We must trace both trees.
1907 * 1) Tree reloc subtree
1908 * If not traced, we will leak data numbers
1909 * 2) Fs subtree
1910 * If not traced, we will double count old data
1911 *
1912 * We don't scan the subtree right now, but only record
1913 * the swapped tree blocks.
1914 * The real subtree rescan is delayed until we have new
1915 * CoW on the subtree root node before transaction commit.
1916 */
1917 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1918 rc->block_group, parent, slot,
1919 path->nodes[level], path->slots[level],
1920 last_snapshot);
1921 if (ret < 0)
1922 break;
1923 /*
1924 * swap blocks in fs tree and reloc tree.
1925 */
1926 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1927 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1928 btrfs_mark_buffer_dirty(parent);
1929
1930 btrfs_set_node_blockptr(path->nodes[level],
1931 path->slots[level], old_bytenr);
1932 btrfs_set_node_ptr_generation(path->nodes[level],
1933 path->slots[level], old_ptr_gen);
1934 btrfs_mark_buffer_dirty(path->nodes[level]);
1935
1936 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1937 blocksize, path->nodes[level]->start);
1938 ref.skip_qgroup = true;
1939 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1940 ret = btrfs_inc_extent_ref(trans, &ref);
1941 BUG_ON(ret);
1942 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1943 blocksize, 0);
1944 ref.skip_qgroup = true;
1945 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1946 ret = btrfs_inc_extent_ref(trans, &ref);
1947 BUG_ON(ret);
1948
1949 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1950 blocksize, path->nodes[level]->start);
1951 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1952 ref.skip_qgroup = true;
1953 ret = btrfs_free_extent(trans, &ref);
1954 BUG_ON(ret);
1955
1956 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1957 blocksize, 0);
1958 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1959 ref.skip_qgroup = true;
1960 ret = btrfs_free_extent(trans, &ref);
1961 BUG_ON(ret);
1962
1963 btrfs_unlock_up_safe(path, 0);
1964
1965 ret = level;
1966 break;
1967 }
1968 btrfs_tree_unlock(parent);
1969 free_extent_buffer(parent);
1970 return ret;
1971}
1972
1973/*
1974 * helper to find next relocated block in reloc tree
1975 */
1976static noinline_for_stack
1977int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1978 int *level)
1979{
1980 struct extent_buffer *eb;
1981 int i;
1982 u64 last_snapshot;
1983 u32 nritems;
1984
1985 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1986
1987 for (i = 0; i < *level; i++) {
1988 free_extent_buffer(path->nodes[i]);
1989 path->nodes[i] = NULL;
1990 }
1991
1992 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1993 eb = path->nodes[i];
1994 nritems = btrfs_header_nritems(eb);
1995 while (path->slots[i] + 1 < nritems) {
1996 path->slots[i]++;
1997 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1998 last_snapshot)
1999 continue;
2000
2001 *level = i;
2002 return 0;
2003 }
2004 free_extent_buffer(path->nodes[i]);
2005 path->nodes[i] = NULL;
2006 }
2007 return 1;
2008}
2009
2010/*
2011 * walk down reloc tree to find relocated block of lowest level
2012 */
2013static noinline_for_stack
2014int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2015 int *level)
2016{
2017 struct btrfs_fs_info *fs_info = root->fs_info;
2018 struct extent_buffer *eb = NULL;
2019 int i;
2020 u64 bytenr;
2021 u64 ptr_gen = 0;
2022 u64 last_snapshot;
2023 u32 nritems;
2024
2025 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2026
2027 for (i = *level; i > 0; i--) {
2028 struct btrfs_key first_key;
2029
2030 eb = path->nodes[i];
2031 nritems = btrfs_header_nritems(eb);
2032 while (path->slots[i] < nritems) {
2033 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2034 if (ptr_gen > last_snapshot)
2035 break;
2036 path->slots[i]++;
2037 }
2038 if (path->slots[i] >= nritems) {
2039 if (i == *level)
2040 break;
2041 *level = i + 1;
2042 return 0;
2043 }
2044 if (i == 1) {
2045 *level = i;
2046 return 0;
2047 }
2048
2049 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2050 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2051 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2052 &first_key);
2053 if (IS_ERR(eb)) {
2054 return PTR_ERR(eb);
2055 } else if (!extent_buffer_uptodate(eb)) {
2056 free_extent_buffer(eb);
2057 return -EIO;
2058 }
2059 BUG_ON(btrfs_header_level(eb) != i - 1);
2060 path->nodes[i - 1] = eb;
2061 path->slots[i - 1] = 0;
2062 }
2063 return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071 struct btrfs_key *min_key,
2072 struct btrfs_key *max_key)
2073{
2074 struct btrfs_fs_info *fs_info = root->fs_info;
2075 struct inode *inode = NULL;
2076 u64 objectid;
2077 u64 start, end;
2078 u64 ino;
2079
2080 objectid = min_key->objectid;
2081 while (1) {
2082 cond_resched();
2083 iput(inode);
2084
2085 if (objectid > max_key->objectid)
2086 break;
2087
2088 inode = find_next_inode(root, objectid);
2089 if (!inode)
2090 break;
2091 ino = btrfs_ino(BTRFS_I(inode));
2092
2093 if (ino > max_key->objectid) {
2094 iput(inode);
2095 break;
2096 }
2097
2098 objectid = ino + 1;
2099 if (!S_ISREG(inode->i_mode))
2100 continue;
2101
2102 if (unlikely(min_key->objectid == ino)) {
2103 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104 continue;
2105 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106 start = 0;
2107 else {
2108 start = min_key->offset;
2109 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110 }
2111 } else {
2112 start = 0;
2113 }
2114
2115 if (unlikely(max_key->objectid == ino)) {
2116 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117 continue;
2118 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119 end = (u64)-1;
2120 } else {
2121 if (max_key->offset == 0)
2122 continue;
2123 end = max_key->offset;
2124 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125 end--;
2126 }
2127 } else {
2128 end = (u64)-1;
2129 }
2130
2131 /* the lock_extent waits for readpage to complete */
2132 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2134 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135 }
2136 return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140 struct btrfs_key *key)
2141
2142{
2143 while (level < BTRFS_MAX_LEVEL) {
2144 if (!path->nodes[level])
2145 break;
2146 if (path->slots[level] + 1 <
2147 btrfs_header_nritems(path->nodes[level])) {
2148 btrfs_node_key_to_cpu(path->nodes[level], key,
2149 path->slots[level] + 1);
2150 return 0;
2151 }
2152 level++;
2153 }
2154 return 1;
2155}
2156
2157/*
2158 * Insert current subvolume into reloc_control::dirty_subvol_roots
2159 */
2160static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2161 struct reloc_control *rc,
2162 struct btrfs_root *root)
2163{
2164 struct btrfs_root *reloc_root = root->reloc_root;
2165 struct btrfs_root_item *reloc_root_item;
2166
2167 /* @root must be a subvolume tree root with a valid reloc tree */
2168 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2169 ASSERT(reloc_root);
2170
2171 reloc_root_item = &reloc_root->root_item;
2172 memset(&reloc_root_item->drop_progress, 0,
2173 sizeof(reloc_root_item->drop_progress));
2174 reloc_root_item->drop_level = 0;
2175 btrfs_set_root_refs(reloc_root_item, 0);
2176 btrfs_update_reloc_root(trans, root);
2177
2178 if (list_empty(&root->reloc_dirty_list)) {
2179 btrfs_grab_fs_root(root);
2180 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2181 }
2182}
2183
2184static int clean_dirty_subvols(struct reloc_control *rc)
2185{
2186 struct btrfs_root *root;
2187 struct btrfs_root *next;
2188 int ret = 0;
2189 int ret2;
2190
2191 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2192 reloc_dirty_list) {
2193 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2194 /* Merged subvolume, cleanup its reloc root */
2195 struct btrfs_root *reloc_root = root->reloc_root;
2196
2197 list_del_init(&root->reloc_dirty_list);
2198 root->reloc_root = NULL;
2199 if (reloc_root) {
2200
2201 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2202 if (ret2 < 0 && !ret)
2203 ret = ret2;
2204 }
2205 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2206 btrfs_put_fs_root(root);
2207 } else {
2208 /* Orphan reloc tree, just clean it up */
2209 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2210 if (ret2 < 0 && !ret)
2211 ret = ret2;
2212 }
2213 }
2214 return ret;
2215}
2216
2217/*
2218 * merge the relocated tree blocks in reloc tree with corresponding
2219 * fs tree.
2220 */
2221static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2222 struct btrfs_root *root)
2223{
2224 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2225 struct btrfs_key key;
2226 struct btrfs_key next_key;
2227 struct btrfs_trans_handle *trans = NULL;
2228 struct btrfs_root *reloc_root;
2229 struct btrfs_root_item *root_item;
2230 struct btrfs_path *path;
2231 struct extent_buffer *leaf;
2232 int level;
2233 int max_level;
2234 int replaced = 0;
2235 int ret;
2236 int err = 0;
2237 u32 min_reserved;
2238
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2242 path->reada = READA_FORWARD;
2243
2244 reloc_root = root->reloc_root;
2245 root_item = &reloc_root->root_item;
2246
2247 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2248 level = btrfs_root_level(root_item);
2249 extent_buffer_get(reloc_root->node);
2250 path->nodes[level] = reloc_root->node;
2251 path->slots[level] = 0;
2252 } else {
2253 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2254
2255 level = root_item->drop_level;
2256 BUG_ON(level == 0);
2257 path->lowest_level = level;
2258 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2259 path->lowest_level = 0;
2260 if (ret < 0) {
2261 btrfs_free_path(path);
2262 return ret;
2263 }
2264
2265 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2266 path->slots[level]);
2267 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2268
2269 btrfs_unlock_up_safe(path, 0);
2270 }
2271
2272 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2273 memset(&next_key, 0, sizeof(next_key));
2274
2275 while (1) {
2276 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2277 BTRFS_RESERVE_FLUSH_ALL);
2278 if (ret) {
2279 err = ret;
2280 goto out;
2281 }
2282 trans = btrfs_start_transaction(root, 0);
2283 if (IS_ERR(trans)) {
2284 err = PTR_ERR(trans);
2285 trans = NULL;
2286 goto out;
2287 }
2288 trans->block_rsv = rc->block_rsv;
2289
2290 replaced = 0;
2291 max_level = level;
2292
2293 ret = walk_down_reloc_tree(reloc_root, path, &level);
2294 if (ret < 0) {
2295 err = ret;
2296 goto out;
2297 }
2298 if (ret > 0)
2299 break;
2300
2301 if (!find_next_key(path, level, &key) &&
2302 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2303 ret = 0;
2304 } else {
2305 ret = replace_path(trans, rc, root, reloc_root, path,
2306 &next_key, level, max_level);
2307 }
2308 if (ret < 0) {
2309 err = ret;
2310 goto out;
2311 }
2312
2313 if (ret > 0) {
2314 level = ret;
2315 btrfs_node_key_to_cpu(path->nodes[level], &key,
2316 path->slots[level]);
2317 replaced = 1;
2318 }
2319
2320 ret = walk_up_reloc_tree(reloc_root, path, &level);
2321 if (ret > 0)
2322 break;
2323
2324 BUG_ON(level == 0);
2325 /*
2326 * save the merging progress in the drop_progress.
2327 * this is OK since root refs == 1 in this case.
2328 */
2329 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2330 path->slots[level]);
2331 root_item->drop_level = level;
2332
2333 btrfs_end_transaction_throttle(trans);
2334 trans = NULL;
2335
2336 btrfs_btree_balance_dirty(fs_info);
2337
2338 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2339 invalidate_extent_cache(root, &key, &next_key);
2340 }
2341
2342 /*
2343 * handle the case only one block in the fs tree need to be
2344 * relocated and the block is tree root.
2345 */
2346 leaf = btrfs_lock_root_node(root);
2347 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2348 btrfs_tree_unlock(leaf);
2349 free_extent_buffer(leaf);
2350 if (ret < 0)
2351 err = ret;
2352out:
2353 btrfs_free_path(path);
2354
2355 if (err == 0)
2356 insert_dirty_subvol(trans, rc, root);
2357
2358 if (trans)
2359 btrfs_end_transaction_throttle(trans);
2360
2361 btrfs_btree_balance_dirty(fs_info);
2362
2363 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2364 invalidate_extent_cache(root, &key, &next_key);
2365
2366 return err;
2367}
2368
2369static noinline_for_stack
2370int prepare_to_merge(struct reloc_control *rc, int err)
2371{
2372 struct btrfs_root *root = rc->extent_root;
2373 struct btrfs_fs_info *fs_info = root->fs_info;
2374 struct btrfs_root *reloc_root;
2375 struct btrfs_trans_handle *trans;
2376 LIST_HEAD(reloc_roots);
2377 u64 num_bytes = 0;
2378 int ret;
2379
2380 mutex_lock(&fs_info->reloc_mutex);
2381 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2382 rc->merging_rsv_size += rc->nodes_relocated * 2;
2383 mutex_unlock(&fs_info->reloc_mutex);
2384
2385again:
2386 if (!err) {
2387 num_bytes = rc->merging_rsv_size;
2388 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2389 BTRFS_RESERVE_FLUSH_ALL);
2390 if (ret)
2391 err = ret;
2392 }
2393
2394 trans = btrfs_join_transaction(rc->extent_root);
2395 if (IS_ERR(trans)) {
2396 if (!err)
2397 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2398 num_bytes);
2399 return PTR_ERR(trans);
2400 }
2401
2402 if (!err) {
2403 if (num_bytes != rc->merging_rsv_size) {
2404 btrfs_end_transaction(trans);
2405 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2406 num_bytes);
2407 goto again;
2408 }
2409 }
2410
2411 rc->merge_reloc_tree = 1;
2412
2413 while (!list_empty(&rc->reloc_roots)) {
2414 reloc_root = list_entry(rc->reloc_roots.next,
2415 struct btrfs_root, root_list);
2416 list_del_init(&reloc_root->root_list);
2417
2418 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2419 BUG_ON(IS_ERR(root));
2420 BUG_ON(root->reloc_root != reloc_root);
2421
2422 /*
2423 * set reference count to 1, so btrfs_recover_relocation
2424 * knows it should resumes merging
2425 */
2426 if (!err)
2427 btrfs_set_root_refs(&reloc_root->root_item, 1);
2428 btrfs_update_reloc_root(trans, root);
2429
2430 list_add(&reloc_root->root_list, &reloc_roots);
2431 }
2432
2433 list_splice(&reloc_roots, &rc->reloc_roots);
2434
2435 if (!err)
2436 btrfs_commit_transaction(trans);
2437 else
2438 btrfs_end_transaction(trans);
2439 return err;
2440}
2441
2442static noinline_for_stack
2443void free_reloc_roots(struct list_head *list)
2444{
2445 struct btrfs_root *reloc_root;
2446
2447 while (!list_empty(list)) {
2448 reloc_root = list_entry(list->next, struct btrfs_root,
2449 root_list);
2450 __del_reloc_root(reloc_root);
2451 free_extent_buffer(reloc_root->node);
2452 free_extent_buffer(reloc_root->commit_root);
2453 reloc_root->node = NULL;
2454 reloc_root->commit_root = NULL;
2455 }
2456}
2457
2458static noinline_for_stack
2459void merge_reloc_roots(struct reloc_control *rc)
2460{
2461 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2462 struct btrfs_root *root;
2463 struct btrfs_root *reloc_root;
2464 LIST_HEAD(reloc_roots);
2465 int found = 0;
2466 int ret = 0;
2467again:
2468 root = rc->extent_root;
2469
2470 /*
2471 * this serializes us with btrfs_record_root_in_transaction,
2472 * we have to make sure nobody is in the middle of
2473 * adding their roots to the list while we are
2474 * doing this splice
2475 */
2476 mutex_lock(&fs_info->reloc_mutex);
2477 list_splice_init(&rc->reloc_roots, &reloc_roots);
2478 mutex_unlock(&fs_info->reloc_mutex);
2479
2480 while (!list_empty(&reloc_roots)) {
2481 found = 1;
2482 reloc_root = list_entry(reloc_roots.next,
2483 struct btrfs_root, root_list);
2484
2485 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2486 root = read_fs_root(fs_info,
2487 reloc_root->root_key.offset);
2488 BUG_ON(IS_ERR(root));
2489 BUG_ON(root->reloc_root != reloc_root);
2490
2491 ret = merge_reloc_root(rc, root);
2492 if (ret) {
2493 if (list_empty(&reloc_root->root_list))
2494 list_add_tail(&reloc_root->root_list,
2495 &reloc_roots);
2496 goto out;
2497 }
2498 } else {
2499 list_del_init(&reloc_root->root_list);
2500 /* Don't forget to queue this reloc root for cleanup */
2501 list_add_tail(&reloc_root->reloc_dirty_list,
2502 &rc->dirty_subvol_roots);
2503 }
2504 }
2505
2506 if (found) {
2507 found = 0;
2508 goto again;
2509 }
2510out:
2511 if (ret) {
2512 btrfs_handle_fs_error(fs_info, ret, NULL);
2513 if (!list_empty(&reloc_roots))
2514 free_reloc_roots(&reloc_roots);
2515
2516 /* new reloc root may be added */
2517 mutex_lock(&fs_info->reloc_mutex);
2518 list_splice_init(&rc->reloc_roots, &reloc_roots);
2519 mutex_unlock(&fs_info->reloc_mutex);
2520 if (!list_empty(&reloc_roots))
2521 free_reloc_roots(&reloc_roots);
2522 }
2523
2524 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2525}
2526
2527static void free_block_list(struct rb_root *blocks)
2528{
2529 struct tree_block *block;
2530 struct rb_node *rb_node;
2531 while ((rb_node = rb_first(blocks))) {
2532 block = rb_entry(rb_node, struct tree_block, rb_node);
2533 rb_erase(rb_node, blocks);
2534 kfree(block);
2535 }
2536}
2537
2538static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2539 struct btrfs_root *reloc_root)
2540{
2541 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2542 struct btrfs_root *root;
2543
2544 if (reloc_root->last_trans == trans->transid)
2545 return 0;
2546
2547 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2548 BUG_ON(IS_ERR(root));
2549 BUG_ON(root->reloc_root != reloc_root);
2550
2551 return btrfs_record_root_in_trans(trans, root);
2552}
2553
2554static noinline_for_stack
2555struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2556 struct reloc_control *rc,
2557 struct backref_node *node,
2558 struct backref_edge *edges[])
2559{
2560 struct backref_node *next;
2561 struct btrfs_root *root;
2562 int index = 0;
2563
2564 next = node;
2565 while (1) {
2566 cond_resched();
2567 next = walk_up_backref(next, edges, &index);
2568 root = next->root;
2569 BUG_ON(!root);
2570 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2571
2572 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2573 record_reloc_root_in_trans(trans, root);
2574 break;
2575 }
2576
2577 btrfs_record_root_in_trans(trans, root);
2578 root = root->reloc_root;
2579
2580 if (next->new_bytenr != root->node->start) {
2581 BUG_ON(next->new_bytenr);
2582 BUG_ON(!list_empty(&next->list));
2583 next->new_bytenr = root->node->start;
2584 next->root = root;
2585 list_add_tail(&next->list,
2586 &rc->backref_cache.changed);
2587 __mark_block_processed(rc, next);
2588 break;
2589 }
2590
2591 WARN_ON(1);
2592 root = NULL;
2593 next = walk_down_backref(edges, &index);
2594 if (!next || next->level <= node->level)
2595 break;
2596 }
2597 if (!root)
2598 return NULL;
2599
2600 next = node;
2601 /* setup backref node path for btrfs_reloc_cow_block */
2602 while (1) {
2603 rc->backref_cache.path[next->level] = next;
2604 if (--index < 0)
2605 break;
2606 next = edges[index]->node[UPPER];
2607 }
2608 return root;
2609}
2610
2611/*
2612 * select a tree root for relocation. return NULL if the block
2613 * is reference counted. we should use do_relocation() in this
2614 * case. return a tree root pointer if the block isn't reference
2615 * counted. return -ENOENT if the block is root of reloc tree.
2616 */
2617static noinline_for_stack
2618struct btrfs_root *select_one_root(struct backref_node *node)
2619{
2620 struct backref_node *next;
2621 struct btrfs_root *root;
2622 struct btrfs_root *fs_root = NULL;
2623 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2624 int index = 0;
2625
2626 next = node;
2627 while (1) {
2628 cond_resched();
2629 next = walk_up_backref(next, edges, &index);
2630 root = next->root;
2631 BUG_ON(!root);
2632
2633 /* no other choice for non-references counted tree */
2634 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2635 return root;
2636
2637 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2638 fs_root = root;
2639
2640 if (next != node)
2641 return NULL;
2642
2643 next = walk_down_backref(edges, &index);
2644 if (!next || next->level <= node->level)
2645 break;
2646 }
2647
2648 if (!fs_root)
2649 return ERR_PTR(-ENOENT);
2650 return fs_root;
2651}
2652
2653static noinline_for_stack
2654u64 calcu_metadata_size(struct reloc_control *rc,
2655 struct backref_node *node, int reserve)
2656{
2657 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2658 struct backref_node *next = node;
2659 struct backref_edge *edge;
2660 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2661 u64 num_bytes = 0;
2662 int index = 0;
2663
2664 BUG_ON(reserve && node->processed);
2665
2666 while (next) {
2667 cond_resched();
2668 while (1) {
2669 if (next->processed && (reserve || next != node))
2670 break;
2671
2672 num_bytes += fs_info->nodesize;
2673
2674 if (list_empty(&next->upper))
2675 break;
2676
2677 edge = list_entry(next->upper.next,
2678 struct backref_edge, list[LOWER]);
2679 edges[index++] = edge;
2680 next = edge->node[UPPER];
2681 }
2682 next = walk_down_backref(edges, &index);
2683 }
2684 return num_bytes;
2685}
2686
2687static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2688 struct reloc_control *rc,
2689 struct backref_node *node)
2690{
2691 struct btrfs_root *root = rc->extent_root;
2692 struct btrfs_fs_info *fs_info = root->fs_info;
2693 u64 num_bytes;
2694 int ret;
2695 u64 tmp;
2696
2697 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2698
2699 trans->block_rsv = rc->block_rsv;
2700 rc->reserved_bytes += num_bytes;
2701
2702 /*
2703 * We are under a transaction here so we can only do limited flushing.
2704 * If we get an enospc just kick back -EAGAIN so we know to drop the
2705 * transaction and try to refill when we can flush all the things.
2706 */
2707 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2708 BTRFS_RESERVE_FLUSH_LIMIT);
2709 if (ret) {
2710 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2711 while (tmp <= rc->reserved_bytes)
2712 tmp <<= 1;
2713 /*
2714 * only one thread can access block_rsv at this point,
2715 * so we don't need hold lock to protect block_rsv.
2716 * we expand more reservation size here to allow enough
2717 * space for relocation and we will return earlier in
2718 * enospc case.
2719 */
2720 rc->block_rsv->size = tmp + fs_info->nodesize *
2721 RELOCATION_RESERVED_NODES;
2722 return -EAGAIN;
2723 }
2724
2725 return 0;
2726}
2727
2728/*
2729 * relocate a block tree, and then update pointers in upper level
2730 * blocks that reference the block to point to the new location.
2731 *
2732 * if called by link_to_upper, the block has already been relocated.
2733 * in that case this function just updates pointers.
2734 */
2735static int do_relocation(struct btrfs_trans_handle *trans,
2736 struct reloc_control *rc,
2737 struct backref_node *node,
2738 struct btrfs_key *key,
2739 struct btrfs_path *path, int lowest)
2740{
2741 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2742 struct backref_node *upper;
2743 struct backref_edge *edge;
2744 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2745 struct btrfs_root *root;
2746 struct extent_buffer *eb;
2747 u32 blocksize;
2748 u64 bytenr;
2749 u64 generation;
2750 int slot;
2751 int ret;
2752 int err = 0;
2753
2754 BUG_ON(lowest && node->eb);
2755
2756 path->lowest_level = node->level + 1;
2757 rc->backref_cache.path[node->level] = node;
2758 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2759 struct btrfs_key first_key;
2760 struct btrfs_ref ref = { 0 };
2761
2762 cond_resched();
2763
2764 upper = edge->node[UPPER];
2765 root = select_reloc_root(trans, rc, upper, edges);
2766 BUG_ON(!root);
2767
2768 if (upper->eb && !upper->locked) {
2769 if (!lowest) {
2770 ret = btrfs_bin_search(upper->eb, key,
2771 upper->level, &slot);
2772 if (ret < 0) {
2773 err = ret;
2774 goto next;
2775 }
2776 BUG_ON(ret);
2777 bytenr = btrfs_node_blockptr(upper->eb, slot);
2778 if (node->eb->start == bytenr)
2779 goto next;
2780 }
2781 drop_node_buffer(upper);
2782 }
2783
2784 if (!upper->eb) {
2785 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2786 if (ret) {
2787 if (ret < 0)
2788 err = ret;
2789 else
2790 err = -ENOENT;
2791
2792 btrfs_release_path(path);
2793 break;
2794 }
2795
2796 if (!upper->eb) {
2797 upper->eb = path->nodes[upper->level];
2798 path->nodes[upper->level] = NULL;
2799 } else {
2800 BUG_ON(upper->eb != path->nodes[upper->level]);
2801 }
2802
2803 upper->locked = 1;
2804 path->locks[upper->level] = 0;
2805
2806 slot = path->slots[upper->level];
2807 btrfs_release_path(path);
2808 } else {
2809 ret = btrfs_bin_search(upper->eb, key, upper->level,
2810 &slot);
2811 if (ret < 0) {
2812 err = ret;
2813 goto next;
2814 }
2815 BUG_ON(ret);
2816 }
2817
2818 bytenr = btrfs_node_blockptr(upper->eb, slot);
2819 if (lowest) {
2820 if (bytenr != node->bytenr) {
2821 btrfs_err(root->fs_info,
2822 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2823 bytenr, node->bytenr, slot,
2824 upper->eb->start);
2825 err = -EIO;
2826 goto next;
2827 }
2828 } else {
2829 if (node->eb->start == bytenr)
2830 goto next;
2831 }
2832
2833 blocksize = root->fs_info->nodesize;
2834 generation = btrfs_node_ptr_generation(upper->eb, slot);
2835 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2836 eb = read_tree_block(fs_info, bytenr, generation,
2837 upper->level - 1, &first_key);
2838 if (IS_ERR(eb)) {
2839 err = PTR_ERR(eb);
2840 goto next;
2841 } else if (!extent_buffer_uptodate(eb)) {
2842 free_extent_buffer(eb);
2843 err = -EIO;
2844 goto next;
2845 }
2846 btrfs_tree_lock(eb);
2847 btrfs_set_lock_blocking_write(eb);
2848
2849 if (!node->eb) {
2850 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2851 slot, &eb);
2852 btrfs_tree_unlock(eb);
2853 free_extent_buffer(eb);
2854 if (ret < 0) {
2855 err = ret;
2856 goto next;
2857 }
2858 BUG_ON(node->eb != eb);
2859 } else {
2860 btrfs_set_node_blockptr(upper->eb, slot,
2861 node->eb->start);
2862 btrfs_set_node_ptr_generation(upper->eb, slot,
2863 trans->transid);
2864 btrfs_mark_buffer_dirty(upper->eb);
2865
2866 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2867 node->eb->start, blocksize,
2868 upper->eb->start);
2869 ref.real_root = root->root_key.objectid;
2870 btrfs_init_tree_ref(&ref, node->level,
2871 btrfs_header_owner(upper->eb));
2872 ret = btrfs_inc_extent_ref(trans, &ref);
2873 BUG_ON(ret);
2874
2875 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2876 BUG_ON(ret);
2877 }
2878next:
2879 if (!upper->pending)
2880 drop_node_buffer(upper);
2881 else
2882 unlock_node_buffer(upper);
2883 if (err)
2884 break;
2885 }
2886
2887 if (!err && node->pending) {
2888 drop_node_buffer(node);
2889 list_move_tail(&node->list, &rc->backref_cache.changed);
2890 node->pending = 0;
2891 }
2892
2893 path->lowest_level = 0;
2894 BUG_ON(err == -ENOSPC);
2895 return err;
2896}
2897
2898static int link_to_upper(struct btrfs_trans_handle *trans,
2899 struct reloc_control *rc,
2900 struct backref_node *node,
2901 struct btrfs_path *path)
2902{
2903 struct btrfs_key key;
2904
2905 btrfs_node_key_to_cpu(node->eb, &key, 0);
2906 return do_relocation(trans, rc, node, &key, path, 0);
2907}
2908
2909static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2910 struct reloc_control *rc,
2911 struct btrfs_path *path, int err)
2912{
2913 LIST_HEAD(list);
2914 struct backref_cache *cache = &rc->backref_cache;
2915 struct backref_node *node;
2916 int level;
2917 int ret;
2918
2919 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2920 while (!list_empty(&cache->pending[level])) {
2921 node = list_entry(cache->pending[level].next,
2922 struct backref_node, list);
2923 list_move_tail(&node->list, &list);
2924 BUG_ON(!node->pending);
2925
2926 if (!err) {
2927 ret = link_to_upper(trans, rc, node, path);
2928 if (ret < 0)
2929 err = ret;
2930 }
2931 }
2932 list_splice_init(&list, &cache->pending[level]);
2933 }
2934 return err;
2935}
2936
2937static void mark_block_processed(struct reloc_control *rc,
2938 u64 bytenr, u32 blocksize)
2939{
2940 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2941 EXTENT_DIRTY);
2942}
2943
2944static void __mark_block_processed(struct reloc_control *rc,
2945 struct backref_node *node)
2946{
2947 u32 blocksize;
2948 if (node->level == 0 ||
2949 in_block_group(node->bytenr, rc->block_group)) {
2950 blocksize = rc->extent_root->fs_info->nodesize;
2951 mark_block_processed(rc, node->bytenr, blocksize);
2952 }
2953 node->processed = 1;
2954}
2955
2956/*
2957 * mark a block and all blocks directly/indirectly reference the block
2958 * as processed.
2959 */
2960static void update_processed_blocks(struct reloc_control *rc,
2961 struct backref_node *node)
2962{
2963 struct backref_node *next = node;
2964 struct backref_edge *edge;
2965 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2966 int index = 0;
2967
2968 while (next) {
2969 cond_resched();
2970 while (1) {
2971 if (next->processed)
2972 break;
2973
2974 __mark_block_processed(rc, next);
2975
2976 if (list_empty(&next->upper))
2977 break;
2978
2979 edge = list_entry(next->upper.next,
2980 struct backref_edge, list[LOWER]);
2981 edges[index++] = edge;
2982 next = edge->node[UPPER];
2983 }
2984 next = walk_down_backref(edges, &index);
2985 }
2986}
2987
2988static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2989{
2990 u32 blocksize = rc->extent_root->fs_info->nodesize;
2991
2992 if (test_range_bit(&rc->processed_blocks, bytenr,
2993 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2994 return 1;
2995 return 0;
2996}
2997
2998static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2999 struct tree_block *block)
3000{
3001 struct extent_buffer *eb;
3002
3003 BUG_ON(block->key_ready);
3004 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3005 block->level, NULL);
3006 if (IS_ERR(eb)) {
3007 return PTR_ERR(eb);
3008 } else if (!extent_buffer_uptodate(eb)) {
3009 free_extent_buffer(eb);
3010 return -EIO;
3011 }
3012 if (block->level == 0)
3013 btrfs_item_key_to_cpu(eb, &block->key, 0);
3014 else
3015 btrfs_node_key_to_cpu(eb, &block->key, 0);
3016 free_extent_buffer(eb);
3017 block->key_ready = 1;
3018 return 0;
3019}
3020
3021/*
3022 * helper function to relocate a tree block
3023 */
3024static int relocate_tree_block(struct btrfs_trans_handle *trans,
3025 struct reloc_control *rc,
3026 struct backref_node *node,
3027 struct btrfs_key *key,
3028 struct btrfs_path *path)
3029{
3030 struct btrfs_root *root;
3031 int ret = 0;
3032
3033 if (!node)
3034 return 0;
3035
3036 BUG_ON(node->processed);
3037 root = select_one_root(node);
3038 if (root == ERR_PTR(-ENOENT)) {
3039 update_processed_blocks(rc, node);
3040 goto out;
3041 }
3042
3043 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3044 ret = reserve_metadata_space(trans, rc, node);
3045 if (ret)
3046 goto out;
3047 }
3048
3049 if (root) {
3050 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3051 BUG_ON(node->new_bytenr);
3052 BUG_ON(!list_empty(&node->list));
3053 btrfs_record_root_in_trans(trans, root);
3054 root = root->reloc_root;
3055 node->new_bytenr = root->node->start;
3056 node->root = root;
3057 list_add_tail(&node->list, &rc->backref_cache.changed);
3058 } else {
3059 path->lowest_level = node->level;
3060 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3061 btrfs_release_path(path);
3062 if (ret > 0)
3063 ret = 0;
3064 }
3065 if (!ret)
3066 update_processed_blocks(rc, node);
3067 } else {
3068 ret = do_relocation(trans, rc, node, key, path, 1);
3069 }
3070out:
3071 if (ret || node->level == 0 || node->cowonly)
3072 remove_backref_node(&rc->backref_cache, node);
3073 return ret;
3074}
3075
3076/*
3077 * relocate a list of blocks
3078 */
3079static noinline_for_stack
3080int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3081 struct reloc_control *rc, struct rb_root *blocks)
3082{
3083 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3084 struct backref_node *node;
3085 struct btrfs_path *path;
3086 struct tree_block *block;
3087 struct tree_block *next;
3088 int ret;
3089 int err = 0;
3090
3091 path = btrfs_alloc_path();
3092 if (!path) {
3093 err = -ENOMEM;
3094 goto out_free_blocks;
3095 }
3096
3097 /* Kick in readahead for tree blocks with missing keys */
3098 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3099 if (!block->key_ready)
3100 readahead_tree_block(fs_info, block->bytenr);
3101 }
3102
3103 /* Get first keys */
3104 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3105 if (!block->key_ready) {
3106 err = get_tree_block_key(fs_info, block);
3107 if (err)
3108 goto out_free_path;
3109 }
3110 }
3111
3112 /* Do tree relocation */
3113 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3114 node = build_backref_tree(rc, &block->key,
3115 block->level, block->bytenr);
3116 if (IS_ERR(node)) {
3117 err = PTR_ERR(node);
3118 goto out;
3119 }
3120
3121 ret = relocate_tree_block(trans, rc, node, &block->key,
3122 path);
3123 if (ret < 0) {
3124 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3125 err = ret;
3126 goto out;
3127 }
3128 }
3129out:
3130 err = finish_pending_nodes(trans, rc, path, err);
3131
3132out_free_path:
3133 btrfs_free_path(path);
3134out_free_blocks:
3135 free_block_list(blocks);
3136 return err;
3137}
3138
3139static noinline_for_stack
3140int prealloc_file_extent_cluster(struct inode *inode,
3141 struct file_extent_cluster *cluster)
3142{
3143 u64 alloc_hint = 0;
3144 u64 start;
3145 u64 end;
3146 u64 offset = BTRFS_I(inode)->index_cnt;
3147 u64 num_bytes;
3148 int nr = 0;
3149 int ret = 0;
3150 u64 prealloc_start = cluster->start - offset;
3151 u64 prealloc_end = cluster->end - offset;
3152 u64 cur_offset;
3153 struct extent_changeset *data_reserved = NULL;
3154
3155 BUG_ON(cluster->start != cluster->boundary[0]);
3156 inode_lock(inode);
3157
3158 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3159 prealloc_end + 1 - prealloc_start);
3160 if (ret)
3161 goto out;
3162
3163 cur_offset = prealloc_start;
3164 while (nr < cluster->nr) {
3165 start = cluster->boundary[nr] - offset;
3166 if (nr + 1 < cluster->nr)
3167 end = cluster->boundary[nr + 1] - 1 - offset;
3168 else
3169 end = cluster->end - offset;
3170
3171 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3172 num_bytes = end + 1 - start;
3173 if (cur_offset < start)
3174 btrfs_free_reserved_data_space(inode, data_reserved,
3175 cur_offset, start - cur_offset);
3176 ret = btrfs_prealloc_file_range(inode, 0, start,
3177 num_bytes, num_bytes,
3178 end + 1, &alloc_hint);
3179 cur_offset = end + 1;
3180 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3181 if (ret)
3182 break;
3183 nr++;
3184 }
3185 if (cur_offset < prealloc_end)
3186 btrfs_free_reserved_data_space(inode, data_reserved,
3187 cur_offset, prealloc_end + 1 - cur_offset);
3188out:
3189 inode_unlock(inode);
3190 extent_changeset_free(data_reserved);
3191 return ret;
3192}
3193
3194static noinline_for_stack
3195int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3196 u64 block_start)
3197{
3198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3200 struct extent_map *em;
3201 int ret = 0;
3202
3203 em = alloc_extent_map();
3204 if (!em)
3205 return -ENOMEM;
3206
3207 em->start = start;
3208 em->len = end + 1 - start;
3209 em->block_len = em->len;
3210 em->block_start = block_start;
3211 em->bdev = fs_info->fs_devices->latest_bdev;
3212 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3213
3214 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3215 while (1) {
3216 write_lock(&em_tree->lock);
3217 ret = add_extent_mapping(em_tree, em, 0);
3218 write_unlock(&em_tree->lock);
3219 if (ret != -EEXIST) {
3220 free_extent_map(em);
3221 break;
3222 }
3223 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3224 }
3225 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3226 return ret;
3227}
3228
3229static int relocate_file_extent_cluster(struct inode *inode,
3230 struct file_extent_cluster *cluster)
3231{
3232 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3233 u64 page_start;
3234 u64 page_end;
3235 u64 offset = BTRFS_I(inode)->index_cnt;
3236 unsigned long index;
3237 unsigned long last_index;
3238 struct page *page;
3239 struct file_ra_state *ra;
3240 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3241 int nr = 0;
3242 int ret = 0;
3243
3244 if (!cluster->nr)
3245 return 0;
3246
3247 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3248 if (!ra)
3249 return -ENOMEM;
3250
3251 ret = prealloc_file_extent_cluster(inode, cluster);
3252 if (ret)
3253 goto out;
3254
3255 file_ra_state_init(ra, inode->i_mapping);
3256
3257 ret = setup_extent_mapping(inode, cluster->start - offset,
3258 cluster->end - offset, cluster->start);
3259 if (ret)
3260 goto out;
3261
3262 index = (cluster->start - offset) >> PAGE_SHIFT;
3263 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3264 while (index <= last_index) {
3265 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3266 PAGE_SIZE);
3267 if (ret)
3268 goto out;
3269
3270 page = find_lock_page(inode->i_mapping, index);
3271 if (!page) {
3272 page_cache_sync_readahead(inode->i_mapping,
3273 ra, NULL, index,
3274 last_index + 1 - index);
3275 page = find_or_create_page(inode->i_mapping, index,
3276 mask);
3277 if (!page) {
3278 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3279 PAGE_SIZE, true);
3280 btrfs_delalloc_release_extents(BTRFS_I(inode),
3281 PAGE_SIZE);
3282 ret = -ENOMEM;
3283 goto out;
3284 }
3285 }
3286
3287 if (PageReadahead(page)) {
3288 page_cache_async_readahead(inode->i_mapping,
3289 ra, NULL, page, index,
3290 last_index + 1 - index);
3291 }
3292
3293 if (!PageUptodate(page)) {
3294 btrfs_readpage(NULL, page);
3295 lock_page(page);
3296 if (!PageUptodate(page)) {
3297 unlock_page(page);
3298 put_page(page);
3299 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3300 PAGE_SIZE, true);
3301 btrfs_delalloc_release_extents(BTRFS_I(inode),
3302 PAGE_SIZE);
3303 ret = -EIO;
3304 goto out;
3305 }
3306 }
3307
3308 page_start = page_offset(page);
3309 page_end = page_start + PAGE_SIZE - 1;
3310
3311 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3312
3313 set_page_extent_mapped(page);
3314
3315 if (nr < cluster->nr &&
3316 page_start + offset == cluster->boundary[nr]) {
3317 set_extent_bits(&BTRFS_I(inode)->io_tree,
3318 page_start, page_end,
3319 EXTENT_BOUNDARY);
3320 nr++;
3321 }
3322
3323 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3324 NULL);
3325 if (ret) {
3326 unlock_page(page);
3327 put_page(page);
3328 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3329 PAGE_SIZE, true);
3330 btrfs_delalloc_release_extents(BTRFS_I(inode),
3331 PAGE_SIZE);
3332
3333 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3334 page_start, page_end,
3335 EXTENT_LOCKED | EXTENT_BOUNDARY);
3336 goto out;
3337
3338 }
3339 set_page_dirty(page);
3340
3341 unlock_extent(&BTRFS_I(inode)->io_tree,
3342 page_start, page_end);
3343 unlock_page(page);
3344 put_page(page);
3345
3346 index++;
3347 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3348 balance_dirty_pages_ratelimited(inode->i_mapping);
3349 btrfs_throttle(fs_info);
3350 }
3351 WARN_ON(nr != cluster->nr);
3352out:
3353 kfree(ra);
3354 return ret;
3355}
3356
3357static noinline_for_stack
3358int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3359 struct file_extent_cluster *cluster)
3360{
3361 int ret;
3362
3363 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3364 ret = relocate_file_extent_cluster(inode, cluster);
3365 if (ret)
3366 return ret;
3367 cluster->nr = 0;
3368 }
3369
3370 if (!cluster->nr)
3371 cluster->start = extent_key->objectid;
3372 else
3373 BUG_ON(cluster->nr >= MAX_EXTENTS);
3374 cluster->end = extent_key->objectid + extent_key->offset - 1;
3375 cluster->boundary[cluster->nr] = extent_key->objectid;
3376 cluster->nr++;
3377
3378 if (cluster->nr >= MAX_EXTENTS) {
3379 ret = relocate_file_extent_cluster(inode, cluster);
3380 if (ret)
3381 return ret;
3382 cluster->nr = 0;
3383 }
3384 return 0;
3385}
3386
3387/*
3388 * helper to add a tree block to the list.
3389 * the major work is getting the generation and level of the block
3390 */
3391static int add_tree_block(struct reloc_control *rc,
3392 struct btrfs_key *extent_key,
3393 struct btrfs_path *path,
3394 struct rb_root *blocks)
3395{
3396 struct extent_buffer *eb;
3397 struct btrfs_extent_item *ei;
3398 struct btrfs_tree_block_info *bi;
3399 struct tree_block *block;
3400 struct rb_node *rb_node;
3401 u32 item_size;
3402 int level = -1;
3403 u64 generation;
3404
3405 eb = path->nodes[0];
3406 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3407
3408 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3409 item_size >= sizeof(*ei) + sizeof(*bi)) {
3410 ei = btrfs_item_ptr(eb, path->slots[0],
3411 struct btrfs_extent_item);
3412 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3413 bi = (struct btrfs_tree_block_info *)(ei + 1);
3414 level = btrfs_tree_block_level(eb, bi);
3415 } else {
3416 level = (int)extent_key->offset;
3417 }
3418 generation = btrfs_extent_generation(eb, ei);
3419 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3420 btrfs_print_v0_err(eb->fs_info);
3421 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3422 return -EINVAL;
3423 } else {
3424 BUG();
3425 }
3426
3427 btrfs_release_path(path);
3428
3429 BUG_ON(level == -1);
3430
3431 block = kmalloc(sizeof(*block), GFP_NOFS);
3432 if (!block)
3433 return -ENOMEM;
3434
3435 block->bytenr = extent_key->objectid;
3436 block->key.objectid = rc->extent_root->fs_info->nodesize;
3437 block->key.offset = generation;
3438 block->level = level;
3439 block->key_ready = 0;
3440
3441 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3442 if (rb_node)
3443 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3444
3445 return 0;
3446}
3447
3448/*
3449 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3450 */
3451static int __add_tree_block(struct reloc_control *rc,
3452 u64 bytenr, u32 blocksize,
3453 struct rb_root *blocks)
3454{
3455 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3456 struct btrfs_path *path;
3457 struct btrfs_key key;
3458 int ret;
3459 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3460
3461 if (tree_block_processed(bytenr, rc))
3462 return 0;
3463
3464 if (tree_search(blocks, bytenr))
3465 return 0;
3466
3467 path = btrfs_alloc_path();
3468 if (!path)
3469 return -ENOMEM;
3470again:
3471 key.objectid = bytenr;
3472 if (skinny) {
3473 key.type = BTRFS_METADATA_ITEM_KEY;
3474 key.offset = (u64)-1;
3475 } else {
3476 key.type = BTRFS_EXTENT_ITEM_KEY;
3477 key.offset = blocksize;
3478 }
3479
3480 path->search_commit_root = 1;
3481 path->skip_locking = 1;
3482 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3483 if (ret < 0)
3484 goto out;
3485
3486 if (ret > 0 && skinny) {
3487 if (path->slots[0]) {
3488 path->slots[0]--;
3489 btrfs_item_key_to_cpu(path->nodes[0], &key,
3490 path->slots[0]);
3491 if (key.objectid == bytenr &&
3492 (key.type == BTRFS_METADATA_ITEM_KEY ||
3493 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3494 key.offset == blocksize)))
3495 ret = 0;
3496 }
3497
3498 if (ret) {
3499 skinny = false;
3500 btrfs_release_path(path);
3501 goto again;
3502 }
3503 }
3504 if (ret) {
3505 ASSERT(ret == 1);
3506 btrfs_print_leaf(path->nodes[0]);
3507 btrfs_err(fs_info,
3508 "tree block extent item (%llu) is not found in extent tree",
3509 bytenr);
3510 WARN_ON(1);
3511 ret = -EINVAL;
3512 goto out;
3513 }
3514
3515 ret = add_tree_block(rc, &key, path, blocks);
3516out:
3517 btrfs_free_path(path);
3518 return ret;
3519}
3520
3521/*
3522 * helper to check if the block use full backrefs for pointers in it
3523 */
3524static int block_use_full_backref(struct reloc_control *rc,
3525 struct extent_buffer *eb)
3526{
3527 u64 flags;
3528 int ret;
3529
3530 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3531 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3532 return 1;
3533
3534 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3535 eb->start, btrfs_header_level(eb), 1,
3536 NULL, &flags);
3537 BUG_ON(ret);
3538
3539 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3540 ret = 1;
3541 else
3542 ret = 0;
3543 return ret;
3544}
3545
3546static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3547 struct btrfs_block_group_cache *block_group,
3548 struct inode *inode,
3549 u64 ino)
3550{
3551 struct btrfs_key key;
3552 struct btrfs_root *root = fs_info->tree_root;
3553 struct btrfs_trans_handle *trans;
3554 int ret = 0;
3555
3556 if (inode)
3557 goto truncate;
3558
3559 key.objectid = ino;
3560 key.type = BTRFS_INODE_ITEM_KEY;
3561 key.offset = 0;
3562
3563 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3564 if (IS_ERR(inode))
3565 return -ENOENT;
3566
3567truncate:
3568 ret = btrfs_check_trunc_cache_free_space(fs_info,
3569 &fs_info->global_block_rsv);
3570 if (ret)
3571 goto out;
3572
3573 trans = btrfs_join_transaction(root);
3574 if (IS_ERR(trans)) {
3575 ret = PTR_ERR(trans);
3576 goto out;
3577 }
3578
3579 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3580
3581 btrfs_end_transaction(trans);
3582 btrfs_btree_balance_dirty(fs_info);
3583out:
3584 iput(inode);
3585 return ret;
3586}
3587
3588/*
3589 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3590 * this function scans fs tree to find blocks reference the data extent
3591 */
3592static int find_data_references(struct reloc_control *rc,
3593 struct btrfs_key *extent_key,
3594 struct extent_buffer *leaf,
3595 struct btrfs_extent_data_ref *ref,
3596 struct rb_root *blocks)
3597{
3598 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3599 struct btrfs_path *path;
3600 struct tree_block *block;
3601 struct btrfs_root *root;
3602 struct btrfs_file_extent_item *fi;
3603 struct rb_node *rb_node;
3604 struct btrfs_key key;
3605 u64 ref_root;
3606 u64 ref_objectid;
3607 u64 ref_offset;
3608 u32 ref_count;
3609 u32 nritems;
3610 int err = 0;
3611 int added = 0;
3612 int counted;
3613 int ret;
3614
3615 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3616 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3617 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3618 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3619
3620 /*
3621 * This is an extent belonging to the free space cache, lets just delete
3622 * it and redo the search.
3623 */
3624 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3625 ret = delete_block_group_cache(fs_info, rc->block_group,
3626 NULL, ref_objectid);
3627 if (ret != -ENOENT)
3628 return ret;
3629 ret = 0;
3630 }
3631
3632 path = btrfs_alloc_path();
3633 if (!path)
3634 return -ENOMEM;
3635 path->reada = READA_FORWARD;
3636
3637 root = read_fs_root(fs_info, ref_root);
3638 if (IS_ERR(root)) {
3639 err = PTR_ERR(root);
3640 goto out;
3641 }
3642
3643 key.objectid = ref_objectid;
3644 key.type = BTRFS_EXTENT_DATA_KEY;
3645 if (ref_offset > ((u64)-1 << 32))
3646 key.offset = 0;
3647 else
3648 key.offset = ref_offset;
3649
3650 path->search_commit_root = 1;
3651 path->skip_locking = 1;
3652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653 if (ret < 0) {
3654 err = ret;
3655 goto out;
3656 }
3657
3658 leaf = path->nodes[0];
3659 nritems = btrfs_header_nritems(leaf);
3660 /*
3661 * the references in tree blocks that use full backrefs
3662 * are not counted in
3663 */
3664 if (block_use_full_backref(rc, leaf))
3665 counted = 0;
3666 else
3667 counted = 1;
3668 rb_node = tree_search(blocks, leaf->start);
3669 if (rb_node) {
3670 if (counted)
3671 added = 1;
3672 else
3673 path->slots[0] = nritems;
3674 }
3675
3676 while (ref_count > 0) {
3677 while (path->slots[0] >= nritems) {
3678 ret = btrfs_next_leaf(root, path);
3679 if (ret < 0) {
3680 err = ret;
3681 goto out;
3682 }
3683 if (WARN_ON(ret > 0))
3684 goto out;
3685
3686 leaf = path->nodes[0];
3687 nritems = btrfs_header_nritems(leaf);
3688 added = 0;
3689
3690 if (block_use_full_backref(rc, leaf))
3691 counted = 0;
3692 else
3693 counted = 1;
3694 rb_node = tree_search(blocks, leaf->start);
3695 if (rb_node) {
3696 if (counted)
3697 added = 1;
3698 else
3699 path->slots[0] = nritems;
3700 }
3701 }
3702
3703 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3704 if (WARN_ON(key.objectid != ref_objectid ||
3705 key.type != BTRFS_EXTENT_DATA_KEY))
3706 break;
3707
3708 fi = btrfs_item_ptr(leaf, path->slots[0],
3709 struct btrfs_file_extent_item);
3710
3711 if (btrfs_file_extent_type(leaf, fi) ==
3712 BTRFS_FILE_EXTENT_INLINE)
3713 goto next;
3714
3715 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3716 extent_key->objectid)
3717 goto next;
3718
3719 key.offset -= btrfs_file_extent_offset(leaf, fi);
3720 if (key.offset != ref_offset)
3721 goto next;
3722
3723 if (counted)
3724 ref_count--;
3725 if (added)
3726 goto next;
3727
3728 if (!tree_block_processed(leaf->start, rc)) {
3729 block = kmalloc(sizeof(*block), GFP_NOFS);
3730 if (!block) {
3731 err = -ENOMEM;
3732 break;
3733 }
3734 block->bytenr = leaf->start;
3735 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3736 block->level = 0;
3737 block->key_ready = 1;
3738 rb_node = tree_insert(blocks, block->bytenr,
3739 &block->rb_node);
3740 if (rb_node)
3741 backref_tree_panic(rb_node, -EEXIST,
3742 block->bytenr);
3743 }
3744 if (counted)
3745 added = 1;
3746 else
3747 path->slots[0] = nritems;
3748next:
3749 path->slots[0]++;
3750
3751 }
3752out:
3753 btrfs_free_path(path);
3754 return err;
3755}
3756
3757/*
3758 * helper to find all tree blocks that reference a given data extent
3759 */
3760static noinline_for_stack
3761int add_data_references(struct reloc_control *rc,
3762 struct btrfs_key *extent_key,
3763 struct btrfs_path *path,
3764 struct rb_root *blocks)
3765{
3766 struct btrfs_key key;
3767 struct extent_buffer *eb;
3768 struct btrfs_extent_data_ref *dref;
3769 struct btrfs_extent_inline_ref *iref;
3770 unsigned long ptr;
3771 unsigned long end;
3772 u32 blocksize = rc->extent_root->fs_info->nodesize;
3773 int ret = 0;
3774 int err = 0;
3775
3776 eb = path->nodes[0];
3777 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3778 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3779 ptr += sizeof(struct btrfs_extent_item);
3780
3781 while (ptr < end) {
3782 iref = (struct btrfs_extent_inline_ref *)ptr;
3783 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3784 BTRFS_REF_TYPE_DATA);
3785 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3786 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3787 ret = __add_tree_block(rc, key.offset, blocksize,
3788 blocks);
3789 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3790 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3791 ret = find_data_references(rc, extent_key,
3792 eb, dref, blocks);
3793 } else {
3794 ret = -EUCLEAN;
3795 btrfs_err(rc->extent_root->fs_info,
3796 "extent %llu slot %d has an invalid inline ref type",
3797 eb->start, path->slots[0]);
3798 }
3799 if (ret) {
3800 err = ret;
3801 goto out;
3802 }
3803 ptr += btrfs_extent_inline_ref_size(key.type);
3804 }
3805 WARN_ON(ptr > end);
3806
3807 while (1) {
3808 cond_resched();
3809 eb = path->nodes[0];
3810 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3811 ret = btrfs_next_leaf(rc->extent_root, path);
3812 if (ret < 0) {
3813 err = ret;
3814 break;
3815 }
3816 if (ret > 0)
3817 break;
3818 eb = path->nodes[0];
3819 }
3820
3821 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3822 if (key.objectid != extent_key->objectid)
3823 break;
3824
3825 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3826 ret = __add_tree_block(rc, key.offset, blocksize,
3827 blocks);
3828 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3829 dref = btrfs_item_ptr(eb, path->slots[0],
3830 struct btrfs_extent_data_ref);
3831 ret = find_data_references(rc, extent_key,
3832 eb, dref, blocks);
3833 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3834 btrfs_print_v0_err(eb->fs_info);
3835 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3836 ret = -EINVAL;
3837 } else {
3838 ret = 0;
3839 }
3840 if (ret) {
3841 err = ret;
3842 break;
3843 }
3844 path->slots[0]++;
3845 }
3846out:
3847 btrfs_release_path(path);
3848 if (err)
3849 free_block_list(blocks);
3850 return err;
3851}
3852
3853/*
3854 * helper to find next unprocessed extent
3855 */
3856static noinline_for_stack
3857int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3858 struct btrfs_key *extent_key)
3859{
3860 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3861 struct btrfs_key key;
3862 struct extent_buffer *leaf;
3863 u64 start, end, last;
3864 int ret;
3865
3866 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3867 while (1) {
3868 cond_resched();
3869 if (rc->search_start >= last) {
3870 ret = 1;
3871 break;
3872 }
3873
3874 key.objectid = rc->search_start;
3875 key.type = BTRFS_EXTENT_ITEM_KEY;
3876 key.offset = 0;
3877
3878 path->search_commit_root = 1;
3879 path->skip_locking = 1;
3880 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3881 0, 0);
3882 if (ret < 0)
3883 break;
3884next:
3885 leaf = path->nodes[0];
3886 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3887 ret = btrfs_next_leaf(rc->extent_root, path);
3888 if (ret != 0)
3889 break;
3890 leaf = path->nodes[0];
3891 }
3892
3893 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3894 if (key.objectid >= last) {
3895 ret = 1;
3896 break;
3897 }
3898
3899 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3900 key.type != BTRFS_METADATA_ITEM_KEY) {
3901 path->slots[0]++;
3902 goto next;
3903 }
3904
3905 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3906 key.objectid + key.offset <= rc->search_start) {
3907 path->slots[0]++;
3908 goto next;
3909 }
3910
3911 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3912 key.objectid + fs_info->nodesize <=
3913 rc->search_start) {
3914 path->slots[0]++;
3915 goto next;
3916 }
3917
3918 ret = find_first_extent_bit(&rc->processed_blocks,
3919 key.objectid, &start, &end,
3920 EXTENT_DIRTY, NULL);
3921
3922 if (ret == 0 && start <= key.objectid) {
3923 btrfs_release_path(path);
3924 rc->search_start = end + 1;
3925 } else {
3926 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3927 rc->search_start = key.objectid + key.offset;
3928 else
3929 rc->search_start = key.objectid +
3930 fs_info->nodesize;
3931 memcpy(extent_key, &key, sizeof(key));
3932 return 0;
3933 }
3934 }
3935 btrfs_release_path(path);
3936 return ret;
3937}
3938
3939static void set_reloc_control(struct reloc_control *rc)
3940{
3941 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3942
3943 mutex_lock(&fs_info->reloc_mutex);
3944 fs_info->reloc_ctl = rc;
3945 mutex_unlock(&fs_info->reloc_mutex);
3946}
3947
3948static void unset_reloc_control(struct reloc_control *rc)
3949{
3950 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3951
3952 mutex_lock(&fs_info->reloc_mutex);
3953 fs_info->reloc_ctl = NULL;
3954 mutex_unlock(&fs_info->reloc_mutex);
3955}
3956
3957static int check_extent_flags(u64 flags)
3958{
3959 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3960 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3961 return 1;
3962 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3963 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3964 return 1;
3965 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3966 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3967 return 1;
3968 return 0;
3969}
3970
3971static noinline_for_stack
3972int prepare_to_relocate(struct reloc_control *rc)
3973{
3974 struct btrfs_trans_handle *trans;
3975 int ret;
3976
3977 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3978 BTRFS_BLOCK_RSV_TEMP);
3979 if (!rc->block_rsv)
3980 return -ENOMEM;
3981
3982 memset(&rc->cluster, 0, sizeof(rc->cluster));
3983 rc->search_start = rc->block_group->key.objectid;
3984 rc->extents_found = 0;
3985 rc->nodes_relocated = 0;
3986 rc->merging_rsv_size = 0;
3987 rc->reserved_bytes = 0;
3988 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3989 RELOCATION_RESERVED_NODES;
3990 ret = btrfs_block_rsv_refill(rc->extent_root,
3991 rc->block_rsv, rc->block_rsv->size,
3992 BTRFS_RESERVE_FLUSH_ALL);
3993 if (ret)
3994 return ret;
3995
3996 rc->create_reloc_tree = 1;
3997 set_reloc_control(rc);
3998
3999 trans = btrfs_join_transaction(rc->extent_root);
4000 if (IS_ERR(trans)) {
4001 unset_reloc_control(rc);
4002 /*
4003 * extent tree is not a ref_cow tree and has no reloc_root to
4004 * cleanup. And callers are responsible to free the above
4005 * block rsv.
4006 */
4007 return PTR_ERR(trans);
4008 }
4009 btrfs_commit_transaction(trans);
4010 return 0;
4011}
4012
4013static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4014{
4015 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4016 struct rb_root blocks = RB_ROOT;
4017 struct btrfs_key key;
4018 struct btrfs_trans_handle *trans = NULL;
4019 struct btrfs_path *path;
4020 struct btrfs_extent_item *ei;
4021 u64 flags;
4022 u32 item_size;
4023 int ret;
4024 int err = 0;
4025 int progress = 0;
4026
4027 path = btrfs_alloc_path();
4028 if (!path)
4029 return -ENOMEM;
4030 path->reada = READA_FORWARD;
4031
4032 ret = prepare_to_relocate(rc);
4033 if (ret) {
4034 err = ret;
4035 goto out_free;
4036 }
4037
4038 while (1) {
4039 rc->reserved_bytes = 0;
4040 ret = btrfs_block_rsv_refill(rc->extent_root,
4041 rc->block_rsv, rc->block_rsv->size,
4042 BTRFS_RESERVE_FLUSH_ALL);
4043 if (ret) {
4044 err = ret;
4045 break;
4046 }
4047 progress++;
4048 trans = btrfs_start_transaction(rc->extent_root, 0);
4049 if (IS_ERR(trans)) {
4050 err = PTR_ERR(trans);
4051 trans = NULL;
4052 break;
4053 }
4054restart:
4055 if (update_backref_cache(trans, &rc->backref_cache)) {
4056 btrfs_end_transaction(trans);
4057 trans = NULL;
4058 continue;
4059 }
4060
4061 ret = find_next_extent(rc, path, &key);
4062 if (ret < 0)
4063 err = ret;
4064 if (ret != 0)
4065 break;
4066
4067 rc->extents_found++;
4068
4069 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4070 struct btrfs_extent_item);
4071 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4072 if (item_size >= sizeof(*ei)) {
4073 flags = btrfs_extent_flags(path->nodes[0], ei);
4074 ret = check_extent_flags(flags);
4075 BUG_ON(ret);
4076 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4077 err = -EINVAL;
4078 btrfs_print_v0_err(trans->fs_info);
4079 btrfs_abort_transaction(trans, err);
4080 break;
4081 } else {
4082 BUG();
4083 }
4084
4085 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4086 ret = add_tree_block(rc, &key, path, &blocks);
4087 } else if (rc->stage == UPDATE_DATA_PTRS &&
4088 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4089 ret = add_data_references(rc, &key, path, &blocks);
4090 } else {
4091 btrfs_release_path(path);
4092 ret = 0;
4093 }
4094 if (ret < 0) {
4095 err = ret;
4096 break;
4097 }
4098
4099 if (!RB_EMPTY_ROOT(&blocks)) {
4100 ret = relocate_tree_blocks(trans, rc, &blocks);
4101 if (ret < 0) {
4102 /*
4103 * if we fail to relocate tree blocks, force to update
4104 * backref cache when committing transaction.
4105 */
4106 rc->backref_cache.last_trans = trans->transid - 1;
4107
4108 if (ret != -EAGAIN) {
4109 err = ret;
4110 break;
4111 }
4112 rc->extents_found--;
4113 rc->search_start = key.objectid;
4114 }
4115 }
4116
4117 btrfs_end_transaction_throttle(trans);
4118 btrfs_btree_balance_dirty(fs_info);
4119 trans = NULL;
4120
4121 if (rc->stage == MOVE_DATA_EXTENTS &&
4122 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4123 rc->found_file_extent = 1;
4124 ret = relocate_data_extent(rc->data_inode,
4125 &key, &rc->cluster);
4126 if (ret < 0) {
4127 err = ret;
4128 break;
4129 }
4130 }
4131 }
4132 if (trans && progress && err == -ENOSPC) {
4133 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4134 if (ret == 1) {
4135 err = 0;
4136 progress = 0;
4137 goto restart;
4138 }
4139 }
4140
4141 btrfs_release_path(path);
4142 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4143
4144 if (trans) {
4145 btrfs_end_transaction_throttle(trans);
4146 btrfs_btree_balance_dirty(fs_info);
4147 }
4148
4149 if (!err) {
4150 ret = relocate_file_extent_cluster(rc->data_inode,
4151 &rc->cluster);
4152 if (ret < 0)
4153 err = ret;
4154 }
4155
4156 rc->create_reloc_tree = 0;
4157 set_reloc_control(rc);
4158
4159 backref_cache_cleanup(&rc->backref_cache);
4160 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4161
4162 err = prepare_to_merge(rc, err);
4163
4164 merge_reloc_roots(rc);
4165
4166 rc->merge_reloc_tree = 0;
4167 unset_reloc_control(rc);
4168 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4169
4170 /* get rid of pinned extents */
4171 trans = btrfs_join_transaction(rc->extent_root);
4172 if (IS_ERR(trans)) {
4173 err = PTR_ERR(trans);
4174 goto out_free;
4175 }
4176 btrfs_commit_transaction(trans);
4177 ret = clean_dirty_subvols(rc);
4178 if (ret < 0 && !err)
4179 err = ret;
4180out_free:
4181 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4182 btrfs_free_path(path);
4183 return err;
4184}
4185
4186static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4187 struct btrfs_root *root, u64 objectid)
4188{
4189 struct btrfs_path *path;
4190 struct btrfs_inode_item *item;
4191 struct extent_buffer *leaf;
4192 int ret;
4193
4194 path = btrfs_alloc_path();
4195 if (!path)
4196 return -ENOMEM;
4197
4198 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4199 if (ret)
4200 goto out;
4201
4202 leaf = path->nodes[0];
4203 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4204 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4205 btrfs_set_inode_generation(leaf, item, 1);
4206 btrfs_set_inode_size(leaf, item, 0);
4207 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4208 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4209 BTRFS_INODE_PREALLOC);
4210 btrfs_mark_buffer_dirty(leaf);
4211out:
4212 btrfs_free_path(path);
4213 return ret;
4214}
4215
4216/*
4217 * helper to create inode for data relocation.
4218 * the inode is in data relocation tree and its link count is 0
4219 */
4220static noinline_for_stack
4221struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4222 struct btrfs_block_group_cache *group)
4223{
4224 struct inode *inode = NULL;
4225 struct btrfs_trans_handle *trans;
4226 struct btrfs_root *root;
4227 struct btrfs_key key;
4228 u64 objectid;
4229 int err = 0;
4230
4231 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4232 if (IS_ERR(root))
4233 return ERR_CAST(root);
4234
4235 trans = btrfs_start_transaction(root, 6);
4236 if (IS_ERR(trans))
4237 return ERR_CAST(trans);
4238
4239 err = btrfs_find_free_objectid(root, &objectid);
4240 if (err)
4241 goto out;
4242
4243 err = __insert_orphan_inode(trans, root, objectid);
4244 BUG_ON(err);
4245
4246 key.objectid = objectid;
4247 key.type = BTRFS_INODE_ITEM_KEY;
4248 key.offset = 0;
4249 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4250 BUG_ON(IS_ERR(inode));
4251 BTRFS_I(inode)->index_cnt = group->key.objectid;
4252
4253 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4254out:
4255 btrfs_end_transaction(trans);
4256 btrfs_btree_balance_dirty(fs_info);
4257 if (err) {
4258 if (inode)
4259 iput(inode);
4260 inode = ERR_PTR(err);
4261 }
4262 return inode;
4263}
4264
4265static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4266{
4267 struct reloc_control *rc;
4268
4269 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4270 if (!rc)
4271 return NULL;
4272
4273 INIT_LIST_HEAD(&rc->reloc_roots);
4274 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4275 backref_cache_init(&rc->backref_cache);
4276 mapping_tree_init(&rc->reloc_root_tree);
4277 extent_io_tree_init(fs_info, &rc->processed_blocks,
4278 IO_TREE_RELOC_BLOCKS, NULL);
4279 return rc;
4280}
4281
4282/*
4283 * Print the block group being relocated
4284 */
4285static void describe_relocation(struct btrfs_fs_info *fs_info,
4286 struct btrfs_block_group_cache *block_group)
4287{
4288 char buf[128] = {'\0'};
4289
4290 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4291
4292 btrfs_info(fs_info,
4293 "relocating block group %llu flags %s",
4294 block_group->key.objectid, buf);
4295}
4296
4297/*
4298 * function to relocate all extents in a block group.
4299 */
4300int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4301{
4302 struct btrfs_block_group_cache *bg;
4303 struct btrfs_root *extent_root = fs_info->extent_root;
4304 struct reloc_control *rc;
4305 struct inode *inode;
4306 struct btrfs_path *path;
4307 int ret;
4308 int rw = 0;
4309 int err = 0;
4310
4311 bg = btrfs_lookup_block_group(fs_info, group_start);
4312 if (!bg)
4313 return -ENOENT;
4314
4315 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4316 btrfs_put_block_group(bg);
4317 return -ETXTBSY;
4318 }
4319
4320 rc = alloc_reloc_control(fs_info);
4321 if (!rc) {
4322 btrfs_put_block_group(bg);
4323 return -ENOMEM;
4324 }
4325
4326 rc->extent_root = extent_root;
4327 rc->block_group = bg;
4328
4329 ret = btrfs_inc_block_group_ro(rc->block_group);
4330 if (ret) {
4331 err = ret;
4332 goto out;
4333 }
4334 rw = 1;
4335
4336 path = btrfs_alloc_path();
4337 if (!path) {
4338 err = -ENOMEM;
4339 goto out;
4340 }
4341
4342 inode = lookup_free_space_inode(rc->block_group, path);
4343 btrfs_free_path(path);
4344
4345 if (!IS_ERR(inode))
4346 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4347 else
4348 ret = PTR_ERR(inode);
4349
4350 if (ret && ret != -ENOENT) {
4351 err = ret;
4352 goto out;
4353 }
4354
4355 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4356 if (IS_ERR(rc->data_inode)) {
4357 err = PTR_ERR(rc->data_inode);
4358 rc->data_inode = NULL;
4359 goto out;
4360 }
4361
4362 describe_relocation(fs_info, rc->block_group);
4363
4364 btrfs_wait_block_group_reservations(rc->block_group);
4365 btrfs_wait_nocow_writers(rc->block_group);
4366 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4367 rc->block_group->key.objectid,
4368 rc->block_group->key.offset);
4369
4370 while (1) {
4371 mutex_lock(&fs_info->cleaner_mutex);
4372 ret = relocate_block_group(rc);
4373 mutex_unlock(&fs_info->cleaner_mutex);
4374 if (ret < 0)
4375 err = ret;
4376
4377 /*
4378 * We may have gotten ENOSPC after we already dirtied some
4379 * extents. If writeout happens while we're relocating a
4380 * different block group we could end up hitting the
4381 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4382 * btrfs_reloc_cow_block. Make sure we write everything out
4383 * properly so we don't trip over this problem, and then break
4384 * out of the loop if we hit an error.
4385 */
4386 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4387 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4388 (u64)-1);
4389 if (ret)
4390 err = ret;
4391 invalidate_mapping_pages(rc->data_inode->i_mapping,
4392 0, -1);
4393 rc->stage = UPDATE_DATA_PTRS;
4394 }
4395
4396 if (err < 0)
4397 goto out;
4398
4399 if (rc->extents_found == 0)
4400 break;
4401
4402 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4403
4404 }
4405
4406 WARN_ON(rc->block_group->pinned > 0);
4407 WARN_ON(rc->block_group->reserved > 0);
4408 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410 if (err && rw)
4411 btrfs_dec_block_group_ro(rc->block_group);
4412 iput(rc->data_inode);
4413 btrfs_put_block_group(rc->block_group);
4414 kfree(rc);
4415 return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420 struct btrfs_fs_info *fs_info = root->fs_info;
4421 struct btrfs_trans_handle *trans;
4422 int ret, err;
4423
4424 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425 if (IS_ERR(trans))
4426 return PTR_ERR(trans);
4427
4428 memset(&root->root_item.drop_progress, 0,
4429 sizeof(root->root_item.drop_progress));
4430 root->root_item.drop_level = 0;
4431 btrfs_set_root_refs(&root->root_item, 0);
4432 ret = btrfs_update_root(trans, fs_info->tree_root,
4433 &root->root_key, &root->root_item);
4434
4435 err = btrfs_end_transaction(trans);
4436 if (err)
4437 return err;
4438 return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449 struct btrfs_fs_info *fs_info = root->fs_info;
4450 LIST_HEAD(reloc_roots);
4451 struct btrfs_key key;
4452 struct btrfs_root *fs_root;
4453 struct btrfs_root *reloc_root;
4454 struct btrfs_path *path;
4455 struct extent_buffer *leaf;
4456 struct reloc_control *rc = NULL;
4457 struct btrfs_trans_handle *trans;
4458 int ret;
4459 int err = 0;
4460
4461 path = btrfs_alloc_path();
4462 if (!path)
4463 return -ENOMEM;
4464 path->reada = READA_BACK;
4465
4466 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467 key.type = BTRFS_ROOT_ITEM_KEY;
4468 key.offset = (u64)-1;
4469
4470 while (1) {
4471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472 path, 0, 0);
4473 if (ret < 0) {
4474 err = ret;
4475 goto out;
4476 }
4477 if (ret > 0) {
4478 if (path->slots[0] == 0)
4479 break;
4480 path->slots[0]--;
4481 }
4482 leaf = path->nodes[0];
4483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484 btrfs_release_path(path);
4485
4486 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487 key.type != BTRFS_ROOT_ITEM_KEY)
4488 break;
4489
4490 reloc_root = btrfs_read_fs_root(root, &key);
4491 if (IS_ERR(reloc_root)) {
4492 err = PTR_ERR(reloc_root);
4493 goto out;
4494 }
4495
4496 list_add(&reloc_root->root_list, &reloc_roots);
4497
4498 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499 fs_root = read_fs_root(fs_info,
4500 reloc_root->root_key.offset);
4501 if (IS_ERR(fs_root)) {
4502 ret = PTR_ERR(fs_root);
4503 if (ret != -ENOENT) {
4504 err = ret;
4505 goto out;
4506 }
4507 ret = mark_garbage_root(reloc_root);
4508 if (ret < 0) {
4509 err = ret;
4510 goto out;
4511 }
4512 }
4513 }
4514
4515 if (key.offset == 0)
4516 break;
4517
4518 key.offset--;
4519 }
4520 btrfs_release_path(path);
4521
4522 if (list_empty(&reloc_roots))
4523 goto out;
4524
4525 rc = alloc_reloc_control(fs_info);
4526 if (!rc) {
4527 err = -ENOMEM;
4528 goto out;
4529 }
4530
4531 rc->extent_root = fs_info->extent_root;
4532
4533 set_reloc_control(rc);
4534
4535 trans = btrfs_join_transaction(rc->extent_root);
4536 if (IS_ERR(trans)) {
4537 unset_reloc_control(rc);
4538 err = PTR_ERR(trans);
4539 goto out_free;
4540 }
4541
4542 rc->merge_reloc_tree = 1;
4543
4544 while (!list_empty(&reloc_roots)) {
4545 reloc_root = list_entry(reloc_roots.next,
4546 struct btrfs_root, root_list);
4547 list_del(&reloc_root->root_list);
4548
4549 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550 list_add_tail(&reloc_root->root_list,
4551 &rc->reloc_roots);
4552 continue;
4553 }
4554
4555 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4556 if (IS_ERR(fs_root)) {
4557 err = PTR_ERR(fs_root);
4558 goto out_free;
4559 }
4560
4561 err = __add_reloc_root(reloc_root);
4562 BUG_ON(err < 0); /* -ENOMEM or logic error */
4563 fs_root->reloc_root = reloc_root;
4564 }
4565
4566 err = btrfs_commit_transaction(trans);
4567 if (err)
4568 goto out_free;
4569
4570 merge_reloc_roots(rc);
4571
4572 unset_reloc_control(rc);
4573
4574 trans = btrfs_join_transaction(rc->extent_root);
4575 if (IS_ERR(trans)) {
4576 err = PTR_ERR(trans);
4577 goto out_free;
4578 }
4579 err = btrfs_commit_transaction(trans);
4580
4581 ret = clean_dirty_subvols(rc);
4582 if (ret < 0 && !err)
4583 err = ret;
4584out_free:
4585 kfree(rc);
4586out:
4587 if (!list_empty(&reloc_roots))
4588 free_reloc_roots(&reloc_roots);
4589
4590 btrfs_free_path(path);
4591
4592 if (err == 0) {
4593 /* cleanup orphan inode in data relocation tree */
4594 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4595 if (IS_ERR(fs_root))
4596 err = PTR_ERR(fs_root);
4597 else
4598 err = btrfs_orphan_cleanup(fs_root);
4599 }
4600 return err;
4601}
4602
4603/*
4604 * helper to add ordered checksum for data relocation.
4605 *
4606 * cloning checksum properly handles the nodatasum extents.
4607 * it also saves CPU time to re-calculate the checksum.
4608 */
4609int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4610{
4611 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4612 struct btrfs_ordered_sum *sums;
4613 struct btrfs_ordered_extent *ordered;
4614 int ret;
4615 u64 disk_bytenr;
4616 u64 new_bytenr;
4617 LIST_HEAD(list);
4618
4619 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4620 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4621
4622 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4623 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4624 disk_bytenr + len - 1, &list, 0);
4625 if (ret)
4626 goto out;
4627
4628 while (!list_empty(&list)) {
4629 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4630 list_del_init(&sums->list);
4631
4632 /*
4633 * We need to offset the new_bytenr based on where the csum is.
4634 * We need to do this because we will read in entire prealloc
4635 * extents but we may have written to say the middle of the
4636 * prealloc extent, so we need to make sure the csum goes with
4637 * the right disk offset.
4638 *
4639 * We can do this because the data reloc inode refers strictly
4640 * to the on disk bytes, so we don't have to worry about
4641 * disk_len vs real len like with real inodes since it's all
4642 * disk length.
4643 */
4644 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4645 sums->bytenr = new_bytenr;
4646
4647 btrfs_add_ordered_sum(ordered, sums);
4648 }
4649out:
4650 btrfs_put_ordered_extent(ordered);
4651 return ret;
4652}
4653
4654int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4655 struct btrfs_root *root, struct extent_buffer *buf,
4656 struct extent_buffer *cow)
4657{
4658 struct btrfs_fs_info *fs_info = root->fs_info;
4659 struct reloc_control *rc;
4660 struct backref_node *node;
4661 int first_cow = 0;
4662 int level;
4663 int ret = 0;
4664
4665 rc = fs_info->reloc_ctl;
4666 if (!rc)
4667 return 0;
4668
4669 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4670 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4671
4672 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4673 if (buf == root->node)
4674 __update_reloc_root(root, cow->start);
4675 }
4676
4677 level = btrfs_header_level(buf);
4678 if (btrfs_header_generation(buf) <=
4679 btrfs_root_last_snapshot(&root->root_item))
4680 first_cow = 1;
4681
4682 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4683 rc->create_reloc_tree) {
4684 WARN_ON(!first_cow && level == 0);
4685
4686 node = rc->backref_cache.path[level];
4687 BUG_ON(node->bytenr != buf->start &&
4688 node->new_bytenr != buf->start);
4689
4690 drop_node_buffer(node);
4691 extent_buffer_get(cow);
4692 node->eb = cow;
4693 node->new_bytenr = cow->start;
4694
4695 if (!node->pending) {
4696 list_move_tail(&node->list,
4697 &rc->backref_cache.pending[level]);
4698 node->pending = 1;
4699 }
4700
4701 if (first_cow)
4702 __mark_block_processed(rc, node);
4703
4704 if (first_cow && level > 0)
4705 rc->nodes_relocated += buf->len;
4706 }
4707
4708 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4709 ret = replace_file_extents(trans, rc, root, cow);
4710 return ret;
4711}
4712
4713/*
4714 * called before creating snapshot. it calculates metadata reservation
4715 * required for relocating tree blocks in the snapshot
4716 */
4717void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4718 u64 *bytes_to_reserve)
4719{
4720 struct btrfs_root *root = pending->root;
4721 struct reloc_control *rc = root->fs_info->reloc_ctl;
4722
4723 if (!root->reloc_root || !rc)
4724 return;
4725
4726 if (!rc->merge_reloc_tree)
4727 return;
4728
4729 root = root->reloc_root;
4730 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4731 /*
4732 * relocation is in the stage of merging trees. the space
4733 * used by merging a reloc tree is twice the size of
4734 * relocated tree nodes in the worst case. half for cowing
4735 * the reloc tree, half for cowing the fs tree. the space
4736 * used by cowing the reloc tree will be freed after the
4737 * tree is dropped. if we create snapshot, cowing the fs
4738 * tree may use more space than it frees. so we need
4739 * reserve extra space.
4740 */
4741 *bytes_to_reserve += rc->nodes_relocated;
4742}
4743
4744/*
4745 * called after snapshot is created. migrate block reservation
4746 * and create reloc root for the newly created snapshot
4747 */
4748int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4749 struct btrfs_pending_snapshot *pending)
4750{
4751 struct btrfs_root *root = pending->root;
4752 struct btrfs_root *reloc_root;
4753 struct btrfs_root *new_root;
4754 struct reloc_control *rc = root->fs_info->reloc_ctl;
4755 int ret;
4756
4757 if (!root->reloc_root || !rc)
4758 return 0;
4759
4760 rc = root->fs_info->reloc_ctl;
4761 rc->merging_rsv_size += rc->nodes_relocated;
4762
4763 if (rc->merge_reloc_tree) {
4764 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4765 rc->block_rsv,
4766 rc->nodes_relocated, true);
4767 if (ret)
4768 return ret;
4769 }
4770
4771 new_root = pending->snap;
4772 reloc_root = create_reloc_root(trans, root->reloc_root,
4773 new_root->root_key.objectid);
4774 if (IS_ERR(reloc_root))
4775 return PTR_ERR(reloc_root);
4776
4777 ret = __add_reloc_root(reloc_root);
4778 BUG_ON(ret < 0);
4779 new_root->reloc_root = reloc_root;
4780
4781 if (rc->create_reloc_tree)
4782 ret = clone_backref_node(trans, rc, root, reloc_root);
4783 return ret;
4784}