Loading...
1/*
2 * Copyright (C) 2009 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "volumes.h"
29#include "locking.h"
30#include "btrfs_inode.h"
31#include "async-thread.h"
32#include "free-space-cache.h"
33#include "inode-map.h"
34
35/*
36 * backref_node, mapping_node and tree_block start with this
37 */
38struct tree_entry {
39 struct rb_node rb_node;
40 u64 bytenr;
41};
42
43/*
44 * present a tree block in the backref cache
45 */
46struct backref_node {
47 struct rb_node rb_node;
48 u64 bytenr;
49
50 u64 new_bytenr;
51 /* objectid of tree block owner, can be not uptodate */
52 u64 owner;
53 /* link to pending, changed or detached list */
54 struct list_head list;
55 /* list of upper level blocks reference this block */
56 struct list_head upper;
57 /* list of child blocks in the cache */
58 struct list_head lower;
59 /* NULL if this node is not tree root */
60 struct btrfs_root *root;
61 /* extent buffer got by COW the block */
62 struct extent_buffer *eb;
63 /* level of tree block */
64 unsigned int level:8;
65 /* is the block in non-reference counted tree */
66 unsigned int cowonly:1;
67 /* 1 if no child node in the cache */
68 unsigned int lowest:1;
69 /* is the extent buffer locked */
70 unsigned int locked:1;
71 /* has the block been processed */
72 unsigned int processed:1;
73 /* have backrefs of this block been checked */
74 unsigned int checked:1;
75 /*
76 * 1 if corresponding block has been cowed but some upper
77 * level block pointers may not point to the new location
78 */
79 unsigned int pending:1;
80 /*
81 * 1 if the backref node isn't connected to any other
82 * backref node.
83 */
84 unsigned int detached:1;
85};
86
87/*
88 * present a block pointer in the backref cache
89 */
90struct backref_edge {
91 struct list_head list[2];
92 struct backref_node *node[2];
93};
94
95#define LOWER 0
96#define UPPER 1
97#define RELOCATION_RESERVED_NODES 256
98
99struct backref_cache {
100 /* red black tree of all backref nodes in the cache */
101 struct rb_root rb_root;
102 /* for passing backref nodes to btrfs_reloc_cow_block */
103 struct backref_node *path[BTRFS_MAX_LEVEL];
104 /*
105 * list of blocks that have been cowed but some block
106 * pointers in upper level blocks may not reflect the
107 * new location
108 */
109 struct list_head pending[BTRFS_MAX_LEVEL];
110 /* list of backref nodes with no child node */
111 struct list_head leaves;
112 /* list of blocks that have been cowed in current transaction */
113 struct list_head changed;
114 /* list of detached backref node. */
115 struct list_head detached;
116
117 u64 last_trans;
118
119 int nr_nodes;
120 int nr_edges;
121};
122
123/*
124 * map address of tree root to tree
125 */
126struct mapping_node {
127 struct rb_node rb_node;
128 u64 bytenr;
129 void *data;
130};
131
132struct mapping_tree {
133 struct rb_root rb_root;
134 spinlock_t lock;
135};
136
137/*
138 * present a tree block to process
139 */
140struct tree_block {
141 struct rb_node rb_node;
142 u64 bytenr;
143 struct btrfs_key key;
144 unsigned int level:8;
145 unsigned int key_ready:1;
146};
147
148#define MAX_EXTENTS 128
149
150struct file_extent_cluster {
151 u64 start;
152 u64 end;
153 u64 boundary[MAX_EXTENTS];
154 unsigned int nr;
155};
156
157struct reloc_control {
158 /* block group to relocate */
159 struct btrfs_block_group_cache *block_group;
160 /* extent tree */
161 struct btrfs_root *extent_root;
162 /* inode for moving data */
163 struct inode *data_inode;
164
165 struct btrfs_block_rsv *block_rsv;
166
167 struct backref_cache backref_cache;
168
169 struct file_extent_cluster cluster;
170 /* tree blocks have been processed */
171 struct extent_io_tree processed_blocks;
172 /* map start of tree root to corresponding reloc tree */
173 struct mapping_tree reloc_root_tree;
174 /* list of reloc trees */
175 struct list_head reloc_roots;
176 /* size of metadata reservation for merging reloc trees */
177 u64 merging_rsv_size;
178 /* size of relocated tree nodes */
179 u64 nodes_relocated;
180 /* reserved size for block group relocation*/
181 u64 reserved_bytes;
182
183 u64 search_start;
184 u64 extents_found;
185
186 unsigned int stage:8;
187 unsigned int create_reloc_tree:1;
188 unsigned int merge_reloc_tree:1;
189 unsigned int found_file_extent:1;
190};
191
192/* stages of data relocation */
193#define MOVE_DATA_EXTENTS 0
194#define UPDATE_DATA_PTRS 1
195
196static void remove_backref_node(struct backref_cache *cache,
197 struct backref_node *node);
198static void __mark_block_processed(struct reloc_control *rc,
199 struct backref_node *node);
200
201static void mapping_tree_init(struct mapping_tree *tree)
202{
203 tree->rb_root = RB_ROOT;
204 spin_lock_init(&tree->lock);
205}
206
207static void backref_cache_init(struct backref_cache *cache)
208{
209 int i;
210 cache->rb_root = RB_ROOT;
211 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 INIT_LIST_HEAD(&cache->pending[i]);
213 INIT_LIST_HEAD(&cache->changed);
214 INIT_LIST_HEAD(&cache->detached);
215 INIT_LIST_HEAD(&cache->leaves);
216}
217
218static void backref_cache_cleanup(struct backref_cache *cache)
219{
220 struct backref_node *node;
221 int i;
222
223 while (!list_empty(&cache->detached)) {
224 node = list_entry(cache->detached.next,
225 struct backref_node, list);
226 remove_backref_node(cache, node);
227 }
228
229 while (!list_empty(&cache->leaves)) {
230 node = list_entry(cache->leaves.next,
231 struct backref_node, lower);
232 remove_backref_node(cache, node);
233 }
234
235 cache->last_trans = 0;
236
237 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 BUG_ON(!list_empty(&cache->pending[i]));
239 BUG_ON(!list_empty(&cache->changed));
240 BUG_ON(!list_empty(&cache->detached));
241 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
242 BUG_ON(cache->nr_nodes);
243 BUG_ON(cache->nr_edges);
244}
245
246static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247{
248 struct backref_node *node;
249
250 node = kzalloc(sizeof(*node), GFP_NOFS);
251 if (node) {
252 INIT_LIST_HEAD(&node->list);
253 INIT_LIST_HEAD(&node->upper);
254 INIT_LIST_HEAD(&node->lower);
255 RB_CLEAR_NODE(&node->rb_node);
256 cache->nr_nodes++;
257 }
258 return node;
259}
260
261static void free_backref_node(struct backref_cache *cache,
262 struct backref_node *node)
263{
264 if (node) {
265 cache->nr_nodes--;
266 kfree(node);
267 }
268}
269
270static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271{
272 struct backref_edge *edge;
273
274 edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 if (edge)
276 cache->nr_edges++;
277 return edge;
278}
279
280static void free_backref_edge(struct backref_cache *cache,
281 struct backref_edge *edge)
282{
283 if (edge) {
284 cache->nr_edges--;
285 kfree(edge);
286 }
287}
288
289static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 struct rb_node *node)
291{
292 struct rb_node **p = &root->rb_node;
293 struct rb_node *parent = NULL;
294 struct tree_entry *entry;
295
296 while (*p) {
297 parent = *p;
298 entry = rb_entry(parent, struct tree_entry, rb_node);
299
300 if (bytenr < entry->bytenr)
301 p = &(*p)->rb_left;
302 else if (bytenr > entry->bytenr)
303 p = &(*p)->rb_right;
304 else
305 return parent;
306 }
307
308 rb_link_node(node, parent, p);
309 rb_insert_color(node, root);
310 return NULL;
311}
312
313static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314{
315 struct rb_node *n = root->rb_node;
316 struct tree_entry *entry;
317
318 while (n) {
319 entry = rb_entry(n, struct tree_entry, rb_node);
320
321 if (bytenr < entry->bytenr)
322 n = n->rb_left;
323 else if (bytenr > entry->bytenr)
324 n = n->rb_right;
325 else
326 return n;
327 }
328 return NULL;
329}
330
331static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332{
333
334 struct btrfs_fs_info *fs_info = NULL;
335 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 rb_node);
337 if (bnode->root)
338 fs_info = bnode->root->fs_info;
339 btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 "found at offset %llu", bytenr);
341}
342
343/*
344 * walk up backref nodes until reach node presents tree root
345 */
346static struct backref_node *walk_up_backref(struct backref_node *node,
347 struct backref_edge *edges[],
348 int *index)
349{
350 struct backref_edge *edge;
351 int idx = *index;
352
353 while (!list_empty(&node->upper)) {
354 edge = list_entry(node->upper.next,
355 struct backref_edge, list[LOWER]);
356 edges[idx++] = edge;
357 node = edge->node[UPPER];
358 }
359 BUG_ON(node->detached);
360 *index = idx;
361 return node;
362}
363
364/*
365 * walk down backref nodes to find start of next reference path
366 */
367static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 int *index)
369{
370 struct backref_edge *edge;
371 struct backref_node *lower;
372 int idx = *index;
373
374 while (idx > 0) {
375 edge = edges[idx - 1];
376 lower = edge->node[LOWER];
377 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 idx--;
379 continue;
380 }
381 edge = list_entry(edge->list[LOWER].next,
382 struct backref_edge, list[LOWER]);
383 edges[idx - 1] = edge;
384 *index = idx;
385 return edge->node[UPPER];
386 }
387 *index = 0;
388 return NULL;
389}
390
391static void unlock_node_buffer(struct backref_node *node)
392{
393 if (node->locked) {
394 btrfs_tree_unlock(node->eb);
395 node->locked = 0;
396 }
397}
398
399static void drop_node_buffer(struct backref_node *node)
400{
401 if (node->eb) {
402 unlock_node_buffer(node);
403 free_extent_buffer(node->eb);
404 node->eb = NULL;
405 }
406}
407
408static void drop_backref_node(struct backref_cache *tree,
409 struct backref_node *node)
410{
411 BUG_ON(!list_empty(&node->upper));
412
413 drop_node_buffer(node);
414 list_del(&node->list);
415 list_del(&node->lower);
416 if (!RB_EMPTY_NODE(&node->rb_node))
417 rb_erase(&node->rb_node, &tree->rb_root);
418 free_backref_node(tree, node);
419}
420
421/*
422 * remove a backref node from the backref cache
423 */
424static void remove_backref_node(struct backref_cache *cache,
425 struct backref_node *node)
426{
427 struct backref_node *upper;
428 struct backref_edge *edge;
429
430 if (!node)
431 return;
432
433 BUG_ON(!node->lowest && !node->detached);
434 while (!list_empty(&node->upper)) {
435 edge = list_entry(node->upper.next, struct backref_edge,
436 list[LOWER]);
437 upper = edge->node[UPPER];
438 list_del(&edge->list[LOWER]);
439 list_del(&edge->list[UPPER]);
440 free_backref_edge(cache, edge);
441
442 if (RB_EMPTY_NODE(&upper->rb_node)) {
443 BUG_ON(!list_empty(&node->upper));
444 drop_backref_node(cache, node);
445 node = upper;
446 node->lowest = 1;
447 continue;
448 }
449 /*
450 * add the node to leaf node list if no other
451 * child block cached.
452 */
453 if (list_empty(&upper->lower)) {
454 list_add_tail(&upper->lower, &cache->leaves);
455 upper->lowest = 1;
456 }
457 }
458
459 drop_backref_node(cache, node);
460}
461
462static void update_backref_node(struct backref_cache *cache,
463 struct backref_node *node, u64 bytenr)
464{
465 struct rb_node *rb_node;
466 rb_erase(&node->rb_node, &cache->rb_root);
467 node->bytenr = bytenr;
468 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 if (rb_node)
470 backref_tree_panic(rb_node, -EEXIST, bytenr);
471}
472
473/*
474 * update backref cache after a transaction commit
475 */
476static int update_backref_cache(struct btrfs_trans_handle *trans,
477 struct backref_cache *cache)
478{
479 struct backref_node *node;
480 int level = 0;
481
482 if (cache->last_trans == 0) {
483 cache->last_trans = trans->transid;
484 return 0;
485 }
486
487 if (cache->last_trans == trans->transid)
488 return 0;
489
490 /*
491 * detached nodes are used to avoid unnecessary backref
492 * lookup. transaction commit changes the extent tree.
493 * so the detached nodes are no longer useful.
494 */
495 while (!list_empty(&cache->detached)) {
496 node = list_entry(cache->detached.next,
497 struct backref_node, list);
498 remove_backref_node(cache, node);
499 }
500
501 while (!list_empty(&cache->changed)) {
502 node = list_entry(cache->changed.next,
503 struct backref_node, list);
504 list_del_init(&node->list);
505 BUG_ON(node->pending);
506 update_backref_node(cache, node, node->new_bytenr);
507 }
508
509 /*
510 * some nodes can be left in the pending list if there were
511 * errors during processing the pending nodes.
512 */
513 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 list_for_each_entry(node, &cache->pending[level], list) {
515 BUG_ON(!node->pending);
516 if (node->bytenr == node->new_bytenr)
517 continue;
518 update_backref_node(cache, node, node->new_bytenr);
519 }
520 }
521
522 cache->last_trans = 0;
523 return 1;
524}
525
526
527static int should_ignore_root(struct btrfs_root *root)
528{
529 struct btrfs_root *reloc_root;
530
531 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
532 return 0;
533
534 reloc_root = root->reloc_root;
535 if (!reloc_root)
536 return 0;
537
538 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 root->fs_info->running_transaction->transid - 1)
540 return 0;
541 /*
542 * if there is reloc tree and it was created in previous
543 * transaction backref lookup can find the reloc tree,
544 * so backref node for the fs tree root is useless for
545 * relocation.
546 */
547 return 1;
548}
549/*
550 * find reloc tree by address of tree root
551 */
552static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 u64 bytenr)
554{
555 struct rb_node *rb_node;
556 struct mapping_node *node;
557 struct btrfs_root *root = NULL;
558
559 spin_lock(&rc->reloc_root_tree.lock);
560 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 if (rb_node) {
562 node = rb_entry(rb_node, struct mapping_node, rb_node);
563 root = (struct btrfs_root *)node->data;
564 }
565 spin_unlock(&rc->reloc_root_tree.lock);
566 return root;
567}
568
569static int is_cowonly_root(u64 root_objectid)
570{
571 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
579 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
580 return 1;
581 return 0;
582}
583
584static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
585 u64 root_objectid)
586{
587 struct btrfs_key key;
588
589 key.objectid = root_objectid;
590 key.type = BTRFS_ROOT_ITEM_KEY;
591 if (is_cowonly_root(root_objectid))
592 key.offset = 0;
593 else
594 key.offset = (u64)-1;
595
596 return btrfs_get_fs_root(fs_info, &key, false);
597}
598
599#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
600static noinline_for_stack
601struct btrfs_root *find_tree_root(struct reloc_control *rc,
602 struct extent_buffer *leaf,
603 struct btrfs_extent_ref_v0 *ref0)
604{
605 struct btrfs_root *root;
606 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
607 u64 generation = btrfs_ref_generation_v0(leaf, ref0);
608
609 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
610
611 root = read_fs_root(rc->extent_root->fs_info, root_objectid);
612 BUG_ON(IS_ERR(root));
613
614 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
615 generation != btrfs_root_generation(&root->root_item))
616 return NULL;
617
618 return root;
619}
620#endif
621
622static noinline_for_stack
623int find_inline_backref(struct extent_buffer *leaf, int slot,
624 unsigned long *ptr, unsigned long *end)
625{
626 struct btrfs_key key;
627 struct btrfs_extent_item *ei;
628 struct btrfs_tree_block_info *bi;
629 u32 item_size;
630
631 btrfs_item_key_to_cpu(leaf, &key, slot);
632
633 item_size = btrfs_item_size_nr(leaf, slot);
634#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
635 if (item_size < sizeof(*ei)) {
636 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
637 return 1;
638 }
639#endif
640 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
641 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
642 BTRFS_EXTENT_FLAG_TREE_BLOCK));
643
644 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
645 item_size <= sizeof(*ei) + sizeof(*bi)) {
646 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
647 return 1;
648 }
649 if (key.type == BTRFS_METADATA_ITEM_KEY &&
650 item_size <= sizeof(*ei)) {
651 WARN_ON(item_size < sizeof(*ei));
652 return 1;
653 }
654
655 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
656 bi = (struct btrfs_tree_block_info *)(ei + 1);
657 *ptr = (unsigned long)(bi + 1);
658 } else {
659 *ptr = (unsigned long)(ei + 1);
660 }
661 *end = (unsigned long)ei + item_size;
662 return 0;
663}
664
665/*
666 * build backref tree for a given tree block. root of the backref tree
667 * corresponds the tree block, leaves of the backref tree correspond
668 * roots of b-trees that reference the tree block.
669 *
670 * the basic idea of this function is check backrefs of a given block
671 * to find upper level blocks that refernece the block, and then check
672 * bakcrefs of these upper level blocks recursively. the recursion stop
673 * when tree root is reached or backrefs for the block is cached.
674 *
675 * NOTE: if we find backrefs for a block are cached, we know backrefs
676 * for all upper level blocks that directly/indirectly reference the
677 * block are also cached.
678 */
679static noinline_for_stack
680struct backref_node *build_backref_tree(struct reloc_control *rc,
681 struct btrfs_key *node_key,
682 int level, u64 bytenr)
683{
684 struct backref_cache *cache = &rc->backref_cache;
685 struct btrfs_path *path1;
686 struct btrfs_path *path2;
687 struct extent_buffer *eb;
688 struct btrfs_root *root;
689 struct backref_node *cur;
690 struct backref_node *upper;
691 struct backref_node *lower;
692 struct backref_node *node = NULL;
693 struct backref_node *exist = NULL;
694 struct backref_edge *edge;
695 struct rb_node *rb_node;
696 struct btrfs_key key;
697 unsigned long end;
698 unsigned long ptr;
699 LIST_HEAD(list);
700 LIST_HEAD(useless);
701 int cowonly;
702 int ret;
703 int err = 0;
704 bool need_check = true;
705
706 path1 = btrfs_alloc_path();
707 path2 = btrfs_alloc_path();
708 if (!path1 || !path2) {
709 err = -ENOMEM;
710 goto out;
711 }
712 path1->reada = READA_FORWARD;
713 path2->reada = READA_FORWARD;
714
715 node = alloc_backref_node(cache);
716 if (!node) {
717 err = -ENOMEM;
718 goto out;
719 }
720
721 node->bytenr = bytenr;
722 node->level = level;
723 node->lowest = 1;
724 cur = node;
725again:
726 end = 0;
727 ptr = 0;
728 key.objectid = cur->bytenr;
729 key.type = BTRFS_METADATA_ITEM_KEY;
730 key.offset = (u64)-1;
731
732 path1->search_commit_root = 1;
733 path1->skip_locking = 1;
734 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
735 0, 0);
736 if (ret < 0) {
737 err = ret;
738 goto out;
739 }
740 ASSERT(ret);
741 ASSERT(path1->slots[0]);
742
743 path1->slots[0]--;
744
745 WARN_ON(cur->checked);
746 if (!list_empty(&cur->upper)) {
747 /*
748 * the backref was added previously when processing
749 * backref of type BTRFS_TREE_BLOCK_REF_KEY
750 */
751 ASSERT(list_is_singular(&cur->upper));
752 edge = list_entry(cur->upper.next, struct backref_edge,
753 list[LOWER]);
754 ASSERT(list_empty(&edge->list[UPPER]));
755 exist = edge->node[UPPER];
756 /*
757 * add the upper level block to pending list if we need
758 * check its backrefs
759 */
760 if (!exist->checked)
761 list_add_tail(&edge->list[UPPER], &list);
762 } else {
763 exist = NULL;
764 }
765
766 while (1) {
767 cond_resched();
768 eb = path1->nodes[0];
769
770 if (ptr >= end) {
771 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
772 ret = btrfs_next_leaf(rc->extent_root, path1);
773 if (ret < 0) {
774 err = ret;
775 goto out;
776 }
777 if (ret > 0)
778 break;
779 eb = path1->nodes[0];
780 }
781
782 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
783 if (key.objectid != cur->bytenr) {
784 WARN_ON(exist);
785 break;
786 }
787
788 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
789 key.type == BTRFS_METADATA_ITEM_KEY) {
790 ret = find_inline_backref(eb, path1->slots[0],
791 &ptr, &end);
792 if (ret)
793 goto next;
794 }
795 }
796
797 if (ptr < end) {
798 /* update key for inline back ref */
799 struct btrfs_extent_inline_ref *iref;
800 iref = (struct btrfs_extent_inline_ref *)ptr;
801 key.type = btrfs_extent_inline_ref_type(eb, iref);
802 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
803 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
804 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
805 }
806
807 if (exist &&
808 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
809 exist->owner == key.offset) ||
810 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
811 exist->bytenr == key.offset))) {
812 exist = NULL;
813 goto next;
814 }
815
816#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
817 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
818 key.type == BTRFS_EXTENT_REF_V0_KEY) {
819 if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
820 struct btrfs_extent_ref_v0 *ref0;
821 ref0 = btrfs_item_ptr(eb, path1->slots[0],
822 struct btrfs_extent_ref_v0);
823 if (key.objectid == key.offset) {
824 root = find_tree_root(rc, eb, ref0);
825 if (root && !should_ignore_root(root))
826 cur->root = root;
827 else
828 list_add(&cur->list, &useless);
829 break;
830 }
831 if (is_cowonly_root(btrfs_ref_root_v0(eb,
832 ref0)))
833 cur->cowonly = 1;
834 }
835#else
836 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
837 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
838#endif
839 if (key.objectid == key.offset) {
840 /*
841 * only root blocks of reloc trees use
842 * backref of this type.
843 */
844 root = find_reloc_root(rc, cur->bytenr);
845 ASSERT(root);
846 cur->root = root;
847 break;
848 }
849
850 edge = alloc_backref_edge(cache);
851 if (!edge) {
852 err = -ENOMEM;
853 goto out;
854 }
855 rb_node = tree_search(&cache->rb_root, key.offset);
856 if (!rb_node) {
857 upper = alloc_backref_node(cache);
858 if (!upper) {
859 free_backref_edge(cache, edge);
860 err = -ENOMEM;
861 goto out;
862 }
863 upper->bytenr = key.offset;
864 upper->level = cur->level + 1;
865 /*
866 * backrefs for the upper level block isn't
867 * cached, add the block to pending list
868 */
869 list_add_tail(&edge->list[UPPER], &list);
870 } else {
871 upper = rb_entry(rb_node, struct backref_node,
872 rb_node);
873 ASSERT(upper->checked);
874 INIT_LIST_HEAD(&edge->list[UPPER]);
875 }
876 list_add_tail(&edge->list[LOWER], &cur->upper);
877 edge->node[LOWER] = cur;
878 edge->node[UPPER] = upper;
879
880 goto next;
881 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
882 goto next;
883 }
884
885 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
886 root = read_fs_root(rc->extent_root->fs_info, key.offset);
887 if (IS_ERR(root)) {
888 err = PTR_ERR(root);
889 goto out;
890 }
891
892 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
893 cur->cowonly = 1;
894
895 if (btrfs_root_level(&root->root_item) == cur->level) {
896 /* tree root */
897 ASSERT(btrfs_root_bytenr(&root->root_item) ==
898 cur->bytenr);
899 if (should_ignore_root(root))
900 list_add(&cur->list, &useless);
901 else
902 cur->root = root;
903 break;
904 }
905
906 level = cur->level + 1;
907
908 /*
909 * searching the tree to find upper level blocks
910 * reference the block.
911 */
912 path2->search_commit_root = 1;
913 path2->skip_locking = 1;
914 path2->lowest_level = level;
915 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
916 path2->lowest_level = 0;
917 if (ret < 0) {
918 err = ret;
919 goto out;
920 }
921 if (ret > 0 && path2->slots[level] > 0)
922 path2->slots[level]--;
923
924 eb = path2->nodes[level];
925 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
926 cur->bytenr);
927
928 lower = cur;
929 need_check = true;
930 for (; level < BTRFS_MAX_LEVEL; level++) {
931 if (!path2->nodes[level]) {
932 ASSERT(btrfs_root_bytenr(&root->root_item) ==
933 lower->bytenr);
934 if (should_ignore_root(root))
935 list_add(&lower->list, &useless);
936 else
937 lower->root = root;
938 break;
939 }
940
941 edge = alloc_backref_edge(cache);
942 if (!edge) {
943 err = -ENOMEM;
944 goto out;
945 }
946
947 eb = path2->nodes[level];
948 rb_node = tree_search(&cache->rb_root, eb->start);
949 if (!rb_node) {
950 upper = alloc_backref_node(cache);
951 if (!upper) {
952 free_backref_edge(cache, edge);
953 err = -ENOMEM;
954 goto out;
955 }
956 upper->bytenr = eb->start;
957 upper->owner = btrfs_header_owner(eb);
958 upper->level = lower->level + 1;
959 if (!test_bit(BTRFS_ROOT_REF_COWS,
960 &root->state))
961 upper->cowonly = 1;
962
963 /*
964 * if we know the block isn't shared
965 * we can void checking its backrefs.
966 */
967 if (btrfs_block_can_be_shared(root, eb))
968 upper->checked = 0;
969 else
970 upper->checked = 1;
971
972 /*
973 * add the block to pending list if we
974 * need check its backrefs, we only do this once
975 * while walking up a tree as we will catch
976 * anything else later on.
977 */
978 if (!upper->checked && need_check) {
979 need_check = false;
980 list_add_tail(&edge->list[UPPER],
981 &list);
982 } else {
983 if (upper->checked)
984 need_check = true;
985 INIT_LIST_HEAD(&edge->list[UPPER]);
986 }
987 } else {
988 upper = rb_entry(rb_node, struct backref_node,
989 rb_node);
990 ASSERT(upper->checked);
991 INIT_LIST_HEAD(&edge->list[UPPER]);
992 if (!upper->owner)
993 upper->owner = btrfs_header_owner(eb);
994 }
995 list_add_tail(&edge->list[LOWER], &lower->upper);
996 edge->node[LOWER] = lower;
997 edge->node[UPPER] = upper;
998
999 if (rb_node)
1000 break;
1001 lower = upper;
1002 upper = NULL;
1003 }
1004 btrfs_release_path(path2);
1005next:
1006 if (ptr < end) {
1007 ptr += btrfs_extent_inline_ref_size(key.type);
1008 if (ptr >= end) {
1009 WARN_ON(ptr > end);
1010 ptr = 0;
1011 end = 0;
1012 }
1013 }
1014 if (ptr >= end)
1015 path1->slots[0]++;
1016 }
1017 btrfs_release_path(path1);
1018
1019 cur->checked = 1;
1020 WARN_ON(exist);
1021
1022 /* the pending list isn't empty, take the first block to process */
1023 if (!list_empty(&list)) {
1024 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1025 list_del_init(&edge->list[UPPER]);
1026 cur = edge->node[UPPER];
1027 goto again;
1028 }
1029
1030 /*
1031 * everything goes well, connect backref nodes and insert backref nodes
1032 * into the cache.
1033 */
1034 ASSERT(node->checked);
1035 cowonly = node->cowonly;
1036 if (!cowonly) {
1037 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1038 &node->rb_node);
1039 if (rb_node)
1040 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1041 list_add_tail(&node->lower, &cache->leaves);
1042 }
1043
1044 list_for_each_entry(edge, &node->upper, list[LOWER])
1045 list_add_tail(&edge->list[UPPER], &list);
1046
1047 while (!list_empty(&list)) {
1048 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1049 list_del_init(&edge->list[UPPER]);
1050 upper = edge->node[UPPER];
1051 if (upper->detached) {
1052 list_del(&edge->list[LOWER]);
1053 lower = edge->node[LOWER];
1054 free_backref_edge(cache, edge);
1055 if (list_empty(&lower->upper))
1056 list_add(&lower->list, &useless);
1057 continue;
1058 }
1059
1060 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1061 if (upper->lowest) {
1062 list_del_init(&upper->lower);
1063 upper->lowest = 0;
1064 }
1065
1066 list_add_tail(&edge->list[UPPER], &upper->lower);
1067 continue;
1068 }
1069
1070 if (!upper->checked) {
1071 /*
1072 * Still want to blow up for developers since this is a
1073 * logic bug.
1074 */
1075 ASSERT(0);
1076 err = -EINVAL;
1077 goto out;
1078 }
1079 if (cowonly != upper->cowonly) {
1080 ASSERT(0);
1081 err = -EINVAL;
1082 goto out;
1083 }
1084
1085 if (!cowonly) {
1086 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1087 &upper->rb_node);
1088 if (rb_node)
1089 backref_tree_panic(rb_node, -EEXIST,
1090 upper->bytenr);
1091 }
1092
1093 list_add_tail(&edge->list[UPPER], &upper->lower);
1094
1095 list_for_each_entry(edge, &upper->upper, list[LOWER])
1096 list_add_tail(&edge->list[UPPER], &list);
1097 }
1098 /*
1099 * process useless backref nodes. backref nodes for tree leaves
1100 * are deleted from the cache. backref nodes for upper level
1101 * tree blocks are left in the cache to avoid unnecessary backref
1102 * lookup.
1103 */
1104 while (!list_empty(&useless)) {
1105 upper = list_entry(useless.next, struct backref_node, list);
1106 list_del_init(&upper->list);
1107 ASSERT(list_empty(&upper->upper));
1108 if (upper == node)
1109 node = NULL;
1110 if (upper->lowest) {
1111 list_del_init(&upper->lower);
1112 upper->lowest = 0;
1113 }
1114 while (!list_empty(&upper->lower)) {
1115 edge = list_entry(upper->lower.next,
1116 struct backref_edge, list[UPPER]);
1117 list_del(&edge->list[UPPER]);
1118 list_del(&edge->list[LOWER]);
1119 lower = edge->node[LOWER];
1120 free_backref_edge(cache, edge);
1121
1122 if (list_empty(&lower->upper))
1123 list_add(&lower->list, &useless);
1124 }
1125 __mark_block_processed(rc, upper);
1126 if (upper->level > 0) {
1127 list_add(&upper->list, &cache->detached);
1128 upper->detached = 1;
1129 } else {
1130 rb_erase(&upper->rb_node, &cache->rb_root);
1131 free_backref_node(cache, upper);
1132 }
1133 }
1134out:
1135 btrfs_free_path(path1);
1136 btrfs_free_path(path2);
1137 if (err) {
1138 while (!list_empty(&useless)) {
1139 lower = list_entry(useless.next,
1140 struct backref_node, list);
1141 list_del_init(&lower->list);
1142 }
1143 while (!list_empty(&list)) {
1144 edge = list_first_entry(&list, struct backref_edge,
1145 list[UPPER]);
1146 list_del(&edge->list[UPPER]);
1147 list_del(&edge->list[LOWER]);
1148 lower = edge->node[LOWER];
1149 upper = edge->node[UPPER];
1150 free_backref_edge(cache, edge);
1151
1152 /*
1153 * Lower is no longer linked to any upper backref nodes
1154 * and isn't in the cache, we can free it ourselves.
1155 */
1156 if (list_empty(&lower->upper) &&
1157 RB_EMPTY_NODE(&lower->rb_node))
1158 list_add(&lower->list, &useless);
1159
1160 if (!RB_EMPTY_NODE(&upper->rb_node))
1161 continue;
1162
1163 /* Add this guy's upper edges to the list to proces */
1164 list_for_each_entry(edge, &upper->upper, list[LOWER])
1165 list_add_tail(&edge->list[UPPER], &list);
1166 if (list_empty(&upper->upper))
1167 list_add(&upper->list, &useless);
1168 }
1169
1170 while (!list_empty(&useless)) {
1171 lower = list_entry(useless.next,
1172 struct backref_node, list);
1173 list_del_init(&lower->list);
1174 free_backref_node(cache, lower);
1175 }
1176 return ERR_PTR(err);
1177 }
1178 ASSERT(!node || !node->detached);
1179 return node;
1180}
1181
1182/*
1183 * helper to add backref node for the newly created snapshot.
1184 * the backref node is created by cloning backref node that
1185 * corresponds to root of source tree
1186 */
1187static int clone_backref_node(struct btrfs_trans_handle *trans,
1188 struct reloc_control *rc,
1189 struct btrfs_root *src,
1190 struct btrfs_root *dest)
1191{
1192 struct btrfs_root *reloc_root = src->reloc_root;
1193 struct backref_cache *cache = &rc->backref_cache;
1194 struct backref_node *node = NULL;
1195 struct backref_node *new_node;
1196 struct backref_edge *edge;
1197 struct backref_edge *new_edge;
1198 struct rb_node *rb_node;
1199
1200 if (cache->last_trans > 0)
1201 update_backref_cache(trans, cache);
1202
1203 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1204 if (rb_node) {
1205 node = rb_entry(rb_node, struct backref_node, rb_node);
1206 if (node->detached)
1207 node = NULL;
1208 else
1209 BUG_ON(node->new_bytenr != reloc_root->node->start);
1210 }
1211
1212 if (!node) {
1213 rb_node = tree_search(&cache->rb_root,
1214 reloc_root->commit_root->start);
1215 if (rb_node) {
1216 node = rb_entry(rb_node, struct backref_node,
1217 rb_node);
1218 BUG_ON(node->detached);
1219 }
1220 }
1221
1222 if (!node)
1223 return 0;
1224
1225 new_node = alloc_backref_node(cache);
1226 if (!new_node)
1227 return -ENOMEM;
1228
1229 new_node->bytenr = dest->node->start;
1230 new_node->level = node->level;
1231 new_node->lowest = node->lowest;
1232 new_node->checked = 1;
1233 new_node->root = dest;
1234
1235 if (!node->lowest) {
1236 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1237 new_edge = alloc_backref_edge(cache);
1238 if (!new_edge)
1239 goto fail;
1240
1241 new_edge->node[UPPER] = new_node;
1242 new_edge->node[LOWER] = edge->node[LOWER];
1243 list_add_tail(&new_edge->list[UPPER],
1244 &new_node->lower);
1245 }
1246 } else {
1247 list_add_tail(&new_node->lower, &cache->leaves);
1248 }
1249
1250 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1251 &new_node->rb_node);
1252 if (rb_node)
1253 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1254
1255 if (!new_node->lowest) {
1256 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1257 list_add_tail(&new_edge->list[LOWER],
1258 &new_edge->node[LOWER]->upper);
1259 }
1260 }
1261 return 0;
1262fail:
1263 while (!list_empty(&new_node->lower)) {
1264 new_edge = list_entry(new_node->lower.next,
1265 struct backref_edge, list[UPPER]);
1266 list_del(&new_edge->list[UPPER]);
1267 free_backref_edge(cache, new_edge);
1268 }
1269 free_backref_node(cache, new_node);
1270 return -ENOMEM;
1271}
1272
1273/*
1274 * helper to add 'address of tree root -> reloc tree' mapping
1275 */
1276static int __must_check __add_reloc_root(struct btrfs_root *root)
1277{
1278 struct rb_node *rb_node;
1279 struct mapping_node *node;
1280 struct reloc_control *rc = root->fs_info->reloc_ctl;
1281
1282 node = kmalloc(sizeof(*node), GFP_NOFS);
1283 if (!node)
1284 return -ENOMEM;
1285
1286 node->bytenr = root->node->start;
1287 node->data = root;
1288
1289 spin_lock(&rc->reloc_root_tree.lock);
1290 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1291 node->bytenr, &node->rb_node);
1292 spin_unlock(&rc->reloc_root_tree.lock);
1293 if (rb_node) {
1294 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1295 "for start=%llu while inserting into relocation "
1296 "tree", node->bytenr);
1297 kfree(node);
1298 return -EEXIST;
1299 }
1300
1301 list_add_tail(&root->root_list, &rc->reloc_roots);
1302 return 0;
1303}
1304
1305/*
1306 * helper to delete the 'address of tree root -> reloc tree'
1307 * mapping
1308 */
1309static void __del_reloc_root(struct btrfs_root *root)
1310{
1311 struct rb_node *rb_node;
1312 struct mapping_node *node = NULL;
1313 struct reloc_control *rc = root->fs_info->reloc_ctl;
1314
1315 spin_lock(&rc->reloc_root_tree.lock);
1316 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1317 root->node->start);
1318 if (rb_node) {
1319 node = rb_entry(rb_node, struct mapping_node, rb_node);
1320 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1321 }
1322 spin_unlock(&rc->reloc_root_tree.lock);
1323
1324 if (!node)
1325 return;
1326 BUG_ON((struct btrfs_root *)node->data != root);
1327
1328 spin_lock(&root->fs_info->trans_lock);
1329 list_del_init(&root->root_list);
1330 spin_unlock(&root->fs_info->trans_lock);
1331 kfree(node);
1332}
1333
1334/*
1335 * helper to update the 'address of tree root -> reloc tree'
1336 * mapping
1337 */
1338static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1339{
1340 struct rb_node *rb_node;
1341 struct mapping_node *node = NULL;
1342 struct reloc_control *rc = root->fs_info->reloc_ctl;
1343
1344 spin_lock(&rc->reloc_root_tree.lock);
1345 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1346 root->node->start);
1347 if (rb_node) {
1348 node = rb_entry(rb_node, struct mapping_node, rb_node);
1349 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1350 }
1351 spin_unlock(&rc->reloc_root_tree.lock);
1352
1353 if (!node)
1354 return 0;
1355 BUG_ON((struct btrfs_root *)node->data != root);
1356
1357 spin_lock(&rc->reloc_root_tree.lock);
1358 node->bytenr = new_bytenr;
1359 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1360 node->bytenr, &node->rb_node);
1361 spin_unlock(&rc->reloc_root_tree.lock);
1362 if (rb_node)
1363 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1364 return 0;
1365}
1366
1367static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1368 struct btrfs_root *root, u64 objectid)
1369{
1370 struct btrfs_root *reloc_root;
1371 struct extent_buffer *eb;
1372 struct btrfs_root_item *root_item;
1373 struct btrfs_key root_key;
1374 u64 last_snap = 0;
1375 int ret;
1376
1377 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1378 BUG_ON(!root_item);
1379
1380 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1381 root_key.type = BTRFS_ROOT_ITEM_KEY;
1382 root_key.offset = objectid;
1383
1384 if (root->root_key.objectid == objectid) {
1385 /* called by btrfs_init_reloc_root */
1386 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1387 BTRFS_TREE_RELOC_OBJECTID);
1388 BUG_ON(ret);
1389
1390 last_snap = btrfs_root_last_snapshot(&root->root_item);
1391 btrfs_set_root_last_snapshot(&root->root_item,
1392 trans->transid - 1);
1393 } else {
1394 /*
1395 * called by btrfs_reloc_post_snapshot_hook.
1396 * the source tree is a reloc tree, all tree blocks
1397 * modified after it was created have RELOC flag
1398 * set in their headers. so it's OK to not update
1399 * the 'last_snapshot'.
1400 */
1401 ret = btrfs_copy_root(trans, root, root->node, &eb,
1402 BTRFS_TREE_RELOC_OBJECTID);
1403 BUG_ON(ret);
1404 }
1405
1406 memcpy(root_item, &root->root_item, sizeof(*root_item));
1407 btrfs_set_root_bytenr(root_item, eb->start);
1408 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1409 btrfs_set_root_generation(root_item, trans->transid);
1410
1411 if (root->root_key.objectid == objectid) {
1412 btrfs_set_root_refs(root_item, 0);
1413 memset(&root_item->drop_progress, 0,
1414 sizeof(struct btrfs_disk_key));
1415 root_item->drop_level = 0;
1416 /*
1417 * abuse rtransid, it is safe because it is impossible to
1418 * receive data into a relocation tree.
1419 */
1420 btrfs_set_root_rtransid(root_item, last_snap);
1421 btrfs_set_root_otransid(root_item, trans->transid);
1422 }
1423
1424 btrfs_tree_unlock(eb);
1425 free_extent_buffer(eb);
1426
1427 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1428 &root_key, root_item);
1429 BUG_ON(ret);
1430 kfree(root_item);
1431
1432 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1433 BUG_ON(IS_ERR(reloc_root));
1434 reloc_root->last_trans = trans->transid;
1435 return reloc_root;
1436}
1437
1438/*
1439 * create reloc tree for a given fs tree. reloc tree is just a
1440 * snapshot of the fs tree with special root objectid.
1441 */
1442int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1443 struct btrfs_root *root)
1444{
1445 struct btrfs_root *reloc_root;
1446 struct reloc_control *rc = root->fs_info->reloc_ctl;
1447 struct btrfs_block_rsv *rsv;
1448 int clear_rsv = 0;
1449 int ret;
1450
1451 if (root->reloc_root) {
1452 reloc_root = root->reloc_root;
1453 reloc_root->last_trans = trans->transid;
1454 return 0;
1455 }
1456
1457 if (!rc || !rc->create_reloc_tree ||
1458 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1459 return 0;
1460
1461 if (!trans->reloc_reserved) {
1462 rsv = trans->block_rsv;
1463 trans->block_rsv = rc->block_rsv;
1464 clear_rsv = 1;
1465 }
1466 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1467 if (clear_rsv)
1468 trans->block_rsv = rsv;
1469
1470 ret = __add_reloc_root(reloc_root);
1471 BUG_ON(ret < 0);
1472 root->reloc_root = reloc_root;
1473 return 0;
1474}
1475
1476/*
1477 * update root item of reloc tree
1478 */
1479int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1480 struct btrfs_root *root)
1481{
1482 struct btrfs_root *reloc_root;
1483 struct btrfs_root_item *root_item;
1484 int ret;
1485
1486 if (!root->reloc_root)
1487 goto out;
1488
1489 reloc_root = root->reloc_root;
1490 root_item = &reloc_root->root_item;
1491
1492 if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1493 btrfs_root_refs(root_item) == 0) {
1494 root->reloc_root = NULL;
1495 __del_reloc_root(reloc_root);
1496 }
1497
1498 if (reloc_root->commit_root != reloc_root->node) {
1499 btrfs_set_root_node(root_item, reloc_root->node);
1500 free_extent_buffer(reloc_root->commit_root);
1501 reloc_root->commit_root = btrfs_root_node(reloc_root);
1502 }
1503
1504 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1505 &reloc_root->root_key, root_item);
1506 BUG_ON(ret);
1507
1508out:
1509 return 0;
1510}
1511
1512/*
1513 * helper to find first cached inode with inode number >= objectid
1514 * in a subvolume
1515 */
1516static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1517{
1518 struct rb_node *node;
1519 struct rb_node *prev;
1520 struct btrfs_inode *entry;
1521 struct inode *inode;
1522
1523 spin_lock(&root->inode_lock);
1524again:
1525 node = root->inode_tree.rb_node;
1526 prev = NULL;
1527 while (node) {
1528 prev = node;
1529 entry = rb_entry(node, struct btrfs_inode, rb_node);
1530
1531 if (objectid < btrfs_ino(&entry->vfs_inode))
1532 node = node->rb_left;
1533 else if (objectid > btrfs_ino(&entry->vfs_inode))
1534 node = node->rb_right;
1535 else
1536 break;
1537 }
1538 if (!node) {
1539 while (prev) {
1540 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1541 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1542 node = prev;
1543 break;
1544 }
1545 prev = rb_next(prev);
1546 }
1547 }
1548 while (node) {
1549 entry = rb_entry(node, struct btrfs_inode, rb_node);
1550 inode = igrab(&entry->vfs_inode);
1551 if (inode) {
1552 spin_unlock(&root->inode_lock);
1553 return inode;
1554 }
1555
1556 objectid = btrfs_ino(&entry->vfs_inode) + 1;
1557 if (cond_resched_lock(&root->inode_lock))
1558 goto again;
1559
1560 node = rb_next(node);
1561 }
1562 spin_unlock(&root->inode_lock);
1563 return NULL;
1564}
1565
1566static int in_block_group(u64 bytenr,
1567 struct btrfs_block_group_cache *block_group)
1568{
1569 if (bytenr >= block_group->key.objectid &&
1570 bytenr < block_group->key.objectid + block_group->key.offset)
1571 return 1;
1572 return 0;
1573}
1574
1575/*
1576 * get new location of data
1577 */
1578static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1579 u64 bytenr, u64 num_bytes)
1580{
1581 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1582 struct btrfs_path *path;
1583 struct btrfs_file_extent_item *fi;
1584 struct extent_buffer *leaf;
1585 int ret;
1586
1587 path = btrfs_alloc_path();
1588 if (!path)
1589 return -ENOMEM;
1590
1591 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1592 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1593 bytenr, 0);
1594 if (ret < 0)
1595 goto out;
1596 if (ret > 0) {
1597 ret = -ENOENT;
1598 goto out;
1599 }
1600
1601 leaf = path->nodes[0];
1602 fi = btrfs_item_ptr(leaf, path->slots[0],
1603 struct btrfs_file_extent_item);
1604
1605 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1606 btrfs_file_extent_compression(leaf, fi) ||
1607 btrfs_file_extent_encryption(leaf, fi) ||
1608 btrfs_file_extent_other_encoding(leaf, fi));
1609
1610 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1611 ret = -EINVAL;
1612 goto out;
1613 }
1614
1615 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1616 ret = 0;
1617out:
1618 btrfs_free_path(path);
1619 return ret;
1620}
1621
1622/*
1623 * update file extent items in the tree leaf to point to
1624 * the new locations.
1625 */
1626static noinline_for_stack
1627int replace_file_extents(struct btrfs_trans_handle *trans,
1628 struct reloc_control *rc,
1629 struct btrfs_root *root,
1630 struct extent_buffer *leaf)
1631{
1632 struct btrfs_key key;
1633 struct btrfs_file_extent_item *fi;
1634 struct inode *inode = NULL;
1635 u64 parent;
1636 u64 bytenr;
1637 u64 new_bytenr = 0;
1638 u64 num_bytes;
1639 u64 end;
1640 u32 nritems;
1641 u32 i;
1642 int ret = 0;
1643 int first = 1;
1644 int dirty = 0;
1645
1646 if (rc->stage != UPDATE_DATA_PTRS)
1647 return 0;
1648
1649 /* reloc trees always use full backref */
1650 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1651 parent = leaf->start;
1652 else
1653 parent = 0;
1654
1655 nritems = btrfs_header_nritems(leaf);
1656 for (i = 0; i < nritems; i++) {
1657 cond_resched();
1658 btrfs_item_key_to_cpu(leaf, &key, i);
1659 if (key.type != BTRFS_EXTENT_DATA_KEY)
1660 continue;
1661 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662 if (btrfs_file_extent_type(leaf, fi) ==
1663 BTRFS_FILE_EXTENT_INLINE)
1664 continue;
1665 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667 if (bytenr == 0)
1668 continue;
1669 if (!in_block_group(bytenr, rc->block_group))
1670 continue;
1671
1672 /*
1673 * if we are modifying block in fs tree, wait for readpage
1674 * to complete and drop the extent cache
1675 */
1676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677 if (first) {
1678 inode = find_next_inode(root, key.objectid);
1679 first = 0;
1680 } else if (inode && btrfs_ino(inode) < key.objectid) {
1681 btrfs_add_delayed_iput(inode);
1682 inode = find_next_inode(root, key.objectid);
1683 }
1684 if (inode && btrfs_ino(inode) == key.objectid) {
1685 end = key.offset +
1686 btrfs_file_extent_num_bytes(leaf, fi);
1687 WARN_ON(!IS_ALIGNED(key.offset,
1688 root->sectorsize));
1689 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1690 end--;
1691 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692 key.offset, end);
1693 if (!ret)
1694 continue;
1695
1696 btrfs_drop_extent_cache(inode, key.offset, end,
1697 1);
1698 unlock_extent(&BTRFS_I(inode)->io_tree,
1699 key.offset, end);
1700 }
1701 }
1702
1703 ret = get_new_location(rc->data_inode, &new_bytenr,
1704 bytenr, num_bytes);
1705 if (ret) {
1706 /*
1707 * Don't have to abort since we've not changed anything
1708 * in the file extent yet.
1709 */
1710 break;
1711 }
1712
1713 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714 dirty = 1;
1715
1716 key.offset -= btrfs_file_extent_offset(leaf, fi);
1717 ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1718 num_bytes, parent,
1719 btrfs_header_owner(leaf),
1720 key.objectid, key.offset);
1721 if (ret) {
1722 btrfs_abort_transaction(trans, root, ret);
1723 break;
1724 }
1725
1726 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1727 parent, btrfs_header_owner(leaf),
1728 key.objectid, key.offset);
1729 if (ret) {
1730 btrfs_abort_transaction(trans, root, ret);
1731 break;
1732 }
1733 }
1734 if (dirty)
1735 btrfs_mark_buffer_dirty(leaf);
1736 if (inode)
1737 btrfs_add_delayed_iput(inode);
1738 return ret;
1739}
1740
1741static noinline_for_stack
1742int memcmp_node_keys(struct extent_buffer *eb, int slot,
1743 struct btrfs_path *path, int level)
1744{
1745 struct btrfs_disk_key key1;
1746 struct btrfs_disk_key key2;
1747 btrfs_node_key(eb, &key1, slot);
1748 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1749 return memcmp(&key1, &key2, sizeof(key1));
1750}
1751
1752/*
1753 * try to replace tree blocks in fs tree with the new blocks
1754 * in reloc tree. tree blocks haven't been modified since the
1755 * reloc tree was create can be replaced.
1756 *
1757 * if a block was replaced, level of the block + 1 is returned.
1758 * if no block got replaced, 0 is returned. if there are other
1759 * errors, a negative error number is returned.
1760 */
1761static noinline_for_stack
1762int replace_path(struct btrfs_trans_handle *trans,
1763 struct btrfs_root *dest, struct btrfs_root *src,
1764 struct btrfs_path *path, struct btrfs_key *next_key,
1765 int lowest_level, int max_level)
1766{
1767 struct extent_buffer *eb;
1768 struct extent_buffer *parent;
1769 struct btrfs_key key;
1770 u64 old_bytenr;
1771 u64 new_bytenr;
1772 u64 old_ptr_gen;
1773 u64 new_ptr_gen;
1774 u64 last_snapshot;
1775 u32 blocksize;
1776 int cow = 0;
1777 int level;
1778 int ret;
1779 int slot;
1780
1781 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1782 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1783
1784 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1785again:
1786 slot = path->slots[lowest_level];
1787 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1788
1789 eb = btrfs_lock_root_node(dest);
1790 btrfs_set_lock_blocking(eb);
1791 level = btrfs_header_level(eb);
1792
1793 if (level < lowest_level) {
1794 btrfs_tree_unlock(eb);
1795 free_extent_buffer(eb);
1796 return 0;
1797 }
1798
1799 if (cow) {
1800 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1801 BUG_ON(ret);
1802 }
1803 btrfs_set_lock_blocking(eb);
1804
1805 if (next_key) {
1806 next_key->objectid = (u64)-1;
1807 next_key->type = (u8)-1;
1808 next_key->offset = (u64)-1;
1809 }
1810
1811 parent = eb;
1812 while (1) {
1813 level = btrfs_header_level(parent);
1814 BUG_ON(level < lowest_level);
1815
1816 ret = btrfs_bin_search(parent, &key, level, &slot);
1817 if (ret && slot > 0)
1818 slot--;
1819
1820 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1821 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1822
1823 old_bytenr = btrfs_node_blockptr(parent, slot);
1824 blocksize = dest->nodesize;
1825 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1826
1827 if (level <= max_level) {
1828 eb = path->nodes[level];
1829 new_bytenr = btrfs_node_blockptr(eb,
1830 path->slots[level]);
1831 new_ptr_gen = btrfs_node_ptr_generation(eb,
1832 path->slots[level]);
1833 } else {
1834 new_bytenr = 0;
1835 new_ptr_gen = 0;
1836 }
1837
1838 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1839 ret = level;
1840 break;
1841 }
1842
1843 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1844 memcmp_node_keys(parent, slot, path, level)) {
1845 if (level <= lowest_level) {
1846 ret = 0;
1847 break;
1848 }
1849
1850 eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1851 if (IS_ERR(eb)) {
1852 ret = PTR_ERR(eb);
1853 break;
1854 } else if (!extent_buffer_uptodate(eb)) {
1855 ret = -EIO;
1856 free_extent_buffer(eb);
1857 break;
1858 }
1859 btrfs_tree_lock(eb);
1860 if (cow) {
1861 ret = btrfs_cow_block(trans, dest, eb, parent,
1862 slot, &eb);
1863 BUG_ON(ret);
1864 }
1865 btrfs_set_lock_blocking(eb);
1866
1867 btrfs_tree_unlock(parent);
1868 free_extent_buffer(parent);
1869
1870 parent = eb;
1871 continue;
1872 }
1873
1874 if (!cow) {
1875 btrfs_tree_unlock(parent);
1876 free_extent_buffer(parent);
1877 cow = 1;
1878 goto again;
1879 }
1880
1881 btrfs_node_key_to_cpu(path->nodes[level], &key,
1882 path->slots[level]);
1883 btrfs_release_path(path);
1884
1885 path->lowest_level = level;
1886 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1887 path->lowest_level = 0;
1888 BUG_ON(ret);
1889
1890 /*
1891 * swap blocks in fs tree and reloc tree.
1892 */
1893 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1894 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1895 btrfs_mark_buffer_dirty(parent);
1896
1897 btrfs_set_node_blockptr(path->nodes[level],
1898 path->slots[level], old_bytenr);
1899 btrfs_set_node_ptr_generation(path->nodes[level],
1900 path->slots[level], old_ptr_gen);
1901 btrfs_mark_buffer_dirty(path->nodes[level]);
1902
1903 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1904 path->nodes[level]->start,
1905 src->root_key.objectid, level - 1, 0);
1906 BUG_ON(ret);
1907 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1908 0, dest->root_key.objectid, level - 1,
1909 0);
1910 BUG_ON(ret);
1911
1912 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1913 path->nodes[level]->start,
1914 src->root_key.objectid, level - 1, 0);
1915 BUG_ON(ret);
1916
1917 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1918 0, dest->root_key.objectid, level - 1,
1919 0);
1920 BUG_ON(ret);
1921
1922 btrfs_unlock_up_safe(path, 0);
1923
1924 ret = level;
1925 break;
1926 }
1927 btrfs_tree_unlock(parent);
1928 free_extent_buffer(parent);
1929 return ret;
1930}
1931
1932/*
1933 * helper to find next relocated block in reloc tree
1934 */
1935static noinline_for_stack
1936int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1937 int *level)
1938{
1939 struct extent_buffer *eb;
1940 int i;
1941 u64 last_snapshot;
1942 u32 nritems;
1943
1944 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1945
1946 for (i = 0; i < *level; i++) {
1947 free_extent_buffer(path->nodes[i]);
1948 path->nodes[i] = NULL;
1949 }
1950
1951 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1952 eb = path->nodes[i];
1953 nritems = btrfs_header_nritems(eb);
1954 while (path->slots[i] + 1 < nritems) {
1955 path->slots[i]++;
1956 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1957 last_snapshot)
1958 continue;
1959
1960 *level = i;
1961 return 0;
1962 }
1963 free_extent_buffer(path->nodes[i]);
1964 path->nodes[i] = NULL;
1965 }
1966 return 1;
1967}
1968
1969/*
1970 * walk down reloc tree to find relocated block of lowest level
1971 */
1972static noinline_for_stack
1973int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1974 int *level)
1975{
1976 struct extent_buffer *eb = NULL;
1977 int i;
1978 u64 bytenr;
1979 u64 ptr_gen = 0;
1980 u64 last_snapshot;
1981 u32 nritems;
1982
1983 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1984
1985 for (i = *level; i > 0; i--) {
1986 eb = path->nodes[i];
1987 nritems = btrfs_header_nritems(eb);
1988 while (path->slots[i] < nritems) {
1989 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1990 if (ptr_gen > last_snapshot)
1991 break;
1992 path->slots[i]++;
1993 }
1994 if (path->slots[i] >= nritems) {
1995 if (i == *level)
1996 break;
1997 *level = i + 1;
1998 return 0;
1999 }
2000 if (i == 1) {
2001 *level = i;
2002 return 0;
2003 }
2004
2005 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2006 eb = read_tree_block(root, bytenr, ptr_gen);
2007 if (IS_ERR(eb)) {
2008 return PTR_ERR(eb);
2009 } else if (!extent_buffer_uptodate(eb)) {
2010 free_extent_buffer(eb);
2011 return -EIO;
2012 }
2013 BUG_ON(btrfs_header_level(eb) != i - 1);
2014 path->nodes[i - 1] = eb;
2015 path->slots[i - 1] = 0;
2016 }
2017 return 1;
2018}
2019
2020/*
2021 * invalidate extent cache for file extents whose key in range of
2022 * [min_key, max_key)
2023 */
2024static int invalidate_extent_cache(struct btrfs_root *root,
2025 struct btrfs_key *min_key,
2026 struct btrfs_key *max_key)
2027{
2028 struct inode *inode = NULL;
2029 u64 objectid;
2030 u64 start, end;
2031 u64 ino;
2032
2033 objectid = min_key->objectid;
2034 while (1) {
2035 cond_resched();
2036 iput(inode);
2037
2038 if (objectid > max_key->objectid)
2039 break;
2040
2041 inode = find_next_inode(root, objectid);
2042 if (!inode)
2043 break;
2044 ino = btrfs_ino(inode);
2045
2046 if (ino > max_key->objectid) {
2047 iput(inode);
2048 break;
2049 }
2050
2051 objectid = ino + 1;
2052 if (!S_ISREG(inode->i_mode))
2053 continue;
2054
2055 if (unlikely(min_key->objectid == ino)) {
2056 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2057 continue;
2058 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2059 start = 0;
2060 else {
2061 start = min_key->offset;
2062 WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2063 }
2064 } else {
2065 start = 0;
2066 }
2067
2068 if (unlikely(max_key->objectid == ino)) {
2069 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2070 continue;
2071 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2072 end = (u64)-1;
2073 } else {
2074 if (max_key->offset == 0)
2075 continue;
2076 end = max_key->offset;
2077 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2078 end--;
2079 }
2080 } else {
2081 end = (u64)-1;
2082 }
2083
2084 /* the lock_extent waits for readpage to complete */
2085 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2086 btrfs_drop_extent_cache(inode, start, end, 1);
2087 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2088 }
2089 return 0;
2090}
2091
2092static int find_next_key(struct btrfs_path *path, int level,
2093 struct btrfs_key *key)
2094
2095{
2096 while (level < BTRFS_MAX_LEVEL) {
2097 if (!path->nodes[level])
2098 break;
2099 if (path->slots[level] + 1 <
2100 btrfs_header_nritems(path->nodes[level])) {
2101 btrfs_node_key_to_cpu(path->nodes[level], key,
2102 path->slots[level] + 1);
2103 return 0;
2104 }
2105 level++;
2106 }
2107 return 1;
2108}
2109
2110/*
2111 * merge the relocated tree blocks in reloc tree with corresponding
2112 * fs tree.
2113 */
2114static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2115 struct btrfs_root *root)
2116{
2117 LIST_HEAD(inode_list);
2118 struct btrfs_key key;
2119 struct btrfs_key next_key;
2120 struct btrfs_trans_handle *trans = NULL;
2121 struct btrfs_root *reloc_root;
2122 struct btrfs_root_item *root_item;
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 int level;
2126 int max_level;
2127 int replaced = 0;
2128 int ret;
2129 int err = 0;
2130 u32 min_reserved;
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135 path->reada = READA_FORWARD;
2136
2137 reloc_root = root->reloc_root;
2138 root_item = &reloc_root->root_item;
2139
2140 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2141 level = btrfs_root_level(root_item);
2142 extent_buffer_get(reloc_root->node);
2143 path->nodes[level] = reloc_root->node;
2144 path->slots[level] = 0;
2145 } else {
2146 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2147
2148 level = root_item->drop_level;
2149 BUG_ON(level == 0);
2150 path->lowest_level = level;
2151 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2152 path->lowest_level = 0;
2153 if (ret < 0) {
2154 btrfs_free_path(path);
2155 return ret;
2156 }
2157
2158 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2159 path->slots[level]);
2160 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2161
2162 btrfs_unlock_up_safe(path, 0);
2163 }
2164
2165 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2166 memset(&next_key, 0, sizeof(next_key));
2167
2168 while (1) {
2169 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2170 BTRFS_RESERVE_FLUSH_ALL);
2171 if (ret) {
2172 err = ret;
2173 goto out;
2174 }
2175 trans = btrfs_start_transaction(root, 0);
2176 if (IS_ERR(trans)) {
2177 err = PTR_ERR(trans);
2178 trans = NULL;
2179 goto out;
2180 }
2181 trans->block_rsv = rc->block_rsv;
2182
2183 replaced = 0;
2184 max_level = level;
2185
2186 ret = walk_down_reloc_tree(reloc_root, path, &level);
2187 if (ret < 0) {
2188 err = ret;
2189 goto out;
2190 }
2191 if (ret > 0)
2192 break;
2193
2194 if (!find_next_key(path, level, &key) &&
2195 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2196 ret = 0;
2197 } else {
2198 ret = replace_path(trans, root, reloc_root, path,
2199 &next_key, level, max_level);
2200 }
2201 if (ret < 0) {
2202 err = ret;
2203 goto out;
2204 }
2205
2206 if (ret > 0) {
2207 level = ret;
2208 btrfs_node_key_to_cpu(path->nodes[level], &key,
2209 path->slots[level]);
2210 replaced = 1;
2211 }
2212
2213 ret = walk_up_reloc_tree(reloc_root, path, &level);
2214 if (ret > 0)
2215 break;
2216
2217 BUG_ON(level == 0);
2218 /*
2219 * save the merging progress in the drop_progress.
2220 * this is OK since root refs == 1 in this case.
2221 */
2222 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2223 path->slots[level]);
2224 root_item->drop_level = level;
2225
2226 btrfs_end_transaction_throttle(trans, root);
2227 trans = NULL;
2228
2229 btrfs_btree_balance_dirty(root);
2230
2231 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2232 invalidate_extent_cache(root, &key, &next_key);
2233 }
2234
2235 /*
2236 * handle the case only one block in the fs tree need to be
2237 * relocated and the block is tree root.
2238 */
2239 leaf = btrfs_lock_root_node(root);
2240 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2241 btrfs_tree_unlock(leaf);
2242 free_extent_buffer(leaf);
2243 if (ret < 0)
2244 err = ret;
2245out:
2246 btrfs_free_path(path);
2247
2248 if (err == 0) {
2249 memset(&root_item->drop_progress, 0,
2250 sizeof(root_item->drop_progress));
2251 root_item->drop_level = 0;
2252 btrfs_set_root_refs(root_item, 0);
2253 btrfs_update_reloc_root(trans, root);
2254 }
2255
2256 if (trans)
2257 btrfs_end_transaction_throttle(trans, root);
2258
2259 btrfs_btree_balance_dirty(root);
2260
2261 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2262 invalidate_extent_cache(root, &key, &next_key);
2263
2264 return err;
2265}
2266
2267static noinline_for_stack
2268int prepare_to_merge(struct reloc_control *rc, int err)
2269{
2270 struct btrfs_root *root = rc->extent_root;
2271 struct btrfs_root *reloc_root;
2272 struct btrfs_trans_handle *trans;
2273 LIST_HEAD(reloc_roots);
2274 u64 num_bytes = 0;
2275 int ret;
2276
2277 mutex_lock(&root->fs_info->reloc_mutex);
2278 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2279 rc->merging_rsv_size += rc->nodes_relocated * 2;
2280 mutex_unlock(&root->fs_info->reloc_mutex);
2281
2282again:
2283 if (!err) {
2284 num_bytes = rc->merging_rsv_size;
2285 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2286 BTRFS_RESERVE_FLUSH_ALL);
2287 if (ret)
2288 err = ret;
2289 }
2290
2291 trans = btrfs_join_transaction(rc->extent_root);
2292 if (IS_ERR(trans)) {
2293 if (!err)
2294 btrfs_block_rsv_release(rc->extent_root,
2295 rc->block_rsv, num_bytes);
2296 return PTR_ERR(trans);
2297 }
2298
2299 if (!err) {
2300 if (num_bytes != rc->merging_rsv_size) {
2301 btrfs_end_transaction(trans, rc->extent_root);
2302 btrfs_block_rsv_release(rc->extent_root,
2303 rc->block_rsv, num_bytes);
2304 goto again;
2305 }
2306 }
2307
2308 rc->merge_reloc_tree = 1;
2309
2310 while (!list_empty(&rc->reloc_roots)) {
2311 reloc_root = list_entry(rc->reloc_roots.next,
2312 struct btrfs_root, root_list);
2313 list_del_init(&reloc_root->root_list);
2314
2315 root = read_fs_root(reloc_root->fs_info,
2316 reloc_root->root_key.offset);
2317 BUG_ON(IS_ERR(root));
2318 BUG_ON(root->reloc_root != reloc_root);
2319
2320 /*
2321 * set reference count to 1, so btrfs_recover_relocation
2322 * knows it should resumes merging
2323 */
2324 if (!err)
2325 btrfs_set_root_refs(&reloc_root->root_item, 1);
2326 btrfs_update_reloc_root(trans, root);
2327
2328 list_add(&reloc_root->root_list, &reloc_roots);
2329 }
2330
2331 list_splice(&reloc_roots, &rc->reloc_roots);
2332
2333 if (!err)
2334 btrfs_commit_transaction(trans, rc->extent_root);
2335 else
2336 btrfs_end_transaction(trans, rc->extent_root);
2337 return err;
2338}
2339
2340static noinline_for_stack
2341void free_reloc_roots(struct list_head *list)
2342{
2343 struct btrfs_root *reloc_root;
2344
2345 while (!list_empty(list)) {
2346 reloc_root = list_entry(list->next, struct btrfs_root,
2347 root_list);
2348 __del_reloc_root(reloc_root);
2349 }
2350}
2351
2352static noinline_for_stack
2353void merge_reloc_roots(struct reloc_control *rc)
2354{
2355 struct btrfs_root *root;
2356 struct btrfs_root *reloc_root;
2357 u64 last_snap;
2358 u64 otransid;
2359 u64 objectid;
2360 LIST_HEAD(reloc_roots);
2361 int found = 0;
2362 int ret = 0;
2363again:
2364 root = rc->extent_root;
2365
2366 /*
2367 * this serializes us with btrfs_record_root_in_transaction,
2368 * we have to make sure nobody is in the middle of
2369 * adding their roots to the list while we are
2370 * doing this splice
2371 */
2372 mutex_lock(&root->fs_info->reloc_mutex);
2373 list_splice_init(&rc->reloc_roots, &reloc_roots);
2374 mutex_unlock(&root->fs_info->reloc_mutex);
2375
2376 while (!list_empty(&reloc_roots)) {
2377 found = 1;
2378 reloc_root = list_entry(reloc_roots.next,
2379 struct btrfs_root, root_list);
2380
2381 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2382 root = read_fs_root(reloc_root->fs_info,
2383 reloc_root->root_key.offset);
2384 BUG_ON(IS_ERR(root));
2385 BUG_ON(root->reloc_root != reloc_root);
2386
2387 ret = merge_reloc_root(rc, root);
2388 if (ret) {
2389 if (list_empty(&reloc_root->root_list))
2390 list_add_tail(&reloc_root->root_list,
2391 &reloc_roots);
2392 goto out;
2393 }
2394 } else {
2395 list_del_init(&reloc_root->root_list);
2396 }
2397
2398 /*
2399 * we keep the old last snapshod transid in rtranid when we
2400 * created the relocation tree.
2401 */
2402 last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2403 otransid = btrfs_root_otransid(&reloc_root->root_item);
2404 objectid = reloc_root->root_key.offset;
2405
2406 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2407 if (ret < 0) {
2408 if (list_empty(&reloc_root->root_list))
2409 list_add_tail(&reloc_root->root_list,
2410 &reloc_roots);
2411 goto out;
2412 }
2413 }
2414
2415 if (found) {
2416 found = 0;
2417 goto again;
2418 }
2419out:
2420 if (ret) {
2421 btrfs_std_error(root->fs_info, ret, NULL);
2422 if (!list_empty(&reloc_roots))
2423 free_reloc_roots(&reloc_roots);
2424
2425 /* new reloc root may be added */
2426 mutex_lock(&root->fs_info->reloc_mutex);
2427 list_splice_init(&rc->reloc_roots, &reloc_roots);
2428 mutex_unlock(&root->fs_info->reloc_mutex);
2429 if (!list_empty(&reloc_roots))
2430 free_reloc_roots(&reloc_roots);
2431 }
2432
2433 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2434}
2435
2436static void free_block_list(struct rb_root *blocks)
2437{
2438 struct tree_block *block;
2439 struct rb_node *rb_node;
2440 while ((rb_node = rb_first(blocks))) {
2441 block = rb_entry(rb_node, struct tree_block, rb_node);
2442 rb_erase(rb_node, blocks);
2443 kfree(block);
2444 }
2445}
2446
2447static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2448 struct btrfs_root *reloc_root)
2449{
2450 struct btrfs_root *root;
2451
2452 if (reloc_root->last_trans == trans->transid)
2453 return 0;
2454
2455 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2456 BUG_ON(IS_ERR(root));
2457 BUG_ON(root->reloc_root != reloc_root);
2458
2459 return btrfs_record_root_in_trans(trans, root);
2460}
2461
2462static noinline_for_stack
2463struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2464 struct reloc_control *rc,
2465 struct backref_node *node,
2466 struct backref_edge *edges[])
2467{
2468 struct backref_node *next;
2469 struct btrfs_root *root;
2470 int index = 0;
2471
2472 next = node;
2473 while (1) {
2474 cond_resched();
2475 next = walk_up_backref(next, edges, &index);
2476 root = next->root;
2477 BUG_ON(!root);
2478 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2479
2480 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2481 record_reloc_root_in_trans(trans, root);
2482 break;
2483 }
2484
2485 btrfs_record_root_in_trans(trans, root);
2486 root = root->reloc_root;
2487
2488 if (next->new_bytenr != root->node->start) {
2489 BUG_ON(next->new_bytenr);
2490 BUG_ON(!list_empty(&next->list));
2491 next->new_bytenr = root->node->start;
2492 next->root = root;
2493 list_add_tail(&next->list,
2494 &rc->backref_cache.changed);
2495 __mark_block_processed(rc, next);
2496 break;
2497 }
2498
2499 WARN_ON(1);
2500 root = NULL;
2501 next = walk_down_backref(edges, &index);
2502 if (!next || next->level <= node->level)
2503 break;
2504 }
2505 if (!root)
2506 return NULL;
2507
2508 next = node;
2509 /* setup backref node path for btrfs_reloc_cow_block */
2510 while (1) {
2511 rc->backref_cache.path[next->level] = next;
2512 if (--index < 0)
2513 break;
2514 next = edges[index]->node[UPPER];
2515 }
2516 return root;
2517}
2518
2519/*
2520 * select a tree root for relocation. return NULL if the block
2521 * is reference counted. we should use do_relocation() in this
2522 * case. return a tree root pointer if the block isn't reference
2523 * counted. return -ENOENT if the block is root of reloc tree.
2524 */
2525static noinline_for_stack
2526struct btrfs_root *select_one_root(struct backref_node *node)
2527{
2528 struct backref_node *next;
2529 struct btrfs_root *root;
2530 struct btrfs_root *fs_root = NULL;
2531 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2532 int index = 0;
2533
2534 next = node;
2535 while (1) {
2536 cond_resched();
2537 next = walk_up_backref(next, edges, &index);
2538 root = next->root;
2539 BUG_ON(!root);
2540
2541 /* no other choice for non-references counted tree */
2542 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2543 return root;
2544
2545 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2546 fs_root = root;
2547
2548 if (next != node)
2549 return NULL;
2550
2551 next = walk_down_backref(edges, &index);
2552 if (!next || next->level <= node->level)
2553 break;
2554 }
2555
2556 if (!fs_root)
2557 return ERR_PTR(-ENOENT);
2558 return fs_root;
2559}
2560
2561static noinline_for_stack
2562u64 calcu_metadata_size(struct reloc_control *rc,
2563 struct backref_node *node, int reserve)
2564{
2565 struct backref_node *next = node;
2566 struct backref_edge *edge;
2567 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2568 u64 num_bytes = 0;
2569 int index = 0;
2570
2571 BUG_ON(reserve && node->processed);
2572
2573 while (next) {
2574 cond_resched();
2575 while (1) {
2576 if (next->processed && (reserve || next != node))
2577 break;
2578
2579 num_bytes += rc->extent_root->nodesize;
2580
2581 if (list_empty(&next->upper))
2582 break;
2583
2584 edge = list_entry(next->upper.next,
2585 struct backref_edge, list[LOWER]);
2586 edges[index++] = edge;
2587 next = edge->node[UPPER];
2588 }
2589 next = walk_down_backref(edges, &index);
2590 }
2591 return num_bytes;
2592}
2593
2594static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2595 struct reloc_control *rc,
2596 struct backref_node *node)
2597{
2598 struct btrfs_root *root = rc->extent_root;
2599 u64 num_bytes;
2600 int ret;
2601 u64 tmp;
2602
2603 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2604
2605 trans->block_rsv = rc->block_rsv;
2606 rc->reserved_bytes += num_bytes;
2607 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2608 BTRFS_RESERVE_FLUSH_ALL);
2609 if (ret) {
2610 if (ret == -EAGAIN) {
2611 tmp = rc->extent_root->nodesize *
2612 RELOCATION_RESERVED_NODES;
2613 while (tmp <= rc->reserved_bytes)
2614 tmp <<= 1;
2615 /*
2616 * only one thread can access block_rsv at this point,
2617 * so we don't need hold lock to protect block_rsv.
2618 * we expand more reservation size here to allow enough
2619 * space for relocation and we will return eailer in
2620 * enospc case.
2621 */
2622 rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2623 RELOCATION_RESERVED_NODES;
2624 }
2625 return ret;
2626 }
2627
2628 return 0;
2629}
2630
2631/*
2632 * relocate a block tree, and then update pointers in upper level
2633 * blocks that reference the block to point to the new location.
2634 *
2635 * if called by link_to_upper, the block has already been relocated.
2636 * in that case this function just updates pointers.
2637 */
2638static int do_relocation(struct btrfs_trans_handle *trans,
2639 struct reloc_control *rc,
2640 struct backref_node *node,
2641 struct btrfs_key *key,
2642 struct btrfs_path *path, int lowest)
2643{
2644 struct backref_node *upper;
2645 struct backref_edge *edge;
2646 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2647 struct btrfs_root *root;
2648 struct extent_buffer *eb;
2649 u32 blocksize;
2650 u64 bytenr;
2651 u64 generation;
2652 int slot;
2653 int ret;
2654 int err = 0;
2655
2656 BUG_ON(lowest && node->eb);
2657
2658 path->lowest_level = node->level + 1;
2659 rc->backref_cache.path[node->level] = node;
2660 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2661 cond_resched();
2662
2663 upper = edge->node[UPPER];
2664 root = select_reloc_root(trans, rc, upper, edges);
2665 BUG_ON(!root);
2666
2667 if (upper->eb && !upper->locked) {
2668 if (!lowest) {
2669 ret = btrfs_bin_search(upper->eb, key,
2670 upper->level, &slot);
2671 BUG_ON(ret);
2672 bytenr = btrfs_node_blockptr(upper->eb, slot);
2673 if (node->eb->start == bytenr)
2674 goto next;
2675 }
2676 drop_node_buffer(upper);
2677 }
2678
2679 if (!upper->eb) {
2680 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2681 if (ret < 0) {
2682 err = ret;
2683 break;
2684 }
2685 BUG_ON(ret > 0);
2686
2687 if (!upper->eb) {
2688 upper->eb = path->nodes[upper->level];
2689 path->nodes[upper->level] = NULL;
2690 } else {
2691 BUG_ON(upper->eb != path->nodes[upper->level]);
2692 }
2693
2694 upper->locked = 1;
2695 path->locks[upper->level] = 0;
2696
2697 slot = path->slots[upper->level];
2698 btrfs_release_path(path);
2699 } else {
2700 ret = btrfs_bin_search(upper->eb, key, upper->level,
2701 &slot);
2702 BUG_ON(ret);
2703 }
2704
2705 bytenr = btrfs_node_blockptr(upper->eb, slot);
2706 if (lowest) {
2707 BUG_ON(bytenr != node->bytenr);
2708 } else {
2709 if (node->eb->start == bytenr)
2710 goto next;
2711 }
2712
2713 blocksize = root->nodesize;
2714 generation = btrfs_node_ptr_generation(upper->eb, slot);
2715 eb = read_tree_block(root, bytenr, generation);
2716 if (IS_ERR(eb)) {
2717 err = PTR_ERR(eb);
2718 goto next;
2719 } else if (!extent_buffer_uptodate(eb)) {
2720 free_extent_buffer(eb);
2721 err = -EIO;
2722 goto next;
2723 }
2724 btrfs_tree_lock(eb);
2725 btrfs_set_lock_blocking(eb);
2726
2727 if (!node->eb) {
2728 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2729 slot, &eb);
2730 btrfs_tree_unlock(eb);
2731 free_extent_buffer(eb);
2732 if (ret < 0) {
2733 err = ret;
2734 goto next;
2735 }
2736 BUG_ON(node->eb != eb);
2737 } else {
2738 btrfs_set_node_blockptr(upper->eb, slot,
2739 node->eb->start);
2740 btrfs_set_node_ptr_generation(upper->eb, slot,
2741 trans->transid);
2742 btrfs_mark_buffer_dirty(upper->eb);
2743
2744 ret = btrfs_inc_extent_ref(trans, root,
2745 node->eb->start, blocksize,
2746 upper->eb->start,
2747 btrfs_header_owner(upper->eb),
2748 node->level, 0);
2749 BUG_ON(ret);
2750
2751 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2752 BUG_ON(ret);
2753 }
2754next:
2755 if (!upper->pending)
2756 drop_node_buffer(upper);
2757 else
2758 unlock_node_buffer(upper);
2759 if (err)
2760 break;
2761 }
2762
2763 if (!err && node->pending) {
2764 drop_node_buffer(node);
2765 list_move_tail(&node->list, &rc->backref_cache.changed);
2766 node->pending = 0;
2767 }
2768
2769 path->lowest_level = 0;
2770 BUG_ON(err == -ENOSPC);
2771 return err;
2772}
2773
2774static int link_to_upper(struct btrfs_trans_handle *trans,
2775 struct reloc_control *rc,
2776 struct backref_node *node,
2777 struct btrfs_path *path)
2778{
2779 struct btrfs_key key;
2780
2781 btrfs_node_key_to_cpu(node->eb, &key, 0);
2782 return do_relocation(trans, rc, node, &key, path, 0);
2783}
2784
2785static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2786 struct reloc_control *rc,
2787 struct btrfs_path *path, int err)
2788{
2789 LIST_HEAD(list);
2790 struct backref_cache *cache = &rc->backref_cache;
2791 struct backref_node *node;
2792 int level;
2793 int ret;
2794
2795 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2796 while (!list_empty(&cache->pending[level])) {
2797 node = list_entry(cache->pending[level].next,
2798 struct backref_node, list);
2799 list_move_tail(&node->list, &list);
2800 BUG_ON(!node->pending);
2801
2802 if (!err) {
2803 ret = link_to_upper(trans, rc, node, path);
2804 if (ret < 0)
2805 err = ret;
2806 }
2807 }
2808 list_splice_init(&list, &cache->pending[level]);
2809 }
2810 return err;
2811}
2812
2813static void mark_block_processed(struct reloc_control *rc,
2814 u64 bytenr, u32 blocksize)
2815{
2816 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2817 EXTENT_DIRTY, GFP_NOFS);
2818}
2819
2820static void __mark_block_processed(struct reloc_control *rc,
2821 struct backref_node *node)
2822{
2823 u32 blocksize;
2824 if (node->level == 0 ||
2825 in_block_group(node->bytenr, rc->block_group)) {
2826 blocksize = rc->extent_root->nodesize;
2827 mark_block_processed(rc, node->bytenr, blocksize);
2828 }
2829 node->processed = 1;
2830}
2831
2832/*
2833 * mark a block and all blocks directly/indirectly reference the block
2834 * as processed.
2835 */
2836static void update_processed_blocks(struct reloc_control *rc,
2837 struct backref_node *node)
2838{
2839 struct backref_node *next = node;
2840 struct backref_edge *edge;
2841 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2842 int index = 0;
2843
2844 while (next) {
2845 cond_resched();
2846 while (1) {
2847 if (next->processed)
2848 break;
2849
2850 __mark_block_processed(rc, next);
2851
2852 if (list_empty(&next->upper))
2853 break;
2854
2855 edge = list_entry(next->upper.next,
2856 struct backref_edge, list[LOWER]);
2857 edges[index++] = edge;
2858 next = edge->node[UPPER];
2859 }
2860 next = walk_down_backref(edges, &index);
2861 }
2862}
2863
2864static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2865{
2866 u32 blocksize = rc->extent_root->nodesize;
2867
2868 if (test_range_bit(&rc->processed_blocks, bytenr,
2869 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2870 return 1;
2871 return 0;
2872}
2873
2874static int get_tree_block_key(struct reloc_control *rc,
2875 struct tree_block *block)
2876{
2877 struct extent_buffer *eb;
2878
2879 BUG_ON(block->key_ready);
2880 eb = read_tree_block(rc->extent_root, block->bytenr,
2881 block->key.offset);
2882 if (IS_ERR(eb)) {
2883 return PTR_ERR(eb);
2884 } else if (!extent_buffer_uptodate(eb)) {
2885 free_extent_buffer(eb);
2886 return -EIO;
2887 }
2888 WARN_ON(btrfs_header_level(eb) != block->level);
2889 if (block->level == 0)
2890 btrfs_item_key_to_cpu(eb, &block->key, 0);
2891 else
2892 btrfs_node_key_to_cpu(eb, &block->key, 0);
2893 free_extent_buffer(eb);
2894 block->key_ready = 1;
2895 return 0;
2896}
2897
2898/*
2899 * helper function to relocate a tree block
2900 */
2901static int relocate_tree_block(struct btrfs_trans_handle *trans,
2902 struct reloc_control *rc,
2903 struct backref_node *node,
2904 struct btrfs_key *key,
2905 struct btrfs_path *path)
2906{
2907 struct btrfs_root *root;
2908 int ret = 0;
2909
2910 if (!node)
2911 return 0;
2912
2913 BUG_ON(node->processed);
2914 root = select_one_root(node);
2915 if (root == ERR_PTR(-ENOENT)) {
2916 update_processed_blocks(rc, node);
2917 goto out;
2918 }
2919
2920 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2921 ret = reserve_metadata_space(trans, rc, node);
2922 if (ret)
2923 goto out;
2924 }
2925
2926 if (root) {
2927 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2928 BUG_ON(node->new_bytenr);
2929 BUG_ON(!list_empty(&node->list));
2930 btrfs_record_root_in_trans(trans, root);
2931 root = root->reloc_root;
2932 node->new_bytenr = root->node->start;
2933 node->root = root;
2934 list_add_tail(&node->list, &rc->backref_cache.changed);
2935 } else {
2936 path->lowest_level = node->level;
2937 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2938 btrfs_release_path(path);
2939 if (ret > 0)
2940 ret = 0;
2941 }
2942 if (!ret)
2943 update_processed_blocks(rc, node);
2944 } else {
2945 ret = do_relocation(trans, rc, node, key, path, 1);
2946 }
2947out:
2948 if (ret || node->level == 0 || node->cowonly)
2949 remove_backref_node(&rc->backref_cache, node);
2950 return ret;
2951}
2952
2953/*
2954 * relocate a list of blocks
2955 */
2956static noinline_for_stack
2957int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2958 struct reloc_control *rc, struct rb_root *blocks)
2959{
2960 struct backref_node *node;
2961 struct btrfs_path *path;
2962 struct tree_block *block;
2963 struct rb_node *rb_node;
2964 int ret;
2965 int err = 0;
2966
2967 path = btrfs_alloc_path();
2968 if (!path) {
2969 err = -ENOMEM;
2970 goto out_free_blocks;
2971 }
2972
2973 rb_node = rb_first(blocks);
2974 while (rb_node) {
2975 block = rb_entry(rb_node, struct tree_block, rb_node);
2976 if (!block->key_ready)
2977 readahead_tree_block(rc->extent_root, block->bytenr);
2978 rb_node = rb_next(rb_node);
2979 }
2980
2981 rb_node = rb_first(blocks);
2982 while (rb_node) {
2983 block = rb_entry(rb_node, struct tree_block, rb_node);
2984 if (!block->key_ready) {
2985 err = get_tree_block_key(rc, block);
2986 if (err)
2987 goto out_free_path;
2988 }
2989 rb_node = rb_next(rb_node);
2990 }
2991
2992 rb_node = rb_first(blocks);
2993 while (rb_node) {
2994 block = rb_entry(rb_node, struct tree_block, rb_node);
2995
2996 node = build_backref_tree(rc, &block->key,
2997 block->level, block->bytenr);
2998 if (IS_ERR(node)) {
2999 err = PTR_ERR(node);
3000 goto out;
3001 }
3002
3003 ret = relocate_tree_block(trans, rc, node, &block->key,
3004 path);
3005 if (ret < 0) {
3006 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3007 err = ret;
3008 goto out;
3009 }
3010 rb_node = rb_next(rb_node);
3011 }
3012out:
3013 err = finish_pending_nodes(trans, rc, path, err);
3014
3015out_free_path:
3016 btrfs_free_path(path);
3017out_free_blocks:
3018 free_block_list(blocks);
3019 return err;
3020}
3021
3022static noinline_for_stack
3023int prealloc_file_extent_cluster(struct inode *inode,
3024 struct file_extent_cluster *cluster)
3025{
3026 u64 alloc_hint = 0;
3027 u64 start;
3028 u64 end;
3029 u64 offset = BTRFS_I(inode)->index_cnt;
3030 u64 num_bytes;
3031 int nr = 0;
3032 int ret = 0;
3033
3034 BUG_ON(cluster->start != cluster->boundary[0]);
3035 inode_lock(inode);
3036
3037 ret = btrfs_check_data_free_space(inode, cluster->start,
3038 cluster->end + 1 - cluster->start);
3039 if (ret)
3040 goto out;
3041
3042 while (nr < cluster->nr) {
3043 start = cluster->boundary[nr] - offset;
3044 if (nr + 1 < cluster->nr)
3045 end = cluster->boundary[nr + 1] - 1 - offset;
3046 else
3047 end = cluster->end - offset;
3048
3049 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3050 num_bytes = end + 1 - start;
3051 ret = btrfs_prealloc_file_range(inode, 0, start,
3052 num_bytes, num_bytes,
3053 end + 1, &alloc_hint);
3054 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3055 if (ret)
3056 break;
3057 nr++;
3058 }
3059 btrfs_free_reserved_data_space(inode, cluster->start,
3060 cluster->end + 1 - cluster->start);
3061out:
3062 inode_unlock(inode);
3063 return ret;
3064}
3065
3066static noinline_for_stack
3067int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3068 u64 block_start)
3069{
3070 struct btrfs_root *root = BTRFS_I(inode)->root;
3071 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3072 struct extent_map *em;
3073 int ret = 0;
3074
3075 em = alloc_extent_map();
3076 if (!em)
3077 return -ENOMEM;
3078
3079 em->start = start;
3080 em->len = end + 1 - start;
3081 em->block_len = em->len;
3082 em->block_start = block_start;
3083 em->bdev = root->fs_info->fs_devices->latest_bdev;
3084 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3085
3086 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3087 while (1) {
3088 write_lock(&em_tree->lock);
3089 ret = add_extent_mapping(em_tree, em, 0);
3090 write_unlock(&em_tree->lock);
3091 if (ret != -EEXIST) {
3092 free_extent_map(em);
3093 break;
3094 }
3095 btrfs_drop_extent_cache(inode, start, end, 0);
3096 }
3097 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3098 return ret;
3099}
3100
3101static int relocate_file_extent_cluster(struct inode *inode,
3102 struct file_extent_cluster *cluster)
3103{
3104 u64 page_start;
3105 u64 page_end;
3106 u64 offset = BTRFS_I(inode)->index_cnt;
3107 unsigned long index;
3108 unsigned long last_index;
3109 struct page *page;
3110 struct file_ra_state *ra;
3111 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3112 int nr = 0;
3113 int ret = 0;
3114
3115 if (!cluster->nr)
3116 return 0;
3117
3118 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3119 if (!ra)
3120 return -ENOMEM;
3121
3122 ret = prealloc_file_extent_cluster(inode, cluster);
3123 if (ret)
3124 goto out;
3125
3126 file_ra_state_init(ra, inode->i_mapping);
3127
3128 ret = setup_extent_mapping(inode, cluster->start - offset,
3129 cluster->end - offset, cluster->start);
3130 if (ret)
3131 goto out;
3132
3133 index = (cluster->start - offset) >> PAGE_SHIFT;
3134 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3135 while (index <= last_index) {
3136 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3137 if (ret)
3138 goto out;
3139
3140 page = find_lock_page(inode->i_mapping, index);
3141 if (!page) {
3142 page_cache_sync_readahead(inode->i_mapping,
3143 ra, NULL, index,
3144 last_index + 1 - index);
3145 page = find_or_create_page(inode->i_mapping, index,
3146 mask);
3147 if (!page) {
3148 btrfs_delalloc_release_metadata(inode,
3149 PAGE_SIZE);
3150 ret = -ENOMEM;
3151 goto out;
3152 }
3153 }
3154
3155 if (PageReadahead(page)) {
3156 page_cache_async_readahead(inode->i_mapping,
3157 ra, NULL, page, index,
3158 last_index + 1 - index);
3159 }
3160
3161 if (!PageUptodate(page)) {
3162 btrfs_readpage(NULL, page);
3163 lock_page(page);
3164 if (!PageUptodate(page)) {
3165 unlock_page(page);
3166 put_page(page);
3167 btrfs_delalloc_release_metadata(inode,
3168 PAGE_SIZE);
3169 ret = -EIO;
3170 goto out;
3171 }
3172 }
3173
3174 page_start = page_offset(page);
3175 page_end = page_start + PAGE_SIZE - 1;
3176
3177 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3178
3179 set_page_extent_mapped(page);
3180
3181 if (nr < cluster->nr &&
3182 page_start + offset == cluster->boundary[nr]) {
3183 set_extent_bits(&BTRFS_I(inode)->io_tree,
3184 page_start, page_end,
3185 EXTENT_BOUNDARY, GFP_NOFS);
3186 nr++;
3187 }
3188
3189 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3190 set_page_dirty(page);
3191
3192 unlock_extent(&BTRFS_I(inode)->io_tree,
3193 page_start, page_end);
3194 unlock_page(page);
3195 put_page(page);
3196
3197 index++;
3198 balance_dirty_pages_ratelimited(inode->i_mapping);
3199 btrfs_throttle(BTRFS_I(inode)->root);
3200 }
3201 WARN_ON(nr != cluster->nr);
3202out:
3203 kfree(ra);
3204 return ret;
3205}
3206
3207static noinline_for_stack
3208int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3209 struct file_extent_cluster *cluster)
3210{
3211 int ret;
3212
3213 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3214 ret = relocate_file_extent_cluster(inode, cluster);
3215 if (ret)
3216 return ret;
3217 cluster->nr = 0;
3218 }
3219
3220 if (!cluster->nr)
3221 cluster->start = extent_key->objectid;
3222 else
3223 BUG_ON(cluster->nr >= MAX_EXTENTS);
3224 cluster->end = extent_key->objectid + extent_key->offset - 1;
3225 cluster->boundary[cluster->nr] = extent_key->objectid;
3226 cluster->nr++;
3227
3228 if (cluster->nr >= MAX_EXTENTS) {
3229 ret = relocate_file_extent_cluster(inode, cluster);
3230 if (ret)
3231 return ret;
3232 cluster->nr = 0;
3233 }
3234 return 0;
3235}
3236
3237#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3238static int get_ref_objectid_v0(struct reloc_control *rc,
3239 struct btrfs_path *path,
3240 struct btrfs_key *extent_key,
3241 u64 *ref_objectid, int *path_change)
3242{
3243 struct btrfs_key key;
3244 struct extent_buffer *leaf;
3245 struct btrfs_extent_ref_v0 *ref0;
3246 int ret;
3247 int slot;
3248
3249 leaf = path->nodes[0];
3250 slot = path->slots[0];
3251 while (1) {
3252 if (slot >= btrfs_header_nritems(leaf)) {
3253 ret = btrfs_next_leaf(rc->extent_root, path);
3254 if (ret < 0)
3255 return ret;
3256 BUG_ON(ret > 0);
3257 leaf = path->nodes[0];
3258 slot = path->slots[0];
3259 if (path_change)
3260 *path_change = 1;
3261 }
3262 btrfs_item_key_to_cpu(leaf, &key, slot);
3263 if (key.objectid != extent_key->objectid)
3264 return -ENOENT;
3265
3266 if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3267 slot++;
3268 continue;
3269 }
3270 ref0 = btrfs_item_ptr(leaf, slot,
3271 struct btrfs_extent_ref_v0);
3272 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3273 break;
3274 }
3275 return 0;
3276}
3277#endif
3278
3279/*
3280 * helper to add a tree block to the list.
3281 * the major work is getting the generation and level of the block
3282 */
3283static int add_tree_block(struct reloc_control *rc,
3284 struct btrfs_key *extent_key,
3285 struct btrfs_path *path,
3286 struct rb_root *blocks)
3287{
3288 struct extent_buffer *eb;
3289 struct btrfs_extent_item *ei;
3290 struct btrfs_tree_block_info *bi;
3291 struct tree_block *block;
3292 struct rb_node *rb_node;
3293 u32 item_size;
3294 int level = -1;
3295 u64 generation;
3296
3297 eb = path->nodes[0];
3298 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3299
3300 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3301 item_size >= sizeof(*ei) + sizeof(*bi)) {
3302 ei = btrfs_item_ptr(eb, path->slots[0],
3303 struct btrfs_extent_item);
3304 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3305 bi = (struct btrfs_tree_block_info *)(ei + 1);
3306 level = btrfs_tree_block_level(eb, bi);
3307 } else {
3308 level = (int)extent_key->offset;
3309 }
3310 generation = btrfs_extent_generation(eb, ei);
3311 } else {
3312#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3313 u64 ref_owner;
3314 int ret;
3315
3316 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3317 ret = get_ref_objectid_v0(rc, path, extent_key,
3318 &ref_owner, NULL);
3319 if (ret < 0)
3320 return ret;
3321 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3322 level = (int)ref_owner;
3323 /* FIXME: get real generation */
3324 generation = 0;
3325#else
3326 BUG();
3327#endif
3328 }
3329
3330 btrfs_release_path(path);
3331
3332 BUG_ON(level == -1);
3333
3334 block = kmalloc(sizeof(*block), GFP_NOFS);
3335 if (!block)
3336 return -ENOMEM;
3337
3338 block->bytenr = extent_key->objectid;
3339 block->key.objectid = rc->extent_root->nodesize;
3340 block->key.offset = generation;
3341 block->level = level;
3342 block->key_ready = 0;
3343
3344 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3345 if (rb_node)
3346 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3347
3348 return 0;
3349}
3350
3351/*
3352 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3353 */
3354static int __add_tree_block(struct reloc_control *rc,
3355 u64 bytenr, u32 blocksize,
3356 struct rb_root *blocks)
3357{
3358 struct btrfs_path *path;
3359 struct btrfs_key key;
3360 int ret;
3361 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3362 SKINNY_METADATA);
3363
3364 if (tree_block_processed(bytenr, rc))
3365 return 0;
3366
3367 if (tree_search(blocks, bytenr))
3368 return 0;
3369
3370 path = btrfs_alloc_path();
3371 if (!path)
3372 return -ENOMEM;
3373again:
3374 key.objectid = bytenr;
3375 if (skinny) {
3376 key.type = BTRFS_METADATA_ITEM_KEY;
3377 key.offset = (u64)-1;
3378 } else {
3379 key.type = BTRFS_EXTENT_ITEM_KEY;
3380 key.offset = blocksize;
3381 }
3382
3383 path->search_commit_root = 1;
3384 path->skip_locking = 1;
3385 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3386 if (ret < 0)
3387 goto out;
3388
3389 if (ret > 0 && skinny) {
3390 if (path->slots[0]) {
3391 path->slots[0]--;
3392 btrfs_item_key_to_cpu(path->nodes[0], &key,
3393 path->slots[0]);
3394 if (key.objectid == bytenr &&
3395 (key.type == BTRFS_METADATA_ITEM_KEY ||
3396 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3397 key.offset == blocksize)))
3398 ret = 0;
3399 }
3400
3401 if (ret) {
3402 skinny = false;
3403 btrfs_release_path(path);
3404 goto again;
3405 }
3406 }
3407 BUG_ON(ret);
3408
3409 ret = add_tree_block(rc, &key, path, blocks);
3410out:
3411 btrfs_free_path(path);
3412 return ret;
3413}
3414
3415/*
3416 * helper to check if the block use full backrefs for pointers in it
3417 */
3418static int block_use_full_backref(struct reloc_control *rc,
3419 struct extent_buffer *eb)
3420{
3421 u64 flags;
3422 int ret;
3423
3424 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3425 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3426 return 1;
3427
3428 ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3429 eb->start, btrfs_header_level(eb), 1,
3430 NULL, &flags);
3431 BUG_ON(ret);
3432
3433 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3434 ret = 1;
3435 else
3436 ret = 0;
3437 return ret;
3438}
3439
3440static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3441 struct btrfs_block_group_cache *block_group,
3442 struct inode *inode,
3443 u64 ino)
3444{
3445 struct btrfs_key key;
3446 struct btrfs_root *root = fs_info->tree_root;
3447 struct btrfs_trans_handle *trans;
3448 int ret = 0;
3449
3450 if (inode)
3451 goto truncate;
3452
3453 key.objectid = ino;
3454 key.type = BTRFS_INODE_ITEM_KEY;
3455 key.offset = 0;
3456
3457 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3458 if (IS_ERR(inode) || is_bad_inode(inode)) {
3459 if (!IS_ERR(inode))
3460 iput(inode);
3461 return -ENOENT;
3462 }
3463
3464truncate:
3465 ret = btrfs_check_trunc_cache_free_space(root,
3466 &fs_info->global_block_rsv);
3467 if (ret)
3468 goto out;
3469
3470 trans = btrfs_join_transaction(root);
3471 if (IS_ERR(trans)) {
3472 ret = PTR_ERR(trans);
3473 goto out;
3474 }
3475
3476 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3477
3478 btrfs_end_transaction(trans, root);
3479 btrfs_btree_balance_dirty(root);
3480out:
3481 iput(inode);
3482 return ret;
3483}
3484
3485/*
3486 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3487 * this function scans fs tree to find blocks reference the data extent
3488 */
3489static int find_data_references(struct reloc_control *rc,
3490 struct btrfs_key *extent_key,
3491 struct extent_buffer *leaf,
3492 struct btrfs_extent_data_ref *ref,
3493 struct rb_root *blocks)
3494{
3495 struct btrfs_path *path;
3496 struct tree_block *block;
3497 struct btrfs_root *root;
3498 struct btrfs_file_extent_item *fi;
3499 struct rb_node *rb_node;
3500 struct btrfs_key key;
3501 u64 ref_root;
3502 u64 ref_objectid;
3503 u64 ref_offset;
3504 u32 ref_count;
3505 u32 nritems;
3506 int err = 0;
3507 int added = 0;
3508 int counted;
3509 int ret;
3510
3511 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3512 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3513 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3514 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3515
3516 /*
3517 * This is an extent belonging to the free space cache, lets just delete
3518 * it and redo the search.
3519 */
3520 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3521 ret = delete_block_group_cache(rc->extent_root->fs_info,
3522 rc->block_group,
3523 NULL, ref_objectid);
3524 if (ret != -ENOENT)
3525 return ret;
3526 ret = 0;
3527 }
3528
3529 path = btrfs_alloc_path();
3530 if (!path)
3531 return -ENOMEM;
3532 path->reada = READA_FORWARD;
3533
3534 root = read_fs_root(rc->extent_root->fs_info, ref_root);
3535 if (IS_ERR(root)) {
3536 err = PTR_ERR(root);
3537 goto out;
3538 }
3539
3540 key.objectid = ref_objectid;
3541 key.type = BTRFS_EXTENT_DATA_KEY;
3542 if (ref_offset > ((u64)-1 << 32))
3543 key.offset = 0;
3544 else
3545 key.offset = ref_offset;
3546
3547 path->search_commit_root = 1;
3548 path->skip_locking = 1;
3549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3550 if (ret < 0) {
3551 err = ret;
3552 goto out;
3553 }
3554
3555 leaf = path->nodes[0];
3556 nritems = btrfs_header_nritems(leaf);
3557 /*
3558 * the references in tree blocks that use full backrefs
3559 * are not counted in
3560 */
3561 if (block_use_full_backref(rc, leaf))
3562 counted = 0;
3563 else
3564 counted = 1;
3565 rb_node = tree_search(blocks, leaf->start);
3566 if (rb_node) {
3567 if (counted)
3568 added = 1;
3569 else
3570 path->slots[0] = nritems;
3571 }
3572
3573 while (ref_count > 0) {
3574 while (path->slots[0] >= nritems) {
3575 ret = btrfs_next_leaf(root, path);
3576 if (ret < 0) {
3577 err = ret;
3578 goto out;
3579 }
3580 if (WARN_ON(ret > 0))
3581 goto out;
3582
3583 leaf = path->nodes[0];
3584 nritems = btrfs_header_nritems(leaf);
3585 added = 0;
3586
3587 if (block_use_full_backref(rc, leaf))
3588 counted = 0;
3589 else
3590 counted = 1;
3591 rb_node = tree_search(blocks, leaf->start);
3592 if (rb_node) {
3593 if (counted)
3594 added = 1;
3595 else
3596 path->slots[0] = nritems;
3597 }
3598 }
3599
3600 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3601 if (WARN_ON(key.objectid != ref_objectid ||
3602 key.type != BTRFS_EXTENT_DATA_KEY))
3603 break;
3604
3605 fi = btrfs_item_ptr(leaf, path->slots[0],
3606 struct btrfs_file_extent_item);
3607
3608 if (btrfs_file_extent_type(leaf, fi) ==
3609 BTRFS_FILE_EXTENT_INLINE)
3610 goto next;
3611
3612 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3613 extent_key->objectid)
3614 goto next;
3615
3616 key.offset -= btrfs_file_extent_offset(leaf, fi);
3617 if (key.offset != ref_offset)
3618 goto next;
3619
3620 if (counted)
3621 ref_count--;
3622 if (added)
3623 goto next;
3624
3625 if (!tree_block_processed(leaf->start, rc)) {
3626 block = kmalloc(sizeof(*block), GFP_NOFS);
3627 if (!block) {
3628 err = -ENOMEM;
3629 break;
3630 }
3631 block->bytenr = leaf->start;
3632 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3633 block->level = 0;
3634 block->key_ready = 1;
3635 rb_node = tree_insert(blocks, block->bytenr,
3636 &block->rb_node);
3637 if (rb_node)
3638 backref_tree_panic(rb_node, -EEXIST,
3639 block->bytenr);
3640 }
3641 if (counted)
3642 added = 1;
3643 else
3644 path->slots[0] = nritems;
3645next:
3646 path->slots[0]++;
3647
3648 }
3649out:
3650 btrfs_free_path(path);
3651 return err;
3652}
3653
3654/*
3655 * helper to find all tree blocks that reference a given data extent
3656 */
3657static noinline_for_stack
3658int add_data_references(struct reloc_control *rc,
3659 struct btrfs_key *extent_key,
3660 struct btrfs_path *path,
3661 struct rb_root *blocks)
3662{
3663 struct btrfs_key key;
3664 struct extent_buffer *eb;
3665 struct btrfs_extent_data_ref *dref;
3666 struct btrfs_extent_inline_ref *iref;
3667 unsigned long ptr;
3668 unsigned long end;
3669 u32 blocksize = rc->extent_root->nodesize;
3670 int ret = 0;
3671 int err = 0;
3672
3673 eb = path->nodes[0];
3674 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3675 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3676#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3677 if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3678 ptr = end;
3679 else
3680#endif
3681 ptr += sizeof(struct btrfs_extent_item);
3682
3683 while (ptr < end) {
3684 iref = (struct btrfs_extent_inline_ref *)ptr;
3685 key.type = btrfs_extent_inline_ref_type(eb, iref);
3686 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3687 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3688 ret = __add_tree_block(rc, key.offset, blocksize,
3689 blocks);
3690 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3691 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3692 ret = find_data_references(rc, extent_key,
3693 eb, dref, blocks);
3694 } else {
3695 BUG();
3696 }
3697 if (ret) {
3698 err = ret;
3699 goto out;
3700 }
3701 ptr += btrfs_extent_inline_ref_size(key.type);
3702 }
3703 WARN_ON(ptr > end);
3704
3705 while (1) {
3706 cond_resched();
3707 eb = path->nodes[0];
3708 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3709 ret = btrfs_next_leaf(rc->extent_root, path);
3710 if (ret < 0) {
3711 err = ret;
3712 break;
3713 }
3714 if (ret > 0)
3715 break;
3716 eb = path->nodes[0];
3717 }
3718
3719 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3720 if (key.objectid != extent_key->objectid)
3721 break;
3722
3723#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3724 if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3725 key.type == BTRFS_EXTENT_REF_V0_KEY) {
3726#else
3727 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3728 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3729#endif
3730 ret = __add_tree_block(rc, key.offset, blocksize,
3731 blocks);
3732 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3733 dref = btrfs_item_ptr(eb, path->slots[0],
3734 struct btrfs_extent_data_ref);
3735 ret = find_data_references(rc, extent_key,
3736 eb, dref, blocks);
3737 } else {
3738 ret = 0;
3739 }
3740 if (ret) {
3741 err = ret;
3742 break;
3743 }
3744 path->slots[0]++;
3745 }
3746out:
3747 btrfs_release_path(path);
3748 if (err)
3749 free_block_list(blocks);
3750 return err;
3751}
3752
3753/*
3754 * helper to find next unprocessed extent
3755 */
3756static noinline_for_stack
3757int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3758 struct btrfs_key *extent_key)
3759{
3760 struct btrfs_key key;
3761 struct extent_buffer *leaf;
3762 u64 start, end, last;
3763 int ret;
3764
3765 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3766 while (1) {
3767 cond_resched();
3768 if (rc->search_start >= last) {
3769 ret = 1;
3770 break;
3771 }
3772
3773 key.objectid = rc->search_start;
3774 key.type = BTRFS_EXTENT_ITEM_KEY;
3775 key.offset = 0;
3776
3777 path->search_commit_root = 1;
3778 path->skip_locking = 1;
3779 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3780 0, 0);
3781 if (ret < 0)
3782 break;
3783next:
3784 leaf = path->nodes[0];
3785 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3786 ret = btrfs_next_leaf(rc->extent_root, path);
3787 if (ret != 0)
3788 break;
3789 leaf = path->nodes[0];
3790 }
3791
3792 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3793 if (key.objectid >= last) {
3794 ret = 1;
3795 break;
3796 }
3797
3798 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3799 key.type != BTRFS_METADATA_ITEM_KEY) {
3800 path->slots[0]++;
3801 goto next;
3802 }
3803
3804 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3805 key.objectid + key.offset <= rc->search_start) {
3806 path->slots[0]++;
3807 goto next;
3808 }
3809
3810 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3811 key.objectid + rc->extent_root->nodesize <=
3812 rc->search_start) {
3813 path->slots[0]++;
3814 goto next;
3815 }
3816
3817 ret = find_first_extent_bit(&rc->processed_blocks,
3818 key.objectid, &start, &end,
3819 EXTENT_DIRTY, NULL);
3820
3821 if (ret == 0 && start <= key.objectid) {
3822 btrfs_release_path(path);
3823 rc->search_start = end + 1;
3824 } else {
3825 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3826 rc->search_start = key.objectid + key.offset;
3827 else
3828 rc->search_start = key.objectid +
3829 rc->extent_root->nodesize;
3830 memcpy(extent_key, &key, sizeof(key));
3831 return 0;
3832 }
3833 }
3834 btrfs_release_path(path);
3835 return ret;
3836}
3837
3838static void set_reloc_control(struct reloc_control *rc)
3839{
3840 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3841
3842 mutex_lock(&fs_info->reloc_mutex);
3843 fs_info->reloc_ctl = rc;
3844 mutex_unlock(&fs_info->reloc_mutex);
3845}
3846
3847static void unset_reloc_control(struct reloc_control *rc)
3848{
3849 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3850
3851 mutex_lock(&fs_info->reloc_mutex);
3852 fs_info->reloc_ctl = NULL;
3853 mutex_unlock(&fs_info->reloc_mutex);
3854}
3855
3856static int check_extent_flags(u64 flags)
3857{
3858 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3859 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3860 return 1;
3861 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3862 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3863 return 1;
3864 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3865 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3866 return 1;
3867 return 0;
3868}
3869
3870static noinline_for_stack
3871int prepare_to_relocate(struct reloc_control *rc)
3872{
3873 struct btrfs_trans_handle *trans;
3874
3875 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3876 BTRFS_BLOCK_RSV_TEMP);
3877 if (!rc->block_rsv)
3878 return -ENOMEM;
3879
3880 memset(&rc->cluster, 0, sizeof(rc->cluster));
3881 rc->search_start = rc->block_group->key.objectid;
3882 rc->extents_found = 0;
3883 rc->nodes_relocated = 0;
3884 rc->merging_rsv_size = 0;
3885 rc->reserved_bytes = 0;
3886 rc->block_rsv->size = rc->extent_root->nodesize *
3887 RELOCATION_RESERVED_NODES;
3888
3889 rc->create_reloc_tree = 1;
3890 set_reloc_control(rc);
3891
3892 trans = btrfs_join_transaction(rc->extent_root);
3893 if (IS_ERR(trans)) {
3894 unset_reloc_control(rc);
3895 /*
3896 * extent tree is not a ref_cow tree and has no reloc_root to
3897 * cleanup. And callers are responsible to free the above
3898 * block rsv.
3899 */
3900 return PTR_ERR(trans);
3901 }
3902 btrfs_commit_transaction(trans, rc->extent_root);
3903 return 0;
3904}
3905
3906static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3907{
3908 struct rb_root blocks = RB_ROOT;
3909 struct btrfs_key key;
3910 struct btrfs_trans_handle *trans = NULL;
3911 struct btrfs_path *path;
3912 struct btrfs_extent_item *ei;
3913 u64 flags;
3914 u32 item_size;
3915 int ret;
3916 int err = 0;
3917 int progress = 0;
3918
3919 path = btrfs_alloc_path();
3920 if (!path)
3921 return -ENOMEM;
3922 path->reada = READA_FORWARD;
3923
3924 ret = prepare_to_relocate(rc);
3925 if (ret) {
3926 err = ret;
3927 goto out_free;
3928 }
3929
3930 while (1) {
3931 rc->reserved_bytes = 0;
3932 ret = btrfs_block_rsv_refill(rc->extent_root,
3933 rc->block_rsv, rc->block_rsv->size,
3934 BTRFS_RESERVE_FLUSH_ALL);
3935 if (ret) {
3936 err = ret;
3937 break;
3938 }
3939 progress++;
3940 trans = btrfs_start_transaction(rc->extent_root, 0);
3941 if (IS_ERR(trans)) {
3942 err = PTR_ERR(trans);
3943 trans = NULL;
3944 break;
3945 }
3946restart:
3947 if (update_backref_cache(trans, &rc->backref_cache)) {
3948 btrfs_end_transaction(trans, rc->extent_root);
3949 continue;
3950 }
3951
3952 ret = find_next_extent(rc, path, &key);
3953 if (ret < 0)
3954 err = ret;
3955 if (ret != 0)
3956 break;
3957
3958 rc->extents_found++;
3959
3960 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3961 struct btrfs_extent_item);
3962 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3963 if (item_size >= sizeof(*ei)) {
3964 flags = btrfs_extent_flags(path->nodes[0], ei);
3965 ret = check_extent_flags(flags);
3966 BUG_ON(ret);
3967
3968 } else {
3969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3970 u64 ref_owner;
3971 int path_change = 0;
3972
3973 BUG_ON(item_size !=
3974 sizeof(struct btrfs_extent_item_v0));
3975 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3976 &path_change);
3977 if (ret < 0) {
3978 err = ret;
3979 break;
3980 }
3981 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3982 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3983 else
3984 flags = BTRFS_EXTENT_FLAG_DATA;
3985
3986 if (path_change) {
3987 btrfs_release_path(path);
3988
3989 path->search_commit_root = 1;
3990 path->skip_locking = 1;
3991 ret = btrfs_search_slot(NULL, rc->extent_root,
3992 &key, path, 0, 0);
3993 if (ret < 0) {
3994 err = ret;
3995 break;
3996 }
3997 BUG_ON(ret > 0);
3998 }
3999#else
4000 BUG();
4001#endif
4002 }
4003
4004 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4005 ret = add_tree_block(rc, &key, path, &blocks);
4006 } else if (rc->stage == UPDATE_DATA_PTRS &&
4007 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4008 ret = add_data_references(rc, &key, path, &blocks);
4009 } else {
4010 btrfs_release_path(path);
4011 ret = 0;
4012 }
4013 if (ret < 0) {
4014 err = ret;
4015 break;
4016 }
4017
4018 if (!RB_EMPTY_ROOT(&blocks)) {
4019 ret = relocate_tree_blocks(trans, rc, &blocks);
4020 if (ret < 0) {
4021 /*
4022 * if we fail to relocate tree blocks, force to update
4023 * backref cache when committing transaction.
4024 */
4025 rc->backref_cache.last_trans = trans->transid - 1;
4026
4027 if (ret != -EAGAIN) {
4028 err = ret;
4029 break;
4030 }
4031 rc->extents_found--;
4032 rc->search_start = key.objectid;
4033 }
4034 }
4035
4036 btrfs_end_transaction_throttle(trans, rc->extent_root);
4037 btrfs_btree_balance_dirty(rc->extent_root);
4038 trans = NULL;
4039
4040 if (rc->stage == MOVE_DATA_EXTENTS &&
4041 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4042 rc->found_file_extent = 1;
4043 ret = relocate_data_extent(rc->data_inode,
4044 &key, &rc->cluster);
4045 if (ret < 0) {
4046 err = ret;
4047 break;
4048 }
4049 }
4050 }
4051 if (trans && progress && err == -ENOSPC) {
4052 ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4053 rc->block_group->flags);
4054 if (ret == 1) {
4055 err = 0;
4056 progress = 0;
4057 goto restart;
4058 }
4059 }
4060
4061 btrfs_release_path(path);
4062 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4063 GFP_NOFS);
4064
4065 if (trans) {
4066 btrfs_end_transaction_throttle(trans, rc->extent_root);
4067 btrfs_btree_balance_dirty(rc->extent_root);
4068 }
4069
4070 if (!err) {
4071 ret = relocate_file_extent_cluster(rc->data_inode,
4072 &rc->cluster);
4073 if (ret < 0)
4074 err = ret;
4075 }
4076
4077 rc->create_reloc_tree = 0;
4078 set_reloc_control(rc);
4079
4080 backref_cache_cleanup(&rc->backref_cache);
4081 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4082
4083 err = prepare_to_merge(rc, err);
4084
4085 merge_reloc_roots(rc);
4086
4087 rc->merge_reloc_tree = 0;
4088 unset_reloc_control(rc);
4089 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4090
4091 /* get rid of pinned extents */
4092 trans = btrfs_join_transaction(rc->extent_root);
4093 if (IS_ERR(trans))
4094 err = PTR_ERR(trans);
4095 else
4096 btrfs_commit_transaction(trans, rc->extent_root);
4097out_free:
4098 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4099 btrfs_free_path(path);
4100 return err;
4101}
4102
4103static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4104 struct btrfs_root *root, u64 objectid)
4105{
4106 struct btrfs_path *path;
4107 struct btrfs_inode_item *item;
4108 struct extent_buffer *leaf;
4109 int ret;
4110
4111 path = btrfs_alloc_path();
4112 if (!path)
4113 return -ENOMEM;
4114
4115 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4116 if (ret)
4117 goto out;
4118
4119 leaf = path->nodes[0];
4120 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4121 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4122 btrfs_set_inode_generation(leaf, item, 1);
4123 btrfs_set_inode_size(leaf, item, 0);
4124 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4125 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4126 BTRFS_INODE_PREALLOC);
4127 btrfs_mark_buffer_dirty(leaf);
4128out:
4129 btrfs_free_path(path);
4130 return ret;
4131}
4132
4133/*
4134 * helper to create inode for data relocation.
4135 * the inode is in data relocation tree and its link count is 0
4136 */
4137static noinline_for_stack
4138struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4139 struct btrfs_block_group_cache *group)
4140{
4141 struct inode *inode = NULL;
4142 struct btrfs_trans_handle *trans;
4143 struct btrfs_root *root;
4144 struct btrfs_key key;
4145 u64 objectid;
4146 int err = 0;
4147
4148 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4149 if (IS_ERR(root))
4150 return ERR_CAST(root);
4151
4152 trans = btrfs_start_transaction(root, 6);
4153 if (IS_ERR(trans))
4154 return ERR_CAST(trans);
4155
4156 err = btrfs_find_free_objectid(root, &objectid);
4157 if (err)
4158 goto out;
4159
4160 err = __insert_orphan_inode(trans, root, objectid);
4161 BUG_ON(err);
4162
4163 key.objectid = objectid;
4164 key.type = BTRFS_INODE_ITEM_KEY;
4165 key.offset = 0;
4166 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4167 BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4168 BTRFS_I(inode)->index_cnt = group->key.objectid;
4169
4170 err = btrfs_orphan_add(trans, inode);
4171out:
4172 btrfs_end_transaction(trans, root);
4173 btrfs_btree_balance_dirty(root);
4174 if (err) {
4175 if (inode)
4176 iput(inode);
4177 inode = ERR_PTR(err);
4178 }
4179 return inode;
4180}
4181
4182static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4183{
4184 struct reloc_control *rc;
4185
4186 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4187 if (!rc)
4188 return NULL;
4189
4190 INIT_LIST_HEAD(&rc->reloc_roots);
4191 backref_cache_init(&rc->backref_cache);
4192 mapping_tree_init(&rc->reloc_root_tree);
4193 extent_io_tree_init(&rc->processed_blocks,
4194 fs_info->btree_inode->i_mapping);
4195 return rc;
4196}
4197
4198/*
4199 * function to relocate all extents in a block group.
4200 */
4201int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4202{
4203 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4204 struct reloc_control *rc;
4205 struct inode *inode;
4206 struct btrfs_path *path;
4207 int ret;
4208 int rw = 0;
4209 int err = 0;
4210
4211 rc = alloc_reloc_control(fs_info);
4212 if (!rc)
4213 return -ENOMEM;
4214
4215 rc->extent_root = extent_root;
4216
4217 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4218 BUG_ON(!rc->block_group);
4219
4220 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4221 if (ret) {
4222 err = ret;
4223 goto out;
4224 }
4225 rw = 1;
4226
4227 path = btrfs_alloc_path();
4228 if (!path) {
4229 err = -ENOMEM;
4230 goto out;
4231 }
4232
4233 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4234 path);
4235 btrfs_free_path(path);
4236
4237 if (!IS_ERR(inode))
4238 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4239 else
4240 ret = PTR_ERR(inode);
4241
4242 if (ret && ret != -ENOENT) {
4243 err = ret;
4244 goto out;
4245 }
4246
4247 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4248 if (IS_ERR(rc->data_inode)) {
4249 err = PTR_ERR(rc->data_inode);
4250 rc->data_inode = NULL;
4251 goto out;
4252 }
4253
4254 btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4255 rc->block_group->key.objectid, rc->block_group->flags);
4256
4257 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4258 if (ret < 0) {
4259 err = ret;
4260 goto out;
4261 }
4262 btrfs_wait_ordered_roots(fs_info, -1);
4263
4264 while (1) {
4265 mutex_lock(&fs_info->cleaner_mutex);
4266 ret = relocate_block_group(rc);
4267 mutex_unlock(&fs_info->cleaner_mutex);
4268 if (ret < 0) {
4269 err = ret;
4270 goto out;
4271 }
4272
4273 if (rc->extents_found == 0)
4274 break;
4275
4276 btrfs_info(extent_root->fs_info, "found %llu extents",
4277 rc->extents_found);
4278
4279 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4280 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4281 (u64)-1);
4282 if (ret) {
4283 err = ret;
4284 goto out;
4285 }
4286 invalidate_mapping_pages(rc->data_inode->i_mapping,
4287 0, -1);
4288 rc->stage = UPDATE_DATA_PTRS;
4289 }
4290 }
4291
4292 WARN_ON(rc->block_group->pinned > 0);
4293 WARN_ON(rc->block_group->reserved > 0);
4294 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4295out:
4296 if (err && rw)
4297 btrfs_dec_block_group_ro(extent_root, rc->block_group);
4298 iput(rc->data_inode);
4299 btrfs_put_block_group(rc->block_group);
4300 kfree(rc);
4301 return err;
4302}
4303
4304static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4305{
4306 struct btrfs_trans_handle *trans;
4307 int ret, err;
4308
4309 trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4310 if (IS_ERR(trans))
4311 return PTR_ERR(trans);
4312
4313 memset(&root->root_item.drop_progress, 0,
4314 sizeof(root->root_item.drop_progress));
4315 root->root_item.drop_level = 0;
4316 btrfs_set_root_refs(&root->root_item, 0);
4317 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4318 &root->root_key, &root->root_item);
4319
4320 err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4321 if (err)
4322 return err;
4323 return ret;
4324}
4325
4326/*
4327 * recover relocation interrupted by system crash.
4328 *
4329 * this function resumes merging reloc trees with corresponding fs trees.
4330 * this is important for keeping the sharing of tree blocks
4331 */
4332int btrfs_recover_relocation(struct btrfs_root *root)
4333{
4334 LIST_HEAD(reloc_roots);
4335 struct btrfs_key key;
4336 struct btrfs_root *fs_root;
4337 struct btrfs_root *reloc_root;
4338 struct btrfs_path *path;
4339 struct extent_buffer *leaf;
4340 struct reloc_control *rc = NULL;
4341 struct btrfs_trans_handle *trans;
4342 int ret;
4343 int err = 0;
4344
4345 path = btrfs_alloc_path();
4346 if (!path)
4347 return -ENOMEM;
4348 path->reada = READA_BACK;
4349
4350 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4351 key.type = BTRFS_ROOT_ITEM_KEY;
4352 key.offset = (u64)-1;
4353
4354 while (1) {
4355 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4356 path, 0, 0);
4357 if (ret < 0) {
4358 err = ret;
4359 goto out;
4360 }
4361 if (ret > 0) {
4362 if (path->slots[0] == 0)
4363 break;
4364 path->slots[0]--;
4365 }
4366 leaf = path->nodes[0];
4367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4368 btrfs_release_path(path);
4369
4370 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4371 key.type != BTRFS_ROOT_ITEM_KEY)
4372 break;
4373
4374 reloc_root = btrfs_read_fs_root(root, &key);
4375 if (IS_ERR(reloc_root)) {
4376 err = PTR_ERR(reloc_root);
4377 goto out;
4378 }
4379
4380 list_add(&reloc_root->root_list, &reloc_roots);
4381
4382 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4383 fs_root = read_fs_root(root->fs_info,
4384 reloc_root->root_key.offset);
4385 if (IS_ERR(fs_root)) {
4386 ret = PTR_ERR(fs_root);
4387 if (ret != -ENOENT) {
4388 err = ret;
4389 goto out;
4390 }
4391 ret = mark_garbage_root(reloc_root);
4392 if (ret < 0) {
4393 err = ret;
4394 goto out;
4395 }
4396 }
4397 }
4398
4399 if (key.offset == 0)
4400 break;
4401
4402 key.offset--;
4403 }
4404 btrfs_release_path(path);
4405
4406 if (list_empty(&reloc_roots))
4407 goto out;
4408
4409 rc = alloc_reloc_control(root->fs_info);
4410 if (!rc) {
4411 err = -ENOMEM;
4412 goto out;
4413 }
4414
4415 rc->extent_root = root->fs_info->extent_root;
4416
4417 set_reloc_control(rc);
4418
4419 trans = btrfs_join_transaction(rc->extent_root);
4420 if (IS_ERR(trans)) {
4421 unset_reloc_control(rc);
4422 err = PTR_ERR(trans);
4423 goto out_free;
4424 }
4425
4426 rc->merge_reloc_tree = 1;
4427
4428 while (!list_empty(&reloc_roots)) {
4429 reloc_root = list_entry(reloc_roots.next,
4430 struct btrfs_root, root_list);
4431 list_del(&reloc_root->root_list);
4432
4433 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4434 list_add_tail(&reloc_root->root_list,
4435 &rc->reloc_roots);
4436 continue;
4437 }
4438
4439 fs_root = read_fs_root(root->fs_info,
4440 reloc_root->root_key.offset);
4441 if (IS_ERR(fs_root)) {
4442 err = PTR_ERR(fs_root);
4443 goto out_free;
4444 }
4445
4446 err = __add_reloc_root(reloc_root);
4447 BUG_ON(err < 0); /* -ENOMEM or logic error */
4448 fs_root->reloc_root = reloc_root;
4449 }
4450
4451 err = btrfs_commit_transaction(trans, rc->extent_root);
4452 if (err)
4453 goto out_free;
4454
4455 merge_reloc_roots(rc);
4456
4457 unset_reloc_control(rc);
4458
4459 trans = btrfs_join_transaction(rc->extent_root);
4460 if (IS_ERR(trans))
4461 err = PTR_ERR(trans);
4462 else
4463 err = btrfs_commit_transaction(trans, rc->extent_root);
4464out_free:
4465 kfree(rc);
4466out:
4467 if (!list_empty(&reloc_roots))
4468 free_reloc_roots(&reloc_roots);
4469
4470 btrfs_free_path(path);
4471
4472 if (err == 0) {
4473 /* cleanup orphan inode in data relocation tree */
4474 fs_root = read_fs_root(root->fs_info,
4475 BTRFS_DATA_RELOC_TREE_OBJECTID);
4476 if (IS_ERR(fs_root))
4477 err = PTR_ERR(fs_root);
4478 else
4479 err = btrfs_orphan_cleanup(fs_root);
4480 }
4481 return err;
4482}
4483
4484/*
4485 * helper to add ordered checksum for data relocation.
4486 *
4487 * cloning checksum properly handles the nodatasum extents.
4488 * it also saves CPU time to re-calculate the checksum.
4489 */
4490int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4491{
4492 struct btrfs_ordered_sum *sums;
4493 struct btrfs_ordered_extent *ordered;
4494 struct btrfs_root *root = BTRFS_I(inode)->root;
4495 int ret;
4496 u64 disk_bytenr;
4497 u64 new_bytenr;
4498 LIST_HEAD(list);
4499
4500 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4501 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4502
4503 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4504 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4505 disk_bytenr + len - 1, &list, 0);
4506 if (ret)
4507 goto out;
4508
4509 while (!list_empty(&list)) {
4510 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4511 list_del_init(&sums->list);
4512
4513 /*
4514 * We need to offset the new_bytenr based on where the csum is.
4515 * We need to do this because we will read in entire prealloc
4516 * extents but we may have written to say the middle of the
4517 * prealloc extent, so we need to make sure the csum goes with
4518 * the right disk offset.
4519 *
4520 * We can do this because the data reloc inode refers strictly
4521 * to the on disk bytes, so we don't have to worry about
4522 * disk_len vs real len like with real inodes since it's all
4523 * disk length.
4524 */
4525 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4526 sums->bytenr = new_bytenr;
4527
4528 btrfs_add_ordered_sum(inode, ordered, sums);
4529 }
4530out:
4531 btrfs_put_ordered_extent(ordered);
4532 return ret;
4533}
4534
4535int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4536 struct btrfs_root *root, struct extent_buffer *buf,
4537 struct extent_buffer *cow)
4538{
4539 struct reloc_control *rc;
4540 struct backref_node *node;
4541 int first_cow = 0;
4542 int level;
4543 int ret = 0;
4544
4545 rc = root->fs_info->reloc_ctl;
4546 if (!rc)
4547 return 0;
4548
4549 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4550 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4551
4552 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4553 if (buf == root->node)
4554 __update_reloc_root(root, cow->start);
4555 }
4556
4557 level = btrfs_header_level(buf);
4558 if (btrfs_header_generation(buf) <=
4559 btrfs_root_last_snapshot(&root->root_item))
4560 first_cow = 1;
4561
4562 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4563 rc->create_reloc_tree) {
4564 WARN_ON(!first_cow && level == 0);
4565
4566 node = rc->backref_cache.path[level];
4567 BUG_ON(node->bytenr != buf->start &&
4568 node->new_bytenr != buf->start);
4569
4570 drop_node_buffer(node);
4571 extent_buffer_get(cow);
4572 node->eb = cow;
4573 node->new_bytenr = cow->start;
4574
4575 if (!node->pending) {
4576 list_move_tail(&node->list,
4577 &rc->backref_cache.pending[level]);
4578 node->pending = 1;
4579 }
4580
4581 if (first_cow)
4582 __mark_block_processed(rc, node);
4583
4584 if (first_cow && level > 0)
4585 rc->nodes_relocated += buf->len;
4586 }
4587
4588 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4589 ret = replace_file_extents(trans, rc, root, cow);
4590 return ret;
4591}
4592
4593/*
4594 * called before creating snapshot. it calculates metadata reservation
4595 * requried for relocating tree blocks in the snapshot
4596 */
4597void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4598 u64 *bytes_to_reserve)
4599{
4600 struct btrfs_root *root;
4601 struct reloc_control *rc;
4602
4603 root = pending->root;
4604 if (!root->reloc_root)
4605 return;
4606
4607 rc = root->fs_info->reloc_ctl;
4608 if (!rc->merge_reloc_tree)
4609 return;
4610
4611 root = root->reloc_root;
4612 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4613 /*
4614 * relocation is in the stage of merging trees. the space
4615 * used by merging a reloc tree is twice the size of
4616 * relocated tree nodes in the worst case. half for cowing
4617 * the reloc tree, half for cowing the fs tree. the space
4618 * used by cowing the reloc tree will be freed after the
4619 * tree is dropped. if we create snapshot, cowing the fs
4620 * tree may use more space than it frees. so we need
4621 * reserve extra space.
4622 */
4623 *bytes_to_reserve += rc->nodes_relocated;
4624}
4625
4626/*
4627 * called after snapshot is created. migrate block reservation
4628 * and create reloc root for the newly created snapshot
4629 */
4630int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4631 struct btrfs_pending_snapshot *pending)
4632{
4633 struct btrfs_root *root = pending->root;
4634 struct btrfs_root *reloc_root;
4635 struct btrfs_root *new_root;
4636 struct reloc_control *rc;
4637 int ret;
4638
4639 if (!root->reloc_root)
4640 return 0;
4641
4642 rc = root->fs_info->reloc_ctl;
4643 rc->merging_rsv_size += rc->nodes_relocated;
4644
4645 if (rc->merge_reloc_tree) {
4646 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4647 rc->block_rsv,
4648 rc->nodes_relocated);
4649 if (ret)
4650 return ret;
4651 }
4652
4653 new_root = pending->snap;
4654 reloc_root = create_reloc_root(trans, root->reloc_root,
4655 new_root->root_key.objectid);
4656 if (IS_ERR(reloc_root))
4657 return PTR_ERR(reloc_root);
4658
4659 ret = __add_reloc_root(reloc_root);
4660 BUG_ON(ret < 0);
4661 new_root->reloc_root = reloc_root;
4662
4663 if (rc->create_reloc_tree)
4664 ret = clone_backref_node(trans, rc, root, reloc_root);
4665 return ret;
4666}
1/*
2 * Copyright (C) 2009 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/pagemap.h>
21#include <linux/writeback.h>
22#include <linux/blkdev.h>
23#include <linux/rbtree.h>
24#include <linux/slab.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "volumes.h"
29#include "locking.h"
30#include "btrfs_inode.h"
31#include "async-thread.h"
32#include "free-space-cache.h"
33#include "inode-map.h"
34#include "qgroup.h"
35
36/*
37 * backref_node, mapping_node and tree_block start with this
38 */
39struct tree_entry {
40 struct rb_node rb_node;
41 u64 bytenr;
42};
43
44/*
45 * present a tree block in the backref cache
46 */
47struct backref_node {
48 struct rb_node rb_node;
49 u64 bytenr;
50
51 u64 new_bytenr;
52 /* objectid of tree block owner, can be not uptodate */
53 u64 owner;
54 /* link to pending, changed or detached list */
55 struct list_head list;
56 /* list of upper level blocks reference this block */
57 struct list_head upper;
58 /* list of child blocks in the cache */
59 struct list_head lower;
60 /* NULL if this node is not tree root */
61 struct btrfs_root *root;
62 /* extent buffer got by COW the block */
63 struct extent_buffer *eb;
64 /* level of tree block */
65 unsigned int level:8;
66 /* is the block in non-reference counted tree */
67 unsigned int cowonly:1;
68 /* 1 if no child node in the cache */
69 unsigned int lowest:1;
70 /* is the extent buffer locked */
71 unsigned int locked:1;
72 /* has the block been processed */
73 unsigned int processed:1;
74 /* have backrefs of this block been checked */
75 unsigned int checked:1;
76 /*
77 * 1 if corresponding block has been cowed but some upper
78 * level block pointers may not point to the new location
79 */
80 unsigned int pending:1;
81 /*
82 * 1 if the backref node isn't connected to any other
83 * backref node.
84 */
85 unsigned int detached:1;
86};
87
88/*
89 * present a block pointer in the backref cache
90 */
91struct backref_edge {
92 struct list_head list[2];
93 struct backref_node *node[2];
94};
95
96#define LOWER 0
97#define UPPER 1
98#define RELOCATION_RESERVED_NODES 256
99
100struct backref_cache {
101 /* red black tree of all backref nodes in the cache */
102 struct rb_root rb_root;
103 /* for passing backref nodes to btrfs_reloc_cow_block */
104 struct backref_node *path[BTRFS_MAX_LEVEL];
105 /*
106 * list of blocks that have been cowed but some block
107 * pointers in upper level blocks may not reflect the
108 * new location
109 */
110 struct list_head pending[BTRFS_MAX_LEVEL];
111 /* list of backref nodes with no child node */
112 struct list_head leaves;
113 /* list of blocks that have been cowed in current transaction */
114 struct list_head changed;
115 /* list of detached backref node. */
116 struct list_head detached;
117
118 u64 last_trans;
119
120 int nr_nodes;
121 int nr_edges;
122};
123
124/*
125 * map address of tree root to tree
126 */
127struct mapping_node {
128 struct rb_node rb_node;
129 u64 bytenr;
130 void *data;
131};
132
133struct mapping_tree {
134 struct rb_root rb_root;
135 spinlock_t lock;
136};
137
138/*
139 * present a tree block to process
140 */
141struct tree_block {
142 struct rb_node rb_node;
143 u64 bytenr;
144 struct btrfs_key key;
145 unsigned int level:8;
146 unsigned int key_ready:1;
147};
148
149#define MAX_EXTENTS 128
150
151struct file_extent_cluster {
152 u64 start;
153 u64 end;
154 u64 boundary[MAX_EXTENTS];
155 unsigned int nr;
156};
157
158struct reloc_control {
159 /* block group to relocate */
160 struct btrfs_block_group_cache *block_group;
161 /* extent tree */
162 struct btrfs_root *extent_root;
163 /* inode for moving data */
164 struct inode *data_inode;
165
166 struct btrfs_block_rsv *block_rsv;
167
168 struct backref_cache backref_cache;
169
170 struct file_extent_cluster cluster;
171 /* tree blocks have been processed */
172 struct extent_io_tree processed_blocks;
173 /* map start of tree root to corresponding reloc tree */
174 struct mapping_tree reloc_root_tree;
175 /* list of reloc trees */
176 struct list_head reloc_roots;
177 /* size of metadata reservation for merging reloc trees */
178 u64 merging_rsv_size;
179 /* size of relocated tree nodes */
180 u64 nodes_relocated;
181 /* reserved size for block group relocation*/
182 u64 reserved_bytes;
183
184 u64 search_start;
185 u64 extents_found;
186
187 unsigned int stage:8;
188 unsigned int create_reloc_tree:1;
189 unsigned int merge_reloc_tree:1;
190 unsigned int found_file_extent:1;
191};
192
193/* stages of data relocation */
194#define MOVE_DATA_EXTENTS 0
195#define UPDATE_DATA_PTRS 1
196
197static void remove_backref_node(struct backref_cache *cache,
198 struct backref_node *node);
199static void __mark_block_processed(struct reloc_control *rc,
200 struct backref_node *node);
201
202static void mapping_tree_init(struct mapping_tree *tree)
203{
204 tree->rb_root = RB_ROOT;
205 spin_lock_init(&tree->lock);
206}
207
208static void backref_cache_init(struct backref_cache *cache)
209{
210 int i;
211 cache->rb_root = RB_ROOT;
212 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
213 INIT_LIST_HEAD(&cache->pending[i]);
214 INIT_LIST_HEAD(&cache->changed);
215 INIT_LIST_HEAD(&cache->detached);
216 INIT_LIST_HEAD(&cache->leaves);
217}
218
219static void backref_cache_cleanup(struct backref_cache *cache)
220{
221 struct backref_node *node;
222 int i;
223
224 while (!list_empty(&cache->detached)) {
225 node = list_entry(cache->detached.next,
226 struct backref_node, list);
227 remove_backref_node(cache, node);
228 }
229
230 while (!list_empty(&cache->leaves)) {
231 node = list_entry(cache->leaves.next,
232 struct backref_node, lower);
233 remove_backref_node(cache, node);
234 }
235
236 cache->last_trans = 0;
237
238 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
239 ASSERT(list_empty(&cache->pending[i]));
240 ASSERT(list_empty(&cache->changed));
241 ASSERT(list_empty(&cache->detached));
242 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
243 ASSERT(!cache->nr_nodes);
244 ASSERT(!cache->nr_edges);
245}
246
247static struct backref_node *alloc_backref_node(struct backref_cache *cache)
248{
249 struct backref_node *node;
250
251 node = kzalloc(sizeof(*node), GFP_NOFS);
252 if (node) {
253 INIT_LIST_HEAD(&node->list);
254 INIT_LIST_HEAD(&node->upper);
255 INIT_LIST_HEAD(&node->lower);
256 RB_CLEAR_NODE(&node->rb_node);
257 cache->nr_nodes++;
258 }
259 return node;
260}
261
262static void free_backref_node(struct backref_cache *cache,
263 struct backref_node *node)
264{
265 if (node) {
266 cache->nr_nodes--;
267 kfree(node);
268 }
269}
270
271static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
272{
273 struct backref_edge *edge;
274
275 edge = kzalloc(sizeof(*edge), GFP_NOFS);
276 if (edge)
277 cache->nr_edges++;
278 return edge;
279}
280
281static void free_backref_edge(struct backref_cache *cache,
282 struct backref_edge *edge)
283{
284 if (edge) {
285 cache->nr_edges--;
286 kfree(edge);
287 }
288}
289
290static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
291 struct rb_node *node)
292{
293 struct rb_node **p = &root->rb_node;
294 struct rb_node *parent = NULL;
295 struct tree_entry *entry;
296
297 while (*p) {
298 parent = *p;
299 entry = rb_entry(parent, struct tree_entry, rb_node);
300
301 if (bytenr < entry->bytenr)
302 p = &(*p)->rb_left;
303 else if (bytenr > entry->bytenr)
304 p = &(*p)->rb_right;
305 else
306 return parent;
307 }
308
309 rb_link_node(node, parent, p);
310 rb_insert_color(node, root);
311 return NULL;
312}
313
314static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
315{
316 struct rb_node *n = root->rb_node;
317 struct tree_entry *entry;
318
319 while (n) {
320 entry = rb_entry(n, struct tree_entry, rb_node);
321
322 if (bytenr < entry->bytenr)
323 n = n->rb_left;
324 else if (bytenr > entry->bytenr)
325 n = n->rb_right;
326 else
327 return n;
328 }
329 return NULL;
330}
331
332static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
333{
334
335 struct btrfs_fs_info *fs_info = NULL;
336 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
337 rb_node);
338 if (bnode->root)
339 fs_info = bnode->root->fs_info;
340 btrfs_panic(fs_info, errno,
341 "Inconsistency in backref cache found at offset %llu",
342 bytenr);
343}
344
345/*
346 * walk up backref nodes until reach node presents tree root
347 */
348static struct backref_node *walk_up_backref(struct backref_node *node,
349 struct backref_edge *edges[],
350 int *index)
351{
352 struct backref_edge *edge;
353 int idx = *index;
354
355 while (!list_empty(&node->upper)) {
356 edge = list_entry(node->upper.next,
357 struct backref_edge, list[LOWER]);
358 edges[idx++] = edge;
359 node = edge->node[UPPER];
360 }
361 BUG_ON(node->detached);
362 *index = idx;
363 return node;
364}
365
366/*
367 * walk down backref nodes to find start of next reference path
368 */
369static struct backref_node *walk_down_backref(struct backref_edge *edges[],
370 int *index)
371{
372 struct backref_edge *edge;
373 struct backref_node *lower;
374 int idx = *index;
375
376 while (idx > 0) {
377 edge = edges[idx - 1];
378 lower = edge->node[LOWER];
379 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
380 idx--;
381 continue;
382 }
383 edge = list_entry(edge->list[LOWER].next,
384 struct backref_edge, list[LOWER]);
385 edges[idx - 1] = edge;
386 *index = idx;
387 return edge->node[UPPER];
388 }
389 *index = 0;
390 return NULL;
391}
392
393static void unlock_node_buffer(struct backref_node *node)
394{
395 if (node->locked) {
396 btrfs_tree_unlock(node->eb);
397 node->locked = 0;
398 }
399}
400
401static void drop_node_buffer(struct backref_node *node)
402{
403 if (node->eb) {
404 unlock_node_buffer(node);
405 free_extent_buffer(node->eb);
406 node->eb = NULL;
407 }
408}
409
410static void drop_backref_node(struct backref_cache *tree,
411 struct backref_node *node)
412{
413 BUG_ON(!list_empty(&node->upper));
414
415 drop_node_buffer(node);
416 list_del(&node->list);
417 list_del(&node->lower);
418 if (!RB_EMPTY_NODE(&node->rb_node))
419 rb_erase(&node->rb_node, &tree->rb_root);
420 free_backref_node(tree, node);
421}
422
423/*
424 * remove a backref node from the backref cache
425 */
426static void remove_backref_node(struct backref_cache *cache,
427 struct backref_node *node)
428{
429 struct backref_node *upper;
430 struct backref_edge *edge;
431
432 if (!node)
433 return;
434
435 BUG_ON(!node->lowest && !node->detached);
436 while (!list_empty(&node->upper)) {
437 edge = list_entry(node->upper.next, struct backref_edge,
438 list[LOWER]);
439 upper = edge->node[UPPER];
440 list_del(&edge->list[LOWER]);
441 list_del(&edge->list[UPPER]);
442 free_backref_edge(cache, edge);
443
444 if (RB_EMPTY_NODE(&upper->rb_node)) {
445 BUG_ON(!list_empty(&node->upper));
446 drop_backref_node(cache, node);
447 node = upper;
448 node->lowest = 1;
449 continue;
450 }
451 /*
452 * add the node to leaf node list if no other
453 * child block cached.
454 */
455 if (list_empty(&upper->lower)) {
456 list_add_tail(&upper->lower, &cache->leaves);
457 upper->lowest = 1;
458 }
459 }
460
461 drop_backref_node(cache, node);
462}
463
464static void update_backref_node(struct backref_cache *cache,
465 struct backref_node *node, u64 bytenr)
466{
467 struct rb_node *rb_node;
468 rb_erase(&node->rb_node, &cache->rb_root);
469 node->bytenr = bytenr;
470 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
471 if (rb_node)
472 backref_tree_panic(rb_node, -EEXIST, bytenr);
473}
474
475/*
476 * update backref cache after a transaction commit
477 */
478static int update_backref_cache(struct btrfs_trans_handle *trans,
479 struct backref_cache *cache)
480{
481 struct backref_node *node;
482 int level = 0;
483
484 if (cache->last_trans == 0) {
485 cache->last_trans = trans->transid;
486 return 0;
487 }
488
489 if (cache->last_trans == trans->transid)
490 return 0;
491
492 /*
493 * detached nodes are used to avoid unnecessary backref
494 * lookup. transaction commit changes the extent tree.
495 * so the detached nodes are no longer useful.
496 */
497 while (!list_empty(&cache->detached)) {
498 node = list_entry(cache->detached.next,
499 struct backref_node, list);
500 remove_backref_node(cache, node);
501 }
502
503 while (!list_empty(&cache->changed)) {
504 node = list_entry(cache->changed.next,
505 struct backref_node, list);
506 list_del_init(&node->list);
507 BUG_ON(node->pending);
508 update_backref_node(cache, node, node->new_bytenr);
509 }
510
511 /*
512 * some nodes can be left in the pending list if there were
513 * errors during processing the pending nodes.
514 */
515 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
516 list_for_each_entry(node, &cache->pending[level], list) {
517 BUG_ON(!node->pending);
518 if (node->bytenr == node->new_bytenr)
519 continue;
520 update_backref_node(cache, node, node->new_bytenr);
521 }
522 }
523
524 cache->last_trans = 0;
525 return 1;
526}
527
528
529static int should_ignore_root(struct btrfs_root *root)
530{
531 struct btrfs_root *reloc_root;
532
533 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
534 return 0;
535
536 reloc_root = root->reloc_root;
537 if (!reloc_root)
538 return 0;
539
540 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
541 root->fs_info->running_transaction->transid - 1)
542 return 0;
543 /*
544 * if there is reloc tree and it was created in previous
545 * transaction backref lookup can find the reloc tree,
546 * so backref node for the fs tree root is useless for
547 * relocation.
548 */
549 return 1;
550}
551/*
552 * find reloc tree by address of tree root
553 */
554static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
555 u64 bytenr)
556{
557 struct rb_node *rb_node;
558 struct mapping_node *node;
559 struct btrfs_root *root = NULL;
560
561 spin_lock(&rc->reloc_root_tree.lock);
562 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct mapping_node, rb_node);
565 root = (struct btrfs_root *)node->data;
566 }
567 spin_unlock(&rc->reloc_root_tree.lock);
568 return root;
569}
570
571static int is_cowonly_root(u64 root_objectid)
572{
573 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
574 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
575 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
576 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
577 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
578 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
579 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
580 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
581 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
582 return 1;
583 return 0;
584}
585
586static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
587 u64 root_objectid)
588{
589 struct btrfs_key key;
590
591 key.objectid = root_objectid;
592 key.type = BTRFS_ROOT_ITEM_KEY;
593 if (is_cowonly_root(root_objectid))
594 key.offset = 0;
595 else
596 key.offset = (u64)-1;
597
598 return btrfs_get_fs_root(fs_info, &key, false);
599}
600
601#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
602static noinline_for_stack
603struct btrfs_root *find_tree_root(struct reloc_control *rc,
604 struct extent_buffer *leaf,
605 struct btrfs_extent_ref_v0 *ref0)
606{
607 struct btrfs_root *root;
608 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
609 u64 generation = btrfs_ref_generation_v0(leaf, ref0);
610
611 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
612
613 root = read_fs_root(rc->extent_root->fs_info, root_objectid);
614 BUG_ON(IS_ERR(root));
615
616 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
617 generation != btrfs_root_generation(&root->root_item))
618 return NULL;
619
620 return root;
621}
622#endif
623
624static noinline_for_stack
625int find_inline_backref(struct extent_buffer *leaf, int slot,
626 unsigned long *ptr, unsigned long *end)
627{
628 struct btrfs_key key;
629 struct btrfs_extent_item *ei;
630 struct btrfs_tree_block_info *bi;
631 u32 item_size;
632
633 btrfs_item_key_to_cpu(leaf, &key, slot);
634
635 item_size = btrfs_item_size_nr(leaf, slot);
636#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
637 if (item_size < sizeof(*ei)) {
638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
639 return 1;
640 }
641#endif
642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
643 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
644 BTRFS_EXTENT_FLAG_TREE_BLOCK));
645
646 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
647 item_size <= sizeof(*ei) + sizeof(*bi)) {
648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
649 return 1;
650 }
651 if (key.type == BTRFS_METADATA_ITEM_KEY &&
652 item_size <= sizeof(*ei)) {
653 WARN_ON(item_size < sizeof(*ei));
654 return 1;
655 }
656
657 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
658 bi = (struct btrfs_tree_block_info *)(ei + 1);
659 *ptr = (unsigned long)(bi + 1);
660 } else {
661 *ptr = (unsigned long)(ei + 1);
662 }
663 *end = (unsigned long)ei + item_size;
664 return 0;
665}
666
667/*
668 * build backref tree for a given tree block. root of the backref tree
669 * corresponds the tree block, leaves of the backref tree correspond
670 * roots of b-trees that reference the tree block.
671 *
672 * the basic idea of this function is check backrefs of a given block
673 * to find upper level blocks that reference the block, and then check
674 * backrefs of these upper level blocks recursively. the recursion stop
675 * when tree root is reached or backrefs for the block is cached.
676 *
677 * NOTE: if we find backrefs for a block are cached, we know backrefs
678 * for all upper level blocks that directly/indirectly reference the
679 * block are also cached.
680 */
681static noinline_for_stack
682struct backref_node *build_backref_tree(struct reloc_control *rc,
683 struct btrfs_key *node_key,
684 int level, u64 bytenr)
685{
686 struct backref_cache *cache = &rc->backref_cache;
687 struct btrfs_path *path1;
688 struct btrfs_path *path2;
689 struct extent_buffer *eb;
690 struct btrfs_root *root;
691 struct backref_node *cur;
692 struct backref_node *upper;
693 struct backref_node *lower;
694 struct backref_node *node = NULL;
695 struct backref_node *exist = NULL;
696 struct backref_edge *edge;
697 struct rb_node *rb_node;
698 struct btrfs_key key;
699 unsigned long end;
700 unsigned long ptr;
701 LIST_HEAD(list);
702 LIST_HEAD(useless);
703 int cowonly;
704 int ret;
705 int err = 0;
706 bool need_check = true;
707
708 path1 = btrfs_alloc_path();
709 path2 = btrfs_alloc_path();
710 if (!path1 || !path2) {
711 err = -ENOMEM;
712 goto out;
713 }
714 path1->reada = READA_FORWARD;
715 path2->reada = READA_FORWARD;
716
717 node = alloc_backref_node(cache);
718 if (!node) {
719 err = -ENOMEM;
720 goto out;
721 }
722
723 node->bytenr = bytenr;
724 node->level = level;
725 node->lowest = 1;
726 cur = node;
727again:
728 end = 0;
729 ptr = 0;
730 key.objectid = cur->bytenr;
731 key.type = BTRFS_METADATA_ITEM_KEY;
732 key.offset = (u64)-1;
733
734 path1->search_commit_root = 1;
735 path1->skip_locking = 1;
736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
737 0, 0);
738 if (ret < 0) {
739 err = ret;
740 goto out;
741 }
742 ASSERT(ret);
743 ASSERT(path1->slots[0]);
744
745 path1->slots[0]--;
746
747 WARN_ON(cur->checked);
748 if (!list_empty(&cur->upper)) {
749 /*
750 * the backref was added previously when processing
751 * backref of type BTRFS_TREE_BLOCK_REF_KEY
752 */
753 ASSERT(list_is_singular(&cur->upper));
754 edge = list_entry(cur->upper.next, struct backref_edge,
755 list[LOWER]);
756 ASSERT(list_empty(&edge->list[UPPER]));
757 exist = edge->node[UPPER];
758 /*
759 * add the upper level block to pending list if we need
760 * check its backrefs
761 */
762 if (!exist->checked)
763 list_add_tail(&edge->list[UPPER], &list);
764 } else {
765 exist = NULL;
766 }
767
768 while (1) {
769 cond_resched();
770 eb = path1->nodes[0];
771
772 if (ptr >= end) {
773 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
774 ret = btrfs_next_leaf(rc->extent_root, path1);
775 if (ret < 0) {
776 err = ret;
777 goto out;
778 }
779 if (ret > 0)
780 break;
781 eb = path1->nodes[0];
782 }
783
784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
785 if (key.objectid != cur->bytenr) {
786 WARN_ON(exist);
787 break;
788 }
789
790 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
791 key.type == BTRFS_METADATA_ITEM_KEY) {
792 ret = find_inline_backref(eb, path1->slots[0],
793 &ptr, &end);
794 if (ret)
795 goto next;
796 }
797 }
798
799 if (ptr < end) {
800 /* update key for inline back ref */
801 struct btrfs_extent_inline_ref *iref;
802 iref = (struct btrfs_extent_inline_ref *)ptr;
803 key.type = btrfs_extent_inline_ref_type(eb, iref);
804 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
805 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
806 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
807 }
808
809 if (exist &&
810 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
811 exist->owner == key.offset) ||
812 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
813 exist->bytenr == key.offset))) {
814 exist = NULL;
815 goto next;
816 }
817
818#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
820 key.type == BTRFS_EXTENT_REF_V0_KEY) {
821 if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
822 struct btrfs_extent_ref_v0 *ref0;
823 ref0 = btrfs_item_ptr(eb, path1->slots[0],
824 struct btrfs_extent_ref_v0);
825 if (key.objectid == key.offset) {
826 root = find_tree_root(rc, eb, ref0);
827 if (root && !should_ignore_root(root))
828 cur->root = root;
829 else
830 list_add(&cur->list, &useless);
831 break;
832 }
833 if (is_cowonly_root(btrfs_ref_root_v0(eb,
834 ref0)))
835 cur->cowonly = 1;
836 }
837#else
838 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
839 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
840#endif
841 if (key.objectid == key.offset) {
842 /*
843 * only root blocks of reloc trees use
844 * backref of this type.
845 */
846 root = find_reloc_root(rc, cur->bytenr);
847 ASSERT(root);
848 cur->root = root;
849 break;
850 }
851
852 edge = alloc_backref_edge(cache);
853 if (!edge) {
854 err = -ENOMEM;
855 goto out;
856 }
857 rb_node = tree_search(&cache->rb_root, key.offset);
858 if (!rb_node) {
859 upper = alloc_backref_node(cache);
860 if (!upper) {
861 free_backref_edge(cache, edge);
862 err = -ENOMEM;
863 goto out;
864 }
865 upper->bytenr = key.offset;
866 upper->level = cur->level + 1;
867 /*
868 * backrefs for the upper level block isn't
869 * cached, add the block to pending list
870 */
871 list_add_tail(&edge->list[UPPER], &list);
872 } else {
873 upper = rb_entry(rb_node, struct backref_node,
874 rb_node);
875 ASSERT(upper->checked);
876 INIT_LIST_HEAD(&edge->list[UPPER]);
877 }
878 list_add_tail(&edge->list[LOWER], &cur->upper);
879 edge->node[LOWER] = cur;
880 edge->node[UPPER] = upper;
881
882 goto next;
883 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
884 goto next;
885 }
886
887 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
888 root = read_fs_root(rc->extent_root->fs_info, key.offset);
889 if (IS_ERR(root)) {
890 err = PTR_ERR(root);
891 goto out;
892 }
893
894 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
895 cur->cowonly = 1;
896
897 if (btrfs_root_level(&root->root_item) == cur->level) {
898 /* tree root */
899 ASSERT(btrfs_root_bytenr(&root->root_item) ==
900 cur->bytenr);
901 if (should_ignore_root(root))
902 list_add(&cur->list, &useless);
903 else
904 cur->root = root;
905 break;
906 }
907
908 level = cur->level + 1;
909
910 /*
911 * searching the tree to find upper level blocks
912 * reference the block.
913 */
914 path2->search_commit_root = 1;
915 path2->skip_locking = 1;
916 path2->lowest_level = level;
917 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
918 path2->lowest_level = 0;
919 if (ret < 0) {
920 err = ret;
921 goto out;
922 }
923 if (ret > 0 && path2->slots[level] > 0)
924 path2->slots[level]--;
925
926 eb = path2->nodes[level];
927 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
928 cur->bytenr) {
929 btrfs_err(root->fs_info,
930 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
931 cur->bytenr, level - 1, root->objectid,
932 node_key->objectid, node_key->type,
933 node_key->offset);
934 err = -ENOENT;
935 goto out;
936 }
937 lower = cur;
938 need_check = true;
939 for (; level < BTRFS_MAX_LEVEL; level++) {
940 if (!path2->nodes[level]) {
941 ASSERT(btrfs_root_bytenr(&root->root_item) ==
942 lower->bytenr);
943 if (should_ignore_root(root))
944 list_add(&lower->list, &useless);
945 else
946 lower->root = root;
947 break;
948 }
949
950 edge = alloc_backref_edge(cache);
951 if (!edge) {
952 err = -ENOMEM;
953 goto out;
954 }
955
956 eb = path2->nodes[level];
957 rb_node = tree_search(&cache->rb_root, eb->start);
958 if (!rb_node) {
959 upper = alloc_backref_node(cache);
960 if (!upper) {
961 free_backref_edge(cache, edge);
962 err = -ENOMEM;
963 goto out;
964 }
965 upper->bytenr = eb->start;
966 upper->owner = btrfs_header_owner(eb);
967 upper->level = lower->level + 1;
968 if (!test_bit(BTRFS_ROOT_REF_COWS,
969 &root->state))
970 upper->cowonly = 1;
971
972 /*
973 * if we know the block isn't shared
974 * we can void checking its backrefs.
975 */
976 if (btrfs_block_can_be_shared(root, eb))
977 upper->checked = 0;
978 else
979 upper->checked = 1;
980
981 /*
982 * add the block to pending list if we
983 * need check its backrefs, we only do this once
984 * while walking up a tree as we will catch
985 * anything else later on.
986 */
987 if (!upper->checked && need_check) {
988 need_check = false;
989 list_add_tail(&edge->list[UPPER],
990 &list);
991 } else {
992 if (upper->checked)
993 need_check = true;
994 INIT_LIST_HEAD(&edge->list[UPPER]);
995 }
996 } else {
997 upper = rb_entry(rb_node, struct backref_node,
998 rb_node);
999 ASSERT(upper->checked);
1000 INIT_LIST_HEAD(&edge->list[UPPER]);
1001 if (!upper->owner)
1002 upper->owner = btrfs_header_owner(eb);
1003 }
1004 list_add_tail(&edge->list[LOWER], &lower->upper);
1005 edge->node[LOWER] = lower;
1006 edge->node[UPPER] = upper;
1007
1008 if (rb_node)
1009 break;
1010 lower = upper;
1011 upper = NULL;
1012 }
1013 btrfs_release_path(path2);
1014next:
1015 if (ptr < end) {
1016 ptr += btrfs_extent_inline_ref_size(key.type);
1017 if (ptr >= end) {
1018 WARN_ON(ptr > end);
1019 ptr = 0;
1020 end = 0;
1021 }
1022 }
1023 if (ptr >= end)
1024 path1->slots[0]++;
1025 }
1026 btrfs_release_path(path1);
1027
1028 cur->checked = 1;
1029 WARN_ON(exist);
1030
1031 /* the pending list isn't empty, take the first block to process */
1032 if (!list_empty(&list)) {
1033 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034 list_del_init(&edge->list[UPPER]);
1035 cur = edge->node[UPPER];
1036 goto again;
1037 }
1038
1039 /*
1040 * everything goes well, connect backref nodes and insert backref nodes
1041 * into the cache.
1042 */
1043 ASSERT(node->checked);
1044 cowonly = node->cowonly;
1045 if (!cowonly) {
1046 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1047 &node->rb_node);
1048 if (rb_node)
1049 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1050 list_add_tail(&node->lower, &cache->leaves);
1051 }
1052
1053 list_for_each_entry(edge, &node->upper, list[LOWER])
1054 list_add_tail(&edge->list[UPPER], &list);
1055
1056 while (!list_empty(&list)) {
1057 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1058 list_del_init(&edge->list[UPPER]);
1059 upper = edge->node[UPPER];
1060 if (upper->detached) {
1061 list_del(&edge->list[LOWER]);
1062 lower = edge->node[LOWER];
1063 free_backref_edge(cache, edge);
1064 if (list_empty(&lower->upper))
1065 list_add(&lower->list, &useless);
1066 continue;
1067 }
1068
1069 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1070 if (upper->lowest) {
1071 list_del_init(&upper->lower);
1072 upper->lowest = 0;
1073 }
1074
1075 list_add_tail(&edge->list[UPPER], &upper->lower);
1076 continue;
1077 }
1078
1079 if (!upper->checked) {
1080 /*
1081 * Still want to blow up for developers since this is a
1082 * logic bug.
1083 */
1084 ASSERT(0);
1085 err = -EINVAL;
1086 goto out;
1087 }
1088 if (cowonly != upper->cowonly) {
1089 ASSERT(0);
1090 err = -EINVAL;
1091 goto out;
1092 }
1093
1094 if (!cowonly) {
1095 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1096 &upper->rb_node);
1097 if (rb_node)
1098 backref_tree_panic(rb_node, -EEXIST,
1099 upper->bytenr);
1100 }
1101
1102 list_add_tail(&edge->list[UPPER], &upper->lower);
1103
1104 list_for_each_entry(edge, &upper->upper, list[LOWER])
1105 list_add_tail(&edge->list[UPPER], &list);
1106 }
1107 /*
1108 * process useless backref nodes. backref nodes for tree leaves
1109 * are deleted from the cache. backref nodes for upper level
1110 * tree blocks are left in the cache to avoid unnecessary backref
1111 * lookup.
1112 */
1113 while (!list_empty(&useless)) {
1114 upper = list_entry(useless.next, struct backref_node, list);
1115 list_del_init(&upper->list);
1116 ASSERT(list_empty(&upper->upper));
1117 if (upper == node)
1118 node = NULL;
1119 if (upper->lowest) {
1120 list_del_init(&upper->lower);
1121 upper->lowest = 0;
1122 }
1123 while (!list_empty(&upper->lower)) {
1124 edge = list_entry(upper->lower.next,
1125 struct backref_edge, list[UPPER]);
1126 list_del(&edge->list[UPPER]);
1127 list_del(&edge->list[LOWER]);
1128 lower = edge->node[LOWER];
1129 free_backref_edge(cache, edge);
1130
1131 if (list_empty(&lower->upper))
1132 list_add(&lower->list, &useless);
1133 }
1134 __mark_block_processed(rc, upper);
1135 if (upper->level > 0) {
1136 list_add(&upper->list, &cache->detached);
1137 upper->detached = 1;
1138 } else {
1139 rb_erase(&upper->rb_node, &cache->rb_root);
1140 free_backref_node(cache, upper);
1141 }
1142 }
1143out:
1144 btrfs_free_path(path1);
1145 btrfs_free_path(path2);
1146 if (err) {
1147 while (!list_empty(&useless)) {
1148 lower = list_entry(useless.next,
1149 struct backref_node, list);
1150 list_del_init(&lower->list);
1151 }
1152 while (!list_empty(&list)) {
1153 edge = list_first_entry(&list, struct backref_edge,
1154 list[UPPER]);
1155 list_del(&edge->list[UPPER]);
1156 list_del(&edge->list[LOWER]);
1157 lower = edge->node[LOWER];
1158 upper = edge->node[UPPER];
1159 free_backref_edge(cache, edge);
1160
1161 /*
1162 * Lower is no longer linked to any upper backref nodes
1163 * and isn't in the cache, we can free it ourselves.
1164 */
1165 if (list_empty(&lower->upper) &&
1166 RB_EMPTY_NODE(&lower->rb_node))
1167 list_add(&lower->list, &useless);
1168
1169 if (!RB_EMPTY_NODE(&upper->rb_node))
1170 continue;
1171
1172 /* Add this guy's upper edges to the list to process */
1173 list_for_each_entry(edge, &upper->upper, list[LOWER])
1174 list_add_tail(&edge->list[UPPER], &list);
1175 if (list_empty(&upper->upper))
1176 list_add(&upper->list, &useless);
1177 }
1178
1179 while (!list_empty(&useless)) {
1180 lower = list_entry(useless.next,
1181 struct backref_node, list);
1182 list_del_init(&lower->list);
1183 if (lower == node)
1184 node = NULL;
1185 free_backref_node(cache, lower);
1186 }
1187
1188 free_backref_node(cache, node);
1189 return ERR_PTR(err);
1190 }
1191 ASSERT(!node || !node->detached);
1192 return node;
1193}
1194
1195/*
1196 * helper to add backref node for the newly created snapshot.
1197 * the backref node is created by cloning backref node that
1198 * corresponds to root of source tree
1199 */
1200static int clone_backref_node(struct btrfs_trans_handle *trans,
1201 struct reloc_control *rc,
1202 struct btrfs_root *src,
1203 struct btrfs_root *dest)
1204{
1205 struct btrfs_root *reloc_root = src->reloc_root;
1206 struct backref_cache *cache = &rc->backref_cache;
1207 struct backref_node *node = NULL;
1208 struct backref_node *new_node;
1209 struct backref_edge *edge;
1210 struct backref_edge *new_edge;
1211 struct rb_node *rb_node;
1212
1213 if (cache->last_trans > 0)
1214 update_backref_cache(trans, cache);
1215
1216 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1217 if (rb_node) {
1218 node = rb_entry(rb_node, struct backref_node, rb_node);
1219 if (node->detached)
1220 node = NULL;
1221 else
1222 BUG_ON(node->new_bytenr != reloc_root->node->start);
1223 }
1224
1225 if (!node) {
1226 rb_node = tree_search(&cache->rb_root,
1227 reloc_root->commit_root->start);
1228 if (rb_node) {
1229 node = rb_entry(rb_node, struct backref_node,
1230 rb_node);
1231 BUG_ON(node->detached);
1232 }
1233 }
1234
1235 if (!node)
1236 return 0;
1237
1238 new_node = alloc_backref_node(cache);
1239 if (!new_node)
1240 return -ENOMEM;
1241
1242 new_node->bytenr = dest->node->start;
1243 new_node->level = node->level;
1244 new_node->lowest = node->lowest;
1245 new_node->checked = 1;
1246 new_node->root = dest;
1247
1248 if (!node->lowest) {
1249 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1250 new_edge = alloc_backref_edge(cache);
1251 if (!new_edge)
1252 goto fail;
1253
1254 new_edge->node[UPPER] = new_node;
1255 new_edge->node[LOWER] = edge->node[LOWER];
1256 list_add_tail(&new_edge->list[UPPER],
1257 &new_node->lower);
1258 }
1259 } else {
1260 list_add_tail(&new_node->lower, &cache->leaves);
1261 }
1262
1263 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1264 &new_node->rb_node);
1265 if (rb_node)
1266 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1267
1268 if (!new_node->lowest) {
1269 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1270 list_add_tail(&new_edge->list[LOWER],
1271 &new_edge->node[LOWER]->upper);
1272 }
1273 }
1274 return 0;
1275fail:
1276 while (!list_empty(&new_node->lower)) {
1277 new_edge = list_entry(new_node->lower.next,
1278 struct backref_edge, list[UPPER]);
1279 list_del(&new_edge->list[UPPER]);
1280 free_backref_edge(cache, new_edge);
1281 }
1282 free_backref_node(cache, new_node);
1283 return -ENOMEM;
1284}
1285
1286/*
1287 * helper to add 'address of tree root -> reloc tree' mapping
1288 */
1289static int __must_check __add_reloc_root(struct btrfs_root *root)
1290{
1291 struct btrfs_fs_info *fs_info = root->fs_info;
1292 struct rb_node *rb_node;
1293 struct mapping_node *node;
1294 struct reloc_control *rc = fs_info->reloc_ctl;
1295
1296 node = kmalloc(sizeof(*node), GFP_NOFS);
1297 if (!node)
1298 return -ENOMEM;
1299
1300 node->bytenr = root->node->start;
1301 node->data = root;
1302
1303 spin_lock(&rc->reloc_root_tree.lock);
1304 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1305 node->bytenr, &node->rb_node);
1306 spin_unlock(&rc->reloc_root_tree.lock);
1307 if (rb_node) {
1308 btrfs_panic(fs_info, -EEXIST,
1309 "Duplicate root found for start=%llu while inserting into relocation tree",
1310 node->bytenr);
1311 kfree(node);
1312 return -EEXIST;
1313 }
1314
1315 list_add_tail(&root->root_list, &rc->reloc_roots);
1316 return 0;
1317}
1318
1319/*
1320 * helper to delete the 'address of tree root -> reloc tree'
1321 * mapping
1322 */
1323static void __del_reloc_root(struct btrfs_root *root)
1324{
1325 struct btrfs_fs_info *fs_info = root->fs_info;
1326 struct rb_node *rb_node;
1327 struct mapping_node *node = NULL;
1328 struct reloc_control *rc = fs_info->reloc_ctl;
1329
1330 spin_lock(&rc->reloc_root_tree.lock);
1331 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1332 root->node->start);
1333 if (rb_node) {
1334 node = rb_entry(rb_node, struct mapping_node, rb_node);
1335 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1336 }
1337 spin_unlock(&rc->reloc_root_tree.lock);
1338
1339 if (!node)
1340 return;
1341 BUG_ON((struct btrfs_root *)node->data != root);
1342
1343 spin_lock(&fs_info->trans_lock);
1344 list_del_init(&root->root_list);
1345 spin_unlock(&fs_info->trans_lock);
1346 kfree(node);
1347}
1348
1349/*
1350 * helper to update the 'address of tree root -> reloc tree'
1351 * mapping
1352 */
1353static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1354{
1355 struct btrfs_fs_info *fs_info = root->fs_info;
1356 struct rb_node *rb_node;
1357 struct mapping_node *node = NULL;
1358 struct reloc_control *rc = fs_info->reloc_ctl;
1359
1360 spin_lock(&rc->reloc_root_tree.lock);
1361 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1362 root->node->start);
1363 if (rb_node) {
1364 node = rb_entry(rb_node, struct mapping_node, rb_node);
1365 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1366 }
1367 spin_unlock(&rc->reloc_root_tree.lock);
1368
1369 if (!node)
1370 return 0;
1371 BUG_ON((struct btrfs_root *)node->data != root);
1372
1373 spin_lock(&rc->reloc_root_tree.lock);
1374 node->bytenr = new_bytenr;
1375 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1376 node->bytenr, &node->rb_node);
1377 spin_unlock(&rc->reloc_root_tree.lock);
1378 if (rb_node)
1379 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1380 return 0;
1381}
1382
1383static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1384 struct btrfs_root *root, u64 objectid)
1385{
1386 struct btrfs_fs_info *fs_info = root->fs_info;
1387 struct btrfs_root *reloc_root;
1388 struct extent_buffer *eb;
1389 struct btrfs_root_item *root_item;
1390 struct btrfs_key root_key;
1391 int ret;
1392
1393 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1394 BUG_ON(!root_item);
1395
1396 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1397 root_key.type = BTRFS_ROOT_ITEM_KEY;
1398 root_key.offset = objectid;
1399
1400 if (root->root_key.objectid == objectid) {
1401 u64 commit_root_gen;
1402
1403 /* called by btrfs_init_reloc_root */
1404 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1405 BTRFS_TREE_RELOC_OBJECTID);
1406 BUG_ON(ret);
1407 /*
1408 * Set the last_snapshot field to the generation of the commit
1409 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1410 * correctly (returns true) when the relocation root is created
1411 * either inside the critical section of a transaction commit
1412 * (through transaction.c:qgroup_account_snapshot()) and when
1413 * it's created before the transaction commit is started.
1414 */
1415 commit_root_gen = btrfs_header_generation(root->commit_root);
1416 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1417 } else {
1418 /*
1419 * called by btrfs_reloc_post_snapshot_hook.
1420 * the source tree is a reloc tree, all tree blocks
1421 * modified after it was created have RELOC flag
1422 * set in their headers. so it's OK to not update
1423 * the 'last_snapshot'.
1424 */
1425 ret = btrfs_copy_root(trans, root, root->node, &eb,
1426 BTRFS_TREE_RELOC_OBJECTID);
1427 BUG_ON(ret);
1428 }
1429
1430 memcpy(root_item, &root->root_item, sizeof(*root_item));
1431 btrfs_set_root_bytenr(root_item, eb->start);
1432 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1433 btrfs_set_root_generation(root_item, trans->transid);
1434
1435 if (root->root_key.objectid == objectid) {
1436 btrfs_set_root_refs(root_item, 0);
1437 memset(&root_item->drop_progress, 0,
1438 sizeof(struct btrfs_disk_key));
1439 root_item->drop_level = 0;
1440 }
1441
1442 btrfs_tree_unlock(eb);
1443 free_extent_buffer(eb);
1444
1445 ret = btrfs_insert_root(trans, fs_info->tree_root,
1446 &root_key, root_item);
1447 BUG_ON(ret);
1448 kfree(root_item);
1449
1450 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1451 BUG_ON(IS_ERR(reloc_root));
1452 reloc_root->last_trans = trans->transid;
1453 return reloc_root;
1454}
1455
1456/*
1457 * create reloc tree for a given fs tree. reloc tree is just a
1458 * snapshot of the fs tree with special root objectid.
1459 */
1460int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1461 struct btrfs_root *root)
1462{
1463 struct btrfs_fs_info *fs_info = root->fs_info;
1464 struct btrfs_root *reloc_root;
1465 struct reloc_control *rc = fs_info->reloc_ctl;
1466 struct btrfs_block_rsv *rsv;
1467 int clear_rsv = 0;
1468 int ret;
1469
1470 if (root->reloc_root) {
1471 reloc_root = root->reloc_root;
1472 reloc_root->last_trans = trans->transid;
1473 return 0;
1474 }
1475
1476 if (!rc || !rc->create_reloc_tree ||
1477 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1478 return 0;
1479
1480 if (!trans->reloc_reserved) {
1481 rsv = trans->block_rsv;
1482 trans->block_rsv = rc->block_rsv;
1483 clear_rsv = 1;
1484 }
1485 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1486 if (clear_rsv)
1487 trans->block_rsv = rsv;
1488
1489 ret = __add_reloc_root(reloc_root);
1490 BUG_ON(ret < 0);
1491 root->reloc_root = reloc_root;
1492 return 0;
1493}
1494
1495/*
1496 * update root item of reloc tree
1497 */
1498int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root)
1500{
1501 struct btrfs_fs_info *fs_info = root->fs_info;
1502 struct btrfs_root *reloc_root;
1503 struct btrfs_root_item *root_item;
1504 int ret;
1505
1506 if (!root->reloc_root)
1507 goto out;
1508
1509 reloc_root = root->reloc_root;
1510 root_item = &reloc_root->root_item;
1511
1512 if (fs_info->reloc_ctl->merge_reloc_tree &&
1513 btrfs_root_refs(root_item) == 0) {
1514 root->reloc_root = NULL;
1515 __del_reloc_root(reloc_root);
1516 }
1517
1518 if (reloc_root->commit_root != reloc_root->node) {
1519 btrfs_set_root_node(root_item, reloc_root->node);
1520 free_extent_buffer(reloc_root->commit_root);
1521 reloc_root->commit_root = btrfs_root_node(reloc_root);
1522 }
1523
1524 ret = btrfs_update_root(trans, fs_info->tree_root,
1525 &reloc_root->root_key, root_item);
1526 BUG_ON(ret);
1527
1528out:
1529 return 0;
1530}
1531
1532/*
1533 * helper to find first cached inode with inode number >= objectid
1534 * in a subvolume
1535 */
1536static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1537{
1538 struct rb_node *node;
1539 struct rb_node *prev;
1540 struct btrfs_inode *entry;
1541 struct inode *inode;
1542
1543 spin_lock(&root->inode_lock);
1544again:
1545 node = root->inode_tree.rb_node;
1546 prev = NULL;
1547 while (node) {
1548 prev = node;
1549 entry = rb_entry(node, struct btrfs_inode, rb_node);
1550
1551 if (objectid < btrfs_ino(&entry->vfs_inode))
1552 node = node->rb_left;
1553 else if (objectid > btrfs_ino(&entry->vfs_inode))
1554 node = node->rb_right;
1555 else
1556 break;
1557 }
1558 if (!node) {
1559 while (prev) {
1560 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1561 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1562 node = prev;
1563 break;
1564 }
1565 prev = rb_next(prev);
1566 }
1567 }
1568 while (node) {
1569 entry = rb_entry(node, struct btrfs_inode, rb_node);
1570 inode = igrab(&entry->vfs_inode);
1571 if (inode) {
1572 spin_unlock(&root->inode_lock);
1573 return inode;
1574 }
1575
1576 objectid = btrfs_ino(&entry->vfs_inode) + 1;
1577 if (cond_resched_lock(&root->inode_lock))
1578 goto again;
1579
1580 node = rb_next(node);
1581 }
1582 spin_unlock(&root->inode_lock);
1583 return NULL;
1584}
1585
1586static int in_block_group(u64 bytenr,
1587 struct btrfs_block_group_cache *block_group)
1588{
1589 if (bytenr >= block_group->key.objectid &&
1590 bytenr < block_group->key.objectid + block_group->key.offset)
1591 return 1;
1592 return 0;
1593}
1594
1595/*
1596 * get new location of data
1597 */
1598static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1599 u64 bytenr, u64 num_bytes)
1600{
1601 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1602 struct btrfs_path *path;
1603 struct btrfs_file_extent_item *fi;
1604 struct extent_buffer *leaf;
1605 int ret;
1606
1607 path = btrfs_alloc_path();
1608 if (!path)
1609 return -ENOMEM;
1610
1611 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1612 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1613 bytenr, 0);
1614 if (ret < 0)
1615 goto out;
1616 if (ret > 0) {
1617 ret = -ENOENT;
1618 goto out;
1619 }
1620
1621 leaf = path->nodes[0];
1622 fi = btrfs_item_ptr(leaf, path->slots[0],
1623 struct btrfs_file_extent_item);
1624
1625 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1626 btrfs_file_extent_compression(leaf, fi) ||
1627 btrfs_file_extent_encryption(leaf, fi) ||
1628 btrfs_file_extent_other_encoding(leaf, fi));
1629
1630 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1631 ret = -EINVAL;
1632 goto out;
1633 }
1634
1635 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1636 ret = 0;
1637out:
1638 btrfs_free_path(path);
1639 return ret;
1640}
1641
1642/*
1643 * update file extent items in the tree leaf to point to
1644 * the new locations.
1645 */
1646static noinline_for_stack
1647int replace_file_extents(struct btrfs_trans_handle *trans,
1648 struct reloc_control *rc,
1649 struct btrfs_root *root,
1650 struct extent_buffer *leaf)
1651{
1652 struct btrfs_fs_info *fs_info = root->fs_info;
1653 struct btrfs_key key;
1654 struct btrfs_file_extent_item *fi;
1655 struct inode *inode = NULL;
1656 u64 parent;
1657 u64 bytenr;
1658 u64 new_bytenr = 0;
1659 u64 num_bytes;
1660 u64 end;
1661 u32 nritems;
1662 u32 i;
1663 int ret = 0;
1664 int first = 1;
1665 int dirty = 0;
1666
1667 if (rc->stage != UPDATE_DATA_PTRS)
1668 return 0;
1669
1670 /* reloc trees always use full backref */
1671 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1672 parent = leaf->start;
1673 else
1674 parent = 0;
1675
1676 nritems = btrfs_header_nritems(leaf);
1677 for (i = 0; i < nritems; i++) {
1678 cond_resched();
1679 btrfs_item_key_to_cpu(leaf, &key, i);
1680 if (key.type != BTRFS_EXTENT_DATA_KEY)
1681 continue;
1682 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1683 if (btrfs_file_extent_type(leaf, fi) ==
1684 BTRFS_FILE_EXTENT_INLINE)
1685 continue;
1686 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1687 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1688 if (bytenr == 0)
1689 continue;
1690 if (!in_block_group(bytenr, rc->block_group))
1691 continue;
1692
1693 /*
1694 * if we are modifying block in fs tree, wait for readpage
1695 * to complete and drop the extent cache
1696 */
1697 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1698 if (first) {
1699 inode = find_next_inode(root, key.objectid);
1700 first = 0;
1701 } else if (inode && btrfs_ino(inode) < key.objectid) {
1702 btrfs_add_delayed_iput(inode);
1703 inode = find_next_inode(root, key.objectid);
1704 }
1705 if (inode && btrfs_ino(inode) == key.objectid) {
1706 end = key.offset +
1707 btrfs_file_extent_num_bytes(leaf, fi);
1708 WARN_ON(!IS_ALIGNED(key.offset,
1709 fs_info->sectorsize));
1710 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1711 end--;
1712 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1713 key.offset, end);
1714 if (!ret)
1715 continue;
1716
1717 btrfs_drop_extent_cache(inode, key.offset, end,
1718 1);
1719 unlock_extent(&BTRFS_I(inode)->io_tree,
1720 key.offset, end);
1721 }
1722 }
1723
1724 ret = get_new_location(rc->data_inode, &new_bytenr,
1725 bytenr, num_bytes);
1726 if (ret) {
1727 /*
1728 * Don't have to abort since we've not changed anything
1729 * in the file extent yet.
1730 */
1731 break;
1732 }
1733
1734 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1735 dirty = 1;
1736
1737 key.offset -= btrfs_file_extent_offset(leaf, fi);
1738 ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1739 num_bytes, parent,
1740 btrfs_header_owner(leaf),
1741 key.objectid, key.offset);
1742 if (ret) {
1743 btrfs_abort_transaction(trans, ret);
1744 break;
1745 }
1746
1747 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1748 parent, btrfs_header_owner(leaf),
1749 key.objectid, key.offset);
1750 if (ret) {
1751 btrfs_abort_transaction(trans, ret);
1752 break;
1753 }
1754 }
1755 if (dirty)
1756 btrfs_mark_buffer_dirty(leaf);
1757 if (inode)
1758 btrfs_add_delayed_iput(inode);
1759 return ret;
1760}
1761
1762static noinline_for_stack
1763int memcmp_node_keys(struct extent_buffer *eb, int slot,
1764 struct btrfs_path *path, int level)
1765{
1766 struct btrfs_disk_key key1;
1767 struct btrfs_disk_key key2;
1768 btrfs_node_key(eb, &key1, slot);
1769 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1770 return memcmp(&key1, &key2, sizeof(key1));
1771}
1772
1773/*
1774 * try to replace tree blocks in fs tree with the new blocks
1775 * in reloc tree. tree blocks haven't been modified since the
1776 * reloc tree was create can be replaced.
1777 *
1778 * if a block was replaced, level of the block + 1 is returned.
1779 * if no block got replaced, 0 is returned. if there are other
1780 * errors, a negative error number is returned.
1781 */
1782static noinline_for_stack
1783int replace_path(struct btrfs_trans_handle *trans,
1784 struct btrfs_root *dest, struct btrfs_root *src,
1785 struct btrfs_path *path, struct btrfs_key *next_key,
1786 int lowest_level, int max_level)
1787{
1788 struct btrfs_fs_info *fs_info = dest->fs_info;
1789 struct extent_buffer *eb;
1790 struct extent_buffer *parent;
1791 struct btrfs_key key;
1792 u64 old_bytenr;
1793 u64 new_bytenr;
1794 u64 old_ptr_gen;
1795 u64 new_ptr_gen;
1796 u64 last_snapshot;
1797 u32 blocksize;
1798 int cow = 0;
1799 int level;
1800 int ret;
1801 int slot;
1802
1803 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1804 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1805
1806 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1807again:
1808 slot = path->slots[lowest_level];
1809 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1810
1811 eb = btrfs_lock_root_node(dest);
1812 btrfs_set_lock_blocking(eb);
1813 level = btrfs_header_level(eb);
1814
1815 if (level < lowest_level) {
1816 btrfs_tree_unlock(eb);
1817 free_extent_buffer(eb);
1818 return 0;
1819 }
1820
1821 if (cow) {
1822 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1823 BUG_ON(ret);
1824 }
1825 btrfs_set_lock_blocking(eb);
1826
1827 if (next_key) {
1828 next_key->objectid = (u64)-1;
1829 next_key->type = (u8)-1;
1830 next_key->offset = (u64)-1;
1831 }
1832
1833 parent = eb;
1834 while (1) {
1835 level = btrfs_header_level(parent);
1836 BUG_ON(level < lowest_level);
1837
1838 ret = btrfs_bin_search(parent, &key, level, &slot);
1839 if (ret && slot > 0)
1840 slot--;
1841
1842 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1843 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1844
1845 old_bytenr = btrfs_node_blockptr(parent, slot);
1846 blocksize = fs_info->nodesize;
1847 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1848
1849 if (level <= max_level) {
1850 eb = path->nodes[level];
1851 new_bytenr = btrfs_node_blockptr(eb,
1852 path->slots[level]);
1853 new_ptr_gen = btrfs_node_ptr_generation(eb,
1854 path->slots[level]);
1855 } else {
1856 new_bytenr = 0;
1857 new_ptr_gen = 0;
1858 }
1859
1860 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1861 ret = level;
1862 break;
1863 }
1864
1865 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1866 memcmp_node_keys(parent, slot, path, level)) {
1867 if (level <= lowest_level) {
1868 ret = 0;
1869 break;
1870 }
1871
1872 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
1873 if (IS_ERR(eb)) {
1874 ret = PTR_ERR(eb);
1875 break;
1876 } else if (!extent_buffer_uptodate(eb)) {
1877 ret = -EIO;
1878 free_extent_buffer(eb);
1879 break;
1880 }
1881 btrfs_tree_lock(eb);
1882 if (cow) {
1883 ret = btrfs_cow_block(trans, dest, eb, parent,
1884 slot, &eb);
1885 BUG_ON(ret);
1886 }
1887 btrfs_set_lock_blocking(eb);
1888
1889 btrfs_tree_unlock(parent);
1890 free_extent_buffer(parent);
1891
1892 parent = eb;
1893 continue;
1894 }
1895
1896 if (!cow) {
1897 btrfs_tree_unlock(parent);
1898 free_extent_buffer(parent);
1899 cow = 1;
1900 goto again;
1901 }
1902
1903 btrfs_node_key_to_cpu(path->nodes[level], &key,
1904 path->slots[level]);
1905 btrfs_release_path(path);
1906
1907 path->lowest_level = level;
1908 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1909 path->lowest_level = 0;
1910 BUG_ON(ret);
1911
1912 /*
1913 * Info qgroup to trace both subtrees.
1914 *
1915 * We must trace both trees.
1916 * 1) Tree reloc subtree
1917 * If not traced, we will leak data numbers
1918 * 2) Fs subtree
1919 * If not traced, we will double count old data
1920 * and tree block numbers, if current trans doesn't free
1921 * data reloc tree inode.
1922 */
1923 ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1924 btrfs_header_generation(parent),
1925 btrfs_header_level(parent));
1926 if (ret < 0)
1927 break;
1928 ret = btrfs_qgroup_trace_subtree(trans, dest,
1929 path->nodes[level],
1930 btrfs_header_generation(path->nodes[level]),
1931 btrfs_header_level(path->nodes[level]));
1932 if (ret < 0)
1933 break;
1934
1935 /*
1936 * swap blocks in fs tree and reloc tree.
1937 */
1938 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1939 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1940 btrfs_mark_buffer_dirty(parent);
1941
1942 btrfs_set_node_blockptr(path->nodes[level],
1943 path->slots[level], old_bytenr);
1944 btrfs_set_node_ptr_generation(path->nodes[level],
1945 path->slots[level], old_ptr_gen);
1946 btrfs_mark_buffer_dirty(path->nodes[level]);
1947
1948 ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
1949 blocksize, path->nodes[level]->start,
1950 src->root_key.objectid, level - 1, 0);
1951 BUG_ON(ret);
1952 ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1953 blocksize, 0, dest->root_key.objectid,
1954 level - 1, 0);
1955 BUG_ON(ret);
1956
1957 ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
1958 path->nodes[level]->start,
1959 src->root_key.objectid, level - 1, 0);
1960 BUG_ON(ret);
1961
1962 ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
1963 0, dest->root_key.objectid, level - 1,
1964 0);
1965 BUG_ON(ret);
1966
1967 btrfs_unlock_up_safe(path, 0);
1968
1969 ret = level;
1970 break;
1971 }
1972 btrfs_tree_unlock(parent);
1973 free_extent_buffer(parent);
1974 return ret;
1975}
1976
1977/*
1978 * helper to find next relocated block in reloc tree
1979 */
1980static noinline_for_stack
1981int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1982 int *level)
1983{
1984 struct extent_buffer *eb;
1985 int i;
1986 u64 last_snapshot;
1987 u32 nritems;
1988
1989 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1990
1991 for (i = 0; i < *level; i++) {
1992 free_extent_buffer(path->nodes[i]);
1993 path->nodes[i] = NULL;
1994 }
1995
1996 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1997 eb = path->nodes[i];
1998 nritems = btrfs_header_nritems(eb);
1999 while (path->slots[i] + 1 < nritems) {
2000 path->slots[i]++;
2001 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2002 last_snapshot)
2003 continue;
2004
2005 *level = i;
2006 return 0;
2007 }
2008 free_extent_buffer(path->nodes[i]);
2009 path->nodes[i] = NULL;
2010 }
2011 return 1;
2012}
2013
2014/*
2015 * walk down reloc tree to find relocated block of lowest level
2016 */
2017static noinline_for_stack
2018int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2019 int *level)
2020{
2021 struct btrfs_fs_info *fs_info = root->fs_info;
2022 struct extent_buffer *eb = NULL;
2023 int i;
2024 u64 bytenr;
2025 u64 ptr_gen = 0;
2026 u64 last_snapshot;
2027 u32 nritems;
2028
2029 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2030
2031 for (i = *level; i > 0; i--) {
2032 eb = path->nodes[i];
2033 nritems = btrfs_header_nritems(eb);
2034 while (path->slots[i] < nritems) {
2035 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2036 if (ptr_gen > last_snapshot)
2037 break;
2038 path->slots[i]++;
2039 }
2040 if (path->slots[i] >= nritems) {
2041 if (i == *level)
2042 break;
2043 *level = i + 1;
2044 return 0;
2045 }
2046 if (i == 1) {
2047 *level = i;
2048 return 0;
2049 }
2050
2051 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2052 eb = read_tree_block(fs_info, bytenr, ptr_gen);
2053 if (IS_ERR(eb)) {
2054 return PTR_ERR(eb);
2055 } else if (!extent_buffer_uptodate(eb)) {
2056 free_extent_buffer(eb);
2057 return -EIO;
2058 }
2059 BUG_ON(btrfs_header_level(eb) != i - 1);
2060 path->nodes[i - 1] = eb;
2061 path->slots[i - 1] = 0;
2062 }
2063 return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071 struct btrfs_key *min_key,
2072 struct btrfs_key *max_key)
2073{
2074 struct btrfs_fs_info *fs_info = root->fs_info;
2075 struct inode *inode = NULL;
2076 u64 objectid;
2077 u64 start, end;
2078 u64 ino;
2079
2080 objectid = min_key->objectid;
2081 while (1) {
2082 cond_resched();
2083 iput(inode);
2084
2085 if (objectid > max_key->objectid)
2086 break;
2087
2088 inode = find_next_inode(root, objectid);
2089 if (!inode)
2090 break;
2091 ino = btrfs_ino(inode);
2092
2093 if (ino > max_key->objectid) {
2094 iput(inode);
2095 break;
2096 }
2097
2098 objectid = ino + 1;
2099 if (!S_ISREG(inode->i_mode))
2100 continue;
2101
2102 if (unlikely(min_key->objectid == ino)) {
2103 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104 continue;
2105 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106 start = 0;
2107 else {
2108 start = min_key->offset;
2109 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110 }
2111 } else {
2112 start = 0;
2113 }
2114
2115 if (unlikely(max_key->objectid == ino)) {
2116 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117 continue;
2118 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119 end = (u64)-1;
2120 } else {
2121 if (max_key->offset == 0)
2122 continue;
2123 end = max_key->offset;
2124 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125 end--;
2126 }
2127 } else {
2128 end = (u64)-1;
2129 }
2130
2131 /* the lock_extent waits for readpage to complete */
2132 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133 btrfs_drop_extent_cache(inode, start, end, 1);
2134 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135 }
2136 return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140 struct btrfs_key *key)
2141
2142{
2143 while (level < BTRFS_MAX_LEVEL) {
2144 if (!path->nodes[level])
2145 break;
2146 if (path->slots[level] + 1 <
2147 btrfs_header_nritems(path->nodes[level])) {
2148 btrfs_node_key_to_cpu(path->nodes[level], key,
2149 path->slots[level] + 1);
2150 return 0;
2151 }
2152 level++;
2153 }
2154 return 1;
2155}
2156
2157/*
2158 * merge the relocated tree blocks in reloc tree with corresponding
2159 * fs tree.
2160 */
2161static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2162 struct btrfs_root *root)
2163{
2164 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2165 LIST_HEAD(inode_list);
2166 struct btrfs_key key;
2167 struct btrfs_key next_key;
2168 struct btrfs_trans_handle *trans = NULL;
2169 struct btrfs_root *reloc_root;
2170 struct btrfs_root_item *root_item;
2171 struct btrfs_path *path;
2172 struct extent_buffer *leaf;
2173 int level;
2174 int max_level;
2175 int replaced = 0;
2176 int ret;
2177 int err = 0;
2178 u32 min_reserved;
2179
2180 path = btrfs_alloc_path();
2181 if (!path)
2182 return -ENOMEM;
2183 path->reada = READA_FORWARD;
2184
2185 reloc_root = root->reloc_root;
2186 root_item = &reloc_root->root_item;
2187
2188 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2189 level = btrfs_root_level(root_item);
2190 extent_buffer_get(reloc_root->node);
2191 path->nodes[level] = reloc_root->node;
2192 path->slots[level] = 0;
2193 } else {
2194 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2195
2196 level = root_item->drop_level;
2197 BUG_ON(level == 0);
2198 path->lowest_level = level;
2199 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2200 path->lowest_level = 0;
2201 if (ret < 0) {
2202 btrfs_free_path(path);
2203 return ret;
2204 }
2205
2206 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2207 path->slots[level]);
2208 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2209
2210 btrfs_unlock_up_safe(path, 0);
2211 }
2212
2213 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2214 memset(&next_key, 0, sizeof(next_key));
2215
2216 while (1) {
2217 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2218 BTRFS_RESERVE_FLUSH_ALL);
2219 if (ret) {
2220 err = ret;
2221 goto out;
2222 }
2223 trans = btrfs_start_transaction(root, 0);
2224 if (IS_ERR(trans)) {
2225 err = PTR_ERR(trans);
2226 trans = NULL;
2227 goto out;
2228 }
2229 trans->block_rsv = rc->block_rsv;
2230
2231 replaced = 0;
2232 max_level = level;
2233
2234 ret = walk_down_reloc_tree(reloc_root, path, &level);
2235 if (ret < 0) {
2236 err = ret;
2237 goto out;
2238 }
2239 if (ret > 0)
2240 break;
2241
2242 if (!find_next_key(path, level, &key) &&
2243 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2244 ret = 0;
2245 } else {
2246 ret = replace_path(trans, root, reloc_root, path,
2247 &next_key, level, max_level);
2248 }
2249 if (ret < 0) {
2250 err = ret;
2251 goto out;
2252 }
2253
2254 if (ret > 0) {
2255 level = ret;
2256 btrfs_node_key_to_cpu(path->nodes[level], &key,
2257 path->slots[level]);
2258 replaced = 1;
2259 }
2260
2261 ret = walk_up_reloc_tree(reloc_root, path, &level);
2262 if (ret > 0)
2263 break;
2264
2265 BUG_ON(level == 0);
2266 /*
2267 * save the merging progress in the drop_progress.
2268 * this is OK since root refs == 1 in this case.
2269 */
2270 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2271 path->slots[level]);
2272 root_item->drop_level = level;
2273
2274 btrfs_end_transaction_throttle(trans);
2275 trans = NULL;
2276
2277 btrfs_btree_balance_dirty(fs_info);
2278
2279 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2280 invalidate_extent_cache(root, &key, &next_key);
2281 }
2282
2283 /*
2284 * handle the case only one block in the fs tree need to be
2285 * relocated and the block is tree root.
2286 */
2287 leaf = btrfs_lock_root_node(root);
2288 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2289 btrfs_tree_unlock(leaf);
2290 free_extent_buffer(leaf);
2291 if (ret < 0)
2292 err = ret;
2293out:
2294 btrfs_free_path(path);
2295
2296 if (err == 0) {
2297 memset(&root_item->drop_progress, 0,
2298 sizeof(root_item->drop_progress));
2299 root_item->drop_level = 0;
2300 btrfs_set_root_refs(root_item, 0);
2301 btrfs_update_reloc_root(trans, root);
2302 }
2303
2304 if (trans)
2305 btrfs_end_transaction_throttle(trans);
2306
2307 btrfs_btree_balance_dirty(fs_info);
2308
2309 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2310 invalidate_extent_cache(root, &key, &next_key);
2311
2312 return err;
2313}
2314
2315static noinline_for_stack
2316int prepare_to_merge(struct reloc_control *rc, int err)
2317{
2318 struct btrfs_root *root = rc->extent_root;
2319 struct btrfs_fs_info *fs_info = root->fs_info;
2320 struct btrfs_root *reloc_root;
2321 struct btrfs_trans_handle *trans;
2322 LIST_HEAD(reloc_roots);
2323 u64 num_bytes = 0;
2324 int ret;
2325
2326 mutex_lock(&fs_info->reloc_mutex);
2327 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2328 rc->merging_rsv_size += rc->nodes_relocated * 2;
2329 mutex_unlock(&fs_info->reloc_mutex);
2330
2331again:
2332 if (!err) {
2333 num_bytes = rc->merging_rsv_size;
2334 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2335 BTRFS_RESERVE_FLUSH_ALL);
2336 if (ret)
2337 err = ret;
2338 }
2339
2340 trans = btrfs_join_transaction(rc->extent_root);
2341 if (IS_ERR(trans)) {
2342 if (!err)
2343 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2344 num_bytes);
2345 return PTR_ERR(trans);
2346 }
2347
2348 if (!err) {
2349 if (num_bytes != rc->merging_rsv_size) {
2350 btrfs_end_transaction(trans);
2351 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2352 num_bytes);
2353 goto again;
2354 }
2355 }
2356
2357 rc->merge_reloc_tree = 1;
2358
2359 while (!list_empty(&rc->reloc_roots)) {
2360 reloc_root = list_entry(rc->reloc_roots.next,
2361 struct btrfs_root, root_list);
2362 list_del_init(&reloc_root->root_list);
2363
2364 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2365 BUG_ON(IS_ERR(root));
2366 BUG_ON(root->reloc_root != reloc_root);
2367
2368 /*
2369 * set reference count to 1, so btrfs_recover_relocation
2370 * knows it should resumes merging
2371 */
2372 if (!err)
2373 btrfs_set_root_refs(&reloc_root->root_item, 1);
2374 btrfs_update_reloc_root(trans, root);
2375
2376 list_add(&reloc_root->root_list, &reloc_roots);
2377 }
2378
2379 list_splice(&reloc_roots, &rc->reloc_roots);
2380
2381 if (!err)
2382 btrfs_commit_transaction(trans);
2383 else
2384 btrfs_end_transaction(trans);
2385 return err;
2386}
2387
2388static noinline_for_stack
2389void free_reloc_roots(struct list_head *list)
2390{
2391 struct btrfs_root *reloc_root;
2392
2393 while (!list_empty(list)) {
2394 reloc_root = list_entry(list->next, struct btrfs_root,
2395 root_list);
2396 free_extent_buffer(reloc_root->node);
2397 free_extent_buffer(reloc_root->commit_root);
2398 reloc_root->node = NULL;
2399 reloc_root->commit_root = NULL;
2400 __del_reloc_root(reloc_root);
2401 }
2402}
2403
2404static noinline_for_stack
2405void merge_reloc_roots(struct reloc_control *rc)
2406{
2407 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2408 struct btrfs_root *root;
2409 struct btrfs_root *reloc_root;
2410 LIST_HEAD(reloc_roots);
2411 int found = 0;
2412 int ret = 0;
2413again:
2414 root = rc->extent_root;
2415
2416 /*
2417 * this serializes us with btrfs_record_root_in_transaction,
2418 * we have to make sure nobody is in the middle of
2419 * adding their roots to the list while we are
2420 * doing this splice
2421 */
2422 mutex_lock(&fs_info->reloc_mutex);
2423 list_splice_init(&rc->reloc_roots, &reloc_roots);
2424 mutex_unlock(&fs_info->reloc_mutex);
2425
2426 while (!list_empty(&reloc_roots)) {
2427 found = 1;
2428 reloc_root = list_entry(reloc_roots.next,
2429 struct btrfs_root, root_list);
2430
2431 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2432 root = read_fs_root(fs_info,
2433 reloc_root->root_key.offset);
2434 BUG_ON(IS_ERR(root));
2435 BUG_ON(root->reloc_root != reloc_root);
2436
2437 ret = merge_reloc_root(rc, root);
2438 if (ret) {
2439 if (list_empty(&reloc_root->root_list))
2440 list_add_tail(&reloc_root->root_list,
2441 &reloc_roots);
2442 goto out;
2443 }
2444 } else {
2445 list_del_init(&reloc_root->root_list);
2446 }
2447
2448 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2449 if (ret < 0) {
2450 if (list_empty(&reloc_root->root_list))
2451 list_add_tail(&reloc_root->root_list,
2452 &reloc_roots);
2453 goto out;
2454 }
2455 }
2456
2457 if (found) {
2458 found = 0;
2459 goto again;
2460 }
2461out:
2462 if (ret) {
2463 btrfs_handle_fs_error(fs_info, ret, NULL);
2464 if (!list_empty(&reloc_roots))
2465 free_reloc_roots(&reloc_roots);
2466
2467 /* new reloc root may be added */
2468 mutex_lock(&fs_info->reloc_mutex);
2469 list_splice_init(&rc->reloc_roots, &reloc_roots);
2470 mutex_unlock(&fs_info->reloc_mutex);
2471 if (!list_empty(&reloc_roots))
2472 free_reloc_roots(&reloc_roots);
2473 }
2474
2475 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2476}
2477
2478static void free_block_list(struct rb_root *blocks)
2479{
2480 struct tree_block *block;
2481 struct rb_node *rb_node;
2482 while ((rb_node = rb_first(blocks))) {
2483 block = rb_entry(rb_node, struct tree_block, rb_node);
2484 rb_erase(rb_node, blocks);
2485 kfree(block);
2486 }
2487}
2488
2489static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2490 struct btrfs_root *reloc_root)
2491{
2492 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2493 struct btrfs_root *root;
2494
2495 if (reloc_root->last_trans == trans->transid)
2496 return 0;
2497
2498 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2499 BUG_ON(IS_ERR(root));
2500 BUG_ON(root->reloc_root != reloc_root);
2501
2502 return btrfs_record_root_in_trans(trans, root);
2503}
2504
2505static noinline_for_stack
2506struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2507 struct reloc_control *rc,
2508 struct backref_node *node,
2509 struct backref_edge *edges[])
2510{
2511 struct backref_node *next;
2512 struct btrfs_root *root;
2513 int index = 0;
2514
2515 next = node;
2516 while (1) {
2517 cond_resched();
2518 next = walk_up_backref(next, edges, &index);
2519 root = next->root;
2520 BUG_ON(!root);
2521 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2522
2523 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2524 record_reloc_root_in_trans(trans, root);
2525 break;
2526 }
2527
2528 btrfs_record_root_in_trans(trans, root);
2529 root = root->reloc_root;
2530
2531 if (next->new_bytenr != root->node->start) {
2532 BUG_ON(next->new_bytenr);
2533 BUG_ON(!list_empty(&next->list));
2534 next->new_bytenr = root->node->start;
2535 next->root = root;
2536 list_add_tail(&next->list,
2537 &rc->backref_cache.changed);
2538 __mark_block_processed(rc, next);
2539 break;
2540 }
2541
2542 WARN_ON(1);
2543 root = NULL;
2544 next = walk_down_backref(edges, &index);
2545 if (!next || next->level <= node->level)
2546 break;
2547 }
2548 if (!root)
2549 return NULL;
2550
2551 next = node;
2552 /* setup backref node path for btrfs_reloc_cow_block */
2553 while (1) {
2554 rc->backref_cache.path[next->level] = next;
2555 if (--index < 0)
2556 break;
2557 next = edges[index]->node[UPPER];
2558 }
2559 return root;
2560}
2561
2562/*
2563 * select a tree root for relocation. return NULL if the block
2564 * is reference counted. we should use do_relocation() in this
2565 * case. return a tree root pointer if the block isn't reference
2566 * counted. return -ENOENT if the block is root of reloc tree.
2567 */
2568static noinline_for_stack
2569struct btrfs_root *select_one_root(struct backref_node *node)
2570{
2571 struct backref_node *next;
2572 struct btrfs_root *root;
2573 struct btrfs_root *fs_root = NULL;
2574 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2575 int index = 0;
2576
2577 next = node;
2578 while (1) {
2579 cond_resched();
2580 next = walk_up_backref(next, edges, &index);
2581 root = next->root;
2582 BUG_ON(!root);
2583
2584 /* no other choice for non-references counted tree */
2585 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2586 return root;
2587
2588 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2589 fs_root = root;
2590
2591 if (next != node)
2592 return NULL;
2593
2594 next = walk_down_backref(edges, &index);
2595 if (!next || next->level <= node->level)
2596 break;
2597 }
2598
2599 if (!fs_root)
2600 return ERR_PTR(-ENOENT);
2601 return fs_root;
2602}
2603
2604static noinline_for_stack
2605u64 calcu_metadata_size(struct reloc_control *rc,
2606 struct backref_node *node, int reserve)
2607{
2608 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2609 struct backref_node *next = node;
2610 struct backref_edge *edge;
2611 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2612 u64 num_bytes = 0;
2613 int index = 0;
2614
2615 BUG_ON(reserve && node->processed);
2616
2617 while (next) {
2618 cond_resched();
2619 while (1) {
2620 if (next->processed && (reserve || next != node))
2621 break;
2622
2623 num_bytes += fs_info->nodesize;
2624
2625 if (list_empty(&next->upper))
2626 break;
2627
2628 edge = list_entry(next->upper.next,
2629 struct backref_edge, list[LOWER]);
2630 edges[index++] = edge;
2631 next = edge->node[UPPER];
2632 }
2633 next = walk_down_backref(edges, &index);
2634 }
2635 return num_bytes;
2636}
2637
2638static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2639 struct reloc_control *rc,
2640 struct backref_node *node)
2641{
2642 struct btrfs_root *root = rc->extent_root;
2643 struct btrfs_fs_info *fs_info = root->fs_info;
2644 u64 num_bytes;
2645 int ret;
2646 u64 tmp;
2647
2648 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2649
2650 trans->block_rsv = rc->block_rsv;
2651 rc->reserved_bytes += num_bytes;
2652
2653 /*
2654 * We are under a transaction here so we can only do limited flushing.
2655 * If we get an enospc just kick back -EAGAIN so we know to drop the
2656 * transaction and try to refill when we can flush all the things.
2657 */
2658 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2659 BTRFS_RESERVE_FLUSH_LIMIT);
2660 if (ret) {
2661 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2662 while (tmp <= rc->reserved_bytes)
2663 tmp <<= 1;
2664 /*
2665 * only one thread can access block_rsv at this point,
2666 * so we don't need hold lock to protect block_rsv.
2667 * we expand more reservation size here to allow enough
2668 * space for relocation and we will return eailer in
2669 * enospc case.
2670 */
2671 rc->block_rsv->size = tmp + fs_info->nodesize *
2672 RELOCATION_RESERVED_NODES;
2673 return -EAGAIN;
2674 }
2675
2676 return 0;
2677}
2678
2679/*
2680 * relocate a block tree, and then update pointers in upper level
2681 * blocks that reference the block to point to the new location.
2682 *
2683 * if called by link_to_upper, the block has already been relocated.
2684 * in that case this function just updates pointers.
2685 */
2686static int do_relocation(struct btrfs_trans_handle *trans,
2687 struct reloc_control *rc,
2688 struct backref_node *node,
2689 struct btrfs_key *key,
2690 struct btrfs_path *path, int lowest)
2691{
2692 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2693 struct backref_node *upper;
2694 struct backref_edge *edge;
2695 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2696 struct btrfs_root *root;
2697 struct extent_buffer *eb;
2698 u32 blocksize;
2699 u64 bytenr;
2700 u64 generation;
2701 int slot;
2702 int ret;
2703 int err = 0;
2704
2705 BUG_ON(lowest && node->eb);
2706
2707 path->lowest_level = node->level + 1;
2708 rc->backref_cache.path[node->level] = node;
2709 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2710 cond_resched();
2711
2712 upper = edge->node[UPPER];
2713 root = select_reloc_root(trans, rc, upper, edges);
2714 BUG_ON(!root);
2715
2716 if (upper->eb && !upper->locked) {
2717 if (!lowest) {
2718 ret = btrfs_bin_search(upper->eb, key,
2719 upper->level, &slot);
2720 BUG_ON(ret);
2721 bytenr = btrfs_node_blockptr(upper->eb, slot);
2722 if (node->eb->start == bytenr)
2723 goto next;
2724 }
2725 drop_node_buffer(upper);
2726 }
2727
2728 if (!upper->eb) {
2729 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2730 if (ret) {
2731 if (ret < 0)
2732 err = ret;
2733 else
2734 err = -ENOENT;
2735
2736 btrfs_release_path(path);
2737 break;
2738 }
2739
2740 if (!upper->eb) {
2741 upper->eb = path->nodes[upper->level];
2742 path->nodes[upper->level] = NULL;
2743 } else {
2744 BUG_ON(upper->eb != path->nodes[upper->level]);
2745 }
2746
2747 upper->locked = 1;
2748 path->locks[upper->level] = 0;
2749
2750 slot = path->slots[upper->level];
2751 btrfs_release_path(path);
2752 } else {
2753 ret = btrfs_bin_search(upper->eb, key, upper->level,
2754 &slot);
2755 BUG_ON(ret);
2756 }
2757
2758 bytenr = btrfs_node_blockptr(upper->eb, slot);
2759 if (lowest) {
2760 if (bytenr != node->bytenr) {
2761 btrfs_err(root->fs_info,
2762 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2763 bytenr, node->bytenr, slot,
2764 upper->eb->start);
2765 err = -EIO;
2766 goto next;
2767 }
2768 } else {
2769 if (node->eb->start == bytenr)
2770 goto next;
2771 }
2772
2773 blocksize = root->fs_info->nodesize;
2774 generation = btrfs_node_ptr_generation(upper->eb, slot);
2775 eb = read_tree_block(fs_info, bytenr, generation);
2776 if (IS_ERR(eb)) {
2777 err = PTR_ERR(eb);
2778 goto next;
2779 } else if (!extent_buffer_uptodate(eb)) {
2780 free_extent_buffer(eb);
2781 err = -EIO;
2782 goto next;
2783 }
2784 btrfs_tree_lock(eb);
2785 btrfs_set_lock_blocking(eb);
2786
2787 if (!node->eb) {
2788 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2789 slot, &eb);
2790 btrfs_tree_unlock(eb);
2791 free_extent_buffer(eb);
2792 if (ret < 0) {
2793 err = ret;
2794 goto next;
2795 }
2796 BUG_ON(node->eb != eb);
2797 } else {
2798 btrfs_set_node_blockptr(upper->eb, slot,
2799 node->eb->start);
2800 btrfs_set_node_ptr_generation(upper->eb, slot,
2801 trans->transid);
2802 btrfs_mark_buffer_dirty(upper->eb);
2803
2804 ret = btrfs_inc_extent_ref(trans, root->fs_info,
2805 node->eb->start, blocksize,
2806 upper->eb->start,
2807 btrfs_header_owner(upper->eb),
2808 node->level, 0);
2809 BUG_ON(ret);
2810
2811 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2812 BUG_ON(ret);
2813 }
2814next:
2815 if (!upper->pending)
2816 drop_node_buffer(upper);
2817 else
2818 unlock_node_buffer(upper);
2819 if (err)
2820 break;
2821 }
2822
2823 if (!err && node->pending) {
2824 drop_node_buffer(node);
2825 list_move_tail(&node->list, &rc->backref_cache.changed);
2826 node->pending = 0;
2827 }
2828
2829 path->lowest_level = 0;
2830 BUG_ON(err == -ENOSPC);
2831 return err;
2832}
2833
2834static int link_to_upper(struct btrfs_trans_handle *trans,
2835 struct reloc_control *rc,
2836 struct backref_node *node,
2837 struct btrfs_path *path)
2838{
2839 struct btrfs_key key;
2840
2841 btrfs_node_key_to_cpu(node->eb, &key, 0);
2842 return do_relocation(trans, rc, node, &key, path, 0);
2843}
2844
2845static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2846 struct reloc_control *rc,
2847 struct btrfs_path *path, int err)
2848{
2849 LIST_HEAD(list);
2850 struct backref_cache *cache = &rc->backref_cache;
2851 struct backref_node *node;
2852 int level;
2853 int ret;
2854
2855 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2856 while (!list_empty(&cache->pending[level])) {
2857 node = list_entry(cache->pending[level].next,
2858 struct backref_node, list);
2859 list_move_tail(&node->list, &list);
2860 BUG_ON(!node->pending);
2861
2862 if (!err) {
2863 ret = link_to_upper(trans, rc, node, path);
2864 if (ret < 0)
2865 err = ret;
2866 }
2867 }
2868 list_splice_init(&list, &cache->pending[level]);
2869 }
2870 return err;
2871}
2872
2873static void mark_block_processed(struct reloc_control *rc,
2874 u64 bytenr, u32 blocksize)
2875{
2876 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2877 EXTENT_DIRTY);
2878}
2879
2880static void __mark_block_processed(struct reloc_control *rc,
2881 struct backref_node *node)
2882{
2883 u32 blocksize;
2884 if (node->level == 0 ||
2885 in_block_group(node->bytenr, rc->block_group)) {
2886 blocksize = rc->extent_root->fs_info->nodesize;
2887 mark_block_processed(rc, node->bytenr, blocksize);
2888 }
2889 node->processed = 1;
2890}
2891
2892/*
2893 * mark a block and all blocks directly/indirectly reference the block
2894 * as processed.
2895 */
2896static void update_processed_blocks(struct reloc_control *rc,
2897 struct backref_node *node)
2898{
2899 struct backref_node *next = node;
2900 struct backref_edge *edge;
2901 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2902 int index = 0;
2903
2904 while (next) {
2905 cond_resched();
2906 while (1) {
2907 if (next->processed)
2908 break;
2909
2910 __mark_block_processed(rc, next);
2911
2912 if (list_empty(&next->upper))
2913 break;
2914
2915 edge = list_entry(next->upper.next,
2916 struct backref_edge, list[LOWER]);
2917 edges[index++] = edge;
2918 next = edge->node[UPPER];
2919 }
2920 next = walk_down_backref(edges, &index);
2921 }
2922}
2923
2924static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2925{
2926 u32 blocksize = rc->extent_root->fs_info->nodesize;
2927
2928 if (test_range_bit(&rc->processed_blocks, bytenr,
2929 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2930 return 1;
2931 return 0;
2932}
2933
2934static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2935 struct tree_block *block)
2936{
2937 struct extent_buffer *eb;
2938
2939 BUG_ON(block->key_ready);
2940 eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
2941 if (IS_ERR(eb)) {
2942 return PTR_ERR(eb);
2943 } else if (!extent_buffer_uptodate(eb)) {
2944 free_extent_buffer(eb);
2945 return -EIO;
2946 }
2947 WARN_ON(btrfs_header_level(eb) != block->level);
2948 if (block->level == 0)
2949 btrfs_item_key_to_cpu(eb, &block->key, 0);
2950 else
2951 btrfs_node_key_to_cpu(eb, &block->key, 0);
2952 free_extent_buffer(eb);
2953 block->key_ready = 1;
2954 return 0;
2955}
2956
2957/*
2958 * helper function to relocate a tree block
2959 */
2960static int relocate_tree_block(struct btrfs_trans_handle *trans,
2961 struct reloc_control *rc,
2962 struct backref_node *node,
2963 struct btrfs_key *key,
2964 struct btrfs_path *path)
2965{
2966 struct btrfs_root *root;
2967 int ret = 0;
2968
2969 if (!node)
2970 return 0;
2971
2972 BUG_ON(node->processed);
2973 root = select_one_root(node);
2974 if (root == ERR_PTR(-ENOENT)) {
2975 update_processed_blocks(rc, node);
2976 goto out;
2977 }
2978
2979 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2980 ret = reserve_metadata_space(trans, rc, node);
2981 if (ret)
2982 goto out;
2983 }
2984
2985 if (root) {
2986 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987 BUG_ON(node->new_bytenr);
2988 BUG_ON(!list_empty(&node->list));
2989 btrfs_record_root_in_trans(trans, root);
2990 root = root->reloc_root;
2991 node->new_bytenr = root->node->start;
2992 node->root = root;
2993 list_add_tail(&node->list, &rc->backref_cache.changed);
2994 } else {
2995 path->lowest_level = node->level;
2996 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2997 btrfs_release_path(path);
2998 if (ret > 0)
2999 ret = 0;
3000 }
3001 if (!ret)
3002 update_processed_blocks(rc, node);
3003 } else {
3004 ret = do_relocation(trans, rc, node, key, path, 1);
3005 }
3006out:
3007 if (ret || node->level == 0 || node->cowonly)
3008 remove_backref_node(&rc->backref_cache, node);
3009 return ret;
3010}
3011
3012/*
3013 * relocate a list of blocks
3014 */
3015static noinline_for_stack
3016int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3017 struct reloc_control *rc, struct rb_root *blocks)
3018{
3019 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3020 struct backref_node *node;
3021 struct btrfs_path *path;
3022 struct tree_block *block;
3023 struct rb_node *rb_node;
3024 int ret;
3025 int err = 0;
3026
3027 path = btrfs_alloc_path();
3028 if (!path) {
3029 err = -ENOMEM;
3030 goto out_free_blocks;
3031 }
3032
3033 rb_node = rb_first(blocks);
3034 while (rb_node) {
3035 block = rb_entry(rb_node, struct tree_block, rb_node);
3036 if (!block->key_ready)
3037 readahead_tree_block(fs_info, block->bytenr);
3038 rb_node = rb_next(rb_node);
3039 }
3040
3041 rb_node = rb_first(blocks);
3042 while (rb_node) {
3043 block = rb_entry(rb_node, struct tree_block, rb_node);
3044 if (!block->key_ready) {
3045 err = get_tree_block_key(fs_info, block);
3046 if (err)
3047 goto out_free_path;
3048 }
3049 rb_node = rb_next(rb_node);
3050 }
3051
3052 rb_node = rb_first(blocks);
3053 while (rb_node) {
3054 block = rb_entry(rb_node, struct tree_block, rb_node);
3055
3056 node = build_backref_tree(rc, &block->key,
3057 block->level, block->bytenr);
3058 if (IS_ERR(node)) {
3059 err = PTR_ERR(node);
3060 goto out;
3061 }
3062
3063 ret = relocate_tree_block(trans, rc, node, &block->key,
3064 path);
3065 if (ret < 0) {
3066 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3067 err = ret;
3068 goto out;
3069 }
3070 rb_node = rb_next(rb_node);
3071 }
3072out:
3073 err = finish_pending_nodes(trans, rc, path, err);
3074
3075out_free_path:
3076 btrfs_free_path(path);
3077out_free_blocks:
3078 free_block_list(blocks);
3079 return err;
3080}
3081
3082static noinline_for_stack
3083int prealloc_file_extent_cluster(struct inode *inode,
3084 struct file_extent_cluster *cluster)
3085{
3086 u64 alloc_hint = 0;
3087 u64 start;
3088 u64 end;
3089 u64 offset = BTRFS_I(inode)->index_cnt;
3090 u64 num_bytes;
3091 int nr = 0;
3092 int ret = 0;
3093 u64 prealloc_start = cluster->start - offset;
3094 u64 prealloc_end = cluster->end - offset;
3095 u64 cur_offset;
3096
3097 BUG_ON(cluster->start != cluster->boundary[0]);
3098 inode_lock(inode);
3099
3100 ret = btrfs_check_data_free_space(inode, prealloc_start,
3101 prealloc_end + 1 - prealloc_start);
3102 if (ret)
3103 goto out;
3104
3105 cur_offset = prealloc_start;
3106 while (nr < cluster->nr) {
3107 start = cluster->boundary[nr] - offset;
3108 if (nr + 1 < cluster->nr)
3109 end = cluster->boundary[nr + 1] - 1 - offset;
3110 else
3111 end = cluster->end - offset;
3112
3113 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3114 num_bytes = end + 1 - start;
3115 if (cur_offset < start)
3116 btrfs_free_reserved_data_space(inode, cur_offset,
3117 start - cur_offset);
3118 ret = btrfs_prealloc_file_range(inode, 0, start,
3119 num_bytes, num_bytes,
3120 end + 1, &alloc_hint);
3121 cur_offset = end + 1;
3122 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3123 if (ret)
3124 break;
3125 nr++;
3126 }
3127 if (cur_offset < prealloc_end)
3128 btrfs_free_reserved_data_space(inode, cur_offset,
3129 prealloc_end + 1 - cur_offset);
3130out:
3131 inode_unlock(inode);
3132 return ret;
3133}
3134
3135static noinline_for_stack
3136int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3137 u64 block_start)
3138{
3139 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3140 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3141 struct extent_map *em;
3142 int ret = 0;
3143
3144 em = alloc_extent_map();
3145 if (!em)
3146 return -ENOMEM;
3147
3148 em->start = start;
3149 em->len = end + 1 - start;
3150 em->block_len = em->len;
3151 em->block_start = block_start;
3152 em->bdev = fs_info->fs_devices->latest_bdev;
3153 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3154
3155 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3156 while (1) {
3157 write_lock(&em_tree->lock);
3158 ret = add_extent_mapping(em_tree, em, 0);
3159 write_unlock(&em_tree->lock);
3160 if (ret != -EEXIST) {
3161 free_extent_map(em);
3162 break;
3163 }
3164 btrfs_drop_extent_cache(inode, start, end, 0);
3165 }
3166 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3167 return ret;
3168}
3169
3170static int relocate_file_extent_cluster(struct inode *inode,
3171 struct file_extent_cluster *cluster)
3172{
3173 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3174 u64 page_start;
3175 u64 page_end;
3176 u64 offset = BTRFS_I(inode)->index_cnt;
3177 unsigned long index;
3178 unsigned long last_index;
3179 struct page *page;
3180 struct file_ra_state *ra;
3181 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3182 int nr = 0;
3183 int ret = 0;
3184
3185 if (!cluster->nr)
3186 return 0;
3187
3188 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3189 if (!ra)
3190 return -ENOMEM;
3191
3192 ret = prealloc_file_extent_cluster(inode, cluster);
3193 if (ret)
3194 goto out;
3195
3196 file_ra_state_init(ra, inode->i_mapping);
3197
3198 ret = setup_extent_mapping(inode, cluster->start - offset,
3199 cluster->end - offset, cluster->start);
3200 if (ret)
3201 goto out;
3202
3203 index = (cluster->start - offset) >> PAGE_SHIFT;
3204 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3205 while (index <= last_index) {
3206 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3207 if (ret)
3208 goto out;
3209
3210 page = find_lock_page(inode->i_mapping, index);
3211 if (!page) {
3212 page_cache_sync_readahead(inode->i_mapping,
3213 ra, NULL, index,
3214 last_index + 1 - index);
3215 page = find_or_create_page(inode->i_mapping, index,
3216 mask);
3217 if (!page) {
3218 btrfs_delalloc_release_metadata(inode,
3219 PAGE_SIZE);
3220 ret = -ENOMEM;
3221 goto out;
3222 }
3223 }
3224
3225 if (PageReadahead(page)) {
3226 page_cache_async_readahead(inode->i_mapping,
3227 ra, NULL, page, index,
3228 last_index + 1 - index);
3229 }
3230
3231 if (!PageUptodate(page)) {
3232 btrfs_readpage(NULL, page);
3233 lock_page(page);
3234 if (!PageUptodate(page)) {
3235 unlock_page(page);
3236 put_page(page);
3237 btrfs_delalloc_release_metadata(inode,
3238 PAGE_SIZE);
3239 ret = -EIO;
3240 goto out;
3241 }
3242 }
3243
3244 page_start = page_offset(page);
3245 page_end = page_start + PAGE_SIZE - 1;
3246
3247 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3248
3249 set_page_extent_mapped(page);
3250
3251 if (nr < cluster->nr &&
3252 page_start + offset == cluster->boundary[nr]) {
3253 set_extent_bits(&BTRFS_I(inode)->io_tree,
3254 page_start, page_end,
3255 EXTENT_BOUNDARY);
3256 nr++;
3257 }
3258
3259 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
3260 set_page_dirty(page);
3261
3262 unlock_extent(&BTRFS_I(inode)->io_tree,
3263 page_start, page_end);
3264 unlock_page(page);
3265 put_page(page);
3266
3267 index++;
3268 balance_dirty_pages_ratelimited(inode->i_mapping);
3269 btrfs_throttle(fs_info);
3270 }
3271 WARN_ON(nr != cluster->nr);
3272out:
3273 kfree(ra);
3274 return ret;
3275}
3276
3277static noinline_for_stack
3278int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3279 struct file_extent_cluster *cluster)
3280{
3281 int ret;
3282
3283 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3284 ret = relocate_file_extent_cluster(inode, cluster);
3285 if (ret)
3286 return ret;
3287 cluster->nr = 0;
3288 }
3289
3290 if (!cluster->nr)
3291 cluster->start = extent_key->objectid;
3292 else
3293 BUG_ON(cluster->nr >= MAX_EXTENTS);
3294 cluster->end = extent_key->objectid + extent_key->offset - 1;
3295 cluster->boundary[cluster->nr] = extent_key->objectid;
3296 cluster->nr++;
3297
3298 if (cluster->nr >= MAX_EXTENTS) {
3299 ret = relocate_file_extent_cluster(inode, cluster);
3300 if (ret)
3301 return ret;
3302 cluster->nr = 0;
3303 }
3304 return 0;
3305}
3306
3307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3308static int get_ref_objectid_v0(struct reloc_control *rc,
3309 struct btrfs_path *path,
3310 struct btrfs_key *extent_key,
3311 u64 *ref_objectid, int *path_change)
3312{
3313 struct btrfs_key key;
3314 struct extent_buffer *leaf;
3315 struct btrfs_extent_ref_v0 *ref0;
3316 int ret;
3317 int slot;
3318
3319 leaf = path->nodes[0];
3320 slot = path->slots[0];
3321 while (1) {
3322 if (slot >= btrfs_header_nritems(leaf)) {
3323 ret = btrfs_next_leaf(rc->extent_root, path);
3324 if (ret < 0)
3325 return ret;
3326 BUG_ON(ret > 0);
3327 leaf = path->nodes[0];
3328 slot = path->slots[0];
3329 if (path_change)
3330 *path_change = 1;
3331 }
3332 btrfs_item_key_to_cpu(leaf, &key, slot);
3333 if (key.objectid != extent_key->objectid)
3334 return -ENOENT;
3335
3336 if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3337 slot++;
3338 continue;
3339 }
3340 ref0 = btrfs_item_ptr(leaf, slot,
3341 struct btrfs_extent_ref_v0);
3342 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3343 break;
3344 }
3345 return 0;
3346}
3347#endif
3348
3349/*
3350 * helper to add a tree block to the list.
3351 * the major work is getting the generation and level of the block
3352 */
3353static int add_tree_block(struct reloc_control *rc,
3354 struct btrfs_key *extent_key,
3355 struct btrfs_path *path,
3356 struct rb_root *blocks)
3357{
3358 struct extent_buffer *eb;
3359 struct btrfs_extent_item *ei;
3360 struct btrfs_tree_block_info *bi;
3361 struct tree_block *block;
3362 struct rb_node *rb_node;
3363 u32 item_size;
3364 int level = -1;
3365 u64 generation;
3366
3367 eb = path->nodes[0];
3368 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3369
3370 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3371 item_size >= sizeof(*ei) + sizeof(*bi)) {
3372 ei = btrfs_item_ptr(eb, path->slots[0],
3373 struct btrfs_extent_item);
3374 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3375 bi = (struct btrfs_tree_block_info *)(ei + 1);
3376 level = btrfs_tree_block_level(eb, bi);
3377 } else {
3378 level = (int)extent_key->offset;
3379 }
3380 generation = btrfs_extent_generation(eb, ei);
3381 } else {
3382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3383 u64 ref_owner;
3384 int ret;
3385
3386 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3387 ret = get_ref_objectid_v0(rc, path, extent_key,
3388 &ref_owner, NULL);
3389 if (ret < 0)
3390 return ret;
3391 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3392 level = (int)ref_owner;
3393 /* FIXME: get real generation */
3394 generation = 0;
3395#else
3396 BUG();
3397#endif
3398 }
3399
3400 btrfs_release_path(path);
3401
3402 BUG_ON(level == -1);
3403
3404 block = kmalloc(sizeof(*block), GFP_NOFS);
3405 if (!block)
3406 return -ENOMEM;
3407
3408 block->bytenr = extent_key->objectid;
3409 block->key.objectid = rc->extent_root->fs_info->nodesize;
3410 block->key.offset = generation;
3411 block->level = level;
3412 block->key_ready = 0;
3413
3414 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3415 if (rb_node)
3416 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3417
3418 return 0;
3419}
3420
3421/*
3422 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3423 */
3424static int __add_tree_block(struct reloc_control *rc,
3425 u64 bytenr, u32 blocksize,
3426 struct rb_root *blocks)
3427{
3428 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3429 struct btrfs_path *path;
3430 struct btrfs_key key;
3431 int ret;
3432 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3433
3434 if (tree_block_processed(bytenr, rc))
3435 return 0;
3436
3437 if (tree_search(blocks, bytenr))
3438 return 0;
3439
3440 path = btrfs_alloc_path();
3441 if (!path)
3442 return -ENOMEM;
3443again:
3444 key.objectid = bytenr;
3445 if (skinny) {
3446 key.type = BTRFS_METADATA_ITEM_KEY;
3447 key.offset = (u64)-1;
3448 } else {
3449 key.type = BTRFS_EXTENT_ITEM_KEY;
3450 key.offset = blocksize;
3451 }
3452
3453 path->search_commit_root = 1;
3454 path->skip_locking = 1;
3455 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3456 if (ret < 0)
3457 goto out;
3458
3459 if (ret > 0 && skinny) {
3460 if (path->slots[0]) {
3461 path->slots[0]--;
3462 btrfs_item_key_to_cpu(path->nodes[0], &key,
3463 path->slots[0]);
3464 if (key.objectid == bytenr &&
3465 (key.type == BTRFS_METADATA_ITEM_KEY ||
3466 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3467 key.offset == blocksize)))
3468 ret = 0;
3469 }
3470
3471 if (ret) {
3472 skinny = false;
3473 btrfs_release_path(path);
3474 goto again;
3475 }
3476 }
3477 BUG_ON(ret);
3478
3479 ret = add_tree_block(rc, &key, path, blocks);
3480out:
3481 btrfs_free_path(path);
3482 return ret;
3483}
3484
3485/*
3486 * helper to check if the block use full backrefs for pointers in it
3487 */
3488static int block_use_full_backref(struct reloc_control *rc,
3489 struct extent_buffer *eb)
3490{
3491 u64 flags;
3492 int ret;
3493
3494 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3495 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3496 return 1;
3497
3498 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3499 eb->start, btrfs_header_level(eb), 1,
3500 NULL, &flags);
3501 BUG_ON(ret);
3502
3503 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3504 ret = 1;
3505 else
3506 ret = 0;
3507 return ret;
3508}
3509
3510static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3511 struct btrfs_block_group_cache *block_group,
3512 struct inode *inode,
3513 u64 ino)
3514{
3515 struct btrfs_key key;
3516 struct btrfs_root *root = fs_info->tree_root;
3517 struct btrfs_trans_handle *trans;
3518 int ret = 0;
3519
3520 if (inode)
3521 goto truncate;
3522
3523 key.objectid = ino;
3524 key.type = BTRFS_INODE_ITEM_KEY;
3525 key.offset = 0;
3526
3527 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3528 if (IS_ERR(inode) || is_bad_inode(inode)) {
3529 if (!IS_ERR(inode))
3530 iput(inode);
3531 return -ENOENT;
3532 }
3533
3534truncate:
3535 ret = btrfs_check_trunc_cache_free_space(fs_info,
3536 &fs_info->global_block_rsv);
3537 if (ret)
3538 goto out;
3539
3540 trans = btrfs_join_transaction(root);
3541 if (IS_ERR(trans)) {
3542 ret = PTR_ERR(trans);
3543 goto out;
3544 }
3545
3546 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3547
3548 btrfs_end_transaction(trans);
3549 btrfs_btree_balance_dirty(fs_info);
3550out:
3551 iput(inode);
3552 return ret;
3553}
3554
3555/*
3556 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3557 * this function scans fs tree to find blocks reference the data extent
3558 */
3559static int find_data_references(struct reloc_control *rc,
3560 struct btrfs_key *extent_key,
3561 struct extent_buffer *leaf,
3562 struct btrfs_extent_data_ref *ref,
3563 struct rb_root *blocks)
3564{
3565 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3566 struct btrfs_path *path;
3567 struct tree_block *block;
3568 struct btrfs_root *root;
3569 struct btrfs_file_extent_item *fi;
3570 struct rb_node *rb_node;
3571 struct btrfs_key key;
3572 u64 ref_root;
3573 u64 ref_objectid;
3574 u64 ref_offset;
3575 u32 ref_count;
3576 u32 nritems;
3577 int err = 0;
3578 int added = 0;
3579 int counted;
3580 int ret;
3581
3582 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3583 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3584 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3585 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3586
3587 /*
3588 * This is an extent belonging to the free space cache, lets just delete
3589 * it and redo the search.
3590 */
3591 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3592 ret = delete_block_group_cache(fs_info, rc->block_group,
3593 NULL, ref_objectid);
3594 if (ret != -ENOENT)
3595 return ret;
3596 ret = 0;
3597 }
3598
3599 path = btrfs_alloc_path();
3600 if (!path)
3601 return -ENOMEM;
3602 path->reada = READA_FORWARD;
3603
3604 root = read_fs_root(fs_info, ref_root);
3605 if (IS_ERR(root)) {
3606 err = PTR_ERR(root);
3607 goto out;
3608 }
3609
3610 key.objectid = ref_objectid;
3611 key.type = BTRFS_EXTENT_DATA_KEY;
3612 if (ref_offset > ((u64)-1 << 32))
3613 key.offset = 0;
3614 else
3615 key.offset = ref_offset;
3616
3617 path->search_commit_root = 1;
3618 path->skip_locking = 1;
3619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3620 if (ret < 0) {
3621 err = ret;
3622 goto out;
3623 }
3624
3625 leaf = path->nodes[0];
3626 nritems = btrfs_header_nritems(leaf);
3627 /*
3628 * the references in tree blocks that use full backrefs
3629 * are not counted in
3630 */
3631 if (block_use_full_backref(rc, leaf))
3632 counted = 0;
3633 else
3634 counted = 1;
3635 rb_node = tree_search(blocks, leaf->start);
3636 if (rb_node) {
3637 if (counted)
3638 added = 1;
3639 else
3640 path->slots[0] = nritems;
3641 }
3642
3643 while (ref_count > 0) {
3644 while (path->slots[0] >= nritems) {
3645 ret = btrfs_next_leaf(root, path);
3646 if (ret < 0) {
3647 err = ret;
3648 goto out;
3649 }
3650 if (WARN_ON(ret > 0))
3651 goto out;
3652
3653 leaf = path->nodes[0];
3654 nritems = btrfs_header_nritems(leaf);
3655 added = 0;
3656
3657 if (block_use_full_backref(rc, leaf))
3658 counted = 0;
3659 else
3660 counted = 1;
3661 rb_node = tree_search(blocks, leaf->start);
3662 if (rb_node) {
3663 if (counted)
3664 added = 1;
3665 else
3666 path->slots[0] = nritems;
3667 }
3668 }
3669
3670 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3671 if (WARN_ON(key.objectid != ref_objectid ||
3672 key.type != BTRFS_EXTENT_DATA_KEY))
3673 break;
3674
3675 fi = btrfs_item_ptr(leaf, path->slots[0],
3676 struct btrfs_file_extent_item);
3677
3678 if (btrfs_file_extent_type(leaf, fi) ==
3679 BTRFS_FILE_EXTENT_INLINE)
3680 goto next;
3681
3682 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3683 extent_key->objectid)
3684 goto next;
3685
3686 key.offset -= btrfs_file_extent_offset(leaf, fi);
3687 if (key.offset != ref_offset)
3688 goto next;
3689
3690 if (counted)
3691 ref_count--;
3692 if (added)
3693 goto next;
3694
3695 if (!tree_block_processed(leaf->start, rc)) {
3696 block = kmalloc(sizeof(*block), GFP_NOFS);
3697 if (!block) {
3698 err = -ENOMEM;
3699 break;
3700 }
3701 block->bytenr = leaf->start;
3702 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3703 block->level = 0;
3704 block->key_ready = 1;
3705 rb_node = tree_insert(blocks, block->bytenr,
3706 &block->rb_node);
3707 if (rb_node)
3708 backref_tree_panic(rb_node, -EEXIST,
3709 block->bytenr);
3710 }
3711 if (counted)
3712 added = 1;
3713 else
3714 path->slots[0] = nritems;
3715next:
3716 path->slots[0]++;
3717
3718 }
3719out:
3720 btrfs_free_path(path);
3721 return err;
3722}
3723
3724/*
3725 * helper to find all tree blocks that reference a given data extent
3726 */
3727static noinline_for_stack
3728int add_data_references(struct reloc_control *rc,
3729 struct btrfs_key *extent_key,
3730 struct btrfs_path *path,
3731 struct rb_root *blocks)
3732{
3733 struct btrfs_key key;
3734 struct extent_buffer *eb;
3735 struct btrfs_extent_data_ref *dref;
3736 struct btrfs_extent_inline_ref *iref;
3737 unsigned long ptr;
3738 unsigned long end;
3739 u32 blocksize = rc->extent_root->fs_info->nodesize;
3740 int ret = 0;
3741 int err = 0;
3742
3743 eb = path->nodes[0];
3744 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3745 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3746#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3747 if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3748 ptr = end;
3749 else
3750#endif
3751 ptr += sizeof(struct btrfs_extent_item);
3752
3753 while (ptr < end) {
3754 iref = (struct btrfs_extent_inline_ref *)ptr;
3755 key.type = btrfs_extent_inline_ref_type(eb, iref);
3756 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3757 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3758 ret = __add_tree_block(rc, key.offset, blocksize,
3759 blocks);
3760 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3761 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3762 ret = find_data_references(rc, extent_key,
3763 eb, dref, blocks);
3764 } else {
3765 BUG();
3766 }
3767 if (ret) {
3768 err = ret;
3769 goto out;
3770 }
3771 ptr += btrfs_extent_inline_ref_size(key.type);
3772 }
3773 WARN_ON(ptr > end);
3774
3775 while (1) {
3776 cond_resched();
3777 eb = path->nodes[0];
3778 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3779 ret = btrfs_next_leaf(rc->extent_root, path);
3780 if (ret < 0) {
3781 err = ret;
3782 break;
3783 }
3784 if (ret > 0)
3785 break;
3786 eb = path->nodes[0];
3787 }
3788
3789 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3790 if (key.objectid != extent_key->objectid)
3791 break;
3792
3793#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3794 if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3795 key.type == BTRFS_EXTENT_REF_V0_KEY) {
3796#else
3797 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3798 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3799#endif
3800 ret = __add_tree_block(rc, key.offset, blocksize,
3801 blocks);
3802 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3803 dref = btrfs_item_ptr(eb, path->slots[0],
3804 struct btrfs_extent_data_ref);
3805 ret = find_data_references(rc, extent_key,
3806 eb, dref, blocks);
3807 } else {
3808 ret = 0;
3809 }
3810 if (ret) {
3811 err = ret;
3812 break;
3813 }
3814 path->slots[0]++;
3815 }
3816out:
3817 btrfs_release_path(path);
3818 if (err)
3819 free_block_list(blocks);
3820 return err;
3821}
3822
3823/*
3824 * helper to find next unprocessed extent
3825 */
3826static noinline_for_stack
3827int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3828 struct btrfs_key *extent_key)
3829{
3830 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3831 struct btrfs_key key;
3832 struct extent_buffer *leaf;
3833 u64 start, end, last;
3834 int ret;
3835
3836 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3837 while (1) {
3838 cond_resched();
3839 if (rc->search_start >= last) {
3840 ret = 1;
3841 break;
3842 }
3843
3844 key.objectid = rc->search_start;
3845 key.type = BTRFS_EXTENT_ITEM_KEY;
3846 key.offset = 0;
3847
3848 path->search_commit_root = 1;
3849 path->skip_locking = 1;
3850 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3851 0, 0);
3852 if (ret < 0)
3853 break;
3854next:
3855 leaf = path->nodes[0];
3856 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3857 ret = btrfs_next_leaf(rc->extent_root, path);
3858 if (ret != 0)
3859 break;
3860 leaf = path->nodes[0];
3861 }
3862
3863 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864 if (key.objectid >= last) {
3865 ret = 1;
3866 break;
3867 }
3868
3869 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3870 key.type != BTRFS_METADATA_ITEM_KEY) {
3871 path->slots[0]++;
3872 goto next;
3873 }
3874
3875 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3876 key.objectid + key.offset <= rc->search_start) {
3877 path->slots[0]++;
3878 goto next;
3879 }
3880
3881 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3882 key.objectid + fs_info->nodesize <=
3883 rc->search_start) {
3884 path->slots[0]++;
3885 goto next;
3886 }
3887
3888 ret = find_first_extent_bit(&rc->processed_blocks,
3889 key.objectid, &start, &end,
3890 EXTENT_DIRTY, NULL);
3891
3892 if (ret == 0 && start <= key.objectid) {
3893 btrfs_release_path(path);
3894 rc->search_start = end + 1;
3895 } else {
3896 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3897 rc->search_start = key.objectid + key.offset;
3898 else
3899 rc->search_start = key.objectid +
3900 fs_info->nodesize;
3901 memcpy(extent_key, &key, sizeof(key));
3902 return 0;
3903 }
3904 }
3905 btrfs_release_path(path);
3906 return ret;
3907}
3908
3909static void set_reloc_control(struct reloc_control *rc)
3910{
3911 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3912
3913 mutex_lock(&fs_info->reloc_mutex);
3914 fs_info->reloc_ctl = rc;
3915 mutex_unlock(&fs_info->reloc_mutex);
3916}
3917
3918static void unset_reloc_control(struct reloc_control *rc)
3919{
3920 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3921
3922 mutex_lock(&fs_info->reloc_mutex);
3923 fs_info->reloc_ctl = NULL;
3924 mutex_unlock(&fs_info->reloc_mutex);
3925}
3926
3927static int check_extent_flags(u64 flags)
3928{
3929 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3930 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3931 return 1;
3932 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3933 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3934 return 1;
3935 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3936 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3937 return 1;
3938 return 0;
3939}
3940
3941static noinline_for_stack
3942int prepare_to_relocate(struct reloc_control *rc)
3943{
3944 struct btrfs_trans_handle *trans;
3945 int ret;
3946
3947 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3948 BTRFS_BLOCK_RSV_TEMP);
3949 if (!rc->block_rsv)
3950 return -ENOMEM;
3951
3952 memset(&rc->cluster, 0, sizeof(rc->cluster));
3953 rc->search_start = rc->block_group->key.objectid;
3954 rc->extents_found = 0;
3955 rc->nodes_relocated = 0;
3956 rc->merging_rsv_size = 0;
3957 rc->reserved_bytes = 0;
3958 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3959 RELOCATION_RESERVED_NODES;
3960 ret = btrfs_block_rsv_refill(rc->extent_root,
3961 rc->block_rsv, rc->block_rsv->size,
3962 BTRFS_RESERVE_FLUSH_ALL);
3963 if (ret)
3964 return ret;
3965
3966 rc->create_reloc_tree = 1;
3967 set_reloc_control(rc);
3968
3969 trans = btrfs_join_transaction(rc->extent_root);
3970 if (IS_ERR(trans)) {
3971 unset_reloc_control(rc);
3972 /*
3973 * extent tree is not a ref_cow tree and has no reloc_root to
3974 * cleanup. And callers are responsible to free the above
3975 * block rsv.
3976 */
3977 return PTR_ERR(trans);
3978 }
3979 btrfs_commit_transaction(trans);
3980 return 0;
3981}
3982
3983static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3984{
3985 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3986 struct rb_root blocks = RB_ROOT;
3987 struct btrfs_key key;
3988 struct btrfs_trans_handle *trans = NULL;
3989 struct btrfs_path *path;
3990 struct btrfs_extent_item *ei;
3991 u64 flags;
3992 u32 item_size;
3993 int ret;
3994 int err = 0;
3995 int progress = 0;
3996
3997 path = btrfs_alloc_path();
3998 if (!path)
3999 return -ENOMEM;
4000 path->reada = READA_FORWARD;
4001
4002 ret = prepare_to_relocate(rc);
4003 if (ret) {
4004 err = ret;
4005 goto out_free;
4006 }
4007
4008 while (1) {
4009 rc->reserved_bytes = 0;
4010 ret = btrfs_block_rsv_refill(rc->extent_root,
4011 rc->block_rsv, rc->block_rsv->size,
4012 BTRFS_RESERVE_FLUSH_ALL);
4013 if (ret) {
4014 err = ret;
4015 break;
4016 }
4017 progress++;
4018 trans = btrfs_start_transaction(rc->extent_root, 0);
4019 if (IS_ERR(trans)) {
4020 err = PTR_ERR(trans);
4021 trans = NULL;
4022 break;
4023 }
4024restart:
4025 if (update_backref_cache(trans, &rc->backref_cache)) {
4026 btrfs_end_transaction(trans);
4027 continue;
4028 }
4029
4030 ret = find_next_extent(rc, path, &key);
4031 if (ret < 0)
4032 err = ret;
4033 if (ret != 0)
4034 break;
4035
4036 rc->extents_found++;
4037
4038 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4039 struct btrfs_extent_item);
4040 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4041 if (item_size >= sizeof(*ei)) {
4042 flags = btrfs_extent_flags(path->nodes[0], ei);
4043 ret = check_extent_flags(flags);
4044 BUG_ON(ret);
4045
4046 } else {
4047#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4048 u64 ref_owner;
4049 int path_change = 0;
4050
4051 BUG_ON(item_size !=
4052 sizeof(struct btrfs_extent_item_v0));
4053 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4054 &path_change);
4055 if (ret < 0) {
4056 err = ret;
4057 break;
4058 }
4059 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4060 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4061 else
4062 flags = BTRFS_EXTENT_FLAG_DATA;
4063
4064 if (path_change) {
4065 btrfs_release_path(path);
4066
4067 path->search_commit_root = 1;
4068 path->skip_locking = 1;
4069 ret = btrfs_search_slot(NULL, rc->extent_root,
4070 &key, path, 0, 0);
4071 if (ret < 0) {
4072 err = ret;
4073 break;
4074 }
4075 BUG_ON(ret > 0);
4076 }
4077#else
4078 BUG();
4079#endif
4080 }
4081
4082 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4083 ret = add_tree_block(rc, &key, path, &blocks);
4084 } else if (rc->stage == UPDATE_DATA_PTRS &&
4085 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4086 ret = add_data_references(rc, &key, path, &blocks);
4087 } else {
4088 btrfs_release_path(path);
4089 ret = 0;
4090 }
4091 if (ret < 0) {
4092 err = ret;
4093 break;
4094 }
4095
4096 if (!RB_EMPTY_ROOT(&blocks)) {
4097 ret = relocate_tree_blocks(trans, rc, &blocks);
4098 if (ret < 0) {
4099 /*
4100 * if we fail to relocate tree blocks, force to update
4101 * backref cache when committing transaction.
4102 */
4103 rc->backref_cache.last_trans = trans->transid - 1;
4104
4105 if (ret != -EAGAIN) {
4106 err = ret;
4107 break;
4108 }
4109 rc->extents_found--;
4110 rc->search_start = key.objectid;
4111 }
4112 }
4113
4114 btrfs_end_transaction_throttle(trans);
4115 btrfs_btree_balance_dirty(fs_info);
4116 trans = NULL;
4117
4118 if (rc->stage == MOVE_DATA_EXTENTS &&
4119 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4120 rc->found_file_extent = 1;
4121 ret = relocate_data_extent(rc->data_inode,
4122 &key, &rc->cluster);
4123 if (ret < 0) {
4124 err = ret;
4125 break;
4126 }
4127 }
4128 }
4129 if (trans && progress && err == -ENOSPC) {
4130 ret = btrfs_force_chunk_alloc(trans, fs_info,
4131 rc->block_group->flags);
4132 if (ret == 1) {
4133 err = 0;
4134 progress = 0;
4135 goto restart;
4136 }
4137 }
4138
4139 btrfs_release_path(path);
4140 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4141
4142 if (trans) {
4143 btrfs_end_transaction_throttle(trans);
4144 btrfs_btree_balance_dirty(fs_info);
4145 }
4146
4147 if (!err) {
4148 ret = relocate_file_extent_cluster(rc->data_inode,
4149 &rc->cluster);
4150 if (ret < 0)
4151 err = ret;
4152 }
4153
4154 rc->create_reloc_tree = 0;
4155 set_reloc_control(rc);
4156
4157 backref_cache_cleanup(&rc->backref_cache);
4158 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4159
4160 err = prepare_to_merge(rc, err);
4161
4162 merge_reloc_roots(rc);
4163
4164 rc->merge_reloc_tree = 0;
4165 unset_reloc_control(rc);
4166 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4167
4168 /* get rid of pinned extents */
4169 trans = btrfs_join_transaction(rc->extent_root);
4170 if (IS_ERR(trans)) {
4171 err = PTR_ERR(trans);
4172 goto out_free;
4173 }
4174 btrfs_commit_transaction(trans);
4175out_free:
4176 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4177 btrfs_free_path(path);
4178 return err;
4179}
4180
4181static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4182 struct btrfs_root *root, u64 objectid)
4183{
4184 struct btrfs_path *path;
4185 struct btrfs_inode_item *item;
4186 struct extent_buffer *leaf;
4187 int ret;
4188
4189 path = btrfs_alloc_path();
4190 if (!path)
4191 return -ENOMEM;
4192
4193 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4194 if (ret)
4195 goto out;
4196
4197 leaf = path->nodes[0];
4198 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4199 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4200 btrfs_set_inode_generation(leaf, item, 1);
4201 btrfs_set_inode_size(leaf, item, 0);
4202 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4203 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4204 BTRFS_INODE_PREALLOC);
4205 btrfs_mark_buffer_dirty(leaf);
4206out:
4207 btrfs_free_path(path);
4208 return ret;
4209}
4210
4211/*
4212 * helper to create inode for data relocation.
4213 * the inode is in data relocation tree and its link count is 0
4214 */
4215static noinline_for_stack
4216struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4217 struct btrfs_block_group_cache *group)
4218{
4219 struct inode *inode = NULL;
4220 struct btrfs_trans_handle *trans;
4221 struct btrfs_root *root;
4222 struct btrfs_key key;
4223 u64 objectid;
4224 int err = 0;
4225
4226 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4227 if (IS_ERR(root))
4228 return ERR_CAST(root);
4229
4230 trans = btrfs_start_transaction(root, 6);
4231 if (IS_ERR(trans))
4232 return ERR_CAST(trans);
4233
4234 err = btrfs_find_free_objectid(root, &objectid);
4235 if (err)
4236 goto out;
4237
4238 err = __insert_orphan_inode(trans, root, objectid);
4239 BUG_ON(err);
4240
4241 key.objectid = objectid;
4242 key.type = BTRFS_INODE_ITEM_KEY;
4243 key.offset = 0;
4244 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4245 BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4246 BTRFS_I(inode)->index_cnt = group->key.objectid;
4247
4248 err = btrfs_orphan_add(trans, inode);
4249out:
4250 btrfs_end_transaction(trans);
4251 btrfs_btree_balance_dirty(fs_info);
4252 if (err) {
4253 if (inode)
4254 iput(inode);
4255 inode = ERR_PTR(err);
4256 }
4257 return inode;
4258}
4259
4260static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4261{
4262 struct reloc_control *rc;
4263
4264 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4265 if (!rc)
4266 return NULL;
4267
4268 INIT_LIST_HEAD(&rc->reloc_roots);
4269 backref_cache_init(&rc->backref_cache);
4270 mapping_tree_init(&rc->reloc_root_tree);
4271 extent_io_tree_init(&rc->processed_blocks,
4272 fs_info->btree_inode->i_mapping);
4273 return rc;
4274}
4275
4276/*
4277 * Print the block group being relocated
4278 */
4279static void describe_relocation(struct btrfs_fs_info *fs_info,
4280 struct btrfs_block_group_cache *block_group)
4281{
4282 char buf[128]; /* prefixed by a '|' that'll be dropped */
4283 u64 flags = block_group->flags;
4284
4285 /* Shouldn't happen */
4286 if (!flags) {
4287 strcpy(buf, "|NONE");
4288 } else {
4289 char *bp = buf;
4290
4291#define DESCRIBE_FLAG(f, d) \
4292 if (flags & BTRFS_BLOCK_GROUP_##f) { \
4293 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4294 flags &= ~BTRFS_BLOCK_GROUP_##f; \
4295 }
4296 DESCRIBE_FLAG(DATA, "data");
4297 DESCRIBE_FLAG(SYSTEM, "system");
4298 DESCRIBE_FLAG(METADATA, "metadata");
4299 DESCRIBE_FLAG(RAID0, "raid0");
4300 DESCRIBE_FLAG(RAID1, "raid1");
4301 DESCRIBE_FLAG(DUP, "dup");
4302 DESCRIBE_FLAG(RAID10, "raid10");
4303 DESCRIBE_FLAG(RAID5, "raid5");
4304 DESCRIBE_FLAG(RAID6, "raid6");
4305 if (flags)
4306 snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4307#undef DESCRIBE_FLAG
4308 }
4309
4310 btrfs_info(fs_info,
4311 "relocating block group %llu flags %s",
4312 block_group->key.objectid, buf + 1);
4313}
4314
4315/*
4316 * function to relocate all extents in a block group.
4317 */
4318int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4319{
4320 struct btrfs_root *extent_root = fs_info->extent_root;
4321 struct reloc_control *rc;
4322 struct inode *inode;
4323 struct btrfs_path *path;
4324 int ret;
4325 int rw = 0;
4326 int err = 0;
4327
4328 rc = alloc_reloc_control(fs_info);
4329 if (!rc)
4330 return -ENOMEM;
4331
4332 rc->extent_root = extent_root;
4333
4334 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4335 BUG_ON(!rc->block_group);
4336
4337 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4338 if (ret) {
4339 err = ret;
4340 goto out;
4341 }
4342 rw = 1;
4343
4344 path = btrfs_alloc_path();
4345 if (!path) {
4346 err = -ENOMEM;
4347 goto out;
4348 }
4349
4350 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4351 path);
4352 btrfs_free_path(path);
4353
4354 if (!IS_ERR(inode))
4355 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4356 else
4357 ret = PTR_ERR(inode);
4358
4359 if (ret && ret != -ENOENT) {
4360 err = ret;
4361 goto out;
4362 }
4363
4364 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4365 if (IS_ERR(rc->data_inode)) {
4366 err = PTR_ERR(rc->data_inode);
4367 rc->data_inode = NULL;
4368 goto out;
4369 }
4370
4371 describe_relocation(fs_info, rc->block_group);
4372
4373 btrfs_wait_block_group_reservations(rc->block_group);
4374 btrfs_wait_nocow_writers(rc->block_group);
4375 btrfs_wait_ordered_roots(fs_info, -1,
4376 rc->block_group->key.objectid,
4377 rc->block_group->key.offset);
4378
4379 while (1) {
4380 mutex_lock(&fs_info->cleaner_mutex);
4381 ret = relocate_block_group(rc);
4382 mutex_unlock(&fs_info->cleaner_mutex);
4383 if (ret < 0) {
4384 err = ret;
4385 goto out;
4386 }
4387
4388 if (rc->extents_found == 0)
4389 break;
4390
4391 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4392
4393 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4394 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4395 (u64)-1);
4396 if (ret) {
4397 err = ret;
4398 goto out;
4399 }
4400 invalidate_mapping_pages(rc->data_inode->i_mapping,
4401 0, -1);
4402 rc->stage = UPDATE_DATA_PTRS;
4403 }
4404 }
4405
4406 WARN_ON(rc->block_group->pinned > 0);
4407 WARN_ON(rc->block_group->reserved > 0);
4408 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410 if (err && rw)
4411 btrfs_dec_block_group_ro(rc->block_group);
4412 iput(rc->data_inode);
4413 btrfs_put_block_group(rc->block_group);
4414 kfree(rc);
4415 return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420 struct btrfs_fs_info *fs_info = root->fs_info;
4421 struct btrfs_trans_handle *trans;
4422 int ret, err;
4423
4424 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425 if (IS_ERR(trans))
4426 return PTR_ERR(trans);
4427
4428 memset(&root->root_item.drop_progress, 0,
4429 sizeof(root->root_item.drop_progress));
4430 root->root_item.drop_level = 0;
4431 btrfs_set_root_refs(&root->root_item, 0);
4432 ret = btrfs_update_root(trans, fs_info->tree_root,
4433 &root->root_key, &root->root_item);
4434
4435 err = btrfs_end_transaction(trans);
4436 if (err)
4437 return err;
4438 return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449 struct btrfs_fs_info *fs_info = root->fs_info;
4450 LIST_HEAD(reloc_roots);
4451 struct btrfs_key key;
4452 struct btrfs_root *fs_root;
4453 struct btrfs_root *reloc_root;
4454 struct btrfs_path *path;
4455 struct extent_buffer *leaf;
4456 struct reloc_control *rc = NULL;
4457 struct btrfs_trans_handle *trans;
4458 int ret;
4459 int err = 0;
4460
4461 path = btrfs_alloc_path();
4462 if (!path)
4463 return -ENOMEM;
4464 path->reada = READA_BACK;
4465
4466 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467 key.type = BTRFS_ROOT_ITEM_KEY;
4468 key.offset = (u64)-1;
4469
4470 while (1) {
4471 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472 path, 0, 0);
4473 if (ret < 0) {
4474 err = ret;
4475 goto out;
4476 }
4477 if (ret > 0) {
4478 if (path->slots[0] == 0)
4479 break;
4480 path->slots[0]--;
4481 }
4482 leaf = path->nodes[0];
4483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484 btrfs_release_path(path);
4485
4486 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487 key.type != BTRFS_ROOT_ITEM_KEY)
4488 break;
4489
4490 reloc_root = btrfs_read_fs_root(root, &key);
4491 if (IS_ERR(reloc_root)) {
4492 err = PTR_ERR(reloc_root);
4493 goto out;
4494 }
4495
4496 list_add(&reloc_root->root_list, &reloc_roots);
4497
4498 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499 fs_root = read_fs_root(fs_info,
4500 reloc_root->root_key.offset);
4501 if (IS_ERR(fs_root)) {
4502 ret = PTR_ERR(fs_root);
4503 if (ret != -ENOENT) {
4504 err = ret;
4505 goto out;
4506 }
4507 ret = mark_garbage_root(reloc_root);
4508 if (ret < 0) {
4509 err = ret;
4510 goto out;
4511 }
4512 }
4513 }
4514
4515 if (key.offset == 0)
4516 break;
4517
4518 key.offset--;
4519 }
4520 btrfs_release_path(path);
4521
4522 if (list_empty(&reloc_roots))
4523 goto out;
4524
4525 rc = alloc_reloc_control(fs_info);
4526 if (!rc) {
4527 err = -ENOMEM;
4528 goto out;
4529 }
4530
4531 rc->extent_root = fs_info->extent_root;
4532
4533 set_reloc_control(rc);
4534
4535 trans = btrfs_join_transaction(rc->extent_root);
4536 if (IS_ERR(trans)) {
4537 unset_reloc_control(rc);
4538 err = PTR_ERR(trans);
4539 goto out_free;
4540 }
4541
4542 rc->merge_reloc_tree = 1;
4543
4544 while (!list_empty(&reloc_roots)) {
4545 reloc_root = list_entry(reloc_roots.next,
4546 struct btrfs_root, root_list);
4547 list_del(&reloc_root->root_list);
4548
4549 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550 list_add_tail(&reloc_root->root_list,
4551 &rc->reloc_roots);
4552 continue;
4553 }
4554
4555 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4556 if (IS_ERR(fs_root)) {
4557 err = PTR_ERR(fs_root);
4558 goto out_free;
4559 }
4560
4561 err = __add_reloc_root(reloc_root);
4562 BUG_ON(err < 0); /* -ENOMEM or logic error */
4563 fs_root->reloc_root = reloc_root;
4564 }
4565
4566 err = btrfs_commit_transaction(trans);
4567 if (err)
4568 goto out_free;
4569
4570 merge_reloc_roots(rc);
4571
4572 unset_reloc_control(rc);
4573
4574 trans = btrfs_join_transaction(rc->extent_root);
4575 if (IS_ERR(trans)) {
4576 err = PTR_ERR(trans);
4577 goto out_free;
4578 }
4579 err = btrfs_commit_transaction(trans);
4580out_free:
4581 kfree(rc);
4582out:
4583 if (!list_empty(&reloc_roots))
4584 free_reloc_roots(&reloc_roots);
4585
4586 btrfs_free_path(path);
4587
4588 if (err == 0) {
4589 /* cleanup orphan inode in data relocation tree */
4590 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4591 if (IS_ERR(fs_root))
4592 err = PTR_ERR(fs_root);
4593 else
4594 err = btrfs_orphan_cleanup(fs_root);
4595 }
4596 return err;
4597}
4598
4599/*
4600 * helper to add ordered checksum for data relocation.
4601 *
4602 * cloning checksum properly handles the nodatasum extents.
4603 * it also saves CPU time to re-calculate the checksum.
4604 */
4605int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4606{
4607 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4608 struct btrfs_ordered_sum *sums;
4609 struct btrfs_ordered_extent *ordered;
4610 int ret;
4611 u64 disk_bytenr;
4612 u64 new_bytenr;
4613 LIST_HEAD(list);
4614
4615 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4616 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4617
4618 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4619 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4620 disk_bytenr + len - 1, &list, 0);
4621 if (ret)
4622 goto out;
4623
4624 while (!list_empty(&list)) {
4625 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4626 list_del_init(&sums->list);
4627
4628 /*
4629 * We need to offset the new_bytenr based on where the csum is.
4630 * We need to do this because we will read in entire prealloc
4631 * extents but we may have written to say the middle of the
4632 * prealloc extent, so we need to make sure the csum goes with
4633 * the right disk offset.
4634 *
4635 * We can do this because the data reloc inode refers strictly
4636 * to the on disk bytes, so we don't have to worry about
4637 * disk_len vs real len like with real inodes since it's all
4638 * disk length.
4639 */
4640 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4641 sums->bytenr = new_bytenr;
4642
4643 btrfs_add_ordered_sum(inode, ordered, sums);
4644 }
4645out:
4646 btrfs_put_ordered_extent(ordered);
4647 return ret;
4648}
4649
4650int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4651 struct btrfs_root *root, struct extent_buffer *buf,
4652 struct extent_buffer *cow)
4653{
4654 struct btrfs_fs_info *fs_info = root->fs_info;
4655 struct reloc_control *rc;
4656 struct backref_node *node;
4657 int first_cow = 0;
4658 int level;
4659 int ret = 0;
4660
4661 rc = fs_info->reloc_ctl;
4662 if (!rc)
4663 return 0;
4664
4665 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4666 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4667
4668 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4669 if (buf == root->node)
4670 __update_reloc_root(root, cow->start);
4671 }
4672
4673 level = btrfs_header_level(buf);
4674 if (btrfs_header_generation(buf) <=
4675 btrfs_root_last_snapshot(&root->root_item))
4676 first_cow = 1;
4677
4678 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4679 rc->create_reloc_tree) {
4680 WARN_ON(!first_cow && level == 0);
4681
4682 node = rc->backref_cache.path[level];
4683 BUG_ON(node->bytenr != buf->start &&
4684 node->new_bytenr != buf->start);
4685
4686 drop_node_buffer(node);
4687 extent_buffer_get(cow);
4688 node->eb = cow;
4689 node->new_bytenr = cow->start;
4690
4691 if (!node->pending) {
4692 list_move_tail(&node->list,
4693 &rc->backref_cache.pending[level]);
4694 node->pending = 1;
4695 }
4696
4697 if (first_cow)
4698 __mark_block_processed(rc, node);
4699
4700 if (first_cow && level > 0)
4701 rc->nodes_relocated += buf->len;
4702 }
4703
4704 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4705 ret = replace_file_extents(trans, rc, root, cow);
4706 return ret;
4707}
4708
4709/*
4710 * called before creating snapshot. it calculates metadata reservation
4711 * required for relocating tree blocks in the snapshot
4712 */
4713void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4714 u64 *bytes_to_reserve)
4715{
4716 struct btrfs_root *root;
4717 struct reloc_control *rc;
4718
4719 root = pending->root;
4720 if (!root->reloc_root)
4721 return;
4722
4723 rc = root->fs_info->reloc_ctl;
4724 if (!rc->merge_reloc_tree)
4725 return;
4726
4727 root = root->reloc_root;
4728 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4729 /*
4730 * relocation is in the stage of merging trees. the space
4731 * used by merging a reloc tree is twice the size of
4732 * relocated tree nodes in the worst case. half for cowing
4733 * the reloc tree, half for cowing the fs tree. the space
4734 * used by cowing the reloc tree will be freed after the
4735 * tree is dropped. if we create snapshot, cowing the fs
4736 * tree may use more space than it frees. so we need
4737 * reserve extra space.
4738 */
4739 *bytes_to_reserve += rc->nodes_relocated;
4740}
4741
4742/*
4743 * called after snapshot is created. migrate block reservation
4744 * and create reloc root for the newly created snapshot
4745 */
4746int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4747 struct btrfs_pending_snapshot *pending)
4748{
4749 struct btrfs_root *root = pending->root;
4750 struct btrfs_root *reloc_root;
4751 struct btrfs_root *new_root;
4752 struct reloc_control *rc;
4753 int ret;
4754
4755 if (!root->reloc_root)
4756 return 0;
4757
4758 rc = root->fs_info->reloc_ctl;
4759 rc->merging_rsv_size += rc->nodes_relocated;
4760
4761 if (rc->merge_reloc_tree) {
4762 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4763 rc->block_rsv,
4764 rc->nodes_relocated, 1);
4765 if (ret)
4766 return ret;
4767 }
4768
4769 new_root = pending->snap;
4770 reloc_root = create_reloc_root(trans, root->reloc_root,
4771 new_root->root_key.objectid);
4772 if (IS_ERR(reloc_root))
4773 return PTR_ERR(reloc_root);
4774
4775 ret = __add_reloc_root(reloc_root);
4776 BUG_ON(ret < 0);
4777 new_root->reloc_root = reloc_root;
4778
4779 if (rc->create_reloc_tree)
4780 ret = clone_backref_node(trans, rc, root, reloc_root);
4781 return ret;
4782}