Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
  27#include <linux/pinctrl/consumer.h>
  28#include <linux/pm_runtime.h>
 
  29
  30/* SPI register offsets */
  31#define SPI_CR					0x0000
  32#define SPI_MR					0x0004
  33#define SPI_RDR					0x0008
  34#define SPI_TDR					0x000c
  35#define SPI_SR					0x0010
  36#define SPI_IER					0x0014
  37#define SPI_IDR					0x0018
  38#define SPI_IMR					0x001c
  39#define SPI_CSR0				0x0030
  40#define SPI_CSR1				0x0034
  41#define SPI_CSR2				0x0038
  42#define SPI_CSR3				0x003c
  43#define SPI_FMR					0x0040
  44#define SPI_FLR					0x0044
  45#define SPI_VERSION				0x00fc
  46#define SPI_RPR					0x0100
  47#define SPI_RCR					0x0104
  48#define SPI_TPR					0x0108
  49#define SPI_TCR					0x010c
  50#define SPI_RNPR				0x0110
  51#define SPI_RNCR				0x0114
  52#define SPI_TNPR				0x0118
  53#define SPI_TNCR				0x011c
  54#define SPI_PTCR				0x0120
  55#define SPI_PTSR				0x0124
  56
  57/* Bitfields in CR */
  58#define SPI_SPIEN_OFFSET			0
  59#define SPI_SPIEN_SIZE				1
  60#define SPI_SPIDIS_OFFSET			1
  61#define SPI_SPIDIS_SIZE				1
  62#define SPI_SWRST_OFFSET			7
  63#define SPI_SWRST_SIZE				1
  64#define SPI_LASTXFER_OFFSET			24
  65#define SPI_LASTXFER_SIZE			1
  66#define SPI_TXFCLR_OFFSET			16
  67#define SPI_TXFCLR_SIZE				1
  68#define SPI_RXFCLR_OFFSET			17
  69#define SPI_RXFCLR_SIZE				1
  70#define SPI_FIFOEN_OFFSET			30
  71#define SPI_FIFOEN_SIZE				1
  72#define SPI_FIFODIS_OFFSET			31
  73#define SPI_FIFODIS_SIZE			1
  74
  75/* Bitfields in MR */
  76#define SPI_MSTR_OFFSET				0
  77#define SPI_MSTR_SIZE				1
  78#define SPI_PS_OFFSET				1
  79#define SPI_PS_SIZE				1
  80#define SPI_PCSDEC_OFFSET			2
  81#define SPI_PCSDEC_SIZE				1
  82#define SPI_FDIV_OFFSET				3
  83#define SPI_FDIV_SIZE				1
  84#define SPI_MODFDIS_OFFSET			4
  85#define SPI_MODFDIS_SIZE			1
  86#define SPI_WDRBT_OFFSET			5
  87#define SPI_WDRBT_SIZE				1
  88#define SPI_LLB_OFFSET				7
  89#define SPI_LLB_SIZE				1
  90#define SPI_PCS_OFFSET				16
  91#define SPI_PCS_SIZE				4
  92#define SPI_DLYBCS_OFFSET			24
  93#define SPI_DLYBCS_SIZE				8
  94
  95/* Bitfields in RDR */
  96#define SPI_RD_OFFSET				0
  97#define SPI_RD_SIZE				16
  98
  99/* Bitfields in TDR */
 100#define SPI_TD_OFFSET				0
 101#define SPI_TD_SIZE				16
 102
 103/* Bitfields in SR */
 104#define SPI_RDRF_OFFSET				0
 105#define SPI_RDRF_SIZE				1
 106#define SPI_TDRE_OFFSET				1
 107#define SPI_TDRE_SIZE				1
 108#define SPI_MODF_OFFSET				2
 109#define SPI_MODF_SIZE				1
 110#define SPI_OVRES_OFFSET			3
 111#define SPI_OVRES_SIZE				1
 112#define SPI_ENDRX_OFFSET			4
 113#define SPI_ENDRX_SIZE				1
 114#define SPI_ENDTX_OFFSET			5
 115#define SPI_ENDTX_SIZE				1
 116#define SPI_RXBUFF_OFFSET			6
 117#define SPI_RXBUFF_SIZE				1
 118#define SPI_TXBUFE_OFFSET			7
 119#define SPI_TXBUFE_SIZE				1
 120#define SPI_NSSR_OFFSET				8
 121#define SPI_NSSR_SIZE				1
 122#define SPI_TXEMPTY_OFFSET			9
 123#define SPI_TXEMPTY_SIZE			1
 124#define SPI_SPIENS_OFFSET			16
 125#define SPI_SPIENS_SIZE				1
 126#define SPI_TXFEF_OFFSET			24
 127#define SPI_TXFEF_SIZE				1
 128#define SPI_TXFFF_OFFSET			25
 129#define SPI_TXFFF_SIZE				1
 130#define SPI_TXFTHF_OFFSET			26
 131#define SPI_TXFTHF_SIZE				1
 132#define SPI_RXFEF_OFFSET			27
 133#define SPI_RXFEF_SIZE				1
 134#define SPI_RXFFF_OFFSET			28
 135#define SPI_RXFFF_SIZE				1
 136#define SPI_RXFTHF_OFFSET			29
 137#define SPI_RXFTHF_SIZE				1
 138#define SPI_TXFPTEF_OFFSET			30
 139#define SPI_TXFPTEF_SIZE			1
 140#define SPI_RXFPTEF_OFFSET			31
 141#define SPI_RXFPTEF_SIZE			1
 142
 143/* Bitfields in CSR0 */
 144#define SPI_CPOL_OFFSET				0
 145#define SPI_CPOL_SIZE				1
 146#define SPI_NCPHA_OFFSET			1
 147#define SPI_NCPHA_SIZE				1
 148#define SPI_CSAAT_OFFSET			3
 149#define SPI_CSAAT_SIZE				1
 150#define SPI_BITS_OFFSET				4
 151#define SPI_BITS_SIZE				4
 152#define SPI_SCBR_OFFSET				8
 153#define SPI_SCBR_SIZE				8
 154#define SPI_DLYBS_OFFSET			16
 155#define SPI_DLYBS_SIZE				8
 156#define SPI_DLYBCT_OFFSET			24
 157#define SPI_DLYBCT_SIZE				8
 158
 159/* Bitfields in RCR */
 160#define SPI_RXCTR_OFFSET			0
 161#define SPI_RXCTR_SIZE				16
 162
 163/* Bitfields in TCR */
 164#define SPI_TXCTR_OFFSET			0
 165#define SPI_TXCTR_SIZE				16
 166
 167/* Bitfields in RNCR */
 168#define SPI_RXNCR_OFFSET			0
 169#define SPI_RXNCR_SIZE				16
 170
 171/* Bitfields in TNCR */
 172#define SPI_TXNCR_OFFSET			0
 173#define SPI_TXNCR_SIZE				16
 174
 175/* Bitfields in PTCR */
 176#define SPI_RXTEN_OFFSET			0
 177#define SPI_RXTEN_SIZE				1
 178#define SPI_RXTDIS_OFFSET			1
 179#define SPI_RXTDIS_SIZE				1
 180#define SPI_TXTEN_OFFSET			8
 181#define SPI_TXTEN_SIZE				1
 182#define SPI_TXTDIS_OFFSET			9
 183#define SPI_TXTDIS_SIZE				1
 184
 185/* Bitfields in FMR */
 186#define SPI_TXRDYM_OFFSET			0
 187#define SPI_TXRDYM_SIZE				2
 188#define SPI_RXRDYM_OFFSET			4
 189#define SPI_RXRDYM_SIZE				2
 190#define SPI_TXFTHRES_OFFSET			16
 191#define SPI_TXFTHRES_SIZE			6
 192#define SPI_RXFTHRES_OFFSET			24
 193#define SPI_RXFTHRES_SIZE			6
 194
 195/* Bitfields in FLR */
 196#define SPI_TXFL_OFFSET				0
 197#define SPI_TXFL_SIZE				6
 198#define SPI_RXFL_OFFSET				16
 199#define SPI_RXFL_SIZE				6
 200
 201/* Constants for BITS */
 202#define SPI_BITS_8_BPT				0
 203#define SPI_BITS_9_BPT				1
 204#define SPI_BITS_10_BPT				2
 205#define SPI_BITS_11_BPT				3
 206#define SPI_BITS_12_BPT				4
 207#define SPI_BITS_13_BPT				5
 208#define SPI_BITS_14_BPT				6
 209#define SPI_BITS_15_BPT				7
 210#define SPI_BITS_16_BPT				8
 211#define SPI_ONE_DATA				0
 212#define SPI_TWO_DATA				1
 213#define SPI_FOUR_DATA				2
 214
 215/* Bit manipulation macros */
 216#define SPI_BIT(name) \
 217	(1 << SPI_##name##_OFFSET)
 218#define SPI_BF(name, value) \
 219	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 220#define SPI_BFEXT(name, value) \
 221	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 222#define SPI_BFINS(name, value, old) \
 223	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 224	  | SPI_BF(name, value))
 225
 226/* Register access macros */
 227#ifdef CONFIG_AVR32
 228#define spi_readl(port, reg) \
 229	__raw_readl((port)->regs + SPI_##reg)
 230#define spi_writel(port, reg, value) \
 231	__raw_writel((value), (port)->regs + SPI_##reg)
 232
 233#define spi_readw(port, reg) \
 234	__raw_readw((port)->regs + SPI_##reg)
 235#define spi_writew(port, reg, value) \
 236	__raw_writew((value), (port)->regs + SPI_##reg)
 237
 238#define spi_readb(port, reg) \
 239	__raw_readb((port)->regs + SPI_##reg)
 240#define spi_writeb(port, reg, value) \
 241	__raw_writeb((value), (port)->regs + SPI_##reg)
 242#else
 243#define spi_readl(port, reg) \
 244	readl_relaxed((port)->regs + SPI_##reg)
 245#define spi_writel(port, reg, value) \
 246	writel_relaxed((value), (port)->regs + SPI_##reg)
 247
 248#define spi_readw(port, reg) \
 249	readw_relaxed((port)->regs + SPI_##reg)
 250#define spi_writew(port, reg, value) \
 251	writew_relaxed((value), (port)->regs + SPI_##reg)
 252
 253#define spi_readb(port, reg) \
 254	readb_relaxed((port)->regs + SPI_##reg)
 255#define spi_writeb(port, reg, value) \
 256	writeb_relaxed((value), (port)->regs + SPI_##reg)
 257#endif
 258/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 259 * cache operations; better heuristics consider wordsize and bitrate.
 260 */
 261#define DMA_MIN_BYTES	16
 262
 263#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 264
 265#define AUTOSUSPEND_TIMEOUT	2000
 266
 267struct atmel_spi_dma {
 268	struct dma_chan			*chan_rx;
 269	struct dma_chan			*chan_tx;
 270	struct scatterlist		sgrx;
 271	struct scatterlist		sgtx;
 272	struct dma_async_tx_descriptor	*data_desc_rx;
 273	struct dma_async_tx_descriptor	*data_desc_tx;
 274
 275	struct at_dma_slave	dma_slave;
 276};
 277
 278struct atmel_spi_caps {
 279	bool	is_spi2;
 280	bool	has_wdrbt;
 281	bool	has_dma_support;
 
 282};
 283
 284/*
 285 * The core SPI transfer engine just talks to a register bank to set up
 286 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 287 * framework provides the base clock, subdivided for each spi_device.
 288 */
 289struct atmel_spi {
 290	spinlock_t		lock;
 291	unsigned long		flags;
 292
 293	phys_addr_t		phybase;
 294	void __iomem		*regs;
 295	int			irq;
 296	struct clk		*clk;
 297	struct platform_device	*pdev;
 
 298
 299	struct spi_transfer	*current_transfer;
 300	int			current_remaining_bytes;
 301	int			done_status;
 
 
 
 
 302
 303	struct completion	xfer_completion;
 304
 305	/* scratch buffer */
 306	void			*buffer;
 307	dma_addr_t		buffer_dma;
 308
 309	struct atmel_spi_caps	caps;
 310
 311	bool			use_dma;
 312	bool			use_pdc;
 313	bool			use_cs_gpios;
 314	/* dmaengine data */
 315	struct atmel_spi_dma	dma;
 316
 317	bool			keep_cs;
 318	bool			cs_active;
 319
 320	u32			fifo_size;
 321};
 322
 323/* Controller-specific per-slave state */
 324struct atmel_spi_device {
 325	unsigned int		npcs_pin;
 326	u32			csr;
 327};
 328
 329#define BUFFER_SIZE		PAGE_SIZE
 330#define INVALID_DMA_ADDRESS	0xffffffff
 331
 332/*
 333 * Version 2 of the SPI controller has
 334 *  - CR.LASTXFER
 335 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 336 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 337 *  - SPI_CSRx.CSAAT
 338 *  - SPI_CSRx.SBCR allows faster clocking
 339 */
 340static bool atmel_spi_is_v2(struct atmel_spi *as)
 341{
 342	return as->caps.is_spi2;
 343}
 344
 345/*
 346 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 347 * they assume that spi slave device state will not change on deselect, so
 348 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 349 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 350 * controllers have CSAAT and friends.
 351 *
 352 * Since the CSAAT functionality is a bit weird on newer controllers as
 353 * well, we use GPIO to control nCSx pins on all controllers, updating
 354 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 355 * support active-high chipselects despite the controller's belief that
 356 * only active-low devices/systems exists.
 357 *
 358 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 359 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 360 * Master on Chip Select 0.")  No workaround exists for that ... so for
 361 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 362 * and (c) will trigger that first erratum in some cases.
 363 */
 364
 365static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 366{
 367	struct atmel_spi_device *asd = spi->controller_state;
 368	unsigned active = spi->mode & SPI_CS_HIGH;
 369	u32 mr;
 370
 371	if (atmel_spi_is_v2(as)) {
 372		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 373		/* For the low SPI version, there is a issue that PDC transfer
 374		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 375		 */
 376		spi_writel(as, CSR0, asd->csr);
 377		if (as->caps.has_wdrbt) {
 378			spi_writel(as, MR,
 379					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 380					| SPI_BIT(WDRBT)
 381					| SPI_BIT(MODFDIS)
 382					| SPI_BIT(MSTR));
 383		} else {
 384			spi_writel(as, MR,
 385					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 386					| SPI_BIT(MODFDIS)
 387					| SPI_BIT(MSTR));
 388		}
 389
 390		mr = spi_readl(as, MR);
 391		if (as->use_cs_gpios)
 392			gpio_set_value(asd->npcs_pin, active);
 393	} else {
 394		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 395		int i;
 396		u32 csr;
 397
 398		/* Make sure clock polarity is correct */
 399		for (i = 0; i < spi->master->num_chipselect; i++) {
 400			csr = spi_readl(as, CSR0 + 4 * i);
 401			if ((csr ^ cpol) & SPI_BIT(CPOL))
 402				spi_writel(as, CSR0 + 4 * i,
 403						csr ^ SPI_BIT(CPOL));
 404		}
 405
 406		mr = spi_readl(as, MR);
 407		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 408		if (as->use_cs_gpios && spi->chip_select != 0)
 409			gpio_set_value(asd->npcs_pin, active);
 410		spi_writel(as, MR, mr);
 411	}
 412
 413	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 414			asd->npcs_pin, active ? " (high)" : "",
 415			mr);
 416}
 417
 418static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 419{
 420	struct atmel_spi_device *asd = spi->controller_state;
 421	unsigned active = spi->mode & SPI_CS_HIGH;
 422	u32 mr;
 423
 424	/* only deactivate *this* device; sometimes transfers to
 425	 * another device may be active when this routine is called.
 426	 */
 427	mr = spi_readl(as, MR);
 428	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 429		mr = SPI_BFINS(PCS, 0xf, mr);
 430		spi_writel(as, MR, mr);
 431	}
 432
 433	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 434			asd->npcs_pin, active ? " (low)" : "",
 435			mr);
 436
 437	if (!as->use_cs_gpios)
 438		spi_writel(as, CR, SPI_BIT(LASTXFER));
 439	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 440		gpio_set_value(asd->npcs_pin, !active);
 441}
 442
 443static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 444{
 445	spin_lock_irqsave(&as->lock, as->flags);
 446}
 447
 448static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 449{
 450	spin_unlock_irqrestore(&as->lock, as->flags);
 451}
 452
 
 
 
 
 
 453static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 454				struct spi_transfer *xfer)
 455{
 456	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 457}
 458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 460				struct dma_slave_config *slave_config,
 461				u8 bits_per_word)
 462{
 
 463	int err = 0;
 464
 465	if (bits_per_word > 8) {
 466		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 467		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 468	} else {
 469		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 470		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 471	}
 472
 473	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 474	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 475	slave_config->src_maxburst = 1;
 476	slave_config->dst_maxburst = 1;
 477	slave_config->device_fc = false;
 478
 479	/*
 480	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 481	 * the Mode Register).
 482	 * So according to the datasheet, when FIFOs are available (and
 483	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 484	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 485	 * Data Register in a single access.
 486	 * However, the first data has to be written into the lowest 16 bits and
 487	 * the second data into the highest 16 bits of the Transmit
 488	 * Data Register. For 8bit data (the most frequent case), it would
 489	 * require to rework tx_buf so each data would actualy fit 16 bits.
 490	 * So we'd rather write only one data at the time. Hence the transmit
 491	 * path works the same whether FIFOs are available (and enabled) or not.
 492	 */
 493	slave_config->direction = DMA_MEM_TO_DEV;
 494	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
 495		dev_err(&as->pdev->dev,
 496			"failed to configure tx dma channel\n");
 497		err = -EINVAL;
 498	}
 499
 500	/*
 501	 * This driver configures the spi controller for master mode (MSTR bit
 502	 * set to '1' in the Mode Register).
 503	 * So according to the datasheet, when FIFOs are available (and
 504	 * enabled), the Receive FIFO operates in Single Data Mode.
 505	 * So the receive path works the same whether FIFOs are available (and
 506	 * enabled) or not.
 507	 */
 508	slave_config->direction = DMA_DEV_TO_MEM;
 509	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
 510		dev_err(&as->pdev->dev,
 511			"failed to configure rx dma channel\n");
 512		err = -EINVAL;
 513	}
 514
 515	return err;
 516}
 517
 518static int atmel_spi_configure_dma(struct atmel_spi *as)
 
 519{
 520	struct dma_slave_config	slave_config;
 521	struct device *dev = &as->pdev->dev;
 522	int err;
 523
 524	dma_cap_mask_t mask;
 525	dma_cap_zero(mask);
 526	dma_cap_set(DMA_SLAVE, mask);
 527
 528	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
 529	if (IS_ERR(as->dma.chan_tx)) {
 530		err = PTR_ERR(as->dma.chan_tx);
 531		if (err == -EPROBE_DEFER) {
 532			dev_warn(dev, "no DMA channel available at the moment\n");
 533			return err;
 534		}
 535		dev_err(dev,
 536			"DMA TX channel not available, SPI unable to use DMA\n");
 537		err = -EBUSY;
 538		goto error;
 539	}
 540
 541	/*
 542	 * No reason to check EPROBE_DEFER here since we have already requested
 543	 * tx channel. If it fails here, it's for another reason.
 544	 */
 545	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
 546
 547	if (!as->dma.chan_rx) {
 548		dev_err(dev,
 549			"DMA RX channel not available, SPI unable to use DMA\n");
 550		err = -EBUSY;
 551		goto error;
 552	}
 553
 554	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 555	if (err)
 556		goto error;
 557
 558	dev_info(&as->pdev->dev,
 559			"Using %s (tx) and %s (rx) for DMA transfers\n",
 560			dma_chan_name(as->dma.chan_tx),
 561			dma_chan_name(as->dma.chan_rx));
 
 562	return 0;
 563error:
 564	if (as->dma.chan_rx)
 565		dma_release_channel(as->dma.chan_rx);
 566	if (!IS_ERR(as->dma.chan_tx))
 567		dma_release_channel(as->dma.chan_tx);
 
 
 568	return err;
 569}
 570
 571static void atmel_spi_stop_dma(struct atmel_spi *as)
 572{
 573	if (as->dma.chan_rx)
 574		dmaengine_terminate_all(as->dma.chan_rx);
 575	if (as->dma.chan_tx)
 576		dmaengine_terminate_all(as->dma.chan_tx);
 577}
 578
 579static void atmel_spi_release_dma(struct atmel_spi *as)
 580{
 581	if (as->dma.chan_rx)
 582		dma_release_channel(as->dma.chan_rx);
 583	if (as->dma.chan_tx)
 584		dma_release_channel(as->dma.chan_tx);
 
 
 
 
 585}
 586
 587/* This function is called by the DMA driver from tasklet context */
 588static void dma_callback(void *data)
 589{
 590	struct spi_master	*master = data;
 591	struct atmel_spi	*as = spi_master_get_devdata(master);
 592
 
 
 
 
 
 593	complete(&as->xfer_completion);
 594}
 595
 596/*
 597 * Next transfer using PIO without FIFO.
 598 */
 599static void atmel_spi_next_xfer_single(struct spi_master *master,
 600				       struct spi_transfer *xfer)
 601{
 602	struct atmel_spi	*as = spi_master_get_devdata(master);
 603	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 604
 605	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 606
 607	/* Make sure data is not remaining in RDR */
 608	spi_readl(as, RDR);
 609	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 610		spi_readl(as, RDR);
 611		cpu_relax();
 612	}
 613
 614	if (xfer->tx_buf) {
 615		if (xfer->bits_per_word > 8)
 616			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 617		else
 618			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 619	} else {
 620		spi_writel(as, TDR, 0);
 621	}
 622
 623	dev_dbg(master->dev.parent,
 624		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 625		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 626		xfer->bits_per_word);
 627
 628	/* Enable relevant interrupts */
 629	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 630}
 631
 632/*
 633 * Next transfer using PIO with FIFO.
 634 */
 635static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 636				     struct spi_transfer *xfer)
 637{
 638	struct atmel_spi *as = spi_master_get_devdata(master);
 639	u32 current_remaining_data, num_data;
 640	u32 offset = xfer->len - as->current_remaining_bytes;
 641	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 642	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 643	u16 td0, td1;
 644	u32 fifomr;
 645
 646	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 647
 648	/* Compute the number of data to transfer in the current iteration */
 649	current_remaining_data = ((xfer->bits_per_word > 8) ?
 650				  ((u32)as->current_remaining_bytes >> 1) :
 651				  (u32)as->current_remaining_bytes);
 652	num_data = min(current_remaining_data, as->fifo_size);
 653
 654	/* Flush RX and TX FIFOs */
 655	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 656	while (spi_readl(as, FLR))
 657		cpu_relax();
 658
 659	/* Set RX FIFO Threshold to the number of data to transfer */
 660	fifomr = spi_readl(as, FMR);
 661	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 662
 663	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 664	(void)spi_readl(as, SR);
 665
 666	/* Fill TX FIFO */
 667	while (num_data >= 2) {
 668		if (xfer->tx_buf) {
 669			if (xfer->bits_per_word > 8) {
 670				td0 = *words++;
 671				td1 = *words++;
 672			} else {
 673				td0 = *bytes++;
 674				td1 = *bytes++;
 675			}
 676		} else {
 677			td0 = 0;
 678			td1 = 0;
 679		}
 680
 681		spi_writel(as, TDR, (td1 << 16) | td0);
 682		num_data -= 2;
 683	}
 684
 685	if (num_data) {
 686		if (xfer->tx_buf) {
 687			if (xfer->bits_per_word > 8)
 688				td0 = *words++;
 689			else
 690				td0 = *bytes++;
 691		} else {
 692			td0 = 0;
 693		}
 694
 695		spi_writew(as, TDR, td0);
 696		num_data--;
 697	}
 698
 699	dev_dbg(master->dev.parent,
 700		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 701		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 702		xfer->bits_per_word);
 703
 704	/*
 705	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 706	 * transfer completion.
 707	 */
 708	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 709}
 710
 711/*
 712 * Next transfer using PIO.
 713 */
 714static void atmel_spi_next_xfer_pio(struct spi_master *master,
 715				    struct spi_transfer *xfer)
 716{
 717	struct atmel_spi *as = spi_master_get_devdata(master);
 718
 719	if (as->fifo_size)
 720		atmel_spi_next_xfer_fifo(master, xfer);
 721	else
 722		atmel_spi_next_xfer_single(master, xfer);
 723}
 724
 725/*
 726 * Submit next transfer for DMA.
 727 */
 728static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 729				struct spi_transfer *xfer,
 730				u32 *plen)
 731{
 732	struct atmel_spi	*as = spi_master_get_devdata(master);
 733	struct dma_chan		*rxchan = as->dma.chan_rx;
 734	struct dma_chan		*txchan = as->dma.chan_tx;
 735	struct dma_async_tx_descriptor *rxdesc;
 736	struct dma_async_tx_descriptor *txdesc;
 737	struct dma_slave_config	slave_config;
 738	dma_cookie_t		cookie;
 739	u32	len = *plen;
 740
 741	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 742
 743	/* Check that the channels are available */
 744	if (!rxchan || !txchan)
 745		return -ENODEV;
 746
 747	/* release lock for DMA operations */
 748	atmel_spi_unlock(as);
 749
 750	/* prepare the RX dma transfer */
 751	sg_init_table(&as->dma.sgrx, 1);
 752	if (xfer->rx_buf) {
 753		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
 754	} else {
 755		as->dma.sgrx.dma_address = as->buffer_dma;
 756		if (len > BUFFER_SIZE)
 757			len = BUFFER_SIZE;
 758	}
 759
 760	/* prepare the TX dma transfer */
 761	sg_init_table(&as->dma.sgtx, 1);
 762	if (xfer->tx_buf) {
 763		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
 764	} else {
 765		as->dma.sgtx.dma_address = as->buffer_dma;
 766		if (len > BUFFER_SIZE)
 767			len = BUFFER_SIZE;
 768		memset(as->buffer, 0, len);
 769	}
 770
 771	sg_dma_len(&as->dma.sgtx) = len;
 772	sg_dma_len(&as->dma.sgrx) = len;
 773
 774	*plen = len;
 775
 776	if (atmel_spi_dma_slave_config(as, &slave_config,
 777				       xfer->bits_per_word))
 778		goto err_exit;
 779
 780	/* Send both scatterlists */
 781	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
 782					 DMA_FROM_DEVICE,
 783					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	if (!rxdesc)
 785		goto err_dma;
 786
 787	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
 788					 DMA_TO_DEVICE,
 789					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 790	if (!txdesc)
 791		goto err_dma;
 792
 793	dev_dbg(master->dev.parent,
 794		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 795		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 796		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 797
 798	/* Enable relevant interrupts */
 799	spi_writel(as, IER, SPI_BIT(OVRES));
 800
 801	/* Put the callback on the RX transfer only, that should finish last */
 802	rxdesc->callback = dma_callback;
 803	rxdesc->callback_param = master;
 804
 805	/* Submit and fire RX and TX with TX last so we're ready to read! */
 806	cookie = rxdesc->tx_submit(rxdesc);
 807	if (dma_submit_error(cookie))
 808		goto err_dma;
 809	cookie = txdesc->tx_submit(txdesc);
 810	if (dma_submit_error(cookie))
 811		goto err_dma;
 812	rxchan->device->device_issue_pending(rxchan);
 813	txchan->device->device_issue_pending(txchan);
 814
 815	/* take back lock */
 816	atmel_spi_lock(as);
 817	return 0;
 818
 819err_dma:
 820	spi_writel(as, IDR, SPI_BIT(OVRES));
 821	atmel_spi_stop_dma(as);
 822err_exit:
 823	atmel_spi_lock(as);
 824	return -ENOMEM;
 825}
 826
 827static void atmel_spi_next_xfer_data(struct spi_master *master,
 828				struct spi_transfer *xfer,
 829				dma_addr_t *tx_dma,
 830				dma_addr_t *rx_dma,
 831				u32 *plen)
 832{
 833	struct atmel_spi	*as = spi_master_get_devdata(master);
 834	u32			len = *plen;
 835
 836	/* use scratch buffer only when rx or tx data is unspecified */
 837	if (xfer->rx_buf)
 838		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 839	else {
 840		*rx_dma = as->buffer_dma;
 841		if (len > BUFFER_SIZE)
 842			len = BUFFER_SIZE;
 843	}
 844
 845	if (xfer->tx_buf)
 846		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 847	else {
 848		*tx_dma = as->buffer_dma;
 849		if (len > BUFFER_SIZE)
 850			len = BUFFER_SIZE;
 851		memset(as->buffer, 0, len);
 852		dma_sync_single_for_device(&as->pdev->dev,
 853				as->buffer_dma, len, DMA_TO_DEVICE);
 854	}
 855
 856	*plen = len;
 857}
 858
 859static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 860				    struct spi_device *spi,
 861				    struct spi_transfer *xfer)
 862{
 863	u32			scbr, csr;
 864	unsigned long		bus_hz;
 865
 866	/* v1 chips start out at half the peripheral bus speed. */
 867	bus_hz = clk_get_rate(as->clk);
 868	if (!atmel_spi_is_v2(as))
 869		bus_hz /= 2;
 870
 871	/*
 872	 * Calculate the lowest divider that satisfies the
 873	 * constraint, assuming div32/fdiv/mbz == 0.
 874	 */
 875	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 876
 877	/*
 878	 * If the resulting divider doesn't fit into the
 879	 * register bitfield, we can't satisfy the constraint.
 880	 */
 881	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 882		dev_err(&spi->dev,
 883			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 884			xfer->speed_hz, scbr, bus_hz/255);
 885		return -EINVAL;
 886	}
 887	if (scbr == 0) {
 888		dev_err(&spi->dev,
 889			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 890			xfer->speed_hz, scbr, bus_hz);
 891		return -EINVAL;
 892	}
 893	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 894	csr = SPI_BFINS(SCBR, scbr, csr);
 895	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 896
 897	return 0;
 898}
 899
 900/*
 901 * Submit next transfer for PDC.
 902 * lock is held, spi irq is blocked
 903 */
 904static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 905					struct spi_message *msg,
 906					struct spi_transfer *xfer)
 907{
 908	struct atmel_spi	*as = spi_master_get_devdata(master);
 909	u32			len;
 910	dma_addr_t		tx_dma, rx_dma;
 911
 912	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 913
 914	len = as->current_remaining_bytes;
 915	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 916	as->current_remaining_bytes -= len;
 917
 918	spi_writel(as, RPR, rx_dma);
 919	spi_writel(as, TPR, tx_dma);
 920
 921	if (msg->spi->bits_per_word > 8)
 922		len >>= 1;
 923	spi_writel(as, RCR, len);
 924	spi_writel(as, TCR, len);
 925
 926	dev_dbg(&msg->spi->dev,
 927		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 928		xfer, xfer->len, xfer->tx_buf,
 929		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 930		(unsigned long long)xfer->rx_dma);
 931
 932	if (as->current_remaining_bytes) {
 933		len = as->current_remaining_bytes;
 934		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 935		as->current_remaining_bytes -= len;
 936
 937		spi_writel(as, RNPR, rx_dma);
 938		spi_writel(as, TNPR, tx_dma);
 939
 940		if (msg->spi->bits_per_word > 8)
 941			len >>= 1;
 942		spi_writel(as, RNCR, len);
 943		spi_writel(as, TNCR, len);
 944
 945		dev_dbg(&msg->spi->dev,
 946			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 947			xfer, xfer->len, xfer->tx_buf,
 948			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 949			(unsigned long long)xfer->rx_dma);
 950	}
 951
 952	/* REVISIT: We're waiting for RXBUFF before we start the next
 953	 * transfer because we need to handle some difficult timing
 954	 * issues otherwise. If we wait for TXBUFE in one transfer and
 955	 * then starts waiting for RXBUFF in the next, it's difficult
 956	 * to tell the difference between the RXBUFF interrupt we're
 957	 * actually waiting for and the RXBUFF interrupt of the
 958	 * previous transfer.
 959	 *
 960	 * It should be doable, though. Just not now...
 961	 */
 962	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 963	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 964}
 965
 966/*
 967 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 968 *  - The buffer is either valid for CPU access, else NULL
 969 *  - If the buffer is valid, so is its DMA address
 970 *
 971 * This driver manages the dma address unless message->is_dma_mapped.
 972 */
 973static int
 974atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 975{
 976	struct device	*dev = &as->pdev->dev;
 977
 978	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 979	if (xfer->tx_buf) {
 980		/* tx_buf is a const void* where we need a void * for the dma
 981		 * mapping */
 982		void *nonconst_tx = (void *)xfer->tx_buf;
 983
 984		xfer->tx_dma = dma_map_single(dev,
 985				nonconst_tx, xfer->len,
 986				DMA_TO_DEVICE);
 987		if (dma_mapping_error(dev, xfer->tx_dma))
 988			return -ENOMEM;
 989	}
 990	if (xfer->rx_buf) {
 991		xfer->rx_dma = dma_map_single(dev,
 992				xfer->rx_buf, xfer->len,
 993				DMA_FROM_DEVICE);
 994		if (dma_mapping_error(dev, xfer->rx_dma)) {
 995			if (xfer->tx_buf)
 996				dma_unmap_single(dev,
 997						xfer->tx_dma, xfer->len,
 998						DMA_TO_DEVICE);
 999			return -ENOMEM;
1000		}
1001	}
1002	return 0;
1003}
1004
1005static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1006				     struct spi_transfer *xfer)
1007{
1008	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1009		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1010				 xfer->len, DMA_TO_DEVICE);
1011	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1012		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1013				 xfer->len, DMA_FROM_DEVICE);
1014}
1015
1016static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1017{
1018	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1019}
1020
1021static void
1022atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1023{
1024	u8		*rxp;
1025	u16		*rxp16;
1026	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1027
1028	if (xfer->rx_buf) {
1029		if (xfer->bits_per_word > 8) {
1030			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1031			*rxp16 = spi_readl(as, RDR);
1032		} else {
1033			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1034			*rxp = spi_readl(as, RDR);
1035		}
1036	} else {
1037		spi_readl(as, RDR);
 
1038	}
1039	if (xfer->bits_per_word > 8) {
1040		if (as->current_remaining_bytes > 2)
1041			as->current_remaining_bytes -= 2;
1042		else
1043			as->current_remaining_bytes = 0;
1044	} else {
1045		as->current_remaining_bytes--;
1046	}
1047}
1048
1049static void
1050atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1051{
1052	u32 fifolr = spi_readl(as, FLR);
1053	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1054	u32 offset = xfer->len - as->current_remaining_bytes;
1055	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1056	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1057	u16 rd; /* RD field is the lowest 16 bits of RDR */
1058
1059	/* Update the number of remaining bytes to transfer */
1060	num_bytes = ((xfer->bits_per_word > 8) ?
1061		     (num_data << 1) :
1062		     num_data);
1063
1064	if (as->current_remaining_bytes > num_bytes)
1065		as->current_remaining_bytes -= num_bytes;
1066	else
1067		as->current_remaining_bytes = 0;
1068
1069	/* Handle odd number of bytes when data are more than 8bit width */
1070	if (xfer->bits_per_word > 8)
1071		as->current_remaining_bytes &= ~0x1;
1072
1073	/* Read data */
1074	while (num_data) {
1075		rd = spi_readl(as, RDR);
1076		if (xfer->rx_buf) {
1077			if (xfer->bits_per_word > 8)
1078				*words++ = rd;
1079			else
1080				*bytes++ = rd;
1081		}
1082		num_data--;
1083	}
1084}
1085
1086/* Called from IRQ
1087 *
1088 * Must update "current_remaining_bytes" to keep track of data
1089 * to transfer.
1090 */
1091static void
1092atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1093{
1094	if (as->fifo_size)
1095		atmel_spi_pump_fifo_data(as, xfer);
1096	else
1097		atmel_spi_pump_single_data(as, xfer);
1098}
1099
1100/* Interrupt
1101 *
1102 * No need for locking in this Interrupt handler: done_status is the
1103 * only information modified.
1104 */
1105static irqreturn_t
1106atmel_spi_pio_interrupt(int irq, void *dev_id)
1107{
1108	struct spi_master	*master = dev_id;
1109	struct atmel_spi	*as = spi_master_get_devdata(master);
1110	u32			status, pending, imr;
1111	struct spi_transfer	*xfer;
1112	int			ret = IRQ_NONE;
1113
1114	imr = spi_readl(as, IMR);
1115	status = spi_readl(as, SR);
1116	pending = status & imr;
1117
1118	if (pending & SPI_BIT(OVRES)) {
1119		ret = IRQ_HANDLED;
1120		spi_writel(as, IDR, SPI_BIT(OVRES));
1121		dev_warn(master->dev.parent, "overrun\n");
1122
1123		/*
1124		 * When we get an overrun, we disregard the current
1125		 * transfer. Data will not be copied back from any
1126		 * bounce buffer and msg->actual_len will not be
1127		 * updated with the last xfer.
1128		 *
1129		 * We will also not process any remaning transfers in
1130		 * the message.
1131		 */
1132		as->done_status = -EIO;
1133		smp_wmb();
1134
1135		/* Clear any overrun happening while cleaning up */
1136		spi_readl(as, SR);
1137
1138		complete(&as->xfer_completion);
1139
1140	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1141		atmel_spi_lock(as);
1142
1143		if (as->current_remaining_bytes) {
1144			ret = IRQ_HANDLED;
1145			xfer = as->current_transfer;
1146			atmel_spi_pump_pio_data(as, xfer);
1147			if (!as->current_remaining_bytes)
1148				spi_writel(as, IDR, pending);
1149
1150			complete(&as->xfer_completion);
1151		}
1152
1153		atmel_spi_unlock(as);
1154	} else {
1155		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1156		ret = IRQ_HANDLED;
1157		spi_writel(as, IDR, pending);
1158	}
1159
1160	return ret;
1161}
1162
1163static irqreturn_t
1164atmel_spi_pdc_interrupt(int irq, void *dev_id)
1165{
1166	struct spi_master	*master = dev_id;
1167	struct atmel_spi	*as = spi_master_get_devdata(master);
1168	u32			status, pending, imr;
1169	int			ret = IRQ_NONE;
1170
1171	imr = spi_readl(as, IMR);
1172	status = spi_readl(as, SR);
1173	pending = status & imr;
1174
1175	if (pending & SPI_BIT(OVRES)) {
1176
1177		ret = IRQ_HANDLED;
1178
1179		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1180				     | SPI_BIT(OVRES)));
1181
1182		/* Clear any overrun happening while cleaning up */
1183		spi_readl(as, SR);
1184
1185		as->done_status = -EIO;
1186
1187		complete(&as->xfer_completion);
1188
1189	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1190		ret = IRQ_HANDLED;
1191
1192		spi_writel(as, IDR, pending);
1193
1194		complete(&as->xfer_completion);
1195	}
1196
1197	return ret;
1198}
1199
1200static int atmel_spi_setup(struct spi_device *spi)
1201{
1202	struct atmel_spi	*as;
1203	struct atmel_spi_device	*asd;
1204	u32			csr;
1205	unsigned int		bits = spi->bits_per_word;
1206	unsigned int		npcs_pin;
1207	int			ret;
1208
1209	as = spi_master_get_devdata(spi->master);
1210
1211	/* see notes above re chipselect */
1212	if (!atmel_spi_is_v2(as)
1213			&& spi->chip_select == 0
1214			&& (spi->mode & SPI_CS_HIGH)) {
1215		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1216		return -EINVAL;
1217	}
1218
1219	csr = SPI_BF(BITS, bits - 8);
1220	if (spi->mode & SPI_CPOL)
1221		csr |= SPI_BIT(CPOL);
1222	if (!(spi->mode & SPI_CPHA))
1223		csr |= SPI_BIT(NCPHA);
1224	if (!as->use_cs_gpios)
1225		csr |= SPI_BIT(CSAAT);
1226
1227	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1228	 *
1229	 * DLYBCT would add delays between words, slowing down transfers.
1230	 * It could potentially be useful to cope with DMA bottlenecks, but
1231	 * in those cases it's probably best to just use a lower bitrate.
1232	 */
1233	csr |= SPI_BF(DLYBS, 0);
1234	csr |= SPI_BF(DLYBCT, 0);
1235
1236	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1237	npcs_pin = (unsigned long)spi->controller_data;
1238
1239	if (!as->use_cs_gpios)
1240		npcs_pin = spi->chip_select;
1241	else if (gpio_is_valid(spi->cs_gpio))
1242		npcs_pin = spi->cs_gpio;
 
1243
1244	asd = spi->controller_state;
1245	if (!asd) {
1246		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1247		if (!asd)
1248			return -ENOMEM;
1249
 
 
 
 
 
 
 
1250		if (as->use_cs_gpios) {
1251			ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1252			if (ret) {
1253				kfree(asd);
1254				return ret;
1255			}
1256
1257			gpio_direction_output(npcs_pin,
1258					      !(spi->mode & SPI_CS_HIGH));
1259		}
1260
1261		asd->npcs_pin = npcs_pin;
1262		spi->controller_state = asd;
1263	}
1264
1265	asd->csr = csr;
1266
1267	dev_dbg(&spi->dev,
1268		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1269		bits, spi->mode, spi->chip_select, csr);
1270
1271	if (!atmel_spi_is_v2(as))
1272		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1273
1274	return 0;
1275}
1276
1277static int atmel_spi_one_transfer(struct spi_master *master,
1278					struct spi_message *msg,
1279					struct spi_transfer *xfer)
1280{
1281	struct atmel_spi	*as;
1282	struct spi_device	*spi = msg->spi;
1283	u8			bits;
1284	u32			len;
1285	struct atmel_spi_device	*asd;
1286	int			timeout;
1287	int			ret;
1288	unsigned long		dma_timeout;
1289
1290	as = spi_master_get_devdata(master);
1291
1292	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1293		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1294		return -EINVAL;
1295	}
1296
1297	asd = spi->controller_state;
1298	bits = (asd->csr >> 4) & 0xf;
1299	if (bits != xfer->bits_per_word - 8) {
1300		dev_dbg(&spi->dev,
1301			"you can't yet change bits_per_word in transfers\n");
1302		return -ENOPROTOOPT;
1303	}
1304
1305	/*
1306	 * DMA map early, for performance (empties dcache ASAP) and
1307	 * better fault reporting.
1308	 */
1309	if ((!msg->is_dma_mapped)
1310		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1311		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1312			return -ENOMEM;
1313	}
1314
1315	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1316
1317	as->done_status = 0;
1318	as->current_transfer = xfer;
1319	as->current_remaining_bytes = xfer->len;
1320	while (as->current_remaining_bytes) {
1321		reinit_completion(&as->xfer_completion);
1322
1323		if (as->use_pdc) {
1324			atmel_spi_pdc_next_xfer(master, msg, xfer);
1325		} else if (atmel_spi_use_dma(as, xfer)) {
1326			len = as->current_remaining_bytes;
1327			ret = atmel_spi_next_xfer_dma_submit(master,
1328								xfer, &len);
1329			if (ret) {
1330				dev_err(&spi->dev,
1331					"unable to use DMA, fallback to PIO\n");
1332				atmel_spi_next_xfer_pio(master, xfer);
1333			} else {
1334				as->current_remaining_bytes -= len;
1335				if (as->current_remaining_bytes < 0)
1336					as->current_remaining_bytes = 0;
1337			}
1338		} else {
1339			atmel_spi_next_xfer_pio(master, xfer);
1340		}
1341
1342		/* interrupts are disabled, so free the lock for schedule */
1343		atmel_spi_unlock(as);
1344		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1345							  SPI_DMA_TIMEOUT);
1346		atmel_spi_lock(as);
1347		if (WARN_ON(dma_timeout == 0)) {
1348			dev_err(&spi->dev, "spi transfer timeout\n");
1349			as->done_status = -EIO;
1350		}
1351
1352		if (as->done_status)
1353			break;
1354	}
1355
1356	if (as->done_status) {
1357		if (as->use_pdc) {
1358			dev_warn(master->dev.parent,
1359				"overrun (%u/%u remaining)\n",
1360				spi_readl(as, TCR), spi_readl(as, RCR));
1361
1362			/*
1363			 * Clean up DMA registers and make sure the data
1364			 * registers are empty.
1365			 */
1366			spi_writel(as, RNCR, 0);
1367			spi_writel(as, TNCR, 0);
1368			spi_writel(as, RCR, 0);
1369			spi_writel(as, TCR, 0);
1370			for (timeout = 1000; timeout; timeout--)
1371				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1372					break;
1373			if (!timeout)
1374				dev_warn(master->dev.parent,
1375					 "timeout waiting for TXEMPTY");
1376			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1377				spi_readl(as, RDR);
1378
1379			/* Clear any overrun happening while cleaning up */
1380			spi_readl(as, SR);
1381
1382		} else if (atmel_spi_use_dma(as, xfer)) {
1383			atmel_spi_stop_dma(as);
1384		}
1385
1386		if (!msg->is_dma_mapped
1387			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1388			atmel_spi_dma_unmap_xfer(master, xfer);
1389
1390		return 0;
1391
1392	} else {
1393		/* only update length if no error */
1394		msg->actual_length += xfer->len;
1395	}
1396
1397	if (!msg->is_dma_mapped
1398		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1399		atmel_spi_dma_unmap_xfer(master, xfer);
1400
1401	if (xfer->delay_usecs)
1402		udelay(xfer->delay_usecs);
1403
1404	if (xfer->cs_change) {
1405		if (list_is_last(&xfer->transfer_list,
1406				 &msg->transfers)) {
1407			as->keep_cs = true;
1408		} else {
1409			as->cs_active = !as->cs_active;
1410			if (as->cs_active)
1411				cs_activate(as, msg->spi);
1412			else
1413				cs_deactivate(as, msg->spi);
1414		}
1415	}
1416
1417	return 0;
1418}
1419
1420static int atmel_spi_transfer_one_message(struct spi_master *master,
1421						struct spi_message *msg)
1422{
1423	struct atmel_spi *as;
1424	struct spi_transfer *xfer;
1425	struct spi_device *spi = msg->spi;
1426	int ret = 0;
1427
1428	as = spi_master_get_devdata(master);
1429
1430	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431					msg, dev_name(&spi->dev));
1432
1433	atmel_spi_lock(as);
1434	cs_activate(as, spi);
1435
1436	as->cs_active = true;
1437	as->keep_cs = false;
1438
1439	msg->status = 0;
1440	msg->actual_length = 0;
1441
1442	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 
 
1443		ret = atmel_spi_one_transfer(master, msg, xfer);
1444		if (ret)
1445			goto msg_done;
 
 
1446	}
1447
1448	if (as->use_pdc)
1449		atmel_spi_disable_pdc_transfer(as);
1450
1451	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1452		dev_dbg(&spi->dev,
1453			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1454			xfer, xfer->len,
1455			xfer->tx_buf, &xfer->tx_dma,
1456			xfer->rx_buf, &xfer->rx_dma);
1457	}
1458
1459msg_done:
1460	if (!as->keep_cs)
1461		cs_deactivate(as, msg->spi);
1462
1463	atmel_spi_unlock(as);
1464
1465	msg->status = as->done_status;
1466	spi_finalize_current_message(spi->master);
1467
1468	return ret;
1469}
1470
1471static void atmel_spi_cleanup(struct spi_device *spi)
1472{
1473	struct atmel_spi_device	*asd = spi->controller_state;
1474	unsigned		gpio = (unsigned long) spi->controller_data;
1475
1476	if (!asd)
1477		return;
1478
1479	spi->controller_state = NULL;
1480	gpio_free(gpio);
1481	kfree(asd);
1482}
1483
1484static inline unsigned int atmel_get_version(struct atmel_spi *as)
1485{
1486	return spi_readl(as, VERSION) & 0x00000fff;
1487}
1488
1489static void atmel_get_caps(struct atmel_spi *as)
1490{
1491	unsigned int version;
1492
1493	version = atmel_get_version(as);
1494	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1495
1496	as->caps.is_spi2 = version > 0x121;
1497	as->caps.has_wdrbt = version >= 0x210;
1498	as->caps.has_dma_support = version >= 0x212;
 
1499}
1500
1501/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502
1503static int atmel_spi_probe(struct platform_device *pdev)
1504{
1505	struct resource		*regs;
1506	int			irq;
1507	struct clk		*clk;
1508	int			ret;
1509	struct spi_master	*master;
1510	struct atmel_spi	*as;
1511
1512	/* Select default pin state */
1513	pinctrl_pm_select_default_state(&pdev->dev);
1514
1515	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1516	if (!regs)
1517		return -ENXIO;
1518
1519	irq = platform_get_irq(pdev, 0);
1520	if (irq < 0)
1521		return irq;
1522
1523	clk = devm_clk_get(&pdev->dev, "spi_clk");
1524	if (IS_ERR(clk))
1525		return PTR_ERR(clk);
1526
1527	/* setup spi core then atmel-specific driver state */
1528	ret = -ENOMEM;
1529	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1530	if (!master)
1531		goto out_free;
1532
1533	/* the spi->mode bits understood by this driver: */
 
1534	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1535	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1536	master->dev.of_node = pdev->dev.of_node;
1537	master->bus_num = pdev->id;
1538	master->num_chipselect = master->dev.of_node ? 0 : 4;
1539	master->setup = atmel_spi_setup;
 
1540	master->transfer_one_message = atmel_spi_transfer_one_message;
1541	master->cleanup = atmel_spi_cleanup;
1542	master->auto_runtime_pm = true;
 
 
1543	platform_set_drvdata(pdev, master);
1544
1545	as = spi_master_get_devdata(master);
1546
1547	/*
1548	 * Scratch buffer is used for throwaway rx and tx data.
1549	 * It's coherent to minimize dcache pollution.
1550	 */
1551	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1552					&as->buffer_dma, GFP_KERNEL);
1553	if (!as->buffer)
1554		goto out_free;
1555
1556	spin_lock_init(&as->lock);
1557
1558	as->pdev = pdev;
1559	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1560	if (IS_ERR(as->regs)) {
1561		ret = PTR_ERR(as->regs);
1562		goto out_free_buffer;
1563	}
1564	as->phybase = regs->start;
1565	as->irq = irq;
1566	as->clk = clk;
1567
1568	init_completion(&as->xfer_completion);
1569
1570	atmel_get_caps(as);
1571
 
 
 
 
 
1572	as->use_cs_gpios = true;
1573	if (atmel_spi_is_v2(as) &&
1574	    pdev->dev.of_node &&
1575	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1576		as->use_cs_gpios = false;
1577		master->num_chipselect = 4;
1578	}
1579
1580	as->use_dma = false;
1581	as->use_pdc = false;
1582	if (as->caps.has_dma_support) {
1583		ret = atmel_spi_configure_dma(as);
1584		if (ret == 0)
1585			as->use_dma = true;
1586		else if (ret == -EPROBE_DEFER)
1587			return ret;
1588	} else {
 
1589		as->use_pdc = true;
1590	}
1591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592	if (as->caps.has_dma_support && !as->use_dma)
1593		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1594
1595	if (as->use_pdc) {
1596		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1597					0, dev_name(&pdev->dev), master);
1598	} else {
1599		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1600					0, dev_name(&pdev->dev), master);
1601	}
1602	if (ret)
1603		goto out_unmap_regs;
1604
1605	/* Initialize the hardware */
1606	ret = clk_prepare_enable(clk);
1607	if (ret)
1608		goto out_free_irq;
1609	spi_writel(as, CR, SPI_BIT(SWRST));
1610	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1611	if (as->caps.has_wdrbt) {
1612		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1613				| SPI_BIT(MSTR));
1614	} else {
1615		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1616	}
1617
1618	if (as->use_pdc)
1619		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1620	spi_writel(as, CR, SPI_BIT(SPIEN));
1621
1622	as->fifo_size = 0;
1623	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1624				  &as->fifo_size)) {
1625		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1626		spi_writel(as, CR, SPI_BIT(FIFOEN));
1627	}
1628
1629	/* go! */
1630	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1631			(unsigned long)regs->start, irq);
1632
1633	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1634	pm_runtime_use_autosuspend(&pdev->dev);
1635	pm_runtime_set_active(&pdev->dev);
1636	pm_runtime_enable(&pdev->dev);
1637
1638	ret = devm_spi_register_master(&pdev->dev, master);
1639	if (ret)
1640		goto out_free_dma;
1641
 
 
 
 
 
1642	return 0;
1643
1644out_free_dma:
1645	pm_runtime_disable(&pdev->dev);
1646	pm_runtime_set_suspended(&pdev->dev);
1647
1648	if (as->use_dma)
1649		atmel_spi_release_dma(as);
1650
1651	spi_writel(as, CR, SPI_BIT(SWRST));
1652	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1653	clk_disable_unprepare(clk);
1654out_free_irq:
1655out_unmap_regs:
1656out_free_buffer:
1657	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1658			as->buffer_dma);
1659out_free:
1660	spi_master_put(master);
1661	return ret;
1662}
1663
1664static int atmel_spi_remove(struct platform_device *pdev)
1665{
1666	struct spi_master	*master = platform_get_drvdata(pdev);
1667	struct atmel_spi	*as = spi_master_get_devdata(master);
1668
1669	pm_runtime_get_sync(&pdev->dev);
1670
1671	/* reset the hardware and block queue progress */
1672	spin_lock_irq(&as->lock);
1673	if (as->use_dma) {
1674		atmel_spi_stop_dma(as);
1675		atmel_spi_release_dma(as);
 
 
 
 
 
 
 
 
1676	}
1677
 
1678	spi_writel(as, CR, SPI_BIT(SWRST));
1679	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1680	spi_readl(as, SR);
1681	spin_unlock_irq(&as->lock);
1682
1683	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1684			as->buffer_dma);
1685
1686	clk_disable_unprepare(as->clk);
1687
1688	pm_runtime_put_noidle(&pdev->dev);
1689	pm_runtime_disable(&pdev->dev);
1690
1691	return 0;
1692}
1693
1694#ifdef CONFIG_PM
1695static int atmel_spi_runtime_suspend(struct device *dev)
1696{
1697	struct spi_master *master = dev_get_drvdata(dev);
1698	struct atmel_spi *as = spi_master_get_devdata(master);
1699
1700	clk_disable_unprepare(as->clk);
1701	pinctrl_pm_select_sleep_state(dev);
1702
1703	return 0;
1704}
1705
1706static int atmel_spi_runtime_resume(struct device *dev)
1707{
1708	struct spi_master *master = dev_get_drvdata(dev);
1709	struct atmel_spi *as = spi_master_get_devdata(master);
1710
1711	pinctrl_pm_select_default_state(dev);
1712
1713	return clk_prepare_enable(as->clk);
1714}
1715
1716#ifdef CONFIG_PM_SLEEP
1717static int atmel_spi_suspend(struct device *dev)
1718{
1719	struct spi_master *master = dev_get_drvdata(dev);
1720	int ret;
1721
1722	/* Stop the queue running */
1723	ret = spi_master_suspend(master);
1724	if (ret) {
1725		dev_warn(dev, "cannot suspend master\n");
1726		return ret;
1727	}
1728
1729	if (!pm_runtime_suspended(dev))
1730		atmel_spi_runtime_suspend(dev);
1731
1732	return 0;
1733}
1734
1735static int atmel_spi_resume(struct device *dev)
1736{
1737	struct spi_master *master = dev_get_drvdata(dev);
 
1738	int ret;
1739
 
 
 
 
 
 
 
 
1740	if (!pm_runtime_suspended(dev)) {
1741		ret = atmel_spi_runtime_resume(dev);
1742		if (ret)
1743			return ret;
1744	}
1745
1746	/* Start the queue running */
1747	ret = spi_master_resume(master);
1748	if (ret)
1749		dev_err(dev, "problem starting queue (%d)\n", ret);
1750
1751	return ret;
1752}
1753#endif
1754
1755static const struct dev_pm_ops atmel_spi_pm_ops = {
1756	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1757	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1758			   atmel_spi_runtime_resume, NULL)
1759};
1760#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1761#else
1762#define ATMEL_SPI_PM_OPS	NULL
1763#endif
1764
1765#if defined(CONFIG_OF)
1766static const struct of_device_id atmel_spi_dt_ids[] = {
1767	{ .compatible = "atmel,at91rm9200-spi" },
1768	{ /* sentinel */ }
1769};
1770
1771MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1772#endif
1773
1774static struct platform_driver atmel_spi_driver = {
1775	.driver		= {
1776		.name	= "atmel_spi",
1777		.pm	= ATMEL_SPI_PM_OPS,
1778		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1779	},
1780	.probe		= atmel_spi_probe,
1781	.remove		= atmel_spi_remove,
1782};
1783module_platform_driver(atmel_spi_driver);
1784
1785MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1786MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1787MODULE_LICENSE("GPL");
1788MODULE_ALIAS("platform:atmel_spi");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
 
 
 
 
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/platform_data/dma-atmel.h>
  20#include <linux/of.h>
  21
  22#include <linux/io.h>
  23#include <linux/gpio/consumer.h>
  24#include <linux/pinctrl/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <trace/events/spi.h>
  27
  28/* SPI register offsets */
  29#define SPI_CR					0x0000
  30#define SPI_MR					0x0004
  31#define SPI_RDR					0x0008
  32#define SPI_TDR					0x000c
  33#define SPI_SR					0x0010
  34#define SPI_IER					0x0014
  35#define SPI_IDR					0x0018
  36#define SPI_IMR					0x001c
  37#define SPI_CSR0				0x0030
  38#define SPI_CSR1				0x0034
  39#define SPI_CSR2				0x0038
  40#define SPI_CSR3				0x003c
  41#define SPI_FMR					0x0040
  42#define SPI_FLR					0x0044
  43#define SPI_VERSION				0x00fc
  44#define SPI_RPR					0x0100
  45#define SPI_RCR					0x0104
  46#define SPI_TPR					0x0108
  47#define SPI_TCR					0x010c
  48#define SPI_RNPR				0x0110
  49#define SPI_RNCR				0x0114
  50#define SPI_TNPR				0x0118
  51#define SPI_TNCR				0x011c
  52#define SPI_PTCR				0x0120
  53#define SPI_PTSR				0x0124
  54
  55/* Bitfields in CR */
  56#define SPI_SPIEN_OFFSET			0
  57#define SPI_SPIEN_SIZE				1
  58#define SPI_SPIDIS_OFFSET			1
  59#define SPI_SPIDIS_SIZE				1
  60#define SPI_SWRST_OFFSET			7
  61#define SPI_SWRST_SIZE				1
  62#define SPI_LASTXFER_OFFSET			24
  63#define SPI_LASTXFER_SIZE			1
  64#define SPI_TXFCLR_OFFSET			16
  65#define SPI_TXFCLR_SIZE				1
  66#define SPI_RXFCLR_OFFSET			17
  67#define SPI_RXFCLR_SIZE				1
  68#define SPI_FIFOEN_OFFSET			30
  69#define SPI_FIFOEN_SIZE				1
  70#define SPI_FIFODIS_OFFSET			31
  71#define SPI_FIFODIS_SIZE			1
  72
  73/* Bitfields in MR */
  74#define SPI_MSTR_OFFSET				0
  75#define SPI_MSTR_SIZE				1
  76#define SPI_PS_OFFSET				1
  77#define SPI_PS_SIZE				1
  78#define SPI_PCSDEC_OFFSET			2
  79#define SPI_PCSDEC_SIZE				1
  80#define SPI_FDIV_OFFSET				3
  81#define SPI_FDIV_SIZE				1
  82#define SPI_MODFDIS_OFFSET			4
  83#define SPI_MODFDIS_SIZE			1
  84#define SPI_WDRBT_OFFSET			5
  85#define SPI_WDRBT_SIZE				1
  86#define SPI_LLB_OFFSET				7
  87#define SPI_LLB_SIZE				1
  88#define SPI_PCS_OFFSET				16
  89#define SPI_PCS_SIZE				4
  90#define SPI_DLYBCS_OFFSET			24
  91#define SPI_DLYBCS_SIZE				8
  92
  93/* Bitfields in RDR */
  94#define SPI_RD_OFFSET				0
  95#define SPI_RD_SIZE				16
  96
  97/* Bitfields in TDR */
  98#define SPI_TD_OFFSET				0
  99#define SPI_TD_SIZE				16
 100
 101/* Bitfields in SR */
 102#define SPI_RDRF_OFFSET				0
 103#define SPI_RDRF_SIZE				1
 104#define SPI_TDRE_OFFSET				1
 105#define SPI_TDRE_SIZE				1
 106#define SPI_MODF_OFFSET				2
 107#define SPI_MODF_SIZE				1
 108#define SPI_OVRES_OFFSET			3
 109#define SPI_OVRES_SIZE				1
 110#define SPI_ENDRX_OFFSET			4
 111#define SPI_ENDRX_SIZE				1
 112#define SPI_ENDTX_OFFSET			5
 113#define SPI_ENDTX_SIZE				1
 114#define SPI_RXBUFF_OFFSET			6
 115#define SPI_RXBUFF_SIZE				1
 116#define SPI_TXBUFE_OFFSET			7
 117#define SPI_TXBUFE_SIZE				1
 118#define SPI_NSSR_OFFSET				8
 119#define SPI_NSSR_SIZE				1
 120#define SPI_TXEMPTY_OFFSET			9
 121#define SPI_TXEMPTY_SIZE			1
 122#define SPI_SPIENS_OFFSET			16
 123#define SPI_SPIENS_SIZE				1
 124#define SPI_TXFEF_OFFSET			24
 125#define SPI_TXFEF_SIZE				1
 126#define SPI_TXFFF_OFFSET			25
 127#define SPI_TXFFF_SIZE				1
 128#define SPI_TXFTHF_OFFSET			26
 129#define SPI_TXFTHF_SIZE				1
 130#define SPI_RXFEF_OFFSET			27
 131#define SPI_RXFEF_SIZE				1
 132#define SPI_RXFFF_OFFSET			28
 133#define SPI_RXFFF_SIZE				1
 134#define SPI_RXFTHF_OFFSET			29
 135#define SPI_RXFTHF_SIZE				1
 136#define SPI_TXFPTEF_OFFSET			30
 137#define SPI_TXFPTEF_SIZE			1
 138#define SPI_RXFPTEF_OFFSET			31
 139#define SPI_RXFPTEF_SIZE			1
 140
 141/* Bitfields in CSR0 */
 142#define SPI_CPOL_OFFSET				0
 143#define SPI_CPOL_SIZE				1
 144#define SPI_NCPHA_OFFSET			1
 145#define SPI_NCPHA_SIZE				1
 146#define SPI_CSAAT_OFFSET			3
 147#define SPI_CSAAT_SIZE				1
 148#define SPI_BITS_OFFSET				4
 149#define SPI_BITS_SIZE				4
 150#define SPI_SCBR_OFFSET				8
 151#define SPI_SCBR_SIZE				8
 152#define SPI_DLYBS_OFFSET			16
 153#define SPI_DLYBS_SIZE				8
 154#define SPI_DLYBCT_OFFSET			24
 155#define SPI_DLYBCT_SIZE				8
 156
 157/* Bitfields in RCR */
 158#define SPI_RXCTR_OFFSET			0
 159#define SPI_RXCTR_SIZE				16
 160
 161/* Bitfields in TCR */
 162#define SPI_TXCTR_OFFSET			0
 163#define SPI_TXCTR_SIZE				16
 164
 165/* Bitfields in RNCR */
 166#define SPI_RXNCR_OFFSET			0
 167#define SPI_RXNCR_SIZE				16
 168
 169/* Bitfields in TNCR */
 170#define SPI_TXNCR_OFFSET			0
 171#define SPI_TXNCR_SIZE				16
 172
 173/* Bitfields in PTCR */
 174#define SPI_RXTEN_OFFSET			0
 175#define SPI_RXTEN_SIZE				1
 176#define SPI_RXTDIS_OFFSET			1
 177#define SPI_RXTDIS_SIZE				1
 178#define SPI_TXTEN_OFFSET			8
 179#define SPI_TXTEN_SIZE				1
 180#define SPI_TXTDIS_OFFSET			9
 181#define SPI_TXTDIS_SIZE				1
 182
 183/* Bitfields in FMR */
 184#define SPI_TXRDYM_OFFSET			0
 185#define SPI_TXRDYM_SIZE				2
 186#define SPI_RXRDYM_OFFSET			4
 187#define SPI_RXRDYM_SIZE				2
 188#define SPI_TXFTHRES_OFFSET			16
 189#define SPI_TXFTHRES_SIZE			6
 190#define SPI_RXFTHRES_OFFSET			24
 191#define SPI_RXFTHRES_SIZE			6
 192
 193/* Bitfields in FLR */
 194#define SPI_TXFL_OFFSET				0
 195#define SPI_TXFL_SIZE				6
 196#define SPI_RXFL_OFFSET				16
 197#define SPI_RXFL_SIZE				6
 198
 199/* Constants for BITS */
 200#define SPI_BITS_8_BPT				0
 201#define SPI_BITS_9_BPT				1
 202#define SPI_BITS_10_BPT				2
 203#define SPI_BITS_11_BPT				3
 204#define SPI_BITS_12_BPT				4
 205#define SPI_BITS_13_BPT				5
 206#define SPI_BITS_14_BPT				6
 207#define SPI_BITS_15_BPT				7
 208#define SPI_BITS_16_BPT				8
 209#define SPI_ONE_DATA				0
 210#define SPI_TWO_DATA				1
 211#define SPI_FOUR_DATA				2
 212
 213/* Bit manipulation macros */
 214#define SPI_BIT(name) \
 215	(1 << SPI_##name##_OFFSET)
 216#define SPI_BF(name, value) \
 217	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 218#define SPI_BFEXT(name, value) \
 219	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 220#define SPI_BFINS(name, value, old) \
 221	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 222	  | SPI_BF(name, value))
 223
 224/* Register access macros */
 225#ifdef CONFIG_AVR32
 226#define spi_readl(port, reg) \
 227	__raw_readl((port)->regs + SPI_##reg)
 228#define spi_writel(port, reg, value) \
 229	__raw_writel((value), (port)->regs + SPI_##reg)
 230
 231#define spi_readw(port, reg) \
 232	__raw_readw((port)->regs + SPI_##reg)
 233#define spi_writew(port, reg, value) \
 234	__raw_writew((value), (port)->regs + SPI_##reg)
 235
 236#define spi_readb(port, reg) \
 237	__raw_readb((port)->regs + SPI_##reg)
 238#define spi_writeb(port, reg, value) \
 239	__raw_writeb((value), (port)->regs + SPI_##reg)
 240#else
 241#define spi_readl(port, reg) \
 242	readl_relaxed((port)->regs + SPI_##reg)
 243#define spi_writel(port, reg, value) \
 244	writel_relaxed((value), (port)->regs + SPI_##reg)
 245
 246#define spi_readw(port, reg) \
 247	readw_relaxed((port)->regs + SPI_##reg)
 248#define spi_writew(port, reg, value) \
 249	writew_relaxed((value), (port)->regs + SPI_##reg)
 250
 251#define spi_readb(port, reg) \
 252	readb_relaxed((port)->regs + SPI_##reg)
 253#define spi_writeb(port, reg, value) \
 254	writeb_relaxed((value), (port)->regs + SPI_##reg)
 255#endif
 256/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 257 * cache operations; better heuristics consider wordsize and bitrate.
 258 */
 259#define DMA_MIN_BYTES	16
 260
 261#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 262
 263#define AUTOSUSPEND_TIMEOUT	2000
 264
 
 
 
 
 
 
 
 
 
 
 
 265struct atmel_spi_caps {
 266	bool	is_spi2;
 267	bool	has_wdrbt;
 268	bool	has_dma_support;
 269	bool	has_pdc_support;
 270};
 271
 272/*
 273 * The core SPI transfer engine just talks to a register bank to set up
 274 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 275 * framework provides the base clock, subdivided for each spi_device.
 276 */
 277struct atmel_spi {
 278	spinlock_t		lock;
 279	unsigned long		flags;
 280
 281	phys_addr_t		phybase;
 282	void __iomem		*regs;
 283	int			irq;
 284	struct clk		*clk;
 285	struct platform_device	*pdev;
 286	unsigned long		spi_clk;
 287
 288	struct spi_transfer	*current_transfer;
 289	int			current_remaining_bytes;
 290	int			done_status;
 291	dma_addr_t		dma_addr_rx_bbuf;
 292	dma_addr_t		dma_addr_tx_bbuf;
 293	void			*addr_rx_bbuf;
 294	void			*addr_tx_bbuf;
 295
 296	struct completion	xfer_completion;
 297
 
 
 
 
 298	struct atmel_spi_caps	caps;
 299
 300	bool			use_dma;
 301	bool			use_pdc;
 302	bool			use_cs_gpios;
 
 
 303
 304	bool			keep_cs;
 305	bool			cs_active;
 306
 307	u32			fifo_size;
 308};
 309
 310/* Controller-specific per-slave state */
 311struct atmel_spi_device {
 312	struct gpio_desc	*npcs_pin;
 313	u32			csr;
 314};
 315
 316#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 317#define INVALID_DMA_ADDRESS	0xffffffff
 318
 319/*
 320 * Version 2 of the SPI controller has
 321 *  - CR.LASTXFER
 322 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 323 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 324 *  - SPI_CSRx.CSAAT
 325 *  - SPI_CSRx.SBCR allows faster clocking
 326 */
 327static bool atmel_spi_is_v2(struct atmel_spi *as)
 328{
 329	return as->caps.is_spi2;
 330}
 331
 332/*
 333 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 334 * they assume that spi slave device state will not change on deselect, so
 335 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 336 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 337 * controllers have CSAAT and friends.
 338 *
 339 * Since the CSAAT functionality is a bit weird on newer controllers as
 340 * well, we use GPIO to control nCSx pins on all controllers, updating
 341 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 342 * support active-high chipselects despite the controller's belief that
 343 * only active-low devices/systems exists.
 344 *
 345 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 346 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 347 * Master on Chip Select 0.")  No workaround exists for that ... so for
 348 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 349 * and (c) will trigger that first erratum in some cases.
 350 */
 351
 352static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 353{
 354	struct atmel_spi_device *asd = spi->controller_state;
 
 355	u32 mr;
 356
 357	if (atmel_spi_is_v2(as)) {
 358		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 359		/* For the low SPI version, there is a issue that PDC transfer
 360		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 361		 */
 362		spi_writel(as, CSR0, asd->csr);
 363		if (as->caps.has_wdrbt) {
 364			spi_writel(as, MR,
 365					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 366					| SPI_BIT(WDRBT)
 367					| SPI_BIT(MODFDIS)
 368					| SPI_BIT(MSTR));
 369		} else {
 370			spi_writel(as, MR,
 371					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 372					| SPI_BIT(MODFDIS)
 373					| SPI_BIT(MSTR));
 374		}
 375
 376		mr = spi_readl(as, MR);
 377		if (as->use_cs_gpios)
 378			gpiod_set_value(asd->npcs_pin, 1);
 379	} else {
 380		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 381		int i;
 382		u32 csr;
 383
 384		/* Make sure clock polarity is correct */
 385		for (i = 0; i < spi->master->num_chipselect; i++) {
 386			csr = spi_readl(as, CSR0 + 4 * i);
 387			if ((csr ^ cpol) & SPI_BIT(CPOL))
 388				spi_writel(as, CSR0 + 4 * i,
 389						csr ^ SPI_BIT(CPOL));
 390		}
 391
 392		mr = spi_readl(as, MR);
 393		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 394		if (as->use_cs_gpios && spi->chip_select != 0)
 395			gpiod_set_value(asd->npcs_pin, 1);
 396		spi_writel(as, MR, mr);
 397	}
 398
 399	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 
 
 400}
 401
 402static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 403{
 404	struct atmel_spi_device *asd = spi->controller_state;
 
 405	u32 mr;
 406
 407	/* only deactivate *this* device; sometimes transfers to
 408	 * another device may be active when this routine is called.
 409	 */
 410	mr = spi_readl(as, MR);
 411	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 412		mr = SPI_BFINS(PCS, 0xf, mr);
 413		spi_writel(as, MR, mr);
 414	}
 415
 416	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 
 
 417
 418	if (!as->use_cs_gpios)
 419		spi_writel(as, CR, SPI_BIT(LASTXFER));
 420	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 421		gpiod_set_value(asd->npcs_pin, 0);
 422}
 423
 424static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 425{
 426	spin_lock_irqsave(&as->lock, as->flags);
 427}
 428
 429static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 430{
 431	spin_unlock_irqrestore(&as->lock, as->flags);
 432}
 433
 434static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 435{
 436	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 437}
 438
 439static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 440				struct spi_transfer *xfer)
 441{
 442	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 443}
 444
 445static bool atmel_spi_can_dma(struct spi_master *master,
 446			      struct spi_device *spi,
 447			      struct spi_transfer *xfer)
 448{
 449	struct atmel_spi *as = spi_master_get_devdata(master);
 450
 451	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 452		return atmel_spi_use_dma(as, xfer) &&
 453			!atmel_spi_is_vmalloc_xfer(xfer);
 454	else
 455		return atmel_spi_use_dma(as, xfer);
 456
 457}
 458
 459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 460				struct dma_slave_config *slave_config,
 461				u8 bits_per_word)
 462{
 463	struct spi_master *master = platform_get_drvdata(as->pdev);
 464	int err = 0;
 465
 466	if (bits_per_word > 8) {
 467		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 468		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 469	} else {
 470		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 471		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 472	}
 473
 474	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 475	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 476	slave_config->src_maxburst = 1;
 477	slave_config->dst_maxburst = 1;
 478	slave_config->device_fc = false;
 479
 480	/*
 481	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 482	 * the Mode Register).
 483	 * So according to the datasheet, when FIFOs are available (and
 484	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 485	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 486	 * Data Register in a single access.
 487	 * However, the first data has to be written into the lowest 16 bits and
 488	 * the second data into the highest 16 bits of the Transmit
 489	 * Data Register. For 8bit data (the most frequent case), it would
 490	 * require to rework tx_buf so each data would actualy fit 16 bits.
 491	 * So we'd rather write only one data at the time. Hence the transmit
 492	 * path works the same whether FIFOs are available (and enabled) or not.
 493	 */
 494	slave_config->direction = DMA_MEM_TO_DEV;
 495	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 496		dev_err(&as->pdev->dev,
 497			"failed to configure tx dma channel\n");
 498		err = -EINVAL;
 499	}
 500
 501	/*
 502	 * This driver configures the spi controller for master mode (MSTR bit
 503	 * set to '1' in the Mode Register).
 504	 * So according to the datasheet, when FIFOs are available (and
 505	 * enabled), the Receive FIFO operates in Single Data Mode.
 506	 * So the receive path works the same whether FIFOs are available (and
 507	 * enabled) or not.
 508	 */
 509	slave_config->direction = DMA_DEV_TO_MEM;
 510	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 511		dev_err(&as->pdev->dev,
 512			"failed to configure rx dma channel\n");
 513		err = -EINVAL;
 514	}
 515
 516	return err;
 517}
 518
 519static int atmel_spi_configure_dma(struct spi_master *master,
 520				   struct atmel_spi *as)
 521{
 522	struct dma_slave_config	slave_config;
 523	struct device *dev = &as->pdev->dev;
 524	int err;
 525
 526	dma_cap_mask_t mask;
 527	dma_cap_zero(mask);
 528	dma_cap_set(DMA_SLAVE, mask);
 529
 530	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 531	if (IS_ERR(master->dma_tx)) {
 532		err = PTR_ERR(master->dma_tx);
 533		if (err == -EPROBE_DEFER) {
 534			dev_warn(dev, "no DMA channel available at the moment\n");
 535			goto error_clear;
 536		}
 537		dev_err(dev,
 538			"DMA TX channel not available, SPI unable to use DMA\n");
 539		err = -EBUSY;
 540		goto error_clear;
 541	}
 542
 543	/*
 544	 * No reason to check EPROBE_DEFER here since we have already requested
 545	 * tx channel. If it fails here, it's for another reason.
 546	 */
 547	master->dma_rx = dma_request_slave_channel(dev, "rx");
 548
 549	if (!master->dma_rx) {
 550		dev_err(dev,
 551			"DMA RX channel not available, SPI unable to use DMA\n");
 552		err = -EBUSY;
 553		goto error;
 554	}
 555
 556	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 557	if (err)
 558		goto error;
 559
 560	dev_info(&as->pdev->dev,
 561			"Using %s (tx) and %s (rx) for DMA transfers\n",
 562			dma_chan_name(master->dma_tx),
 563			dma_chan_name(master->dma_rx));
 564
 565	return 0;
 566error:
 567	if (master->dma_rx)
 568		dma_release_channel(master->dma_rx);
 569	if (!IS_ERR(master->dma_tx))
 570		dma_release_channel(master->dma_tx);
 571error_clear:
 572	master->dma_tx = master->dma_rx = NULL;
 573	return err;
 574}
 575
 576static void atmel_spi_stop_dma(struct spi_master *master)
 577{
 578	if (master->dma_rx)
 579		dmaengine_terminate_all(master->dma_rx);
 580	if (master->dma_tx)
 581		dmaengine_terminate_all(master->dma_tx);
 582}
 583
 584static void atmel_spi_release_dma(struct spi_master *master)
 585{
 586	if (master->dma_rx) {
 587		dma_release_channel(master->dma_rx);
 588		master->dma_rx = NULL;
 589	}
 590	if (master->dma_tx) {
 591		dma_release_channel(master->dma_tx);
 592		master->dma_tx = NULL;
 593	}
 594}
 595
 596/* This function is called by the DMA driver from tasklet context */
 597static void dma_callback(void *data)
 598{
 599	struct spi_master	*master = data;
 600	struct atmel_spi	*as = spi_master_get_devdata(master);
 601
 602	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 603	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 604		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 605		       as->current_transfer->len);
 606	}
 607	complete(&as->xfer_completion);
 608}
 609
 610/*
 611 * Next transfer using PIO without FIFO.
 612 */
 613static void atmel_spi_next_xfer_single(struct spi_master *master,
 614				       struct spi_transfer *xfer)
 615{
 616	struct atmel_spi	*as = spi_master_get_devdata(master);
 617	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 618
 619	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 620
 621	/* Make sure data is not remaining in RDR */
 622	spi_readl(as, RDR);
 623	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 624		spi_readl(as, RDR);
 625		cpu_relax();
 626	}
 627
 628	if (xfer->bits_per_word > 8)
 629		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 630	else
 631		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 
 
 
 
 632
 633	dev_dbg(master->dev.parent,
 634		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 635		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 636		xfer->bits_per_word);
 637
 638	/* Enable relevant interrupts */
 639	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 640}
 641
 642/*
 643 * Next transfer using PIO with FIFO.
 644 */
 645static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 646				     struct spi_transfer *xfer)
 647{
 648	struct atmel_spi *as = spi_master_get_devdata(master);
 649	u32 current_remaining_data, num_data;
 650	u32 offset = xfer->len - as->current_remaining_bytes;
 651	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 652	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 653	u16 td0, td1;
 654	u32 fifomr;
 655
 656	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 657
 658	/* Compute the number of data to transfer in the current iteration */
 659	current_remaining_data = ((xfer->bits_per_word > 8) ?
 660				  ((u32)as->current_remaining_bytes >> 1) :
 661				  (u32)as->current_remaining_bytes);
 662	num_data = min(current_remaining_data, as->fifo_size);
 663
 664	/* Flush RX and TX FIFOs */
 665	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 666	while (spi_readl(as, FLR))
 667		cpu_relax();
 668
 669	/* Set RX FIFO Threshold to the number of data to transfer */
 670	fifomr = spi_readl(as, FMR);
 671	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 672
 673	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 674	(void)spi_readl(as, SR);
 675
 676	/* Fill TX FIFO */
 677	while (num_data >= 2) {
 678		if (xfer->bits_per_word > 8) {
 679			td0 = *words++;
 680			td1 = *words++;
 
 
 
 
 
 681		} else {
 682			td0 = *bytes++;
 683			td1 = *bytes++;
 684		}
 685
 686		spi_writel(as, TDR, (td1 << 16) | td0);
 687		num_data -= 2;
 688	}
 689
 690	if (num_data) {
 691		if (xfer->bits_per_word > 8)
 692			td0 = *words++;
 693		else
 694			td0 = *bytes++;
 
 
 
 
 695
 696		spi_writew(as, TDR, td0);
 697		num_data--;
 698	}
 699
 700	dev_dbg(master->dev.parent,
 701		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 702		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 703		xfer->bits_per_word);
 704
 705	/*
 706	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 707	 * transfer completion.
 708	 */
 709	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 710}
 711
 712/*
 713 * Next transfer using PIO.
 714 */
 715static void atmel_spi_next_xfer_pio(struct spi_master *master,
 716				    struct spi_transfer *xfer)
 717{
 718	struct atmel_spi *as = spi_master_get_devdata(master);
 719
 720	if (as->fifo_size)
 721		atmel_spi_next_xfer_fifo(master, xfer);
 722	else
 723		atmel_spi_next_xfer_single(master, xfer);
 724}
 725
 726/*
 727 * Submit next transfer for DMA.
 728 */
 729static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 730				struct spi_transfer *xfer,
 731				u32 *plen)
 732{
 733	struct atmel_spi	*as = spi_master_get_devdata(master);
 734	struct dma_chan		*rxchan = master->dma_rx;
 735	struct dma_chan		*txchan = master->dma_tx;
 736	struct dma_async_tx_descriptor *rxdesc;
 737	struct dma_async_tx_descriptor *txdesc;
 738	struct dma_slave_config	slave_config;
 739	dma_cookie_t		cookie;
 
 740
 741	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 742
 743	/* Check that the channels are available */
 744	if (!rxchan || !txchan)
 745		return -ENODEV;
 746
 747	/* release lock for DMA operations */
 748	atmel_spi_unlock(as);
 749
 750	*plen = xfer->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751
 752	if (atmel_spi_dma_slave_config(as, &slave_config,
 753				       xfer->bits_per_word))
 754		goto err_exit;
 755
 756	/* Send both scatterlists */
 757	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 758	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 759		rxdesc = dmaengine_prep_slave_single(rxchan,
 760						     as->dma_addr_rx_bbuf,
 761						     xfer->len,
 762						     DMA_DEV_TO_MEM,
 763						     DMA_PREP_INTERRUPT |
 764						     DMA_CTRL_ACK);
 765	} else {
 766		rxdesc = dmaengine_prep_slave_sg(rxchan,
 767						 xfer->rx_sg.sgl,
 768						 xfer->rx_sg.nents,
 769						 DMA_DEV_TO_MEM,
 770						 DMA_PREP_INTERRUPT |
 771						 DMA_CTRL_ACK);
 772	}
 773	if (!rxdesc)
 774		goto err_dma;
 775
 776	if (atmel_spi_is_vmalloc_xfer(xfer) &&
 777	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 778		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 779		txdesc = dmaengine_prep_slave_single(txchan,
 780						     as->dma_addr_tx_bbuf,
 781						     xfer->len, DMA_MEM_TO_DEV,
 782						     DMA_PREP_INTERRUPT |
 783						     DMA_CTRL_ACK);
 784	} else {
 785		txdesc = dmaengine_prep_slave_sg(txchan,
 786						 xfer->tx_sg.sgl,
 787						 xfer->tx_sg.nents,
 788						 DMA_MEM_TO_DEV,
 789						 DMA_PREP_INTERRUPT |
 790						 DMA_CTRL_ACK);
 791	}
 792	if (!txdesc)
 793		goto err_dma;
 794
 795	dev_dbg(master->dev.parent,
 796		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 797		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 798		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 799
 800	/* Enable relevant interrupts */
 801	spi_writel(as, IER, SPI_BIT(OVRES));
 802
 803	/* Put the callback on the RX transfer only, that should finish last */
 804	rxdesc->callback = dma_callback;
 805	rxdesc->callback_param = master;
 806
 807	/* Submit and fire RX and TX with TX last so we're ready to read! */
 808	cookie = rxdesc->tx_submit(rxdesc);
 809	if (dma_submit_error(cookie))
 810		goto err_dma;
 811	cookie = txdesc->tx_submit(txdesc);
 812	if (dma_submit_error(cookie))
 813		goto err_dma;
 814	rxchan->device->device_issue_pending(rxchan);
 815	txchan->device->device_issue_pending(txchan);
 816
 817	/* take back lock */
 818	atmel_spi_lock(as);
 819	return 0;
 820
 821err_dma:
 822	spi_writel(as, IDR, SPI_BIT(OVRES));
 823	atmel_spi_stop_dma(master);
 824err_exit:
 825	atmel_spi_lock(as);
 826	return -ENOMEM;
 827}
 828
 829static void atmel_spi_next_xfer_data(struct spi_master *master,
 830				struct spi_transfer *xfer,
 831				dma_addr_t *tx_dma,
 832				dma_addr_t *rx_dma,
 833				u32 *plen)
 834{
 835	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 836	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 837	if (*plen > master->max_dma_len)
 838		*plen = master->max_dma_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839}
 840
 841static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 842				    struct spi_device *spi,
 843				    struct spi_transfer *xfer)
 844{
 845	u32			scbr, csr;
 846	unsigned long		bus_hz;
 847
 848	/* v1 chips start out at half the peripheral bus speed. */
 849	bus_hz = as->spi_clk;
 850	if (!atmel_spi_is_v2(as))
 851		bus_hz /= 2;
 852
 853	/*
 854	 * Calculate the lowest divider that satisfies the
 855	 * constraint, assuming div32/fdiv/mbz == 0.
 856	 */
 857	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 858
 859	/*
 860	 * If the resulting divider doesn't fit into the
 861	 * register bitfield, we can't satisfy the constraint.
 862	 */
 863	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 864		dev_err(&spi->dev,
 865			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 866			xfer->speed_hz, scbr, bus_hz/255);
 867		return -EINVAL;
 868	}
 869	if (scbr == 0) {
 870		dev_err(&spi->dev,
 871			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 872			xfer->speed_hz, scbr, bus_hz);
 873		return -EINVAL;
 874	}
 875	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 876	csr = SPI_BFINS(SCBR, scbr, csr);
 877	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 878
 879	return 0;
 880}
 881
 882/*
 883 * Submit next transfer for PDC.
 884 * lock is held, spi irq is blocked
 885 */
 886static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 887					struct spi_message *msg,
 888					struct spi_transfer *xfer)
 889{
 890	struct atmel_spi	*as = spi_master_get_devdata(master);
 891	u32			len;
 892	dma_addr_t		tx_dma, rx_dma;
 893
 894	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 895
 896	len = as->current_remaining_bytes;
 897	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 898	as->current_remaining_bytes -= len;
 899
 900	spi_writel(as, RPR, rx_dma);
 901	spi_writel(as, TPR, tx_dma);
 902
 903	if (msg->spi->bits_per_word > 8)
 904		len >>= 1;
 905	spi_writel(as, RCR, len);
 906	spi_writel(as, TCR, len);
 907
 908	dev_dbg(&msg->spi->dev,
 909		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 910		xfer, xfer->len, xfer->tx_buf,
 911		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 912		(unsigned long long)xfer->rx_dma);
 913
 914	if (as->current_remaining_bytes) {
 915		len = as->current_remaining_bytes;
 916		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 917		as->current_remaining_bytes -= len;
 918
 919		spi_writel(as, RNPR, rx_dma);
 920		spi_writel(as, TNPR, tx_dma);
 921
 922		if (msg->spi->bits_per_word > 8)
 923			len >>= 1;
 924		spi_writel(as, RNCR, len);
 925		spi_writel(as, TNCR, len);
 926
 927		dev_dbg(&msg->spi->dev,
 928			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 929			xfer, xfer->len, xfer->tx_buf,
 930			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 931			(unsigned long long)xfer->rx_dma);
 932	}
 933
 934	/* REVISIT: We're waiting for RXBUFF before we start the next
 935	 * transfer because we need to handle some difficult timing
 936	 * issues otherwise. If we wait for TXBUFE in one transfer and
 937	 * then starts waiting for RXBUFF in the next, it's difficult
 938	 * to tell the difference between the RXBUFF interrupt we're
 939	 * actually waiting for and the RXBUFF interrupt of the
 940	 * previous transfer.
 941	 *
 942	 * It should be doable, though. Just not now...
 943	 */
 944	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 945	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 946}
 947
 948/*
 949 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 950 *  - The buffer is either valid for CPU access, else NULL
 951 *  - If the buffer is valid, so is its DMA address
 952 *
 953 * This driver manages the dma address unless message->is_dma_mapped.
 954 */
 955static int
 956atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 957{
 958	struct device	*dev = &as->pdev->dev;
 959
 960	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 961	if (xfer->tx_buf) {
 962		/* tx_buf is a const void* where we need a void * for the dma
 963		 * mapping */
 964		void *nonconst_tx = (void *)xfer->tx_buf;
 965
 966		xfer->tx_dma = dma_map_single(dev,
 967				nonconst_tx, xfer->len,
 968				DMA_TO_DEVICE);
 969		if (dma_mapping_error(dev, xfer->tx_dma))
 970			return -ENOMEM;
 971	}
 972	if (xfer->rx_buf) {
 973		xfer->rx_dma = dma_map_single(dev,
 974				xfer->rx_buf, xfer->len,
 975				DMA_FROM_DEVICE);
 976		if (dma_mapping_error(dev, xfer->rx_dma)) {
 977			if (xfer->tx_buf)
 978				dma_unmap_single(dev,
 979						xfer->tx_dma, xfer->len,
 980						DMA_TO_DEVICE);
 981			return -ENOMEM;
 982		}
 983	}
 984	return 0;
 985}
 986
 987static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 988				     struct spi_transfer *xfer)
 989{
 990	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 991		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 992				 xfer->len, DMA_TO_DEVICE);
 993	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 994		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 995				 xfer->len, DMA_FROM_DEVICE);
 996}
 997
 998static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 999{
1000	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1001}
1002
1003static void
1004atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005{
1006	u8		*rxp;
1007	u16		*rxp16;
1008	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1009
1010	if (xfer->bits_per_word > 8) {
1011		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1012		*rxp16 = spi_readl(as, RDR);
 
 
 
 
 
1013	} else {
1014		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1015		*rxp = spi_readl(as, RDR);
1016	}
1017	if (xfer->bits_per_word > 8) {
1018		if (as->current_remaining_bytes > 2)
1019			as->current_remaining_bytes -= 2;
1020		else
1021			as->current_remaining_bytes = 0;
1022	} else {
1023		as->current_remaining_bytes--;
1024	}
1025}
1026
1027static void
1028atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029{
1030	u32 fifolr = spi_readl(as, FLR);
1031	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1032	u32 offset = xfer->len - as->current_remaining_bytes;
1033	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1034	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1035	u16 rd; /* RD field is the lowest 16 bits of RDR */
1036
1037	/* Update the number of remaining bytes to transfer */
1038	num_bytes = ((xfer->bits_per_word > 8) ?
1039		     (num_data << 1) :
1040		     num_data);
1041
1042	if (as->current_remaining_bytes > num_bytes)
1043		as->current_remaining_bytes -= num_bytes;
1044	else
1045		as->current_remaining_bytes = 0;
1046
1047	/* Handle odd number of bytes when data are more than 8bit width */
1048	if (xfer->bits_per_word > 8)
1049		as->current_remaining_bytes &= ~0x1;
1050
1051	/* Read data */
1052	while (num_data) {
1053		rd = spi_readl(as, RDR);
1054		if (xfer->bits_per_word > 8)
1055			*words++ = rd;
1056		else
1057			*bytes++ = rd;
 
 
1058		num_data--;
1059	}
1060}
1061
1062/* Called from IRQ
1063 *
1064 * Must update "current_remaining_bytes" to keep track of data
1065 * to transfer.
1066 */
1067static void
1068atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069{
1070	if (as->fifo_size)
1071		atmel_spi_pump_fifo_data(as, xfer);
1072	else
1073		atmel_spi_pump_single_data(as, xfer);
1074}
1075
1076/* Interrupt
1077 *
1078 * No need for locking in this Interrupt handler: done_status is the
1079 * only information modified.
1080 */
1081static irqreturn_t
1082atmel_spi_pio_interrupt(int irq, void *dev_id)
1083{
1084	struct spi_master	*master = dev_id;
1085	struct atmel_spi	*as = spi_master_get_devdata(master);
1086	u32			status, pending, imr;
1087	struct spi_transfer	*xfer;
1088	int			ret = IRQ_NONE;
1089
1090	imr = spi_readl(as, IMR);
1091	status = spi_readl(as, SR);
1092	pending = status & imr;
1093
1094	if (pending & SPI_BIT(OVRES)) {
1095		ret = IRQ_HANDLED;
1096		spi_writel(as, IDR, SPI_BIT(OVRES));
1097		dev_warn(master->dev.parent, "overrun\n");
1098
1099		/*
1100		 * When we get an overrun, we disregard the current
1101		 * transfer. Data will not be copied back from any
1102		 * bounce buffer and msg->actual_len will not be
1103		 * updated with the last xfer.
1104		 *
1105		 * We will also not process any remaning transfers in
1106		 * the message.
1107		 */
1108		as->done_status = -EIO;
1109		smp_wmb();
1110
1111		/* Clear any overrun happening while cleaning up */
1112		spi_readl(as, SR);
1113
1114		complete(&as->xfer_completion);
1115
1116	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1117		atmel_spi_lock(as);
1118
1119		if (as->current_remaining_bytes) {
1120			ret = IRQ_HANDLED;
1121			xfer = as->current_transfer;
1122			atmel_spi_pump_pio_data(as, xfer);
1123			if (!as->current_remaining_bytes)
1124				spi_writel(as, IDR, pending);
1125
1126			complete(&as->xfer_completion);
1127		}
1128
1129		atmel_spi_unlock(as);
1130	} else {
1131		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1132		ret = IRQ_HANDLED;
1133		spi_writel(as, IDR, pending);
1134	}
1135
1136	return ret;
1137}
1138
1139static irqreturn_t
1140atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141{
1142	struct spi_master	*master = dev_id;
1143	struct atmel_spi	*as = spi_master_get_devdata(master);
1144	u32			status, pending, imr;
1145	int			ret = IRQ_NONE;
1146
1147	imr = spi_readl(as, IMR);
1148	status = spi_readl(as, SR);
1149	pending = status & imr;
1150
1151	if (pending & SPI_BIT(OVRES)) {
1152
1153		ret = IRQ_HANDLED;
1154
1155		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156				     | SPI_BIT(OVRES)));
1157
1158		/* Clear any overrun happening while cleaning up */
1159		spi_readl(as, SR);
1160
1161		as->done_status = -EIO;
1162
1163		complete(&as->xfer_completion);
1164
1165	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1166		ret = IRQ_HANDLED;
1167
1168		spi_writel(as, IDR, pending);
1169
1170		complete(&as->xfer_completion);
1171	}
1172
1173	return ret;
1174}
1175
1176static int atmel_spi_setup(struct spi_device *spi)
1177{
1178	struct atmel_spi	*as;
1179	struct atmel_spi_device	*asd;
1180	u32			csr;
1181	unsigned int		bits = spi->bits_per_word;
 
 
1182
1183	as = spi_master_get_devdata(spi->master);
1184
1185	/* see notes above re chipselect */
1186	if (!atmel_spi_is_v2(as)
1187			&& spi->chip_select == 0
1188			&& (spi->mode & SPI_CS_HIGH)) {
1189		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1190		return -EINVAL;
1191	}
1192
1193	csr = SPI_BF(BITS, bits - 8);
1194	if (spi->mode & SPI_CPOL)
1195		csr |= SPI_BIT(CPOL);
1196	if (!(spi->mode & SPI_CPHA))
1197		csr |= SPI_BIT(NCPHA);
1198	if (!as->use_cs_gpios)
1199		csr |= SPI_BIT(CSAAT);
1200
1201	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
 
 
 
 
1202	 */
1203	csr |= SPI_BF(DLYBS, 0);
 
 
 
 
1204
1205	/* DLYBCT adds delays between words.  This is useful for slow devices
1206	 * that need a bit of time to setup the next transfer.
1207	 */
1208	csr |= SPI_BF(DLYBCT,
1209			(as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1210
1211	asd = spi->controller_state;
1212	if (!asd) {
1213		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1214		if (!asd)
1215			return -ENOMEM;
1216
1217		/*
1218		 * If use_cs_gpios is true this means that we have "cs-gpios"
1219		 * defined in the device tree node so we should have
1220		 * gotten the GPIO lines from the device tree inside the
1221		 * SPI core. Warn if this is not the case but continue since
1222		 * CS GPIOs are after all optional.
1223		 */
1224		if (as->use_cs_gpios) {
1225			if (!spi->cs_gpiod) {
1226				dev_err(&spi->dev,
1227					"host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
 
1228			}
1229			asd->npcs_pin = spi->cs_gpiod;
 
 
1230		}
1231
 
1232		spi->controller_state = asd;
1233	}
1234
1235	asd->csr = csr;
1236
1237	dev_dbg(&spi->dev,
1238		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1239		bits, spi->mode, spi->chip_select, csr);
1240
1241	if (!atmel_spi_is_v2(as))
1242		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1243
1244	return 0;
1245}
1246
1247static int atmel_spi_one_transfer(struct spi_master *master,
1248					struct spi_message *msg,
1249					struct spi_transfer *xfer)
1250{
1251	struct atmel_spi	*as;
1252	struct spi_device	*spi = msg->spi;
1253	u8			bits;
1254	u32			len;
1255	struct atmel_spi_device	*asd;
1256	int			timeout;
1257	int			ret;
1258	unsigned long		dma_timeout;
1259
1260	as = spi_master_get_devdata(master);
1261
1262	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1263		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1264		return -EINVAL;
1265	}
1266
1267	asd = spi->controller_state;
1268	bits = (asd->csr >> 4) & 0xf;
1269	if (bits != xfer->bits_per_word - 8) {
1270		dev_dbg(&spi->dev,
1271			"you can't yet change bits_per_word in transfers\n");
1272		return -ENOPROTOOPT;
1273	}
1274
1275	/*
1276	 * DMA map early, for performance (empties dcache ASAP) and
1277	 * better fault reporting.
1278	 */
1279	if ((!msg->is_dma_mapped)
1280		&& as->use_pdc) {
1281		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1282			return -ENOMEM;
1283	}
1284
1285	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1286
1287	as->done_status = 0;
1288	as->current_transfer = xfer;
1289	as->current_remaining_bytes = xfer->len;
1290	while (as->current_remaining_bytes) {
1291		reinit_completion(&as->xfer_completion);
1292
1293		if (as->use_pdc) {
1294			atmel_spi_pdc_next_xfer(master, msg, xfer);
1295		} else if (atmel_spi_use_dma(as, xfer)) {
1296			len = as->current_remaining_bytes;
1297			ret = atmel_spi_next_xfer_dma_submit(master,
1298								xfer, &len);
1299			if (ret) {
1300				dev_err(&spi->dev,
1301					"unable to use DMA, fallback to PIO\n");
1302				atmel_spi_next_xfer_pio(master, xfer);
1303			} else {
1304				as->current_remaining_bytes -= len;
1305				if (as->current_remaining_bytes < 0)
1306					as->current_remaining_bytes = 0;
1307			}
1308		} else {
1309			atmel_spi_next_xfer_pio(master, xfer);
1310		}
1311
1312		/* interrupts are disabled, so free the lock for schedule */
1313		atmel_spi_unlock(as);
1314		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1315							  SPI_DMA_TIMEOUT);
1316		atmel_spi_lock(as);
1317		if (WARN_ON(dma_timeout == 0)) {
1318			dev_err(&spi->dev, "spi transfer timeout\n");
1319			as->done_status = -EIO;
1320		}
1321
1322		if (as->done_status)
1323			break;
1324	}
1325
1326	if (as->done_status) {
1327		if (as->use_pdc) {
1328			dev_warn(master->dev.parent,
1329				"overrun (%u/%u remaining)\n",
1330				spi_readl(as, TCR), spi_readl(as, RCR));
1331
1332			/*
1333			 * Clean up DMA registers and make sure the data
1334			 * registers are empty.
1335			 */
1336			spi_writel(as, RNCR, 0);
1337			spi_writel(as, TNCR, 0);
1338			spi_writel(as, RCR, 0);
1339			spi_writel(as, TCR, 0);
1340			for (timeout = 1000; timeout; timeout--)
1341				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1342					break;
1343			if (!timeout)
1344				dev_warn(master->dev.parent,
1345					 "timeout waiting for TXEMPTY");
1346			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1347				spi_readl(as, RDR);
1348
1349			/* Clear any overrun happening while cleaning up */
1350			spi_readl(as, SR);
1351
1352		} else if (atmel_spi_use_dma(as, xfer)) {
1353			atmel_spi_stop_dma(master);
1354		}
1355
1356		if (!msg->is_dma_mapped
1357			&& as->use_pdc)
1358			atmel_spi_dma_unmap_xfer(master, xfer);
1359
1360		return 0;
1361
1362	} else {
1363		/* only update length if no error */
1364		msg->actual_length += xfer->len;
1365	}
1366
1367	if (!msg->is_dma_mapped
1368		&& as->use_pdc)
1369		atmel_spi_dma_unmap_xfer(master, xfer);
1370
1371	if (xfer->delay_usecs)
1372		udelay(xfer->delay_usecs);
1373
1374	if (xfer->cs_change) {
1375		if (list_is_last(&xfer->transfer_list,
1376				 &msg->transfers)) {
1377			as->keep_cs = true;
1378		} else {
1379			as->cs_active = !as->cs_active;
1380			if (as->cs_active)
1381				cs_activate(as, msg->spi);
1382			else
1383				cs_deactivate(as, msg->spi);
1384		}
1385	}
1386
1387	return 0;
1388}
1389
1390static int atmel_spi_transfer_one_message(struct spi_master *master,
1391						struct spi_message *msg)
1392{
1393	struct atmel_spi *as;
1394	struct spi_transfer *xfer;
1395	struct spi_device *spi = msg->spi;
1396	int ret = 0;
1397
1398	as = spi_master_get_devdata(master);
1399
1400	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1401					msg, dev_name(&spi->dev));
1402
1403	atmel_spi_lock(as);
1404	cs_activate(as, spi);
1405
1406	as->cs_active = true;
1407	as->keep_cs = false;
1408
1409	msg->status = 0;
1410	msg->actual_length = 0;
1411
1412	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413		trace_spi_transfer_start(msg, xfer);
1414
1415		ret = atmel_spi_one_transfer(master, msg, xfer);
1416		if (ret)
1417			goto msg_done;
1418
1419		trace_spi_transfer_stop(msg, xfer);
1420	}
1421
1422	if (as->use_pdc)
1423		atmel_spi_disable_pdc_transfer(as);
1424
1425	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1426		dev_dbg(&spi->dev,
1427			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1428			xfer, xfer->len,
1429			xfer->tx_buf, &xfer->tx_dma,
1430			xfer->rx_buf, &xfer->rx_dma);
1431	}
1432
1433msg_done:
1434	if (!as->keep_cs)
1435		cs_deactivate(as, msg->spi);
1436
1437	atmel_spi_unlock(as);
1438
1439	msg->status = as->done_status;
1440	spi_finalize_current_message(spi->master);
1441
1442	return ret;
1443}
1444
1445static void atmel_spi_cleanup(struct spi_device *spi)
1446{
1447	struct atmel_spi_device	*asd = spi->controller_state;
 
1448
1449	if (!asd)
1450		return;
1451
1452	spi->controller_state = NULL;
 
1453	kfree(asd);
1454}
1455
1456static inline unsigned int atmel_get_version(struct atmel_spi *as)
1457{
1458	return spi_readl(as, VERSION) & 0x00000fff;
1459}
1460
1461static void atmel_get_caps(struct atmel_spi *as)
1462{
1463	unsigned int version;
1464
1465	version = atmel_get_version(as);
 
1466
1467	as->caps.is_spi2 = version > 0x121;
1468	as->caps.has_wdrbt = version >= 0x210;
1469	as->caps.has_dma_support = version >= 0x212;
1470	as->caps.has_pdc_support = version < 0x212;
1471}
1472
1473static void atmel_spi_init(struct atmel_spi *as)
1474{
1475	spi_writel(as, CR, SPI_BIT(SWRST));
1476	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1477
1478	/* It is recommended to enable FIFOs first thing after reset */
1479	if (as->fifo_size)
1480		spi_writel(as, CR, SPI_BIT(FIFOEN));
1481
1482	if (as->caps.has_wdrbt) {
1483		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1484				| SPI_BIT(MSTR));
1485	} else {
1486		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1487	}
1488
1489	if (as->use_pdc)
1490		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1491	spi_writel(as, CR, SPI_BIT(SPIEN));
1492}
1493
1494static int atmel_spi_probe(struct platform_device *pdev)
1495{
1496	struct resource		*regs;
1497	int			irq;
1498	struct clk		*clk;
1499	int			ret;
1500	struct spi_master	*master;
1501	struct atmel_spi	*as;
1502
1503	/* Select default pin state */
1504	pinctrl_pm_select_default_state(&pdev->dev);
1505
1506	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507	if (!regs)
1508		return -ENXIO;
1509
1510	irq = platform_get_irq(pdev, 0);
1511	if (irq < 0)
1512		return irq;
1513
1514	clk = devm_clk_get(&pdev->dev, "spi_clk");
1515	if (IS_ERR(clk))
1516		return PTR_ERR(clk);
1517
1518	/* setup spi core then atmel-specific driver state */
1519	ret = -ENOMEM;
1520	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1521	if (!master)
1522		goto out_free;
1523
1524	/* the spi->mode bits understood by this driver: */
1525	master->use_gpio_descriptors = true;
1526	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1527	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1528	master->dev.of_node = pdev->dev.of_node;
1529	master->bus_num = pdev->id;
1530	master->num_chipselect = master->dev.of_node ? 0 : 4;
1531	master->setup = atmel_spi_setup;
1532	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1533	master->transfer_one_message = atmel_spi_transfer_one_message;
1534	master->cleanup = atmel_spi_cleanup;
1535	master->auto_runtime_pm = true;
1536	master->max_dma_len = SPI_MAX_DMA_XFER;
1537	master->can_dma = atmel_spi_can_dma;
1538	platform_set_drvdata(pdev, master);
1539
1540	as = spi_master_get_devdata(master);
1541
 
 
 
 
 
 
 
 
 
1542	spin_lock_init(&as->lock);
1543
1544	as->pdev = pdev;
1545	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1546	if (IS_ERR(as->regs)) {
1547		ret = PTR_ERR(as->regs);
1548		goto out_unmap_regs;
1549	}
1550	as->phybase = regs->start;
1551	as->irq = irq;
1552	as->clk = clk;
1553
1554	init_completion(&as->xfer_completion);
1555
1556	atmel_get_caps(as);
1557
1558	/*
1559	 * If there are chip selects in the device tree, those will be
1560	 * discovered by the SPI core when registering the SPI master
1561	 * and assigned to each SPI device.
1562	 */
1563	as->use_cs_gpios = true;
1564	if (atmel_spi_is_v2(as) &&
1565	    pdev->dev.of_node &&
1566	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1567		as->use_cs_gpios = false;
1568		master->num_chipselect = 4;
1569	}
1570
1571	as->use_dma = false;
1572	as->use_pdc = false;
1573	if (as->caps.has_dma_support) {
1574		ret = atmel_spi_configure_dma(master, as);
1575		if (ret == 0) {
1576			as->use_dma = true;
1577		} else if (ret == -EPROBE_DEFER) {
1578			return ret;
1579		}
1580	} else if (as->caps.has_pdc_support) {
1581		as->use_pdc = true;
1582	}
1583
1584	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1585		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1586						      SPI_MAX_DMA_XFER,
1587						      &as->dma_addr_rx_bbuf,
1588						      GFP_KERNEL | GFP_DMA);
1589		if (!as->addr_rx_bbuf) {
1590			as->use_dma = false;
1591		} else {
1592			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1593					SPI_MAX_DMA_XFER,
1594					&as->dma_addr_tx_bbuf,
1595					GFP_KERNEL | GFP_DMA);
1596			if (!as->addr_tx_bbuf) {
1597				as->use_dma = false;
1598				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1599						  as->addr_rx_bbuf,
1600						  as->dma_addr_rx_bbuf);
1601			}
1602		}
1603		if (!as->use_dma)
1604			dev_info(master->dev.parent,
1605				 "  can not allocate dma coherent memory\n");
1606	}
1607
1608	if (as->caps.has_dma_support && !as->use_dma)
1609		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1610
1611	if (as->use_pdc) {
1612		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1613					0, dev_name(&pdev->dev), master);
1614	} else {
1615		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1616					0, dev_name(&pdev->dev), master);
1617	}
1618	if (ret)
1619		goto out_unmap_regs;
1620
1621	/* Initialize the hardware */
1622	ret = clk_prepare_enable(clk);
1623	if (ret)
1624		goto out_free_irq;
 
 
 
 
 
 
 
 
1625
1626	as->spi_clk = clk_get_rate(clk);
 
 
1627
1628	as->fifo_size = 0;
1629	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1630				  &as->fifo_size)) {
1631		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
 
1632	}
1633
1634	atmel_spi_init(as);
 
 
1635
1636	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1637	pm_runtime_use_autosuspend(&pdev->dev);
1638	pm_runtime_set_active(&pdev->dev);
1639	pm_runtime_enable(&pdev->dev);
1640
1641	ret = devm_spi_register_master(&pdev->dev, master);
1642	if (ret)
1643		goto out_free_dma;
1644
1645	/* go! */
1646	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1647			atmel_get_version(as), (unsigned long)regs->start,
1648			irq);
1649
1650	return 0;
1651
1652out_free_dma:
1653	pm_runtime_disable(&pdev->dev);
1654	pm_runtime_set_suspended(&pdev->dev);
1655
1656	if (as->use_dma)
1657		atmel_spi_release_dma(master);
1658
1659	spi_writel(as, CR, SPI_BIT(SWRST));
1660	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661	clk_disable_unprepare(clk);
1662out_free_irq:
1663out_unmap_regs:
 
 
 
1664out_free:
1665	spi_master_put(master);
1666	return ret;
1667}
1668
1669static int atmel_spi_remove(struct platform_device *pdev)
1670{
1671	struct spi_master	*master = platform_get_drvdata(pdev);
1672	struct atmel_spi	*as = spi_master_get_devdata(master);
1673
1674	pm_runtime_get_sync(&pdev->dev);
1675
1676	/* reset the hardware and block queue progress */
 
1677	if (as->use_dma) {
1678		atmel_spi_stop_dma(master);
1679		atmel_spi_release_dma(master);
1680		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1681			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1682					  as->addr_tx_bbuf,
1683					  as->dma_addr_tx_bbuf);
1684			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1685					  as->addr_rx_bbuf,
1686					  as->dma_addr_rx_bbuf);
1687		}
1688	}
1689
1690	spin_lock_irq(&as->lock);
1691	spi_writel(as, CR, SPI_BIT(SWRST));
1692	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1693	spi_readl(as, SR);
1694	spin_unlock_irq(&as->lock);
1695
 
 
 
1696	clk_disable_unprepare(as->clk);
1697
1698	pm_runtime_put_noidle(&pdev->dev);
1699	pm_runtime_disable(&pdev->dev);
1700
1701	return 0;
1702}
1703
1704#ifdef CONFIG_PM
1705static int atmel_spi_runtime_suspend(struct device *dev)
1706{
1707	struct spi_master *master = dev_get_drvdata(dev);
1708	struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710	clk_disable_unprepare(as->clk);
1711	pinctrl_pm_select_sleep_state(dev);
1712
1713	return 0;
1714}
1715
1716static int atmel_spi_runtime_resume(struct device *dev)
1717{
1718	struct spi_master *master = dev_get_drvdata(dev);
1719	struct atmel_spi *as = spi_master_get_devdata(master);
1720
1721	pinctrl_pm_select_default_state(dev);
1722
1723	return clk_prepare_enable(as->clk);
1724}
1725
1726#ifdef CONFIG_PM_SLEEP
1727static int atmel_spi_suspend(struct device *dev)
1728{
1729	struct spi_master *master = dev_get_drvdata(dev);
1730	int ret;
1731
1732	/* Stop the queue running */
1733	ret = spi_master_suspend(master);
1734	if (ret)
 
1735		return ret;
 
1736
1737	if (!pm_runtime_suspended(dev))
1738		atmel_spi_runtime_suspend(dev);
1739
1740	return 0;
1741}
1742
1743static int atmel_spi_resume(struct device *dev)
1744{
1745	struct spi_master *master = dev_get_drvdata(dev);
1746	struct atmel_spi *as = spi_master_get_devdata(master);
1747	int ret;
1748
1749	ret = clk_prepare_enable(as->clk);
1750	if (ret)
1751		return ret;
1752
1753	atmel_spi_init(as);
1754
1755	clk_disable_unprepare(as->clk);
1756
1757	if (!pm_runtime_suspended(dev)) {
1758		ret = atmel_spi_runtime_resume(dev);
1759		if (ret)
1760			return ret;
1761	}
1762
1763	/* Start the queue running */
1764	return spi_master_resume(master);
 
 
 
 
1765}
1766#endif
1767
1768static const struct dev_pm_ops atmel_spi_pm_ops = {
1769	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771			   atmel_spi_runtime_resume, NULL)
1772};
1773#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1774#else
1775#define ATMEL_SPI_PM_OPS	NULL
1776#endif
1777
1778#if defined(CONFIG_OF)
1779static const struct of_device_id atmel_spi_dt_ids[] = {
1780	{ .compatible = "atmel,at91rm9200-spi" },
1781	{ /* sentinel */ }
1782};
1783
1784MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1785#endif
1786
1787static struct platform_driver atmel_spi_driver = {
1788	.driver		= {
1789		.name	= "atmel_spi",
1790		.pm	= ATMEL_SPI_PM_OPS,
1791		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1792	},
1793	.probe		= atmel_spi_probe,
1794	.remove		= atmel_spi_remove,
1795};
1796module_platform_driver(atmel_spi_driver);
1797
1798MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1799MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1800MODULE_LICENSE("GPL");
1801MODULE_ALIAS("platform:atmel_spi");