Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
 
  27#include <linux/pinctrl/consumer.h>
  28#include <linux/pm_runtime.h>
  29
  30/* SPI register offsets */
  31#define SPI_CR					0x0000
  32#define SPI_MR					0x0004
  33#define SPI_RDR					0x0008
  34#define SPI_TDR					0x000c
  35#define SPI_SR					0x0010
  36#define SPI_IER					0x0014
  37#define SPI_IDR					0x0018
  38#define SPI_IMR					0x001c
  39#define SPI_CSR0				0x0030
  40#define SPI_CSR1				0x0034
  41#define SPI_CSR2				0x0038
  42#define SPI_CSR3				0x003c
  43#define SPI_FMR					0x0040
  44#define SPI_FLR					0x0044
  45#define SPI_VERSION				0x00fc
  46#define SPI_RPR					0x0100
  47#define SPI_RCR					0x0104
  48#define SPI_TPR					0x0108
  49#define SPI_TCR					0x010c
  50#define SPI_RNPR				0x0110
  51#define SPI_RNCR				0x0114
  52#define SPI_TNPR				0x0118
  53#define SPI_TNCR				0x011c
  54#define SPI_PTCR				0x0120
  55#define SPI_PTSR				0x0124
  56
  57/* Bitfields in CR */
  58#define SPI_SPIEN_OFFSET			0
  59#define SPI_SPIEN_SIZE				1
  60#define SPI_SPIDIS_OFFSET			1
  61#define SPI_SPIDIS_SIZE				1
  62#define SPI_SWRST_OFFSET			7
  63#define SPI_SWRST_SIZE				1
  64#define SPI_LASTXFER_OFFSET			24
  65#define SPI_LASTXFER_SIZE			1
  66#define SPI_TXFCLR_OFFSET			16
  67#define SPI_TXFCLR_SIZE				1
  68#define SPI_RXFCLR_OFFSET			17
  69#define SPI_RXFCLR_SIZE				1
  70#define SPI_FIFOEN_OFFSET			30
  71#define SPI_FIFOEN_SIZE				1
  72#define SPI_FIFODIS_OFFSET			31
  73#define SPI_FIFODIS_SIZE			1
  74
  75/* Bitfields in MR */
  76#define SPI_MSTR_OFFSET				0
  77#define SPI_MSTR_SIZE				1
  78#define SPI_PS_OFFSET				1
  79#define SPI_PS_SIZE				1
  80#define SPI_PCSDEC_OFFSET			2
  81#define SPI_PCSDEC_SIZE				1
  82#define SPI_FDIV_OFFSET				3
  83#define SPI_FDIV_SIZE				1
  84#define SPI_MODFDIS_OFFSET			4
  85#define SPI_MODFDIS_SIZE			1
  86#define SPI_WDRBT_OFFSET			5
  87#define SPI_WDRBT_SIZE				1
  88#define SPI_LLB_OFFSET				7
  89#define SPI_LLB_SIZE				1
  90#define SPI_PCS_OFFSET				16
  91#define SPI_PCS_SIZE				4
  92#define SPI_DLYBCS_OFFSET			24
  93#define SPI_DLYBCS_SIZE				8
  94
  95/* Bitfields in RDR */
  96#define SPI_RD_OFFSET				0
  97#define SPI_RD_SIZE				16
  98
  99/* Bitfields in TDR */
 100#define SPI_TD_OFFSET				0
 101#define SPI_TD_SIZE				16
 102
 103/* Bitfields in SR */
 104#define SPI_RDRF_OFFSET				0
 105#define SPI_RDRF_SIZE				1
 106#define SPI_TDRE_OFFSET				1
 107#define SPI_TDRE_SIZE				1
 108#define SPI_MODF_OFFSET				2
 109#define SPI_MODF_SIZE				1
 110#define SPI_OVRES_OFFSET			3
 111#define SPI_OVRES_SIZE				1
 112#define SPI_ENDRX_OFFSET			4
 113#define SPI_ENDRX_SIZE				1
 114#define SPI_ENDTX_OFFSET			5
 115#define SPI_ENDTX_SIZE				1
 116#define SPI_RXBUFF_OFFSET			6
 117#define SPI_RXBUFF_SIZE				1
 118#define SPI_TXBUFE_OFFSET			7
 119#define SPI_TXBUFE_SIZE				1
 120#define SPI_NSSR_OFFSET				8
 121#define SPI_NSSR_SIZE				1
 122#define SPI_TXEMPTY_OFFSET			9
 123#define SPI_TXEMPTY_SIZE			1
 124#define SPI_SPIENS_OFFSET			16
 125#define SPI_SPIENS_SIZE				1
 126#define SPI_TXFEF_OFFSET			24
 127#define SPI_TXFEF_SIZE				1
 128#define SPI_TXFFF_OFFSET			25
 129#define SPI_TXFFF_SIZE				1
 130#define SPI_TXFTHF_OFFSET			26
 131#define SPI_TXFTHF_SIZE				1
 132#define SPI_RXFEF_OFFSET			27
 133#define SPI_RXFEF_SIZE				1
 134#define SPI_RXFFF_OFFSET			28
 135#define SPI_RXFFF_SIZE				1
 136#define SPI_RXFTHF_OFFSET			29
 137#define SPI_RXFTHF_SIZE				1
 138#define SPI_TXFPTEF_OFFSET			30
 139#define SPI_TXFPTEF_SIZE			1
 140#define SPI_RXFPTEF_OFFSET			31
 141#define SPI_RXFPTEF_SIZE			1
 142
 143/* Bitfields in CSR0 */
 144#define SPI_CPOL_OFFSET				0
 145#define SPI_CPOL_SIZE				1
 146#define SPI_NCPHA_OFFSET			1
 147#define SPI_NCPHA_SIZE				1
 148#define SPI_CSAAT_OFFSET			3
 149#define SPI_CSAAT_SIZE				1
 150#define SPI_BITS_OFFSET				4
 151#define SPI_BITS_SIZE				4
 152#define SPI_SCBR_OFFSET				8
 153#define SPI_SCBR_SIZE				8
 154#define SPI_DLYBS_OFFSET			16
 155#define SPI_DLYBS_SIZE				8
 156#define SPI_DLYBCT_OFFSET			24
 157#define SPI_DLYBCT_SIZE				8
 158
 159/* Bitfields in RCR */
 160#define SPI_RXCTR_OFFSET			0
 161#define SPI_RXCTR_SIZE				16
 162
 163/* Bitfields in TCR */
 164#define SPI_TXCTR_OFFSET			0
 165#define SPI_TXCTR_SIZE				16
 166
 167/* Bitfields in RNCR */
 168#define SPI_RXNCR_OFFSET			0
 169#define SPI_RXNCR_SIZE				16
 170
 171/* Bitfields in TNCR */
 172#define SPI_TXNCR_OFFSET			0
 173#define SPI_TXNCR_SIZE				16
 174
 175/* Bitfields in PTCR */
 176#define SPI_RXTEN_OFFSET			0
 177#define SPI_RXTEN_SIZE				1
 178#define SPI_RXTDIS_OFFSET			1
 179#define SPI_RXTDIS_SIZE				1
 180#define SPI_TXTEN_OFFSET			8
 181#define SPI_TXTEN_SIZE				1
 182#define SPI_TXTDIS_OFFSET			9
 183#define SPI_TXTDIS_SIZE				1
 184
 185/* Bitfields in FMR */
 186#define SPI_TXRDYM_OFFSET			0
 187#define SPI_TXRDYM_SIZE				2
 188#define SPI_RXRDYM_OFFSET			4
 189#define SPI_RXRDYM_SIZE				2
 190#define SPI_TXFTHRES_OFFSET			16
 191#define SPI_TXFTHRES_SIZE			6
 192#define SPI_RXFTHRES_OFFSET			24
 193#define SPI_RXFTHRES_SIZE			6
 194
 195/* Bitfields in FLR */
 196#define SPI_TXFL_OFFSET				0
 197#define SPI_TXFL_SIZE				6
 198#define SPI_RXFL_OFFSET				16
 199#define SPI_RXFL_SIZE				6
 200
 201/* Constants for BITS */
 202#define SPI_BITS_8_BPT				0
 203#define SPI_BITS_9_BPT				1
 204#define SPI_BITS_10_BPT				2
 205#define SPI_BITS_11_BPT				3
 206#define SPI_BITS_12_BPT				4
 207#define SPI_BITS_13_BPT				5
 208#define SPI_BITS_14_BPT				6
 209#define SPI_BITS_15_BPT				7
 210#define SPI_BITS_16_BPT				8
 211#define SPI_ONE_DATA				0
 212#define SPI_TWO_DATA				1
 213#define SPI_FOUR_DATA				2
 214
 215/* Bit manipulation macros */
 216#define SPI_BIT(name) \
 217	(1 << SPI_##name##_OFFSET)
 218#define SPI_BF(name, value) \
 219	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 220#define SPI_BFEXT(name, value) \
 221	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 222#define SPI_BFINS(name, value, old) \
 223	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 224	  | SPI_BF(name, value))
 225
 226/* Register access macros */
 227#ifdef CONFIG_AVR32
 228#define spi_readl(port, reg) \
 229	__raw_readl((port)->regs + SPI_##reg)
 230#define spi_writel(port, reg, value) \
 231	__raw_writel((value), (port)->regs + SPI_##reg)
 232
 233#define spi_readw(port, reg) \
 234	__raw_readw((port)->regs + SPI_##reg)
 235#define spi_writew(port, reg, value) \
 236	__raw_writew((value), (port)->regs + SPI_##reg)
 237
 238#define spi_readb(port, reg) \
 239	__raw_readb((port)->regs + SPI_##reg)
 240#define spi_writeb(port, reg, value) \
 241	__raw_writeb((value), (port)->regs + SPI_##reg)
 242#else
 243#define spi_readl(port, reg) \
 244	readl_relaxed((port)->regs + SPI_##reg)
 245#define spi_writel(port, reg, value) \
 246	writel_relaxed((value), (port)->regs + SPI_##reg)
 247
 248#define spi_readw(port, reg) \
 249	readw_relaxed((port)->regs + SPI_##reg)
 250#define spi_writew(port, reg, value) \
 251	writew_relaxed((value), (port)->regs + SPI_##reg)
 252
 253#define spi_readb(port, reg) \
 254	readb_relaxed((port)->regs + SPI_##reg)
 255#define spi_writeb(port, reg, value) \
 256	writeb_relaxed((value), (port)->regs + SPI_##reg)
 257#endif
 258/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 259 * cache operations; better heuristics consider wordsize and bitrate.
 260 */
 261#define DMA_MIN_BYTES	16
 262
 263#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 264
 265#define AUTOSUSPEND_TIMEOUT	2000
 266
 267struct atmel_spi_dma {
 268	struct dma_chan			*chan_rx;
 269	struct dma_chan			*chan_tx;
 270	struct scatterlist		sgrx;
 271	struct scatterlist		sgtx;
 272	struct dma_async_tx_descriptor	*data_desc_rx;
 273	struct dma_async_tx_descriptor	*data_desc_tx;
 274
 275	struct at_dma_slave	dma_slave;
 276};
 277
 278struct atmel_spi_caps {
 279	bool	is_spi2;
 280	bool	has_wdrbt;
 281	bool	has_dma_support;
 282};
 283
 284/*
 285 * The core SPI transfer engine just talks to a register bank to set up
 286 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 287 * framework provides the base clock, subdivided for each spi_device.
 288 */
 289struct atmel_spi {
 290	spinlock_t		lock;
 291	unsigned long		flags;
 292
 293	phys_addr_t		phybase;
 294	void __iomem		*regs;
 295	int			irq;
 296	struct clk		*clk;
 297	struct platform_device	*pdev;
 
 298
 299	struct spi_transfer	*current_transfer;
 300	int			current_remaining_bytes;
 301	int			done_status;
 302
 303	struct completion	xfer_completion;
 304
 305	/* scratch buffer */
 306	void			*buffer;
 307	dma_addr_t		buffer_dma;
 308
 309	struct atmel_spi_caps	caps;
 310
 311	bool			use_dma;
 312	bool			use_pdc;
 313	bool			use_cs_gpios;
 314	/* dmaengine data */
 315	struct atmel_spi_dma	dma;
 316
 317	bool			keep_cs;
 318	bool			cs_active;
 319
 320	u32			fifo_size;
 321};
 322
 323/* Controller-specific per-slave state */
 324struct atmel_spi_device {
 325	unsigned int		npcs_pin;
 326	u32			csr;
 327};
 328
 329#define BUFFER_SIZE		PAGE_SIZE
 330#define INVALID_DMA_ADDRESS	0xffffffff
 331
 332/*
 333 * Version 2 of the SPI controller has
 334 *  - CR.LASTXFER
 335 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 336 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 337 *  - SPI_CSRx.CSAAT
 338 *  - SPI_CSRx.SBCR allows faster clocking
 339 */
 340static bool atmel_spi_is_v2(struct atmel_spi *as)
 341{
 342	return as->caps.is_spi2;
 343}
 344
 345/*
 346 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 347 * they assume that spi slave device state will not change on deselect, so
 348 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 349 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 350 * controllers have CSAAT and friends.
 351 *
 352 * Since the CSAAT functionality is a bit weird on newer controllers as
 353 * well, we use GPIO to control nCSx pins on all controllers, updating
 354 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 355 * support active-high chipselects despite the controller's belief that
 356 * only active-low devices/systems exists.
 357 *
 358 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 359 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 360 * Master on Chip Select 0.")  No workaround exists for that ... so for
 361 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 362 * and (c) will trigger that first erratum in some cases.
 363 */
 364
 365static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 366{
 367	struct atmel_spi_device *asd = spi->controller_state;
 368	unsigned active = spi->mode & SPI_CS_HIGH;
 369	u32 mr;
 370
 371	if (atmel_spi_is_v2(as)) {
 372		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 373		/* For the low SPI version, there is a issue that PDC transfer
 374		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 375		 */
 376		spi_writel(as, CSR0, asd->csr);
 377		if (as->caps.has_wdrbt) {
 378			spi_writel(as, MR,
 379					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 380					| SPI_BIT(WDRBT)
 381					| SPI_BIT(MODFDIS)
 382					| SPI_BIT(MSTR));
 383		} else {
 384			spi_writel(as, MR,
 385					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 386					| SPI_BIT(MODFDIS)
 387					| SPI_BIT(MSTR));
 388		}
 389
 390		mr = spi_readl(as, MR);
 391		if (as->use_cs_gpios)
 392			gpio_set_value(asd->npcs_pin, active);
 393	} else {
 394		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 395		int i;
 396		u32 csr;
 397
 398		/* Make sure clock polarity is correct */
 399		for (i = 0; i < spi->master->num_chipselect; i++) {
 400			csr = spi_readl(as, CSR0 + 4 * i);
 401			if ((csr ^ cpol) & SPI_BIT(CPOL))
 402				spi_writel(as, CSR0 + 4 * i,
 403						csr ^ SPI_BIT(CPOL));
 404		}
 405
 406		mr = spi_readl(as, MR);
 407		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 408		if (as->use_cs_gpios && spi->chip_select != 0)
 409			gpio_set_value(asd->npcs_pin, active);
 410		spi_writel(as, MR, mr);
 411	}
 412
 413	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 414			asd->npcs_pin, active ? " (high)" : "",
 415			mr);
 416}
 417
 418static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 419{
 420	struct atmel_spi_device *asd = spi->controller_state;
 421	unsigned active = spi->mode & SPI_CS_HIGH;
 422	u32 mr;
 423
 424	/* only deactivate *this* device; sometimes transfers to
 425	 * another device may be active when this routine is called.
 426	 */
 427	mr = spi_readl(as, MR);
 428	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 429		mr = SPI_BFINS(PCS, 0xf, mr);
 430		spi_writel(as, MR, mr);
 431	}
 432
 433	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 434			asd->npcs_pin, active ? " (low)" : "",
 435			mr);
 436
 437	if (!as->use_cs_gpios)
 438		spi_writel(as, CR, SPI_BIT(LASTXFER));
 439	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 440		gpio_set_value(asd->npcs_pin, !active);
 441}
 442
 443static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 444{
 445	spin_lock_irqsave(&as->lock, as->flags);
 446}
 447
 448static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 449{
 450	spin_unlock_irqrestore(&as->lock, as->flags);
 451}
 452
 453static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 454				struct spi_transfer *xfer)
 455{
 456	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 457}
 458
 
 
 
 
 
 
 
 
 
 459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 460				struct dma_slave_config *slave_config,
 461				u8 bits_per_word)
 462{
 
 463	int err = 0;
 464
 465	if (bits_per_word > 8) {
 466		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 467		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 468	} else {
 469		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 470		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 471	}
 472
 473	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 474	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 475	slave_config->src_maxburst = 1;
 476	slave_config->dst_maxburst = 1;
 477	slave_config->device_fc = false;
 478
 479	/*
 480	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 481	 * the Mode Register).
 482	 * So according to the datasheet, when FIFOs are available (and
 483	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 484	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 485	 * Data Register in a single access.
 486	 * However, the first data has to be written into the lowest 16 bits and
 487	 * the second data into the highest 16 bits of the Transmit
 488	 * Data Register. For 8bit data (the most frequent case), it would
 489	 * require to rework tx_buf so each data would actualy fit 16 bits.
 490	 * So we'd rather write only one data at the time. Hence the transmit
 491	 * path works the same whether FIFOs are available (and enabled) or not.
 492	 */
 493	slave_config->direction = DMA_MEM_TO_DEV;
 494	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
 495		dev_err(&as->pdev->dev,
 496			"failed to configure tx dma channel\n");
 497		err = -EINVAL;
 498	}
 499
 500	/*
 501	 * This driver configures the spi controller for master mode (MSTR bit
 502	 * set to '1' in the Mode Register).
 503	 * So according to the datasheet, when FIFOs are available (and
 504	 * enabled), the Receive FIFO operates in Single Data Mode.
 505	 * So the receive path works the same whether FIFOs are available (and
 506	 * enabled) or not.
 507	 */
 508	slave_config->direction = DMA_DEV_TO_MEM;
 509	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
 510		dev_err(&as->pdev->dev,
 511			"failed to configure rx dma channel\n");
 512		err = -EINVAL;
 513	}
 514
 515	return err;
 516}
 517
 518static int atmel_spi_configure_dma(struct atmel_spi *as)
 
 519{
 520	struct dma_slave_config	slave_config;
 521	struct device *dev = &as->pdev->dev;
 522	int err;
 523
 524	dma_cap_mask_t mask;
 525	dma_cap_zero(mask);
 526	dma_cap_set(DMA_SLAVE, mask);
 527
 528	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
 529	if (IS_ERR(as->dma.chan_tx)) {
 530		err = PTR_ERR(as->dma.chan_tx);
 531		if (err == -EPROBE_DEFER) {
 532			dev_warn(dev, "no DMA channel available at the moment\n");
 533			return err;
 534		}
 535		dev_err(dev,
 536			"DMA TX channel not available, SPI unable to use DMA\n");
 537		err = -EBUSY;
 538		goto error;
 539	}
 540
 541	/*
 542	 * No reason to check EPROBE_DEFER here since we have already requested
 543	 * tx channel. If it fails here, it's for another reason.
 544	 */
 545	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
 546
 547	if (!as->dma.chan_rx) {
 548		dev_err(dev,
 549			"DMA RX channel not available, SPI unable to use DMA\n");
 550		err = -EBUSY;
 551		goto error;
 552	}
 553
 554	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 555	if (err)
 556		goto error;
 557
 558	dev_info(&as->pdev->dev,
 559			"Using %s (tx) and %s (rx) for DMA transfers\n",
 560			dma_chan_name(as->dma.chan_tx),
 561			dma_chan_name(as->dma.chan_rx));
 
 562	return 0;
 563error:
 564	if (as->dma.chan_rx)
 565		dma_release_channel(as->dma.chan_rx);
 566	if (!IS_ERR(as->dma.chan_tx))
 567		dma_release_channel(as->dma.chan_tx);
 
 
 568	return err;
 569}
 570
 571static void atmel_spi_stop_dma(struct atmel_spi *as)
 572{
 573	if (as->dma.chan_rx)
 574		dmaengine_terminate_all(as->dma.chan_rx);
 575	if (as->dma.chan_tx)
 576		dmaengine_terminate_all(as->dma.chan_tx);
 577}
 578
 579static void atmel_spi_release_dma(struct atmel_spi *as)
 580{
 581	if (as->dma.chan_rx)
 582		dma_release_channel(as->dma.chan_rx);
 583	if (as->dma.chan_tx)
 584		dma_release_channel(as->dma.chan_tx);
 
 
 
 
 585}
 586
 587/* This function is called by the DMA driver from tasklet context */
 588static void dma_callback(void *data)
 589{
 590	struct spi_master	*master = data;
 591	struct atmel_spi	*as = spi_master_get_devdata(master);
 592
 593	complete(&as->xfer_completion);
 594}
 595
 596/*
 597 * Next transfer using PIO without FIFO.
 598 */
 599static void atmel_spi_next_xfer_single(struct spi_master *master,
 600				       struct spi_transfer *xfer)
 601{
 602	struct atmel_spi	*as = spi_master_get_devdata(master);
 603	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 604
 605	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 606
 607	/* Make sure data is not remaining in RDR */
 608	spi_readl(as, RDR);
 609	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 610		spi_readl(as, RDR);
 611		cpu_relax();
 612	}
 613
 614	if (xfer->tx_buf) {
 615		if (xfer->bits_per_word > 8)
 616			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 617		else
 618			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 619	} else {
 620		spi_writel(as, TDR, 0);
 621	}
 622
 623	dev_dbg(master->dev.parent,
 624		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 625		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 626		xfer->bits_per_word);
 627
 628	/* Enable relevant interrupts */
 629	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 630}
 631
 632/*
 633 * Next transfer using PIO with FIFO.
 634 */
 635static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 636				     struct spi_transfer *xfer)
 637{
 638	struct atmel_spi *as = spi_master_get_devdata(master);
 639	u32 current_remaining_data, num_data;
 640	u32 offset = xfer->len - as->current_remaining_bytes;
 641	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 642	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 643	u16 td0, td1;
 644	u32 fifomr;
 645
 646	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 647
 648	/* Compute the number of data to transfer in the current iteration */
 649	current_remaining_data = ((xfer->bits_per_word > 8) ?
 650				  ((u32)as->current_remaining_bytes >> 1) :
 651				  (u32)as->current_remaining_bytes);
 652	num_data = min(current_remaining_data, as->fifo_size);
 653
 654	/* Flush RX and TX FIFOs */
 655	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 656	while (spi_readl(as, FLR))
 657		cpu_relax();
 658
 659	/* Set RX FIFO Threshold to the number of data to transfer */
 660	fifomr = spi_readl(as, FMR);
 661	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 662
 663	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 664	(void)spi_readl(as, SR);
 665
 666	/* Fill TX FIFO */
 667	while (num_data >= 2) {
 668		if (xfer->tx_buf) {
 669			if (xfer->bits_per_word > 8) {
 670				td0 = *words++;
 671				td1 = *words++;
 672			} else {
 673				td0 = *bytes++;
 674				td1 = *bytes++;
 675			}
 676		} else {
 677			td0 = 0;
 678			td1 = 0;
 679		}
 680
 681		spi_writel(as, TDR, (td1 << 16) | td0);
 682		num_data -= 2;
 683	}
 684
 685	if (num_data) {
 686		if (xfer->tx_buf) {
 687			if (xfer->bits_per_word > 8)
 688				td0 = *words++;
 689			else
 690				td0 = *bytes++;
 691		} else {
 692			td0 = 0;
 693		}
 694
 695		spi_writew(as, TDR, td0);
 696		num_data--;
 697	}
 698
 699	dev_dbg(master->dev.parent,
 700		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 701		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 702		xfer->bits_per_word);
 703
 704	/*
 705	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 706	 * transfer completion.
 707	 */
 708	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 709}
 710
 711/*
 712 * Next transfer using PIO.
 713 */
 714static void atmel_spi_next_xfer_pio(struct spi_master *master,
 715				    struct spi_transfer *xfer)
 716{
 717	struct atmel_spi *as = spi_master_get_devdata(master);
 718
 719	if (as->fifo_size)
 720		atmel_spi_next_xfer_fifo(master, xfer);
 721	else
 722		atmel_spi_next_xfer_single(master, xfer);
 723}
 724
 725/*
 726 * Submit next transfer for DMA.
 727 */
 728static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 729				struct spi_transfer *xfer,
 730				u32 *plen)
 731{
 732	struct atmel_spi	*as = spi_master_get_devdata(master);
 733	struct dma_chan		*rxchan = as->dma.chan_rx;
 734	struct dma_chan		*txchan = as->dma.chan_tx;
 735	struct dma_async_tx_descriptor *rxdesc;
 736	struct dma_async_tx_descriptor *txdesc;
 737	struct dma_slave_config	slave_config;
 738	dma_cookie_t		cookie;
 739	u32	len = *plen;
 740
 741	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 742
 743	/* Check that the channels are available */
 744	if (!rxchan || !txchan)
 745		return -ENODEV;
 746
 747	/* release lock for DMA operations */
 748	atmel_spi_unlock(as);
 749
 750	/* prepare the RX dma transfer */
 751	sg_init_table(&as->dma.sgrx, 1);
 752	if (xfer->rx_buf) {
 753		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
 754	} else {
 755		as->dma.sgrx.dma_address = as->buffer_dma;
 756		if (len > BUFFER_SIZE)
 757			len = BUFFER_SIZE;
 758	}
 759
 760	/* prepare the TX dma transfer */
 761	sg_init_table(&as->dma.sgtx, 1);
 762	if (xfer->tx_buf) {
 763		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
 764	} else {
 765		as->dma.sgtx.dma_address = as->buffer_dma;
 766		if (len > BUFFER_SIZE)
 767			len = BUFFER_SIZE;
 768		memset(as->buffer, 0, len);
 769	}
 770
 771	sg_dma_len(&as->dma.sgtx) = len;
 772	sg_dma_len(&as->dma.sgrx) = len;
 773
 774	*plen = len;
 775
 776	if (atmel_spi_dma_slave_config(as, &slave_config,
 777				       xfer->bits_per_word))
 778		goto err_exit;
 779
 780	/* Send both scatterlists */
 781	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
 
 782					 DMA_FROM_DEVICE,
 783					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 784	if (!rxdesc)
 785		goto err_dma;
 786
 787	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
 
 788					 DMA_TO_DEVICE,
 789					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 790	if (!txdesc)
 791		goto err_dma;
 792
 793	dev_dbg(master->dev.parent,
 794		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 795		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 796		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 797
 798	/* Enable relevant interrupts */
 799	spi_writel(as, IER, SPI_BIT(OVRES));
 800
 801	/* Put the callback on the RX transfer only, that should finish last */
 802	rxdesc->callback = dma_callback;
 803	rxdesc->callback_param = master;
 804
 805	/* Submit and fire RX and TX with TX last so we're ready to read! */
 806	cookie = rxdesc->tx_submit(rxdesc);
 807	if (dma_submit_error(cookie))
 808		goto err_dma;
 809	cookie = txdesc->tx_submit(txdesc);
 810	if (dma_submit_error(cookie))
 811		goto err_dma;
 812	rxchan->device->device_issue_pending(rxchan);
 813	txchan->device->device_issue_pending(txchan);
 814
 815	/* take back lock */
 816	atmel_spi_lock(as);
 817	return 0;
 818
 819err_dma:
 820	spi_writel(as, IDR, SPI_BIT(OVRES));
 821	atmel_spi_stop_dma(as);
 822err_exit:
 823	atmel_spi_lock(as);
 824	return -ENOMEM;
 825}
 826
 827static void atmel_spi_next_xfer_data(struct spi_master *master,
 828				struct spi_transfer *xfer,
 829				dma_addr_t *tx_dma,
 830				dma_addr_t *rx_dma,
 831				u32 *plen)
 832{
 833	struct atmel_spi	*as = spi_master_get_devdata(master);
 834	u32			len = *plen;
 835
 836	/* use scratch buffer only when rx or tx data is unspecified */
 837	if (xfer->rx_buf)
 838		*rx_dma = xfer->rx_dma + xfer->len - *plen;
 839	else {
 840		*rx_dma = as->buffer_dma;
 841		if (len > BUFFER_SIZE)
 842			len = BUFFER_SIZE;
 843	}
 844
 845	if (xfer->tx_buf)
 846		*tx_dma = xfer->tx_dma + xfer->len - *plen;
 847	else {
 848		*tx_dma = as->buffer_dma;
 849		if (len > BUFFER_SIZE)
 850			len = BUFFER_SIZE;
 851		memset(as->buffer, 0, len);
 852		dma_sync_single_for_device(&as->pdev->dev,
 853				as->buffer_dma, len, DMA_TO_DEVICE);
 854	}
 855
 856	*plen = len;
 857}
 858
 859static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 860				    struct spi_device *spi,
 861				    struct spi_transfer *xfer)
 862{
 863	u32			scbr, csr;
 864	unsigned long		bus_hz;
 865
 866	/* v1 chips start out at half the peripheral bus speed. */
 867	bus_hz = clk_get_rate(as->clk);
 868	if (!atmel_spi_is_v2(as))
 869		bus_hz /= 2;
 870
 871	/*
 872	 * Calculate the lowest divider that satisfies the
 873	 * constraint, assuming div32/fdiv/mbz == 0.
 874	 */
 875	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 876
 877	/*
 878	 * If the resulting divider doesn't fit into the
 879	 * register bitfield, we can't satisfy the constraint.
 880	 */
 881	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 882		dev_err(&spi->dev,
 883			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 884			xfer->speed_hz, scbr, bus_hz/255);
 885		return -EINVAL;
 886	}
 887	if (scbr == 0) {
 888		dev_err(&spi->dev,
 889			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 890			xfer->speed_hz, scbr, bus_hz);
 891		return -EINVAL;
 892	}
 893	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 894	csr = SPI_BFINS(SCBR, scbr, csr);
 895	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 896
 897	return 0;
 898}
 899
 900/*
 901 * Submit next transfer for PDC.
 902 * lock is held, spi irq is blocked
 903 */
 904static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 905					struct spi_message *msg,
 906					struct spi_transfer *xfer)
 907{
 908	struct atmel_spi	*as = spi_master_get_devdata(master);
 909	u32			len;
 910	dma_addr_t		tx_dma, rx_dma;
 911
 912	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 913
 914	len = as->current_remaining_bytes;
 915	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 916	as->current_remaining_bytes -= len;
 917
 918	spi_writel(as, RPR, rx_dma);
 919	spi_writel(as, TPR, tx_dma);
 920
 921	if (msg->spi->bits_per_word > 8)
 922		len >>= 1;
 923	spi_writel(as, RCR, len);
 924	spi_writel(as, TCR, len);
 925
 926	dev_dbg(&msg->spi->dev,
 927		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 928		xfer, xfer->len, xfer->tx_buf,
 929		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 930		(unsigned long long)xfer->rx_dma);
 931
 932	if (as->current_remaining_bytes) {
 933		len = as->current_remaining_bytes;
 934		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 935		as->current_remaining_bytes -= len;
 936
 937		spi_writel(as, RNPR, rx_dma);
 938		spi_writel(as, TNPR, tx_dma);
 939
 940		if (msg->spi->bits_per_word > 8)
 941			len >>= 1;
 942		spi_writel(as, RNCR, len);
 943		spi_writel(as, TNCR, len);
 944
 945		dev_dbg(&msg->spi->dev,
 946			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 947			xfer, xfer->len, xfer->tx_buf,
 948			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 949			(unsigned long long)xfer->rx_dma);
 950	}
 951
 952	/* REVISIT: We're waiting for RXBUFF before we start the next
 953	 * transfer because we need to handle some difficult timing
 954	 * issues otherwise. If we wait for TXBUFE in one transfer and
 955	 * then starts waiting for RXBUFF in the next, it's difficult
 956	 * to tell the difference between the RXBUFF interrupt we're
 957	 * actually waiting for and the RXBUFF interrupt of the
 958	 * previous transfer.
 959	 *
 960	 * It should be doable, though. Just not now...
 961	 */
 962	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 963	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 964}
 965
 966/*
 967 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 968 *  - The buffer is either valid for CPU access, else NULL
 969 *  - If the buffer is valid, so is its DMA address
 970 *
 971 * This driver manages the dma address unless message->is_dma_mapped.
 972 */
 973static int
 974atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 975{
 976	struct device	*dev = &as->pdev->dev;
 977
 978	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 979	if (xfer->tx_buf) {
 980		/* tx_buf is a const void* where we need a void * for the dma
 981		 * mapping */
 982		void *nonconst_tx = (void *)xfer->tx_buf;
 983
 984		xfer->tx_dma = dma_map_single(dev,
 985				nonconst_tx, xfer->len,
 986				DMA_TO_DEVICE);
 987		if (dma_mapping_error(dev, xfer->tx_dma))
 988			return -ENOMEM;
 989	}
 990	if (xfer->rx_buf) {
 991		xfer->rx_dma = dma_map_single(dev,
 992				xfer->rx_buf, xfer->len,
 993				DMA_FROM_DEVICE);
 994		if (dma_mapping_error(dev, xfer->rx_dma)) {
 995			if (xfer->tx_buf)
 996				dma_unmap_single(dev,
 997						xfer->tx_dma, xfer->len,
 998						DMA_TO_DEVICE);
 999			return -ENOMEM;
1000		}
1001	}
1002	return 0;
1003}
1004
1005static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1006				     struct spi_transfer *xfer)
1007{
1008	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1009		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1010				 xfer->len, DMA_TO_DEVICE);
1011	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1012		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1013				 xfer->len, DMA_FROM_DEVICE);
1014}
1015
1016static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1017{
1018	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1019}
1020
1021static void
1022atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1023{
1024	u8		*rxp;
1025	u16		*rxp16;
1026	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1027
1028	if (xfer->rx_buf) {
1029		if (xfer->bits_per_word > 8) {
1030			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1031			*rxp16 = spi_readl(as, RDR);
1032		} else {
1033			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1034			*rxp = spi_readl(as, RDR);
1035		}
1036	} else {
1037		spi_readl(as, RDR);
 
1038	}
1039	if (xfer->bits_per_word > 8) {
1040		if (as->current_remaining_bytes > 2)
1041			as->current_remaining_bytes -= 2;
1042		else
1043			as->current_remaining_bytes = 0;
1044	} else {
1045		as->current_remaining_bytes--;
1046	}
1047}
1048
1049static void
1050atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1051{
1052	u32 fifolr = spi_readl(as, FLR);
1053	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1054	u32 offset = xfer->len - as->current_remaining_bytes;
1055	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1056	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1057	u16 rd; /* RD field is the lowest 16 bits of RDR */
1058
1059	/* Update the number of remaining bytes to transfer */
1060	num_bytes = ((xfer->bits_per_word > 8) ?
1061		     (num_data << 1) :
1062		     num_data);
1063
1064	if (as->current_remaining_bytes > num_bytes)
1065		as->current_remaining_bytes -= num_bytes;
1066	else
1067		as->current_remaining_bytes = 0;
1068
1069	/* Handle odd number of bytes when data are more than 8bit width */
1070	if (xfer->bits_per_word > 8)
1071		as->current_remaining_bytes &= ~0x1;
1072
1073	/* Read data */
1074	while (num_data) {
1075		rd = spi_readl(as, RDR);
1076		if (xfer->rx_buf) {
1077			if (xfer->bits_per_word > 8)
1078				*words++ = rd;
1079			else
1080				*bytes++ = rd;
1081		}
1082		num_data--;
1083	}
1084}
1085
1086/* Called from IRQ
1087 *
1088 * Must update "current_remaining_bytes" to keep track of data
1089 * to transfer.
1090 */
1091static void
1092atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1093{
1094	if (as->fifo_size)
1095		atmel_spi_pump_fifo_data(as, xfer);
1096	else
1097		atmel_spi_pump_single_data(as, xfer);
1098}
1099
1100/* Interrupt
1101 *
1102 * No need for locking in this Interrupt handler: done_status is the
1103 * only information modified.
1104 */
1105static irqreturn_t
1106atmel_spi_pio_interrupt(int irq, void *dev_id)
1107{
1108	struct spi_master	*master = dev_id;
1109	struct atmel_spi	*as = spi_master_get_devdata(master);
1110	u32			status, pending, imr;
1111	struct spi_transfer	*xfer;
1112	int			ret = IRQ_NONE;
1113
1114	imr = spi_readl(as, IMR);
1115	status = spi_readl(as, SR);
1116	pending = status & imr;
1117
1118	if (pending & SPI_BIT(OVRES)) {
1119		ret = IRQ_HANDLED;
1120		spi_writel(as, IDR, SPI_BIT(OVRES));
1121		dev_warn(master->dev.parent, "overrun\n");
1122
1123		/*
1124		 * When we get an overrun, we disregard the current
1125		 * transfer. Data will not be copied back from any
1126		 * bounce buffer and msg->actual_len will not be
1127		 * updated with the last xfer.
1128		 *
1129		 * We will also not process any remaning transfers in
1130		 * the message.
1131		 */
1132		as->done_status = -EIO;
1133		smp_wmb();
1134
1135		/* Clear any overrun happening while cleaning up */
1136		spi_readl(as, SR);
1137
1138		complete(&as->xfer_completion);
1139
1140	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1141		atmel_spi_lock(as);
1142
1143		if (as->current_remaining_bytes) {
1144			ret = IRQ_HANDLED;
1145			xfer = as->current_transfer;
1146			atmel_spi_pump_pio_data(as, xfer);
1147			if (!as->current_remaining_bytes)
1148				spi_writel(as, IDR, pending);
1149
1150			complete(&as->xfer_completion);
1151		}
1152
1153		atmel_spi_unlock(as);
1154	} else {
1155		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1156		ret = IRQ_HANDLED;
1157		spi_writel(as, IDR, pending);
1158	}
1159
1160	return ret;
1161}
1162
1163static irqreturn_t
1164atmel_spi_pdc_interrupt(int irq, void *dev_id)
1165{
1166	struct spi_master	*master = dev_id;
1167	struct atmel_spi	*as = spi_master_get_devdata(master);
1168	u32			status, pending, imr;
1169	int			ret = IRQ_NONE;
1170
1171	imr = spi_readl(as, IMR);
1172	status = spi_readl(as, SR);
1173	pending = status & imr;
1174
1175	if (pending & SPI_BIT(OVRES)) {
1176
1177		ret = IRQ_HANDLED;
1178
1179		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1180				     | SPI_BIT(OVRES)));
1181
1182		/* Clear any overrun happening while cleaning up */
1183		spi_readl(as, SR);
1184
1185		as->done_status = -EIO;
1186
1187		complete(&as->xfer_completion);
1188
1189	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1190		ret = IRQ_HANDLED;
1191
1192		spi_writel(as, IDR, pending);
1193
1194		complete(&as->xfer_completion);
1195	}
1196
1197	return ret;
1198}
1199
1200static int atmel_spi_setup(struct spi_device *spi)
1201{
1202	struct atmel_spi	*as;
1203	struct atmel_spi_device	*asd;
1204	u32			csr;
1205	unsigned int		bits = spi->bits_per_word;
1206	unsigned int		npcs_pin;
1207	int			ret;
1208
1209	as = spi_master_get_devdata(spi->master);
1210
1211	/* see notes above re chipselect */
1212	if (!atmel_spi_is_v2(as)
1213			&& spi->chip_select == 0
1214			&& (spi->mode & SPI_CS_HIGH)) {
1215		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1216		return -EINVAL;
1217	}
1218
1219	csr = SPI_BF(BITS, bits - 8);
1220	if (spi->mode & SPI_CPOL)
1221		csr |= SPI_BIT(CPOL);
1222	if (!(spi->mode & SPI_CPHA))
1223		csr |= SPI_BIT(NCPHA);
1224	if (!as->use_cs_gpios)
1225		csr |= SPI_BIT(CSAAT);
1226
1227	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1228	 *
1229	 * DLYBCT would add delays between words, slowing down transfers.
1230	 * It could potentially be useful to cope with DMA bottlenecks, but
1231	 * in those cases it's probably best to just use a lower bitrate.
1232	 */
1233	csr |= SPI_BF(DLYBS, 0);
1234	csr |= SPI_BF(DLYBCT, 0);
1235
1236	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1237	npcs_pin = (unsigned long)spi->controller_data;
1238
1239	if (!as->use_cs_gpios)
1240		npcs_pin = spi->chip_select;
1241	else if (gpio_is_valid(spi->cs_gpio))
1242		npcs_pin = spi->cs_gpio;
1243
1244	asd = spi->controller_state;
1245	if (!asd) {
1246		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1247		if (!asd)
1248			return -ENOMEM;
1249
1250		if (as->use_cs_gpios) {
1251			ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1252			if (ret) {
1253				kfree(asd);
1254				return ret;
1255			}
1256
1257			gpio_direction_output(npcs_pin,
1258					      !(spi->mode & SPI_CS_HIGH));
1259		}
1260
1261		asd->npcs_pin = npcs_pin;
1262		spi->controller_state = asd;
1263	}
1264
1265	asd->csr = csr;
1266
1267	dev_dbg(&spi->dev,
1268		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1269		bits, spi->mode, spi->chip_select, csr);
1270
1271	if (!atmel_spi_is_v2(as))
1272		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1273
1274	return 0;
1275}
1276
1277static int atmel_spi_one_transfer(struct spi_master *master,
1278					struct spi_message *msg,
1279					struct spi_transfer *xfer)
1280{
1281	struct atmel_spi	*as;
1282	struct spi_device	*spi = msg->spi;
1283	u8			bits;
1284	u32			len;
1285	struct atmel_spi_device	*asd;
1286	int			timeout;
1287	int			ret;
1288	unsigned long		dma_timeout;
1289
1290	as = spi_master_get_devdata(master);
1291
1292	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1293		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1294		return -EINVAL;
1295	}
1296
1297	asd = spi->controller_state;
1298	bits = (asd->csr >> 4) & 0xf;
1299	if (bits != xfer->bits_per_word - 8) {
1300		dev_dbg(&spi->dev,
1301			"you can't yet change bits_per_word in transfers\n");
1302		return -ENOPROTOOPT;
1303	}
1304
1305	/*
1306	 * DMA map early, for performance (empties dcache ASAP) and
1307	 * better fault reporting.
1308	 */
1309	if ((!msg->is_dma_mapped)
1310		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1311		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1312			return -ENOMEM;
1313	}
1314
1315	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1316
1317	as->done_status = 0;
1318	as->current_transfer = xfer;
1319	as->current_remaining_bytes = xfer->len;
1320	while (as->current_remaining_bytes) {
1321		reinit_completion(&as->xfer_completion);
1322
1323		if (as->use_pdc) {
1324			atmel_spi_pdc_next_xfer(master, msg, xfer);
1325		} else if (atmel_spi_use_dma(as, xfer)) {
1326			len = as->current_remaining_bytes;
1327			ret = atmel_spi_next_xfer_dma_submit(master,
1328								xfer, &len);
1329			if (ret) {
1330				dev_err(&spi->dev,
1331					"unable to use DMA, fallback to PIO\n");
1332				atmel_spi_next_xfer_pio(master, xfer);
1333			} else {
1334				as->current_remaining_bytes -= len;
1335				if (as->current_remaining_bytes < 0)
1336					as->current_remaining_bytes = 0;
1337			}
1338		} else {
1339			atmel_spi_next_xfer_pio(master, xfer);
1340		}
1341
1342		/* interrupts are disabled, so free the lock for schedule */
1343		atmel_spi_unlock(as);
1344		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1345							  SPI_DMA_TIMEOUT);
1346		atmel_spi_lock(as);
1347		if (WARN_ON(dma_timeout == 0)) {
1348			dev_err(&spi->dev, "spi transfer timeout\n");
1349			as->done_status = -EIO;
1350		}
1351
1352		if (as->done_status)
1353			break;
1354	}
1355
1356	if (as->done_status) {
1357		if (as->use_pdc) {
1358			dev_warn(master->dev.parent,
1359				"overrun (%u/%u remaining)\n",
1360				spi_readl(as, TCR), spi_readl(as, RCR));
1361
1362			/*
1363			 * Clean up DMA registers and make sure the data
1364			 * registers are empty.
1365			 */
1366			spi_writel(as, RNCR, 0);
1367			spi_writel(as, TNCR, 0);
1368			spi_writel(as, RCR, 0);
1369			spi_writel(as, TCR, 0);
1370			for (timeout = 1000; timeout; timeout--)
1371				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1372					break;
1373			if (!timeout)
1374				dev_warn(master->dev.parent,
1375					 "timeout waiting for TXEMPTY");
1376			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1377				spi_readl(as, RDR);
1378
1379			/* Clear any overrun happening while cleaning up */
1380			spi_readl(as, SR);
1381
1382		} else if (atmel_spi_use_dma(as, xfer)) {
1383			atmel_spi_stop_dma(as);
1384		}
1385
1386		if (!msg->is_dma_mapped
1387			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1388			atmel_spi_dma_unmap_xfer(master, xfer);
1389
1390		return 0;
1391
1392	} else {
1393		/* only update length if no error */
1394		msg->actual_length += xfer->len;
1395	}
1396
1397	if (!msg->is_dma_mapped
1398		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1399		atmel_spi_dma_unmap_xfer(master, xfer);
1400
1401	if (xfer->delay_usecs)
1402		udelay(xfer->delay_usecs);
1403
1404	if (xfer->cs_change) {
1405		if (list_is_last(&xfer->transfer_list,
1406				 &msg->transfers)) {
1407			as->keep_cs = true;
1408		} else {
1409			as->cs_active = !as->cs_active;
1410			if (as->cs_active)
1411				cs_activate(as, msg->spi);
1412			else
1413				cs_deactivate(as, msg->spi);
1414		}
1415	}
1416
1417	return 0;
1418}
1419
1420static int atmel_spi_transfer_one_message(struct spi_master *master,
1421						struct spi_message *msg)
1422{
1423	struct atmel_spi *as;
1424	struct spi_transfer *xfer;
1425	struct spi_device *spi = msg->spi;
1426	int ret = 0;
1427
1428	as = spi_master_get_devdata(master);
1429
1430	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431					msg, dev_name(&spi->dev));
1432
1433	atmel_spi_lock(as);
1434	cs_activate(as, spi);
1435
1436	as->cs_active = true;
1437	as->keep_cs = false;
1438
1439	msg->status = 0;
1440	msg->actual_length = 0;
1441
1442	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1443		ret = atmel_spi_one_transfer(master, msg, xfer);
1444		if (ret)
1445			goto msg_done;
1446	}
1447
1448	if (as->use_pdc)
1449		atmel_spi_disable_pdc_transfer(as);
1450
1451	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1452		dev_dbg(&spi->dev,
1453			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1454			xfer, xfer->len,
1455			xfer->tx_buf, &xfer->tx_dma,
1456			xfer->rx_buf, &xfer->rx_dma);
1457	}
1458
1459msg_done:
1460	if (!as->keep_cs)
1461		cs_deactivate(as, msg->spi);
1462
1463	atmel_spi_unlock(as);
1464
1465	msg->status = as->done_status;
1466	spi_finalize_current_message(spi->master);
1467
1468	return ret;
1469}
1470
1471static void atmel_spi_cleanup(struct spi_device *spi)
1472{
1473	struct atmel_spi_device	*asd = spi->controller_state;
1474	unsigned		gpio = (unsigned long) spi->controller_data;
1475
1476	if (!asd)
1477		return;
1478
1479	spi->controller_state = NULL;
1480	gpio_free(gpio);
1481	kfree(asd);
1482}
1483
1484static inline unsigned int atmel_get_version(struct atmel_spi *as)
1485{
1486	return spi_readl(as, VERSION) & 0x00000fff;
1487}
1488
1489static void atmel_get_caps(struct atmel_spi *as)
1490{
1491	unsigned int version;
1492
1493	version = atmel_get_version(as);
1494	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1495
1496	as->caps.is_spi2 = version > 0x121;
1497	as->caps.has_wdrbt = version >= 0x210;
1498	as->caps.has_dma_support = version >= 0x212;
1499}
1500
1501/*-------------------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1502
1503static int atmel_spi_probe(struct platform_device *pdev)
1504{
1505	struct resource		*regs;
1506	int			irq;
1507	struct clk		*clk;
1508	int			ret;
1509	struct spi_master	*master;
1510	struct atmel_spi	*as;
1511
1512	/* Select default pin state */
1513	pinctrl_pm_select_default_state(&pdev->dev);
1514
1515	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1516	if (!regs)
1517		return -ENXIO;
1518
1519	irq = platform_get_irq(pdev, 0);
1520	if (irq < 0)
1521		return irq;
1522
1523	clk = devm_clk_get(&pdev->dev, "spi_clk");
1524	if (IS_ERR(clk))
1525		return PTR_ERR(clk);
1526
1527	/* setup spi core then atmel-specific driver state */
1528	ret = -ENOMEM;
1529	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1530	if (!master)
1531		goto out_free;
1532
1533	/* the spi->mode bits understood by this driver: */
1534	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1535	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1536	master->dev.of_node = pdev->dev.of_node;
1537	master->bus_num = pdev->id;
1538	master->num_chipselect = master->dev.of_node ? 0 : 4;
1539	master->setup = atmel_spi_setup;
 
1540	master->transfer_one_message = atmel_spi_transfer_one_message;
1541	master->cleanup = atmel_spi_cleanup;
1542	master->auto_runtime_pm = true;
 
 
1543	platform_set_drvdata(pdev, master);
1544
1545	as = spi_master_get_devdata(master);
1546
1547	/*
1548	 * Scratch buffer is used for throwaway rx and tx data.
1549	 * It's coherent to minimize dcache pollution.
1550	 */
1551	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1552					&as->buffer_dma, GFP_KERNEL);
1553	if (!as->buffer)
1554		goto out_free;
1555
1556	spin_lock_init(&as->lock);
1557
1558	as->pdev = pdev;
1559	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1560	if (IS_ERR(as->regs)) {
1561		ret = PTR_ERR(as->regs);
1562		goto out_free_buffer;
1563	}
1564	as->phybase = regs->start;
1565	as->irq = irq;
1566	as->clk = clk;
1567
1568	init_completion(&as->xfer_completion);
1569
1570	atmel_get_caps(as);
1571
1572	as->use_cs_gpios = true;
1573	if (atmel_spi_is_v2(as) &&
1574	    pdev->dev.of_node &&
1575	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1576		as->use_cs_gpios = false;
1577		master->num_chipselect = 4;
1578	}
1579
 
 
 
 
1580	as->use_dma = false;
1581	as->use_pdc = false;
1582	if (as->caps.has_dma_support) {
1583		ret = atmel_spi_configure_dma(as);
1584		if (ret == 0)
1585			as->use_dma = true;
1586		else if (ret == -EPROBE_DEFER)
1587			return ret;
 
1588	} else {
1589		as->use_pdc = true;
1590	}
1591
1592	if (as->caps.has_dma_support && !as->use_dma)
1593		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1594
1595	if (as->use_pdc) {
1596		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1597					0, dev_name(&pdev->dev), master);
1598	} else {
1599		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1600					0, dev_name(&pdev->dev), master);
1601	}
1602	if (ret)
1603		goto out_unmap_regs;
1604
1605	/* Initialize the hardware */
1606	ret = clk_prepare_enable(clk);
1607	if (ret)
1608		goto out_free_irq;
 
 
 
1609	spi_writel(as, CR, SPI_BIT(SWRST));
1610	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1611	if (as->caps.has_wdrbt) {
1612		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1613				| SPI_BIT(MSTR));
1614	} else {
1615		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1616	}
1617
1618	if (as->use_pdc)
1619		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1620	spi_writel(as, CR, SPI_BIT(SPIEN));
1621
1622	as->fifo_size = 0;
1623	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1624				  &as->fifo_size)) {
1625		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1626		spi_writel(as, CR, SPI_BIT(FIFOEN));
1627	}
1628
1629	/* go! */
1630	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1631			(unsigned long)regs->start, irq);
1632
1633	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1634	pm_runtime_use_autosuspend(&pdev->dev);
1635	pm_runtime_set_active(&pdev->dev);
1636	pm_runtime_enable(&pdev->dev);
1637
1638	ret = devm_spi_register_master(&pdev->dev, master);
1639	if (ret)
1640		goto out_free_dma;
1641
 
 
 
 
1642	return 0;
1643
1644out_free_dma:
1645	pm_runtime_disable(&pdev->dev);
1646	pm_runtime_set_suspended(&pdev->dev);
1647
1648	if (as->use_dma)
1649		atmel_spi_release_dma(as);
1650
1651	spi_writel(as, CR, SPI_BIT(SWRST));
1652	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1653	clk_disable_unprepare(clk);
1654out_free_irq:
1655out_unmap_regs:
1656out_free_buffer:
1657	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1658			as->buffer_dma);
1659out_free:
1660	spi_master_put(master);
1661	return ret;
1662}
1663
1664static int atmel_spi_remove(struct platform_device *pdev)
1665{
1666	struct spi_master	*master = platform_get_drvdata(pdev);
1667	struct atmel_spi	*as = spi_master_get_devdata(master);
1668
1669	pm_runtime_get_sync(&pdev->dev);
1670
1671	/* reset the hardware and block queue progress */
1672	spin_lock_irq(&as->lock);
1673	if (as->use_dma) {
1674		atmel_spi_stop_dma(as);
1675		atmel_spi_release_dma(as);
1676	}
1677
1678	spi_writel(as, CR, SPI_BIT(SWRST));
1679	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1680	spi_readl(as, SR);
1681	spin_unlock_irq(&as->lock);
1682
1683	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1684			as->buffer_dma);
1685
1686	clk_disable_unprepare(as->clk);
1687
1688	pm_runtime_put_noidle(&pdev->dev);
1689	pm_runtime_disable(&pdev->dev);
1690
1691	return 0;
1692}
1693
1694#ifdef CONFIG_PM
1695static int atmel_spi_runtime_suspend(struct device *dev)
1696{
1697	struct spi_master *master = dev_get_drvdata(dev);
1698	struct atmel_spi *as = spi_master_get_devdata(master);
1699
1700	clk_disable_unprepare(as->clk);
1701	pinctrl_pm_select_sleep_state(dev);
1702
1703	return 0;
1704}
1705
1706static int atmel_spi_runtime_resume(struct device *dev)
1707{
1708	struct spi_master *master = dev_get_drvdata(dev);
1709	struct atmel_spi *as = spi_master_get_devdata(master);
1710
1711	pinctrl_pm_select_default_state(dev);
1712
1713	return clk_prepare_enable(as->clk);
1714}
1715
1716#ifdef CONFIG_PM_SLEEP
1717static int atmel_spi_suspend(struct device *dev)
1718{
1719	struct spi_master *master = dev_get_drvdata(dev);
1720	int ret;
1721
1722	/* Stop the queue running */
1723	ret = spi_master_suspend(master);
1724	if (ret) {
1725		dev_warn(dev, "cannot suspend master\n");
1726		return ret;
1727	}
1728
1729	if (!pm_runtime_suspended(dev))
1730		atmel_spi_runtime_suspend(dev);
1731
1732	return 0;
1733}
1734
1735static int atmel_spi_resume(struct device *dev)
1736{
1737	struct spi_master *master = dev_get_drvdata(dev);
1738	int ret;
1739
1740	if (!pm_runtime_suspended(dev)) {
1741		ret = atmel_spi_runtime_resume(dev);
1742		if (ret)
1743			return ret;
1744	}
1745
1746	/* Start the queue running */
1747	ret = spi_master_resume(master);
1748	if (ret)
1749		dev_err(dev, "problem starting queue (%d)\n", ret);
1750
1751	return ret;
1752}
1753#endif
1754
1755static const struct dev_pm_ops atmel_spi_pm_ops = {
1756	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1757	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1758			   atmel_spi_runtime_resume, NULL)
1759};
1760#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1761#else
1762#define ATMEL_SPI_PM_OPS	NULL
1763#endif
1764
1765#if defined(CONFIG_OF)
1766static const struct of_device_id atmel_spi_dt_ids[] = {
1767	{ .compatible = "atmel,at91rm9200-spi" },
1768	{ /* sentinel */ }
1769};
1770
1771MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1772#endif
1773
1774static struct platform_driver atmel_spi_driver = {
1775	.driver		= {
1776		.name	= "atmel_spi",
1777		.pm	= ATMEL_SPI_PM_OPS,
1778		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1779	},
1780	.probe		= atmel_spi_probe,
1781	.remove		= atmel_spi_remove,
1782};
1783module_platform_driver(atmel_spi_driver);
1784
1785MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1786MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1787MODULE_LICENSE("GPL");
1788MODULE_ALIAS("platform:atmel_spi");
v4.10.11
   1/*
   2 * Driver for Atmel AT32 and AT91 SPI Controllers
   3 *
   4 * Copyright (C) 2006 Atmel Corporation
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/clk.h>
  13#include <linux/module.h>
  14#include <linux/platform_device.h>
  15#include <linux/delay.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/dmaengine.h>
  18#include <linux/err.h>
  19#include <linux/interrupt.h>
  20#include <linux/spi/spi.h>
  21#include <linux/slab.h>
  22#include <linux/platform_data/dma-atmel.h>
  23#include <linux/of.h>
  24
  25#include <linux/io.h>
  26#include <linux/gpio.h>
  27#include <linux/of_gpio.h>
  28#include <linux/pinctrl/consumer.h>
  29#include <linux/pm_runtime.h>
  30
  31/* SPI register offsets */
  32#define SPI_CR					0x0000
  33#define SPI_MR					0x0004
  34#define SPI_RDR					0x0008
  35#define SPI_TDR					0x000c
  36#define SPI_SR					0x0010
  37#define SPI_IER					0x0014
  38#define SPI_IDR					0x0018
  39#define SPI_IMR					0x001c
  40#define SPI_CSR0				0x0030
  41#define SPI_CSR1				0x0034
  42#define SPI_CSR2				0x0038
  43#define SPI_CSR3				0x003c
  44#define SPI_FMR					0x0040
  45#define SPI_FLR					0x0044
  46#define SPI_VERSION				0x00fc
  47#define SPI_RPR					0x0100
  48#define SPI_RCR					0x0104
  49#define SPI_TPR					0x0108
  50#define SPI_TCR					0x010c
  51#define SPI_RNPR				0x0110
  52#define SPI_RNCR				0x0114
  53#define SPI_TNPR				0x0118
  54#define SPI_TNCR				0x011c
  55#define SPI_PTCR				0x0120
  56#define SPI_PTSR				0x0124
  57
  58/* Bitfields in CR */
  59#define SPI_SPIEN_OFFSET			0
  60#define SPI_SPIEN_SIZE				1
  61#define SPI_SPIDIS_OFFSET			1
  62#define SPI_SPIDIS_SIZE				1
  63#define SPI_SWRST_OFFSET			7
  64#define SPI_SWRST_SIZE				1
  65#define SPI_LASTXFER_OFFSET			24
  66#define SPI_LASTXFER_SIZE			1
  67#define SPI_TXFCLR_OFFSET			16
  68#define SPI_TXFCLR_SIZE				1
  69#define SPI_RXFCLR_OFFSET			17
  70#define SPI_RXFCLR_SIZE				1
  71#define SPI_FIFOEN_OFFSET			30
  72#define SPI_FIFOEN_SIZE				1
  73#define SPI_FIFODIS_OFFSET			31
  74#define SPI_FIFODIS_SIZE			1
  75
  76/* Bitfields in MR */
  77#define SPI_MSTR_OFFSET				0
  78#define SPI_MSTR_SIZE				1
  79#define SPI_PS_OFFSET				1
  80#define SPI_PS_SIZE				1
  81#define SPI_PCSDEC_OFFSET			2
  82#define SPI_PCSDEC_SIZE				1
  83#define SPI_FDIV_OFFSET				3
  84#define SPI_FDIV_SIZE				1
  85#define SPI_MODFDIS_OFFSET			4
  86#define SPI_MODFDIS_SIZE			1
  87#define SPI_WDRBT_OFFSET			5
  88#define SPI_WDRBT_SIZE				1
  89#define SPI_LLB_OFFSET				7
  90#define SPI_LLB_SIZE				1
  91#define SPI_PCS_OFFSET				16
  92#define SPI_PCS_SIZE				4
  93#define SPI_DLYBCS_OFFSET			24
  94#define SPI_DLYBCS_SIZE				8
  95
  96/* Bitfields in RDR */
  97#define SPI_RD_OFFSET				0
  98#define SPI_RD_SIZE				16
  99
 100/* Bitfields in TDR */
 101#define SPI_TD_OFFSET				0
 102#define SPI_TD_SIZE				16
 103
 104/* Bitfields in SR */
 105#define SPI_RDRF_OFFSET				0
 106#define SPI_RDRF_SIZE				1
 107#define SPI_TDRE_OFFSET				1
 108#define SPI_TDRE_SIZE				1
 109#define SPI_MODF_OFFSET				2
 110#define SPI_MODF_SIZE				1
 111#define SPI_OVRES_OFFSET			3
 112#define SPI_OVRES_SIZE				1
 113#define SPI_ENDRX_OFFSET			4
 114#define SPI_ENDRX_SIZE				1
 115#define SPI_ENDTX_OFFSET			5
 116#define SPI_ENDTX_SIZE				1
 117#define SPI_RXBUFF_OFFSET			6
 118#define SPI_RXBUFF_SIZE				1
 119#define SPI_TXBUFE_OFFSET			7
 120#define SPI_TXBUFE_SIZE				1
 121#define SPI_NSSR_OFFSET				8
 122#define SPI_NSSR_SIZE				1
 123#define SPI_TXEMPTY_OFFSET			9
 124#define SPI_TXEMPTY_SIZE			1
 125#define SPI_SPIENS_OFFSET			16
 126#define SPI_SPIENS_SIZE				1
 127#define SPI_TXFEF_OFFSET			24
 128#define SPI_TXFEF_SIZE				1
 129#define SPI_TXFFF_OFFSET			25
 130#define SPI_TXFFF_SIZE				1
 131#define SPI_TXFTHF_OFFSET			26
 132#define SPI_TXFTHF_SIZE				1
 133#define SPI_RXFEF_OFFSET			27
 134#define SPI_RXFEF_SIZE				1
 135#define SPI_RXFFF_OFFSET			28
 136#define SPI_RXFFF_SIZE				1
 137#define SPI_RXFTHF_OFFSET			29
 138#define SPI_RXFTHF_SIZE				1
 139#define SPI_TXFPTEF_OFFSET			30
 140#define SPI_TXFPTEF_SIZE			1
 141#define SPI_RXFPTEF_OFFSET			31
 142#define SPI_RXFPTEF_SIZE			1
 143
 144/* Bitfields in CSR0 */
 145#define SPI_CPOL_OFFSET				0
 146#define SPI_CPOL_SIZE				1
 147#define SPI_NCPHA_OFFSET			1
 148#define SPI_NCPHA_SIZE				1
 149#define SPI_CSAAT_OFFSET			3
 150#define SPI_CSAAT_SIZE				1
 151#define SPI_BITS_OFFSET				4
 152#define SPI_BITS_SIZE				4
 153#define SPI_SCBR_OFFSET				8
 154#define SPI_SCBR_SIZE				8
 155#define SPI_DLYBS_OFFSET			16
 156#define SPI_DLYBS_SIZE				8
 157#define SPI_DLYBCT_OFFSET			24
 158#define SPI_DLYBCT_SIZE				8
 159
 160/* Bitfields in RCR */
 161#define SPI_RXCTR_OFFSET			0
 162#define SPI_RXCTR_SIZE				16
 163
 164/* Bitfields in TCR */
 165#define SPI_TXCTR_OFFSET			0
 166#define SPI_TXCTR_SIZE				16
 167
 168/* Bitfields in RNCR */
 169#define SPI_RXNCR_OFFSET			0
 170#define SPI_RXNCR_SIZE				16
 171
 172/* Bitfields in TNCR */
 173#define SPI_TXNCR_OFFSET			0
 174#define SPI_TXNCR_SIZE				16
 175
 176/* Bitfields in PTCR */
 177#define SPI_RXTEN_OFFSET			0
 178#define SPI_RXTEN_SIZE				1
 179#define SPI_RXTDIS_OFFSET			1
 180#define SPI_RXTDIS_SIZE				1
 181#define SPI_TXTEN_OFFSET			8
 182#define SPI_TXTEN_SIZE				1
 183#define SPI_TXTDIS_OFFSET			9
 184#define SPI_TXTDIS_SIZE				1
 185
 186/* Bitfields in FMR */
 187#define SPI_TXRDYM_OFFSET			0
 188#define SPI_TXRDYM_SIZE				2
 189#define SPI_RXRDYM_OFFSET			4
 190#define SPI_RXRDYM_SIZE				2
 191#define SPI_TXFTHRES_OFFSET			16
 192#define SPI_TXFTHRES_SIZE			6
 193#define SPI_RXFTHRES_OFFSET			24
 194#define SPI_RXFTHRES_SIZE			6
 195
 196/* Bitfields in FLR */
 197#define SPI_TXFL_OFFSET				0
 198#define SPI_TXFL_SIZE				6
 199#define SPI_RXFL_OFFSET				16
 200#define SPI_RXFL_SIZE				6
 201
 202/* Constants for BITS */
 203#define SPI_BITS_8_BPT				0
 204#define SPI_BITS_9_BPT				1
 205#define SPI_BITS_10_BPT				2
 206#define SPI_BITS_11_BPT				3
 207#define SPI_BITS_12_BPT				4
 208#define SPI_BITS_13_BPT				5
 209#define SPI_BITS_14_BPT				6
 210#define SPI_BITS_15_BPT				7
 211#define SPI_BITS_16_BPT				8
 212#define SPI_ONE_DATA				0
 213#define SPI_TWO_DATA				1
 214#define SPI_FOUR_DATA				2
 215
 216/* Bit manipulation macros */
 217#define SPI_BIT(name) \
 218	(1 << SPI_##name##_OFFSET)
 219#define SPI_BF(name, value) \
 220	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 221#define SPI_BFEXT(name, value) \
 222	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 223#define SPI_BFINS(name, value, old) \
 224	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 225	  | SPI_BF(name, value))
 226
 227/* Register access macros */
 228#ifdef CONFIG_AVR32
 229#define spi_readl(port, reg) \
 230	__raw_readl((port)->regs + SPI_##reg)
 231#define spi_writel(port, reg, value) \
 232	__raw_writel((value), (port)->regs + SPI_##reg)
 233
 234#define spi_readw(port, reg) \
 235	__raw_readw((port)->regs + SPI_##reg)
 236#define spi_writew(port, reg, value) \
 237	__raw_writew((value), (port)->regs + SPI_##reg)
 238
 239#define spi_readb(port, reg) \
 240	__raw_readb((port)->regs + SPI_##reg)
 241#define spi_writeb(port, reg, value) \
 242	__raw_writeb((value), (port)->regs + SPI_##reg)
 243#else
 244#define spi_readl(port, reg) \
 245	readl_relaxed((port)->regs + SPI_##reg)
 246#define spi_writel(port, reg, value) \
 247	writel_relaxed((value), (port)->regs + SPI_##reg)
 248
 249#define spi_readw(port, reg) \
 250	readw_relaxed((port)->regs + SPI_##reg)
 251#define spi_writew(port, reg, value) \
 252	writew_relaxed((value), (port)->regs + SPI_##reg)
 253
 254#define spi_readb(port, reg) \
 255	readb_relaxed((port)->regs + SPI_##reg)
 256#define spi_writeb(port, reg, value) \
 257	writeb_relaxed((value), (port)->regs + SPI_##reg)
 258#endif
 259/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 260 * cache operations; better heuristics consider wordsize and bitrate.
 261 */
 262#define DMA_MIN_BYTES	16
 263
 264#define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
 265
 266#define AUTOSUSPEND_TIMEOUT	2000
 267
 
 
 
 
 
 
 
 
 
 
 
 268struct atmel_spi_caps {
 269	bool	is_spi2;
 270	bool	has_wdrbt;
 271	bool	has_dma_support;
 272};
 273
 274/*
 275 * The core SPI transfer engine just talks to a register bank to set up
 276 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 277 * framework provides the base clock, subdivided for each spi_device.
 278 */
 279struct atmel_spi {
 280	spinlock_t		lock;
 281	unsigned long		flags;
 282
 283	phys_addr_t		phybase;
 284	void __iomem		*regs;
 285	int			irq;
 286	struct clk		*clk;
 287	struct platform_device	*pdev;
 288	unsigned long		spi_clk;
 289
 290	struct spi_transfer	*current_transfer;
 291	int			current_remaining_bytes;
 292	int			done_status;
 293
 294	struct completion	xfer_completion;
 295
 
 
 
 
 296	struct atmel_spi_caps	caps;
 297
 298	bool			use_dma;
 299	bool			use_pdc;
 300	bool			use_cs_gpios;
 
 
 301
 302	bool			keep_cs;
 303	bool			cs_active;
 304
 305	u32			fifo_size;
 306};
 307
 308/* Controller-specific per-slave state */
 309struct atmel_spi_device {
 310	unsigned int		npcs_pin;
 311	u32			csr;
 312};
 313
 314#define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
 315#define INVALID_DMA_ADDRESS	0xffffffff
 316
 317/*
 318 * Version 2 of the SPI controller has
 319 *  - CR.LASTXFER
 320 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 321 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 322 *  - SPI_CSRx.CSAAT
 323 *  - SPI_CSRx.SBCR allows faster clocking
 324 */
 325static bool atmel_spi_is_v2(struct atmel_spi *as)
 326{
 327	return as->caps.is_spi2;
 328}
 329
 330/*
 331 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 332 * they assume that spi slave device state will not change on deselect, so
 333 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 334 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 335 * controllers have CSAAT and friends.
 336 *
 337 * Since the CSAAT functionality is a bit weird on newer controllers as
 338 * well, we use GPIO to control nCSx pins on all controllers, updating
 339 * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
 340 * support active-high chipselects despite the controller's belief that
 341 * only active-low devices/systems exists.
 342 *
 343 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 344 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 345 * Master on Chip Select 0.")  No workaround exists for that ... so for
 346 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 347 * and (c) will trigger that first erratum in some cases.
 348 */
 349
 350static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 351{
 352	struct atmel_spi_device *asd = spi->controller_state;
 353	unsigned active = spi->mode & SPI_CS_HIGH;
 354	u32 mr;
 355
 356	if (atmel_spi_is_v2(as)) {
 357		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
 358		/* For the low SPI version, there is a issue that PDC transfer
 359		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 360		 */
 361		spi_writel(as, CSR0, asd->csr);
 362		if (as->caps.has_wdrbt) {
 363			spi_writel(as, MR,
 364					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 365					| SPI_BIT(WDRBT)
 366					| SPI_BIT(MODFDIS)
 367					| SPI_BIT(MSTR));
 368		} else {
 369			spi_writel(as, MR,
 370					SPI_BF(PCS, ~(0x01 << spi->chip_select))
 371					| SPI_BIT(MODFDIS)
 372					| SPI_BIT(MSTR));
 373		}
 374
 375		mr = spi_readl(as, MR);
 376		if (as->use_cs_gpios)
 377			gpio_set_value(asd->npcs_pin, active);
 378	} else {
 379		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 380		int i;
 381		u32 csr;
 382
 383		/* Make sure clock polarity is correct */
 384		for (i = 0; i < spi->master->num_chipselect; i++) {
 385			csr = spi_readl(as, CSR0 + 4 * i);
 386			if ((csr ^ cpol) & SPI_BIT(CPOL))
 387				spi_writel(as, CSR0 + 4 * i,
 388						csr ^ SPI_BIT(CPOL));
 389		}
 390
 391		mr = spi_readl(as, MR);
 392		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
 393		if (as->use_cs_gpios && spi->chip_select != 0)
 394			gpio_set_value(asd->npcs_pin, active);
 395		spi_writel(as, MR, mr);
 396	}
 397
 398	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
 399			asd->npcs_pin, active ? " (high)" : "",
 400			mr);
 401}
 402
 403static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 404{
 405	struct atmel_spi_device *asd = spi->controller_state;
 406	unsigned active = spi->mode & SPI_CS_HIGH;
 407	u32 mr;
 408
 409	/* only deactivate *this* device; sometimes transfers to
 410	 * another device may be active when this routine is called.
 411	 */
 412	mr = spi_readl(as, MR);
 413	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
 414		mr = SPI_BFINS(PCS, 0xf, mr);
 415		spi_writel(as, MR, mr);
 416	}
 417
 418	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
 419			asd->npcs_pin, active ? " (low)" : "",
 420			mr);
 421
 422	if (!as->use_cs_gpios)
 423		spi_writel(as, CR, SPI_BIT(LASTXFER));
 424	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
 425		gpio_set_value(asd->npcs_pin, !active);
 426}
 427
 428static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 429{
 430	spin_lock_irqsave(&as->lock, as->flags);
 431}
 432
 433static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 434{
 435	spin_unlock_irqrestore(&as->lock, as->flags);
 436}
 437
 438static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 439				struct spi_transfer *xfer)
 440{
 441	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 442}
 443
 444static bool atmel_spi_can_dma(struct spi_master *master,
 445			      struct spi_device *spi,
 446			      struct spi_transfer *xfer)
 447{
 448	struct atmel_spi *as = spi_master_get_devdata(master);
 449
 450	return atmel_spi_use_dma(as, xfer);
 451}
 452
 453static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 454				struct dma_slave_config *slave_config,
 455				u8 bits_per_word)
 456{
 457	struct spi_master *master = platform_get_drvdata(as->pdev);
 458	int err = 0;
 459
 460	if (bits_per_word > 8) {
 461		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 462		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 463	} else {
 464		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 465		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 466	}
 467
 468	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 469	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 470	slave_config->src_maxburst = 1;
 471	slave_config->dst_maxburst = 1;
 472	slave_config->device_fc = false;
 473
 474	/*
 475	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
 476	 * the Mode Register).
 477	 * So according to the datasheet, when FIFOs are available (and
 478	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
 479	 * In this mode, up to 2 data, not 4, can be written into the Transmit
 480	 * Data Register in a single access.
 481	 * However, the first data has to be written into the lowest 16 bits and
 482	 * the second data into the highest 16 bits of the Transmit
 483	 * Data Register. For 8bit data (the most frequent case), it would
 484	 * require to rework tx_buf so each data would actualy fit 16 bits.
 485	 * So we'd rather write only one data at the time. Hence the transmit
 486	 * path works the same whether FIFOs are available (and enabled) or not.
 487	 */
 488	slave_config->direction = DMA_MEM_TO_DEV;
 489	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 490		dev_err(&as->pdev->dev,
 491			"failed to configure tx dma channel\n");
 492		err = -EINVAL;
 493	}
 494
 495	/*
 496	 * This driver configures the spi controller for master mode (MSTR bit
 497	 * set to '1' in the Mode Register).
 498	 * So according to the datasheet, when FIFOs are available (and
 499	 * enabled), the Receive FIFO operates in Single Data Mode.
 500	 * So the receive path works the same whether FIFOs are available (and
 501	 * enabled) or not.
 502	 */
 503	slave_config->direction = DMA_DEV_TO_MEM;
 504	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 505		dev_err(&as->pdev->dev,
 506			"failed to configure rx dma channel\n");
 507		err = -EINVAL;
 508	}
 509
 510	return err;
 511}
 512
 513static int atmel_spi_configure_dma(struct spi_master *master,
 514				   struct atmel_spi *as)
 515{
 516	struct dma_slave_config	slave_config;
 517	struct device *dev = &as->pdev->dev;
 518	int err;
 519
 520	dma_cap_mask_t mask;
 521	dma_cap_zero(mask);
 522	dma_cap_set(DMA_SLAVE, mask);
 523
 524	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
 525	if (IS_ERR(master->dma_tx)) {
 526		err = PTR_ERR(master->dma_tx);
 527		if (err == -EPROBE_DEFER) {
 528			dev_warn(dev, "no DMA channel available at the moment\n");
 529			goto error_clear;
 530		}
 531		dev_err(dev,
 532			"DMA TX channel not available, SPI unable to use DMA\n");
 533		err = -EBUSY;
 534		goto error_clear;
 535	}
 536
 537	/*
 538	 * No reason to check EPROBE_DEFER here since we have already requested
 539	 * tx channel. If it fails here, it's for another reason.
 540	 */
 541	master->dma_rx = dma_request_slave_channel(dev, "rx");
 542
 543	if (!master->dma_rx) {
 544		dev_err(dev,
 545			"DMA RX channel not available, SPI unable to use DMA\n");
 546		err = -EBUSY;
 547		goto error;
 548	}
 549
 550	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 551	if (err)
 552		goto error;
 553
 554	dev_info(&as->pdev->dev,
 555			"Using %s (tx) and %s (rx) for DMA transfers\n",
 556			dma_chan_name(master->dma_tx),
 557			dma_chan_name(master->dma_rx));
 558
 559	return 0;
 560error:
 561	if (master->dma_rx)
 562		dma_release_channel(master->dma_rx);
 563	if (!IS_ERR(master->dma_tx))
 564		dma_release_channel(master->dma_tx);
 565error_clear:
 566	master->dma_tx = master->dma_rx = NULL;
 567	return err;
 568}
 569
 570static void atmel_spi_stop_dma(struct spi_master *master)
 571{
 572	if (master->dma_rx)
 573		dmaengine_terminate_all(master->dma_rx);
 574	if (master->dma_tx)
 575		dmaengine_terminate_all(master->dma_tx);
 576}
 577
 578static void atmel_spi_release_dma(struct spi_master *master)
 579{
 580	if (master->dma_rx) {
 581		dma_release_channel(master->dma_rx);
 582		master->dma_rx = NULL;
 583	}
 584	if (master->dma_tx) {
 585		dma_release_channel(master->dma_tx);
 586		master->dma_tx = NULL;
 587	}
 588}
 589
 590/* This function is called by the DMA driver from tasklet context */
 591static void dma_callback(void *data)
 592{
 593	struct spi_master	*master = data;
 594	struct atmel_spi	*as = spi_master_get_devdata(master);
 595
 596	complete(&as->xfer_completion);
 597}
 598
 599/*
 600 * Next transfer using PIO without FIFO.
 601 */
 602static void atmel_spi_next_xfer_single(struct spi_master *master,
 603				       struct spi_transfer *xfer)
 604{
 605	struct atmel_spi	*as = spi_master_get_devdata(master);
 606	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 607
 608	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 609
 610	/* Make sure data is not remaining in RDR */
 611	spi_readl(as, RDR);
 612	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 613		spi_readl(as, RDR);
 614		cpu_relax();
 615	}
 616
 617	if (xfer->bits_per_word > 8)
 618		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 619	else
 620		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 
 
 
 
 621
 622	dev_dbg(master->dev.parent,
 623		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 624		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 625		xfer->bits_per_word);
 626
 627	/* Enable relevant interrupts */
 628	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 629}
 630
 631/*
 632 * Next transfer using PIO with FIFO.
 633 */
 634static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 635				     struct spi_transfer *xfer)
 636{
 637	struct atmel_spi *as = spi_master_get_devdata(master);
 638	u32 current_remaining_data, num_data;
 639	u32 offset = xfer->len - as->current_remaining_bytes;
 640	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 641	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 642	u16 td0, td1;
 643	u32 fifomr;
 644
 645	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 646
 647	/* Compute the number of data to transfer in the current iteration */
 648	current_remaining_data = ((xfer->bits_per_word > 8) ?
 649				  ((u32)as->current_remaining_bytes >> 1) :
 650				  (u32)as->current_remaining_bytes);
 651	num_data = min(current_remaining_data, as->fifo_size);
 652
 653	/* Flush RX and TX FIFOs */
 654	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 655	while (spi_readl(as, FLR))
 656		cpu_relax();
 657
 658	/* Set RX FIFO Threshold to the number of data to transfer */
 659	fifomr = spi_readl(as, FMR);
 660	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 661
 662	/* Clear FIFO flags in the Status Register, especially RXFTHF */
 663	(void)spi_readl(as, SR);
 664
 665	/* Fill TX FIFO */
 666	while (num_data >= 2) {
 667		if (xfer->bits_per_word > 8) {
 668			td0 = *words++;
 669			td1 = *words++;
 
 
 
 
 
 670		} else {
 671			td0 = *bytes++;
 672			td1 = *bytes++;
 673		}
 674
 675		spi_writel(as, TDR, (td1 << 16) | td0);
 676		num_data -= 2;
 677	}
 678
 679	if (num_data) {
 680		if (xfer->bits_per_word > 8)
 681			td0 = *words++;
 682		else
 683			td0 = *bytes++;
 
 
 
 
 684
 685		spi_writew(as, TDR, td0);
 686		num_data--;
 687	}
 688
 689	dev_dbg(master->dev.parent,
 690		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 691		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 692		xfer->bits_per_word);
 693
 694	/*
 695	 * Enable RX FIFO Threshold Flag interrupt to be notified about
 696	 * transfer completion.
 697	 */
 698	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 699}
 700
 701/*
 702 * Next transfer using PIO.
 703 */
 704static void atmel_spi_next_xfer_pio(struct spi_master *master,
 705				    struct spi_transfer *xfer)
 706{
 707	struct atmel_spi *as = spi_master_get_devdata(master);
 708
 709	if (as->fifo_size)
 710		atmel_spi_next_xfer_fifo(master, xfer);
 711	else
 712		atmel_spi_next_xfer_single(master, xfer);
 713}
 714
 715/*
 716 * Submit next transfer for DMA.
 717 */
 718static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 719				struct spi_transfer *xfer,
 720				u32 *plen)
 721{
 722	struct atmel_spi	*as = spi_master_get_devdata(master);
 723	struct dma_chan		*rxchan = master->dma_rx;
 724	struct dma_chan		*txchan = master->dma_tx;
 725	struct dma_async_tx_descriptor *rxdesc;
 726	struct dma_async_tx_descriptor *txdesc;
 727	struct dma_slave_config	slave_config;
 728	dma_cookie_t		cookie;
 
 729
 730	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 731
 732	/* Check that the channels are available */
 733	if (!rxchan || !txchan)
 734		return -ENODEV;
 735
 736	/* release lock for DMA operations */
 737	atmel_spi_unlock(as);
 738
 739	*plen = xfer->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	if (atmel_spi_dma_slave_config(as, &slave_config,
 742				       xfer->bits_per_word))
 743		goto err_exit;
 744
 745	/* Send both scatterlists */
 746	rxdesc = dmaengine_prep_slave_sg(rxchan,
 747					 xfer->rx_sg.sgl, xfer->rx_sg.nents,
 748					 DMA_FROM_DEVICE,
 749					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 750	if (!rxdesc)
 751		goto err_dma;
 752
 753	txdesc = dmaengine_prep_slave_sg(txchan,
 754					 xfer->tx_sg.sgl, xfer->tx_sg.nents,
 755					 DMA_TO_DEVICE,
 756					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 757	if (!txdesc)
 758		goto err_dma;
 759
 760	dev_dbg(master->dev.parent,
 761		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 762		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 763		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 764
 765	/* Enable relevant interrupts */
 766	spi_writel(as, IER, SPI_BIT(OVRES));
 767
 768	/* Put the callback on the RX transfer only, that should finish last */
 769	rxdesc->callback = dma_callback;
 770	rxdesc->callback_param = master;
 771
 772	/* Submit and fire RX and TX with TX last so we're ready to read! */
 773	cookie = rxdesc->tx_submit(rxdesc);
 774	if (dma_submit_error(cookie))
 775		goto err_dma;
 776	cookie = txdesc->tx_submit(txdesc);
 777	if (dma_submit_error(cookie))
 778		goto err_dma;
 779	rxchan->device->device_issue_pending(rxchan);
 780	txchan->device->device_issue_pending(txchan);
 781
 782	/* take back lock */
 783	atmel_spi_lock(as);
 784	return 0;
 785
 786err_dma:
 787	spi_writel(as, IDR, SPI_BIT(OVRES));
 788	atmel_spi_stop_dma(master);
 789err_exit:
 790	atmel_spi_lock(as);
 791	return -ENOMEM;
 792}
 793
 794static void atmel_spi_next_xfer_data(struct spi_master *master,
 795				struct spi_transfer *xfer,
 796				dma_addr_t *tx_dma,
 797				dma_addr_t *rx_dma,
 798				u32 *plen)
 799{
 800	*rx_dma = xfer->rx_dma + xfer->len - *plen;
 801	*tx_dma = xfer->tx_dma + xfer->len - *plen;
 802	if (*plen > master->max_dma_len)
 803		*plen = master->max_dma_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804}
 805
 806static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 807				    struct spi_device *spi,
 808				    struct spi_transfer *xfer)
 809{
 810	u32			scbr, csr;
 811	unsigned long		bus_hz;
 812
 813	/* v1 chips start out at half the peripheral bus speed. */
 814	bus_hz = as->spi_clk;
 815	if (!atmel_spi_is_v2(as))
 816		bus_hz /= 2;
 817
 818	/*
 819	 * Calculate the lowest divider that satisfies the
 820	 * constraint, assuming div32/fdiv/mbz == 0.
 821	 */
 822	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 823
 824	/*
 825	 * If the resulting divider doesn't fit into the
 826	 * register bitfield, we can't satisfy the constraint.
 827	 */
 828	if (scbr >= (1 << SPI_SCBR_SIZE)) {
 829		dev_err(&spi->dev,
 830			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 831			xfer->speed_hz, scbr, bus_hz/255);
 832		return -EINVAL;
 833	}
 834	if (scbr == 0) {
 835		dev_err(&spi->dev,
 836			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
 837			xfer->speed_hz, scbr, bus_hz);
 838		return -EINVAL;
 839	}
 840	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
 841	csr = SPI_BFINS(SCBR, scbr, csr);
 842	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
 843
 844	return 0;
 845}
 846
 847/*
 848 * Submit next transfer for PDC.
 849 * lock is held, spi irq is blocked
 850 */
 851static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 852					struct spi_message *msg,
 853					struct spi_transfer *xfer)
 854{
 855	struct atmel_spi	*as = spi_master_get_devdata(master);
 856	u32			len;
 857	dma_addr_t		tx_dma, rx_dma;
 858
 859	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 860
 861	len = as->current_remaining_bytes;
 862	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 863	as->current_remaining_bytes -= len;
 864
 865	spi_writel(as, RPR, rx_dma);
 866	spi_writel(as, TPR, tx_dma);
 867
 868	if (msg->spi->bits_per_word > 8)
 869		len >>= 1;
 870	spi_writel(as, RCR, len);
 871	spi_writel(as, TCR, len);
 872
 873	dev_dbg(&msg->spi->dev,
 874		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 875		xfer, xfer->len, xfer->tx_buf,
 876		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 877		(unsigned long long)xfer->rx_dma);
 878
 879	if (as->current_remaining_bytes) {
 880		len = as->current_remaining_bytes;
 881		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 882		as->current_remaining_bytes -= len;
 883
 884		spi_writel(as, RNPR, rx_dma);
 885		spi_writel(as, TNPR, tx_dma);
 886
 887		if (msg->spi->bits_per_word > 8)
 888			len >>= 1;
 889		spi_writel(as, RNCR, len);
 890		spi_writel(as, TNCR, len);
 891
 892		dev_dbg(&msg->spi->dev,
 893			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 894			xfer, xfer->len, xfer->tx_buf,
 895			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
 896			(unsigned long long)xfer->rx_dma);
 897	}
 898
 899	/* REVISIT: We're waiting for RXBUFF before we start the next
 900	 * transfer because we need to handle some difficult timing
 901	 * issues otherwise. If we wait for TXBUFE in one transfer and
 902	 * then starts waiting for RXBUFF in the next, it's difficult
 903	 * to tell the difference between the RXBUFF interrupt we're
 904	 * actually waiting for and the RXBUFF interrupt of the
 905	 * previous transfer.
 906	 *
 907	 * It should be doable, though. Just not now...
 908	 */
 909	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 910	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 911}
 912
 913/*
 914 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 915 *  - The buffer is either valid for CPU access, else NULL
 916 *  - If the buffer is valid, so is its DMA address
 917 *
 918 * This driver manages the dma address unless message->is_dma_mapped.
 919 */
 920static int
 921atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 922{
 923	struct device	*dev = &as->pdev->dev;
 924
 925	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 926	if (xfer->tx_buf) {
 927		/* tx_buf is a const void* where we need a void * for the dma
 928		 * mapping */
 929		void *nonconst_tx = (void *)xfer->tx_buf;
 930
 931		xfer->tx_dma = dma_map_single(dev,
 932				nonconst_tx, xfer->len,
 933				DMA_TO_DEVICE);
 934		if (dma_mapping_error(dev, xfer->tx_dma))
 935			return -ENOMEM;
 936	}
 937	if (xfer->rx_buf) {
 938		xfer->rx_dma = dma_map_single(dev,
 939				xfer->rx_buf, xfer->len,
 940				DMA_FROM_DEVICE);
 941		if (dma_mapping_error(dev, xfer->rx_dma)) {
 942			if (xfer->tx_buf)
 943				dma_unmap_single(dev,
 944						xfer->tx_dma, xfer->len,
 945						DMA_TO_DEVICE);
 946			return -ENOMEM;
 947		}
 948	}
 949	return 0;
 950}
 951
 952static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 953				     struct spi_transfer *xfer)
 954{
 955	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 956		dma_unmap_single(master->dev.parent, xfer->tx_dma,
 957				 xfer->len, DMA_TO_DEVICE);
 958	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 959		dma_unmap_single(master->dev.parent, xfer->rx_dma,
 960				 xfer->len, DMA_FROM_DEVICE);
 961}
 962
 963static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 964{
 965	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 966}
 967
 968static void
 969atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 970{
 971	u8		*rxp;
 972	u16		*rxp16;
 973	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
 974
 975	if (xfer->bits_per_word > 8) {
 976		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 977		*rxp16 = spi_readl(as, RDR);
 
 
 
 
 
 978	} else {
 979		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 980		*rxp = spi_readl(as, RDR);
 981	}
 982	if (xfer->bits_per_word > 8) {
 983		if (as->current_remaining_bytes > 2)
 984			as->current_remaining_bytes -= 2;
 985		else
 986			as->current_remaining_bytes = 0;
 987	} else {
 988		as->current_remaining_bytes--;
 989	}
 990}
 991
 992static void
 993atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
 994{
 995	u32 fifolr = spi_readl(as, FLR);
 996	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
 997	u32 offset = xfer->len - as->current_remaining_bytes;
 998	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
 999	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1000	u16 rd; /* RD field is the lowest 16 bits of RDR */
1001
1002	/* Update the number of remaining bytes to transfer */
1003	num_bytes = ((xfer->bits_per_word > 8) ?
1004		     (num_data << 1) :
1005		     num_data);
1006
1007	if (as->current_remaining_bytes > num_bytes)
1008		as->current_remaining_bytes -= num_bytes;
1009	else
1010		as->current_remaining_bytes = 0;
1011
1012	/* Handle odd number of bytes when data are more than 8bit width */
1013	if (xfer->bits_per_word > 8)
1014		as->current_remaining_bytes &= ~0x1;
1015
1016	/* Read data */
1017	while (num_data) {
1018		rd = spi_readl(as, RDR);
1019		if (xfer->bits_per_word > 8)
1020			*words++ = rd;
1021		else
1022			*bytes++ = rd;
 
 
1023		num_data--;
1024	}
1025}
1026
1027/* Called from IRQ
1028 *
1029 * Must update "current_remaining_bytes" to keep track of data
1030 * to transfer.
1031 */
1032static void
1033atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1034{
1035	if (as->fifo_size)
1036		atmel_spi_pump_fifo_data(as, xfer);
1037	else
1038		atmel_spi_pump_single_data(as, xfer);
1039}
1040
1041/* Interrupt
1042 *
1043 * No need for locking in this Interrupt handler: done_status is the
1044 * only information modified.
1045 */
1046static irqreturn_t
1047atmel_spi_pio_interrupt(int irq, void *dev_id)
1048{
1049	struct spi_master	*master = dev_id;
1050	struct atmel_spi	*as = spi_master_get_devdata(master);
1051	u32			status, pending, imr;
1052	struct spi_transfer	*xfer;
1053	int			ret = IRQ_NONE;
1054
1055	imr = spi_readl(as, IMR);
1056	status = spi_readl(as, SR);
1057	pending = status & imr;
1058
1059	if (pending & SPI_BIT(OVRES)) {
1060		ret = IRQ_HANDLED;
1061		spi_writel(as, IDR, SPI_BIT(OVRES));
1062		dev_warn(master->dev.parent, "overrun\n");
1063
1064		/*
1065		 * When we get an overrun, we disregard the current
1066		 * transfer. Data will not be copied back from any
1067		 * bounce buffer and msg->actual_len will not be
1068		 * updated with the last xfer.
1069		 *
1070		 * We will also not process any remaning transfers in
1071		 * the message.
1072		 */
1073		as->done_status = -EIO;
1074		smp_wmb();
1075
1076		/* Clear any overrun happening while cleaning up */
1077		spi_readl(as, SR);
1078
1079		complete(&as->xfer_completion);
1080
1081	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1082		atmel_spi_lock(as);
1083
1084		if (as->current_remaining_bytes) {
1085			ret = IRQ_HANDLED;
1086			xfer = as->current_transfer;
1087			atmel_spi_pump_pio_data(as, xfer);
1088			if (!as->current_remaining_bytes)
1089				spi_writel(as, IDR, pending);
1090
1091			complete(&as->xfer_completion);
1092		}
1093
1094		atmel_spi_unlock(as);
1095	} else {
1096		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1097		ret = IRQ_HANDLED;
1098		spi_writel(as, IDR, pending);
1099	}
1100
1101	return ret;
1102}
1103
1104static irqreturn_t
1105atmel_spi_pdc_interrupt(int irq, void *dev_id)
1106{
1107	struct spi_master	*master = dev_id;
1108	struct atmel_spi	*as = spi_master_get_devdata(master);
1109	u32			status, pending, imr;
1110	int			ret = IRQ_NONE;
1111
1112	imr = spi_readl(as, IMR);
1113	status = spi_readl(as, SR);
1114	pending = status & imr;
1115
1116	if (pending & SPI_BIT(OVRES)) {
1117
1118		ret = IRQ_HANDLED;
1119
1120		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1121				     | SPI_BIT(OVRES)));
1122
1123		/* Clear any overrun happening while cleaning up */
1124		spi_readl(as, SR);
1125
1126		as->done_status = -EIO;
1127
1128		complete(&as->xfer_completion);
1129
1130	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1131		ret = IRQ_HANDLED;
1132
1133		spi_writel(as, IDR, pending);
1134
1135		complete(&as->xfer_completion);
1136	}
1137
1138	return ret;
1139}
1140
1141static int atmel_spi_setup(struct spi_device *spi)
1142{
1143	struct atmel_spi	*as;
1144	struct atmel_spi_device	*asd;
1145	u32			csr;
1146	unsigned int		bits = spi->bits_per_word;
1147	unsigned int		npcs_pin;
 
1148
1149	as = spi_master_get_devdata(spi->master);
1150
1151	/* see notes above re chipselect */
1152	if (!atmel_spi_is_v2(as)
1153			&& spi->chip_select == 0
1154			&& (spi->mode & SPI_CS_HIGH)) {
1155		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1156		return -EINVAL;
1157	}
1158
1159	csr = SPI_BF(BITS, bits - 8);
1160	if (spi->mode & SPI_CPOL)
1161		csr |= SPI_BIT(CPOL);
1162	if (!(spi->mode & SPI_CPHA))
1163		csr |= SPI_BIT(NCPHA);
1164	if (!as->use_cs_gpios)
1165		csr |= SPI_BIT(CSAAT);
1166
1167	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1168	 *
1169	 * DLYBCT would add delays between words, slowing down transfers.
1170	 * It could potentially be useful to cope with DMA bottlenecks, but
1171	 * in those cases it's probably best to just use a lower bitrate.
1172	 */
1173	csr |= SPI_BF(DLYBS, 0);
1174	csr |= SPI_BF(DLYBCT, 0);
1175
1176	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1177	npcs_pin = (unsigned long)spi->controller_data;
1178
1179	if (!as->use_cs_gpios)
1180		npcs_pin = spi->chip_select;
1181	else if (gpio_is_valid(spi->cs_gpio))
1182		npcs_pin = spi->cs_gpio;
1183
1184	asd = spi->controller_state;
1185	if (!asd) {
1186		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1187		if (!asd)
1188			return -ENOMEM;
1189
1190		if (as->use_cs_gpios)
 
 
 
 
 
 
1191			gpio_direction_output(npcs_pin,
1192					      !(spi->mode & SPI_CS_HIGH));
 
1193
1194		asd->npcs_pin = npcs_pin;
1195		spi->controller_state = asd;
1196	}
1197
1198	asd->csr = csr;
1199
1200	dev_dbg(&spi->dev,
1201		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1202		bits, spi->mode, spi->chip_select, csr);
1203
1204	if (!atmel_spi_is_v2(as))
1205		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1206
1207	return 0;
1208}
1209
1210static int atmel_spi_one_transfer(struct spi_master *master,
1211					struct spi_message *msg,
1212					struct spi_transfer *xfer)
1213{
1214	struct atmel_spi	*as;
1215	struct spi_device	*spi = msg->spi;
1216	u8			bits;
1217	u32			len;
1218	struct atmel_spi_device	*asd;
1219	int			timeout;
1220	int			ret;
1221	unsigned long		dma_timeout;
1222
1223	as = spi_master_get_devdata(master);
1224
1225	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1226		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1227		return -EINVAL;
1228	}
1229
1230	asd = spi->controller_state;
1231	bits = (asd->csr >> 4) & 0xf;
1232	if (bits != xfer->bits_per_word - 8) {
1233		dev_dbg(&spi->dev,
1234			"you can't yet change bits_per_word in transfers\n");
1235		return -ENOPROTOOPT;
1236	}
1237
1238	/*
1239	 * DMA map early, for performance (empties dcache ASAP) and
1240	 * better fault reporting.
1241	 */
1242	if ((!msg->is_dma_mapped)
1243		&& as->use_pdc) {
1244		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1245			return -ENOMEM;
1246	}
1247
1248	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1249
1250	as->done_status = 0;
1251	as->current_transfer = xfer;
1252	as->current_remaining_bytes = xfer->len;
1253	while (as->current_remaining_bytes) {
1254		reinit_completion(&as->xfer_completion);
1255
1256		if (as->use_pdc) {
1257			atmel_spi_pdc_next_xfer(master, msg, xfer);
1258		} else if (atmel_spi_use_dma(as, xfer)) {
1259			len = as->current_remaining_bytes;
1260			ret = atmel_spi_next_xfer_dma_submit(master,
1261								xfer, &len);
1262			if (ret) {
1263				dev_err(&spi->dev,
1264					"unable to use DMA, fallback to PIO\n");
1265				atmel_spi_next_xfer_pio(master, xfer);
1266			} else {
1267				as->current_remaining_bytes -= len;
1268				if (as->current_remaining_bytes < 0)
1269					as->current_remaining_bytes = 0;
1270			}
1271		} else {
1272			atmel_spi_next_xfer_pio(master, xfer);
1273		}
1274
1275		/* interrupts are disabled, so free the lock for schedule */
1276		atmel_spi_unlock(as);
1277		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1278							  SPI_DMA_TIMEOUT);
1279		atmel_spi_lock(as);
1280		if (WARN_ON(dma_timeout == 0)) {
1281			dev_err(&spi->dev, "spi transfer timeout\n");
1282			as->done_status = -EIO;
1283		}
1284
1285		if (as->done_status)
1286			break;
1287	}
1288
1289	if (as->done_status) {
1290		if (as->use_pdc) {
1291			dev_warn(master->dev.parent,
1292				"overrun (%u/%u remaining)\n",
1293				spi_readl(as, TCR), spi_readl(as, RCR));
1294
1295			/*
1296			 * Clean up DMA registers and make sure the data
1297			 * registers are empty.
1298			 */
1299			spi_writel(as, RNCR, 0);
1300			spi_writel(as, TNCR, 0);
1301			spi_writel(as, RCR, 0);
1302			spi_writel(as, TCR, 0);
1303			for (timeout = 1000; timeout; timeout--)
1304				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1305					break;
1306			if (!timeout)
1307				dev_warn(master->dev.parent,
1308					 "timeout waiting for TXEMPTY");
1309			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1310				spi_readl(as, RDR);
1311
1312			/* Clear any overrun happening while cleaning up */
1313			spi_readl(as, SR);
1314
1315		} else if (atmel_spi_use_dma(as, xfer)) {
1316			atmel_spi_stop_dma(master);
1317		}
1318
1319		if (!msg->is_dma_mapped
1320			&& as->use_pdc)
1321			atmel_spi_dma_unmap_xfer(master, xfer);
1322
1323		return 0;
1324
1325	} else {
1326		/* only update length if no error */
1327		msg->actual_length += xfer->len;
1328	}
1329
1330	if (!msg->is_dma_mapped
1331		&& as->use_pdc)
1332		atmel_spi_dma_unmap_xfer(master, xfer);
1333
1334	if (xfer->delay_usecs)
1335		udelay(xfer->delay_usecs);
1336
1337	if (xfer->cs_change) {
1338		if (list_is_last(&xfer->transfer_list,
1339				 &msg->transfers)) {
1340			as->keep_cs = true;
1341		} else {
1342			as->cs_active = !as->cs_active;
1343			if (as->cs_active)
1344				cs_activate(as, msg->spi);
1345			else
1346				cs_deactivate(as, msg->spi);
1347		}
1348	}
1349
1350	return 0;
1351}
1352
1353static int atmel_spi_transfer_one_message(struct spi_master *master,
1354						struct spi_message *msg)
1355{
1356	struct atmel_spi *as;
1357	struct spi_transfer *xfer;
1358	struct spi_device *spi = msg->spi;
1359	int ret = 0;
1360
1361	as = spi_master_get_devdata(master);
1362
1363	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1364					msg, dev_name(&spi->dev));
1365
1366	atmel_spi_lock(as);
1367	cs_activate(as, spi);
1368
1369	as->cs_active = true;
1370	as->keep_cs = false;
1371
1372	msg->status = 0;
1373	msg->actual_length = 0;
1374
1375	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376		ret = atmel_spi_one_transfer(master, msg, xfer);
1377		if (ret)
1378			goto msg_done;
1379	}
1380
1381	if (as->use_pdc)
1382		atmel_spi_disable_pdc_transfer(as);
1383
1384	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1385		dev_dbg(&spi->dev,
1386			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1387			xfer, xfer->len,
1388			xfer->tx_buf, &xfer->tx_dma,
1389			xfer->rx_buf, &xfer->rx_dma);
1390	}
1391
1392msg_done:
1393	if (!as->keep_cs)
1394		cs_deactivate(as, msg->spi);
1395
1396	atmel_spi_unlock(as);
1397
1398	msg->status = as->done_status;
1399	spi_finalize_current_message(spi->master);
1400
1401	return ret;
1402}
1403
1404static void atmel_spi_cleanup(struct spi_device *spi)
1405{
1406	struct atmel_spi_device	*asd = spi->controller_state;
 
1407
1408	if (!asd)
1409		return;
1410
1411	spi->controller_state = NULL;
 
1412	kfree(asd);
1413}
1414
1415static inline unsigned int atmel_get_version(struct atmel_spi *as)
1416{
1417	return spi_readl(as, VERSION) & 0x00000fff;
1418}
1419
1420static void atmel_get_caps(struct atmel_spi *as)
1421{
1422	unsigned int version;
1423
1424	version = atmel_get_version(as);
1425	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1426
1427	as->caps.is_spi2 = version > 0x121;
1428	as->caps.has_wdrbt = version >= 0x210;
1429	as->caps.has_dma_support = version >= 0x212;
1430}
1431
1432/*-------------------------------------------------------------------------*/
1433static int atmel_spi_gpio_cs(struct platform_device *pdev)
1434{
1435	struct spi_master	*master = platform_get_drvdata(pdev);
1436	struct atmel_spi	*as = spi_master_get_devdata(master);
1437	struct device_node	*np = master->dev.of_node;
1438	int			i;
1439	int			ret = 0;
1440	int			nb = 0;
1441
1442	if (!as->use_cs_gpios)
1443		return 0;
1444
1445	if (!np)
1446		return 0;
1447
1448	nb = of_gpio_named_count(np, "cs-gpios");
1449	for (i = 0; i < nb; i++) {
1450		int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
1451						"cs-gpios", i);
1452
1453		if (cs_gpio == -EPROBE_DEFER)
1454			return cs_gpio;
1455
1456		if (gpio_is_valid(cs_gpio)) {
1457			ret = devm_gpio_request(&pdev->dev, cs_gpio,
1458						dev_name(&pdev->dev));
1459			if (ret)
1460				return ret;
1461		}
1462	}
1463
1464	return 0;
1465}
1466
1467static int atmel_spi_probe(struct platform_device *pdev)
1468{
1469	struct resource		*regs;
1470	int			irq;
1471	struct clk		*clk;
1472	int			ret;
1473	struct spi_master	*master;
1474	struct atmel_spi	*as;
1475
1476	/* Select default pin state */
1477	pinctrl_pm_select_default_state(&pdev->dev);
1478
1479	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480	if (!regs)
1481		return -ENXIO;
1482
1483	irq = platform_get_irq(pdev, 0);
1484	if (irq < 0)
1485		return irq;
1486
1487	clk = devm_clk_get(&pdev->dev, "spi_clk");
1488	if (IS_ERR(clk))
1489		return PTR_ERR(clk);
1490
1491	/* setup spi core then atmel-specific driver state */
1492	ret = -ENOMEM;
1493	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1494	if (!master)
1495		goto out_free;
1496
1497	/* the spi->mode bits understood by this driver: */
1498	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1499	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1500	master->dev.of_node = pdev->dev.of_node;
1501	master->bus_num = pdev->id;
1502	master->num_chipselect = master->dev.of_node ? 0 : 4;
1503	master->setup = atmel_spi_setup;
1504	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1505	master->transfer_one_message = atmel_spi_transfer_one_message;
1506	master->cleanup = atmel_spi_cleanup;
1507	master->auto_runtime_pm = true;
1508	master->max_dma_len = SPI_MAX_DMA_XFER;
1509	master->can_dma = atmel_spi_can_dma;
1510	platform_set_drvdata(pdev, master);
1511
1512	as = spi_master_get_devdata(master);
1513
 
 
 
 
 
 
 
 
 
1514	spin_lock_init(&as->lock);
1515
1516	as->pdev = pdev;
1517	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1518	if (IS_ERR(as->regs)) {
1519		ret = PTR_ERR(as->regs);
1520		goto out_unmap_regs;
1521	}
1522	as->phybase = regs->start;
1523	as->irq = irq;
1524	as->clk = clk;
1525
1526	init_completion(&as->xfer_completion);
1527
1528	atmel_get_caps(as);
1529
1530	as->use_cs_gpios = true;
1531	if (atmel_spi_is_v2(as) &&
1532	    pdev->dev.of_node &&
1533	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1534		as->use_cs_gpios = false;
1535		master->num_chipselect = 4;
1536	}
1537
1538	ret = atmel_spi_gpio_cs(pdev);
1539	if (ret)
1540		goto out_unmap_regs;
1541
1542	as->use_dma = false;
1543	as->use_pdc = false;
1544	if (as->caps.has_dma_support) {
1545		ret = atmel_spi_configure_dma(master, as);
1546		if (ret == 0) {
1547			as->use_dma = true;
1548		} else if (ret == -EPROBE_DEFER) {
1549			return ret;
1550		}
1551	} else {
1552		as->use_pdc = true;
1553	}
1554
1555	if (as->caps.has_dma_support && !as->use_dma)
1556		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1557
1558	if (as->use_pdc) {
1559		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1560					0, dev_name(&pdev->dev), master);
1561	} else {
1562		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1563					0, dev_name(&pdev->dev), master);
1564	}
1565	if (ret)
1566		goto out_unmap_regs;
1567
1568	/* Initialize the hardware */
1569	ret = clk_prepare_enable(clk);
1570	if (ret)
1571		goto out_free_irq;
1572
1573	as->spi_clk = clk_get_rate(clk);
1574
1575	spi_writel(as, CR, SPI_BIT(SWRST));
1576	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1577	if (as->caps.has_wdrbt) {
1578		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1579				| SPI_BIT(MSTR));
1580	} else {
1581		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1582	}
1583
1584	if (as->use_pdc)
1585		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1586	spi_writel(as, CR, SPI_BIT(SPIEN));
1587
1588	as->fifo_size = 0;
1589	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1590				  &as->fifo_size)) {
1591		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1592		spi_writel(as, CR, SPI_BIT(FIFOEN));
1593	}
1594
 
 
 
 
1595	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1596	pm_runtime_use_autosuspend(&pdev->dev);
1597	pm_runtime_set_active(&pdev->dev);
1598	pm_runtime_enable(&pdev->dev);
1599
1600	ret = devm_spi_register_master(&pdev->dev, master);
1601	if (ret)
1602		goto out_free_dma;
1603
1604	/* go! */
1605	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1606			(unsigned long)regs->start, irq);
1607
1608	return 0;
1609
1610out_free_dma:
1611	pm_runtime_disable(&pdev->dev);
1612	pm_runtime_set_suspended(&pdev->dev);
1613
1614	if (as->use_dma)
1615		atmel_spi_release_dma(master);
1616
1617	spi_writel(as, CR, SPI_BIT(SWRST));
1618	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1619	clk_disable_unprepare(clk);
1620out_free_irq:
1621out_unmap_regs:
 
 
 
1622out_free:
1623	spi_master_put(master);
1624	return ret;
1625}
1626
1627static int atmel_spi_remove(struct platform_device *pdev)
1628{
1629	struct spi_master	*master = platform_get_drvdata(pdev);
1630	struct atmel_spi	*as = spi_master_get_devdata(master);
1631
1632	pm_runtime_get_sync(&pdev->dev);
1633
1634	/* reset the hardware and block queue progress */
1635	spin_lock_irq(&as->lock);
1636	if (as->use_dma) {
1637		atmel_spi_stop_dma(master);
1638		atmel_spi_release_dma(master);
1639	}
1640
1641	spi_writel(as, CR, SPI_BIT(SWRST));
1642	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1643	spi_readl(as, SR);
1644	spin_unlock_irq(&as->lock);
 
 
 
1645
1646	clk_disable_unprepare(as->clk);
1647
1648	pm_runtime_put_noidle(&pdev->dev);
1649	pm_runtime_disable(&pdev->dev);
1650
1651	return 0;
1652}
1653
1654#ifdef CONFIG_PM
1655static int atmel_spi_runtime_suspend(struct device *dev)
1656{
1657	struct spi_master *master = dev_get_drvdata(dev);
1658	struct atmel_spi *as = spi_master_get_devdata(master);
1659
1660	clk_disable_unprepare(as->clk);
1661	pinctrl_pm_select_sleep_state(dev);
1662
1663	return 0;
1664}
1665
1666static int atmel_spi_runtime_resume(struct device *dev)
1667{
1668	struct spi_master *master = dev_get_drvdata(dev);
1669	struct atmel_spi *as = spi_master_get_devdata(master);
1670
1671	pinctrl_pm_select_default_state(dev);
1672
1673	return clk_prepare_enable(as->clk);
1674}
1675
1676#ifdef CONFIG_PM_SLEEP
1677static int atmel_spi_suspend(struct device *dev)
1678{
1679	struct spi_master *master = dev_get_drvdata(dev);
1680	int ret;
1681
1682	/* Stop the queue running */
1683	ret = spi_master_suspend(master);
1684	if (ret) {
1685		dev_warn(dev, "cannot suspend master\n");
1686		return ret;
1687	}
1688
1689	if (!pm_runtime_suspended(dev))
1690		atmel_spi_runtime_suspend(dev);
1691
1692	return 0;
1693}
1694
1695static int atmel_spi_resume(struct device *dev)
1696{
1697	struct spi_master *master = dev_get_drvdata(dev);
1698	int ret;
1699
1700	if (!pm_runtime_suspended(dev)) {
1701		ret = atmel_spi_runtime_resume(dev);
1702		if (ret)
1703			return ret;
1704	}
1705
1706	/* Start the queue running */
1707	ret = spi_master_resume(master);
1708	if (ret)
1709		dev_err(dev, "problem starting queue (%d)\n", ret);
1710
1711	return ret;
1712}
1713#endif
1714
1715static const struct dev_pm_ops atmel_spi_pm_ops = {
1716	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1717	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1718			   atmel_spi_runtime_resume, NULL)
1719};
1720#define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1721#else
1722#define ATMEL_SPI_PM_OPS	NULL
1723#endif
1724
1725#if defined(CONFIG_OF)
1726static const struct of_device_id atmel_spi_dt_ids[] = {
1727	{ .compatible = "atmel,at91rm9200-spi" },
1728	{ /* sentinel */ }
1729};
1730
1731MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1732#endif
1733
1734static struct platform_driver atmel_spi_driver = {
1735	.driver		= {
1736		.name	= "atmel_spi",
1737		.pm	= ATMEL_SPI_PM_OPS,
1738		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1739	},
1740	.probe		= atmel_spi_probe,
1741	.remove		= atmel_spi_remove,
1742};
1743module_platform_driver(atmel_spi_driver);
1744
1745MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1746MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1747MODULE_LICENSE("GPL");
1748MODULE_ALIAS("platform:atmel_spi");