Linux Audio

Check our new training course

Loading...
v4.6
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24#include <linux/if_ether.h>
  25#include <linux/delay.h>
  26#include <linux/pci.h>
  27#include <linux/netdevice.h>
  28#include <linux/etherdevice.h>
  29
  30#include "e1000_mac.h"
  31
  32#include "igb.h"
  33
  34static s32 igb_set_default_fc(struct e1000_hw *hw);
  35static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  36
  37/**
  38 *  igb_get_bus_info_pcie - Get PCIe bus information
  39 *  @hw: pointer to the HW structure
  40 *
  41 *  Determines and stores the system bus information for a particular
  42 *  network interface.  The following bus information is determined and stored:
  43 *  bus speed, bus width, type (PCIe), and PCIe function.
  44 **/
  45s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  46{
  47	struct e1000_bus_info *bus = &hw->bus;
  48	s32 ret_val;
  49	u32 reg;
  50	u16 pcie_link_status;
  51
  52	bus->type = e1000_bus_type_pci_express;
  53
  54	ret_val = igb_read_pcie_cap_reg(hw,
  55					PCI_EXP_LNKSTA,
  56					&pcie_link_status);
  57	if (ret_val) {
  58		bus->width = e1000_bus_width_unknown;
  59		bus->speed = e1000_bus_speed_unknown;
  60	} else {
  61		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  62		case PCI_EXP_LNKSTA_CLS_2_5GB:
  63			bus->speed = e1000_bus_speed_2500;
  64			break;
  65		case PCI_EXP_LNKSTA_CLS_5_0GB:
  66			bus->speed = e1000_bus_speed_5000;
  67			break;
  68		default:
  69			bus->speed = e1000_bus_speed_unknown;
  70			break;
  71		}
  72
  73		bus->width = (enum e1000_bus_width)((pcie_link_status &
  74						     PCI_EXP_LNKSTA_NLW) >>
  75						     PCI_EXP_LNKSTA_NLW_SHIFT);
  76	}
  77
  78	reg = rd32(E1000_STATUS);
  79	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  80
  81	return 0;
  82}
  83
  84/**
  85 *  igb_clear_vfta - Clear VLAN filter table
  86 *  @hw: pointer to the HW structure
  87 *
  88 *  Clears the register array which contains the VLAN filter table by
  89 *  setting all the values to 0.
  90 **/
  91void igb_clear_vfta(struct e1000_hw *hw)
  92{
  93	u32 offset;
  94
  95	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
  96		hw->mac.ops.write_vfta(hw, offset, 0);
  97}
  98
  99/**
 100 *  igb_write_vfta - Write value to VLAN filter table
 101 *  @hw: pointer to the HW structure
 102 *  @offset: register offset in VLAN filter table
 103 *  @value: register value written to VLAN filter table
 104 *
 105 *  Writes value at the given offset in the register array which stores
 106 *  the VLAN filter table.
 107 **/
 108void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 109{
 110	struct igb_adapter *adapter = hw->back;
 111
 112	array_wr32(E1000_VFTA, offset, value);
 113	wrfl();
 114
 115	adapter->shadow_vfta[offset] = value;
 116}
 117
 118/**
 119 *  igb_init_rx_addrs - Initialize receive address's
 120 *  @hw: pointer to the HW structure
 121 *  @rar_count: receive address registers
 122 *
 123 *  Setups the receive address registers by setting the base receive address
 124 *  register to the devices MAC address and clearing all the other receive
 125 *  address registers to 0.
 126 **/
 127void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 128{
 129	u32 i;
 130	u8 mac_addr[ETH_ALEN] = {0};
 131
 132	/* Setup the receive address */
 133	hw_dbg("Programming MAC Address into RAR[0]\n");
 134
 135	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 136
 137	/* Zero out the other (rar_entry_count - 1) receive addresses */
 138	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 139	for (i = 1; i < rar_count; i++)
 140		hw->mac.ops.rar_set(hw, mac_addr, i);
 141}
 142
 143/**
 144 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
 145 *  @hw: pointer to hardware structure
 146 *  @vlan: VLAN id to write to VLAN filter
 147 *  @vlvf_bypass: skip VLVF if no match is found
 148 *
 149 *  return the VLVF index where this VLAN id should be placed
 150 *
 151 **/
 152static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
 153{
 154	s32 regindex, first_empty_slot;
 155	u32 bits;
 156
 157	/* short cut the special case */
 158	if (vlan == 0)
 159		return 0;
 160
 161	/* if vlvf_bypass is set we don't want to use an empty slot, we
 162	 * will simply bypass the VLVF if there are no entries present in the
 163	 * VLVF that contain our VLAN
 164	 */
 165	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
 166
 167	/* Search for the VLAN id in the VLVF entries. Save off the first empty
 168	 * slot found along the way.
 169	 *
 170	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
 171	 */
 172	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
 173		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
 174		if (bits == vlan)
 175			return regindex;
 176		if (!first_empty_slot && !bits)
 177			first_empty_slot = regindex;
 178	}
 179
 180	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
 181}
 182
 183/**
 184 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 185 *  @hw: pointer to the HW structure
 186 *  @vlan: VLAN id to add or remove
 187 *  @vind: VMDq output index that maps queue to VLAN id
 188 *  @vlan_on: if true add filter, if false remove
 189 *
 190 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 191 *  and if we are adding or removing the filter
 192 **/
 193s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
 194		 bool vlan_on, bool vlvf_bypass)
 195{
 196	struct igb_adapter *adapter = hw->back;
 197	u32 regidx, vfta_delta, vfta, bits;
 198	s32 vlvf_index;
 199
 200	if ((vlan > 4095) || (vind > 7))
 201		return -E1000_ERR_PARAM;
 202
 203	/* this is a 2 part operation - first the VFTA, then the
 204	 * VLVF and VLVFB if VT Mode is set
 205	 * We don't write the VFTA until we know the VLVF part succeeded.
 206	 */
 207
 208	/* Part 1
 209	 * The VFTA is a bitstring made up of 128 32-bit registers
 210	 * that enable the particular VLAN id, much like the MTA:
 211	 *    bits[11-5]: which register
 212	 *    bits[4-0]:  which bit in the register
 213	 */
 214	regidx = vlan / 32;
 215	vfta_delta = 1 << (vlan % 32);
 216	vfta = adapter->shadow_vfta[regidx];
 217
 218	/* vfta_delta represents the difference between the current value
 219	 * of vfta and the value we want in the register.  Since the diff
 220	 * is an XOR mask we can just update vfta using an XOR.
 221	 */
 222	vfta_delta &= vlan_on ? ~vfta : vfta;
 223	vfta ^= vfta_delta;
 224
 225	/* Part 2
 226	 * If VT Mode is set
 227	 *   Either vlan_on
 228	 *     make sure the VLAN is in VLVF
 229	 *     set the vind bit in the matching VLVFB
 230	 *   Or !vlan_on
 231	 *     clear the pool bit and possibly the vind
 232	 */
 233	if (!adapter->vfs_allocated_count)
 234		goto vfta_update;
 235
 236	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
 237	if (vlvf_index < 0) {
 238		if (vlvf_bypass)
 239			goto vfta_update;
 240		return vlvf_index;
 241	}
 242
 243	bits = rd32(E1000_VLVF(vlvf_index));
 244
 245	/* set the pool bit */
 246	bits |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vind);
 247	if (vlan_on)
 248		goto vlvf_update;
 249
 250	/* clear the pool bit */
 251	bits ^= 1 << (E1000_VLVF_POOLSEL_SHIFT + vind);
 252
 253	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
 254		/* Clear VFTA first, then disable VLVF.  Otherwise
 255		 * we run the risk of stray packets leaking into
 256		 * the PF via the default pool
 257		 */
 258		if (vfta_delta)
 259			hw->mac.ops.write_vfta(hw, regidx, vfta);
 260
 261		/* disable VLVF and clear remaining bit from pool */
 262		wr32(E1000_VLVF(vlvf_index), 0);
 263
 264		return 0;
 265	}
 266
 267	/* If there are still bits set in the VLVFB registers
 268	 * for the VLAN ID indicated we need to see if the
 269	 * caller is requesting that we clear the VFTA entry bit.
 270	 * If the caller has requested that we clear the VFTA
 271	 * entry bit but there are still pools/VFs using this VLAN
 272	 * ID entry then ignore the request.  We're not worried
 273	 * about the case where we're turning the VFTA VLAN ID
 274	 * entry bit on, only when requested to turn it off as
 275	 * there may be multiple pools and/or VFs using the
 276	 * VLAN ID entry.  In that case we cannot clear the
 277	 * VFTA bit until all pools/VFs using that VLAN ID have also
 278	 * been cleared.  This will be indicated by "bits" being
 279	 * zero.
 280	 */
 281	vfta_delta = 0;
 282
 283vlvf_update:
 284	/* record pool change and enable VLAN ID if not already enabled */
 285	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
 286
 287vfta_update:
 288	/* bit was set/cleared before we started */
 289	if (vfta_delta)
 290		hw->mac.ops.write_vfta(hw, regidx, vfta);
 291
 292	return 0;
 293}
 294
 295/**
 296 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 297 *  @hw: pointer to the HW structure
 298 *
 299 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 300 *  can be setup by pre-boot software and must be treated like a permanent
 301 *  address and must override the actual permanent MAC address.  If an
 302 *  alternate MAC address is found it is saved in the hw struct and
 303 *  programmed into RAR0 and the function returns success, otherwise the
 304 *  function returns an error.
 305 **/
 306s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 307{
 308	u32 i;
 309	s32 ret_val = 0;
 310	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 311	u8 alt_mac_addr[ETH_ALEN];
 312
 313	/* Alternate MAC address is handled by the option ROM for 82580
 314	 * and newer. SW support not required.
 315	 */
 316	if (hw->mac.type >= e1000_82580)
 317		goto out;
 318
 319	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 320				 &nvm_alt_mac_addr_offset);
 321	if (ret_val) {
 322		hw_dbg("NVM Read Error\n");
 323		goto out;
 324	}
 325
 326	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 327	    (nvm_alt_mac_addr_offset == 0x0000))
 328		/* There is no Alternate MAC Address */
 329		goto out;
 330
 331	if (hw->bus.func == E1000_FUNC_1)
 332		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 333	if (hw->bus.func == E1000_FUNC_2)
 334		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 335
 336	if (hw->bus.func == E1000_FUNC_3)
 337		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 338	for (i = 0; i < ETH_ALEN; i += 2) {
 339		offset = nvm_alt_mac_addr_offset + (i >> 1);
 340		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 341		if (ret_val) {
 342			hw_dbg("NVM Read Error\n");
 343			goto out;
 344		}
 345
 346		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 347		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 348	}
 349
 350	/* if multicast bit is set, the alternate address will not be used */
 351	if (is_multicast_ether_addr(alt_mac_addr)) {
 352		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 353		goto out;
 354	}
 355
 356	/* We have a valid alternate MAC address, and we want to treat it the
 357	 * same as the normal permanent MAC address stored by the HW into the
 358	 * RAR. Do this by mapping this address into RAR0.
 359	 */
 360	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 361
 362out:
 363	return ret_val;
 364}
 365
 366/**
 367 *  igb_rar_set - Set receive address register
 368 *  @hw: pointer to the HW structure
 369 *  @addr: pointer to the receive address
 370 *  @index: receive address array register
 371 *
 372 *  Sets the receive address array register at index to the address passed
 373 *  in by addr.
 374 **/
 375void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 376{
 377	u32 rar_low, rar_high;
 378
 379	/* HW expects these in little endian so we reverse the byte order
 380	 * from network order (big endian) to little endian
 381	 */
 382	rar_low = ((u32) addr[0] |
 383		   ((u32) addr[1] << 8) |
 384		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 385
 386	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 387
 388	/* If MAC address zero, no need to set the AV bit */
 389	if (rar_low || rar_high)
 390		rar_high |= E1000_RAH_AV;
 391
 392	/* Some bridges will combine consecutive 32-bit writes into
 393	 * a single burst write, which will malfunction on some parts.
 394	 * The flushes avoid this.
 395	 */
 396	wr32(E1000_RAL(index), rar_low);
 397	wrfl();
 398	wr32(E1000_RAH(index), rar_high);
 399	wrfl();
 400}
 401
 402/**
 403 *  igb_mta_set - Set multicast filter table address
 404 *  @hw: pointer to the HW structure
 405 *  @hash_value: determines the MTA register and bit to set
 406 *
 407 *  The multicast table address is a register array of 32-bit registers.
 408 *  The hash_value is used to determine what register the bit is in, the
 409 *  current value is read, the new bit is OR'd in and the new value is
 410 *  written back into the register.
 411 **/
 412void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 413{
 414	u32 hash_bit, hash_reg, mta;
 415
 416	/* The MTA is a register array of 32-bit registers. It is
 417	 * treated like an array of (32*mta_reg_count) bits.  We want to
 418	 * set bit BitArray[hash_value]. So we figure out what register
 419	 * the bit is in, read it, OR in the new bit, then write
 420	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 421	 * mask to bits 31:5 of the hash value which gives us the
 422	 * register we're modifying.  The hash bit within that register
 423	 * is determined by the lower 5 bits of the hash value.
 424	 */
 425	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 426	hash_bit = hash_value & 0x1F;
 427
 428	mta = array_rd32(E1000_MTA, hash_reg);
 429
 430	mta |= (1 << hash_bit);
 431
 432	array_wr32(E1000_MTA, hash_reg, mta);
 433	wrfl();
 434}
 435
 436/**
 437 *  igb_hash_mc_addr - Generate a multicast hash value
 438 *  @hw: pointer to the HW structure
 439 *  @mc_addr: pointer to a multicast address
 440 *
 441 *  Generates a multicast address hash value which is used to determine
 442 *  the multicast filter table array address and new table value.  See
 443 *  igb_mta_set()
 444 **/
 445static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 446{
 447	u32 hash_value, hash_mask;
 448	u8 bit_shift = 0;
 449
 450	/* Register count multiplied by bits per register */
 451	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 452
 453	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 454	 * where 0xFF would still fall within the hash mask.
 455	 */
 456	while (hash_mask >> bit_shift != 0xFF)
 457		bit_shift++;
 458
 459	/* The portion of the address that is used for the hash table
 460	 * is determined by the mc_filter_type setting.
 461	 * The algorithm is such that there is a total of 8 bits of shifting.
 462	 * The bit_shift for a mc_filter_type of 0 represents the number of
 463	 * left-shifts where the MSB of mc_addr[5] would still fall within
 464	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 465	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 466	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 467	 * cases are a variation of this algorithm...essentially raising the
 468	 * number of bits to shift mc_addr[5] left, while still keeping the
 469	 * 8-bit shifting total.
 470	 *
 471	 * For example, given the following Destination MAC Address and an
 472	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 473	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 474	 * values resulting from each mc_filter_type...
 475	 * [0] [1] [2] [3] [4] [5]
 476	 * 01  AA  00  12  34  56
 477	 * LSB                 MSB
 478	 *
 479	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 480	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 481	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 482	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 483	 */
 484	switch (hw->mac.mc_filter_type) {
 485	default:
 486	case 0:
 487		break;
 488	case 1:
 489		bit_shift += 1;
 490		break;
 491	case 2:
 492		bit_shift += 2;
 493		break;
 494	case 3:
 495		bit_shift += 4;
 496		break;
 497	}
 498
 499	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 500				  (((u16) mc_addr[5]) << bit_shift)));
 501
 502	return hash_value;
 503}
 504
 505/**
 506 *  igb_update_mc_addr_list - Update Multicast addresses
 507 *  @hw: pointer to the HW structure
 508 *  @mc_addr_list: array of multicast addresses to program
 509 *  @mc_addr_count: number of multicast addresses to program
 510 *
 511 *  Updates entire Multicast Table Array.
 512 *  The caller must have a packed mc_addr_list of multicast addresses.
 513 **/
 514void igb_update_mc_addr_list(struct e1000_hw *hw,
 515			     u8 *mc_addr_list, u32 mc_addr_count)
 516{
 517	u32 hash_value, hash_bit, hash_reg;
 518	int i;
 519
 520	/* clear mta_shadow */
 521	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 522
 523	/* update mta_shadow from mc_addr_list */
 524	for (i = 0; (u32) i < mc_addr_count; i++) {
 525		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 526
 527		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 528		hash_bit = hash_value & 0x1F;
 529
 530		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 531		mc_addr_list += (ETH_ALEN);
 532	}
 533
 534	/* replace the entire MTA table */
 535	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 536		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 537	wrfl();
 538}
 539
 540/**
 541 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 542 *  @hw: pointer to the HW structure
 543 *
 544 *  Clears the base hardware counters by reading the counter registers.
 545 **/
 546void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 547{
 548	rd32(E1000_CRCERRS);
 549	rd32(E1000_SYMERRS);
 550	rd32(E1000_MPC);
 551	rd32(E1000_SCC);
 552	rd32(E1000_ECOL);
 553	rd32(E1000_MCC);
 554	rd32(E1000_LATECOL);
 555	rd32(E1000_COLC);
 556	rd32(E1000_DC);
 557	rd32(E1000_SEC);
 558	rd32(E1000_RLEC);
 559	rd32(E1000_XONRXC);
 560	rd32(E1000_XONTXC);
 561	rd32(E1000_XOFFRXC);
 562	rd32(E1000_XOFFTXC);
 563	rd32(E1000_FCRUC);
 564	rd32(E1000_GPRC);
 565	rd32(E1000_BPRC);
 566	rd32(E1000_MPRC);
 567	rd32(E1000_GPTC);
 568	rd32(E1000_GORCL);
 569	rd32(E1000_GORCH);
 570	rd32(E1000_GOTCL);
 571	rd32(E1000_GOTCH);
 572	rd32(E1000_RNBC);
 573	rd32(E1000_RUC);
 574	rd32(E1000_RFC);
 575	rd32(E1000_ROC);
 576	rd32(E1000_RJC);
 577	rd32(E1000_TORL);
 578	rd32(E1000_TORH);
 579	rd32(E1000_TOTL);
 580	rd32(E1000_TOTH);
 581	rd32(E1000_TPR);
 582	rd32(E1000_TPT);
 583	rd32(E1000_MPTC);
 584	rd32(E1000_BPTC);
 585}
 586
 587/**
 588 *  igb_check_for_copper_link - Check for link (Copper)
 589 *  @hw: pointer to the HW structure
 590 *
 591 *  Checks to see of the link status of the hardware has changed.  If a
 592 *  change in link status has been detected, then we read the PHY registers
 593 *  to get the current speed/duplex if link exists.
 594 **/
 595s32 igb_check_for_copper_link(struct e1000_hw *hw)
 596{
 597	struct e1000_mac_info *mac = &hw->mac;
 598	s32 ret_val;
 599	bool link;
 600
 601	/* We only want to go out to the PHY registers to see if Auto-Neg
 602	 * has completed and/or if our link status has changed.  The
 603	 * get_link_status flag is set upon receiving a Link Status
 604	 * Change or Rx Sequence Error interrupt.
 605	 */
 606	if (!mac->get_link_status) {
 607		ret_val = 0;
 608		goto out;
 609	}
 610
 611	/* First we want to see if the MII Status Register reports
 612	 * link.  If so, then we want to get the current speed/duplex
 613	 * of the PHY.
 614	 */
 615	ret_val = igb_phy_has_link(hw, 1, 0, &link);
 616	if (ret_val)
 617		goto out;
 618
 619	if (!link)
 620		goto out; /* No link detected */
 621
 622	mac->get_link_status = false;
 623
 624	/* Check if there was DownShift, must be checked
 625	 * immediately after link-up
 626	 */
 627	igb_check_downshift(hw);
 628
 629	/* If we are forcing speed/duplex, then we simply return since
 630	 * we have already determined whether we have link or not.
 631	 */
 632	if (!mac->autoneg) {
 633		ret_val = -E1000_ERR_CONFIG;
 634		goto out;
 635	}
 636
 637	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 638	 * of MAC speed/duplex configuration.  So we only need to
 639	 * configure Collision Distance in the MAC.
 640	 */
 641	igb_config_collision_dist(hw);
 642
 643	/* Configure Flow Control now that Auto-Neg has completed.
 644	 * First, we need to restore the desired flow control
 645	 * settings because we may have had to re-autoneg with a
 646	 * different link partner.
 647	 */
 648	ret_val = igb_config_fc_after_link_up(hw);
 649	if (ret_val)
 650		hw_dbg("Error configuring flow control\n");
 651
 652out:
 653	return ret_val;
 654}
 655
 656/**
 657 *  igb_setup_link - Setup flow control and link settings
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  Determines which flow control settings to use, then configures flow
 661 *  control.  Calls the appropriate media-specific link configuration
 662 *  function.  Assuming the adapter has a valid link partner, a valid link
 663 *  should be established.  Assumes the hardware has previously been reset
 664 *  and the transmitter and receiver are not enabled.
 665 **/
 666s32 igb_setup_link(struct e1000_hw *hw)
 667{
 668	s32 ret_val = 0;
 669
 670	/* In the case of the phy reset being blocked, we already have a link.
 671	 * We do not need to set it up again.
 672	 */
 673	if (igb_check_reset_block(hw))
 674		goto out;
 675
 676	/* If requested flow control is set to default, set flow control
 677	 * based on the EEPROM flow control settings.
 678	 */
 679	if (hw->fc.requested_mode == e1000_fc_default) {
 680		ret_val = igb_set_default_fc(hw);
 681		if (ret_val)
 682			goto out;
 683	}
 684
 685	/* We want to save off the original Flow Control configuration just
 686	 * in case we get disconnected and then reconnected into a different
 687	 * hub or switch with different Flow Control capabilities.
 688	 */
 689	hw->fc.current_mode = hw->fc.requested_mode;
 690
 691	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 692
 693	/* Call the necessary media_type subroutine to configure the link. */
 694	ret_val = hw->mac.ops.setup_physical_interface(hw);
 695	if (ret_val)
 696		goto out;
 697
 698	/* Initialize the flow control address, type, and PAUSE timer
 699	 * registers to their default values.  This is done even if flow
 700	 * control is disabled, because it does not hurt anything to
 701	 * initialize these registers.
 702	 */
 703	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 704	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 705	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 706	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 707
 708	wr32(E1000_FCTTV, hw->fc.pause_time);
 709
 710	ret_val = igb_set_fc_watermarks(hw);
 711
 712out:
 713
 714	return ret_val;
 715}
 716
 717/**
 718 *  igb_config_collision_dist - Configure collision distance
 719 *  @hw: pointer to the HW structure
 720 *
 721 *  Configures the collision distance to the default value and is used
 722 *  during link setup. Currently no func pointer exists and all
 723 *  implementations are handled in the generic version of this function.
 724 **/
 725void igb_config_collision_dist(struct e1000_hw *hw)
 726{
 727	u32 tctl;
 728
 729	tctl = rd32(E1000_TCTL);
 730
 731	tctl &= ~E1000_TCTL_COLD;
 732	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 733
 734	wr32(E1000_TCTL, tctl);
 735	wrfl();
 736}
 737
 738/**
 739 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 740 *  @hw: pointer to the HW structure
 741 *
 742 *  Sets the flow control high/low threshold (watermark) registers.  If
 743 *  flow control XON frame transmission is enabled, then set XON frame
 744 *  tansmission as well.
 745 **/
 746static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 747{
 748	s32 ret_val = 0;
 749	u32 fcrtl = 0, fcrth = 0;
 750
 751	/* Set the flow control receive threshold registers.  Normally,
 752	 * these registers will be set to a default threshold that may be
 753	 * adjusted later by the driver's runtime code.  However, if the
 754	 * ability to transmit pause frames is not enabled, then these
 755	 * registers will be set to 0.
 756	 */
 757	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 758		/* We need to set up the Receive Threshold high and low water
 759		 * marks as well as (optionally) enabling the transmission of
 760		 * XON frames.
 761		 */
 762		fcrtl = hw->fc.low_water;
 763		if (hw->fc.send_xon)
 764			fcrtl |= E1000_FCRTL_XONE;
 765
 766		fcrth = hw->fc.high_water;
 767	}
 768	wr32(E1000_FCRTL, fcrtl);
 769	wr32(E1000_FCRTH, fcrth);
 770
 771	return ret_val;
 772}
 773
 774/**
 775 *  igb_set_default_fc - Set flow control default values
 776 *  @hw: pointer to the HW structure
 777 *
 778 *  Read the EEPROM for the default values for flow control and store the
 779 *  values.
 780 **/
 781static s32 igb_set_default_fc(struct e1000_hw *hw)
 782{
 783	s32 ret_val = 0;
 784	u16 lan_offset;
 785	u16 nvm_data;
 786
 787	/* Read and store word 0x0F of the EEPROM. This word contains bits
 788	 * that determine the hardware's default PAUSE (flow control) mode,
 789	 * a bit that determines whether the HW defaults to enabling or
 790	 * disabling auto-negotiation, and the direction of the
 791	 * SW defined pins. If there is no SW over-ride of the flow
 792	 * control setting, then the variable hw->fc will
 793	 * be initialized based on a value in the EEPROM.
 794	 */
 795	if (hw->mac.type == e1000_i350) {
 796		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 797		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
 798					   + lan_offset, 1, &nvm_data);
 799	 } else {
 800		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
 801					   1, &nvm_data);
 802	 }
 803
 
 
 804	if (ret_val) {
 805		hw_dbg("NVM Read Error\n");
 806		goto out;
 807	}
 808
 809	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 810		hw->fc.requested_mode = e1000_fc_none;
 811	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
 812		 NVM_WORD0F_ASM_DIR)
 813		hw->fc.requested_mode = e1000_fc_tx_pause;
 814	else
 815		hw->fc.requested_mode = e1000_fc_full;
 816
 817out:
 818	return ret_val;
 819}
 820
 821/**
 822 *  igb_force_mac_fc - Force the MAC's flow control settings
 823 *  @hw: pointer to the HW structure
 824 *
 825 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 826 *  device control register to reflect the adapter settings.  TFCE and RFCE
 827 *  need to be explicitly set by software when a copper PHY is used because
 828 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 829 *  also configure these bits when link is forced on a fiber connection.
 830 **/
 831s32 igb_force_mac_fc(struct e1000_hw *hw)
 832{
 833	u32 ctrl;
 834	s32 ret_val = 0;
 835
 836	ctrl = rd32(E1000_CTRL);
 837
 838	/* Because we didn't get link via the internal auto-negotiation
 839	 * mechanism (we either forced link or we got link via PHY
 840	 * auto-neg), we have to manually enable/disable transmit an
 841	 * receive flow control.
 842	 *
 843	 * The "Case" statement below enables/disable flow control
 844	 * according to the "hw->fc.current_mode" parameter.
 845	 *
 846	 * The possible values of the "fc" parameter are:
 847	 *      0:  Flow control is completely disabled
 848	 *      1:  Rx flow control is enabled (we can receive pause
 849	 *          frames but not send pause frames).
 850	 *      2:  Tx flow control is enabled (we can send pause frames
 851	 *          frames but we do not receive pause frames).
 852	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
 853	 *  other:  No other values should be possible at this point.
 854	 */
 855	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 856
 857	switch (hw->fc.current_mode) {
 858	case e1000_fc_none:
 859		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 860		break;
 861	case e1000_fc_rx_pause:
 862		ctrl &= (~E1000_CTRL_TFCE);
 863		ctrl |= E1000_CTRL_RFCE;
 864		break;
 865	case e1000_fc_tx_pause:
 866		ctrl &= (~E1000_CTRL_RFCE);
 867		ctrl |= E1000_CTRL_TFCE;
 868		break;
 869	case e1000_fc_full:
 870		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 871		break;
 872	default:
 873		hw_dbg("Flow control param set incorrectly\n");
 874		ret_val = -E1000_ERR_CONFIG;
 875		goto out;
 876	}
 877
 878	wr32(E1000_CTRL, ctrl);
 879
 880out:
 881	return ret_val;
 882}
 883
 884/**
 885 *  igb_config_fc_after_link_up - Configures flow control after link
 886 *  @hw: pointer to the HW structure
 887 *
 888 *  Checks the status of auto-negotiation after link up to ensure that the
 889 *  speed and duplex were not forced.  If the link needed to be forced, then
 890 *  flow control needs to be forced also.  If auto-negotiation is enabled
 891 *  and did not fail, then we configure flow control based on our link
 892 *  partner.
 893 **/
 894s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 895{
 896	struct e1000_mac_info *mac = &hw->mac;
 897	s32 ret_val = 0;
 898	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 899	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 900	u16 speed, duplex;
 901
 902	/* Check for the case where we have fiber media and auto-neg failed
 903	 * so we had to force link.  In this case, we need to force the
 904	 * configuration of the MAC to match the "fc" parameter.
 905	 */
 906	if (mac->autoneg_failed) {
 907		if (hw->phy.media_type == e1000_media_type_internal_serdes)
 908			ret_val = igb_force_mac_fc(hw);
 909	} else {
 910		if (hw->phy.media_type == e1000_media_type_copper)
 911			ret_val = igb_force_mac_fc(hw);
 912	}
 913
 914	if (ret_val) {
 915		hw_dbg("Error forcing flow control settings\n");
 916		goto out;
 917	}
 918
 919	/* Check for the case where we have copper media and auto-neg is
 920	 * enabled.  In this case, we need to check and see if Auto-Neg
 921	 * has completed, and if so, how the PHY and link partner has
 922	 * flow control configured.
 923	 */
 924	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 925		/* Read the MII Status Register and check to see if AutoNeg
 926		 * has completed.  We read this twice because this reg has
 927		 * some "sticky" (latched) bits.
 928		 */
 929		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 930						   &mii_status_reg);
 931		if (ret_val)
 932			goto out;
 933		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 934						   &mii_status_reg);
 935		if (ret_val)
 936			goto out;
 937
 938		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 939			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
 940			goto out;
 941		}
 942
 943		/* The AutoNeg process has completed, so we now need to
 944		 * read both the Auto Negotiation Advertisement
 945		 * Register (Address 4) and the Auto_Negotiation Base
 946		 * Page Ability Register (Address 5) to determine how
 947		 * flow control was negotiated.
 948		 */
 949		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 950					    &mii_nway_adv_reg);
 951		if (ret_val)
 952			goto out;
 953		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 954					    &mii_nway_lp_ability_reg);
 955		if (ret_val)
 956			goto out;
 957
 958		/* Two bits in the Auto Negotiation Advertisement Register
 959		 * (Address 4) and two bits in the Auto Negotiation Base
 960		 * Page Ability Register (Address 5) determine flow control
 961		 * for both the PHY and the link partner.  The following
 962		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 963		 * 1999, describes these PAUSE resolution bits and how flow
 964		 * control is determined based upon these settings.
 965		 * NOTE:  DC = Don't Care
 966		 *
 967		 *   LOCAL DEVICE  |   LINK PARTNER
 968		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 969		 *-------|---------|-------|---------|--------------------
 970		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 971		 *   0   |    1    |   0   |   DC    | e1000_fc_none
 972		 *   0   |    1    |   1   |    0    | e1000_fc_none
 973		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 974		 *   1   |    0    |   0   |   DC    | e1000_fc_none
 975		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 976		 *   1   |    1    |   0   |    0    | e1000_fc_none
 977		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 978		 *
 979		 * Are both PAUSE bits set to 1?  If so, this implies
 980		 * Symmetric Flow Control is enabled at both ends.  The
 981		 * ASM_DIR bits are irrelevant per the spec.
 982		 *
 983		 * For Symmetric Flow Control:
 984		 *
 985		 *   LOCAL DEVICE  |   LINK PARTNER
 986		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 987		 *-------|---------|-------|---------|--------------------
 988		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 989		 *
 990		 */
 991		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 992		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 993			/* Now we need to check if the user selected RX ONLY
 994			 * of pause frames.  In this case, we had to advertise
 995			 * FULL flow control because we could not advertise RX
 996			 * ONLY. Hence, we must now check to see if we need to
 997			 * turn OFF  the TRANSMISSION of PAUSE frames.
 998			 */
 999			if (hw->fc.requested_mode == e1000_fc_full) {
1000				hw->fc.current_mode = e1000_fc_full;
1001				hw_dbg("Flow Control = FULL.\n");
1002			} else {
1003				hw->fc.current_mode = e1000_fc_rx_pause;
1004				hw_dbg("Flow Control = RX PAUSE frames only.\n");
1005			}
1006		}
1007		/* For receiving PAUSE frames ONLY.
1008		 *
1009		 *   LOCAL DEVICE  |   LINK PARTNER
1010		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1011		 *-------|---------|-------|---------|--------------------
1012		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1013		 */
1014		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1015			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1016			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1017			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1018			hw->fc.current_mode = e1000_fc_tx_pause;
1019			hw_dbg("Flow Control = TX PAUSE frames only.\n");
1020		}
1021		/* For transmitting PAUSE frames ONLY.
1022		 *
1023		 *   LOCAL DEVICE  |   LINK PARTNER
1024		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1025		 *-------|---------|-------|---------|--------------------
1026		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1027		 */
1028		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1029			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1030			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1031			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1032			hw->fc.current_mode = e1000_fc_rx_pause;
1033			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1034		}
1035		/* Per the IEEE spec, at this point flow control should be
1036		 * disabled.  However, we want to consider that we could
1037		 * be connected to a legacy switch that doesn't advertise
1038		 * desired flow control, but can be forced on the link
1039		 * partner.  So if we advertised no flow control, that is
1040		 * what we will resolve to.  If we advertised some kind of
1041		 * receive capability (Rx Pause Only or Full Flow Control)
1042		 * and the link partner advertised none, we will configure
1043		 * ourselves to enable Rx Flow Control only.  We can do
1044		 * this safely for two reasons:  If the link partner really
1045		 * didn't want flow control enabled, and we enable Rx, no
1046		 * harm done since we won't be receiving any PAUSE frames
1047		 * anyway.  If the intent on the link partner was to have
1048		 * flow control enabled, then by us enabling RX only, we
1049		 * can at least receive pause frames and process them.
1050		 * This is a good idea because in most cases, since we are
1051		 * predominantly a server NIC, more times than not we will
1052		 * be asked to delay transmission of packets than asking
1053		 * our link partner to pause transmission of frames.
1054		 */
1055		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1056			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1057			 (hw->fc.strict_ieee)) {
1058			hw->fc.current_mode = e1000_fc_none;
1059			hw_dbg("Flow Control = NONE.\n");
1060		} else {
1061			hw->fc.current_mode = e1000_fc_rx_pause;
1062			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1063		}
1064
1065		/* Now we need to do one last check...  If we auto-
1066		 * negotiated to HALF DUPLEX, flow control should not be
1067		 * enabled per IEEE 802.3 spec.
1068		 */
1069		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1070		if (ret_val) {
1071			hw_dbg("Error getting link speed and duplex\n");
1072			goto out;
1073		}
1074
1075		if (duplex == HALF_DUPLEX)
1076			hw->fc.current_mode = e1000_fc_none;
1077
1078		/* Now we call a subroutine to actually force the MAC
1079		 * controller to use the correct flow control settings.
1080		 */
1081		ret_val = igb_force_mac_fc(hw);
1082		if (ret_val) {
1083			hw_dbg("Error forcing flow control settings\n");
1084			goto out;
1085		}
1086	}
1087	/* Check for the case where we have SerDes media and auto-neg is
1088	 * enabled.  In this case, we need to check and see if Auto-Neg
1089	 * has completed, and if so, how the PHY and link partner has
1090	 * flow control configured.
1091	 */
1092	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1093		&& mac->autoneg) {
1094		/* Read the PCS_LSTS and check to see if AutoNeg
1095		 * has completed.
1096		 */
1097		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1098
1099		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1100			hw_dbg("PCS Auto Neg has not completed.\n");
1101			return ret_val;
1102		}
1103
1104		/* The AutoNeg process has completed, so we now need to
1105		 * read both the Auto Negotiation Advertisement
1106		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1107		 * Page Ability Register (PCS_LPAB) to determine how
1108		 * flow control was negotiated.
1109		 */
1110		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1111		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1112
1113		/* Two bits in the Auto Negotiation Advertisement Register
1114		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1115		 * Page Ability Register (PCS_LPAB) determine flow control
1116		 * for both the PHY and the link partner.  The following
1117		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1118		 * 1999, describes these PAUSE resolution bits and how flow
1119		 * control is determined based upon these settings.
1120		 * NOTE:  DC = Don't Care
1121		 *
1122		 *   LOCAL DEVICE  |   LINK PARTNER
1123		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1124		 *-------|---------|-------|---------|--------------------
1125		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1126		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1127		 *   0   |    1    |   1   |    0    | e1000_fc_none
1128		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1129		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1130		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1131		 *   1   |    1    |   0   |    0    | e1000_fc_none
1132		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1133		 *
1134		 * Are both PAUSE bits set to 1?  If so, this implies
1135		 * Symmetric Flow Control is enabled at both ends.  The
1136		 * ASM_DIR bits are irrelevant per the spec.
1137		 *
1138		 * For Symmetric Flow Control:
1139		 *
1140		 *   LOCAL DEVICE  |   LINK PARTNER
1141		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1142		 *-------|---------|-------|---------|--------------------
1143		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1144		 *
1145		 */
1146		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1147		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1148			/* Now we need to check if the user selected Rx ONLY
1149			 * of pause frames.  In this case, we had to advertise
1150			 * FULL flow control because we could not advertise Rx
1151			 * ONLY. Hence, we must now check to see if we need to
1152			 * turn OFF the TRANSMISSION of PAUSE frames.
1153			 */
1154			if (hw->fc.requested_mode == e1000_fc_full) {
1155				hw->fc.current_mode = e1000_fc_full;
1156				hw_dbg("Flow Control = FULL.\n");
1157			} else {
1158				hw->fc.current_mode = e1000_fc_rx_pause;
1159				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1160			}
1161		}
1162		/* For receiving PAUSE frames ONLY.
1163		 *
1164		 *   LOCAL DEVICE  |   LINK PARTNER
1165		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1166		 *-------|---------|-------|---------|--------------------
1167		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1168		 */
1169		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1170			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1171			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1172			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1173			hw->fc.current_mode = e1000_fc_tx_pause;
1174			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1175		}
1176		/* For transmitting PAUSE frames ONLY.
1177		 *
1178		 *   LOCAL DEVICE  |   LINK PARTNER
1179		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1180		 *-------|---------|-------|---------|--------------------
1181		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1182		 */
1183		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1184			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1185			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1186			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1187			hw->fc.current_mode = e1000_fc_rx_pause;
1188			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1189		} else {
1190			/* Per the IEEE spec, at this point flow control
1191			 * should be disabled.
1192			 */
1193			hw->fc.current_mode = e1000_fc_none;
1194			hw_dbg("Flow Control = NONE.\n");
1195		}
1196
1197		/* Now we call a subroutine to actually force the MAC
1198		 * controller to use the correct flow control settings.
1199		 */
1200		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1201		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1202		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1203
1204		ret_val = igb_force_mac_fc(hw);
1205		if (ret_val) {
1206			hw_dbg("Error forcing flow control settings\n");
1207			return ret_val;
1208		}
1209	}
1210
1211out:
1212	return ret_val;
1213}
1214
1215/**
1216 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1217 *  @hw: pointer to the HW structure
1218 *  @speed: stores the current speed
1219 *  @duplex: stores the current duplex
1220 *
1221 *  Read the status register for the current speed/duplex and store the current
1222 *  speed and duplex for copper connections.
1223 **/
1224s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1225				      u16 *duplex)
1226{
1227	u32 status;
1228
1229	status = rd32(E1000_STATUS);
1230	if (status & E1000_STATUS_SPEED_1000) {
1231		*speed = SPEED_1000;
1232		hw_dbg("1000 Mbs, ");
1233	} else if (status & E1000_STATUS_SPEED_100) {
1234		*speed = SPEED_100;
1235		hw_dbg("100 Mbs, ");
1236	} else {
1237		*speed = SPEED_10;
1238		hw_dbg("10 Mbs, ");
1239	}
1240
1241	if (status & E1000_STATUS_FD) {
1242		*duplex = FULL_DUPLEX;
1243		hw_dbg("Full Duplex\n");
1244	} else {
1245		*duplex = HALF_DUPLEX;
1246		hw_dbg("Half Duplex\n");
1247	}
1248
1249	return 0;
1250}
1251
1252/**
1253 *  igb_get_hw_semaphore - Acquire hardware semaphore
1254 *  @hw: pointer to the HW structure
1255 *
1256 *  Acquire the HW semaphore to access the PHY or NVM
1257 **/
1258s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1259{
1260	u32 swsm;
1261	s32 ret_val = 0;
1262	s32 timeout = hw->nvm.word_size + 1;
1263	s32 i = 0;
1264
1265	/* Get the SW semaphore */
1266	while (i < timeout) {
1267		swsm = rd32(E1000_SWSM);
1268		if (!(swsm & E1000_SWSM_SMBI))
1269			break;
1270
1271		udelay(50);
1272		i++;
1273	}
1274
1275	if (i == timeout) {
1276		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1277		ret_val = -E1000_ERR_NVM;
1278		goto out;
1279	}
1280
1281	/* Get the FW semaphore. */
1282	for (i = 0; i < timeout; i++) {
1283		swsm = rd32(E1000_SWSM);
1284		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1285
1286		/* Semaphore acquired if bit latched */
1287		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1288			break;
1289
1290		udelay(50);
1291	}
1292
1293	if (i == timeout) {
1294		/* Release semaphores */
1295		igb_put_hw_semaphore(hw);
1296		hw_dbg("Driver can't access the NVM\n");
1297		ret_val = -E1000_ERR_NVM;
1298		goto out;
1299	}
1300
1301out:
1302	return ret_val;
1303}
1304
1305/**
1306 *  igb_put_hw_semaphore - Release hardware semaphore
1307 *  @hw: pointer to the HW structure
1308 *
1309 *  Release hardware semaphore used to access the PHY or NVM
1310 **/
1311void igb_put_hw_semaphore(struct e1000_hw *hw)
1312{
1313	u32 swsm;
1314
1315	swsm = rd32(E1000_SWSM);
1316
1317	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1318
1319	wr32(E1000_SWSM, swsm);
1320}
1321
1322/**
1323 *  igb_get_auto_rd_done - Check for auto read completion
1324 *  @hw: pointer to the HW structure
1325 *
1326 *  Check EEPROM for Auto Read done bit.
1327 **/
1328s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1329{
1330	s32 i = 0;
1331	s32 ret_val = 0;
1332
1333
1334	while (i < AUTO_READ_DONE_TIMEOUT) {
1335		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1336			break;
1337		usleep_range(1000, 2000);
1338		i++;
1339	}
1340
1341	if (i == AUTO_READ_DONE_TIMEOUT) {
1342		hw_dbg("Auto read by HW from NVM has not completed.\n");
1343		ret_val = -E1000_ERR_RESET;
1344		goto out;
1345	}
1346
1347out:
1348	return ret_val;
1349}
1350
1351/**
1352 *  igb_valid_led_default - Verify a valid default LED config
1353 *  @hw: pointer to the HW structure
1354 *  @data: pointer to the NVM (EEPROM)
1355 *
1356 *  Read the EEPROM for the current default LED configuration.  If the
1357 *  LED configuration is not valid, set to a valid LED configuration.
1358 **/
1359static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1360{
1361	s32 ret_val;
1362
1363	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1364	if (ret_val) {
1365		hw_dbg("NVM Read Error\n");
1366		goto out;
1367	}
1368
1369	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1370		switch (hw->phy.media_type) {
1371		case e1000_media_type_internal_serdes:
1372			*data = ID_LED_DEFAULT_82575_SERDES;
1373			break;
1374		case e1000_media_type_copper:
1375		default:
1376			*data = ID_LED_DEFAULT;
1377			break;
1378		}
1379	}
1380out:
1381	return ret_val;
1382}
1383
1384/**
1385 *  igb_id_led_init -
1386 *  @hw: pointer to the HW structure
1387 *
1388 **/
1389s32 igb_id_led_init(struct e1000_hw *hw)
1390{
1391	struct e1000_mac_info *mac = &hw->mac;
1392	s32 ret_val;
1393	const u32 ledctl_mask = 0x000000FF;
1394	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1395	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1396	u16 data, i, temp;
1397	const u16 led_mask = 0x0F;
1398
1399	/* i210 and i211 devices have different LED mechanism */
1400	if ((hw->mac.type == e1000_i210) ||
1401	    (hw->mac.type == e1000_i211))
1402		ret_val = igb_valid_led_default_i210(hw, &data);
1403	else
1404		ret_val = igb_valid_led_default(hw, &data);
1405
1406	if (ret_val)
1407		goto out;
1408
1409	mac->ledctl_default = rd32(E1000_LEDCTL);
1410	mac->ledctl_mode1 = mac->ledctl_default;
1411	mac->ledctl_mode2 = mac->ledctl_default;
1412
1413	for (i = 0; i < 4; i++) {
1414		temp = (data >> (i << 2)) & led_mask;
1415		switch (temp) {
1416		case ID_LED_ON1_DEF2:
1417		case ID_LED_ON1_ON2:
1418		case ID_LED_ON1_OFF2:
1419			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1420			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1421			break;
1422		case ID_LED_OFF1_DEF2:
1423		case ID_LED_OFF1_ON2:
1424		case ID_LED_OFF1_OFF2:
1425			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1426			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1427			break;
1428		default:
1429			/* Do nothing */
1430			break;
1431		}
1432		switch (temp) {
1433		case ID_LED_DEF1_ON2:
1434		case ID_LED_ON1_ON2:
1435		case ID_LED_OFF1_ON2:
1436			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1437			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1438			break;
1439		case ID_LED_DEF1_OFF2:
1440		case ID_LED_ON1_OFF2:
1441		case ID_LED_OFF1_OFF2:
1442			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1443			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1444			break;
1445		default:
1446			/* Do nothing */
1447			break;
1448		}
1449	}
1450
1451out:
1452	return ret_val;
1453}
1454
1455/**
1456 *  igb_cleanup_led - Set LED config to default operation
1457 *  @hw: pointer to the HW structure
1458 *
1459 *  Remove the current LED configuration and set the LED configuration
1460 *  to the default value, saved from the EEPROM.
1461 **/
1462s32 igb_cleanup_led(struct e1000_hw *hw)
1463{
1464	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1465	return 0;
1466}
1467
1468/**
1469 *  igb_blink_led - Blink LED
1470 *  @hw: pointer to the HW structure
1471 *
1472 *  Blink the led's which are set to be on.
1473 **/
1474s32 igb_blink_led(struct e1000_hw *hw)
1475{
1476	u32 ledctl_blink = 0;
1477	u32 i;
1478
1479	if (hw->phy.media_type == e1000_media_type_fiber) {
1480		/* always blink LED0 for PCI-E fiber */
1481		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1482		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1483	} else {
1484		/* Set the blink bit for each LED that's "on" (0x0E)
1485		 * (or "off" if inverted) in ledctl_mode2.  The blink
1486		 * logic in hardware only works when mode is set to "on"
1487		 * so it must be changed accordingly when the mode is
1488		 * "off" and inverted.
1489		 */
1490		ledctl_blink = hw->mac.ledctl_mode2;
1491		for (i = 0; i < 32; i += 8) {
1492			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1493			    E1000_LEDCTL_LED0_MODE_MASK;
1494			u32 led_default = hw->mac.ledctl_default >> i;
1495
1496			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1497			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1498			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1499			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1500				ledctl_blink &=
1501				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1502				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1503						 E1000_LEDCTL_MODE_LED_ON) << i;
1504			}
1505		}
1506	}
1507
1508	wr32(E1000_LEDCTL, ledctl_blink);
1509
1510	return 0;
1511}
1512
1513/**
1514 *  igb_led_off - Turn LED off
1515 *  @hw: pointer to the HW structure
1516 *
1517 *  Turn LED off.
1518 **/
1519s32 igb_led_off(struct e1000_hw *hw)
1520{
1521	switch (hw->phy.media_type) {
1522	case e1000_media_type_copper:
1523		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1524		break;
1525	default:
1526		break;
1527	}
1528
1529	return 0;
1530}
1531
1532/**
1533 *  igb_disable_pcie_master - Disables PCI-express master access
1534 *  @hw: pointer to the HW structure
1535 *
1536 *  Returns 0 (0) if successful, else returns -10
1537 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1538 *  the master requests to be disabled.
1539 *
1540 *  Disables PCI-Express master access and verifies there are no pending
1541 *  requests.
1542 **/
1543s32 igb_disable_pcie_master(struct e1000_hw *hw)
1544{
1545	u32 ctrl;
1546	s32 timeout = MASTER_DISABLE_TIMEOUT;
1547	s32 ret_val = 0;
1548
1549	if (hw->bus.type != e1000_bus_type_pci_express)
1550		goto out;
1551
1552	ctrl = rd32(E1000_CTRL);
1553	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1554	wr32(E1000_CTRL, ctrl);
1555
1556	while (timeout) {
1557		if (!(rd32(E1000_STATUS) &
1558		      E1000_STATUS_GIO_MASTER_ENABLE))
1559			break;
1560		udelay(100);
1561		timeout--;
1562	}
1563
1564	if (!timeout) {
1565		hw_dbg("Master requests are pending.\n");
1566		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1567		goto out;
1568	}
1569
1570out:
1571	return ret_val;
1572}
1573
1574/**
1575 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1576 *  @hw: pointer to the HW structure
1577 *
1578 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1579 *  set, which is forced to MDI mode only.
1580 **/
1581s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1582{
1583	s32 ret_val = 0;
1584
1585	/* All MDI settings are supported on 82580 and newer. */
1586	if (hw->mac.type >= e1000_82580)
1587		goto out;
1588
1589	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1590		hw_dbg("Invalid MDI setting detected\n");
1591		hw->phy.mdix = 1;
1592		ret_val = -E1000_ERR_CONFIG;
1593		goto out;
1594	}
1595
1596out:
1597	return ret_val;
1598}
1599
1600/**
1601 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1602 *  @hw: pointer to the HW structure
1603 *  @reg: 32bit register offset such as E1000_SCTL
1604 *  @offset: register offset to write to
1605 *  @data: data to write at register offset
1606 *
1607 *  Writes an address/data control type register.  There are several of these
1608 *  and they all have the format address << 8 | data and bit 31 is polled for
1609 *  completion.
1610 **/
1611s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1612			      u32 offset, u8 data)
1613{
1614	u32 i, regvalue = 0;
1615	s32 ret_val = 0;
1616
1617	/* Set up the address and data */
1618	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1619	wr32(reg, regvalue);
1620
1621	/* Poll the ready bit to see if the MDI read completed */
1622	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1623		udelay(5);
1624		regvalue = rd32(reg);
1625		if (regvalue & E1000_GEN_CTL_READY)
1626			break;
1627	}
1628	if (!(regvalue & E1000_GEN_CTL_READY)) {
1629		hw_dbg("Reg %08x did not indicate ready\n", reg);
1630		ret_val = -E1000_ERR_PHY;
1631		goto out;
1632	}
1633
1634out:
1635	return ret_val;
1636}
1637
1638/**
1639 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1640 *  @hw: pointer to the HW structure
1641 *
1642 *  Verifies the hardware needs to leave interface enabled so that frames can
1643 *  be directed to and from the management interface.
1644 **/
1645bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1646{
1647	u32 manc;
1648	u32 fwsm, factps;
1649	bool ret_val = false;
1650
1651	if (!hw->mac.asf_firmware_present)
1652		goto out;
1653
1654	manc = rd32(E1000_MANC);
1655
1656	if (!(manc & E1000_MANC_RCV_TCO_EN))
1657		goto out;
1658
1659	if (hw->mac.arc_subsystem_valid) {
1660		fwsm = rd32(E1000_FWSM);
1661		factps = rd32(E1000_FACTPS);
1662
1663		if (!(factps & E1000_FACTPS_MNGCG) &&
1664		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1665		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1666			ret_val = true;
1667			goto out;
1668		}
1669	} else {
1670		if ((manc & E1000_MANC_SMBUS_EN) &&
1671		    !(manc & E1000_MANC_ASF_EN)) {
1672			ret_val = true;
1673			goto out;
1674		}
1675	}
1676
1677out:
1678	return ret_val;
1679}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/if_ether.h>
   5#include <linux/delay.h>
   6#include <linux/pci.h>
   7#include <linux/netdevice.h>
   8#include <linux/etherdevice.h>
   9
  10#include "e1000_mac.h"
  11
  12#include "igb.h"
  13
  14static s32 igb_set_default_fc(struct e1000_hw *hw);
  15static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  16
  17/**
  18 *  igb_get_bus_info_pcie - Get PCIe bus information
  19 *  @hw: pointer to the HW structure
  20 *
  21 *  Determines and stores the system bus information for a particular
  22 *  network interface.  The following bus information is determined and stored:
  23 *  bus speed, bus width, type (PCIe), and PCIe function.
  24 **/
  25s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  26{
  27	struct e1000_bus_info *bus = &hw->bus;
  28	s32 ret_val;
  29	u32 reg;
  30	u16 pcie_link_status;
  31
  32	bus->type = e1000_bus_type_pci_express;
  33
  34	ret_val = igb_read_pcie_cap_reg(hw,
  35					PCI_EXP_LNKSTA,
  36					&pcie_link_status);
  37	if (ret_val) {
  38		bus->width = e1000_bus_width_unknown;
  39		bus->speed = e1000_bus_speed_unknown;
  40	} else {
  41		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  42		case PCI_EXP_LNKSTA_CLS_2_5GB:
  43			bus->speed = e1000_bus_speed_2500;
  44			break;
  45		case PCI_EXP_LNKSTA_CLS_5_0GB:
  46			bus->speed = e1000_bus_speed_5000;
  47			break;
  48		default:
  49			bus->speed = e1000_bus_speed_unknown;
  50			break;
  51		}
  52
  53		bus->width = (enum e1000_bus_width)((pcie_link_status &
  54						     PCI_EXP_LNKSTA_NLW) >>
  55						     PCI_EXP_LNKSTA_NLW_SHIFT);
  56	}
  57
  58	reg = rd32(E1000_STATUS);
  59	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  60
  61	return 0;
  62}
  63
  64/**
  65 *  igb_clear_vfta - Clear VLAN filter table
  66 *  @hw: pointer to the HW structure
  67 *
  68 *  Clears the register array which contains the VLAN filter table by
  69 *  setting all the values to 0.
  70 **/
  71void igb_clear_vfta(struct e1000_hw *hw)
  72{
  73	u32 offset;
  74
  75	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
  76		hw->mac.ops.write_vfta(hw, offset, 0);
  77}
  78
  79/**
  80 *  igb_write_vfta - Write value to VLAN filter table
  81 *  @hw: pointer to the HW structure
  82 *  @offset: register offset in VLAN filter table
  83 *  @value: register value written to VLAN filter table
  84 *
  85 *  Writes value at the given offset in the register array which stores
  86 *  the VLAN filter table.
  87 **/
  88void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
  89{
  90	struct igb_adapter *adapter = hw->back;
  91
  92	array_wr32(E1000_VFTA, offset, value);
  93	wrfl();
  94
  95	adapter->shadow_vfta[offset] = value;
  96}
  97
  98/**
  99 *  igb_init_rx_addrs - Initialize receive address's
 100 *  @hw: pointer to the HW structure
 101 *  @rar_count: receive address registers
 102 *
 103 *  Setups the receive address registers by setting the base receive address
 104 *  register to the devices MAC address and clearing all the other receive
 105 *  address registers to 0.
 106 **/
 107void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 108{
 109	u32 i;
 110	u8 mac_addr[ETH_ALEN] = {0};
 111
 112	/* Setup the receive address */
 113	hw_dbg("Programming MAC Address into RAR[0]\n");
 114
 115	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 116
 117	/* Zero out the other (rar_entry_count - 1) receive addresses */
 118	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 119	for (i = 1; i < rar_count; i++)
 120		hw->mac.ops.rar_set(hw, mac_addr, i);
 121}
 122
 123/**
 124 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
 125 *  @hw: pointer to hardware structure
 126 *  @vlan: VLAN id to write to VLAN filter
 127 *  @vlvf_bypass: skip VLVF if no match is found
 128 *
 129 *  return the VLVF index where this VLAN id should be placed
 130 *
 131 **/
 132static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
 133{
 134	s32 regindex, first_empty_slot;
 135	u32 bits;
 136
 137	/* short cut the special case */
 138	if (vlan == 0)
 139		return 0;
 140
 141	/* if vlvf_bypass is set we don't want to use an empty slot, we
 142	 * will simply bypass the VLVF if there are no entries present in the
 143	 * VLVF that contain our VLAN
 144	 */
 145	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
 146
 147	/* Search for the VLAN id in the VLVF entries. Save off the first empty
 148	 * slot found along the way.
 149	 *
 150	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
 151	 */
 152	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
 153		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
 154		if (bits == vlan)
 155			return regindex;
 156		if (!first_empty_slot && !bits)
 157			first_empty_slot = regindex;
 158	}
 159
 160	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
 161}
 162
 163/**
 164 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 165 *  @hw: pointer to the HW structure
 166 *  @vlan: VLAN id to add or remove
 167 *  @vind: VMDq output index that maps queue to VLAN id
 168 *  @vlan_on: if true add filter, if false remove
 169 *
 170 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 171 *  and if we are adding or removing the filter
 172 **/
 173s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
 174		 bool vlan_on, bool vlvf_bypass)
 175{
 176	struct igb_adapter *adapter = hw->back;
 177	u32 regidx, vfta_delta, vfta, bits;
 178	s32 vlvf_index;
 179
 180	if ((vlan > 4095) || (vind > 7))
 181		return -E1000_ERR_PARAM;
 182
 183	/* this is a 2 part operation - first the VFTA, then the
 184	 * VLVF and VLVFB if VT Mode is set
 185	 * We don't write the VFTA until we know the VLVF part succeeded.
 186	 */
 187
 188	/* Part 1
 189	 * The VFTA is a bitstring made up of 128 32-bit registers
 190	 * that enable the particular VLAN id, much like the MTA:
 191	 *    bits[11-5]: which register
 192	 *    bits[4-0]:  which bit in the register
 193	 */
 194	regidx = vlan / 32;
 195	vfta_delta = BIT(vlan % 32);
 196	vfta = adapter->shadow_vfta[regidx];
 197
 198	/* vfta_delta represents the difference between the current value
 199	 * of vfta and the value we want in the register.  Since the diff
 200	 * is an XOR mask we can just update vfta using an XOR.
 201	 */
 202	vfta_delta &= vlan_on ? ~vfta : vfta;
 203	vfta ^= vfta_delta;
 204
 205	/* Part 2
 206	 * If VT Mode is set
 207	 *   Either vlan_on
 208	 *     make sure the VLAN is in VLVF
 209	 *     set the vind bit in the matching VLVFB
 210	 *   Or !vlan_on
 211	 *     clear the pool bit and possibly the vind
 212	 */
 213	if (!adapter->vfs_allocated_count)
 214		goto vfta_update;
 215
 216	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
 217	if (vlvf_index < 0) {
 218		if (vlvf_bypass)
 219			goto vfta_update;
 220		return vlvf_index;
 221	}
 222
 223	bits = rd32(E1000_VLVF(vlvf_index));
 224
 225	/* set the pool bit */
 226	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 227	if (vlan_on)
 228		goto vlvf_update;
 229
 230	/* clear the pool bit */
 231	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 232
 233	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
 234		/* Clear VFTA first, then disable VLVF.  Otherwise
 235		 * we run the risk of stray packets leaking into
 236		 * the PF via the default pool
 237		 */
 238		if (vfta_delta)
 239			hw->mac.ops.write_vfta(hw, regidx, vfta);
 240
 241		/* disable VLVF and clear remaining bit from pool */
 242		wr32(E1000_VLVF(vlvf_index), 0);
 243
 244		return 0;
 245	}
 246
 247	/* If there are still bits set in the VLVFB registers
 248	 * for the VLAN ID indicated we need to see if the
 249	 * caller is requesting that we clear the VFTA entry bit.
 250	 * If the caller has requested that we clear the VFTA
 251	 * entry bit but there are still pools/VFs using this VLAN
 252	 * ID entry then ignore the request.  We're not worried
 253	 * about the case where we're turning the VFTA VLAN ID
 254	 * entry bit on, only when requested to turn it off as
 255	 * there may be multiple pools and/or VFs using the
 256	 * VLAN ID entry.  In that case we cannot clear the
 257	 * VFTA bit until all pools/VFs using that VLAN ID have also
 258	 * been cleared.  This will be indicated by "bits" being
 259	 * zero.
 260	 */
 261	vfta_delta = 0;
 262
 263vlvf_update:
 264	/* record pool change and enable VLAN ID if not already enabled */
 265	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
 266
 267vfta_update:
 268	/* bit was set/cleared before we started */
 269	if (vfta_delta)
 270		hw->mac.ops.write_vfta(hw, regidx, vfta);
 271
 272	return 0;
 273}
 274
 275/**
 276 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 277 *  @hw: pointer to the HW structure
 278 *
 279 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 280 *  can be setup by pre-boot software and must be treated like a permanent
 281 *  address and must override the actual permanent MAC address.  If an
 282 *  alternate MAC address is found it is saved in the hw struct and
 283 *  programmed into RAR0 and the function returns success, otherwise the
 284 *  function returns an error.
 285 **/
 286s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 287{
 288	u32 i;
 289	s32 ret_val = 0;
 290	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 291	u8 alt_mac_addr[ETH_ALEN];
 292
 293	/* Alternate MAC address is handled by the option ROM for 82580
 294	 * and newer. SW support not required.
 295	 */
 296	if (hw->mac.type >= e1000_82580)
 297		goto out;
 298
 299	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 300				 &nvm_alt_mac_addr_offset);
 301	if (ret_val) {
 302		hw_dbg("NVM Read Error\n");
 303		goto out;
 304	}
 305
 306	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 307	    (nvm_alt_mac_addr_offset == 0x0000))
 308		/* There is no Alternate MAC Address */
 309		goto out;
 310
 311	if (hw->bus.func == E1000_FUNC_1)
 312		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 313	if (hw->bus.func == E1000_FUNC_2)
 314		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 315
 316	if (hw->bus.func == E1000_FUNC_3)
 317		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 318	for (i = 0; i < ETH_ALEN; i += 2) {
 319		offset = nvm_alt_mac_addr_offset + (i >> 1);
 320		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 321		if (ret_val) {
 322			hw_dbg("NVM Read Error\n");
 323			goto out;
 324		}
 325
 326		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 327		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 328	}
 329
 330	/* if multicast bit is set, the alternate address will not be used */
 331	if (is_multicast_ether_addr(alt_mac_addr)) {
 332		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 333		goto out;
 334	}
 335
 336	/* We have a valid alternate MAC address, and we want to treat it the
 337	 * same as the normal permanent MAC address stored by the HW into the
 338	 * RAR. Do this by mapping this address into RAR0.
 339	 */
 340	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 341
 342out:
 343	return ret_val;
 344}
 345
 346/**
 347 *  igb_rar_set - Set receive address register
 348 *  @hw: pointer to the HW structure
 349 *  @addr: pointer to the receive address
 350 *  @index: receive address array register
 351 *
 352 *  Sets the receive address array register at index to the address passed
 353 *  in by addr.
 354 **/
 355void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 356{
 357	u32 rar_low, rar_high;
 358
 359	/* HW expects these in little endian so we reverse the byte order
 360	 * from network order (big endian) to little endian
 361	 */
 362	rar_low = ((u32) addr[0] |
 363		   ((u32) addr[1] << 8) |
 364		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 365
 366	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 367
 368	/* If MAC address zero, no need to set the AV bit */
 369	if (rar_low || rar_high)
 370		rar_high |= E1000_RAH_AV;
 371
 372	/* Some bridges will combine consecutive 32-bit writes into
 373	 * a single burst write, which will malfunction on some parts.
 374	 * The flushes avoid this.
 375	 */
 376	wr32(E1000_RAL(index), rar_low);
 377	wrfl();
 378	wr32(E1000_RAH(index), rar_high);
 379	wrfl();
 380}
 381
 382/**
 383 *  igb_mta_set - Set multicast filter table address
 384 *  @hw: pointer to the HW structure
 385 *  @hash_value: determines the MTA register and bit to set
 386 *
 387 *  The multicast table address is a register array of 32-bit registers.
 388 *  The hash_value is used to determine what register the bit is in, the
 389 *  current value is read, the new bit is OR'd in and the new value is
 390 *  written back into the register.
 391 **/
 392void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 393{
 394	u32 hash_bit, hash_reg, mta;
 395
 396	/* The MTA is a register array of 32-bit registers. It is
 397	 * treated like an array of (32*mta_reg_count) bits.  We want to
 398	 * set bit BitArray[hash_value]. So we figure out what register
 399	 * the bit is in, read it, OR in the new bit, then write
 400	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 401	 * mask to bits 31:5 of the hash value which gives us the
 402	 * register we're modifying.  The hash bit within that register
 403	 * is determined by the lower 5 bits of the hash value.
 404	 */
 405	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 406	hash_bit = hash_value & 0x1F;
 407
 408	mta = array_rd32(E1000_MTA, hash_reg);
 409
 410	mta |= BIT(hash_bit);
 411
 412	array_wr32(E1000_MTA, hash_reg, mta);
 413	wrfl();
 414}
 415
 416/**
 417 *  igb_hash_mc_addr - Generate a multicast hash value
 418 *  @hw: pointer to the HW structure
 419 *  @mc_addr: pointer to a multicast address
 420 *
 421 *  Generates a multicast address hash value which is used to determine
 422 *  the multicast filter table array address and new table value.  See
 423 *  igb_mta_set()
 424 **/
 425static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 426{
 427	u32 hash_value, hash_mask;
 428	u8 bit_shift = 0;
 429
 430	/* Register count multiplied by bits per register */
 431	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 432
 433	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 434	 * where 0xFF would still fall within the hash mask.
 435	 */
 436	while (hash_mask >> bit_shift != 0xFF)
 437		bit_shift++;
 438
 439	/* The portion of the address that is used for the hash table
 440	 * is determined by the mc_filter_type setting.
 441	 * The algorithm is such that there is a total of 8 bits of shifting.
 442	 * The bit_shift for a mc_filter_type of 0 represents the number of
 443	 * left-shifts where the MSB of mc_addr[5] would still fall within
 444	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 445	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 446	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 447	 * cases are a variation of this algorithm...essentially raising the
 448	 * number of bits to shift mc_addr[5] left, while still keeping the
 449	 * 8-bit shifting total.
 450	 *
 451	 * For example, given the following Destination MAC Address and an
 452	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 453	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 454	 * values resulting from each mc_filter_type...
 455	 * [0] [1] [2] [3] [4] [5]
 456	 * 01  AA  00  12  34  56
 457	 * LSB                 MSB
 458	 *
 459	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 460	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 461	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 462	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 463	 */
 464	switch (hw->mac.mc_filter_type) {
 465	default:
 466	case 0:
 467		break;
 468	case 1:
 469		bit_shift += 1;
 470		break;
 471	case 2:
 472		bit_shift += 2;
 473		break;
 474	case 3:
 475		bit_shift += 4;
 476		break;
 477	}
 478
 479	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 480				  (((u16) mc_addr[5]) << bit_shift)));
 481
 482	return hash_value;
 483}
 484
 485/**
 486 *  igb_update_mc_addr_list - Update Multicast addresses
 487 *  @hw: pointer to the HW structure
 488 *  @mc_addr_list: array of multicast addresses to program
 489 *  @mc_addr_count: number of multicast addresses to program
 490 *
 491 *  Updates entire Multicast Table Array.
 492 *  The caller must have a packed mc_addr_list of multicast addresses.
 493 **/
 494void igb_update_mc_addr_list(struct e1000_hw *hw,
 495			     u8 *mc_addr_list, u32 mc_addr_count)
 496{
 497	u32 hash_value, hash_bit, hash_reg;
 498	int i;
 499
 500	/* clear mta_shadow */
 501	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 502
 503	/* update mta_shadow from mc_addr_list */
 504	for (i = 0; (u32) i < mc_addr_count; i++) {
 505		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 506
 507		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 508		hash_bit = hash_value & 0x1F;
 509
 510		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 511		mc_addr_list += (ETH_ALEN);
 512	}
 513
 514	/* replace the entire MTA table */
 515	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 516		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 517	wrfl();
 518}
 519
 520/**
 521 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 522 *  @hw: pointer to the HW structure
 523 *
 524 *  Clears the base hardware counters by reading the counter registers.
 525 **/
 526void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 527{
 528	rd32(E1000_CRCERRS);
 529	rd32(E1000_SYMERRS);
 530	rd32(E1000_MPC);
 531	rd32(E1000_SCC);
 532	rd32(E1000_ECOL);
 533	rd32(E1000_MCC);
 534	rd32(E1000_LATECOL);
 535	rd32(E1000_COLC);
 536	rd32(E1000_DC);
 537	rd32(E1000_SEC);
 538	rd32(E1000_RLEC);
 539	rd32(E1000_XONRXC);
 540	rd32(E1000_XONTXC);
 541	rd32(E1000_XOFFRXC);
 542	rd32(E1000_XOFFTXC);
 543	rd32(E1000_FCRUC);
 544	rd32(E1000_GPRC);
 545	rd32(E1000_BPRC);
 546	rd32(E1000_MPRC);
 547	rd32(E1000_GPTC);
 548	rd32(E1000_GORCL);
 549	rd32(E1000_GORCH);
 550	rd32(E1000_GOTCL);
 551	rd32(E1000_GOTCH);
 552	rd32(E1000_RNBC);
 553	rd32(E1000_RUC);
 554	rd32(E1000_RFC);
 555	rd32(E1000_ROC);
 556	rd32(E1000_RJC);
 557	rd32(E1000_TORL);
 558	rd32(E1000_TORH);
 559	rd32(E1000_TOTL);
 560	rd32(E1000_TOTH);
 561	rd32(E1000_TPR);
 562	rd32(E1000_TPT);
 563	rd32(E1000_MPTC);
 564	rd32(E1000_BPTC);
 565}
 566
 567/**
 568 *  igb_check_for_copper_link - Check for link (Copper)
 569 *  @hw: pointer to the HW structure
 570 *
 571 *  Checks to see of the link status of the hardware has changed.  If a
 572 *  change in link status has been detected, then we read the PHY registers
 573 *  to get the current speed/duplex if link exists.
 574 **/
 575s32 igb_check_for_copper_link(struct e1000_hw *hw)
 576{
 577	struct e1000_mac_info *mac = &hw->mac;
 578	s32 ret_val;
 579	bool link;
 580
 581	/* We only want to go out to the PHY registers to see if Auto-Neg
 582	 * has completed and/or if our link status has changed.  The
 583	 * get_link_status flag is set upon receiving a Link Status
 584	 * Change or Rx Sequence Error interrupt.
 585	 */
 586	if (!mac->get_link_status) {
 587		ret_val = 0;
 588		goto out;
 589	}
 590
 591	/* First we want to see if the MII Status Register reports
 592	 * link.  If so, then we want to get the current speed/duplex
 593	 * of the PHY.
 594	 */
 595	ret_val = igb_phy_has_link(hw, 1, 0, &link);
 596	if (ret_val)
 597		goto out;
 598
 599	if (!link)
 600		goto out; /* No link detected */
 601
 602	mac->get_link_status = false;
 603
 604	/* Check if there was DownShift, must be checked
 605	 * immediately after link-up
 606	 */
 607	igb_check_downshift(hw);
 608
 609	/* If we are forcing speed/duplex, then we simply return since
 610	 * we have already determined whether we have link or not.
 611	 */
 612	if (!mac->autoneg) {
 613		ret_val = -E1000_ERR_CONFIG;
 614		goto out;
 615	}
 616
 617	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 618	 * of MAC speed/duplex configuration.  So we only need to
 619	 * configure Collision Distance in the MAC.
 620	 */
 621	igb_config_collision_dist(hw);
 622
 623	/* Configure Flow Control now that Auto-Neg has completed.
 624	 * First, we need to restore the desired flow control
 625	 * settings because we may have had to re-autoneg with a
 626	 * different link partner.
 627	 */
 628	ret_val = igb_config_fc_after_link_up(hw);
 629	if (ret_val)
 630		hw_dbg("Error configuring flow control\n");
 631
 632out:
 633	return ret_val;
 634}
 635
 636/**
 637 *  igb_setup_link - Setup flow control and link settings
 638 *  @hw: pointer to the HW structure
 639 *
 640 *  Determines which flow control settings to use, then configures flow
 641 *  control.  Calls the appropriate media-specific link configuration
 642 *  function.  Assuming the adapter has a valid link partner, a valid link
 643 *  should be established.  Assumes the hardware has previously been reset
 644 *  and the transmitter and receiver are not enabled.
 645 **/
 646s32 igb_setup_link(struct e1000_hw *hw)
 647{
 648	s32 ret_val = 0;
 649
 650	/* In the case of the phy reset being blocked, we already have a link.
 651	 * We do not need to set it up again.
 652	 */
 653	if (igb_check_reset_block(hw))
 654		goto out;
 655
 656	/* If requested flow control is set to default, set flow control
 657	 * based on the EEPROM flow control settings.
 658	 */
 659	if (hw->fc.requested_mode == e1000_fc_default) {
 660		ret_val = igb_set_default_fc(hw);
 661		if (ret_val)
 662			goto out;
 663	}
 664
 665	/* We want to save off the original Flow Control configuration just
 666	 * in case we get disconnected and then reconnected into a different
 667	 * hub or switch with different Flow Control capabilities.
 668	 */
 669	hw->fc.current_mode = hw->fc.requested_mode;
 670
 671	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 672
 673	/* Call the necessary media_type subroutine to configure the link. */
 674	ret_val = hw->mac.ops.setup_physical_interface(hw);
 675	if (ret_val)
 676		goto out;
 677
 678	/* Initialize the flow control address, type, and PAUSE timer
 679	 * registers to their default values.  This is done even if flow
 680	 * control is disabled, because it does not hurt anything to
 681	 * initialize these registers.
 682	 */
 683	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 684	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 685	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 686	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 687
 688	wr32(E1000_FCTTV, hw->fc.pause_time);
 689
 690	ret_val = igb_set_fc_watermarks(hw);
 691
 692out:
 693
 694	return ret_val;
 695}
 696
 697/**
 698 *  igb_config_collision_dist - Configure collision distance
 699 *  @hw: pointer to the HW structure
 700 *
 701 *  Configures the collision distance to the default value and is used
 702 *  during link setup. Currently no func pointer exists and all
 703 *  implementations are handled in the generic version of this function.
 704 **/
 705void igb_config_collision_dist(struct e1000_hw *hw)
 706{
 707	u32 tctl;
 708
 709	tctl = rd32(E1000_TCTL);
 710
 711	tctl &= ~E1000_TCTL_COLD;
 712	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 713
 714	wr32(E1000_TCTL, tctl);
 715	wrfl();
 716}
 717
 718/**
 719 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 720 *  @hw: pointer to the HW structure
 721 *
 722 *  Sets the flow control high/low threshold (watermark) registers.  If
 723 *  flow control XON frame transmission is enabled, then set XON frame
 724 *  tansmission as well.
 725 **/
 726static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 727{
 728	s32 ret_val = 0;
 729	u32 fcrtl = 0, fcrth = 0;
 730
 731	/* Set the flow control receive threshold registers.  Normally,
 732	 * these registers will be set to a default threshold that may be
 733	 * adjusted later by the driver's runtime code.  However, if the
 734	 * ability to transmit pause frames is not enabled, then these
 735	 * registers will be set to 0.
 736	 */
 737	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 738		/* We need to set up the Receive Threshold high and low water
 739		 * marks as well as (optionally) enabling the transmission of
 740		 * XON frames.
 741		 */
 742		fcrtl = hw->fc.low_water;
 743		if (hw->fc.send_xon)
 744			fcrtl |= E1000_FCRTL_XONE;
 745
 746		fcrth = hw->fc.high_water;
 747	}
 748	wr32(E1000_FCRTL, fcrtl);
 749	wr32(E1000_FCRTH, fcrth);
 750
 751	return ret_val;
 752}
 753
 754/**
 755 *  igb_set_default_fc - Set flow control default values
 756 *  @hw: pointer to the HW structure
 757 *
 758 *  Read the EEPROM for the default values for flow control and store the
 759 *  values.
 760 **/
 761static s32 igb_set_default_fc(struct e1000_hw *hw)
 762{
 763	s32 ret_val = 0;
 764	u16 lan_offset;
 765	u16 nvm_data;
 766
 767	/* Read and store word 0x0F of the EEPROM. This word contains bits
 768	 * that determine the hardware's default PAUSE (flow control) mode,
 769	 * a bit that determines whether the HW defaults to enabling or
 770	 * disabling auto-negotiation, and the direction of the
 771	 * SW defined pins. If there is no SW over-ride of the flow
 772	 * control setting, then the variable hw->fc will
 773	 * be initialized based on a value in the EEPROM.
 774	 */
 775	if (hw->mac.type == e1000_i350)
 776		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 777	else
 778		lan_offset = 0;
 
 
 
 
 779
 780	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
 781				   1, &nvm_data);
 782	if (ret_val) {
 783		hw_dbg("NVM Read Error\n");
 784		goto out;
 785	}
 786
 787	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 788		hw->fc.requested_mode = e1000_fc_none;
 789	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 
 790		hw->fc.requested_mode = e1000_fc_tx_pause;
 791	else
 792		hw->fc.requested_mode = e1000_fc_full;
 793
 794out:
 795	return ret_val;
 796}
 797
 798/**
 799 *  igb_force_mac_fc - Force the MAC's flow control settings
 800 *  @hw: pointer to the HW structure
 801 *
 802 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 803 *  device control register to reflect the adapter settings.  TFCE and RFCE
 804 *  need to be explicitly set by software when a copper PHY is used because
 805 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 806 *  also configure these bits when link is forced on a fiber connection.
 807 **/
 808s32 igb_force_mac_fc(struct e1000_hw *hw)
 809{
 810	u32 ctrl;
 811	s32 ret_val = 0;
 812
 813	ctrl = rd32(E1000_CTRL);
 814
 815	/* Because we didn't get link via the internal auto-negotiation
 816	 * mechanism (we either forced link or we got link via PHY
 817	 * auto-neg), we have to manually enable/disable transmit an
 818	 * receive flow control.
 819	 *
 820	 * The "Case" statement below enables/disable flow control
 821	 * according to the "hw->fc.current_mode" parameter.
 822	 *
 823	 * The possible values of the "fc" parameter are:
 824	 *      0:  Flow control is completely disabled
 825	 *      1:  Rx flow control is enabled (we can receive pause
 826	 *          frames but not send pause frames).
 827	 *      2:  Tx flow control is enabled (we can send pause frames
 828	 *          frames but we do not receive pause frames).
 829	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
 830	 *  other:  No other values should be possible at this point.
 831	 */
 832	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 833
 834	switch (hw->fc.current_mode) {
 835	case e1000_fc_none:
 836		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 837		break;
 838	case e1000_fc_rx_pause:
 839		ctrl &= (~E1000_CTRL_TFCE);
 840		ctrl |= E1000_CTRL_RFCE;
 841		break;
 842	case e1000_fc_tx_pause:
 843		ctrl &= (~E1000_CTRL_RFCE);
 844		ctrl |= E1000_CTRL_TFCE;
 845		break;
 846	case e1000_fc_full:
 847		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 848		break;
 849	default:
 850		hw_dbg("Flow control param set incorrectly\n");
 851		ret_val = -E1000_ERR_CONFIG;
 852		goto out;
 853	}
 854
 855	wr32(E1000_CTRL, ctrl);
 856
 857out:
 858	return ret_val;
 859}
 860
 861/**
 862 *  igb_config_fc_after_link_up - Configures flow control after link
 863 *  @hw: pointer to the HW structure
 864 *
 865 *  Checks the status of auto-negotiation after link up to ensure that the
 866 *  speed and duplex were not forced.  If the link needed to be forced, then
 867 *  flow control needs to be forced also.  If auto-negotiation is enabled
 868 *  and did not fail, then we configure flow control based on our link
 869 *  partner.
 870 **/
 871s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 872{
 873	struct e1000_mac_info *mac = &hw->mac;
 874	s32 ret_val = 0;
 875	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 876	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 877	u16 speed, duplex;
 878
 879	/* Check for the case where we have fiber media and auto-neg failed
 880	 * so we had to force link.  In this case, we need to force the
 881	 * configuration of the MAC to match the "fc" parameter.
 882	 */
 883	if (mac->autoneg_failed) {
 884		if (hw->phy.media_type == e1000_media_type_internal_serdes)
 885			ret_val = igb_force_mac_fc(hw);
 886	} else {
 887		if (hw->phy.media_type == e1000_media_type_copper)
 888			ret_val = igb_force_mac_fc(hw);
 889	}
 890
 891	if (ret_val) {
 892		hw_dbg("Error forcing flow control settings\n");
 893		goto out;
 894	}
 895
 896	/* Check for the case where we have copper media and auto-neg is
 897	 * enabled.  In this case, we need to check and see if Auto-Neg
 898	 * has completed, and if so, how the PHY and link partner has
 899	 * flow control configured.
 900	 */
 901	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 902		/* Read the MII Status Register and check to see if AutoNeg
 903		 * has completed.  We read this twice because this reg has
 904		 * some "sticky" (latched) bits.
 905		 */
 906		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 907						   &mii_status_reg);
 908		if (ret_val)
 909			goto out;
 910		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 911						   &mii_status_reg);
 912		if (ret_val)
 913			goto out;
 914
 915		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 916			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
 917			goto out;
 918		}
 919
 920		/* The AutoNeg process has completed, so we now need to
 921		 * read both the Auto Negotiation Advertisement
 922		 * Register (Address 4) and the Auto_Negotiation Base
 923		 * Page Ability Register (Address 5) to determine how
 924		 * flow control was negotiated.
 925		 */
 926		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 927					    &mii_nway_adv_reg);
 928		if (ret_val)
 929			goto out;
 930		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 931					    &mii_nway_lp_ability_reg);
 932		if (ret_val)
 933			goto out;
 934
 935		/* Two bits in the Auto Negotiation Advertisement Register
 936		 * (Address 4) and two bits in the Auto Negotiation Base
 937		 * Page Ability Register (Address 5) determine flow control
 938		 * for both the PHY and the link partner.  The following
 939		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 940		 * 1999, describes these PAUSE resolution bits and how flow
 941		 * control is determined based upon these settings.
 942		 * NOTE:  DC = Don't Care
 943		 *
 944		 *   LOCAL DEVICE  |   LINK PARTNER
 945		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 946		 *-------|---------|-------|---------|--------------------
 947		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 948		 *   0   |    1    |   0   |   DC    | e1000_fc_none
 949		 *   0   |    1    |   1   |    0    | e1000_fc_none
 950		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 951		 *   1   |    0    |   0   |   DC    | e1000_fc_none
 952		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 953		 *   1   |    1    |   0   |    0    | e1000_fc_none
 954		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 955		 *
 956		 * Are both PAUSE bits set to 1?  If so, this implies
 957		 * Symmetric Flow Control is enabled at both ends.  The
 958		 * ASM_DIR bits are irrelevant per the spec.
 959		 *
 960		 * For Symmetric Flow Control:
 961		 *
 962		 *   LOCAL DEVICE  |   LINK PARTNER
 963		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 964		 *-------|---------|-------|---------|--------------------
 965		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 966		 *
 967		 */
 968		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 969		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 970			/* Now we need to check if the user selected RX ONLY
 971			 * of pause frames.  In this case, we had to advertise
 972			 * FULL flow control because we could not advertise RX
 973			 * ONLY. Hence, we must now check to see if we need to
 974			 * turn OFF  the TRANSMISSION of PAUSE frames.
 975			 */
 976			if (hw->fc.requested_mode == e1000_fc_full) {
 977				hw->fc.current_mode = e1000_fc_full;
 978				hw_dbg("Flow Control = FULL.\n");
 979			} else {
 980				hw->fc.current_mode = e1000_fc_rx_pause;
 981				hw_dbg("Flow Control = RX PAUSE frames only.\n");
 982			}
 983		}
 984		/* For receiving PAUSE frames ONLY.
 985		 *
 986		 *   LOCAL DEVICE  |   LINK PARTNER
 987		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 988		 *-------|---------|-------|---------|--------------------
 989		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 990		 */
 991		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 992			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
 993			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
 994			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
 995			hw->fc.current_mode = e1000_fc_tx_pause;
 996			hw_dbg("Flow Control = TX PAUSE frames only.\n");
 997		}
 998		/* For transmitting PAUSE frames ONLY.
 999		 *
1000		 *   LOCAL DEVICE  |   LINK PARTNER
1001		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1002		 *-------|---------|-------|---------|--------------------
1003		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1004		 */
1005		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1006			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1007			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1008			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1009			hw->fc.current_mode = e1000_fc_rx_pause;
1010			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1011		}
1012		/* Per the IEEE spec, at this point flow control should be
1013		 * disabled.  However, we want to consider that we could
1014		 * be connected to a legacy switch that doesn't advertise
1015		 * desired flow control, but can be forced on the link
1016		 * partner.  So if we advertised no flow control, that is
1017		 * what we will resolve to.  If we advertised some kind of
1018		 * receive capability (Rx Pause Only or Full Flow Control)
1019		 * and the link partner advertised none, we will configure
1020		 * ourselves to enable Rx Flow Control only.  We can do
1021		 * this safely for two reasons:  If the link partner really
1022		 * didn't want flow control enabled, and we enable Rx, no
1023		 * harm done since we won't be receiving any PAUSE frames
1024		 * anyway.  If the intent on the link partner was to have
1025		 * flow control enabled, then by us enabling RX only, we
1026		 * can at least receive pause frames and process them.
1027		 * This is a good idea because in most cases, since we are
1028		 * predominantly a server NIC, more times than not we will
1029		 * be asked to delay transmission of packets than asking
1030		 * our link partner to pause transmission of frames.
1031		 */
1032		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1033			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1034			 (hw->fc.strict_ieee)) {
1035			hw->fc.current_mode = e1000_fc_none;
1036			hw_dbg("Flow Control = NONE.\n");
1037		} else {
1038			hw->fc.current_mode = e1000_fc_rx_pause;
1039			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1040		}
1041
1042		/* Now we need to do one last check...  If we auto-
1043		 * negotiated to HALF DUPLEX, flow control should not be
1044		 * enabled per IEEE 802.3 spec.
1045		 */
1046		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1047		if (ret_val) {
1048			hw_dbg("Error getting link speed and duplex\n");
1049			goto out;
1050		}
1051
1052		if (duplex == HALF_DUPLEX)
1053			hw->fc.current_mode = e1000_fc_none;
1054
1055		/* Now we call a subroutine to actually force the MAC
1056		 * controller to use the correct flow control settings.
1057		 */
1058		ret_val = igb_force_mac_fc(hw);
1059		if (ret_val) {
1060			hw_dbg("Error forcing flow control settings\n");
1061			goto out;
1062		}
1063	}
1064	/* Check for the case where we have SerDes media and auto-neg is
1065	 * enabled.  In this case, we need to check and see if Auto-Neg
1066	 * has completed, and if so, how the PHY and link partner has
1067	 * flow control configured.
1068	 */
1069	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1070		&& mac->autoneg) {
1071		/* Read the PCS_LSTS and check to see if AutoNeg
1072		 * has completed.
1073		 */
1074		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1075
1076		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1077			hw_dbg("PCS Auto Neg has not completed.\n");
1078			return ret_val;
1079		}
1080
1081		/* The AutoNeg process has completed, so we now need to
1082		 * read both the Auto Negotiation Advertisement
1083		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1084		 * Page Ability Register (PCS_LPAB) to determine how
1085		 * flow control was negotiated.
1086		 */
1087		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1088		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1089
1090		/* Two bits in the Auto Negotiation Advertisement Register
1091		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1092		 * Page Ability Register (PCS_LPAB) determine flow control
1093		 * for both the PHY and the link partner.  The following
1094		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1095		 * 1999, describes these PAUSE resolution bits and how flow
1096		 * control is determined based upon these settings.
1097		 * NOTE:  DC = Don't Care
1098		 *
1099		 *   LOCAL DEVICE  |   LINK PARTNER
1100		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1101		 *-------|---------|-------|---------|--------------------
1102		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1103		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1104		 *   0   |    1    |   1   |    0    | e1000_fc_none
1105		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1106		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1107		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1108		 *   1   |    1    |   0   |    0    | e1000_fc_none
1109		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1110		 *
1111		 * Are both PAUSE bits set to 1?  If so, this implies
1112		 * Symmetric Flow Control is enabled at both ends.  The
1113		 * ASM_DIR bits are irrelevant per the spec.
1114		 *
1115		 * For Symmetric Flow Control:
1116		 *
1117		 *   LOCAL DEVICE  |   LINK PARTNER
1118		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1119		 *-------|---------|-------|---------|--------------------
1120		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1121		 *
1122		 */
1123		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1124		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1125			/* Now we need to check if the user selected Rx ONLY
1126			 * of pause frames.  In this case, we had to advertise
1127			 * FULL flow control because we could not advertise Rx
1128			 * ONLY. Hence, we must now check to see if we need to
1129			 * turn OFF the TRANSMISSION of PAUSE frames.
1130			 */
1131			if (hw->fc.requested_mode == e1000_fc_full) {
1132				hw->fc.current_mode = e1000_fc_full;
1133				hw_dbg("Flow Control = FULL.\n");
1134			} else {
1135				hw->fc.current_mode = e1000_fc_rx_pause;
1136				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1137			}
1138		}
1139		/* For receiving PAUSE frames ONLY.
1140		 *
1141		 *   LOCAL DEVICE  |   LINK PARTNER
1142		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1143		 *-------|---------|-------|---------|--------------------
1144		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1145		 */
1146		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1147			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1148			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1149			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1150			hw->fc.current_mode = e1000_fc_tx_pause;
1151			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1152		}
1153		/* For transmitting PAUSE frames ONLY.
1154		 *
1155		 *   LOCAL DEVICE  |   LINK PARTNER
1156		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1157		 *-------|---------|-------|---------|--------------------
1158		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1159		 */
1160		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1161			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1162			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1163			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1164			hw->fc.current_mode = e1000_fc_rx_pause;
1165			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1166		} else {
1167			/* Per the IEEE spec, at this point flow control
1168			 * should be disabled.
1169			 */
1170			hw->fc.current_mode = e1000_fc_none;
1171			hw_dbg("Flow Control = NONE.\n");
1172		}
1173
1174		/* Now we call a subroutine to actually force the MAC
1175		 * controller to use the correct flow control settings.
1176		 */
1177		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1178		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1179		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1180
1181		ret_val = igb_force_mac_fc(hw);
1182		if (ret_val) {
1183			hw_dbg("Error forcing flow control settings\n");
1184			return ret_val;
1185		}
1186	}
1187
1188out:
1189	return ret_val;
1190}
1191
1192/**
1193 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1194 *  @hw: pointer to the HW structure
1195 *  @speed: stores the current speed
1196 *  @duplex: stores the current duplex
1197 *
1198 *  Read the status register for the current speed/duplex and store the current
1199 *  speed and duplex for copper connections.
1200 **/
1201s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1202				      u16 *duplex)
1203{
1204	u32 status;
1205
1206	status = rd32(E1000_STATUS);
1207	if (status & E1000_STATUS_SPEED_1000) {
1208		*speed = SPEED_1000;
1209		hw_dbg("1000 Mbs, ");
1210	} else if (status & E1000_STATUS_SPEED_100) {
1211		*speed = SPEED_100;
1212		hw_dbg("100 Mbs, ");
1213	} else {
1214		*speed = SPEED_10;
1215		hw_dbg("10 Mbs, ");
1216	}
1217
1218	if (status & E1000_STATUS_FD) {
1219		*duplex = FULL_DUPLEX;
1220		hw_dbg("Full Duplex\n");
1221	} else {
1222		*duplex = HALF_DUPLEX;
1223		hw_dbg("Half Duplex\n");
1224	}
1225
1226	return 0;
1227}
1228
1229/**
1230 *  igb_get_hw_semaphore - Acquire hardware semaphore
1231 *  @hw: pointer to the HW structure
1232 *
1233 *  Acquire the HW semaphore to access the PHY or NVM
1234 **/
1235s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1236{
1237	u32 swsm;
1238	s32 ret_val = 0;
1239	s32 timeout = hw->nvm.word_size + 1;
1240	s32 i = 0;
1241
1242	/* Get the SW semaphore */
1243	while (i < timeout) {
1244		swsm = rd32(E1000_SWSM);
1245		if (!(swsm & E1000_SWSM_SMBI))
1246			break;
1247
1248		udelay(50);
1249		i++;
1250	}
1251
1252	if (i == timeout) {
1253		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1254		ret_val = -E1000_ERR_NVM;
1255		goto out;
1256	}
1257
1258	/* Get the FW semaphore. */
1259	for (i = 0; i < timeout; i++) {
1260		swsm = rd32(E1000_SWSM);
1261		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1262
1263		/* Semaphore acquired if bit latched */
1264		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1265			break;
1266
1267		udelay(50);
1268	}
1269
1270	if (i == timeout) {
1271		/* Release semaphores */
1272		igb_put_hw_semaphore(hw);
1273		hw_dbg("Driver can't access the NVM\n");
1274		ret_val = -E1000_ERR_NVM;
1275		goto out;
1276	}
1277
1278out:
1279	return ret_val;
1280}
1281
1282/**
1283 *  igb_put_hw_semaphore - Release hardware semaphore
1284 *  @hw: pointer to the HW structure
1285 *
1286 *  Release hardware semaphore used to access the PHY or NVM
1287 **/
1288void igb_put_hw_semaphore(struct e1000_hw *hw)
1289{
1290	u32 swsm;
1291
1292	swsm = rd32(E1000_SWSM);
1293
1294	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1295
1296	wr32(E1000_SWSM, swsm);
1297}
1298
1299/**
1300 *  igb_get_auto_rd_done - Check for auto read completion
1301 *  @hw: pointer to the HW structure
1302 *
1303 *  Check EEPROM for Auto Read done bit.
1304 **/
1305s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1306{
1307	s32 i = 0;
1308	s32 ret_val = 0;
1309
1310
1311	while (i < AUTO_READ_DONE_TIMEOUT) {
1312		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1313			break;
1314		usleep_range(1000, 2000);
1315		i++;
1316	}
1317
1318	if (i == AUTO_READ_DONE_TIMEOUT) {
1319		hw_dbg("Auto read by HW from NVM has not completed.\n");
1320		ret_val = -E1000_ERR_RESET;
1321		goto out;
1322	}
1323
1324out:
1325	return ret_val;
1326}
1327
1328/**
1329 *  igb_valid_led_default - Verify a valid default LED config
1330 *  @hw: pointer to the HW structure
1331 *  @data: pointer to the NVM (EEPROM)
1332 *
1333 *  Read the EEPROM for the current default LED configuration.  If the
1334 *  LED configuration is not valid, set to a valid LED configuration.
1335 **/
1336static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1337{
1338	s32 ret_val;
1339
1340	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1341	if (ret_val) {
1342		hw_dbg("NVM Read Error\n");
1343		goto out;
1344	}
1345
1346	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1347		switch (hw->phy.media_type) {
1348		case e1000_media_type_internal_serdes:
1349			*data = ID_LED_DEFAULT_82575_SERDES;
1350			break;
1351		case e1000_media_type_copper:
1352		default:
1353			*data = ID_LED_DEFAULT;
1354			break;
1355		}
1356	}
1357out:
1358	return ret_val;
1359}
1360
1361/**
1362 *  igb_id_led_init -
1363 *  @hw: pointer to the HW structure
1364 *
1365 **/
1366s32 igb_id_led_init(struct e1000_hw *hw)
1367{
1368	struct e1000_mac_info *mac = &hw->mac;
1369	s32 ret_val;
1370	const u32 ledctl_mask = 0x000000FF;
1371	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1372	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1373	u16 data, i, temp;
1374	const u16 led_mask = 0x0F;
1375
1376	/* i210 and i211 devices have different LED mechanism */
1377	if ((hw->mac.type == e1000_i210) ||
1378	    (hw->mac.type == e1000_i211))
1379		ret_val = igb_valid_led_default_i210(hw, &data);
1380	else
1381		ret_val = igb_valid_led_default(hw, &data);
1382
1383	if (ret_val)
1384		goto out;
1385
1386	mac->ledctl_default = rd32(E1000_LEDCTL);
1387	mac->ledctl_mode1 = mac->ledctl_default;
1388	mac->ledctl_mode2 = mac->ledctl_default;
1389
1390	for (i = 0; i < 4; i++) {
1391		temp = (data >> (i << 2)) & led_mask;
1392		switch (temp) {
1393		case ID_LED_ON1_DEF2:
1394		case ID_LED_ON1_ON2:
1395		case ID_LED_ON1_OFF2:
1396			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1397			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1398			break;
1399		case ID_LED_OFF1_DEF2:
1400		case ID_LED_OFF1_ON2:
1401		case ID_LED_OFF1_OFF2:
1402			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1403			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1404			break;
1405		default:
1406			/* Do nothing */
1407			break;
1408		}
1409		switch (temp) {
1410		case ID_LED_DEF1_ON2:
1411		case ID_LED_ON1_ON2:
1412		case ID_LED_OFF1_ON2:
1413			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1414			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1415			break;
1416		case ID_LED_DEF1_OFF2:
1417		case ID_LED_ON1_OFF2:
1418		case ID_LED_OFF1_OFF2:
1419			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1420			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1421			break;
1422		default:
1423			/* Do nothing */
1424			break;
1425		}
1426	}
1427
1428out:
1429	return ret_val;
1430}
1431
1432/**
1433 *  igb_cleanup_led - Set LED config to default operation
1434 *  @hw: pointer to the HW structure
1435 *
1436 *  Remove the current LED configuration and set the LED configuration
1437 *  to the default value, saved from the EEPROM.
1438 **/
1439s32 igb_cleanup_led(struct e1000_hw *hw)
1440{
1441	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1442	return 0;
1443}
1444
1445/**
1446 *  igb_blink_led - Blink LED
1447 *  @hw: pointer to the HW structure
1448 *
1449 *  Blink the led's which are set to be on.
1450 **/
1451s32 igb_blink_led(struct e1000_hw *hw)
1452{
1453	u32 ledctl_blink = 0;
1454	u32 i;
1455
1456	if (hw->phy.media_type == e1000_media_type_fiber) {
1457		/* always blink LED0 for PCI-E fiber */
1458		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1459		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1460	} else {
1461		/* Set the blink bit for each LED that's "on" (0x0E)
1462		 * (or "off" if inverted) in ledctl_mode2.  The blink
1463		 * logic in hardware only works when mode is set to "on"
1464		 * so it must be changed accordingly when the mode is
1465		 * "off" and inverted.
1466		 */
1467		ledctl_blink = hw->mac.ledctl_mode2;
1468		for (i = 0; i < 32; i += 8) {
1469			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1470			    E1000_LEDCTL_LED0_MODE_MASK;
1471			u32 led_default = hw->mac.ledctl_default >> i;
1472
1473			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1474			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1475			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1476			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1477				ledctl_blink &=
1478				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1479				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1480						 E1000_LEDCTL_MODE_LED_ON) << i;
1481			}
1482		}
1483	}
1484
1485	wr32(E1000_LEDCTL, ledctl_blink);
1486
1487	return 0;
1488}
1489
1490/**
1491 *  igb_led_off - Turn LED off
1492 *  @hw: pointer to the HW structure
1493 *
1494 *  Turn LED off.
1495 **/
1496s32 igb_led_off(struct e1000_hw *hw)
1497{
1498	switch (hw->phy.media_type) {
1499	case e1000_media_type_copper:
1500		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1501		break;
1502	default:
1503		break;
1504	}
1505
1506	return 0;
1507}
1508
1509/**
1510 *  igb_disable_pcie_master - Disables PCI-express master access
1511 *  @hw: pointer to the HW structure
1512 *
1513 *  Returns 0 (0) if successful, else returns -10
1514 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1515 *  the master requests to be disabled.
1516 *
1517 *  Disables PCI-Express master access and verifies there are no pending
1518 *  requests.
1519 **/
1520s32 igb_disable_pcie_master(struct e1000_hw *hw)
1521{
1522	u32 ctrl;
1523	s32 timeout = MASTER_DISABLE_TIMEOUT;
1524	s32 ret_val = 0;
1525
1526	if (hw->bus.type != e1000_bus_type_pci_express)
1527		goto out;
1528
1529	ctrl = rd32(E1000_CTRL);
1530	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1531	wr32(E1000_CTRL, ctrl);
1532
1533	while (timeout) {
1534		if (!(rd32(E1000_STATUS) &
1535		      E1000_STATUS_GIO_MASTER_ENABLE))
1536			break;
1537		udelay(100);
1538		timeout--;
1539	}
1540
1541	if (!timeout) {
1542		hw_dbg("Master requests are pending.\n");
1543		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1544		goto out;
1545	}
1546
1547out:
1548	return ret_val;
1549}
1550
1551/**
1552 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1553 *  @hw: pointer to the HW structure
1554 *
1555 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1556 *  set, which is forced to MDI mode only.
1557 **/
1558s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1559{
1560	s32 ret_val = 0;
1561
1562	/* All MDI settings are supported on 82580 and newer. */
1563	if (hw->mac.type >= e1000_82580)
1564		goto out;
1565
1566	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1567		hw_dbg("Invalid MDI setting detected\n");
1568		hw->phy.mdix = 1;
1569		ret_val = -E1000_ERR_CONFIG;
1570		goto out;
1571	}
1572
1573out:
1574	return ret_val;
1575}
1576
1577/**
1578 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1579 *  @hw: pointer to the HW structure
1580 *  @reg: 32bit register offset such as E1000_SCTL
1581 *  @offset: register offset to write to
1582 *  @data: data to write at register offset
1583 *
1584 *  Writes an address/data control type register.  There are several of these
1585 *  and they all have the format address << 8 | data and bit 31 is polled for
1586 *  completion.
1587 **/
1588s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1589			      u32 offset, u8 data)
1590{
1591	u32 i, regvalue = 0;
1592	s32 ret_val = 0;
1593
1594	/* Set up the address and data */
1595	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1596	wr32(reg, regvalue);
1597
1598	/* Poll the ready bit to see if the MDI read completed */
1599	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1600		udelay(5);
1601		regvalue = rd32(reg);
1602		if (regvalue & E1000_GEN_CTL_READY)
1603			break;
1604	}
1605	if (!(regvalue & E1000_GEN_CTL_READY)) {
1606		hw_dbg("Reg %08x did not indicate ready\n", reg);
1607		ret_val = -E1000_ERR_PHY;
1608		goto out;
1609	}
1610
1611out:
1612	return ret_val;
1613}
1614
1615/**
1616 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1617 *  @hw: pointer to the HW structure
1618 *
1619 *  Verifies the hardware needs to leave interface enabled so that frames can
1620 *  be directed to and from the management interface.
1621 **/
1622bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1623{
1624	u32 manc;
1625	u32 fwsm, factps;
1626	bool ret_val = false;
1627
1628	if (!hw->mac.asf_firmware_present)
1629		goto out;
1630
1631	manc = rd32(E1000_MANC);
1632
1633	if (!(manc & E1000_MANC_RCV_TCO_EN))
1634		goto out;
1635
1636	if (hw->mac.arc_subsystem_valid) {
1637		fwsm = rd32(E1000_FWSM);
1638		factps = rd32(E1000_FACTPS);
1639
1640		if (!(factps & E1000_FACTPS_MNGCG) &&
1641		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1642		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1643			ret_val = true;
1644			goto out;
1645		}
1646	} else {
1647		if ((manc & E1000_MANC_SMBUS_EN) &&
1648		    !(manc & E1000_MANC_ASF_EN)) {
1649			ret_val = true;
1650			goto out;
1651		}
1652	}
1653
1654out:
1655	return ret_val;
1656}