Linux Audio

Check our new training course

Loading...
v4.6
 
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24#include <linux/if_ether.h>
  25#include <linux/delay.h>
  26#include <linux/pci.h>
  27#include <linux/netdevice.h>
  28#include <linux/etherdevice.h>
  29
  30#include "e1000_mac.h"
  31
  32#include "igb.h"
  33
  34static s32 igb_set_default_fc(struct e1000_hw *hw);
  35static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  36
  37/**
  38 *  igb_get_bus_info_pcie - Get PCIe bus information
  39 *  @hw: pointer to the HW structure
  40 *
  41 *  Determines and stores the system bus information for a particular
  42 *  network interface.  The following bus information is determined and stored:
  43 *  bus speed, bus width, type (PCIe), and PCIe function.
  44 **/
  45s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  46{
  47	struct e1000_bus_info *bus = &hw->bus;
  48	s32 ret_val;
  49	u32 reg;
  50	u16 pcie_link_status;
  51
  52	bus->type = e1000_bus_type_pci_express;
  53
  54	ret_val = igb_read_pcie_cap_reg(hw,
  55					PCI_EXP_LNKSTA,
  56					&pcie_link_status);
  57	if (ret_val) {
  58		bus->width = e1000_bus_width_unknown;
  59		bus->speed = e1000_bus_speed_unknown;
  60	} else {
  61		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  62		case PCI_EXP_LNKSTA_CLS_2_5GB:
  63			bus->speed = e1000_bus_speed_2500;
  64			break;
  65		case PCI_EXP_LNKSTA_CLS_5_0GB:
  66			bus->speed = e1000_bus_speed_5000;
  67			break;
  68		default:
  69			bus->speed = e1000_bus_speed_unknown;
  70			break;
  71		}
  72
  73		bus->width = (enum e1000_bus_width)((pcie_link_status &
  74						     PCI_EXP_LNKSTA_NLW) >>
  75						     PCI_EXP_LNKSTA_NLW_SHIFT);
  76	}
  77
  78	reg = rd32(E1000_STATUS);
  79	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  80
  81	return 0;
  82}
  83
  84/**
  85 *  igb_clear_vfta - Clear VLAN filter table
  86 *  @hw: pointer to the HW structure
  87 *
  88 *  Clears the register array which contains the VLAN filter table by
  89 *  setting all the values to 0.
  90 **/
  91void igb_clear_vfta(struct e1000_hw *hw)
  92{
  93	u32 offset;
  94
  95	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
  96		hw->mac.ops.write_vfta(hw, offset, 0);
  97}
  98
  99/**
 100 *  igb_write_vfta - Write value to VLAN filter table
 101 *  @hw: pointer to the HW structure
 102 *  @offset: register offset in VLAN filter table
 103 *  @value: register value written to VLAN filter table
 104 *
 105 *  Writes value at the given offset in the register array which stores
 106 *  the VLAN filter table.
 107 **/
 108void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 109{
 110	struct igb_adapter *adapter = hw->back;
 111
 112	array_wr32(E1000_VFTA, offset, value);
 113	wrfl();
 114
 115	adapter->shadow_vfta[offset] = value;
 116}
 117
 118/**
 119 *  igb_init_rx_addrs - Initialize receive address's
 120 *  @hw: pointer to the HW structure
 121 *  @rar_count: receive address registers
 122 *
 123 *  Setups the receive address registers by setting the base receive address
 124 *  register to the devices MAC address and clearing all the other receive
 125 *  address registers to 0.
 126 **/
 127void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 128{
 129	u32 i;
 130	u8 mac_addr[ETH_ALEN] = {0};
 131
 132	/* Setup the receive address */
 133	hw_dbg("Programming MAC Address into RAR[0]\n");
 134
 135	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 136
 137	/* Zero out the other (rar_entry_count - 1) receive addresses */
 138	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 139	for (i = 1; i < rar_count; i++)
 140		hw->mac.ops.rar_set(hw, mac_addr, i);
 141}
 142
 143/**
 144 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
 145 *  @hw: pointer to hardware structure
 146 *  @vlan: VLAN id to write to VLAN filter
 147 *  @vlvf_bypass: skip VLVF if no match is found
 148 *
 149 *  return the VLVF index where this VLAN id should be placed
 150 *
 151 **/
 152static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
 153{
 154	s32 regindex, first_empty_slot;
 155	u32 bits;
 156
 157	/* short cut the special case */
 158	if (vlan == 0)
 159		return 0;
 160
 161	/* if vlvf_bypass is set we don't want to use an empty slot, we
 162	 * will simply bypass the VLVF if there are no entries present in the
 163	 * VLVF that contain our VLAN
 164	 */
 165	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
 166
 167	/* Search for the VLAN id in the VLVF entries. Save off the first empty
 168	 * slot found along the way.
 169	 *
 170	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
 171	 */
 172	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
 173		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
 174		if (bits == vlan)
 175			return regindex;
 176		if (!first_empty_slot && !bits)
 177			first_empty_slot = regindex;
 178	}
 179
 180	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
 181}
 182
 183/**
 184 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 185 *  @hw: pointer to the HW structure
 186 *  @vlan: VLAN id to add or remove
 187 *  @vind: VMDq output index that maps queue to VLAN id
 188 *  @vlan_on: if true add filter, if false remove
 189 *
 190 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 191 *  and if we are adding or removing the filter
 192 **/
 193s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
 194		 bool vlan_on, bool vlvf_bypass)
 195{
 196	struct igb_adapter *adapter = hw->back;
 197	u32 regidx, vfta_delta, vfta, bits;
 198	s32 vlvf_index;
 199
 200	if ((vlan > 4095) || (vind > 7))
 201		return -E1000_ERR_PARAM;
 202
 203	/* this is a 2 part operation - first the VFTA, then the
 204	 * VLVF and VLVFB if VT Mode is set
 205	 * We don't write the VFTA until we know the VLVF part succeeded.
 206	 */
 207
 208	/* Part 1
 209	 * The VFTA is a bitstring made up of 128 32-bit registers
 210	 * that enable the particular VLAN id, much like the MTA:
 211	 *    bits[11-5]: which register
 212	 *    bits[4-0]:  which bit in the register
 213	 */
 214	regidx = vlan / 32;
 215	vfta_delta = 1 << (vlan % 32);
 216	vfta = adapter->shadow_vfta[regidx];
 217
 218	/* vfta_delta represents the difference between the current value
 219	 * of vfta and the value we want in the register.  Since the diff
 220	 * is an XOR mask we can just update vfta using an XOR.
 221	 */
 222	vfta_delta &= vlan_on ? ~vfta : vfta;
 223	vfta ^= vfta_delta;
 224
 225	/* Part 2
 226	 * If VT Mode is set
 227	 *   Either vlan_on
 228	 *     make sure the VLAN is in VLVF
 229	 *     set the vind bit in the matching VLVFB
 230	 *   Or !vlan_on
 231	 *     clear the pool bit and possibly the vind
 232	 */
 233	if (!adapter->vfs_allocated_count)
 234		goto vfta_update;
 235
 236	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
 237	if (vlvf_index < 0) {
 238		if (vlvf_bypass)
 239			goto vfta_update;
 240		return vlvf_index;
 241	}
 242
 243	bits = rd32(E1000_VLVF(vlvf_index));
 244
 245	/* set the pool bit */
 246	bits |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vind);
 247	if (vlan_on)
 248		goto vlvf_update;
 249
 250	/* clear the pool bit */
 251	bits ^= 1 << (E1000_VLVF_POOLSEL_SHIFT + vind);
 252
 253	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
 254		/* Clear VFTA first, then disable VLVF.  Otherwise
 255		 * we run the risk of stray packets leaking into
 256		 * the PF via the default pool
 257		 */
 258		if (vfta_delta)
 259			hw->mac.ops.write_vfta(hw, regidx, vfta);
 260
 261		/* disable VLVF and clear remaining bit from pool */
 262		wr32(E1000_VLVF(vlvf_index), 0);
 263
 264		return 0;
 265	}
 266
 267	/* If there are still bits set in the VLVFB registers
 268	 * for the VLAN ID indicated we need to see if the
 269	 * caller is requesting that we clear the VFTA entry bit.
 270	 * If the caller has requested that we clear the VFTA
 271	 * entry bit but there are still pools/VFs using this VLAN
 272	 * ID entry then ignore the request.  We're not worried
 273	 * about the case where we're turning the VFTA VLAN ID
 274	 * entry bit on, only when requested to turn it off as
 275	 * there may be multiple pools and/or VFs using the
 276	 * VLAN ID entry.  In that case we cannot clear the
 277	 * VFTA bit until all pools/VFs using that VLAN ID have also
 278	 * been cleared.  This will be indicated by "bits" being
 279	 * zero.
 280	 */
 281	vfta_delta = 0;
 282
 283vlvf_update:
 284	/* record pool change and enable VLAN ID if not already enabled */
 285	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
 286
 287vfta_update:
 288	/* bit was set/cleared before we started */
 289	if (vfta_delta)
 290		hw->mac.ops.write_vfta(hw, regidx, vfta);
 291
 292	return 0;
 293}
 294
 295/**
 296 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 297 *  @hw: pointer to the HW structure
 298 *
 299 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 300 *  can be setup by pre-boot software and must be treated like a permanent
 301 *  address and must override the actual permanent MAC address.  If an
 302 *  alternate MAC address is found it is saved in the hw struct and
 303 *  programmed into RAR0 and the function returns success, otherwise the
 304 *  function returns an error.
 305 **/
 306s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 307{
 308	u32 i;
 309	s32 ret_val = 0;
 310	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 311	u8 alt_mac_addr[ETH_ALEN];
 312
 313	/* Alternate MAC address is handled by the option ROM for 82580
 314	 * and newer. SW support not required.
 315	 */
 316	if (hw->mac.type >= e1000_82580)
 317		goto out;
 318
 319	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 320				 &nvm_alt_mac_addr_offset);
 321	if (ret_val) {
 322		hw_dbg("NVM Read Error\n");
 323		goto out;
 324	}
 325
 326	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 327	    (nvm_alt_mac_addr_offset == 0x0000))
 328		/* There is no Alternate MAC Address */
 329		goto out;
 330
 331	if (hw->bus.func == E1000_FUNC_1)
 332		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 333	if (hw->bus.func == E1000_FUNC_2)
 334		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 335
 336	if (hw->bus.func == E1000_FUNC_3)
 337		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 338	for (i = 0; i < ETH_ALEN; i += 2) {
 339		offset = nvm_alt_mac_addr_offset + (i >> 1);
 340		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 341		if (ret_val) {
 342			hw_dbg("NVM Read Error\n");
 343			goto out;
 344		}
 345
 346		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 347		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 348	}
 349
 350	/* if multicast bit is set, the alternate address will not be used */
 351	if (is_multicast_ether_addr(alt_mac_addr)) {
 352		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 353		goto out;
 354	}
 355
 356	/* We have a valid alternate MAC address, and we want to treat it the
 357	 * same as the normal permanent MAC address stored by the HW into the
 358	 * RAR. Do this by mapping this address into RAR0.
 359	 */
 360	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 361
 362out:
 363	return ret_val;
 364}
 365
 366/**
 367 *  igb_rar_set - Set receive address register
 368 *  @hw: pointer to the HW structure
 369 *  @addr: pointer to the receive address
 370 *  @index: receive address array register
 371 *
 372 *  Sets the receive address array register at index to the address passed
 373 *  in by addr.
 374 **/
 375void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 376{
 377	u32 rar_low, rar_high;
 378
 379	/* HW expects these in little endian so we reverse the byte order
 380	 * from network order (big endian) to little endian
 381	 */
 382	rar_low = ((u32) addr[0] |
 383		   ((u32) addr[1] << 8) |
 384		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 385
 386	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 387
 388	/* If MAC address zero, no need to set the AV bit */
 389	if (rar_low || rar_high)
 390		rar_high |= E1000_RAH_AV;
 391
 392	/* Some bridges will combine consecutive 32-bit writes into
 393	 * a single burst write, which will malfunction on some parts.
 394	 * The flushes avoid this.
 395	 */
 396	wr32(E1000_RAL(index), rar_low);
 397	wrfl();
 398	wr32(E1000_RAH(index), rar_high);
 399	wrfl();
 400}
 401
 402/**
 403 *  igb_mta_set - Set multicast filter table address
 404 *  @hw: pointer to the HW structure
 405 *  @hash_value: determines the MTA register and bit to set
 406 *
 407 *  The multicast table address is a register array of 32-bit registers.
 408 *  The hash_value is used to determine what register the bit is in, the
 409 *  current value is read, the new bit is OR'd in and the new value is
 410 *  written back into the register.
 411 **/
 412void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 413{
 414	u32 hash_bit, hash_reg, mta;
 415
 416	/* The MTA is a register array of 32-bit registers. It is
 417	 * treated like an array of (32*mta_reg_count) bits.  We want to
 418	 * set bit BitArray[hash_value]. So we figure out what register
 419	 * the bit is in, read it, OR in the new bit, then write
 420	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 421	 * mask to bits 31:5 of the hash value which gives us the
 422	 * register we're modifying.  The hash bit within that register
 423	 * is determined by the lower 5 bits of the hash value.
 424	 */
 425	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 426	hash_bit = hash_value & 0x1F;
 427
 428	mta = array_rd32(E1000_MTA, hash_reg);
 429
 430	mta |= (1 << hash_bit);
 431
 432	array_wr32(E1000_MTA, hash_reg, mta);
 433	wrfl();
 434}
 435
 436/**
 437 *  igb_hash_mc_addr - Generate a multicast hash value
 438 *  @hw: pointer to the HW structure
 439 *  @mc_addr: pointer to a multicast address
 440 *
 441 *  Generates a multicast address hash value which is used to determine
 442 *  the multicast filter table array address and new table value.  See
 443 *  igb_mta_set()
 444 **/
 445static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 446{
 447	u32 hash_value, hash_mask;
 448	u8 bit_shift = 0;
 449
 450	/* Register count multiplied by bits per register */
 451	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 452
 453	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 454	 * where 0xFF would still fall within the hash mask.
 455	 */
 456	while (hash_mask >> bit_shift != 0xFF)
 457		bit_shift++;
 458
 459	/* The portion of the address that is used for the hash table
 460	 * is determined by the mc_filter_type setting.
 461	 * The algorithm is such that there is a total of 8 bits of shifting.
 462	 * The bit_shift for a mc_filter_type of 0 represents the number of
 463	 * left-shifts where the MSB of mc_addr[5] would still fall within
 464	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 465	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 466	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 467	 * cases are a variation of this algorithm...essentially raising the
 468	 * number of bits to shift mc_addr[5] left, while still keeping the
 469	 * 8-bit shifting total.
 470	 *
 471	 * For example, given the following Destination MAC Address and an
 472	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 473	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 474	 * values resulting from each mc_filter_type...
 475	 * [0] [1] [2] [3] [4] [5]
 476	 * 01  AA  00  12  34  56
 477	 * LSB                 MSB
 478	 *
 479	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 480	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 481	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 482	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 483	 */
 484	switch (hw->mac.mc_filter_type) {
 485	default:
 486	case 0:
 487		break;
 488	case 1:
 489		bit_shift += 1;
 490		break;
 491	case 2:
 492		bit_shift += 2;
 493		break;
 494	case 3:
 495		bit_shift += 4;
 496		break;
 497	}
 498
 499	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 500				  (((u16) mc_addr[5]) << bit_shift)));
 501
 502	return hash_value;
 503}
 504
 505/**
 506 *  igb_update_mc_addr_list - Update Multicast addresses
 507 *  @hw: pointer to the HW structure
 508 *  @mc_addr_list: array of multicast addresses to program
 509 *  @mc_addr_count: number of multicast addresses to program
 510 *
 511 *  Updates entire Multicast Table Array.
 512 *  The caller must have a packed mc_addr_list of multicast addresses.
 513 **/
 514void igb_update_mc_addr_list(struct e1000_hw *hw,
 515			     u8 *mc_addr_list, u32 mc_addr_count)
 516{
 517	u32 hash_value, hash_bit, hash_reg;
 518	int i;
 519
 520	/* clear mta_shadow */
 521	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 522
 523	/* update mta_shadow from mc_addr_list */
 524	for (i = 0; (u32) i < mc_addr_count; i++) {
 525		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 526
 527		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 528		hash_bit = hash_value & 0x1F;
 529
 530		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
 531		mc_addr_list += (ETH_ALEN);
 532	}
 533
 534	/* replace the entire MTA table */
 535	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 536		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 537	wrfl();
 538}
 539
 540/**
 541 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 542 *  @hw: pointer to the HW structure
 543 *
 544 *  Clears the base hardware counters by reading the counter registers.
 545 **/
 546void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 547{
 548	rd32(E1000_CRCERRS);
 549	rd32(E1000_SYMERRS);
 550	rd32(E1000_MPC);
 551	rd32(E1000_SCC);
 552	rd32(E1000_ECOL);
 553	rd32(E1000_MCC);
 554	rd32(E1000_LATECOL);
 555	rd32(E1000_COLC);
 556	rd32(E1000_DC);
 557	rd32(E1000_SEC);
 558	rd32(E1000_RLEC);
 559	rd32(E1000_XONRXC);
 560	rd32(E1000_XONTXC);
 561	rd32(E1000_XOFFRXC);
 562	rd32(E1000_XOFFTXC);
 563	rd32(E1000_FCRUC);
 564	rd32(E1000_GPRC);
 565	rd32(E1000_BPRC);
 566	rd32(E1000_MPRC);
 567	rd32(E1000_GPTC);
 568	rd32(E1000_GORCL);
 569	rd32(E1000_GORCH);
 570	rd32(E1000_GOTCL);
 571	rd32(E1000_GOTCH);
 572	rd32(E1000_RNBC);
 573	rd32(E1000_RUC);
 574	rd32(E1000_RFC);
 575	rd32(E1000_ROC);
 576	rd32(E1000_RJC);
 577	rd32(E1000_TORL);
 578	rd32(E1000_TORH);
 579	rd32(E1000_TOTL);
 580	rd32(E1000_TOTH);
 581	rd32(E1000_TPR);
 582	rd32(E1000_TPT);
 583	rd32(E1000_MPTC);
 584	rd32(E1000_BPTC);
 585}
 586
 587/**
 588 *  igb_check_for_copper_link - Check for link (Copper)
 589 *  @hw: pointer to the HW structure
 590 *
 591 *  Checks to see of the link status of the hardware has changed.  If a
 592 *  change in link status has been detected, then we read the PHY registers
 593 *  to get the current speed/duplex if link exists.
 594 **/
 595s32 igb_check_for_copper_link(struct e1000_hw *hw)
 596{
 597	struct e1000_mac_info *mac = &hw->mac;
 598	s32 ret_val;
 599	bool link;
 600
 601	/* We only want to go out to the PHY registers to see if Auto-Neg
 602	 * has completed and/or if our link status has changed.  The
 603	 * get_link_status flag is set upon receiving a Link Status
 604	 * Change or Rx Sequence Error interrupt.
 605	 */
 606	if (!mac->get_link_status) {
 607		ret_val = 0;
 608		goto out;
 609	}
 610
 611	/* First we want to see if the MII Status Register reports
 612	 * link.  If so, then we want to get the current speed/duplex
 613	 * of the PHY.
 614	 */
 615	ret_val = igb_phy_has_link(hw, 1, 0, &link);
 616	if (ret_val)
 617		goto out;
 618
 619	if (!link)
 620		goto out; /* No link detected */
 621
 622	mac->get_link_status = false;
 623
 624	/* Check if there was DownShift, must be checked
 625	 * immediately after link-up
 626	 */
 627	igb_check_downshift(hw);
 628
 629	/* If we are forcing speed/duplex, then we simply return since
 630	 * we have already determined whether we have link or not.
 631	 */
 632	if (!mac->autoneg) {
 633		ret_val = -E1000_ERR_CONFIG;
 634		goto out;
 635	}
 636
 637	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 638	 * of MAC speed/duplex configuration.  So we only need to
 639	 * configure Collision Distance in the MAC.
 640	 */
 641	igb_config_collision_dist(hw);
 642
 643	/* Configure Flow Control now that Auto-Neg has completed.
 644	 * First, we need to restore the desired flow control
 645	 * settings because we may have had to re-autoneg with a
 646	 * different link partner.
 647	 */
 648	ret_val = igb_config_fc_after_link_up(hw);
 649	if (ret_val)
 650		hw_dbg("Error configuring flow control\n");
 651
 652out:
 653	return ret_val;
 654}
 655
 656/**
 657 *  igb_setup_link - Setup flow control and link settings
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  Determines which flow control settings to use, then configures flow
 661 *  control.  Calls the appropriate media-specific link configuration
 662 *  function.  Assuming the adapter has a valid link partner, a valid link
 663 *  should be established.  Assumes the hardware has previously been reset
 664 *  and the transmitter and receiver are not enabled.
 665 **/
 666s32 igb_setup_link(struct e1000_hw *hw)
 667{
 668	s32 ret_val = 0;
 669
 670	/* In the case of the phy reset being blocked, we already have a link.
 671	 * We do not need to set it up again.
 672	 */
 673	if (igb_check_reset_block(hw))
 674		goto out;
 675
 676	/* If requested flow control is set to default, set flow control
 677	 * based on the EEPROM flow control settings.
 678	 */
 679	if (hw->fc.requested_mode == e1000_fc_default) {
 680		ret_val = igb_set_default_fc(hw);
 681		if (ret_val)
 682			goto out;
 683	}
 684
 685	/* We want to save off the original Flow Control configuration just
 686	 * in case we get disconnected and then reconnected into a different
 687	 * hub or switch with different Flow Control capabilities.
 688	 */
 689	hw->fc.current_mode = hw->fc.requested_mode;
 690
 691	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 692
 693	/* Call the necessary media_type subroutine to configure the link. */
 694	ret_val = hw->mac.ops.setup_physical_interface(hw);
 695	if (ret_val)
 696		goto out;
 697
 698	/* Initialize the flow control address, type, and PAUSE timer
 699	 * registers to their default values.  This is done even if flow
 700	 * control is disabled, because it does not hurt anything to
 701	 * initialize these registers.
 702	 */
 703	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 704	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 705	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 706	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 707
 708	wr32(E1000_FCTTV, hw->fc.pause_time);
 709
 710	ret_val = igb_set_fc_watermarks(hw);
 711
 712out:
 713
 714	return ret_val;
 715}
 716
 717/**
 718 *  igb_config_collision_dist - Configure collision distance
 719 *  @hw: pointer to the HW structure
 720 *
 721 *  Configures the collision distance to the default value and is used
 722 *  during link setup. Currently no func pointer exists and all
 723 *  implementations are handled in the generic version of this function.
 724 **/
 725void igb_config_collision_dist(struct e1000_hw *hw)
 726{
 727	u32 tctl;
 728
 729	tctl = rd32(E1000_TCTL);
 730
 731	tctl &= ~E1000_TCTL_COLD;
 732	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 733
 734	wr32(E1000_TCTL, tctl);
 735	wrfl();
 736}
 737
 738/**
 739 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 740 *  @hw: pointer to the HW structure
 741 *
 742 *  Sets the flow control high/low threshold (watermark) registers.  If
 743 *  flow control XON frame transmission is enabled, then set XON frame
 744 *  tansmission as well.
 745 **/
 746static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 747{
 748	s32 ret_val = 0;
 749	u32 fcrtl = 0, fcrth = 0;
 750
 751	/* Set the flow control receive threshold registers.  Normally,
 752	 * these registers will be set to a default threshold that may be
 753	 * adjusted later by the driver's runtime code.  However, if the
 754	 * ability to transmit pause frames is not enabled, then these
 755	 * registers will be set to 0.
 756	 */
 757	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 758		/* We need to set up the Receive Threshold high and low water
 759		 * marks as well as (optionally) enabling the transmission of
 760		 * XON frames.
 761		 */
 762		fcrtl = hw->fc.low_water;
 763		if (hw->fc.send_xon)
 764			fcrtl |= E1000_FCRTL_XONE;
 765
 766		fcrth = hw->fc.high_water;
 767	}
 768	wr32(E1000_FCRTL, fcrtl);
 769	wr32(E1000_FCRTH, fcrth);
 770
 771	return ret_val;
 772}
 773
 774/**
 775 *  igb_set_default_fc - Set flow control default values
 776 *  @hw: pointer to the HW structure
 777 *
 778 *  Read the EEPROM for the default values for flow control and store the
 779 *  values.
 780 **/
 781static s32 igb_set_default_fc(struct e1000_hw *hw)
 782{
 783	s32 ret_val = 0;
 784	u16 lan_offset;
 785	u16 nvm_data;
 786
 787	/* Read and store word 0x0F of the EEPROM. This word contains bits
 788	 * that determine the hardware's default PAUSE (flow control) mode,
 789	 * a bit that determines whether the HW defaults to enabling or
 790	 * disabling auto-negotiation, and the direction of the
 791	 * SW defined pins. If there is no SW over-ride of the flow
 792	 * control setting, then the variable hw->fc will
 793	 * be initialized based on a value in the EEPROM.
 794	 */
 795	if (hw->mac.type == e1000_i350) {
 796		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 797		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
 798					   + lan_offset, 1, &nvm_data);
 799	 } else {
 800		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
 801					   1, &nvm_data);
 802	 }
 803
 
 
 804	if (ret_val) {
 805		hw_dbg("NVM Read Error\n");
 806		goto out;
 807	}
 808
 809	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 810		hw->fc.requested_mode = e1000_fc_none;
 811	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
 812		 NVM_WORD0F_ASM_DIR)
 813		hw->fc.requested_mode = e1000_fc_tx_pause;
 814	else
 815		hw->fc.requested_mode = e1000_fc_full;
 816
 817out:
 818	return ret_val;
 819}
 820
 821/**
 822 *  igb_force_mac_fc - Force the MAC's flow control settings
 823 *  @hw: pointer to the HW structure
 824 *
 825 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 826 *  device control register to reflect the adapter settings.  TFCE and RFCE
 827 *  need to be explicitly set by software when a copper PHY is used because
 828 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 829 *  also configure these bits when link is forced on a fiber connection.
 830 **/
 831s32 igb_force_mac_fc(struct e1000_hw *hw)
 832{
 833	u32 ctrl;
 834	s32 ret_val = 0;
 835
 836	ctrl = rd32(E1000_CTRL);
 837
 838	/* Because we didn't get link via the internal auto-negotiation
 839	 * mechanism (we either forced link or we got link via PHY
 840	 * auto-neg), we have to manually enable/disable transmit an
 841	 * receive flow control.
 842	 *
 843	 * The "Case" statement below enables/disable flow control
 844	 * according to the "hw->fc.current_mode" parameter.
 845	 *
 846	 * The possible values of the "fc" parameter are:
 847	 *      0:  Flow control is completely disabled
 848	 *      1:  Rx flow control is enabled (we can receive pause
 849	 *          frames but not send pause frames).
 850	 *      2:  Tx flow control is enabled (we can send pause frames
 851	 *          frames but we do not receive pause frames).
 852	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
 853	 *  other:  No other values should be possible at this point.
 854	 */
 855	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 856
 857	switch (hw->fc.current_mode) {
 858	case e1000_fc_none:
 859		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 860		break;
 861	case e1000_fc_rx_pause:
 862		ctrl &= (~E1000_CTRL_TFCE);
 863		ctrl |= E1000_CTRL_RFCE;
 864		break;
 865	case e1000_fc_tx_pause:
 866		ctrl &= (~E1000_CTRL_RFCE);
 867		ctrl |= E1000_CTRL_TFCE;
 868		break;
 869	case e1000_fc_full:
 870		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 871		break;
 872	default:
 873		hw_dbg("Flow control param set incorrectly\n");
 874		ret_val = -E1000_ERR_CONFIG;
 875		goto out;
 876	}
 877
 878	wr32(E1000_CTRL, ctrl);
 879
 880out:
 881	return ret_val;
 882}
 883
 884/**
 885 *  igb_config_fc_after_link_up - Configures flow control after link
 886 *  @hw: pointer to the HW structure
 887 *
 888 *  Checks the status of auto-negotiation after link up to ensure that the
 889 *  speed and duplex were not forced.  If the link needed to be forced, then
 890 *  flow control needs to be forced also.  If auto-negotiation is enabled
 891 *  and did not fail, then we configure flow control based on our link
 892 *  partner.
 893 **/
 894s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 895{
 896	struct e1000_mac_info *mac = &hw->mac;
 897	s32 ret_val = 0;
 898	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 899	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 900	u16 speed, duplex;
 901
 902	/* Check for the case where we have fiber media and auto-neg failed
 903	 * so we had to force link.  In this case, we need to force the
 904	 * configuration of the MAC to match the "fc" parameter.
 905	 */
 906	if (mac->autoneg_failed) {
 907		if (hw->phy.media_type == e1000_media_type_internal_serdes)
 908			ret_val = igb_force_mac_fc(hw);
 909	} else {
 910		if (hw->phy.media_type == e1000_media_type_copper)
 911			ret_val = igb_force_mac_fc(hw);
 912	}
 913
 914	if (ret_val) {
 915		hw_dbg("Error forcing flow control settings\n");
 916		goto out;
 917	}
 918
 919	/* Check for the case where we have copper media and auto-neg is
 920	 * enabled.  In this case, we need to check and see if Auto-Neg
 921	 * has completed, and if so, how the PHY and link partner has
 922	 * flow control configured.
 923	 */
 924	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 925		/* Read the MII Status Register and check to see if AutoNeg
 926		 * has completed.  We read this twice because this reg has
 927		 * some "sticky" (latched) bits.
 928		 */
 929		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 930						   &mii_status_reg);
 931		if (ret_val)
 932			goto out;
 933		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 934						   &mii_status_reg);
 935		if (ret_val)
 936			goto out;
 937
 938		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 939			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
 940			goto out;
 941		}
 942
 943		/* The AutoNeg process has completed, so we now need to
 944		 * read both the Auto Negotiation Advertisement
 945		 * Register (Address 4) and the Auto_Negotiation Base
 946		 * Page Ability Register (Address 5) to determine how
 947		 * flow control was negotiated.
 948		 */
 949		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 950					    &mii_nway_adv_reg);
 951		if (ret_val)
 952			goto out;
 953		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 954					    &mii_nway_lp_ability_reg);
 955		if (ret_val)
 956			goto out;
 957
 958		/* Two bits in the Auto Negotiation Advertisement Register
 959		 * (Address 4) and two bits in the Auto Negotiation Base
 960		 * Page Ability Register (Address 5) determine flow control
 961		 * for both the PHY and the link partner.  The following
 962		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 963		 * 1999, describes these PAUSE resolution bits and how flow
 964		 * control is determined based upon these settings.
 965		 * NOTE:  DC = Don't Care
 966		 *
 967		 *   LOCAL DEVICE  |   LINK PARTNER
 968		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 969		 *-------|---------|-------|---------|--------------------
 970		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 971		 *   0   |    1    |   0   |   DC    | e1000_fc_none
 972		 *   0   |    1    |   1   |    0    | e1000_fc_none
 973		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 974		 *   1   |    0    |   0   |   DC    | e1000_fc_none
 975		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 976		 *   1   |    1    |   0   |    0    | e1000_fc_none
 977		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 978		 *
 979		 * Are both PAUSE bits set to 1?  If so, this implies
 980		 * Symmetric Flow Control is enabled at both ends.  The
 981		 * ASM_DIR bits are irrelevant per the spec.
 982		 *
 983		 * For Symmetric Flow Control:
 984		 *
 985		 *   LOCAL DEVICE  |   LINK PARTNER
 986		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 987		 *-------|---------|-------|---------|--------------------
 988		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 989		 *
 990		 */
 991		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 992		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 993			/* Now we need to check if the user selected RX ONLY
 994			 * of pause frames.  In this case, we had to advertise
 995			 * FULL flow control because we could not advertise RX
 996			 * ONLY. Hence, we must now check to see if we need to
 997			 * turn OFF  the TRANSMISSION of PAUSE frames.
 998			 */
 999			if (hw->fc.requested_mode == e1000_fc_full) {
1000				hw->fc.current_mode = e1000_fc_full;
1001				hw_dbg("Flow Control = FULL.\n");
1002			} else {
1003				hw->fc.current_mode = e1000_fc_rx_pause;
1004				hw_dbg("Flow Control = RX PAUSE frames only.\n");
1005			}
1006		}
1007		/* For receiving PAUSE frames ONLY.
1008		 *
1009		 *   LOCAL DEVICE  |   LINK PARTNER
1010		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1011		 *-------|---------|-------|---------|--------------------
1012		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1013		 */
1014		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1015			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1016			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1017			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1018			hw->fc.current_mode = e1000_fc_tx_pause;
1019			hw_dbg("Flow Control = TX PAUSE frames only.\n");
1020		}
1021		/* For transmitting PAUSE frames ONLY.
1022		 *
1023		 *   LOCAL DEVICE  |   LINK PARTNER
1024		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1025		 *-------|---------|-------|---------|--------------------
1026		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1027		 */
1028		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1029			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1030			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1031			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1032			hw->fc.current_mode = e1000_fc_rx_pause;
1033			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1034		}
1035		/* Per the IEEE spec, at this point flow control should be
1036		 * disabled.  However, we want to consider that we could
1037		 * be connected to a legacy switch that doesn't advertise
1038		 * desired flow control, but can be forced on the link
1039		 * partner.  So if we advertised no flow control, that is
1040		 * what we will resolve to.  If we advertised some kind of
1041		 * receive capability (Rx Pause Only or Full Flow Control)
1042		 * and the link partner advertised none, we will configure
1043		 * ourselves to enable Rx Flow Control only.  We can do
1044		 * this safely for two reasons:  If the link partner really
1045		 * didn't want flow control enabled, and we enable Rx, no
1046		 * harm done since we won't be receiving any PAUSE frames
1047		 * anyway.  If the intent on the link partner was to have
1048		 * flow control enabled, then by us enabling RX only, we
1049		 * can at least receive pause frames and process them.
1050		 * This is a good idea because in most cases, since we are
1051		 * predominantly a server NIC, more times than not we will
1052		 * be asked to delay transmission of packets than asking
1053		 * our link partner to pause transmission of frames.
1054		 */
1055		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1056			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1057			 (hw->fc.strict_ieee)) {
1058			hw->fc.current_mode = e1000_fc_none;
1059			hw_dbg("Flow Control = NONE.\n");
1060		} else {
1061			hw->fc.current_mode = e1000_fc_rx_pause;
1062			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1063		}
1064
1065		/* Now we need to do one last check...  If we auto-
1066		 * negotiated to HALF DUPLEX, flow control should not be
1067		 * enabled per IEEE 802.3 spec.
1068		 */
1069		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1070		if (ret_val) {
1071			hw_dbg("Error getting link speed and duplex\n");
1072			goto out;
1073		}
1074
1075		if (duplex == HALF_DUPLEX)
1076			hw->fc.current_mode = e1000_fc_none;
1077
1078		/* Now we call a subroutine to actually force the MAC
1079		 * controller to use the correct flow control settings.
1080		 */
1081		ret_val = igb_force_mac_fc(hw);
1082		if (ret_val) {
1083			hw_dbg("Error forcing flow control settings\n");
1084			goto out;
1085		}
1086	}
1087	/* Check for the case where we have SerDes media and auto-neg is
1088	 * enabled.  In this case, we need to check and see if Auto-Neg
1089	 * has completed, and if so, how the PHY and link partner has
1090	 * flow control configured.
1091	 */
1092	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1093		&& mac->autoneg) {
1094		/* Read the PCS_LSTS and check to see if AutoNeg
1095		 * has completed.
1096		 */
1097		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1098
1099		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1100			hw_dbg("PCS Auto Neg has not completed.\n");
1101			return ret_val;
1102		}
1103
1104		/* The AutoNeg process has completed, so we now need to
1105		 * read both the Auto Negotiation Advertisement
1106		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1107		 * Page Ability Register (PCS_LPAB) to determine how
1108		 * flow control was negotiated.
1109		 */
1110		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1111		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1112
1113		/* Two bits in the Auto Negotiation Advertisement Register
1114		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1115		 * Page Ability Register (PCS_LPAB) determine flow control
1116		 * for both the PHY and the link partner.  The following
1117		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1118		 * 1999, describes these PAUSE resolution bits and how flow
1119		 * control is determined based upon these settings.
1120		 * NOTE:  DC = Don't Care
1121		 *
1122		 *   LOCAL DEVICE  |   LINK PARTNER
1123		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1124		 *-------|---------|-------|---------|--------------------
1125		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1126		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1127		 *   0   |    1    |   1   |    0    | e1000_fc_none
1128		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1129		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1130		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1131		 *   1   |    1    |   0   |    0    | e1000_fc_none
1132		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1133		 *
1134		 * Are both PAUSE bits set to 1?  If so, this implies
1135		 * Symmetric Flow Control is enabled at both ends.  The
1136		 * ASM_DIR bits are irrelevant per the spec.
1137		 *
1138		 * For Symmetric Flow Control:
1139		 *
1140		 *   LOCAL DEVICE  |   LINK PARTNER
1141		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1142		 *-------|---------|-------|---------|--------------------
1143		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1144		 *
1145		 */
1146		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1147		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1148			/* Now we need to check if the user selected Rx ONLY
1149			 * of pause frames.  In this case, we had to advertise
1150			 * FULL flow control because we could not advertise Rx
1151			 * ONLY. Hence, we must now check to see if we need to
1152			 * turn OFF the TRANSMISSION of PAUSE frames.
1153			 */
1154			if (hw->fc.requested_mode == e1000_fc_full) {
1155				hw->fc.current_mode = e1000_fc_full;
1156				hw_dbg("Flow Control = FULL.\n");
1157			} else {
1158				hw->fc.current_mode = e1000_fc_rx_pause;
1159				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1160			}
1161		}
1162		/* For receiving PAUSE frames ONLY.
1163		 *
1164		 *   LOCAL DEVICE  |   LINK PARTNER
1165		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1166		 *-------|---------|-------|---------|--------------------
1167		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1168		 */
1169		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1170			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1171			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1172			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1173			hw->fc.current_mode = e1000_fc_tx_pause;
1174			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1175		}
1176		/* For transmitting PAUSE frames ONLY.
1177		 *
1178		 *   LOCAL DEVICE  |   LINK PARTNER
1179		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1180		 *-------|---------|-------|---------|--------------------
1181		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1182		 */
1183		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1184			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1185			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1186			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1187			hw->fc.current_mode = e1000_fc_rx_pause;
1188			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1189		} else {
1190			/* Per the IEEE spec, at this point flow control
1191			 * should be disabled.
1192			 */
1193			hw->fc.current_mode = e1000_fc_none;
1194			hw_dbg("Flow Control = NONE.\n");
1195		}
1196
1197		/* Now we call a subroutine to actually force the MAC
1198		 * controller to use the correct flow control settings.
1199		 */
1200		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1201		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1202		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1203
1204		ret_val = igb_force_mac_fc(hw);
1205		if (ret_val) {
1206			hw_dbg("Error forcing flow control settings\n");
1207			return ret_val;
1208		}
1209	}
1210
1211out:
1212	return ret_val;
1213}
1214
1215/**
1216 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1217 *  @hw: pointer to the HW structure
1218 *  @speed: stores the current speed
1219 *  @duplex: stores the current duplex
1220 *
1221 *  Read the status register for the current speed/duplex and store the current
1222 *  speed and duplex for copper connections.
1223 **/
1224s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1225				      u16 *duplex)
1226{
1227	u32 status;
1228
1229	status = rd32(E1000_STATUS);
1230	if (status & E1000_STATUS_SPEED_1000) {
1231		*speed = SPEED_1000;
1232		hw_dbg("1000 Mbs, ");
1233	} else if (status & E1000_STATUS_SPEED_100) {
1234		*speed = SPEED_100;
1235		hw_dbg("100 Mbs, ");
1236	} else {
1237		*speed = SPEED_10;
1238		hw_dbg("10 Mbs, ");
1239	}
1240
1241	if (status & E1000_STATUS_FD) {
1242		*duplex = FULL_DUPLEX;
1243		hw_dbg("Full Duplex\n");
1244	} else {
1245		*duplex = HALF_DUPLEX;
1246		hw_dbg("Half Duplex\n");
1247	}
1248
1249	return 0;
1250}
1251
1252/**
1253 *  igb_get_hw_semaphore - Acquire hardware semaphore
1254 *  @hw: pointer to the HW structure
1255 *
1256 *  Acquire the HW semaphore to access the PHY or NVM
1257 **/
1258s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1259{
1260	u32 swsm;
1261	s32 ret_val = 0;
1262	s32 timeout = hw->nvm.word_size + 1;
1263	s32 i = 0;
1264
1265	/* Get the SW semaphore */
1266	while (i < timeout) {
1267		swsm = rd32(E1000_SWSM);
1268		if (!(swsm & E1000_SWSM_SMBI))
1269			break;
1270
1271		udelay(50);
1272		i++;
1273	}
1274
1275	if (i == timeout) {
1276		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1277		ret_val = -E1000_ERR_NVM;
1278		goto out;
1279	}
1280
1281	/* Get the FW semaphore. */
1282	for (i = 0; i < timeout; i++) {
1283		swsm = rd32(E1000_SWSM);
1284		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1285
1286		/* Semaphore acquired if bit latched */
1287		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1288			break;
1289
1290		udelay(50);
1291	}
1292
1293	if (i == timeout) {
1294		/* Release semaphores */
1295		igb_put_hw_semaphore(hw);
1296		hw_dbg("Driver can't access the NVM\n");
1297		ret_val = -E1000_ERR_NVM;
1298		goto out;
1299	}
1300
1301out:
1302	return ret_val;
1303}
1304
1305/**
1306 *  igb_put_hw_semaphore - Release hardware semaphore
1307 *  @hw: pointer to the HW structure
1308 *
1309 *  Release hardware semaphore used to access the PHY or NVM
1310 **/
1311void igb_put_hw_semaphore(struct e1000_hw *hw)
1312{
1313	u32 swsm;
1314
1315	swsm = rd32(E1000_SWSM);
1316
1317	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1318
1319	wr32(E1000_SWSM, swsm);
1320}
1321
1322/**
1323 *  igb_get_auto_rd_done - Check for auto read completion
1324 *  @hw: pointer to the HW structure
1325 *
1326 *  Check EEPROM for Auto Read done bit.
1327 **/
1328s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1329{
1330	s32 i = 0;
1331	s32 ret_val = 0;
1332
1333
1334	while (i < AUTO_READ_DONE_TIMEOUT) {
1335		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1336			break;
1337		usleep_range(1000, 2000);
1338		i++;
1339	}
1340
1341	if (i == AUTO_READ_DONE_TIMEOUT) {
1342		hw_dbg("Auto read by HW from NVM has not completed.\n");
1343		ret_val = -E1000_ERR_RESET;
1344		goto out;
1345	}
1346
1347out:
1348	return ret_val;
1349}
1350
1351/**
1352 *  igb_valid_led_default - Verify a valid default LED config
1353 *  @hw: pointer to the HW structure
1354 *  @data: pointer to the NVM (EEPROM)
1355 *
1356 *  Read the EEPROM for the current default LED configuration.  If the
1357 *  LED configuration is not valid, set to a valid LED configuration.
1358 **/
1359static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1360{
1361	s32 ret_val;
1362
1363	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1364	if (ret_val) {
1365		hw_dbg("NVM Read Error\n");
1366		goto out;
1367	}
1368
1369	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1370		switch (hw->phy.media_type) {
1371		case e1000_media_type_internal_serdes:
1372			*data = ID_LED_DEFAULT_82575_SERDES;
1373			break;
1374		case e1000_media_type_copper:
1375		default:
1376			*data = ID_LED_DEFAULT;
1377			break;
1378		}
1379	}
1380out:
1381	return ret_val;
1382}
1383
1384/**
1385 *  igb_id_led_init -
1386 *  @hw: pointer to the HW structure
1387 *
1388 **/
1389s32 igb_id_led_init(struct e1000_hw *hw)
1390{
1391	struct e1000_mac_info *mac = &hw->mac;
1392	s32 ret_val;
1393	const u32 ledctl_mask = 0x000000FF;
1394	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1395	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1396	u16 data, i, temp;
1397	const u16 led_mask = 0x0F;
1398
1399	/* i210 and i211 devices have different LED mechanism */
1400	if ((hw->mac.type == e1000_i210) ||
1401	    (hw->mac.type == e1000_i211))
1402		ret_val = igb_valid_led_default_i210(hw, &data);
1403	else
1404		ret_val = igb_valid_led_default(hw, &data);
1405
1406	if (ret_val)
1407		goto out;
1408
1409	mac->ledctl_default = rd32(E1000_LEDCTL);
1410	mac->ledctl_mode1 = mac->ledctl_default;
1411	mac->ledctl_mode2 = mac->ledctl_default;
1412
1413	for (i = 0; i < 4; i++) {
1414		temp = (data >> (i << 2)) & led_mask;
1415		switch (temp) {
1416		case ID_LED_ON1_DEF2:
1417		case ID_LED_ON1_ON2:
1418		case ID_LED_ON1_OFF2:
1419			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1420			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1421			break;
1422		case ID_LED_OFF1_DEF2:
1423		case ID_LED_OFF1_ON2:
1424		case ID_LED_OFF1_OFF2:
1425			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1426			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1427			break;
1428		default:
1429			/* Do nothing */
1430			break;
1431		}
1432		switch (temp) {
1433		case ID_LED_DEF1_ON2:
1434		case ID_LED_ON1_ON2:
1435		case ID_LED_OFF1_ON2:
1436			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1437			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1438			break;
1439		case ID_LED_DEF1_OFF2:
1440		case ID_LED_ON1_OFF2:
1441		case ID_LED_OFF1_OFF2:
1442			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1443			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1444			break;
1445		default:
1446			/* Do nothing */
1447			break;
1448		}
1449	}
1450
1451out:
1452	return ret_val;
1453}
1454
1455/**
1456 *  igb_cleanup_led - Set LED config to default operation
1457 *  @hw: pointer to the HW structure
1458 *
1459 *  Remove the current LED configuration and set the LED configuration
1460 *  to the default value, saved from the EEPROM.
1461 **/
1462s32 igb_cleanup_led(struct e1000_hw *hw)
1463{
1464	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1465	return 0;
1466}
1467
1468/**
1469 *  igb_blink_led - Blink LED
1470 *  @hw: pointer to the HW structure
1471 *
1472 *  Blink the led's which are set to be on.
1473 **/
1474s32 igb_blink_led(struct e1000_hw *hw)
1475{
1476	u32 ledctl_blink = 0;
1477	u32 i;
1478
1479	if (hw->phy.media_type == e1000_media_type_fiber) {
1480		/* always blink LED0 for PCI-E fiber */
1481		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1482		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1483	} else {
1484		/* Set the blink bit for each LED that's "on" (0x0E)
1485		 * (or "off" if inverted) in ledctl_mode2.  The blink
1486		 * logic in hardware only works when mode is set to "on"
1487		 * so it must be changed accordingly when the mode is
1488		 * "off" and inverted.
1489		 */
1490		ledctl_blink = hw->mac.ledctl_mode2;
1491		for (i = 0; i < 32; i += 8) {
1492			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1493			    E1000_LEDCTL_LED0_MODE_MASK;
1494			u32 led_default = hw->mac.ledctl_default >> i;
1495
1496			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1497			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1498			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1499			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1500				ledctl_blink &=
1501				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1502				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1503						 E1000_LEDCTL_MODE_LED_ON) << i;
1504			}
1505		}
1506	}
1507
1508	wr32(E1000_LEDCTL, ledctl_blink);
1509
1510	return 0;
1511}
1512
1513/**
1514 *  igb_led_off - Turn LED off
1515 *  @hw: pointer to the HW structure
1516 *
1517 *  Turn LED off.
1518 **/
1519s32 igb_led_off(struct e1000_hw *hw)
1520{
1521	switch (hw->phy.media_type) {
1522	case e1000_media_type_copper:
1523		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1524		break;
1525	default:
1526		break;
1527	}
1528
1529	return 0;
1530}
1531
1532/**
1533 *  igb_disable_pcie_master - Disables PCI-express master access
1534 *  @hw: pointer to the HW structure
1535 *
1536 *  Returns 0 (0) if successful, else returns -10
1537 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1538 *  the master requests to be disabled.
1539 *
1540 *  Disables PCI-Express master access and verifies there are no pending
1541 *  requests.
1542 **/
1543s32 igb_disable_pcie_master(struct e1000_hw *hw)
1544{
1545	u32 ctrl;
1546	s32 timeout = MASTER_DISABLE_TIMEOUT;
1547	s32 ret_val = 0;
1548
1549	if (hw->bus.type != e1000_bus_type_pci_express)
1550		goto out;
1551
1552	ctrl = rd32(E1000_CTRL);
1553	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1554	wr32(E1000_CTRL, ctrl);
1555
1556	while (timeout) {
1557		if (!(rd32(E1000_STATUS) &
1558		      E1000_STATUS_GIO_MASTER_ENABLE))
1559			break;
1560		udelay(100);
1561		timeout--;
1562	}
1563
1564	if (!timeout) {
1565		hw_dbg("Master requests are pending.\n");
1566		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1567		goto out;
1568	}
1569
1570out:
1571	return ret_val;
1572}
1573
1574/**
1575 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1576 *  @hw: pointer to the HW structure
1577 *
1578 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1579 *  set, which is forced to MDI mode only.
1580 **/
1581s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1582{
1583	s32 ret_val = 0;
1584
1585	/* All MDI settings are supported on 82580 and newer. */
1586	if (hw->mac.type >= e1000_82580)
1587		goto out;
1588
1589	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1590		hw_dbg("Invalid MDI setting detected\n");
1591		hw->phy.mdix = 1;
1592		ret_val = -E1000_ERR_CONFIG;
1593		goto out;
1594	}
1595
1596out:
1597	return ret_val;
1598}
1599
1600/**
1601 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1602 *  @hw: pointer to the HW structure
1603 *  @reg: 32bit register offset such as E1000_SCTL
1604 *  @offset: register offset to write to
1605 *  @data: data to write at register offset
1606 *
1607 *  Writes an address/data control type register.  There are several of these
1608 *  and they all have the format address << 8 | data and bit 31 is polled for
1609 *  completion.
1610 **/
1611s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1612			      u32 offset, u8 data)
1613{
1614	u32 i, regvalue = 0;
1615	s32 ret_val = 0;
1616
1617	/* Set up the address and data */
1618	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1619	wr32(reg, regvalue);
1620
1621	/* Poll the ready bit to see if the MDI read completed */
1622	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1623		udelay(5);
1624		regvalue = rd32(reg);
1625		if (regvalue & E1000_GEN_CTL_READY)
1626			break;
1627	}
1628	if (!(regvalue & E1000_GEN_CTL_READY)) {
1629		hw_dbg("Reg %08x did not indicate ready\n", reg);
1630		ret_val = -E1000_ERR_PHY;
1631		goto out;
1632	}
1633
1634out:
1635	return ret_val;
1636}
1637
1638/**
1639 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1640 *  @hw: pointer to the HW structure
1641 *
1642 *  Verifies the hardware needs to leave interface enabled so that frames can
1643 *  be directed to and from the management interface.
1644 **/
1645bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1646{
1647	u32 manc;
1648	u32 fwsm, factps;
1649	bool ret_val = false;
1650
1651	if (!hw->mac.asf_firmware_present)
1652		goto out;
1653
1654	manc = rd32(E1000_MANC);
1655
1656	if (!(manc & E1000_MANC_RCV_TCO_EN))
1657		goto out;
1658
1659	if (hw->mac.arc_subsystem_valid) {
1660		fwsm = rd32(E1000_FWSM);
1661		factps = rd32(E1000_FACTPS);
1662
1663		if (!(factps & E1000_FACTPS_MNGCG) &&
1664		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1665		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1666			ret_val = true;
1667			goto out;
1668		}
1669	} else {
1670		if ((manc & E1000_MANC_SMBUS_EN) &&
1671		    !(manc & E1000_MANC_ASF_EN)) {
1672			ret_val = true;
1673			goto out;
1674		}
1675	}
1676
1677out:
1678	return ret_val;
1679}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Gigabit Ethernet Linux driver
   3 * Copyright(c) 2007-2014 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * The full GNU General Public License is included in this distribution in
  18 * the file called "COPYING".
  19 *
  20 * Contact Information:
  21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23 */
  24
  25#include <linux/if_ether.h>
  26#include <linux/delay.h>
  27#include <linux/pci.h>
  28#include <linux/netdevice.h>
  29#include <linux/etherdevice.h>
  30
  31#include "e1000_mac.h"
  32
  33#include "igb.h"
  34
  35static s32 igb_set_default_fc(struct e1000_hw *hw);
  36static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
  37
  38/**
  39 *  igb_get_bus_info_pcie - Get PCIe bus information
  40 *  @hw: pointer to the HW structure
  41 *
  42 *  Determines and stores the system bus information for a particular
  43 *  network interface.  The following bus information is determined and stored:
  44 *  bus speed, bus width, type (PCIe), and PCIe function.
  45 **/
  46s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
  47{
  48	struct e1000_bus_info *bus = &hw->bus;
  49	s32 ret_val;
  50	u32 reg;
  51	u16 pcie_link_status;
  52
  53	bus->type = e1000_bus_type_pci_express;
  54
  55	ret_val = igb_read_pcie_cap_reg(hw,
  56					PCI_EXP_LNKSTA,
  57					&pcie_link_status);
  58	if (ret_val) {
  59		bus->width = e1000_bus_width_unknown;
  60		bus->speed = e1000_bus_speed_unknown;
  61	} else {
  62		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
  63		case PCI_EXP_LNKSTA_CLS_2_5GB:
  64			bus->speed = e1000_bus_speed_2500;
  65			break;
  66		case PCI_EXP_LNKSTA_CLS_5_0GB:
  67			bus->speed = e1000_bus_speed_5000;
  68			break;
  69		default:
  70			bus->speed = e1000_bus_speed_unknown;
  71			break;
  72		}
  73
  74		bus->width = (enum e1000_bus_width)((pcie_link_status &
  75						     PCI_EXP_LNKSTA_NLW) >>
  76						     PCI_EXP_LNKSTA_NLW_SHIFT);
  77	}
  78
  79	reg = rd32(E1000_STATUS);
  80	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  81
  82	return 0;
  83}
  84
  85/**
  86 *  igb_clear_vfta - Clear VLAN filter table
  87 *  @hw: pointer to the HW structure
  88 *
  89 *  Clears the register array which contains the VLAN filter table by
  90 *  setting all the values to 0.
  91 **/
  92void igb_clear_vfta(struct e1000_hw *hw)
  93{
  94	u32 offset;
  95
  96	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
  97		hw->mac.ops.write_vfta(hw, offset, 0);
  98}
  99
 100/**
 101 *  igb_write_vfta - Write value to VLAN filter table
 102 *  @hw: pointer to the HW structure
 103 *  @offset: register offset in VLAN filter table
 104 *  @value: register value written to VLAN filter table
 105 *
 106 *  Writes value at the given offset in the register array which stores
 107 *  the VLAN filter table.
 108 **/
 109void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
 110{
 111	struct igb_adapter *adapter = hw->back;
 112
 113	array_wr32(E1000_VFTA, offset, value);
 114	wrfl();
 115
 116	adapter->shadow_vfta[offset] = value;
 117}
 118
 119/**
 120 *  igb_init_rx_addrs - Initialize receive address's
 121 *  @hw: pointer to the HW structure
 122 *  @rar_count: receive address registers
 123 *
 124 *  Setups the receive address registers by setting the base receive address
 125 *  register to the devices MAC address and clearing all the other receive
 126 *  address registers to 0.
 127 **/
 128void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 129{
 130	u32 i;
 131	u8 mac_addr[ETH_ALEN] = {0};
 132
 133	/* Setup the receive address */
 134	hw_dbg("Programming MAC Address into RAR[0]\n");
 135
 136	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 137
 138	/* Zero out the other (rar_entry_count - 1) receive addresses */
 139	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
 140	for (i = 1; i < rar_count; i++)
 141		hw->mac.ops.rar_set(hw, mac_addr, i);
 142}
 143
 144/**
 145 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
 146 *  @hw: pointer to hardware structure
 147 *  @vlan: VLAN id to write to VLAN filter
 148 *  @vlvf_bypass: skip VLVF if no match is found
 149 *
 150 *  return the VLVF index where this VLAN id should be placed
 151 *
 152 **/
 153static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
 154{
 155	s32 regindex, first_empty_slot;
 156	u32 bits;
 157
 158	/* short cut the special case */
 159	if (vlan == 0)
 160		return 0;
 161
 162	/* if vlvf_bypass is set we don't want to use an empty slot, we
 163	 * will simply bypass the VLVF if there are no entries present in the
 164	 * VLVF that contain our VLAN
 165	 */
 166	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
 167
 168	/* Search for the VLAN id in the VLVF entries. Save off the first empty
 169	 * slot found along the way.
 170	 *
 171	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
 172	 */
 173	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
 174		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
 175		if (bits == vlan)
 176			return regindex;
 177		if (!first_empty_slot && !bits)
 178			first_empty_slot = regindex;
 179	}
 180
 181	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
 182}
 183
 184/**
 185 *  igb_vfta_set - enable or disable vlan in VLAN filter table
 186 *  @hw: pointer to the HW structure
 187 *  @vlan: VLAN id to add or remove
 188 *  @vind: VMDq output index that maps queue to VLAN id
 189 *  @vlan_on: if true add filter, if false remove
 190 *
 191 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
 192 *  and if we are adding or removing the filter
 193 **/
 194s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
 195		 bool vlan_on, bool vlvf_bypass)
 196{
 197	struct igb_adapter *adapter = hw->back;
 198	u32 regidx, vfta_delta, vfta, bits;
 199	s32 vlvf_index;
 200
 201	if ((vlan > 4095) || (vind > 7))
 202		return -E1000_ERR_PARAM;
 203
 204	/* this is a 2 part operation - first the VFTA, then the
 205	 * VLVF and VLVFB if VT Mode is set
 206	 * We don't write the VFTA until we know the VLVF part succeeded.
 207	 */
 208
 209	/* Part 1
 210	 * The VFTA is a bitstring made up of 128 32-bit registers
 211	 * that enable the particular VLAN id, much like the MTA:
 212	 *    bits[11-5]: which register
 213	 *    bits[4-0]:  which bit in the register
 214	 */
 215	regidx = vlan / 32;
 216	vfta_delta = BIT(vlan % 32);
 217	vfta = adapter->shadow_vfta[regidx];
 218
 219	/* vfta_delta represents the difference between the current value
 220	 * of vfta and the value we want in the register.  Since the diff
 221	 * is an XOR mask we can just update vfta using an XOR.
 222	 */
 223	vfta_delta &= vlan_on ? ~vfta : vfta;
 224	vfta ^= vfta_delta;
 225
 226	/* Part 2
 227	 * If VT Mode is set
 228	 *   Either vlan_on
 229	 *     make sure the VLAN is in VLVF
 230	 *     set the vind bit in the matching VLVFB
 231	 *   Or !vlan_on
 232	 *     clear the pool bit and possibly the vind
 233	 */
 234	if (!adapter->vfs_allocated_count)
 235		goto vfta_update;
 236
 237	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
 238	if (vlvf_index < 0) {
 239		if (vlvf_bypass)
 240			goto vfta_update;
 241		return vlvf_index;
 242	}
 243
 244	bits = rd32(E1000_VLVF(vlvf_index));
 245
 246	/* set the pool bit */
 247	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 248	if (vlan_on)
 249		goto vlvf_update;
 250
 251	/* clear the pool bit */
 252	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
 253
 254	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
 255		/* Clear VFTA first, then disable VLVF.  Otherwise
 256		 * we run the risk of stray packets leaking into
 257		 * the PF via the default pool
 258		 */
 259		if (vfta_delta)
 260			hw->mac.ops.write_vfta(hw, regidx, vfta);
 261
 262		/* disable VLVF and clear remaining bit from pool */
 263		wr32(E1000_VLVF(vlvf_index), 0);
 264
 265		return 0;
 266	}
 267
 268	/* If there are still bits set in the VLVFB registers
 269	 * for the VLAN ID indicated we need to see if the
 270	 * caller is requesting that we clear the VFTA entry bit.
 271	 * If the caller has requested that we clear the VFTA
 272	 * entry bit but there are still pools/VFs using this VLAN
 273	 * ID entry then ignore the request.  We're not worried
 274	 * about the case where we're turning the VFTA VLAN ID
 275	 * entry bit on, only when requested to turn it off as
 276	 * there may be multiple pools and/or VFs using the
 277	 * VLAN ID entry.  In that case we cannot clear the
 278	 * VFTA bit until all pools/VFs using that VLAN ID have also
 279	 * been cleared.  This will be indicated by "bits" being
 280	 * zero.
 281	 */
 282	vfta_delta = 0;
 283
 284vlvf_update:
 285	/* record pool change and enable VLAN ID if not already enabled */
 286	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
 287
 288vfta_update:
 289	/* bit was set/cleared before we started */
 290	if (vfta_delta)
 291		hw->mac.ops.write_vfta(hw, regidx, vfta);
 292
 293	return 0;
 294}
 295
 296/**
 297 *  igb_check_alt_mac_addr - Check for alternate MAC addr
 298 *  @hw: pointer to the HW structure
 299 *
 300 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 301 *  can be setup by pre-boot software and must be treated like a permanent
 302 *  address and must override the actual permanent MAC address.  If an
 303 *  alternate MAC address is found it is saved in the hw struct and
 304 *  programmed into RAR0 and the function returns success, otherwise the
 305 *  function returns an error.
 306 **/
 307s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
 308{
 309	u32 i;
 310	s32 ret_val = 0;
 311	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 312	u8 alt_mac_addr[ETH_ALEN];
 313
 314	/* Alternate MAC address is handled by the option ROM for 82580
 315	 * and newer. SW support not required.
 316	 */
 317	if (hw->mac.type >= e1000_82580)
 318		goto out;
 319
 320	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 321				 &nvm_alt_mac_addr_offset);
 322	if (ret_val) {
 323		hw_dbg("NVM Read Error\n");
 324		goto out;
 325	}
 326
 327	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 328	    (nvm_alt_mac_addr_offset == 0x0000))
 329		/* There is no Alternate MAC Address */
 330		goto out;
 331
 332	if (hw->bus.func == E1000_FUNC_1)
 333		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 334	if (hw->bus.func == E1000_FUNC_2)
 335		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
 336
 337	if (hw->bus.func == E1000_FUNC_3)
 338		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
 339	for (i = 0; i < ETH_ALEN; i += 2) {
 340		offset = nvm_alt_mac_addr_offset + (i >> 1);
 341		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
 342		if (ret_val) {
 343			hw_dbg("NVM Read Error\n");
 344			goto out;
 345		}
 346
 347		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 348		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 349	}
 350
 351	/* if multicast bit is set, the alternate address will not be used */
 352	if (is_multicast_ether_addr(alt_mac_addr)) {
 353		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 354		goto out;
 355	}
 356
 357	/* We have a valid alternate MAC address, and we want to treat it the
 358	 * same as the normal permanent MAC address stored by the HW into the
 359	 * RAR. Do this by mapping this address into RAR0.
 360	 */
 361	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 362
 363out:
 364	return ret_val;
 365}
 366
 367/**
 368 *  igb_rar_set - Set receive address register
 369 *  @hw: pointer to the HW structure
 370 *  @addr: pointer to the receive address
 371 *  @index: receive address array register
 372 *
 373 *  Sets the receive address array register at index to the address passed
 374 *  in by addr.
 375 **/
 376void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
 377{
 378	u32 rar_low, rar_high;
 379
 380	/* HW expects these in little endian so we reverse the byte order
 381	 * from network order (big endian) to little endian
 382	 */
 383	rar_low = ((u32) addr[0] |
 384		   ((u32) addr[1] << 8) |
 385		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
 386
 387	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
 388
 389	/* If MAC address zero, no need to set the AV bit */
 390	if (rar_low || rar_high)
 391		rar_high |= E1000_RAH_AV;
 392
 393	/* Some bridges will combine consecutive 32-bit writes into
 394	 * a single burst write, which will malfunction on some parts.
 395	 * The flushes avoid this.
 396	 */
 397	wr32(E1000_RAL(index), rar_low);
 398	wrfl();
 399	wr32(E1000_RAH(index), rar_high);
 400	wrfl();
 401}
 402
 403/**
 404 *  igb_mta_set - Set multicast filter table address
 405 *  @hw: pointer to the HW structure
 406 *  @hash_value: determines the MTA register and bit to set
 407 *
 408 *  The multicast table address is a register array of 32-bit registers.
 409 *  The hash_value is used to determine what register the bit is in, the
 410 *  current value is read, the new bit is OR'd in and the new value is
 411 *  written back into the register.
 412 **/
 413void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
 414{
 415	u32 hash_bit, hash_reg, mta;
 416
 417	/* The MTA is a register array of 32-bit registers. It is
 418	 * treated like an array of (32*mta_reg_count) bits.  We want to
 419	 * set bit BitArray[hash_value]. So we figure out what register
 420	 * the bit is in, read it, OR in the new bit, then write
 421	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
 422	 * mask to bits 31:5 of the hash value which gives us the
 423	 * register we're modifying.  The hash bit within that register
 424	 * is determined by the lower 5 bits of the hash value.
 425	 */
 426	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 427	hash_bit = hash_value & 0x1F;
 428
 429	mta = array_rd32(E1000_MTA, hash_reg);
 430
 431	mta |= BIT(hash_bit);
 432
 433	array_wr32(E1000_MTA, hash_reg, mta);
 434	wrfl();
 435}
 436
 437/**
 438 *  igb_hash_mc_addr - Generate a multicast hash value
 439 *  @hw: pointer to the HW structure
 440 *  @mc_addr: pointer to a multicast address
 441 *
 442 *  Generates a multicast address hash value which is used to determine
 443 *  the multicast filter table array address and new table value.  See
 444 *  igb_mta_set()
 445 **/
 446static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 447{
 448	u32 hash_value, hash_mask;
 449	u8 bit_shift = 0;
 450
 451	/* Register count multiplied by bits per register */
 452	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 453
 454	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 455	 * where 0xFF would still fall within the hash mask.
 456	 */
 457	while (hash_mask >> bit_shift != 0xFF)
 458		bit_shift++;
 459
 460	/* The portion of the address that is used for the hash table
 461	 * is determined by the mc_filter_type setting.
 462	 * The algorithm is such that there is a total of 8 bits of shifting.
 463	 * The bit_shift for a mc_filter_type of 0 represents the number of
 464	 * left-shifts where the MSB of mc_addr[5] would still fall within
 465	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
 466	 * of 8 bits of shifting, then mc_addr[4] will shift right the
 467	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 468	 * cases are a variation of this algorithm...essentially raising the
 469	 * number of bits to shift mc_addr[5] left, while still keeping the
 470	 * 8-bit shifting total.
 471	 *
 472	 * For example, given the following Destination MAC Address and an
 473	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 474	 * we can see that the bit_shift for case 0 is 4.  These are the hash
 475	 * values resulting from each mc_filter_type...
 476	 * [0] [1] [2] [3] [4] [5]
 477	 * 01  AA  00  12  34  56
 478	 * LSB                 MSB
 479	 *
 480	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 481	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 482	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 483	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 484	 */
 485	switch (hw->mac.mc_filter_type) {
 486	default:
 487	case 0:
 488		break;
 489	case 1:
 490		bit_shift += 1;
 491		break;
 492	case 2:
 493		bit_shift += 2;
 494		break;
 495	case 3:
 496		bit_shift += 4;
 497		break;
 498	}
 499
 500	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 501				  (((u16) mc_addr[5]) << bit_shift)));
 502
 503	return hash_value;
 504}
 505
 506/**
 507 *  igb_update_mc_addr_list - Update Multicast addresses
 508 *  @hw: pointer to the HW structure
 509 *  @mc_addr_list: array of multicast addresses to program
 510 *  @mc_addr_count: number of multicast addresses to program
 511 *
 512 *  Updates entire Multicast Table Array.
 513 *  The caller must have a packed mc_addr_list of multicast addresses.
 514 **/
 515void igb_update_mc_addr_list(struct e1000_hw *hw,
 516			     u8 *mc_addr_list, u32 mc_addr_count)
 517{
 518	u32 hash_value, hash_bit, hash_reg;
 519	int i;
 520
 521	/* clear mta_shadow */
 522	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 523
 524	/* update mta_shadow from mc_addr_list */
 525	for (i = 0; (u32) i < mc_addr_count; i++) {
 526		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
 527
 528		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 529		hash_bit = hash_value & 0x1F;
 530
 531		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 532		mc_addr_list += (ETH_ALEN);
 533	}
 534
 535	/* replace the entire MTA table */
 536	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 537		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
 538	wrfl();
 539}
 540
 541/**
 542 *  igb_clear_hw_cntrs_base - Clear base hardware counters
 543 *  @hw: pointer to the HW structure
 544 *
 545 *  Clears the base hardware counters by reading the counter registers.
 546 **/
 547void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
 548{
 549	rd32(E1000_CRCERRS);
 550	rd32(E1000_SYMERRS);
 551	rd32(E1000_MPC);
 552	rd32(E1000_SCC);
 553	rd32(E1000_ECOL);
 554	rd32(E1000_MCC);
 555	rd32(E1000_LATECOL);
 556	rd32(E1000_COLC);
 557	rd32(E1000_DC);
 558	rd32(E1000_SEC);
 559	rd32(E1000_RLEC);
 560	rd32(E1000_XONRXC);
 561	rd32(E1000_XONTXC);
 562	rd32(E1000_XOFFRXC);
 563	rd32(E1000_XOFFTXC);
 564	rd32(E1000_FCRUC);
 565	rd32(E1000_GPRC);
 566	rd32(E1000_BPRC);
 567	rd32(E1000_MPRC);
 568	rd32(E1000_GPTC);
 569	rd32(E1000_GORCL);
 570	rd32(E1000_GORCH);
 571	rd32(E1000_GOTCL);
 572	rd32(E1000_GOTCH);
 573	rd32(E1000_RNBC);
 574	rd32(E1000_RUC);
 575	rd32(E1000_RFC);
 576	rd32(E1000_ROC);
 577	rd32(E1000_RJC);
 578	rd32(E1000_TORL);
 579	rd32(E1000_TORH);
 580	rd32(E1000_TOTL);
 581	rd32(E1000_TOTH);
 582	rd32(E1000_TPR);
 583	rd32(E1000_TPT);
 584	rd32(E1000_MPTC);
 585	rd32(E1000_BPTC);
 586}
 587
 588/**
 589 *  igb_check_for_copper_link - Check for link (Copper)
 590 *  @hw: pointer to the HW structure
 591 *
 592 *  Checks to see of the link status of the hardware has changed.  If a
 593 *  change in link status has been detected, then we read the PHY registers
 594 *  to get the current speed/duplex if link exists.
 595 **/
 596s32 igb_check_for_copper_link(struct e1000_hw *hw)
 597{
 598	struct e1000_mac_info *mac = &hw->mac;
 599	s32 ret_val;
 600	bool link;
 601
 602	/* We only want to go out to the PHY registers to see if Auto-Neg
 603	 * has completed and/or if our link status has changed.  The
 604	 * get_link_status flag is set upon receiving a Link Status
 605	 * Change or Rx Sequence Error interrupt.
 606	 */
 607	if (!mac->get_link_status) {
 608		ret_val = 0;
 609		goto out;
 610	}
 611
 612	/* First we want to see if the MII Status Register reports
 613	 * link.  If so, then we want to get the current speed/duplex
 614	 * of the PHY.
 615	 */
 616	ret_val = igb_phy_has_link(hw, 1, 0, &link);
 617	if (ret_val)
 618		goto out;
 619
 620	if (!link)
 621		goto out; /* No link detected */
 622
 623	mac->get_link_status = false;
 624
 625	/* Check if there was DownShift, must be checked
 626	 * immediately after link-up
 627	 */
 628	igb_check_downshift(hw);
 629
 630	/* If we are forcing speed/duplex, then we simply return since
 631	 * we have already determined whether we have link or not.
 632	 */
 633	if (!mac->autoneg) {
 634		ret_val = -E1000_ERR_CONFIG;
 635		goto out;
 636	}
 637
 638	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 639	 * of MAC speed/duplex configuration.  So we only need to
 640	 * configure Collision Distance in the MAC.
 641	 */
 642	igb_config_collision_dist(hw);
 643
 644	/* Configure Flow Control now that Auto-Neg has completed.
 645	 * First, we need to restore the desired flow control
 646	 * settings because we may have had to re-autoneg with a
 647	 * different link partner.
 648	 */
 649	ret_val = igb_config_fc_after_link_up(hw);
 650	if (ret_val)
 651		hw_dbg("Error configuring flow control\n");
 652
 653out:
 654	return ret_val;
 655}
 656
 657/**
 658 *  igb_setup_link - Setup flow control and link settings
 659 *  @hw: pointer to the HW structure
 660 *
 661 *  Determines which flow control settings to use, then configures flow
 662 *  control.  Calls the appropriate media-specific link configuration
 663 *  function.  Assuming the adapter has a valid link partner, a valid link
 664 *  should be established.  Assumes the hardware has previously been reset
 665 *  and the transmitter and receiver are not enabled.
 666 **/
 667s32 igb_setup_link(struct e1000_hw *hw)
 668{
 669	s32 ret_val = 0;
 670
 671	/* In the case of the phy reset being blocked, we already have a link.
 672	 * We do not need to set it up again.
 673	 */
 674	if (igb_check_reset_block(hw))
 675		goto out;
 676
 677	/* If requested flow control is set to default, set flow control
 678	 * based on the EEPROM flow control settings.
 679	 */
 680	if (hw->fc.requested_mode == e1000_fc_default) {
 681		ret_val = igb_set_default_fc(hw);
 682		if (ret_val)
 683			goto out;
 684	}
 685
 686	/* We want to save off the original Flow Control configuration just
 687	 * in case we get disconnected and then reconnected into a different
 688	 * hub or switch with different Flow Control capabilities.
 689	 */
 690	hw->fc.current_mode = hw->fc.requested_mode;
 691
 692	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 693
 694	/* Call the necessary media_type subroutine to configure the link. */
 695	ret_val = hw->mac.ops.setup_physical_interface(hw);
 696	if (ret_val)
 697		goto out;
 698
 699	/* Initialize the flow control address, type, and PAUSE timer
 700	 * registers to their default values.  This is done even if flow
 701	 * control is disabled, because it does not hurt anything to
 702	 * initialize these registers.
 703	 */
 704	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
 705	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
 706	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 707	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
 708
 709	wr32(E1000_FCTTV, hw->fc.pause_time);
 710
 711	ret_val = igb_set_fc_watermarks(hw);
 712
 713out:
 714
 715	return ret_val;
 716}
 717
 718/**
 719 *  igb_config_collision_dist - Configure collision distance
 720 *  @hw: pointer to the HW structure
 721 *
 722 *  Configures the collision distance to the default value and is used
 723 *  during link setup. Currently no func pointer exists and all
 724 *  implementations are handled in the generic version of this function.
 725 **/
 726void igb_config_collision_dist(struct e1000_hw *hw)
 727{
 728	u32 tctl;
 729
 730	tctl = rd32(E1000_TCTL);
 731
 732	tctl &= ~E1000_TCTL_COLD;
 733	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 734
 735	wr32(E1000_TCTL, tctl);
 736	wrfl();
 737}
 738
 739/**
 740 *  igb_set_fc_watermarks - Set flow control high/low watermarks
 741 *  @hw: pointer to the HW structure
 742 *
 743 *  Sets the flow control high/low threshold (watermark) registers.  If
 744 *  flow control XON frame transmission is enabled, then set XON frame
 745 *  tansmission as well.
 746 **/
 747static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
 748{
 749	s32 ret_val = 0;
 750	u32 fcrtl = 0, fcrth = 0;
 751
 752	/* Set the flow control receive threshold registers.  Normally,
 753	 * these registers will be set to a default threshold that may be
 754	 * adjusted later by the driver's runtime code.  However, if the
 755	 * ability to transmit pause frames is not enabled, then these
 756	 * registers will be set to 0.
 757	 */
 758	if (hw->fc.current_mode & e1000_fc_tx_pause) {
 759		/* We need to set up the Receive Threshold high and low water
 760		 * marks as well as (optionally) enabling the transmission of
 761		 * XON frames.
 762		 */
 763		fcrtl = hw->fc.low_water;
 764		if (hw->fc.send_xon)
 765			fcrtl |= E1000_FCRTL_XONE;
 766
 767		fcrth = hw->fc.high_water;
 768	}
 769	wr32(E1000_FCRTL, fcrtl);
 770	wr32(E1000_FCRTH, fcrth);
 771
 772	return ret_val;
 773}
 774
 775/**
 776 *  igb_set_default_fc - Set flow control default values
 777 *  @hw: pointer to the HW structure
 778 *
 779 *  Read the EEPROM for the default values for flow control and store the
 780 *  values.
 781 **/
 782static s32 igb_set_default_fc(struct e1000_hw *hw)
 783{
 784	s32 ret_val = 0;
 785	u16 lan_offset;
 786	u16 nvm_data;
 787
 788	/* Read and store word 0x0F of the EEPROM. This word contains bits
 789	 * that determine the hardware's default PAUSE (flow control) mode,
 790	 * a bit that determines whether the HW defaults to enabling or
 791	 * disabling auto-negotiation, and the direction of the
 792	 * SW defined pins. If there is no SW over-ride of the flow
 793	 * control setting, then the variable hw->fc will
 794	 * be initialized based on a value in the EEPROM.
 795	 */
 796	if (hw->mac.type == e1000_i350)
 797		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
 798	else
 799		lan_offset = 0;
 
 
 
 
 800
 801	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
 802				   1, &nvm_data);
 803	if (ret_val) {
 804		hw_dbg("NVM Read Error\n");
 805		goto out;
 806	}
 807
 808	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
 809		hw->fc.requested_mode = e1000_fc_none;
 810	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 
 811		hw->fc.requested_mode = e1000_fc_tx_pause;
 812	else
 813		hw->fc.requested_mode = e1000_fc_full;
 814
 815out:
 816	return ret_val;
 817}
 818
 819/**
 820 *  igb_force_mac_fc - Force the MAC's flow control settings
 821 *  @hw: pointer to the HW structure
 822 *
 823 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 824 *  device control register to reflect the adapter settings.  TFCE and RFCE
 825 *  need to be explicitly set by software when a copper PHY is used because
 826 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 827 *  also configure these bits when link is forced on a fiber connection.
 828 **/
 829s32 igb_force_mac_fc(struct e1000_hw *hw)
 830{
 831	u32 ctrl;
 832	s32 ret_val = 0;
 833
 834	ctrl = rd32(E1000_CTRL);
 835
 836	/* Because we didn't get link via the internal auto-negotiation
 837	 * mechanism (we either forced link or we got link via PHY
 838	 * auto-neg), we have to manually enable/disable transmit an
 839	 * receive flow control.
 840	 *
 841	 * The "Case" statement below enables/disable flow control
 842	 * according to the "hw->fc.current_mode" parameter.
 843	 *
 844	 * The possible values of the "fc" parameter are:
 845	 *      0:  Flow control is completely disabled
 846	 *      1:  Rx flow control is enabled (we can receive pause
 847	 *          frames but not send pause frames).
 848	 *      2:  Tx flow control is enabled (we can send pause frames
 849	 *          frames but we do not receive pause frames).
 850	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
 851	 *  other:  No other values should be possible at this point.
 852	 */
 853	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 854
 855	switch (hw->fc.current_mode) {
 856	case e1000_fc_none:
 857		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 858		break;
 859	case e1000_fc_rx_pause:
 860		ctrl &= (~E1000_CTRL_TFCE);
 861		ctrl |= E1000_CTRL_RFCE;
 862		break;
 863	case e1000_fc_tx_pause:
 864		ctrl &= (~E1000_CTRL_RFCE);
 865		ctrl |= E1000_CTRL_TFCE;
 866		break;
 867	case e1000_fc_full:
 868		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 869		break;
 870	default:
 871		hw_dbg("Flow control param set incorrectly\n");
 872		ret_val = -E1000_ERR_CONFIG;
 873		goto out;
 874	}
 875
 876	wr32(E1000_CTRL, ctrl);
 877
 878out:
 879	return ret_val;
 880}
 881
 882/**
 883 *  igb_config_fc_after_link_up - Configures flow control after link
 884 *  @hw: pointer to the HW structure
 885 *
 886 *  Checks the status of auto-negotiation after link up to ensure that the
 887 *  speed and duplex were not forced.  If the link needed to be forced, then
 888 *  flow control needs to be forced also.  If auto-negotiation is enabled
 889 *  and did not fail, then we configure flow control based on our link
 890 *  partner.
 891 **/
 892s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
 893{
 894	struct e1000_mac_info *mac = &hw->mac;
 895	s32 ret_val = 0;
 896	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
 897	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
 898	u16 speed, duplex;
 899
 900	/* Check for the case where we have fiber media and auto-neg failed
 901	 * so we had to force link.  In this case, we need to force the
 902	 * configuration of the MAC to match the "fc" parameter.
 903	 */
 904	if (mac->autoneg_failed) {
 905		if (hw->phy.media_type == e1000_media_type_internal_serdes)
 906			ret_val = igb_force_mac_fc(hw);
 907	} else {
 908		if (hw->phy.media_type == e1000_media_type_copper)
 909			ret_val = igb_force_mac_fc(hw);
 910	}
 911
 912	if (ret_val) {
 913		hw_dbg("Error forcing flow control settings\n");
 914		goto out;
 915	}
 916
 917	/* Check for the case where we have copper media and auto-neg is
 918	 * enabled.  In this case, we need to check and see if Auto-Neg
 919	 * has completed, and if so, how the PHY and link partner has
 920	 * flow control configured.
 921	 */
 922	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
 923		/* Read the MII Status Register and check to see if AutoNeg
 924		 * has completed.  We read this twice because this reg has
 925		 * some "sticky" (latched) bits.
 926		 */
 927		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 928						   &mii_status_reg);
 929		if (ret_val)
 930			goto out;
 931		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
 932						   &mii_status_reg);
 933		if (ret_val)
 934			goto out;
 935
 936		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
 937			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
 938			goto out;
 939		}
 940
 941		/* The AutoNeg process has completed, so we now need to
 942		 * read both the Auto Negotiation Advertisement
 943		 * Register (Address 4) and the Auto_Negotiation Base
 944		 * Page Ability Register (Address 5) to determine how
 945		 * flow control was negotiated.
 946		 */
 947		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
 948					    &mii_nway_adv_reg);
 949		if (ret_val)
 950			goto out;
 951		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
 952					    &mii_nway_lp_ability_reg);
 953		if (ret_val)
 954			goto out;
 955
 956		/* Two bits in the Auto Negotiation Advertisement Register
 957		 * (Address 4) and two bits in the Auto Negotiation Base
 958		 * Page Ability Register (Address 5) determine flow control
 959		 * for both the PHY and the link partner.  The following
 960		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
 961		 * 1999, describes these PAUSE resolution bits and how flow
 962		 * control is determined based upon these settings.
 963		 * NOTE:  DC = Don't Care
 964		 *
 965		 *   LOCAL DEVICE  |   LINK PARTNER
 966		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
 967		 *-------|---------|-------|---------|--------------------
 968		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
 969		 *   0   |    1    |   0   |   DC    | e1000_fc_none
 970		 *   0   |    1    |   1   |    0    | e1000_fc_none
 971		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
 972		 *   1   |    0    |   0   |   DC    | e1000_fc_none
 973		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
 974		 *   1   |    1    |   0   |    0    | e1000_fc_none
 975		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
 976		 *
 977		 * Are both PAUSE bits set to 1?  If so, this implies
 978		 * Symmetric Flow Control is enabled at both ends.  The
 979		 * ASM_DIR bits are irrelevant per the spec.
 980		 *
 981		 * For Symmetric Flow Control:
 982		 *
 983		 *   LOCAL DEVICE  |   LINK PARTNER
 984		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
 985		 *-------|---------|-------|---------|--------------------
 986		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
 987		 *
 988		 */
 989		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
 990		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
 991			/* Now we need to check if the user selected RX ONLY
 992			 * of pause frames.  In this case, we had to advertise
 993			 * FULL flow control because we could not advertise RX
 994			 * ONLY. Hence, we must now check to see if we need to
 995			 * turn OFF  the TRANSMISSION of PAUSE frames.
 996			 */
 997			if (hw->fc.requested_mode == e1000_fc_full) {
 998				hw->fc.current_mode = e1000_fc_full;
 999				hw_dbg("Flow Control = FULL.\n");
1000			} else {
1001				hw->fc.current_mode = e1000_fc_rx_pause;
1002				hw_dbg("Flow Control = RX PAUSE frames only.\n");
1003			}
1004		}
1005		/* For receiving PAUSE frames ONLY.
1006		 *
1007		 *   LOCAL DEVICE  |   LINK PARTNER
1008		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1009		 *-------|---------|-------|---------|--------------------
1010		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1011		 */
1012		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1013			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1014			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1015			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1016			hw->fc.current_mode = e1000_fc_tx_pause;
1017			hw_dbg("Flow Control = TX PAUSE frames only.\n");
1018		}
1019		/* For transmitting PAUSE frames ONLY.
1020		 *
1021		 *   LOCAL DEVICE  |   LINK PARTNER
1022		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1023		 *-------|---------|-------|---------|--------------------
1024		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1025		 */
1026		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1027			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1028			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1029			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1030			hw->fc.current_mode = e1000_fc_rx_pause;
1031			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1032		}
1033		/* Per the IEEE spec, at this point flow control should be
1034		 * disabled.  However, we want to consider that we could
1035		 * be connected to a legacy switch that doesn't advertise
1036		 * desired flow control, but can be forced on the link
1037		 * partner.  So if we advertised no flow control, that is
1038		 * what we will resolve to.  If we advertised some kind of
1039		 * receive capability (Rx Pause Only or Full Flow Control)
1040		 * and the link partner advertised none, we will configure
1041		 * ourselves to enable Rx Flow Control only.  We can do
1042		 * this safely for two reasons:  If the link partner really
1043		 * didn't want flow control enabled, and we enable Rx, no
1044		 * harm done since we won't be receiving any PAUSE frames
1045		 * anyway.  If the intent on the link partner was to have
1046		 * flow control enabled, then by us enabling RX only, we
1047		 * can at least receive pause frames and process them.
1048		 * This is a good idea because in most cases, since we are
1049		 * predominantly a server NIC, more times than not we will
1050		 * be asked to delay transmission of packets than asking
1051		 * our link partner to pause transmission of frames.
1052		 */
1053		else if ((hw->fc.requested_mode == e1000_fc_none) ||
1054			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
1055			 (hw->fc.strict_ieee)) {
1056			hw->fc.current_mode = e1000_fc_none;
1057			hw_dbg("Flow Control = NONE.\n");
1058		} else {
1059			hw->fc.current_mode = e1000_fc_rx_pause;
1060			hw_dbg("Flow Control = RX PAUSE frames only.\n");
1061		}
1062
1063		/* Now we need to do one last check...  If we auto-
1064		 * negotiated to HALF DUPLEX, flow control should not be
1065		 * enabled per IEEE 802.3 spec.
1066		 */
1067		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1068		if (ret_val) {
1069			hw_dbg("Error getting link speed and duplex\n");
1070			goto out;
1071		}
1072
1073		if (duplex == HALF_DUPLEX)
1074			hw->fc.current_mode = e1000_fc_none;
1075
1076		/* Now we call a subroutine to actually force the MAC
1077		 * controller to use the correct flow control settings.
1078		 */
1079		ret_val = igb_force_mac_fc(hw);
1080		if (ret_val) {
1081			hw_dbg("Error forcing flow control settings\n");
1082			goto out;
1083		}
1084	}
1085	/* Check for the case where we have SerDes media and auto-neg is
1086	 * enabled.  In this case, we need to check and see if Auto-Neg
1087	 * has completed, and if so, how the PHY and link partner has
1088	 * flow control configured.
1089	 */
1090	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1091		&& mac->autoneg) {
1092		/* Read the PCS_LSTS and check to see if AutoNeg
1093		 * has completed.
1094		 */
1095		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1096
1097		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1098			hw_dbg("PCS Auto Neg has not completed.\n");
1099			return ret_val;
1100		}
1101
1102		/* The AutoNeg process has completed, so we now need to
1103		 * read both the Auto Negotiation Advertisement
1104		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1105		 * Page Ability Register (PCS_LPAB) to determine how
1106		 * flow control was negotiated.
1107		 */
1108		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1109		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1110
1111		/* Two bits in the Auto Negotiation Advertisement Register
1112		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1113		 * Page Ability Register (PCS_LPAB) determine flow control
1114		 * for both the PHY and the link partner.  The following
1115		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1116		 * 1999, describes these PAUSE resolution bits and how flow
1117		 * control is determined based upon these settings.
1118		 * NOTE:  DC = Don't Care
1119		 *
1120		 *   LOCAL DEVICE  |   LINK PARTNER
1121		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1122		 *-------|---------|-------|---------|--------------------
1123		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1124		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1125		 *   0   |    1    |   1   |    0    | e1000_fc_none
1126		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1127		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1128		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1129		 *   1   |    1    |   0   |    0    | e1000_fc_none
1130		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1131		 *
1132		 * Are both PAUSE bits set to 1?  If so, this implies
1133		 * Symmetric Flow Control is enabled at both ends.  The
1134		 * ASM_DIR bits are irrelevant per the spec.
1135		 *
1136		 * For Symmetric Flow Control:
1137		 *
1138		 *   LOCAL DEVICE  |   LINK PARTNER
1139		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1140		 *-------|---------|-------|---------|--------------------
1141		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1142		 *
1143		 */
1144		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1145		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1146			/* Now we need to check if the user selected Rx ONLY
1147			 * of pause frames.  In this case, we had to advertise
1148			 * FULL flow control because we could not advertise Rx
1149			 * ONLY. Hence, we must now check to see if we need to
1150			 * turn OFF the TRANSMISSION of PAUSE frames.
1151			 */
1152			if (hw->fc.requested_mode == e1000_fc_full) {
1153				hw->fc.current_mode = e1000_fc_full;
1154				hw_dbg("Flow Control = FULL.\n");
1155			} else {
1156				hw->fc.current_mode = e1000_fc_rx_pause;
1157				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1158			}
1159		}
1160		/* For receiving PAUSE frames ONLY.
1161		 *
1162		 *   LOCAL DEVICE  |   LINK PARTNER
1163		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1164		 *-------|---------|-------|---------|--------------------
1165		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1166		 */
1167		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1168			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1169			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1170			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1171			hw->fc.current_mode = e1000_fc_tx_pause;
1172			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1173		}
1174		/* For transmitting PAUSE frames ONLY.
1175		 *
1176		 *   LOCAL DEVICE  |   LINK PARTNER
1177		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1178		 *-------|---------|-------|---------|--------------------
1179		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1180		 */
1181		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1182			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1183			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1184			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1185			hw->fc.current_mode = e1000_fc_rx_pause;
1186			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1187		} else {
1188			/* Per the IEEE spec, at this point flow control
1189			 * should be disabled.
1190			 */
1191			hw->fc.current_mode = e1000_fc_none;
1192			hw_dbg("Flow Control = NONE.\n");
1193		}
1194
1195		/* Now we call a subroutine to actually force the MAC
1196		 * controller to use the correct flow control settings.
1197		 */
1198		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1199		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1200		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1201
1202		ret_val = igb_force_mac_fc(hw);
1203		if (ret_val) {
1204			hw_dbg("Error forcing flow control settings\n");
1205			return ret_val;
1206		}
1207	}
1208
1209out:
1210	return ret_val;
1211}
1212
1213/**
1214 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1215 *  @hw: pointer to the HW structure
1216 *  @speed: stores the current speed
1217 *  @duplex: stores the current duplex
1218 *
1219 *  Read the status register for the current speed/duplex and store the current
1220 *  speed and duplex for copper connections.
1221 **/
1222s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1223				      u16 *duplex)
1224{
1225	u32 status;
1226
1227	status = rd32(E1000_STATUS);
1228	if (status & E1000_STATUS_SPEED_1000) {
1229		*speed = SPEED_1000;
1230		hw_dbg("1000 Mbs, ");
1231	} else if (status & E1000_STATUS_SPEED_100) {
1232		*speed = SPEED_100;
1233		hw_dbg("100 Mbs, ");
1234	} else {
1235		*speed = SPEED_10;
1236		hw_dbg("10 Mbs, ");
1237	}
1238
1239	if (status & E1000_STATUS_FD) {
1240		*duplex = FULL_DUPLEX;
1241		hw_dbg("Full Duplex\n");
1242	} else {
1243		*duplex = HALF_DUPLEX;
1244		hw_dbg("Half Duplex\n");
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 *  igb_get_hw_semaphore - Acquire hardware semaphore
1252 *  @hw: pointer to the HW structure
1253 *
1254 *  Acquire the HW semaphore to access the PHY or NVM
1255 **/
1256s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1257{
1258	u32 swsm;
1259	s32 ret_val = 0;
1260	s32 timeout = hw->nvm.word_size + 1;
1261	s32 i = 0;
1262
1263	/* Get the SW semaphore */
1264	while (i < timeout) {
1265		swsm = rd32(E1000_SWSM);
1266		if (!(swsm & E1000_SWSM_SMBI))
1267			break;
1268
1269		udelay(50);
1270		i++;
1271	}
1272
1273	if (i == timeout) {
1274		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1275		ret_val = -E1000_ERR_NVM;
1276		goto out;
1277	}
1278
1279	/* Get the FW semaphore. */
1280	for (i = 0; i < timeout; i++) {
1281		swsm = rd32(E1000_SWSM);
1282		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1283
1284		/* Semaphore acquired if bit latched */
1285		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1286			break;
1287
1288		udelay(50);
1289	}
1290
1291	if (i == timeout) {
1292		/* Release semaphores */
1293		igb_put_hw_semaphore(hw);
1294		hw_dbg("Driver can't access the NVM\n");
1295		ret_val = -E1000_ERR_NVM;
1296		goto out;
1297	}
1298
1299out:
1300	return ret_val;
1301}
1302
1303/**
1304 *  igb_put_hw_semaphore - Release hardware semaphore
1305 *  @hw: pointer to the HW structure
1306 *
1307 *  Release hardware semaphore used to access the PHY or NVM
1308 **/
1309void igb_put_hw_semaphore(struct e1000_hw *hw)
1310{
1311	u32 swsm;
1312
1313	swsm = rd32(E1000_SWSM);
1314
1315	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1316
1317	wr32(E1000_SWSM, swsm);
1318}
1319
1320/**
1321 *  igb_get_auto_rd_done - Check for auto read completion
1322 *  @hw: pointer to the HW structure
1323 *
1324 *  Check EEPROM for Auto Read done bit.
1325 **/
1326s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1327{
1328	s32 i = 0;
1329	s32 ret_val = 0;
1330
1331
1332	while (i < AUTO_READ_DONE_TIMEOUT) {
1333		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1334			break;
1335		usleep_range(1000, 2000);
1336		i++;
1337	}
1338
1339	if (i == AUTO_READ_DONE_TIMEOUT) {
1340		hw_dbg("Auto read by HW from NVM has not completed.\n");
1341		ret_val = -E1000_ERR_RESET;
1342		goto out;
1343	}
1344
1345out:
1346	return ret_val;
1347}
1348
1349/**
1350 *  igb_valid_led_default - Verify a valid default LED config
1351 *  @hw: pointer to the HW structure
1352 *  @data: pointer to the NVM (EEPROM)
1353 *
1354 *  Read the EEPROM for the current default LED configuration.  If the
1355 *  LED configuration is not valid, set to a valid LED configuration.
1356 **/
1357static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1358{
1359	s32 ret_val;
1360
1361	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1362	if (ret_val) {
1363		hw_dbg("NVM Read Error\n");
1364		goto out;
1365	}
1366
1367	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1368		switch (hw->phy.media_type) {
1369		case e1000_media_type_internal_serdes:
1370			*data = ID_LED_DEFAULT_82575_SERDES;
1371			break;
1372		case e1000_media_type_copper:
1373		default:
1374			*data = ID_LED_DEFAULT;
1375			break;
1376		}
1377	}
1378out:
1379	return ret_val;
1380}
1381
1382/**
1383 *  igb_id_led_init -
1384 *  @hw: pointer to the HW structure
1385 *
1386 **/
1387s32 igb_id_led_init(struct e1000_hw *hw)
1388{
1389	struct e1000_mac_info *mac = &hw->mac;
1390	s32 ret_val;
1391	const u32 ledctl_mask = 0x000000FF;
1392	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1393	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1394	u16 data, i, temp;
1395	const u16 led_mask = 0x0F;
1396
1397	/* i210 and i211 devices have different LED mechanism */
1398	if ((hw->mac.type == e1000_i210) ||
1399	    (hw->mac.type == e1000_i211))
1400		ret_val = igb_valid_led_default_i210(hw, &data);
1401	else
1402		ret_val = igb_valid_led_default(hw, &data);
1403
1404	if (ret_val)
1405		goto out;
1406
1407	mac->ledctl_default = rd32(E1000_LEDCTL);
1408	mac->ledctl_mode1 = mac->ledctl_default;
1409	mac->ledctl_mode2 = mac->ledctl_default;
1410
1411	for (i = 0; i < 4; i++) {
1412		temp = (data >> (i << 2)) & led_mask;
1413		switch (temp) {
1414		case ID_LED_ON1_DEF2:
1415		case ID_LED_ON1_ON2:
1416		case ID_LED_ON1_OFF2:
1417			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1418			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1419			break;
1420		case ID_LED_OFF1_DEF2:
1421		case ID_LED_OFF1_ON2:
1422		case ID_LED_OFF1_OFF2:
1423			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1424			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1425			break;
1426		default:
1427			/* Do nothing */
1428			break;
1429		}
1430		switch (temp) {
1431		case ID_LED_DEF1_ON2:
1432		case ID_LED_ON1_ON2:
1433		case ID_LED_OFF1_ON2:
1434			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1435			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1436			break;
1437		case ID_LED_DEF1_OFF2:
1438		case ID_LED_ON1_OFF2:
1439		case ID_LED_OFF1_OFF2:
1440			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1441			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1442			break;
1443		default:
1444			/* Do nothing */
1445			break;
1446		}
1447	}
1448
1449out:
1450	return ret_val;
1451}
1452
1453/**
1454 *  igb_cleanup_led - Set LED config to default operation
1455 *  @hw: pointer to the HW structure
1456 *
1457 *  Remove the current LED configuration and set the LED configuration
1458 *  to the default value, saved from the EEPROM.
1459 **/
1460s32 igb_cleanup_led(struct e1000_hw *hw)
1461{
1462	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1463	return 0;
1464}
1465
1466/**
1467 *  igb_blink_led - Blink LED
1468 *  @hw: pointer to the HW structure
1469 *
1470 *  Blink the led's which are set to be on.
1471 **/
1472s32 igb_blink_led(struct e1000_hw *hw)
1473{
1474	u32 ledctl_blink = 0;
1475	u32 i;
1476
1477	if (hw->phy.media_type == e1000_media_type_fiber) {
1478		/* always blink LED0 for PCI-E fiber */
1479		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1480		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1481	} else {
1482		/* Set the blink bit for each LED that's "on" (0x0E)
1483		 * (or "off" if inverted) in ledctl_mode2.  The blink
1484		 * logic in hardware only works when mode is set to "on"
1485		 * so it must be changed accordingly when the mode is
1486		 * "off" and inverted.
1487		 */
1488		ledctl_blink = hw->mac.ledctl_mode2;
1489		for (i = 0; i < 32; i += 8) {
1490			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1491			    E1000_LEDCTL_LED0_MODE_MASK;
1492			u32 led_default = hw->mac.ledctl_default >> i;
1493
1494			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1495			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1496			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1497			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1498				ledctl_blink &=
1499				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1500				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1501						 E1000_LEDCTL_MODE_LED_ON) << i;
1502			}
1503		}
1504	}
1505
1506	wr32(E1000_LEDCTL, ledctl_blink);
1507
1508	return 0;
1509}
1510
1511/**
1512 *  igb_led_off - Turn LED off
1513 *  @hw: pointer to the HW structure
1514 *
1515 *  Turn LED off.
1516 **/
1517s32 igb_led_off(struct e1000_hw *hw)
1518{
1519	switch (hw->phy.media_type) {
1520	case e1000_media_type_copper:
1521		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1522		break;
1523	default:
1524		break;
1525	}
1526
1527	return 0;
1528}
1529
1530/**
1531 *  igb_disable_pcie_master - Disables PCI-express master access
1532 *  @hw: pointer to the HW structure
1533 *
1534 *  Returns 0 (0) if successful, else returns -10
1535 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1536 *  the master requests to be disabled.
1537 *
1538 *  Disables PCI-Express master access and verifies there are no pending
1539 *  requests.
1540 **/
1541s32 igb_disable_pcie_master(struct e1000_hw *hw)
1542{
1543	u32 ctrl;
1544	s32 timeout = MASTER_DISABLE_TIMEOUT;
1545	s32 ret_val = 0;
1546
1547	if (hw->bus.type != e1000_bus_type_pci_express)
1548		goto out;
1549
1550	ctrl = rd32(E1000_CTRL);
1551	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1552	wr32(E1000_CTRL, ctrl);
1553
1554	while (timeout) {
1555		if (!(rd32(E1000_STATUS) &
1556		      E1000_STATUS_GIO_MASTER_ENABLE))
1557			break;
1558		udelay(100);
1559		timeout--;
1560	}
1561
1562	if (!timeout) {
1563		hw_dbg("Master requests are pending.\n");
1564		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1565		goto out;
1566	}
1567
1568out:
1569	return ret_val;
1570}
1571
1572/**
1573 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1574 *  @hw: pointer to the HW structure
1575 *
1576 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1577 *  set, which is forced to MDI mode only.
1578 **/
1579s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1580{
1581	s32 ret_val = 0;
1582
1583	/* All MDI settings are supported on 82580 and newer. */
1584	if (hw->mac.type >= e1000_82580)
1585		goto out;
1586
1587	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1588		hw_dbg("Invalid MDI setting detected\n");
1589		hw->phy.mdix = 1;
1590		ret_val = -E1000_ERR_CONFIG;
1591		goto out;
1592	}
1593
1594out:
1595	return ret_val;
1596}
1597
1598/**
1599 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1600 *  @hw: pointer to the HW structure
1601 *  @reg: 32bit register offset such as E1000_SCTL
1602 *  @offset: register offset to write to
1603 *  @data: data to write at register offset
1604 *
1605 *  Writes an address/data control type register.  There are several of these
1606 *  and they all have the format address << 8 | data and bit 31 is polled for
1607 *  completion.
1608 **/
1609s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1610			      u32 offset, u8 data)
1611{
1612	u32 i, regvalue = 0;
1613	s32 ret_val = 0;
1614
1615	/* Set up the address and data */
1616	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1617	wr32(reg, regvalue);
1618
1619	/* Poll the ready bit to see if the MDI read completed */
1620	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1621		udelay(5);
1622		regvalue = rd32(reg);
1623		if (regvalue & E1000_GEN_CTL_READY)
1624			break;
1625	}
1626	if (!(regvalue & E1000_GEN_CTL_READY)) {
1627		hw_dbg("Reg %08x did not indicate ready\n", reg);
1628		ret_val = -E1000_ERR_PHY;
1629		goto out;
1630	}
1631
1632out:
1633	return ret_val;
1634}
1635
1636/**
1637 *  igb_enable_mng_pass_thru - Enable processing of ARP's
1638 *  @hw: pointer to the HW structure
1639 *
1640 *  Verifies the hardware needs to leave interface enabled so that frames can
1641 *  be directed to and from the management interface.
1642 **/
1643bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1644{
1645	u32 manc;
1646	u32 fwsm, factps;
1647	bool ret_val = false;
1648
1649	if (!hw->mac.asf_firmware_present)
1650		goto out;
1651
1652	manc = rd32(E1000_MANC);
1653
1654	if (!(manc & E1000_MANC_RCV_TCO_EN))
1655		goto out;
1656
1657	if (hw->mac.arc_subsystem_valid) {
1658		fwsm = rd32(E1000_FWSM);
1659		factps = rd32(E1000_FACTPS);
1660
1661		if (!(factps & E1000_FACTPS_MNGCG) &&
1662		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1663		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1664			ret_val = true;
1665			goto out;
1666		}
1667	} else {
1668		if ((manc & E1000_MANC_SMBUS_EN) &&
1669		    !(manc & E1000_MANC_ASF_EN)) {
1670			ret_val = true;
1671			goto out;
1672		}
1673	}
1674
1675out:
1676	return ret_val;
1677}