Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * This program is free software; you can redistribute it and/or
  3 * modify it under the terms of the GNU General Public License
  4 * as published by the Free Software Foundation; either version 2
  5 * of the License, or (at your option) any later version.
  6 *
  7 * This program is distributed in the hope that it will be useful,
  8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 10 * GNU General Public License for more details.
 11 *
 12 * You should have received a copy of the GNU General Public License
 13 * along with this program; if not, write to the Free Software
 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 15 *
 16 * Copyright (C) 2000, 2001 Kanoj Sarcar
 17 * Copyright (C) 2000, 2001 Ralf Baechle
 18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
 19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
 20 */
 21#include <linux/cache.h>
 22#include <linux/delay.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/smp.h>
 26#include <linux/spinlock.h>
 27#include <linux/threads.h>
 28#include <linux/module.h>
 29#include <linux/time.h>
 30#include <linux/timex.h>
 31#include <linux/sched.h>
 32#include <linux/cpumask.h>
 33#include <linux/cpu.h>
 34#include <linux/err.h>
 35#include <linux/ftrace.h>
 36#include <linux/irqdomain.h>
 37#include <linux/of.h>
 38#include <linux/of_irq.h>
 39
 40#include <linux/atomic.h>
 41#include <asm/cpu.h>
 
 42#include <asm/processor.h>
 43#include <asm/idle.h>
 44#include <asm/r4k-timer.h>
 45#include <asm/mips-cpc.h>
 46#include <asm/mmu_context.h>
 47#include <asm/time.h>
 48#include <asm/setup.h>
 49#include <asm/maar.h>
 50
 51cpumask_t cpu_callin_map;		/* Bitmask of started secondaries */
 52
 53int __cpu_number_map[NR_CPUS];		/* Map physical to logical */
 54EXPORT_SYMBOL(__cpu_number_map);
 55
 56int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 57EXPORT_SYMBOL(__cpu_logical_map);
 58
 59/* Number of TCs (or siblings in Intel speak) per CPU core */
 60int smp_num_siblings = 1;
 61EXPORT_SYMBOL(smp_num_siblings);
 62
 63/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 64cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 65EXPORT_SYMBOL(cpu_sibling_map);
 66
 67/* representing the core map of multi-core chips of each logical CPU */
 68cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 69EXPORT_SYMBOL(cpu_core_map);
 70
 
 
 
 71/*
 72 * A logcal cpu mask containing only one VPE per core to
 73 * reduce the number of IPIs on large MT systems.
 74 */
 75cpumask_t cpu_foreign_map __read_mostly;
 76EXPORT_SYMBOL(cpu_foreign_map);
 77
 78/* representing cpus for which sibling maps can be computed */
 79static cpumask_t cpu_sibling_setup_map;
 80
 81/* representing cpus for which core maps can be computed */
 82static cpumask_t cpu_core_setup_map;
 83
 84cpumask_t cpu_coherent_mask;
 85
 86#ifdef CONFIG_GENERIC_IRQ_IPI
 87static struct irq_desc *call_desc;
 88static struct irq_desc *sched_desc;
 89#endif
 90
 91static inline void set_cpu_sibling_map(int cpu)
 92{
 93	int i;
 94
 95	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 96
 97	if (smp_num_siblings > 1) {
 98		for_each_cpu(i, &cpu_sibling_setup_map) {
 99			if (cpu_data[cpu].package == cpu_data[i].package &&
100				    cpu_data[cpu].core == cpu_data[i].core) {
101				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103			}
104		}
105	} else
106		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107}
108
109static inline void set_cpu_core_map(int cpu)
110{
111	int i;
112
113	cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115	for_each_cpu(i, &cpu_core_setup_map) {
116		if (cpu_data[cpu].package == cpu_data[i].package) {
117			cpumask_set_cpu(i, &cpu_core_map[cpu]);
118			cpumask_set_cpu(cpu, &cpu_core_map[i]);
119		}
120	}
121}
122
123/*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127static inline void calculate_cpu_foreign_map(void)
128{
129	int i, k, core_present;
130	cpumask_t temp_foreign_map;
131
132	/* Re-calculate the mask */
133	cpumask_clear(&temp_foreign_map);
134	for_each_online_cpu(i) {
135		core_present = 0;
136		for_each_cpu(k, &temp_foreign_map)
137			if (cpu_data[i].package == cpu_data[k].package &&
138			    cpu_data[i].core == cpu_data[k].core)
139				core_present = 1;
140		if (!core_present)
141			cpumask_set_cpu(i, &temp_foreign_map);
142	}
143
144	cpumask_copy(&cpu_foreign_map, &temp_foreign_map);
 
 
145}
146
147struct plat_smp_ops *mp_ops;
148EXPORT_SYMBOL(mp_ops);
149
150void register_smp_ops(struct plat_smp_ops *ops)
151{
152	if (mp_ops)
153		printk(KERN_WARNING "Overriding previously set SMP ops\n");
154
155	mp_ops = ops;
156}
157
158#ifdef CONFIG_GENERIC_IRQ_IPI
159void mips_smp_send_ipi_single(int cpu, unsigned int action)
160{
161	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
162}
163
164void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
165{
166	unsigned long flags;
167	unsigned int core;
168	int cpu;
169
170	local_irq_save(flags);
171
172	switch (action) {
173	case SMP_CALL_FUNCTION:
174		__ipi_send_mask(call_desc, mask);
175		break;
176
177	case SMP_RESCHEDULE_YOURSELF:
178		__ipi_send_mask(sched_desc, mask);
179		break;
180
181	default:
182		BUG();
183	}
184
185	if (mips_cpc_present()) {
186		for_each_cpu(cpu, mask) {
187			core = cpu_data[cpu].core;
188
189			if (core == current_cpu_data.core)
190				continue;
191
 
 
192			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
 
193				mips_cpc_lock_other(core);
194				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
195				mips_cpc_unlock_other();
 
196			}
197		}
198	}
199
200	local_irq_restore(flags);
201}
202
203
204static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
205{
206	scheduler_ipi();
207
208	return IRQ_HANDLED;
209}
210
211static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
212{
213	generic_smp_call_function_interrupt();
214
215	return IRQ_HANDLED;
216}
217
218static struct irqaction irq_resched = {
219	.handler	= ipi_resched_interrupt,
220	.flags		= IRQF_PERCPU,
221	.name		= "IPI resched"
222};
223
224static struct irqaction irq_call = {
225	.handler	= ipi_call_interrupt,
226	.flags		= IRQF_PERCPU,
227	.name		= "IPI call"
228};
229
230static __init void smp_ipi_init_one(unsigned int virq,
231				    struct irqaction *action)
232{
233	int ret;
234
235	irq_set_handler(virq, handle_percpu_irq);
236	ret = setup_irq(virq, action);
237	BUG_ON(ret);
238}
239
240static int __init mips_smp_ipi_init(void)
 
 
241{
242	unsigned int call_virq, sched_virq;
243	struct irq_domain *ipidomain;
244	struct device_node *node;
245
246	/*
247	 * In some cases like qemu-malta, it is desired to try SMP with
248	 * a single core. Qemu-malta has no GIC, so an attempt to set any IPIs
249	 * would cause a BUG_ON() to be triggered since there's no ipidomain.
250	 *
251	 * Since for a single core system IPIs aren't required really, skip the
252	 * initialisation which should generally keep any such configurations
253	 * happy and only fail hard when trying to truely run SMP.
254	 */
255	if (cpumask_weight(cpu_possible_mask) == 1)
256		return 0;
257
258	node = of_irq_find_parent(of_root);
259	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
260
261	/*
262	 * Some platforms have half DT setup. So if we found irq node but
263	 * didn't find an ipidomain, try to search for one that is not in the
264	 * DT.
265	 */
266	if (node && !ipidomain)
267		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
268
269	BUG_ON(!ipidomain);
270
271	call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
272	BUG_ON(!call_virq);
 
 
 
 
 
 
 
 
 
 
 
273
274	sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
275	BUG_ON(!sched_virq);
 
 
 
 
 
 
 
276
277	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278		int cpu;
279
280		for_each_cpu(cpu, cpu_possible_mask) {
281			smp_ipi_init_one(call_virq + cpu, &irq_call);
282			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283		}
284	} else {
285		smp_ipi_init_one(call_virq, &irq_call);
286		smp_ipi_init_one(sched_virq, &irq_resched);
287	}
288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289	call_desc = irq_to_desc(call_virq);
290	sched_desc = irq_to_desc(sched_virq);
291
292	return 0;
293}
294early_initcall(mips_smp_ipi_init);
295#endif
296
297/*
298 * First C code run on the secondary CPUs after being started up by
299 * the master.
300 */
301asmlinkage void start_secondary(void)
302{
303	unsigned int cpu;
304
305	cpu_probe();
306	per_cpu_trap_init(false);
307	mips_clockevent_init();
308	mp_ops->init_secondary();
309	cpu_report();
310	maar_init();
311
312	/*
313	 * XXX parity protection should be folded in here when it's converted
314	 * to an option instead of something based on .cputype
315	 */
316
317	calibrate_delay();
318	preempt_disable();
319	cpu = smp_processor_id();
320	cpu_data[cpu].udelay_val = loops_per_jiffy;
321
322	cpumask_set_cpu(cpu, &cpu_coherent_mask);
323	notify_cpu_starting(cpu);
324
 
 
 
 
 
 
325	set_cpu_online(cpu, true);
326
327	set_cpu_sibling_map(cpu);
328	set_cpu_core_map(cpu);
329
330	calculate_cpu_foreign_map();
331
332	cpumask_set_cpu(cpu, &cpu_callin_map);
333
334	synchronise_count_slave(cpu);
 
 
335
336	/*
337	 * irq will be enabled in ->smp_finish(), enabling it too early
338	 * is dangerous.
339	 */
340	WARN_ON_ONCE(!irqs_disabled());
341	mp_ops->smp_finish();
342
343	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
344}
345
346static void stop_this_cpu(void *dummy)
347{
348	/*
349	 * Remove this CPU. Be a bit slow here and
350	 * set the bits for every online CPU so we don't miss
351	 * any IPI whilst taking this VPE down.
352	 */
353
354	cpumask_copy(&cpu_foreign_map, cpu_online_mask);
355
356	/* Make it visible to every other CPU */
357	smp_mb();
358
359	set_cpu_online(smp_processor_id(), false);
360	calculate_cpu_foreign_map();
361	local_irq_disable();
362	while (1);
363}
364
365void smp_send_stop(void)
366{
367	smp_call_function(stop_this_cpu, NULL, 0);
368}
369
370void __init smp_cpus_done(unsigned int max_cpus)
371{
372}
373
374/* called from main before smp_init() */
375void __init smp_prepare_cpus(unsigned int max_cpus)
376{
377	init_new_context(current, &init_mm);
378	current_thread_info()->cpu = 0;
379	mp_ops->prepare_cpus(max_cpus);
380	set_cpu_sibling_map(0);
381	set_cpu_core_map(0);
382	calculate_cpu_foreign_map();
383#ifndef CONFIG_HOTPLUG_CPU
384	init_cpu_present(cpu_possible_mask);
385#endif
386	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
387}
388
389/* preload SMP state for boot cpu */
390void smp_prepare_boot_cpu(void)
391{
 
 
392	set_cpu_possible(0, true);
393	set_cpu_online(0, true);
394	cpumask_set_cpu(0, &cpu_callin_map);
395}
396
397int __cpu_up(unsigned int cpu, struct task_struct *tidle)
398{
399	mp_ops->boot_secondary(cpu, tidle);
400
401	/*
402	 * Trust is futile.  We should really have timeouts ...
403	 */
404	while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
405		udelay(100);
406		schedule();
 
 
 
407	}
408
409	synchronise_count_master(cpu);
 
 
 
410	return 0;
411}
412
413/* Not really SMP stuff ... */
414int setup_profiling_timer(unsigned int multiplier)
415{
416	return 0;
417}
418
419static void flush_tlb_all_ipi(void *info)
420{
421	local_flush_tlb_all();
422}
423
424void flush_tlb_all(void)
425{
 
 
 
 
 
 
 
 
 
426	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
427}
428
429static void flush_tlb_mm_ipi(void *mm)
430{
431	local_flush_tlb_mm((struct mm_struct *)mm);
432}
433
434/*
435 * Special Variant of smp_call_function for use by TLB functions:
436 *
437 *  o No return value
438 *  o collapses to normal function call on UP kernels
439 *  o collapses to normal function call on systems with a single shared
440 *    primary cache.
441 */
442static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
443{
444	smp_call_function(func, info, 1);
445}
446
447static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
448{
449	preempt_disable();
450
451	smp_on_other_tlbs(func, info);
452	func(info);
453
454	preempt_enable();
455}
456
457/*
458 * The following tlb flush calls are invoked when old translations are
459 * being torn down, or pte attributes are changing. For single threaded
460 * address spaces, a new context is obtained on the current cpu, and tlb
461 * context on other cpus are invalidated to force a new context allocation
462 * at switch_mm time, should the mm ever be used on other cpus. For
463 * multithreaded address spaces, intercpu interrupts have to be sent.
464 * Another case where intercpu interrupts are required is when the target
465 * mm might be active on another cpu (eg debuggers doing the flushes on
466 * behalf of debugees, kswapd stealing pages from another process etc).
467 * Kanoj 07/00.
468 */
469
470void flush_tlb_mm(struct mm_struct *mm)
471{
472	preempt_disable();
473
474	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 
 
 
 
 
475		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
476	} else {
477		unsigned int cpu;
478
479		for_each_online_cpu(cpu) {
480			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
481				cpu_context(cpu, mm) = 0;
482		}
483	}
484	local_flush_tlb_mm(mm);
485
486	preempt_enable();
487}
488
489struct flush_tlb_data {
490	struct vm_area_struct *vma;
491	unsigned long addr1;
492	unsigned long addr2;
493};
494
495static void flush_tlb_range_ipi(void *info)
496{
497	struct flush_tlb_data *fd = info;
498
499	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
500}
501
502void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
503{
504	struct mm_struct *mm = vma->vm_mm;
 
 
505
506	preempt_disable();
507	if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
508		struct flush_tlb_data fd = {
509			.vma = vma,
510			.addr1 = start,
511			.addr2 = end,
512		};
513
514		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
 
515	} else {
516		unsigned int cpu;
 
517
518		for_each_online_cpu(cpu) {
 
 
 
 
 
 
519			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
520				cpu_context(cpu, mm) = 0;
521		}
 
522	}
523	local_flush_tlb_range(vma, start, end);
524	preempt_enable();
525}
526
527static void flush_tlb_kernel_range_ipi(void *info)
528{
529	struct flush_tlb_data *fd = info;
530
531	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
532}
533
534void flush_tlb_kernel_range(unsigned long start, unsigned long end)
535{
536	struct flush_tlb_data fd = {
537		.addr1 = start,
538		.addr2 = end,
539	};
540
541	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
542}
543
544static void flush_tlb_page_ipi(void *info)
545{
546	struct flush_tlb_data *fd = info;
547
548	local_flush_tlb_page(fd->vma, fd->addr1);
549}
550
551void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
552{
 
 
553	preempt_disable();
554	if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
 
 
 
 
 
 
 
 
 
 
 
555		struct flush_tlb_data fd = {
556			.vma = vma,
557			.addr1 = page,
558		};
559
560		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
 
561	} else {
562		unsigned int cpu;
563
564		for_each_online_cpu(cpu) {
 
 
 
 
 
 
565			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
566				cpu_context(cpu, vma->vm_mm) = 0;
567		}
 
568	}
569	local_flush_tlb_page(vma, page);
570	preempt_enable();
571}
572
573static void flush_tlb_one_ipi(void *info)
574{
575	unsigned long vaddr = (unsigned long) info;
576
577	local_flush_tlb_one(vaddr);
578}
579
580void flush_tlb_one(unsigned long vaddr)
581{
582	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
583}
584
585EXPORT_SYMBOL(flush_tlb_page);
586EXPORT_SYMBOL(flush_tlb_one);
587
588#if defined(CONFIG_KEXEC)
589void (*dump_ipi_function_ptr)(void *) = NULL;
590void dump_send_ipi(void (*dump_ipi_callback)(void *))
591{
592	int i;
593	int cpu = smp_processor_id();
594
595	dump_ipi_function_ptr = dump_ipi_callback;
596	smp_mb();
597	for_each_online_cpu(i)
598		if (i != cpu)
599			mp_ops->send_ipi_single(i, SMP_DUMP);
600
601}
602EXPORT_SYMBOL(dump_send_ipi);
603#endif
604
605#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
606
607static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
608static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
609
610void tick_broadcast(const struct cpumask *mask)
611{
612	atomic_t *count;
613	struct call_single_data *csd;
614	int cpu;
615
616	for_each_cpu(cpu, mask) {
617		count = &per_cpu(tick_broadcast_count, cpu);
618		csd = &per_cpu(tick_broadcast_csd, cpu);
619
620		if (atomic_inc_return(count) == 1)
621			smp_call_function_single_async(cpu, csd);
622	}
623}
624
625static void tick_broadcast_callee(void *info)
626{
627	int cpu = smp_processor_id();
628	tick_receive_broadcast();
629	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
630}
631
632static int __init tick_broadcast_init(void)
633{
634	struct call_single_data *csd;
635	int cpu;
636
637	for (cpu = 0; cpu < NR_CPUS; cpu++) {
638		csd = &per_cpu(tick_broadcast_csd, cpu);
639		csd->func = tick_broadcast_callee;
640	}
641
642	return 0;
643}
644early_initcall(tick_broadcast_init);
645
646#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  3 *
  4 * Copyright (C) 2000, 2001 Kanoj Sarcar
  5 * Copyright (C) 2000, 2001 Ralf Baechle
  6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  8 */
  9#include <linux/cache.h>
 10#include <linux/delay.h>
 11#include <linux/init.h>
 12#include <linux/interrupt.h>
 13#include <linux/smp.h>
 14#include <linux/spinlock.h>
 15#include <linux/threads.h>
 16#include <linux/export.h>
 17#include <linux/time.h>
 18#include <linux/timex.h>
 19#include <linux/sched/mm.h>
 20#include <linux/cpumask.h>
 21#include <linux/cpu.h>
 22#include <linux/err.h>
 23#include <linux/ftrace.h>
 24#include <linux/irqdomain.h>
 25#include <linux/of.h>
 26#include <linux/of_irq.h>
 27
 28#include <linux/atomic.h>
 29#include <asm/cpu.h>
 30#include <asm/ginvt.h>
 31#include <asm/processor.h>
 32#include <asm/idle.h>
 33#include <asm/r4k-timer.h>
 34#include <asm/mips-cps.h>
 35#include <asm/mmu_context.h>
 36#include <asm/time.h>
 37#include <asm/setup.h>
 38#include <asm/maar.h>
 39
 40int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
 
 
 41EXPORT_SYMBOL(__cpu_number_map);
 42
 43int __cpu_logical_map[NR_CPUS];		/* Map logical to physical */
 44EXPORT_SYMBOL(__cpu_logical_map);
 45
 46/* Number of TCs (or siblings in Intel speak) per CPU core */
 47int smp_num_siblings = 1;
 48EXPORT_SYMBOL(smp_num_siblings);
 49
 50/* representing the TCs (or siblings in Intel speak) of each logical CPU */
 51cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
 52EXPORT_SYMBOL(cpu_sibling_map);
 53
 54/* representing the core map of multi-core chips of each logical CPU */
 55cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
 56EXPORT_SYMBOL(cpu_core_map);
 57
 58static DECLARE_COMPLETION(cpu_starting);
 59static DECLARE_COMPLETION(cpu_running);
 60
 61/*
 62 * A logcal cpu mask containing only one VPE per core to
 63 * reduce the number of IPIs on large MT systems.
 64 */
 65cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
 66EXPORT_SYMBOL(cpu_foreign_map);
 67
 68/* representing cpus for which sibling maps can be computed */
 69static cpumask_t cpu_sibling_setup_map;
 70
 71/* representing cpus for which core maps can be computed */
 72static cpumask_t cpu_core_setup_map;
 73
 74cpumask_t cpu_coherent_mask;
 75
 76#ifdef CONFIG_GENERIC_IRQ_IPI
 77static struct irq_desc *call_desc;
 78static struct irq_desc *sched_desc;
 79#endif
 80
 81static inline void set_cpu_sibling_map(int cpu)
 82{
 83	int i;
 84
 85	cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
 86
 87	if (smp_num_siblings > 1) {
 88		for_each_cpu(i, &cpu_sibling_setup_map) {
 89			if (cpus_are_siblings(cpu, i)) {
 
 90				cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
 91				cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
 92			}
 93		}
 94	} else
 95		cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
 96}
 97
 98static inline void set_cpu_core_map(int cpu)
 99{
100	int i;
101
102	cpumask_set_cpu(cpu, &cpu_core_setup_map);
103
104	for_each_cpu(i, &cpu_core_setup_map) {
105		if (cpu_data[cpu].package == cpu_data[i].package) {
106			cpumask_set_cpu(i, &cpu_core_map[cpu]);
107			cpumask_set_cpu(cpu, &cpu_core_map[i]);
108		}
109	}
110}
111
112/*
113 * Calculate a new cpu_foreign_map mask whenever a
114 * new cpu appears or disappears.
115 */
116void calculate_cpu_foreign_map(void)
117{
118	int i, k, core_present;
119	cpumask_t temp_foreign_map;
120
121	/* Re-calculate the mask */
122	cpumask_clear(&temp_foreign_map);
123	for_each_online_cpu(i) {
124		core_present = 0;
125		for_each_cpu(k, &temp_foreign_map)
126			if (cpus_are_siblings(i, k))
 
127				core_present = 1;
128		if (!core_present)
129			cpumask_set_cpu(i, &temp_foreign_map);
130	}
131
132	for_each_online_cpu(i)
133		cpumask_andnot(&cpu_foreign_map[i],
134			       &temp_foreign_map, &cpu_sibling_map[i]);
135}
136
137const struct plat_smp_ops *mp_ops;
138EXPORT_SYMBOL(mp_ops);
139
140void register_smp_ops(const struct plat_smp_ops *ops)
141{
142	if (mp_ops)
143		printk(KERN_WARNING "Overriding previously set SMP ops\n");
144
145	mp_ops = ops;
146}
147
148#ifdef CONFIG_GENERIC_IRQ_IPI
149void mips_smp_send_ipi_single(int cpu, unsigned int action)
150{
151	mips_smp_send_ipi_mask(cpumask_of(cpu), action);
152}
153
154void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
155{
156	unsigned long flags;
157	unsigned int core;
158	int cpu;
159
160	local_irq_save(flags);
161
162	switch (action) {
163	case SMP_CALL_FUNCTION:
164		__ipi_send_mask(call_desc, mask);
165		break;
166
167	case SMP_RESCHEDULE_YOURSELF:
168		__ipi_send_mask(sched_desc, mask);
169		break;
170
171	default:
172		BUG();
173	}
174
175	if (mips_cpc_present()) {
176		for_each_cpu(cpu, mask) {
177			if (cpus_are_siblings(cpu, smp_processor_id()))
 
 
178				continue;
179
180			core = cpu_core(&cpu_data[cpu]);
181
182			while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
183				mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
184				mips_cpc_lock_other(core);
185				write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
186				mips_cpc_unlock_other();
187				mips_cm_unlock_other();
188			}
189		}
190	}
191
192	local_irq_restore(flags);
193}
194
195
196static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
197{
198	scheduler_ipi();
199
200	return IRQ_HANDLED;
201}
202
203static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
204{
205	generic_smp_call_function_interrupt();
206
207	return IRQ_HANDLED;
208}
209
210static struct irqaction irq_resched = {
211	.handler	= ipi_resched_interrupt,
212	.flags		= IRQF_PERCPU,
213	.name		= "IPI resched"
214};
215
216static struct irqaction irq_call = {
217	.handler	= ipi_call_interrupt,
218	.flags		= IRQF_PERCPU,
219	.name		= "IPI call"
220};
221
222static void smp_ipi_init_one(unsigned int virq,
223				    struct irqaction *action)
224{
225	int ret;
226
227	irq_set_handler(virq, handle_percpu_irq);
228	ret = setup_irq(virq, action);
229	BUG_ON(ret);
230}
231
232static unsigned int call_virq, sched_virq;
233
234int mips_smp_ipi_allocate(const struct cpumask *mask)
235{
236	int virq;
237	struct irq_domain *ipidomain;
238	struct device_node *node;
239
 
 
 
 
 
 
 
 
 
 
 
 
240	node = of_irq_find_parent(of_root);
241	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
242
243	/*
244	 * Some platforms have half DT setup. So if we found irq node but
245	 * didn't find an ipidomain, try to search for one that is not in the
246	 * DT.
247	 */
248	if (node && !ipidomain)
249		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
250
251	/*
252	 * There are systems which use IPI IRQ domains, but only have one
253	 * registered when some runtime condition is met. For example a Malta
254	 * kernel may include support for GIC & CPU interrupt controller IPI
255	 * IRQ domains, but if run on a system with no GIC & no MT ASE then
256	 * neither will be supported or registered.
257	 *
258	 * We only have a problem if we're actually using multiple CPUs so fail
259	 * loudly if that is the case. Otherwise simply return, skipping IPI
260	 * setup, if we're running with only a single CPU.
261	 */
262	if (!ipidomain) {
263		BUG_ON(num_present_cpus() > 1);
264		return 0;
265	}
266
267	virq = irq_reserve_ipi(ipidomain, mask);
268	BUG_ON(!virq);
269	if (!call_virq)
270		call_virq = virq;
271
272	virq = irq_reserve_ipi(ipidomain, mask);
273	BUG_ON(!virq);
274	if (!sched_virq)
275		sched_virq = virq;
276
277	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278		int cpu;
279
280		for_each_cpu(cpu, mask) {
281			smp_ipi_init_one(call_virq + cpu, &irq_call);
282			smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283		}
284	} else {
285		smp_ipi_init_one(call_virq, &irq_call);
286		smp_ipi_init_one(sched_virq, &irq_resched);
287	}
288
289	return 0;
290}
291
292int mips_smp_ipi_free(const struct cpumask *mask)
293{
294	struct irq_domain *ipidomain;
295	struct device_node *node;
296
297	node = of_irq_find_parent(of_root);
298	ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
299
300	/*
301	 * Some platforms have half DT setup. So if we found irq node but
302	 * didn't find an ipidomain, try to search for one that is not in the
303	 * DT.
304	 */
305	if (node && !ipidomain)
306		ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
307
308	BUG_ON(!ipidomain);
309
310	if (irq_domain_is_ipi_per_cpu(ipidomain)) {
311		int cpu;
312
313		for_each_cpu(cpu, mask) {
314			remove_irq(call_virq + cpu, &irq_call);
315			remove_irq(sched_virq + cpu, &irq_resched);
316		}
317	}
318	irq_destroy_ipi(call_virq, mask);
319	irq_destroy_ipi(sched_virq, mask);
320	return 0;
321}
322
323
324static int __init mips_smp_ipi_init(void)
325{
326	if (num_possible_cpus() == 1)
327		return 0;
328
329	mips_smp_ipi_allocate(cpu_possible_mask);
330
331	call_desc = irq_to_desc(call_virq);
332	sched_desc = irq_to_desc(sched_virq);
333
334	return 0;
335}
336early_initcall(mips_smp_ipi_init);
337#endif
338
339/*
340 * First C code run on the secondary CPUs after being started up by
341 * the master.
342 */
343asmlinkage void start_secondary(void)
344{
345	unsigned int cpu;
346
347	cpu_probe();
348	per_cpu_trap_init(false);
349	mips_clockevent_init();
350	mp_ops->init_secondary();
351	cpu_report();
352	maar_init();
353
354	/*
355	 * XXX parity protection should be folded in here when it's converted
356	 * to an option instead of something based on .cputype
357	 */
358
359	calibrate_delay();
360	preempt_disable();
361	cpu = smp_processor_id();
362	cpu_data[cpu].udelay_val = loops_per_jiffy;
363
364	cpumask_set_cpu(cpu, &cpu_coherent_mask);
365	notify_cpu_starting(cpu);
366
367	/* Notify boot CPU that we're starting & ready to sync counters */
368	complete(&cpu_starting);
369
370	synchronise_count_slave(cpu);
371
372	/* The CPU is running and counters synchronised, now mark it online */
373	set_cpu_online(cpu, true);
374
375	set_cpu_sibling_map(cpu);
376	set_cpu_core_map(cpu);
377
378	calculate_cpu_foreign_map();
379
380	/*
381	 * Notify boot CPU that we're up & online and it can safely return
382	 * from __cpu_up
383	 */
384	complete(&cpu_running);
385
386	/*
387	 * irq will be enabled in ->smp_finish(), enabling it too early
388	 * is dangerous.
389	 */
390	WARN_ON_ONCE(!irqs_disabled());
391	mp_ops->smp_finish();
392
393	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
394}
395
396static void stop_this_cpu(void *dummy)
397{
398	/*
399	 * Remove this CPU:
 
 
400	 */
401
 
 
 
 
 
402	set_cpu_online(smp_processor_id(), false);
403	calculate_cpu_foreign_map();
404	local_irq_disable();
405	while (1);
406}
407
408void smp_send_stop(void)
409{
410	smp_call_function(stop_this_cpu, NULL, 0);
411}
412
413void __init smp_cpus_done(unsigned int max_cpus)
414{
415}
416
417/* called from main before smp_init() */
418void __init smp_prepare_cpus(unsigned int max_cpus)
419{
420	init_new_context(current, &init_mm);
421	current_thread_info()->cpu = 0;
422	mp_ops->prepare_cpus(max_cpus);
423	set_cpu_sibling_map(0);
424	set_cpu_core_map(0);
425	calculate_cpu_foreign_map();
426#ifndef CONFIG_HOTPLUG_CPU
427	init_cpu_present(cpu_possible_mask);
428#endif
429	cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
430}
431
432/* preload SMP state for boot cpu */
433void smp_prepare_boot_cpu(void)
434{
435	if (mp_ops->prepare_boot_cpu)
436		mp_ops->prepare_boot_cpu();
437	set_cpu_possible(0, true);
438	set_cpu_online(0, true);
 
439}
440
441int __cpu_up(unsigned int cpu, struct task_struct *tidle)
442{
443	int err;
444
445	err = mp_ops->boot_secondary(cpu, tidle);
446	if (err)
447		return err;
448
449	/* Wait for CPU to start and be ready to sync counters */
450	if (!wait_for_completion_timeout(&cpu_starting,
451					 msecs_to_jiffies(1000))) {
452		pr_crit("CPU%u: failed to start\n", cpu);
453		return -EIO;
454	}
455
456	synchronise_count_master(cpu);
457
458	/* Wait for CPU to finish startup & mark itself online before return */
459	wait_for_completion(&cpu_running);
460	return 0;
461}
462
463/* Not really SMP stuff ... */
464int setup_profiling_timer(unsigned int multiplier)
465{
466	return 0;
467}
468
469static void flush_tlb_all_ipi(void *info)
470{
471	local_flush_tlb_all();
472}
473
474void flush_tlb_all(void)
475{
476	if (cpu_has_mmid) {
477		htw_stop();
478		ginvt_full();
479		sync_ginv();
480		instruction_hazard();
481		htw_start();
482		return;
483	}
484
485	on_each_cpu(flush_tlb_all_ipi, NULL, 1);
486}
487
488static void flush_tlb_mm_ipi(void *mm)
489{
490	drop_mmu_context((struct mm_struct *)mm);
491}
492
493/*
494 * Special Variant of smp_call_function for use by TLB functions:
495 *
496 *  o No return value
497 *  o collapses to normal function call on UP kernels
498 *  o collapses to normal function call on systems with a single shared
499 *    primary cache.
500 */
501static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
502{
503	smp_call_function(func, info, 1);
504}
505
506static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
507{
508	preempt_disable();
509
510	smp_on_other_tlbs(func, info);
511	func(info);
512
513	preempt_enable();
514}
515
516/*
517 * The following tlb flush calls are invoked when old translations are
518 * being torn down, or pte attributes are changing. For single threaded
519 * address spaces, a new context is obtained on the current cpu, and tlb
520 * context on other cpus are invalidated to force a new context allocation
521 * at switch_mm time, should the mm ever be used on other cpus. For
522 * multithreaded address spaces, intercpu interrupts have to be sent.
523 * Another case where intercpu interrupts are required is when the target
524 * mm might be active on another cpu (eg debuggers doing the flushes on
525 * behalf of debugees, kswapd stealing pages from another process etc).
526 * Kanoj 07/00.
527 */
528
529void flush_tlb_mm(struct mm_struct *mm)
530{
531	preempt_disable();
532
533	if (cpu_has_mmid) {
534		/*
535		 * No need to worry about other CPUs - the ginvt in
536		 * drop_mmu_context() will be globalized.
537		 */
538	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
539		smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
540	} else {
541		unsigned int cpu;
542
543		for_each_online_cpu(cpu) {
544			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
545				set_cpu_context(cpu, mm, 0);
546		}
547	}
548	drop_mmu_context(mm);
549
550	preempt_enable();
551}
552
553struct flush_tlb_data {
554	struct vm_area_struct *vma;
555	unsigned long addr1;
556	unsigned long addr2;
557};
558
559static void flush_tlb_range_ipi(void *info)
560{
561	struct flush_tlb_data *fd = info;
562
563	local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
564}
565
566void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
567{
568	struct mm_struct *mm = vma->vm_mm;
569	unsigned long addr;
570	u32 old_mmid;
571
572	preempt_disable();
573	if (cpu_has_mmid) {
574		htw_stop();
575		old_mmid = read_c0_memorymapid();
576		write_c0_memorymapid(cpu_asid(0, mm));
577		mtc0_tlbw_hazard();
578		addr = round_down(start, PAGE_SIZE * 2);
579		end = round_up(end, PAGE_SIZE * 2);
580		do {
581			ginvt_va_mmid(addr);
582			sync_ginv();
583			addr += PAGE_SIZE * 2;
584		} while (addr < end);
585		write_c0_memorymapid(old_mmid);
586		instruction_hazard();
587		htw_start();
588	} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
589		struct flush_tlb_data fd = {
590			.vma = vma,
591			.addr1 = start,
592			.addr2 = end,
593		};
594
595		smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
596		local_flush_tlb_range(vma, start, end);
597	} else {
598		unsigned int cpu;
599		int exec = vma->vm_flags & VM_EXEC;
600
601		for_each_online_cpu(cpu) {
602			/*
603			 * flush_cache_range() will only fully flush icache if
604			 * the VMA is executable, otherwise we must invalidate
605			 * ASID without it appearing to has_valid_asid() as if
606			 * mm has been completely unused by that CPU.
607			 */
608			if (cpu != smp_processor_id() && cpu_context(cpu, mm))
609				set_cpu_context(cpu, mm, !exec);
610		}
611		local_flush_tlb_range(vma, start, end);
612	}
 
613	preempt_enable();
614}
615
616static void flush_tlb_kernel_range_ipi(void *info)
617{
618	struct flush_tlb_data *fd = info;
619
620	local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
621}
622
623void flush_tlb_kernel_range(unsigned long start, unsigned long end)
624{
625	struct flush_tlb_data fd = {
626		.addr1 = start,
627		.addr2 = end,
628	};
629
630	on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
631}
632
633static void flush_tlb_page_ipi(void *info)
634{
635	struct flush_tlb_data *fd = info;
636
637	local_flush_tlb_page(fd->vma, fd->addr1);
638}
639
640void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
641{
642	u32 old_mmid;
643
644	preempt_disable();
645	if (cpu_has_mmid) {
646		htw_stop();
647		old_mmid = read_c0_memorymapid();
648		write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
649		mtc0_tlbw_hazard();
650		ginvt_va_mmid(page);
651		sync_ginv();
652		write_c0_memorymapid(old_mmid);
653		instruction_hazard();
654		htw_start();
655	} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
656		   (current->mm != vma->vm_mm)) {
657		struct flush_tlb_data fd = {
658			.vma = vma,
659			.addr1 = page,
660		};
661
662		smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
663		local_flush_tlb_page(vma, page);
664	} else {
665		unsigned int cpu;
666
667		for_each_online_cpu(cpu) {
668			/*
669			 * flush_cache_page() only does partial flushes, so
670			 * invalidate ASID without it appearing to
671			 * has_valid_asid() as if mm has been completely unused
672			 * by that CPU.
673			 */
674			if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
675				set_cpu_context(cpu, vma->vm_mm, 1);
676		}
677		local_flush_tlb_page(vma, page);
678	}
 
679	preempt_enable();
680}
681
682static void flush_tlb_one_ipi(void *info)
683{
684	unsigned long vaddr = (unsigned long) info;
685
686	local_flush_tlb_one(vaddr);
687}
688
689void flush_tlb_one(unsigned long vaddr)
690{
691	smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
692}
693
694EXPORT_SYMBOL(flush_tlb_page);
695EXPORT_SYMBOL(flush_tlb_one);
696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
697#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
698
699static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
700static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
701
702void tick_broadcast(const struct cpumask *mask)
703{
704	atomic_t *count;
705	call_single_data_t *csd;
706	int cpu;
707
708	for_each_cpu(cpu, mask) {
709		count = &per_cpu(tick_broadcast_count, cpu);
710		csd = &per_cpu(tick_broadcast_csd, cpu);
711
712		if (atomic_inc_return(count) == 1)
713			smp_call_function_single_async(cpu, csd);
714	}
715}
716
717static void tick_broadcast_callee(void *info)
718{
719	int cpu = smp_processor_id();
720	tick_receive_broadcast();
721	atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
722}
723
724static int __init tick_broadcast_init(void)
725{
726	call_single_data_t *csd;
727	int cpu;
728
729	for (cpu = 0; cpu < NR_CPUS; cpu++) {
730		csd = &per_cpu(tick_broadcast_csd, cpu);
731		csd->func = tick_broadcast_callee;
732	}
733
734	return 0;
735}
736early_initcall(tick_broadcast_init);
737
738#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */