Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author: Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 
 
 15#include <linux/compiler.h>
 16#include <linux/kernel.h>
 17#include <linux/types.h>
 18#include <linux/irqflags.h>
 19
 20#include <asm/addrspace.h>
 
 21#include <asm/bug.h>
 22#include <asm/byteorder.h>
 23#include <asm/cpu.h>
 24#include <asm/cpu-features.h>
 25#include <asm-generic/iomap.h>
 26#include <asm/page.h>
 27#include <asm/pgtable-bits.h>
 28#include <asm/processor.h>
 29#include <asm/string.h>
 30
 31#include <ioremap.h>
 32#include <mangle-port.h>
 33
 34/*
 35 * Slowdown I/O port space accesses for antique hardware.
 36 */
 37#undef CONF_SLOWDOWN_IO
 38
 39/*
 40 * Raw operations are never swapped in software.  OTOH values that raw
 41 * operations are working on may or may not have been swapped by the bus
 42 * hardware.  An example use would be for flash memory that's used for
 43 * execute in place.
 44 */
 45# define __raw_ioswabb(a, x)	(x)
 46# define __raw_ioswabw(a, x)	(x)
 47# define __raw_ioswabl(a, x)	(x)
 48# define __raw_ioswabq(a, x)	(x)
 49# define ____raw_ioswabq(a, x)	(x)
 50
 
 
 
 
 
 51/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 52
 53#define IO_SPACE_LIMIT 0xffff
 54
 55/*
 56 * On MIPS I/O ports are memory mapped, so we access them using normal
 57 * load/store instructions. mips_io_port_base is the virtual address to
 58 * which all ports are being mapped.  For sake of efficiency some code
 59 * assumes that this is an address that can be loaded with a single lui
 60 * instruction, so the lower 16 bits must be zero.  Should be true on
 61 * on any sane architecture; generic code does not use this assumption.
 62 */
 63extern const unsigned long mips_io_port_base;
 64
 65/*
 66 * Gcc will generate code to load the value of mips_io_port_base after each
 67 * function call which may be fairly wasteful in some cases.  So we don't
 68 * play quite by the book.  We tell gcc mips_io_port_base is a long variable
 69 * which solves the code generation issue.  Now we need to violate the
 70 * aliasing rules a little to make initialization possible and finally we
 71 * will need the barrier() to fight side effects of the aliasing chat.
 72 * This trickery will eventually collapse under gcc's optimizer.  Oh well.
 73 */
 74static inline void set_io_port_base(unsigned long base)
 75{
 76	* (unsigned long *) &mips_io_port_base = base;
 77	barrier();
 78}
 79
 80/*
 81 * Thanks to James van Artsdalen for a better timing-fix than
 82 * the two short jumps: using outb's to a nonexistent port seems
 83 * to guarantee better timings even on fast machines.
 84 *
 85 * On the other hand, I'd like to be sure of a non-existent port:
 86 * I feel a bit unsafe about using 0x80 (should be safe, though)
 87 *
 88 *		Linus
 89 *
 90 */
 91
 92#define __SLOW_DOWN_IO \
 93	__asm__ __volatile__( \
 94		"sb\t$0,0x80(%0)" \
 95		: : "r" (mips_io_port_base));
 96
 97#ifdef CONF_SLOWDOWN_IO
 98#ifdef REALLY_SLOW_IO
 99#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
100#else
101#define SLOW_DOWN_IO __SLOW_DOWN_IO
102#endif
103#else
104#define SLOW_DOWN_IO
105#endif
 
106
107/*
108 *     virt_to_phys    -       map virtual addresses to physical
109 *     @address: address to remap
110 *
111 *     The returned physical address is the physical (CPU) mapping for
112 *     the memory address given. It is only valid to use this function on
113 *     addresses directly mapped or allocated via kmalloc.
114 *
115 *     This function does not give bus mappings for DMA transfers. In
116 *     almost all conceivable cases a device driver should not be using
117 *     this function
118 */
119static inline unsigned long virt_to_phys(volatile const void *address)
120{
121	return __pa(address);
122}
123
124/*
125 *     phys_to_virt    -       map physical address to virtual
126 *     @address: address to remap
127 *
128 *     The returned virtual address is a current CPU mapping for
129 *     the memory address given. It is only valid to use this function on
130 *     addresses that have a kernel mapping
131 *
132 *     This function does not handle bus mappings for DMA transfers. In
133 *     almost all conceivable cases a device driver should not be using
134 *     this function
135 */
136static inline void * phys_to_virt(unsigned long address)
137{
138	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
139}
140
141/*
142 * ISA I/O bus memory addresses are 1:1 with the physical address.
143 */
144static inline unsigned long isa_virt_to_bus(volatile void * address)
145{
146	return (unsigned long)address - PAGE_OFFSET;
147}
148
149static inline void * isa_bus_to_virt(unsigned long address)
150{
151	return (void *)(address + PAGE_OFFSET);
152}
153
154#define isa_page_to_bus page_to_phys
155
156/*
157 * However PCI ones are not necessarily 1:1 and therefore these interfaces
158 * are forbidden in portable PCI drivers.
159 *
160 * Allow them for x86 for legacy drivers, though.
161 */
162#define virt_to_bus virt_to_phys
163#define bus_to_virt phys_to_virt
164
165/*
166 * Change "struct page" to physical address.
167 */
168#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
169
170extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
171extern void __iounmap(const volatile void __iomem *addr);
172
173#ifndef CONFIG_PCI
174struct pci_dev;
175static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
176#endif
177
178static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
179	unsigned long flags)
180{
181	void __iomem *addr = plat_ioremap(offset, size, flags);
182
183	if (addr)
184		return addr;
185
186#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
187
188	if (cpu_has_64bit_addresses) {
189		u64 base = UNCAC_BASE;
190
191		/*
192		 * R10000 supports a 2 bit uncached attribute therefore
193		 * UNCAC_BASE may not equal IO_BASE.
194		 */
195		if (flags == _CACHE_UNCACHED)
196			base = (u64) IO_BASE;
197		return (void __iomem *) (unsigned long) (base + offset);
198	} else if (__builtin_constant_p(offset) &&
199		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
200		phys_addr_t phys_addr, last_addr;
201
202		phys_addr = fixup_bigphys_addr(offset, size);
203
204		/* Don't allow wraparound or zero size. */
205		last_addr = phys_addr + size - 1;
206		if (!size || last_addr < phys_addr)
207			return NULL;
208
209		/*
210		 * Map uncached objects in the low 512MB of address
211		 * space using KSEG1.
212		 */
213		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
214		    flags == _CACHE_UNCACHED)
215			return (void __iomem *)
216				(unsigned long)CKSEG1ADDR(phys_addr);
217	}
218
219	return __ioremap(offset, size, flags);
220
221#undef __IS_LOW512
222}
223
224/*
 
 
 
 
 
 
 
 
 
 
 
 
225 * ioremap     -   map bus memory into CPU space
226 * @offset:    bus address of the memory
227 * @size:      size of the resource to map
228 *
229 * ioremap performs a platform specific sequence of operations to
230 * make bus memory CPU accessible via the readb/readw/readl/writeb/
231 * writew/writel functions and the other mmio helpers. The returned
232 * address is not guaranteed to be usable directly as a virtual
233 * address.
234 */
235#define ioremap(offset, size)						\
236	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
237
238/*
239 * ioremap_nocache     -   map bus memory into CPU space
240 * @offset:    bus address of the memory
241 * @size:      size of the resource to map
242 *
243 * ioremap_nocache performs a platform specific sequence of operations to
244 * make bus memory CPU accessible via the readb/readw/readl/writeb/
245 * writew/writel functions and the other mmio helpers. The returned
246 * address is not guaranteed to be usable directly as a virtual
247 * address.
248 *
249 * This version of ioremap ensures that the memory is marked uncachable
250 * on the CPU as well as honouring existing caching rules from things like
251 * the PCI bus. Note that there are other caches and buffers on many
252 * busses. In particular driver authors should read up on PCI writes
253 *
254 * It's useful if some control registers are in such an area and
255 * write combining or read caching is not desirable:
256 */
257#define ioremap_nocache(offset, size)					\
258	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
259#define ioremap_uc ioremap_nocache
260
261/*
262 * ioremap_cachable -	map bus memory into CPU space
263 * @offset:	    bus address of the memory
264 * @size:	    size of the resource to map
265 *
266 * ioremap_nocache performs a platform specific sequence of operations to
267 * make bus memory CPU accessible via the readb/readw/readl/writeb/
268 * writew/writel functions and the other mmio helpers. The returned
269 * address is not guaranteed to be usable directly as a virtual
270 * address.
271 *
272 * This version of ioremap ensures that the memory is marked cachable by
273 * the CPU.  Also enables full write-combining.	 Useful for some
274 * memory-like regions on I/O busses.
275 */
276#define ioremap_cachable(offset, size)					\
277	__ioremap_mode((offset), (size), _page_cachable_default)
278#define ioremap_cache ioremap_cachable
279
280/*
281 * These two are MIPS specific ioremap variant.	 ioremap_cacheable_cow
282 * requests a cachable mapping, ioremap_uncached_accelerated requests a
283 * mapping using the uncached accelerated mode which isn't supported on
284 * all processors.
285 */
286#define ioremap_cacheable_cow(offset, size)				\
287	__ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
288#define ioremap_uncached_accelerated(offset, size)			\
289	__ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
 
 
 
 
 
 
 
 
 
 
290
291static inline void iounmap(const volatile void __iomem *addr)
292{
293	if (plat_iounmap(addr))
294		return;
295
296#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
297
298	if (cpu_has_64bit_addresses ||
299	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
300		return;
301
302	__iounmap(addr);
303
304#undef __IS_KSEG1
305}
306
307#ifdef CONFIG_CPU_CAVIUM_OCTEON
308#define war_octeon_io_reorder_wmb()		wmb()
309#else
310#define war_octeon_io_reorder_wmb()		do { } while (0)
311#endif
312
313#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
314									\
315static inline void pfx##write##bwlq(type val,				\
316				    volatile void __iomem *mem)		\
317{									\
318	volatile type *__mem;						\
319	type __val;							\
320									\
321	war_octeon_io_reorder_wmb();					\
 
 
 
322									\
323	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
324									\
325	__val = pfx##ioswab##bwlq(__mem, val);				\
326									\
327	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
328		*__mem = __val;						\
329	else if (cpu_has_64bits) {					\
330		unsigned long __flags;					\
331		type __tmp;						\
332									\
333		if (irq)						\
334			local_irq_save(__flags);			\
335		__asm__ __volatile__(					\
336			".set	arch=r4000"	"\t\t# __writeq""\n\t"	\
 
337			"dsll32 %L0, %L0, 0"			"\n\t"	\
338			"dsrl32 %L0, %L0, 0"			"\n\t"	\
339			"dsll32 %M0, %M0, 0"			"\n\t"	\
340			"or	%L0, %L0, %M0"			"\n\t"	\
341			"sd	%L0, %2"			"\n\t"	\
342			".set	mips0"				"\n"	\
343			: "=r" (__tmp)					\
344			: "0" (__val), "m" (*__mem));			\
345		if (irq)						\
346			local_irq_restore(__flags);			\
347	} else								\
348		BUG();							\
349}									\
350									\
351static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
352{									\
353	volatile type *__mem;						\
354	type __val;							\
355									\
356	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
357									\
 
 
 
358	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
359		__val = *__mem;						\
360	else if (cpu_has_64bits) {					\
361		unsigned long __flags;					\
362									\
363		if (irq)						\
364			local_irq_save(__flags);			\
365		__asm__ __volatile__(					\
366			".set	arch=r4000"	"\t\t# __readq" "\n\t"	\
 
367			"ld	%L0, %1"			"\n\t"	\
368			"dsra32 %M0, %L0, 0"			"\n\t"	\
369			"sll	%L0, %L0, 0"			"\n\t"	\
370			".set	mips0"				"\n"	\
371			: "=r" (__val)					\
372			: "m" (*__mem));				\
373		if (irq)						\
374			local_irq_restore(__flags);			\
375	} else {							\
376		__val = 0;						\
377		BUG();							\
378	}								\
379									\
 
 
 
380	return pfx##ioswab##bwlq(__mem, __val);				\
381}
382
383#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
384									\
385static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
386{									\
387	volatile type *__addr;						\
388	type __val;							\
389									\
390	war_octeon_io_reorder_wmb();					\
 
 
 
391									\
392	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
393									\
394	__val = pfx##ioswab##bwlq(__addr, val);				\
395									\
396	/* Really, we want this to be atomic */				\
397	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
398									\
399	*__addr = __val;						\
400	slow;								\
401}									\
402									\
403static inline type pfx##in##bwlq##p(unsigned long port)			\
404{									\
405	volatile type *__addr;						\
406	type __val;							\
407									\
408	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409									\
410	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
411									\
 
 
 
412	__val = *__addr;						\
413	slow;								\
414									\
 
 
 
415	return pfx##ioswab##bwlq(__addr, __val);			\
416}
417
418#define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
419									\
420__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
421
422#define BUILDIO_MEM(bwlq, type)						\
423									\
424__BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
425__BUILD_MEMORY_PFX(, bwlq, type)					\
426__BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
 
427
428BUILDIO_MEM(b, u8)
429BUILDIO_MEM(w, u16)
430BUILDIO_MEM(l, u32)
 
431BUILDIO_MEM(q, u64)
 
 
 
 
432
433#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
434	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
435	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
436
437#define BUILDIO_IOPORT(bwlq, type)					\
438	__BUILD_IOPORT_PFX(, bwlq, type)				\
439	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
440
441BUILDIO_IOPORT(b, u8)
442BUILDIO_IOPORT(w, u16)
443BUILDIO_IOPORT(l, u32)
444#ifdef CONFIG_64BIT
445BUILDIO_IOPORT(q, u64)
446#endif
447
448#define __BUILDIO(bwlq, type)						\
449									\
450__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
451
452__BUILDIO(q, u64)
453
454#define readb_relaxed			readb
455#define readw_relaxed			readw
456#define readl_relaxed			readl
457#define readq_relaxed			readq
458
459#define writeb_relaxed			writeb
460#define writew_relaxed			writew
461#define writel_relaxed			writel
462#define writeq_relaxed			writeq
 
 
 
 
463
464#define readb_be(addr)							\
465	__raw_readb((__force unsigned *)(addr))
466#define readw_be(addr)							\
467	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
468#define readl_be(addr)							\
469	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
470#define readq_be(addr)							\
471	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
472
473#define writeb_be(val, addr)						\
474	__raw_writeb((val), (__force unsigned *)(addr))
475#define writew_be(val, addr)						\
476	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
477#define writel_be(val, addr)						\
478	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
479#define writeq_be(val, addr)						\
480	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
481
482/*
483 * Some code tests for these symbols
484 */
 
485#define readq				readq
486#define writeq				writeq
 
487
488#define __BUILD_MEMORY_STRING(bwlq, type)				\
489									\
490static inline void writes##bwlq(volatile void __iomem *mem,		\
491				const void *addr, unsigned int count)	\
492{									\
493	const volatile type *__addr = addr;				\
494									\
495	while (count--) {						\
496		__mem_write##bwlq(*__addr, mem);			\
497		__addr++;						\
498	}								\
499}									\
500									\
501static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
502			       unsigned int count)			\
503{									\
504	volatile type *__addr = addr;					\
505									\
506	while (count--) {						\
507		*__addr = __mem_read##bwlq(mem);			\
508		__addr++;						\
509	}								\
510}
511
512#define __BUILD_IOPORT_STRING(bwlq, type)				\
513									\
514static inline void outs##bwlq(unsigned long port, const void *addr,	\
515			      unsigned int count)			\
516{									\
517	const volatile type *__addr = addr;				\
518									\
519	while (count--) {						\
520		__mem_out##bwlq(*__addr, port);				\
521		__addr++;						\
522	}								\
523}									\
524									\
525static inline void ins##bwlq(unsigned long port, void *addr,		\
526			     unsigned int count)			\
527{									\
528	volatile type *__addr = addr;					\
529									\
530	while (count--) {						\
531		*__addr = __mem_in##bwlq(port);				\
532		__addr++;						\
533	}								\
534}
535
536#define BUILDSTRING(bwlq, type)						\
537									\
538__BUILD_MEMORY_STRING(bwlq, type)					\
539__BUILD_IOPORT_STRING(bwlq, type)
540
541BUILDSTRING(b, u8)
542BUILDSTRING(w, u16)
543BUILDSTRING(l, u32)
544#ifdef CONFIG_64BIT
545BUILDSTRING(q, u64)
546#endif
547
548
549#ifdef CONFIG_CPU_CAVIUM_OCTEON
550#define mmiowb() wmb()
551#else
552/* Depends on MIPS II instruction set */
553#define mmiowb() asm volatile ("sync" ::: "memory")
554#endif
555
556static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
557{
558	memset((void __force *) addr, val, count);
559}
560static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
561{
562	memcpy(dst, (void __force *) src, count);
563}
564static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
565{
566	memcpy((void __force *) dst, src, count);
567}
568
569/*
570 * The caches on some architectures aren't dma-coherent and have need to
571 * handle this in software.  There are three types of operations that
572 * can be applied to dma buffers.
573 *
574 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
575 *    writing the content of the caches back to memory, if necessary.
576 *    The function also invalidates the affected part of the caches as
577 *    necessary before DMA transfers from outside to memory.
578 *  - dma_cache_wback(start, size) makes caches and coherent by
579 *    writing the content of the caches back to memory, if necessary.
580 *    The function also invalidates the affected part of the caches as
581 *    necessary before DMA transfers from outside to memory.
582 *  - dma_cache_inv(start, size) invalidates the affected parts of the
583 *    caches.  Dirty lines of the caches may be written back or simply
584 *    be discarded.  This operation is necessary before dma operations
585 *    to the memory.
586 *
587 * This API used to be exported; it now is for arch code internal use only.
588 */
589#if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
590
591extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
592extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
593extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
594
595#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
596#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
597#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
598
599#else /* Sane hardware */
600
601#define dma_cache_wback_inv(start,size) \
602	do { (void) (start); (void) (size); } while (0)
603#define dma_cache_wback(start,size)	\
604	do { (void) (start); (void) (size); } while (0)
605#define dma_cache_inv(start,size)	\
606	do { (void) (start); (void) (size); } while (0)
607
608#endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
609
610/*
611 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
612 * Avoid interrupt mucking, just adjust the address for 4-byte access.
613 * Assume the addresses are 8-byte aligned.
614 */
615#ifdef __MIPSEB__
616#define __CSR_32_ADJUST 4
617#else
618#define __CSR_32_ADJUST 0
619#endif
620
621#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
622#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
623
624/*
625 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
626 * access
627 */
628#define xlate_dev_mem_ptr(p)	__va(p)
629
630/*
631 * Convert a virtual cached pointer to an uncached pointer
632 */
633#define xlate_dev_kmem_ptr(p)	p
 
 
634
635#endif /* _ASM_IO_H */
v5.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994, 1995 Waldorf GmbH
  7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 10 *	Author: Maciej W. Rozycki <macro@mips.com>
 11 */
 12#ifndef _ASM_IO_H
 13#define _ASM_IO_H
 14
 15#define ARCH_HAS_IOREMAP_WC
 16
 17#include <linux/compiler.h>
 18#include <linux/kernel.h>
 19#include <linux/types.h>
 20#include <linux/irqflags.h>
 21
 22#include <asm/addrspace.h>
 23#include <asm/barrier.h>
 24#include <asm/bug.h>
 25#include <asm/byteorder.h>
 26#include <asm/cpu.h>
 27#include <asm/cpu-features.h>
 28#include <asm-generic/iomap.h>
 29#include <asm/page.h>
 30#include <asm/pgtable-bits.h>
 31#include <asm/processor.h>
 32#include <asm/string.h>
 33
 34#include <ioremap.h>
 35#include <mangle-port.h>
 36
 37/*
 
 
 
 
 
 38 * Raw operations are never swapped in software.  OTOH values that raw
 39 * operations are working on may or may not have been swapped by the bus
 40 * hardware.  An example use would be for flash memory that's used for
 41 * execute in place.
 42 */
 43# define __raw_ioswabb(a, x)	(x)
 44# define __raw_ioswabw(a, x)	(x)
 45# define __raw_ioswabl(a, x)	(x)
 46# define __raw_ioswabq(a, x)	(x)
 47# define ____raw_ioswabq(a, x)	(x)
 48
 49# define __relaxed_ioswabb ioswabb
 50# define __relaxed_ioswabw ioswabw
 51# define __relaxed_ioswabl ioswabl
 52# define __relaxed_ioswabq ioswabq
 53
 54/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
 55
 56#define IO_SPACE_LIMIT 0xffff
 57
 58/*
 59 * On MIPS I/O ports are memory mapped, so we access them using normal
 60 * load/store instructions. mips_io_port_base is the virtual address to
 61 * which all ports are being mapped.  For sake of efficiency some code
 62 * assumes that this is an address that can be loaded with a single lui
 63 * instruction, so the lower 16 bits must be zero.  Should be true on
 64 * on any sane architecture; generic code does not use this assumption.
 65 */
 66extern unsigned long mips_io_port_base;
 67
 
 
 
 
 
 
 
 
 
 68static inline void set_io_port_base(unsigned long base)
 69{
 70	mips_io_port_base = base;
 
 71}
 72
 73/*
 74 * Provide the necessary definitions for generic iomap. We make use of
 75 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
 76 * use with I/O ports.
 
 
 
 
 
 
 77 */
 78
 79#define HAVE_ARCH_PIO_SIZE
 80#define PIO_OFFSET	mips_io_port_base
 81#define PIO_MASK	IO_SPACE_LIMIT
 82#define PIO_RESERVED	0x0UL
 83
 84/*
 85 * Enforce in-order execution of data I/O.  In the MIPS architecture
 86 * these are equivalent to corresponding platform-specific memory
 87 * barriers defined in <asm/barrier.h>.  API pinched from PowerPC,
 88 * with sync additionally defined.
 89 */
 90#define iobarrier_rw() mb()
 91#define iobarrier_r() rmb()
 92#define iobarrier_w() wmb()
 93#define iobarrier_sync() iob()
 94
 95/*
 96 *     virt_to_phys    -       map virtual addresses to physical
 97 *     @address: address to remap
 98 *
 99 *     The returned physical address is the physical (CPU) mapping for
100 *     the memory address given. It is only valid to use this function on
101 *     addresses directly mapped or allocated via kmalloc.
102 *
103 *     This function does not give bus mappings for DMA transfers. In
104 *     almost all conceivable cases a device driver should not be using
105 *     this function
106 */
107static inline unsigned long virt_to_phys(volatile const void *address)
108{
109	return __pa(address);
110}
111
112/*
113 *     phys_to_virt    -       map physical address to virtual
114 *     @address: address to remap
115 *
116 *     The returned virtual address is a current CPU mapping for
117 *     the memory address given. It is only valid to use this function on
118 *     addresses that have a kernel mapping
119 *
120 *     This function does not handle bus mappings for DMA transfers. In
121 *     almost all conceivable cases a device driver should not be using
122 *     this function
123 */
124static inline void * phys_to_virt(unsigned long address)
125{
126	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
127}
128
129/*
130 * ISA I/O bus memory addresses are 1:1 with the physical address.
131 */
132static inline unsigned long isa_virt_to_bus(volatile void *address)
133{
134	return virt_to_phys(address);
135}
136
137static inline void *isa_bus_to_virt(unsigned long address)
138{
139	return phys_to_virt(address);
140}
141
 
 
142/*
143 * However PCI ones are not necessarily 1:1 and therefore these interfaces
144 * are forbidden in portable PCI drivers.
145 *
146 * Allow them for x86 for legacy drivers, though.
147 */
148#define virt_to_bus virt_to_phys
149#define bus_to_virt phys_to_virt
150
151/*
152 * Change "struct page" to physical address.
153 */
154#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
155
156extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
157extern void __iounmap(const volatile void __iomem *addr);
158
 
 
 
 
 
159static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
160	unsigned long flags)
161{
162	void __iomem *addr = plat_ioremap(offset, size, flags);
163
164	if (addr)
165		return addr;
166
167#define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
168
169	if (cpu_has_64bit_addresses) {
170		u64 base = UNCAC_BASE;
171
172		/*
173		 * R10000 supports a 2 bit uncached attribute therefore
174		 * UNCAC_BASE may not equal IO_BASE.
175		 */
176		if (flags == _CACHE_UNCACHED)
177			base = (u64) IO_BASE;
178		return (void __iomem *) (unsigned long) (base + offset);
179	} else if (__builtin_constant_p(offset) &&
180		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
181		phys_addr_t phys_addr, last_addr;
182
183		phys_addr = fixup_bigphys_addr(offset, size);
184
185		/* Don't allow wraparound or zero size. */
186		last_addr = phys_addr + size - 1;
187		if (!size || last_addr < phys_addr)
188			return NULL;
189
190		/*
191		 * Map uncached objects in the low 512MB of address
192		 * space using KSEG1.
193		 */
194		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
195		    flags == _CACHE_UNCACHED)
196			return (void __iomem *)
197				(unsigned long)CKSEG1ADDR(phys_addr);
198	}
199
200	return __ioremap(offset, size, flags);
201
202#undef __IS_LOW512
203}
204
205/*
206 * ioremap_prot     -   map bus memory into CPU space
207 * @offset:    bus address of the memory
208 * @size:      size of the resource to map
209
210 * ioremap_prot gives the caller control over cache coherency attributes (CCA)
211 */
212static inline void __iomem *ioremap_prot(phys_addr_t offset,
213		unsigned long size, unsigned long prot_val) {
214	return __ioremap_mode(offset, size, prot_val & _CACHE_MASK);
215}
216
217/*
218 * ioremap     -   map bus memory into CPU space
219 * @offset:    bus address of the memory
220 * @size:      size of the resource to map
221 *
222 * ioremap performs a platform specific sequence of operations to
223 * make bus memory CPU accessible via the readb/readw/readl/writeb/
224 * writew/writel functions and the other mmio helpers. The returned
225 * address is not guaranteed to be usable directly as a virtual
226 * address.
227 */
228#define ioremap(offset, size)						\
229	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
230
231/*
232 * ioremap_nocache     -   map bus memory into CPU space
233 * @offset:    bus address of the memory
234 * @size:      size of the resource to map
235 *
236 * ioremap_nocache performs a platform specific sequence of operations to
237 * make bus memory CPU accessible via the readb/readw/readl/writeb/
238 * writew/writel functions and the other mmio helpers. The returned
239 * address is not guaranteed to be usable directly as a virtual
240 * address.
241 *
242 * This version of ioremap ensures that the memory is marked uncachable
243 * on the CPU as well as honouring existing caching rules from things like
244 * the PCI bus. Note that there are other caches and buffers on many
245 * busses. In particular driver authors should read up on PCI writes
246 *
247 * It's useful if some control registers are in such an area and
248 * write combining or read caching is not desirable:
249 */
250#define ioremap_nocache(offset, size)					\
251	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
252#define ioremap_uc ioremap_nocache
253
254/*
255 * ioremap_cache -	map bus memory into CPU space
256 * @offset:	    bus address of the memory
257 * @size:	    size of the resource to map
258 *
259 * ioremap_cache performs a platform specific sequence of operations to
260 * make bus memory CPU accessible via the readb/readw/readl/writeb/
261 * writew/writel functions and the other mmio helpers. The returned
262 * address is not guaranteed to be usable directly as a virtual
263 * address.
264 *
265 * This version of ioremap ensures that the memory is marked cachable by
266 * the CPU.  Also enables full write-combining.	 Useful for some
267 * memory-like regions on I/O busses.
268 */
269#define ioremap_cache(offset, size)					\
270	__ioremap_mode((offset), (size), _page_cachable_default)
 
271
272/*
273 * ioremap_wc     -   map bus memory into CPU space
274 * @offset:    bus address of the memory
275 * @size:      size of the resource to map
276 *
277 * ioremap_wc performs a platform specific sequence of operations to
278 * make bus memory CPU accessible via the readb/readw/readl/writeb/
279 * writew/writel functions and the other mmio helpers. The returned
280 * address is not guaranteed to be usable directly as a virtual
281 * address.
282 *
283 * This version of ioremap ensures that the memory is marked uncachable
284 * but accelerated by means of write-combining feature. It is specifically
285 * useful for PCIe prefetchable windows, which may vastly improve a
286 * communications performance. If it was determined on boot stage, what
287 * CPU CCA doesn't support UCA, the method shall fall-back to the
288 * _CACHE_UNCACHED option (see cpu_probe() method).
289 */
290#define ioremap_wc(offset, size)					\
291	__ioremap_mode((offset), (size), boot_cpu_data.writecombine)
292
293static inline void iounmap(const volatile void __iomem *addr)
294{
295	if (plat_iounmap(addr))
296		return;
297
298#define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
299
300	if (cpu_has_64bit_addresses ||
301	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
302		return;
303
304	__iounmap(addr);
305
306#undef __IS_KSEG1
307}
308
309#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON3)
310#define war_io_reorder_wmb()		wmb()
311#else
312#define war_io_reorder_wmb()		barrier()
313#endif
314
315#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq)	\
316									\
317static inline void pfx##write##bwlq(type val,				\
318				    volatile void __iomem *mem)		\
319{									\
320	volatile type *__mem;						\
321	type __val;							\
322									\
323	if (barrier)							\
324		iobarrier_rw();						\
325	else								\
326		war_io_reorder_wmb();					\
327									\
328	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
329									\
330	__val = pfx##ioswab##bwlq(__mem, val);				\
331									\
332	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
333		*__mem = __val;						\
334	else if (cpu_has_64bits) {					\
335		unsigned long __flags;					\
336		type __tmp;						\
337									\
338		if (irq)						\
339			local_irq_save(__flags);			\
340		__asm__ __volatile__(					\
341			".set	push"		"\t\t# __writeq""\n\t"	\
342			".set	arch=r4000"			"\n\t"	\
343			"dsll32 %L0, %L0, 0"			"\n\t"	\
344			"dsrl32 %L0, %L0, 0"			"\n\t"	\
345			"dsll32 %M0, %M0, 0"			"\n\t"	\
346			"or	%L0, %L0, %M0"			"\n\t"	\
347			"sd	%L0, %2"			"\n\t"	\
348			".set	pop"				"\n"	\
349			: "=r" (__tmp)					\
350			: "0" (__val), "m" (*__mem));			\
351		if (irq)						\
352			local_irq_restore(__flags);			\
353	} else								\
354		BUG();							\
355}									\
356									\
357static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
358{									\
359	volatile type *__mem;						\
360	type __val;							\
361									\
362	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
363									\
364	if (barrier)							\
365		iobarrier_rw();						\
366									\
367	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
368		__val = *__mem;						\
369	else if (cpu_has_64bits) {					\
370		unsigned long __flags;					\
371									\
372		if (irq)						\
373			local_irq_save(__flags);			\
374		__asm__ __volatile__(					\
375			".set	push"		"\t\t# __readq" "\n\t"	\
376			".set	arch=r4000"			"\n\t"	\
377			"ld	%L0, %1"			"\n\t"	\
378			"dsra32 %M0, %L0, 0"			"\n\t"	\
379			"sll	%L0, %L0, 0"			"\n\t"	\
380			".set	pop"				"\n"	\
381			: "=r" (__val)					\
382			: "m" (*__mem));				\
383		if (irq)						\
384			local_irq_restore(__flags);			\
385	} else {							\
386		__val = 0;						\
387		BUG();							\
388	}								\
389									\
390	/* prevent prefetching of coherent DMA data prematurely */	\
391	if (!relax)							\
392		rmb();							\
393	return pfx##ioswab##bwlq(__mem, __val);				\
394}
395
396#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p)	\
397									\
398static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
399{									\
400	volatile type *__addr;						\
401	type __val;							\
402									\
403	if (barrier)							\
404		iobarrier_rw();						\
405	else								\
406		war_io_reorder_wmb();					\
407									\
408	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409									\
410	__val = pfx##ioswab##bwlq(__addr, val);				\
411									\
412	/* Really, we want this to be atomic */				\
413	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
414									\
415	*__addr = __val;						\
 
416}									\
417									\
418static inline type pfx##in##bwlq##p(unsigned long port)			\
419{									\
420	volatile type *__addr;						\
421	type __val;							\
422									\
423	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
424									\
425	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
426									\
427	if (barrier)							\
428		iobarrier_rw();						\
429									\
430	__val = *__addr;						\
 
431									\
432	/* prevent prefetching of coherent DMA data prematurely */	\
433	if (!relax)							\
434		rmb();							\
435	return pfx##ioswab##bwlq(__addr, __val);			\
436}
437
438#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax)			\
439									\
440__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)
441
442#define BUILDIO_MEM(bwlq, type)						\
443									\
444__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0)				\
445__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1)				\
446__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0)				\
447__BUILD_MEMORY_PFX(, bwlq, type, 0)
448
449BUILDIO_MEM(b, u8)
450BUILDIO_MEM(w, u16)
451BUILDIO_MEM(l, u32)
452#ifdef CONFIG_64BIT
453BUILDIO_MEM(q, u64)
454#else
455__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
456__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
457#endif
458
459#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
460	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,)			\
461	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)
462
463#define BUILDIO_IOPORT(bwlq, type)					\
464	__BUILD_IOPORT_PFX(, bwlq, type)				\
465	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
466
467BUILDIO_IOPORT(b, u8)
468BUILDIO_IOPORT(w, u16)
469BUILDIO_IOPORT(l, u32)
470#ifdef CONFIG_64BIT
471BUILDIO_IOPORT(q, u64)
472#endif
473
474#define __BUILDIO(bwlq, type)						\
475									\
476__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)
477
478__BUILDIO(q, u64)
479
480#define readb_relaxed			__relaxed_readb
481#define readw_relaxed			__relaxed_readw
482#define readl_relaxed			__relaxed_readl
483#ifdef CONFIG_64BIT
484#define readq_relaxed			__relaxed_readq
485#endif
486
487#define writeb_relaxed			__relaxed_writeb
488#define writew_relaxed			__relaxed_writew
489#define writel_relaxed			__relaxed_writel
490#ifdef CONFIG_64BIT
491#define writeq_relaxed			__relaxed_writeq
492#endif
493
494#define readb_be(addr)							\
495	__raw_readb((__force unsigned *)(addr))
496#define readw_be(addr)							\
497	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
498#define readl_be(addr)							\
499	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
500#define readq_be(addr)							\
501	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
502
503#define writeb_be(val, addr)						\
504	__raw_writeb((val), (__force unsigned *)(addr))
505#define writew_be(val, addr)						\
506	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
507#define writel_be(val, addr)						\
508	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
509#define writeq_be(val, addr)						\
510	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
511
512/*
513 * Some code tests for these symbols
514 */
515#ifdef CONFIG_64BIT
516#define readq				readq
517#define writeq				writeq
518#endif
519
520#define __BUILD_MEMORY_STRING(bwlq, type)				\
521									\
522static inline void writes##bwlq(volatile void __iomem *mem,		\
523				const void *addr, unsigned int count)	\
524{									\
525	const volatile type *__addr = addr;				\
526									\
527	while (count--) {						\
528		__mem_write##bwlq(*__addr, mem);			\
529		__addr++;						\
530	}								\
531}									\
532									\
533static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
534			       unsigned int count)			\
535{									\
536	volatile type *__addr = addr;					\
537									\
538	while (count--) {						\
539		*__addr = __mem_read##bwlq(mem);			\
540		__addr++;						\
541	}								\
542}
543
544#define __BUILD_IOPORT_STRING(bwlq, type)				\
545									\
546static inline void outs##bwlq(unsigned long port, const void *addr,	\
547			      unsigned int count)			\
548{									\
549	const volatile type *__addr = addr;				\
550									\
551	while (count--) {						\
552		__mem_out##bwlq(*__addr, port);				\
553		__addr++;						\
554	}								\
555}									\
556									\
557static inline void ins##bwlq(unsigned long port, void *addr,		\
558			     unsigned int count)			\
559{									\
560	volatile type *__addr = addr;					\
561									\
562	while (count--) {						\
563		*__addr = __mem_in##bwlq(port);				\
564		__addr++;						\
565	}								\
566}
567
568#define BUILDSTRING(bwlq, type)						\
569									\
570__BUILD_MEMORY_STRING(bwlq, type)					\
571__BUILD_IOPORT_STRING(bwlq, type)
572
573BUILDSTRING(b, u8)
574BUILDSTRING(w, u16)
575BUILDSTRING(l, u32)
576#ifdef CONFIG_64BIT
577BUILDSTRING(q, u64)
578#endif
579
 
 
 
 
 
 
 
 
580static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
581{
582	memset((void __force *) addr, val, count);
583}
584static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
585{
586	memcpy(dst, (void __force *) src, count);
587}
588static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
589{
590	memcpy((void __force *) dst, src, count);
591}
592
593/*
594 * The caches on some architectures aren't dma-coherent and have need to
595 * handle this in software.  There are three types of operations that
596 * can be applied to dma buffers.
597 *
598 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
599 *    writing the content of the caches back to memory, if necessary.
600 *    The function also invalidates the affected part of the caches as
601 *    necessary before DMA transfers from outside to memory.
602 *  - dma_cache_wback(start, size) makes caches and coherent by
603 *    writing the content of the caches back to memory, if necessary.
604 *    The function also invalidates the affected part of the caches as
605 *    necessary before DMA transfers from outside to memory.
606 *  - dma_cache_inv(start, size) invalidates the affected parts of the
607 *    caches.  Dirty lines of the caches may be written back or simply
608 *    be discarded.  This operation is necessary before dma operations
609 *    to the memory.
610 *
611 * This API used to be exported; it now is for arch code internal use only.
612 */
613#ifdef CONFIG_DMA_NONCOHERENT
614
615extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
616extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
617extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
618
619#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
620#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
621#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
622
623#else /* Sane hardware */
624
625#define dma_cache_wback_inv(start,size) \
626	do { (void) (start); (void) (size); } while (0)
627#define dma_cache_wback(start,size)	\
628	do { (void) (start); (void) (size); } while (0)
629#define dma_cache_inv(start,size)	\
630	do { (void) (start); (void) (size); } while (0)
631
632#endif /* CONFIG_DMA_NONCOHERENT */
633
634/*
635 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
636 * Avoid interrupt mucking, just adjust the address for 4-byte access.
637 * Assume the addresses are 8-byte aligned.
638 */
639#ifdef __MIPSEB__
640#define __CSR_32_ADJUST 4
641#else
642#define __CSR_32_ADJUST 0
643#endif
644
645#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
646#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
647
648/*
649 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
650 * access
651 */
652#define xlate_dev_mem_ptr(p)	__va(p)
653
654/*
655 * Convert a virtual cached pointer to an uncached pointer
656 */
657#define xlate_dev_kmem_ptr(p)	p
658
659void __ioread64_copy(void *to, const void __iomem *from, size_t count);
660
661#endif /* _ASM_IO_H */