Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * trace_hwlat.c - A simple Hardware Latency detector.
  4 *
  5 * Use this tracer to detect large system latencies induced by the behavior of
  6 * certain underlying system hardware or firmware, independent of Linux itself.
  7 * The code was developed originally to detect the presence of SMIs on Intel
  8 * and AMD systems, although there is no dependency upon x86 herein.
  9 *
 10 * The classical example usage of this tracer is in detecting the presence of
 11 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
 12 * somewhat special form of hardware interrupt spawned from earlier CPU debug
 13 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
 14 * LPC (or other device) to generate a special interrupt under certain
 15 * circumstances, for example, upon expiration of a special SMI timer device,
 16 * due to certain external thermal readings, on certain I/O address accesses,
 17 * and other situations. An SMI hits a special CPU pin, triggers a special
 18 * SMI mode (complete with special memory map), and the OS is unaware.
 19 *
 20 * Although certain hardware-inducing latencies are necessary (for example,
 21 * a modern system often requires an SMI handler for correct thermal control
 22 * and remote management) they can wreak havoc upon any OS-level performance
 23 * guarantees toward low-latency, especially when the OS is not even made
 24 * aware of the presence of these interrupts. For this reason, we need a
 25 * somewhat brute force mechanism to detect these interrupts. In this case,
 26 * we do it by hogging all of the CPU(s) for configurable timer intervals,
 27 * sampling the built-in CPU timer, looking for discontiguous readings.
 28 *
 29 * WARNING: This implementation necessarily introduces latencies. Therefore,
 30 *          you should NEVER use this tracer while running in a production
 31 *          environment requiring any kind of low-latency performance
 32 *          guarantee(s).
 33 *
 34 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
 35 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
 36 *
 37 * Includes useful feedback from Clark Williams <williams@redhat.com>
 38 *
 39 */
 40#include <linux/kthread.h>
 41#include <linux/tracefs.h>
 42#include <linux/uaccess.h>
 43#include <linux/cpumask.h>
 44#include <linux/delay.h>
 45#include <linux/sched/clock.h>
 46#include "trace.h"
 47
 48static struct trace_array	*hwlat_trace;
 49
 50#define U64STR_SIZE		22			/* 20 digits max */
 51
 52#define BANNER			"hwlat_detector: "
 53#define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
 54#define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
 55#define DEFAULT_LAT_THRESHOLD	10			/* 10us */
 56
 57static struct dentry *hwlat_sample_width;	/* sample width us */
 58static struct dentry *hwlat_sample_window;	/* sample window us */
 59static struct dentry *hwlat_thread_mode;	/* hwlat thread mode */
 60
 61enum {
 62	MODE_NONE = 0,
 63	MODE_ROUND_ROBIN,
 64	MODE_PER_CPU,
 65	MODE_MAX
 66};
 67static char *thread_mode_str[] = { "none", "round-robin", "per-cpu" };
 68
 69/* Save the previous tracing_thresh value */
 70static unsigned long save_tracing_thresh;
 71
 72/* runtime kthread data */
 73struct hwlat_kthread_data {
 74	struct task_struct	*kthread;
 75	/* NMI timestamp counters */
 76	u64			nmi_ts_start;
 77	u64			nmi_total_ts;
 78	int			nmi_count;
 79	int			nmi_cpu;
 80};
 81
 82struct hwlat_kthread_data hwlat_single_cpu_data;
 83DEFINE_PER_CPU(struct hwlat_kthread_data, hwlat_per_cpu_data);
 84
 85/* Tells NMIs to call back to the hwlat tracer to record timestamps */
 86bool trace_hwlat_callback_enabled;
 87
 88/* If the user changed threshold, remember it */
 89static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
 90
 91/* Individual latency samples are stored here when detected. */
 92struct hwlat_sample {
 93	u64			seqnum;		/* unique sequence */
 94	u64			duration;	/* delta */
 95	u64			outer_duration;	/* delta (outer loop) */
 96	u64			nmi_total_ts;	/* Total time spent in NMIs */
 97	struct timespec64	timestamp;	/* wall time */
 98	int			nmi_count;	/* # NMIs during this sample */
 99	int			count;		/* # of iterations over thresh */
100};
101
102/* keep the global state somewhere. */
103static struct hwlat_data {
104
105	struct mutex lock;		/* protect changes */
106
107	u64	count;			/* total since reset */
108
109	u64	sample_window;		/* total sampling window (on+off) */
110	u64	sample_width;		/* active sampling portion of window */
111
112	int	thread_mode;		/* thread mode */
113
114} hwlat_data = {
115	.sample_window		= DEFAULT_SAMPLE_WINDOW,
116	.sample_width		= DEFAULT_SAMPLE_WIDTH,
117	.thread_mode		= MODE_ROUND_ROBIN
118};
119
120static struct hwlat_kthread_data *get_cpu_data(void)
121{
122	if (hwlat_data.thread_mode == MODE_PER_CPU)
123		return this_cpu_ptr(&hwlat_per_cpu_data);
124	else
125		return &hwlat_single_cpu_data;
126}
127
128static bool hwlat_busy;
129
130static void trace_hwlat_sample(struct hwlat_sample *sample)
131{
132	struct trace_array *tr = hwlat_trace;
133	struct trace_event_call *call = &event_hwlat;
134	struct trace_buffer *buffer = tr->array_buffer.buffer;
135	struct ring_buffer_event *event;
136	struct hwlat_entry *entry;
137
138	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
139					  tracing_gen_ctx());
140	if (!event)
141		return;
142	entry	= ring_buffer_event_data(event);
143	entry->seqnum			= sample->seqnum;
144	entry->duration			= sample->duration;
145	entry->outer_duration		= sample->outer_duration;
146	entry->timestamp		= sample->timestamp;
147	entry->nmi_total_ts		= sample->nmi_total_ts;
148	entry->nmi_count		= sample->nmi_count;
149	entry->count			= sample->count;
150
151	if (!call_filter_check_discard(call, entry, buffer, event))
152		trace_buffer_unlock_commit_nostack(buffer, event);
153}
154
155/* Macros to encapsulate the time capturing infrastructure */
156#define time_type	u64
157#define time_get()	trace_clock_local()
158#define time_to_us(x)	div_u64(x, 1000)
159#define time_sub(a, b)	((a) - (b))
160#define init_time(a, b)	(a = b)
161#define time_u64(a)	a
162
163void trace_hwlat_callback(bool enter)
164{
165	struct hwlat_kthread_data *kdata = get_cpu_data();
166
167	if (!kdata->kthread)
168		return;
169
170	/*
171	 * Currently trace_clock_local() calls sched_clock() and the
172	 * generic version is not NMI safe.
173	 */
174	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
175		if (enter)
176			kdata->nmi_ts_start = time_get();
177		else
178			kdata->nmi_total_ts += time_get() - kdata->nmi_ts_start;
179	}
180
181	if (enter)
182		kdata->nmi_count++;
183}
184
185/*
186 * hwlat_err - report a hwlat error.
187 */
188#define hwlat_err(msg) ({							\
189	struct trace_array *tr = hwlat_trace;					\
190										\
191	trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_, msg);	\
192})
193
194/**
195 * get_sample - sample the CPU TSC and look for likely hardware latencies
196 *
197 * Used to repeatedly capture the CPU TSC (or similar), looking for potential
198 * hardware-induced latency. Called with interrupts disabled and with
199 * hwlat_data.lock held.
200 */
201static int get_sample(void)
202{
203	struct hwlat_kthread_data *kdata = get_cpu_data();
204	struct trace_array *tr = hwlat_trace;
205	struct hwlat_sample s;
206	time_type start, t1, t2, last_t2;
207	s64 diff, outer_diff, total, last_total = 0;
208	u64 sample = 0;
209	u64 thresh = tracing_thresh;
210	u64 outer_sample = 0;
211	int ret = -1;
212	unsigned int count = 0;
213
214	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
215
216	kdata->nmi_total_ts = 0;
217	kdata->nmi_count = 0;
218	/* Make sure NMIs see this first */
219	barrier();
220
221	trace_hwlat_callback_enabled = true;
222
223	init_time(last_t2, 0);
224	start = time_get(); /* start timestamp */
225	outer_diff = 0;
226
227	do {
228
229		t1 = time_get();	/* we'll look for a discontinuity */
230		t2 = time_get();
231
232		if (time_u64(last_t2)) {
233			/* Check the delta from outer loop (t2 to next t1) */
234			outer_diff = time_to_us(time_sub(t1, last_t2));
235			/* This shouldn't happen */
236			if (outer_diff < 0) {
237				hwlat_err(BANNER "time running backwards\n");
238				goto out;
239			}
240			if (outer_diff > outer_sample)
241				outer_sample = outer_diff;
242		}
243		last_t2 = t2;
244
245		total = time_to_us(time_sub(t2, start)); /* sample width */
246
247		/* Check for possible overflows */
248		if (total < last_total) {
249			hwlat_err("Time total overflowed\n");
250			break;
251		}
252		last_total = total;
253
254		/* This checks the inner loop (t1 to t2) */
255		diff = time_to_us(time_sub(t2, t1));     /* current diff */
256
257		if (diff > thresh || outer_diff > thresh) {
258			if (!count)
259				ktime_get_real_ts64(&s.timestamp);
260			count++;
261		}
262
263		/* This shouldn't happen */
264		if (diff < 0) {
265			hwlat_err(BANNER "time running backwards\n");
266			goto out;
267		}
268
269		if (diff > sample)
270			sample = diff; /* only want highest value */
271
272	} while (total <= hwlat_data.sample_width);
273
274	barrier(); /* finish the above in the view for NMIs */
275	trace_hwlat_callback_enabled = false;
276	barrier(); /* Make sure nmi_total_ts is no longer updated */
277
278	ret = 0;
279
280	/* If we exceed the threshold value, we have found a hardware latency */
281	if (sample > thresh || outer_sample > thresh) {
282		u64 latency;
283
284		ret = 1;
285
286		/* We read in microseconds */
287		if (kdata->nmi_total_ts)
288			do_div(kdata->nmi_total_ts, NSEC_PER_USEC);
289
290		hwlat_data.count++;
291		s.seqnum = hwlat_data.count;
292		s.duration = sample;
293		s.outer_duration = outer_sample;
294		s.nmi_total_ts = kdata->nmi_total_ts;
295		s.nmi_count = kdata->nmi_count;
296		s.count = count;
297		trace_hwlat_sample(&s);
298
299		latency = max(sample, outer_sample);
300
301		/* Keep a running maximum ever recorded hardware latency */
302		if (latency > tr->max_latency) {
303			tr->max_latency = latency;
304			latency_fsnotify(tr);
305		}
306	}
307
308out:
309	return ret;
310}
311
312static struct cpumask save_cpumask;
313
314static void move_to_next_cpu(void)
315{
316	struct cpumask *current_mask = &save_cpumask;
317	struct trace_array *tr = hwlat_trace;
318	int next_cpu;
319
320	/*
321	 * If for some reason the user modifies the CPU affinity
322	 * of this thread, then stop migrating for the duration
323	 * of the current test.
324	 */
325	if (!cpumask_equal(current_mask, current->cpus_ptr))
326		goto change_mode;
327
328	get_online_cpus();
329	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
330	next_cpu = cpumask_next(raw_smp_processor_id(), current_mask);
331	put_online_cpus();
332
333	if (next_cpu >= nr_cpu_ids)
334		next_cpu = cpumask_first(current_mask);
335
336	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
337		goto change_mode;
338
339	cpumask_clear(current_mask);
340	cpumask_set_cpu(next_cpu, current_mask);
341
342	sched_setaffinity(0, current_mask);
343	return;
344
345 change_mode:
346	hwlat_data.thread_mode = MODE_NONE;
347	pr_info(BANNER "cpumask changed while in round-robin mode, switching to mode none\n");
348}
349
350/*
351 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
352 *
353 * Used to periodically sample the CPU TSC via a call to get_sample. We
354 * disable interrupts, which does (intentionally) introduce latency since we
355 * need to ensure nothing else might be running (and thus preempting).
356 * Obviously this should never be used in production environments.
357 *
358 * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
359 */
360static int kthread_fn(void *data)
361{
362	u64 interval;
363
364	while (!kthread_should_stop()) {
365
366		if (hwlat_data.thread_mode == MODE_ROUND_ROBIN)
367			move_to_next_cpu();
368
369		local_irq_disable();
370		get_sample();
371		local_irq_enable();
372
373		mutex_lock(&hwlat_data.lock);
374		interval = hwlat_data.sample_window - hwlat_data.sample_width;
375		mutex_unlock(&hwlat_data.lock);
376
377		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
378
379		/* Always sleep for at least 1ms */
380		if (interval < 1)
381			interval = 1;
382
383		if (msleep_interruptible(interval))
384			break;
385	}
386
387	return 0;
388}
389
390/*
391 * stop_stop_kthread - Inform the hardware latency sampling/detector kthread to stop
392 *
393 * This kicks the running hardware latency sampling/detector kernel thread and
394 * tells it to stop sampling now. Use this on unload and at system shutdown.
395 */
396static void stop_single_kthread(void)
397{
398	struct hwlat_kthread_data *kdata = get_cpu_data();
399	struct task_struct *kthread;
400
401	get_online_cpus();
402	kthread = kdata->kthread;
403
404	if (!kthread)
405		goto out_put_cpus;
406
407	kthread_stop(kthread);
408	kdata->kthread = NULL;
409
410out_put_cpus:
411	put_online_cpus();
412}
413
414
415/*
416 * start_single_kthread - Kick off the hardware latency sampling/detector kthread
417 *
418 * This starts the kernel thread that will sit and sample the CPU timestamp
419 * counter (TSC or similar) and look for potential hardware latencies.
420 */
421static int start_single_kthread(struct trace_array *tr)
422{
423	struct hwlat_kthread_data *kdata = get_cpu_data();
424	struct cpumask *current_mask = &save_cpumask;
425	struct task_struct *kthread;
426	int next_cpu;
427
428	get_online_cpus();
429	if (kdata->kthread)
430		goto out_put_cpus;
431
432	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
433	if (IS_ERR(kthread)) {
434		pr_err(BANNER "could not start sampling thread\n");
435		put_online_cpus();
436		return -ENOMEM;
437	}
438
439	/* Just pick the first CPU on first iteration */
440	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
441
442	if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) {
443		next_cpu = cpumask_first(current_mask);
444		cpumask_clear(current_mask);
445		cpumask_set_cpu(next_cpu, current_mask);
446
447	}
448
449	sched_setaffinity(kthread->pid, current_mask);
450
451	kdata->kthread = kthread;
452	wake_up_process(kthread);
453
454out_put_cpus:
455	put_online_cpus();
456	return 0;
457}
458
459/*
460 * stop_cpu_kthread - Stop a hwlat cpu kthread
461 */
462static void stop_cpu_kthread(unsigned int cpu)
463{
464	struct task_struct *kthread;
465
466	kthread = per_cpu(hwlat_per_cpu_data, cpu).kthread;
467	if (kthread)
468		kthread_stop(kthread);
469	per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL;
470}
471
472/*
473 * stop_per_cpu_kthreads - Inform the hardware latency sampling/detector kthread to stop
474 *
475 * This kicks the running hardware latency sampling/detector kernel threads and
476 * tells it to stop sampling now. Use this on unload and at system shutdown.
477 */
478static void stop_per_cpu_kthreads(void)
479{
480	unsigned int cpu;
481
482	get_online_cpus();
483	for_each_online_cpu(cpu)
484		stop_cpu_kthread(cpu);
485	put_online_cpus();
486}
487
488/*
489 * start_cpu_kthread - Start a hwlat cpu kthread
490 */
491static int start_cpu_kthread(unsigned int cpu)
492{
493	struct task_struct *kthread;
494	char comm[24];
495
496	snprintf(comm, 24, "hwlatd/%d", cpu);
497
498	kthread = kthread_create_on_cpu(kthread_fn, NULL, cpu, comm);
499	if (IS_ERR(kthread)) {
500		pr_err(BANNER "could not start sampling thread\n");
501		return -ENOMEM;
502	}
503
504	per_cpu(hwlat_per_cpu_data, cpu).kthread = kthread;
505	wake_up_process(kthread);
506
507	return 0;
508}
509
510#ifdef CONFIG_HOTPLUG_CPU
511static void hwlat_hotplug_workfn(struct work_struct *dummy)
512{
513	struct trace_array *tr = hwlat_trace;
514	unsigned int cpu = smp_processor_id();
515
516	mutex_lock(&trace_types_lock);
517	mutex_lock(&hwlat_data.lock);
518	get_online_cpus();
519
520	if (!hwlat_busy || hwlat_data.thread_mode != MODE_PER_CPU)
521		goto out_unlock;
522
523	if (!cpumask_test_cpu(cpu, tr->tracing_cpumask))
524		goto out_unlock;
525
526	start_cpu_kthread(cpu);
527
528out_unlock:
529	put_online_cpus();
530	mutex_unlock(&hwlat_data.lock);
531	mutex_unlock(&trace_types_lock);
532}
533
534static DECLARE_WORK(hwlat_hotplug_work, hwlat_hotplug_workfn);
535
536/*
537 * hwlat_cpu_init - CPU hotplug online callback function
538 */
539static int hwlat_cpu_init(unsigned int cpu)
540{
541	schedule_work_on(cpu, &hwlat_hotplug_work);
542	return 0;
543}
544
545/*
546 * hwlat_cpu_die - CPU hotplug offline callback function
547 */
548static int hwlat_cpu_die(unsigned int cpu)
549{
550	stop_cpu_kthread(cpu);
551	return 0;
552}
553
554static void hwlat_init_hotplug_support(void)
555{
556	int ret;
557
558	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/hwlat:online",
559				hwlat_cpu_init, hwlat_cpu_die);
560	if (ret < 0)
561		pr_warn(BANNER "Error to init cpu hotplug support\n");
562
563	return;
564}
565#else /* CONFIG_HOTPLUG_CPU */
566static void hwlat_init_hotplug_support(void)
567{
568	return;
569}
570#endif /* CONFIG_HOTPLUG_CPU */
571
572/*
573 * start_per_cpu_kthreads - Kick off the hardware latency sampling/detector kthreads
574 *
575 * This starts the kernel threads that will sit on potentially all cpus and
576 * sample the CPU timestamp counter (TSC or similar) and look for potential
577 * hardware latencies.
578 */
579static int start_per_cpu_kthreads(struct trace_array *tr)
580{
581	struct cpumask *current_mask = &save_cpumask;
582	unsigned int cpu;
583	int retval;
584
585	get_online_cpus();
586	/*
587	 * Run only on CPUs in which hwlat is allowed to run.
588	 */
589	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
590
591	for_each_online_cpu(cpu)
592		per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL;
593
594	for_each_cpu(cpu, current_mask) {
595		retval = start_cpu_kthread(cpu);
596		if (retval)
597			goto out_error;
598	}
599	put_online_cpus();
600
601	return 0;
602
603out_error:
604	put_online_cpus();
605	stop_per_cpu_kthreads();
606	return retval;
607}
608
609static void *s_mode_start(struct seq_file *s, loff_t *pos)
610{
611	int mode = *pos;
612
613	mutex_lock(&hwlat_data.lock);
614
615	if (mode >= MODE_MAX)
616		return NULL;
617
618	return pos;
619}
620
621static void *s_mode_next(struct seq_file *s, void *v, loff_t *pos)
622{
623	int mode = ++(*pos);
624
625	if (mode >= MODE_MAX)
626		return NULL;
627
628	return pos;
629}
630
631static int s_mode_show(struct seq_file *s, void *v)
632{
633	loff_t *pos = v;
634	int mode = *pos;
635
636	if (mode == hwlat_data.thread_mode)
637		seq_printf(s, "[%s]", thread_mode_str[mode]);
638	else
639		seq_printf(s, "%s", thread_mode_str[mode]);
640
641	if (mode != MODE_MAX)
642		seq_puts(s, " ");
643
644	return 0;
645}
646
647static void s_mode_stop(struct seq_file *s, void *v)
648{
649	seq_puts(s, "\n");
650	mutex_unlock(&hwlat_data.lock);
651}
652
653static const struct seq_operations thread_mode_seq_ops = {
654	.start		= s_mode_start,
655	.next		= s_mode_next,
656	.show		= s_mode_show,
657	.stop		= s_mode_stop
658};
659
660static int hwlat_mode_open(struct inode *inode, struct file *file)
661{
662	return seq_open(file, &thread_mode_seq_ops);
663};
664
665static void hwlat_tracer_start(struct trace_array *tr);
666static void hwlat_tracer_stop(struct trace_array *tr);
667
668/**
669 * hwlat_mode_write - Write function for "mode" entry
670 * @filp: The active open file structure
671 * @ubuf: The user buffer that contains the value to write
672 * @cnt: The maximum number of bytes to write to "file"
673 * @ppos: The current position in @file
674 *
675 * This function provides a write implementation for the "mode" interface
676 * to the hardware latency detector. hwlatd has different operation modes.
677 * The "none" sets the allowed cpumask for a single hwlatd thread at the
678 * startup and lets the scheduler handle the migration. The default mode is
679 * the "round-robin" one, in which a single hwlatd thread runs, migrating
680 * among the allowed CPUs in a round-robin fashion. The "per-cpu" mode
681 * creates one hwlatd thread per allowed CPU.
682 */
683static ssize_t hwlat_mode_write(struct file *filp, const char __user *ubuf,
684				 size_t cnt, loff_t *ppos)
685{
686	struct trace_array *tr = hwlat_trace;
687	const char *mode;
688	char buf[64];
689	int ret, i;
690
691	if (cnt >= sizeof(buf))
692		return -EINVAL;
693
694	if (copy_from_user(buf, ubuf, cnt))
695		return -EFAULT;
696
697	buf[cnt] = 0;
698
699	mode = strstrip(buf);
700
701	ret = -EINVAL;
702
703	/*
704	 * trace_types_lock is taken to avoid concurrency on start/stop
705	 * and hwlat_busy.
706	 */
707	mutex_lock(&trace_types_lock);
708	if (hwlat_busy)
709		hwlat_tracer_stop(tr);
710
711	mutex_lock(&hwlat_data.lock);
712
713	for (i = 0; i < MODE_MAX; i++) {
714		if (strcmp(mode, thread_mode_str[i]) == 0) {
715			hwlat_data.thread_mode = i;
716			ret = cnt;
717		}
718	}
719
720	mutex_unlock(&hwlat_data.lock);
721
722	if (hwlat_busy)
723		hwlat_tracer_start(tr);
724	mutex_unlock(&trace_types_lock);
725
726	*ppos += cnt;
727
728
729
730	return ret;
731}
732
733/*
734 * The width parameter is read/write using the generic trace_min_max_param
735 * method. The *val is protected by the hwlat_data lock and is upper
736 * bounded by the window parameter.
737 */
738static struct trace_min_max_param hwlat_width = {
739	.lock		= &hwlat_data.lock,
740	.val		= &hwlat_data.sample_width,
741	.max		= &hwlat_data.sample_window,
742	.min		= NULL,
743};
744
745/*
746 * The window parameter is read/write using the generic trace_min_max_param
747 * method. The *val is protected by the hwlat_data lock and is lower
748 * bounded by the width parameter.
749 */
750static struct trace_min_max_param hwlat_window = {
751	.lock		= &hwlat_data.lock,
752	.val		= &hwlat_data.sample_window,
753	.max		= NULL,
754	.min		= &hwlat_data.sample_width,
755};
756
757static const struct file_operations thread_mode_fops = {
758	.open		= hwlat_mode_open,
759	.read		= seq_read,
760	.llseek		= seq_lseek,
761	.release	= seq_release,
762	.write		= hwlat_mode_write
763};
764/**
765 * init_tracefs - A function to initialize the tracefs interface files
766 *
767 * This function creates entries in tracefs for "hwlat_detector".
768 * It creates the hwlat_detector directory in the tracing directory,
769 * and within that directory is the count, width and window files to
770 * change and view those values.
771 */
772static int init_tracefs(void)
773{
774	int ret;
775	struct dentry *top_dir;
776
777	ret = tracing_init_dentry();
778	if (ret)
779		return -ENOMEM;
780
781	top_dir = tracefs_create_dir("hwlat_detector", NULL);
782	if (!top_dir)
783		return -ENOMEM;
784
785	hwlat_sample_window = tracefs_create_file("window", 0640,
786						  top_dir,
787						  &hwlat_window,
788						  &trace_min_max_fops);
789	if (!hwlat_sample_window)
790		goto err;
791
792	hwlat_sample_width = tracefs_create_file("width", 0644,
793						 top_dir,
794						 &hwlat_width,
795						 &trace_min_max_fops);
796	if (!hwlat_sample_width)
797		goto err;
798
799	hwlat_thread_mode = trace_create_file("mode", 0644,
800					      top_dir,
801					      NULL,
802					      &thread_mode_fops);
803	if (!hwlat_thread_mode)
804		goto err;
805
806	return 0;
807
808 err:
809	tracefs_remove(top_dir);
810	return -ENOMEM;
811}
812
813static void hwlat_tracer_start(struct trace_array *tr)
814{
815	int err;
816
817	if (hwlat_data.thread_mode == MODE_PER_CPU)
818		err = start_per_cpu_kthreads(tr);
819	else
820		err = start_single_kthread(tr);
821	if (err)
822		pr_err(BANNER "Cannot start hwlat kthread\n");
823}
824
825static void hwlat_tracer_stop(struct trace_array *tr)
826{
827	if (hwlat_data.thread_mode == MODE_PER_CPU)
828		stop_per_cpu_kthreads();
829	else
830		stop_single_kthread();
831}
832
833static int hwlat_tracer_init(struct trace_array *tr)
834{
835	/* Only allow one instance to enable this */
836	if (hwlat_busy)
837		return -EBUSY;
838
839	hwlat_trace = tr;
840
841	hwlat_data.count = 0;
842	tr->max_latency = 0;
843	save_tracing_thresh = tracing_thresh;
844
845	/* tracing_thresh is in nsecs, we speak in usecs */
846	if (!tracing_thresh)
847		tracing_thresh = last_tracing_thresh;
848
849	if (tracer_tracing_is_on(tr))
850		hwlat_tracer_start(tr);
851
852	hwlat_busy = true;
853
854	return 0;
855}
856
857static void hwlat_tracer_reset(struct trace_array *tr)
858{
859	hwlat_tracer_stop(tr);
860
861	/* the tracing threshold is static between runs */
862	last_tracing_thresh = tracing_thresh;
863
864	tracing_thresh = save_tracing_thresh;
865	hwlat_busy = false;
866}
867
868static struct tracer hwlat_tracer __read_mostly =
869{
870	.name		= "hwlat",
871	.init		= hwlat_tracer_init,
872	.reset		= hwlat_tracer_reset,
873	.start		= hwlat_tracer_start,
874	.stop		= hwlat_tracer_stop,
875	.allow_instances = true,
876};
877
878__init static int init_hwlat_tracer(void)
879{
880	int ret;
881
882	mutex_init(&hwlat_data.lock);
883
884	ret = register_tracer(&hwlat_tracer);
885	if (ret)
886		return ret;
887
888	hwlat_init_hotplug_support();
889
890	init_tracefs();
891
892	return 0;
893}
894late_initcall(init_hwlat_tracer);