Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * trace_hwlat.c - A simple Hardware Latency detector.
  4 *
  5 * Use this tracer to detect large system latencies induced by the behavior of
  6 * certain underlying system hardware or firmware, independent of Linux itself.
  7 * The code was developed originally to detect the presence of SMIs on Intel
  8 * and AMD systems, although there is no dependency upon x86 herein.
  9 *
 10 * The classical example usage of this tracer is in detecting the presence of
 11 * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
 12 * somewhat special form of hardware interrupt spawned from earlier CPU debug
 13 * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
 14 * LPC (or other device) to generate a special interrupt under certain
 15 * circumstances, for example, upon expiration of a special SMI timer device,
 16 * due to certain external thermal readings, on certain I/O address accesses,
 17 * and other situations. An SMI hits a special CPU pin, triggers a special
 18 * SMI mode (complete with special memory map), and the OS is unaware.
 19 *
 20 * Although certain hardware-inducing latencies are necessary (for example,
 21 * a modern system often requires an SMI handler for correct thermal control
 22 * and remote management) they can wreak havoc upon any OS-level performance
 23 * guarantees toward low-latency, especially when the OS is not even made
 24 * aware of the presence of these interrupts. For this reason, we need a
 25 * somewhat brute force mechanism to detect these interrupts. In this case,
 26 * we do it by hogging all of the CPU(s) for configurable timer intervals,
 27 * sampling the built-in CPU timer, looking for discontiguous readings.
 28 *
 29 * WARNING: This implementation necessarily introduces latencies. Therefore,
 30 *          you should NEVER use this tracer while running in a production
 31 *          environment requiring any kind of low-latency performance
 32 *          guarantee(s).
 33 *
 34 * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
 35 * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
 36 *
 37 * Includes useful feedback from Clark Williams <williams@redhat.com>
 38 *
 39 */
 40#include <linux/kthread.h>
 41#include <linux/tracefs.h>
 42#include <linux/uaccess.h>
 43#include <linux/cpumask.h>
 44#include <linux/delay.h>
 45#include <linux/sched/clock.h>
 46#include "trace.h"
 47
 48static struct trace_array	*hwlat_trace;
 49
 50#define U64STR_SIZE		22			/* 20 digits max */
 51
 52#define BANNER			"hwlat_detector: "
 53#define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
 54#define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
 55#define DEFAULT_LAT_THRESHOLD	10			/* 10us */
 56
 57static struct dentry *hwlat_sample_width;	/* sample width us */
 58static struct dentry *hwlat_sample_window;	/* sample window us */
 59static struct dentry *hwlat_thread_mode;	/* hwlat thread mode */
 60
 61enum {
 62	MODE_NONE = 0,
 63	MODE_ROUND_ROBIN,
 64	MODE_PER_CPU,
 65	MODE_MAX
 66};
 67static char *thread_mode_str[] = { "none", "round-robin", "per-cpu" };
 68
 69/* Save the previous tracing_thresh value */
 70static unsigned long save_tracing_thresh;
 71
 72/* runtime kthread data */
 73struct hwlat_kthread_data {
 74	struct task_struct	*kthread;
 75	/* NMI timestamp counters */
 76	u64			nmi_ts_start;
 77	u64			nmi_total_ts;
 78	int			nmi_count;
 79	int			nmi_cpu;
 80};
 81
 82static struct hwlat_kthread_data hwlat_single_cpu_data;
 83static DEFINE_PER_CPU(struct hwlat_kthread_data, hwlat_per_cpu_data);
 84
 85/* Tells NMIs to call back to the hwlat tracer to record timestamps */
 86bool trace_hwlat_callback_enabled;
 87
 88/* If the user changed threshold, remember it */
 89static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
 90
 91/* Individual latency samples are stored here when detected. */
 92struct hwlat_sample {
 93	u64			seqnum;		/* unique sequence */
 94	u64			duration;	/* delta */
 95	u64			outer_duration;	/* delta (outer loop) */
 96	u64			nmi_total_ts;	/* Total time spent in NMIs */
 97	struct timespec64	timestamp;	/* wall time */
 98	int			nmi_count;	/* # NMIs during this sample */
 99	int			count;		/* # of iterations over thresh */
100};
101
102/* keep the global state somewhere. */
103static struct hwlat_data {
104
105	struct mutex lock;		/* protect changes */
106
107	u64	count;			/* total since reset */
108
109	u64	sample_window;		/* total sampling window (on+off) */
110	u64	sample_width;		/* active sampling portion of window */
111
112	int	thread_mode;		/* thread mode */
113
114} hwlat_data = {
115	.sample_window		= DEFAULT_SAMPLE_WINDOW,
116	.sample_width		= DEFAULT_SAMPLE_WIDTH,
117	.thread_mode		= MODE_ROUND_ROBIN
118};
119
120static struct hwlat_kthread_data *get_cpu_data(void)
121{
122	if (hwlat_data.thread_mode == MODE_PER_CPU)
123		return this_cpu_ptr(&hwlat_per_cpu_data);
124	else
125		return &hwlat_single_cpu_data;
126}
127
128static bool hwlat_busy;
129
130static void trace_hwlat_sample(struct hwlat_sample *sample)
131{
132	struct trace_array *tr = hwlat_trace;
133	struct trace_buffer *buffer = tr->array_buffer.buffer;
134	struct ring_buffer_event *event;
135	struct hwlat_entry *entry;
136
137	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
138					  tracing_gen_ctx());
139	if (!event)
140		return;
141	entry	= ring_buffer_event_data(event);
142	entry->seqnum			= sample->seqnum;
143	entry->duration			= sample->duration;
144	entry->outer_duration		= sample->outer_duration;
145	entry->timestamp		= sample->timestamp;
146	entry->nmi_total_ts		= sample->nmi_total_ts;
147	entry->nmi_count		= sample->nmi_count;
148	entry->count			= sample->count;
149
150	trace_buffer_unlock_commit_nostack(buffer, event);
151}
152
153/* Macros to encapsulate the time capturing infrastructure */
154#define time_type	u64
155#define time_get()	trace_clock_local()
156#define time_to_us(x)	div_u64(x, 1000)
157#define time_sub(a, b)	((a) - (b))
158#define init_time(a, b)	(a = b)
159#define time_u64(a)	a
160
161void trace_hwlat_callback(bool enter)
162{
163	struct hwlat_kthread_data *kdata = get_cpu_data();
164
165	if (!kdata->kthread)
166		return;
167
168	/*
169	 * Currently trace_clock_local() calls sched_clock() and the
170	 * generic version is not NMI safe.
171	 */
172	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
173		if (enter)
174			kdata->nmi_ts_start = time_get();
175		else
176			kdata->nmi_total_ts += time_get() - kdata->nmi_ts_start;
177	}
178
179	if (enter)
180		kdata->nmi_count++;
181}
182
183/*
184 * hwlat_err - report a hwlat error.
185 */
186#define hwlat_err(msg) ({							\
187	struct trace_array *tr = hwlat_trace;					\
188										\
189	trace_array_printk_buf(tr->array_buffer.buffer, _THIS_IP_, msg);	\
190})
191
192/**
193 * get_sample - sample the CPU TSC and look for likely hardware latencies
194 *
195 * Used to repeatedly capture the CPU TSC (or similar), looking for potential
196 * hardware-induced latency. Called with interrupts disabled and with
197 * hwlat_data.lock held.
198 */
199static int get_sample(void)
200{
201	struct hwlat_kthread_data *kdata = get_cpu_data();
202	struct trace_array *tr = hwlat_trace;
203	struct hwlat_sample s;
204	time_type start, t1, t2, last_t2;
205	s64 diff, outer_diff, total, last_total = 0;
206	u64 sample = 0;
207	u64 thresh = tracing_thresh;
208	u64 outer_sample = 0;
209	int ret = -1;
210	unsigned int count = 0;
211
212	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
213
214	kdata->nmi_total_ts = 0;
215	kdata->nmi_count = 0;
216	/* Make sure NMIs see this first */
217	barrier();
218
219	trace_hwlat_callback_enabled = true;
220
221	init_time(last_t2, 0);
222	start = time_get(); /* start timestamp */
223	outer_diff = 0;
224
225	do {
226
227		t1 = time_get();	/* we'll look for a discontinuity */
228		t2 = time_get();
229
230		if (time_u64(last_t2)) {
231			/* Check the delta from outer loop (t2 to next t1) */
232			outer_diff = time_to_us(time_sub(t1, last_t2));
233			/* This shouldn't happen */
234			if (outer_diff < 0) {
235				hwlat_err(BANNER "time running backwards\n");
236				goto out;
237			}
238			if (outer_diff > outer_sample)
239				outer_sample = outer_diff;
240		}
241		last_t2 = t2;
242
243		total = time_to_us(time_sub(t2, start)); /* sample width */
244
245		/* Check for possible overflows */
246		if (total < last_total) {
247			hwlat_err("Time total overflowed\n");
248			break;
249		}
250		last_total = total;
251
252		/* This checks the inner loop (t1 to t2) */
253		diff = time_to_us(time_sub(t2, t1));     /* current diff */
254
255		if (diff > thresh || outer_diff > thresh) {
256			if (!count)
257				ktime_get_real_ts64(&s.timestamp);
258			count++;
259		}
260
261		/* This shouldn't happen */
262		if (diff < 0) {
263			hwlat_err(BANNER "time running backwards\n");
264			goto out;
265		}
266
267		if (diff > sample)
268			sample = diff; /* only want highest value */
269
270	} while (total <= hwlat_data.sample_width);
271
272	barrier(); /* finish the above in the view for NMIs */
273	trace_hwlat_callback_enabled = false;
274	barrier(); /* Make sure nmi_total_ts is no longer updated */
275
276	ret = 0;
277
278	/* If we exceed the threshold value, we have found a hardware latency */
279	if (sample > thresh || outer_sample > thresh) {
280		u64 latency;
281
282		ret = 1;
283
284		/* We read in microseconds */
285		if (kdata->nmi_total_ts)
286			do_div(kdata->nmi_total_ts, NSEC_PER_USEC);
287
288		hwlat_data.count++;
289		s.seqnum = hwlat_data.count;
290		s.duration = sample;
291		s.outer_duration = outer_sample;
292		s.nmi_total_ts = kdata->nmi_total_ts;
293		s.nmi_count = kdata->nmi_count;
294		s.count = count;
295		trace_hwlat_sample(&s);
296
297		latency = max(sample, outer_sample);
298
299		/* Keep a running maximum ever recorded hardware latency */
300		if (latency > tr->max_latency) {
301			tr->max_latency = latency;
302			latency_fsnotify(tr);
303		}
304	}
305
306out:
307	return ret;
308}
309
310static struct cpumask save_cpumask;
311
312static void move_to_next_cpu(void)
313{
314	struct cpumask *current_mask = &save_cpumask;
315	struct trace_array *tr = hwlat_trace;
316	int next_cpu;
317
318	/*
319	 * If for some reason the user modifies the CPU affinity
320	 * of this thread, then stop migrating for the duration
321	 * of the current test.
322	 */
323	if (!cpumask_equal(current_mask, current->cpus_ptr))
324		goto change_mode;
325
326	cpus_read_lock();
327	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
328	next_cpu = cpumask_next(raw_smp_processor_id(), current_mask);
329	cpus_read_unlock();
330
331	if (next_cpu >= nr_cpu_ids)
332		next_cpu = cpumask_first(current_mask);
333
334	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
335		goto change_mode;
336
337	cpumask_clear(current_mask);
338	cpumask_set_cpu(next_cpu, current_mask);
339
340	set_cpus_allowed_ptr(current, current_mask);
341	return;
342
343 change_mode:
344	hwlat_data.thread_mode = MODE_NONE;
345	pr_info(BANNER "cpumask changed while in round-robin mode, switching to mode none\n");
346}
347
348/*
349 * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
350 *
351 * Used to periodically sample the CPU TSC via a call to get_sample. We
352 * disable interrupts, which does (intentionally) introduce latency since we
353 * need to ensure nothing else might be running (and thus preempting).
354 * Obviously this should never be used in production environments.
355 *
356 * Executes one loop interaction on each CPU in tracing_cpumask sysfs file.
357 */
358static int kthread_fn(void *data)
359{
360	u64 interval;
361
362	while (!kthread_should_stop()) {
363
364		if (hwlat_data.thread_mode == MODE_ROUND_ROBIN)
365			move_to_next_cpu();
366
367		local_irq_disable();
368		get_sample();
369		local_irq_enable();
370
371		mutex_lock(&hwlat_data.lock);
372		interval = hwlat_data.sample_window - hwlat_data.sample_width;
373		mutex_unlock(&hwlat_data.lock);
374
375		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
376
377		/* Always sleep for at least 1ms */
378		if (interval < 1)
379			interval = 1;
380
381		if (msleep_interruptible(interval))
382			break;
383	}
384
385	return 0;
386}
387
388/*
389 * stop_stop_kthread - Inform the hardware latency sampling/detector kthread to stop
390 *
391 * This kicks the running hardware latency sampling/detector kernel thread and
392 * tells it to stop sampling now. Use this on unload and at system shutdown.
393 */
394static void stop_single_kthread(void)
395{
396	struct hwlat_kthread_data *kdata = get_cpu_data();
397	struct task_struct *kthread;
398
399	cpus_read_lock();
400	kthread = kdata->kthread;
401
402	if (!kthread)
403		goto out_put_cpus;
404
405	kthread_stop(kthread);
406	kdata->kthread = NULL;
407
408out_put_cpus:
409	cpus_read_unlock();
410}
411
412
413/*
414 * start_single_kthread - Kick off the hardware latency sampling/detector kthread
415 *
416 * This starts the kernel thread that will sit and sample the CPU timestamp
417 * counter (TSC or similar) and look for potential hardware latencies.
418 */
419static int start_single_kthread(struct trace_array *tr)
420{
421	struct hwlat_kthread_data *kdata = get_cpu_data();
422	struct cpumask *current_mask = &save_cpumask;
423	struct task_struct *kthread;
424	int next_cpu;
425
426	cpus_read_lock();
427	if (kdata->kthread)
428		goto out_put_cpus;
429
430	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
431	if (IS_ERR(kthread)) {
432		pr_err(BANNER "could not start sampling thread\n");
433		cpus_read_unlock();
434		return -ENOMEM;
435	}
436
437	/* Just pick the first CPU on first iteration */
438	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
439
440	if (hwlat_data.thread_mode == MODE_ROUND_ROBIN) {
441		next_cpu = cpumask_first(current_mask);
442		cpumask_clear(current_mask);
443		cpumask_set_cpu(next_cpu, current_mask);
444
445	}
446
447	set_cpus_allowed_ptr(kthread, current_mask);
448
449	kdata->kthread = kthread;
450	wake_up_process(kthread);
451
452out_put_cpus:
453	cpus_read_unlock();
454	return 0;
455}
456
457/*
458 * stop_cpu_kthread - Stop a hwlat cpu kthread
459 */
460static void stop_cpu_kthread(unsigned int cpu)
461{
462	struct task_struct *kthread;
463
464	kthread = per_cpu(hwlat_per_cpu_data, cpu).kthread;
465	if (kthread)
466		kthread_stop(kthread);
467	per_cpu(hwlat_per_cpu_data, cpu).kthread = NULL;
468}
469
470/*
471 * stop_per_cpu_kthreads - Inform the hardware latency sampling/detector kthread to stop
472 *
473 * This kicks the running hardware latency sampling/detector kernel threads and
474 * tells it to stop sampling now. Use this on unload and at system shutdown.
475 */
476static void stop_per_cpu_kthreads(void)
477{
478	unsigned int cpu;
479
480	cpus_read_lock();
481	for_each_online_cpu(cpu)
482		stop_cpu_kthread(cpu);
483	cpus_read_unlock();
484}
485
486/*
487 * start_cpu_kthread - Start a hwlat cpu kthread
488 */
489static int start_cpu_kthread(unsigned int cpu)
490{
491	struct task_struct *kthread;
492
493	/* Do not start a new hwlatd thread if it is already running */
494	if (per_cpu(hwlat_per_cpu_data, cpu).kthread)
495		return 0;
496
497	kthread = kthread_run_on_cpu(kthread_fn, NULL, cpu, "hwlatd/%u");
498	if (IS_ERR(kthread)) {
499		pr_err(BANNER "could not start sampling thread\n");
500		return -ENOMEM;
501	}
502
503	per_cpu(hwlat_per_cpu_data, cpu).kthread = kthread;
504
505	return 0;
506}
507
508#ifdef CONFIG_HOTPLUG_CPU
509static void hwlat_hotplug_workfn(struct work_struct *dummy)
510{
511	struct trace_array *tr = hwlat_trace;
512	unsigned int cpu = smp_processor_id();
513
514	mutex_lock(&trace_types_lock);
515	mutex_lock(&hwlat_data.lock);
516	cpus_read_lock();
517
518	if (!hwlat_busy || hwlat_data.thread_mode != MODE_PER_CPU)
519		goto out_unlock;
520
521	if (!cpu_online(cpu))
522		goto out_unlock;
523	if (!cpumask_test_cpu(cpu, tr->tracing_cpumask))
524		goto out_unlock;
525
526	start_cpu_kthread(cpu);
527
528out_unlock:
529	cpus_read_unlock();
530	mutex_unlock(&hwlat_data.lock);
531	mutex_unlock(&trace_types_lock);
532}
533
534static DECLARE_WORK(hwlat_hotplug_work, hwlat_hotplug_workfn);
535
536/*
537 * hwlat_cpu_init - CPU hotplug online callback function
538 */
539static int hwlat_cpu_init(unsigned int cpu)
540{
541	schedule_work_on(cpu, &hwlat_hotplug_work);
542	return 0;
543}
544
545/*
546 * hwlat_cpu_die - CPU hotplug offline callback function
547 */
548static int hwlat_cpu_die(unsigned int cpu)
549{
550	stop_cpu_kthread(cpu);
551	return 0;
552}
553
554static void hwlat_init_hotplug_support(void)
555{
556	int ret;
557
558	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "trace/hwlat:online",
559				hwlat_cpu_init, hwlat_cpu_die);
560	if (ret < 0)
561		pr_warn(BANNER "Error to init cpu hotplug support\n");
562
563	return;
564}
565#else /* CONFIG_HOTPLUG_CPU */
566static void hwlat_init_hotplug_support(void)
567{
568	return;
569}
570#endif /* CONFIG_HOTPLUG_CPU */
571
572/*
573 * start_per_cpu_kthreads - Kick off the hardware latency sampling/detector kthreads
574 *
575 * This starts the kernel threads that will sit on potentially all cpus and
576 * sample the CPU timestamp counter (TSC or similar) and look for potential
577 * hardware latencies.
578 */
579static int start_per_cpu_kthreads(struct trace_array *tr)
580{
581	struct cpumask *current_mask = &save_cpumask;
582	unsigned int cpu;
583	int retval;
584
585	cpus_read_lock();
586	/*
587	 * Run only on CPUs in which hwlat is allowed to run.
588	 */
589	cpumask_and(current_mask, cpu_online_mask, tr->tracing_cpumask);
590
591	for_each_cpu(cpu, current_mask) {
592		retval = start_cpu_kthread(cpu);
593		if (retval)
594			goto out_error;
595	}
596	cpus_read_unlock();
597
598	return 0;
599
600out_error:
601	cpus_read_unlock();
602	stop_per_cpu_kthreads();
603	return retval;
604}
605
606static void *s_mode_start(struct seq_file *s, loff_t *pos)
607{
608	int mode = *pos;
609
610	mutex_lock(&hwlat_data.lock);
611
612	if (mode >= MODE_MAX)
613		return NULL;
614
615	return pos;
616}
617
618static void *s_mode_next(struct seq_file *s, void *v, loff_t *pos)
619{
620	int mode = ++(*pos);
621
622	if (mode >= MODE_MAX)
623		return NULL;
624
625	return pos;
626}
627
628static int s_mode_show(struct seq_file *s, void *v)
629{
630	loff_t *pos = v;
631	int mode = *pos;
632
633	if (mode == hwlat_data.thread_mode)
634		seq_printf(s, "[%s]", thread_mode_str[mode]);
635	else
636		seq_printf(s, "%s", thread_mode_str[mode]);
637
638	if (mode < MODE_MAX - 1) /* if mode is any but last */
639		seq_puts(s, " ");
640
641	return 0;
642}
643
644static void s_mode_stop(struct seq_file *s, void *v)
645{
646	seq_puts(s, "\n");
647	mutex_unlock(&hwlat_data.lock);
648}
649
650static const struct seq_operations thread_mode_seq_ops = {
651	.start		= s_mode_start,
652	.next		= s_mode_next,
653	.show		= s_mode_show,
654	.stop		= s_mode_stop
655};
656
657static int hwlat_mode_open(struct inode *inode, struct file *file)
658{
659	return seq_open(file, &thread_mode_seq_ops);
660};
661
662static void hwlat_tracer_start(struct trace_array *tr);
663static void hwlat_tracer_stop(struct trace_array *tr);
664
665/**
666 * hwlat_mode_write - Write function for "mode" entry
667 * @filp: The active open file structure
668 * @ubuf: The user buffer that contains the value to write
669 * @cnt: The maximum number of bytes to write to "file"
670 * @ppos: The current position in @file
671 *
672 * This function provides a write implementation for the "mode" interface
673 * to the hardware latency detector. hwlatd has different operation modes.
674 * The "none" sets the allowed cpumask for a single hwlatd thread at the
675 * startup and lets the scheduler handle the migration. The default mode is
676 * the "round-robin" one, in which a single hwlatd thread runs, migrating
677 * among the allowed CPUs in a round-robin fashion. The "per-cpu" mode
678 * creates one hwlatd thread per allowed CPU.
679 */
680static ssize_t hwlat_mode_write(struct file *filp, const char __user *ubuf,
681				 size_t cnt, loff_t *ppos)
682{
683	struct trace_array *tr = hwlat_trace;
684	const char *mode;
685	char buf[64];
686	int ret, i;
687
688	if (cnt >= sizeof(buf))
689		return -EINVAL;
690
691	if (copy_from_user(buf, ubuf, cnt))
692		return -EFAULT;
693
694	buf[cnt] = 0;
695
696	mode = strstrip(buf);
697
698	ret = -EINVAL;
699
700	/*
701	 * trace_types_lock is taken to avoid concurrency on start/stop
702	 * and hwlat_busy.
703	 */
704	mutex_lock(&trace_types_lock);
705	if (hwlat_busy)
706		hwlat_tracer_stop(tr);
707
708	mutex_lock(&hwlat_data.lock);
709
710	for (i = 0; i < MODE_MAX; i++) {
711		if (strcmp(mode, thread_mode_str[i]) == 0) {
712			hwlat_data.thread_mode = i;
713			ret = cnt;
714		}
715	}
716
717	mutex_unlock(&hwlat_data.lock);
718
719	if (hwlat_busy)
720		hwlat_tracer_start(tr);
721	mutex_unlock(&trace_types_lock);
722
723	*ppos += cnt;
724
725
726
727	return ret;
728}
729
730/*
731 * The width parameter is read/write using the generic trace_min_max_param
732 * method. The *val is protected by the hwlat_data lock and is upper
733 * bounded by the window parameter.
734 */
735static struct trace_min_max_param hwlat_width = {
736	.lock		= &hwlat_data.lock,
737	.val		= &hwlat_data.sample_width,
738	.max		= &hwlat_data.sample_window,
739	.min		= NULL,
740};
741
742/*
743 * The window parameter is read/write using the generic trace_min_max_param
744 * method. The *val is protected by the hwlat_data lock and is lower
745 * bounded by the width parameter.
746 */
747static struct trace_min_max_param hwlat_window = {
748	.lock		= &hwlat_data.lock,
749	.val		= &hwlat_data.sample_window,
750	.max		= NULL,
751	.min		= &hwlat_data.sample_width,
752};
753
754static const struct file_operations thread_mode_fops = {
755	.open		= hwlat_mode_open,
756	.read		= seq_read,
757	.llseek		= seq_lseek,
758	.release	= seq_release,
759	.write		= hwlat_mode_write
760};
761/**
762 * init_tracefs - A function to initialize the tracefs interface files
763 *
764 * This function creates entries in tracefs for "hwlat_detector".
765 * It creates the hwlat_detector directory in the tracing directory,
766 * and within that directory is the count, width and window files to
767 * change and view those values.
768 */
769static int init_tracefs(void)
770{
771	int ret;
772	struct dentry *top_dir;
773
774	ret = tracing_init_dentry();
775	if (ret)
776		return -ENOMEM;
777
778	top_dir = tracefs_create_dir("hwlat_detector", NULL);
779	if (!top_dir)
780		return -ENOMEM;
781
782	hwlat_sample_window = tracefs_create_file("window", TRACE_MODE_WRITE,
783						  top_dir,
784						  &hwlat_window,
785						  &trace_min_max_fops);
786	if (!hwlat_sample_window)
787		goto err;
788
789	hwlat_sample_width = tracefs_create_file("width", TRACE_MODE_WRITE,
790						 top_dir,
791						 &hwlat_width,
792						 &trace_min_max_fops);
793	if (!hwlat_sample_width)
794		goto err;
795
796	hwlat_thread_mode = trace_create_file("mode", TRACE_MODE_WRITE,
797					      top_dir,
798					      NULL,
799					      &thread_mode_fops);
800	if (!hwlat_thread_mode)
801		goto err;
802
803	return 0;
804
805 err:
806	tracefs_remove(top_dir);
807	return -ENOMEM;
808}
809
810static void hwlat_tracer_start(struct trace_array *tr)
811{
812	int err;
813
814	if (hwlat_data.thread_mode == MODE_PER_CPU)
815		err = start_per_cpu_kthreads(tr);
816	else
817		err = start_single_kthread(tr);
818	if (err)
819		pr_err(BANNER "Cannot start hwlat kthread\n");
820}
821
822static void hwlat_tracer_stop(struct trace_array *tr)
823{
824	if (hwlat_data.thread_mode == MODE_PER_CPU)
825		stop_per_cpu_kthreads();
826	else
827		stop_single_kthread();
828}
829
830static int hwlat_tracer_init(struct trace_array *tr)
831{
832	/* Only allow one instance to enable this */
833	if (hwlat_busy)
834		return -EBUSY;
835
836	hwlat_trace = tr;
837
838	hwlat_data.count = 0;
839	tr->max_latency = 0;
840	save_tracing_thresh = tracing_thresh;
841
842	/* tracing_thresh is in nsecs, we speak in usecs */
843	if (!tracing_thresh)
844		tracing_thresh = last_tracing_thresh;
845
846	if (tracer_tracing_is_on(tr))
847		hwlat_tracer_start(tr);
848
849	hwlat_busy = true;
850
851	return 0;
852}
853
854static void hwlat_tracer_reset(struct trace_array *tr)
855{
856	hwlat_tracer_stop(tr);
857
858	/* the tracing threshold is static between runs */
859	last_tracing_thresh = tracing_thresh;
860
861	tracing_thresh = save_tracing_thresh;
862	hwlat_busy = false;
863}
864
865static struct tracer hwlat_tracer __read_mostly =
866{
867	.name		= "hwlat",
868	.init		= hwlat_tracer_init,
869	.reset		= hwlat_tracer_reset,
870	.start		= hwlat_tracer_start,
871	.stop		= hwlat_tracer_stop,
872	.allow_instances = true,
873};
874
875__init static int init_hwlat_tracer(void)
876{
877	int ret;
878
879	mutex_init(&hwlat_data.lock);
880
881	ret = register_tracer(&hwlat_tracer);
882	if (ret)
883		return ret;
884
885	hwlat_init_hotplug_support();
886
887	init_tracefs();
888
889	return 0;
890}
891late_initcall(init_hwlat_tracer);