Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * User-space Probes (UProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2008-2012
  19 * Authors:
  20 *	Srikar Dronamraju
  21 *	Jim Keniston
  22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/highmem.h>
  27#include <linux/pagemap.h>	/* read_mapping_page */
  28#include <linux/slab.h>
  29#include <linux/sched.h>
 
 
  30#include <linux/export.h>
  31#include <linux/rmap.h>		/* anon_vma_prepare */
  32#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
  33#include <linux/swap.h>		/* try_to_free_swap */
  34#include <linux/ptrace.h>	/* user_enable_single_step */
  35#include <linux/kdebug.h>	/* notifier mechanism */
  36#include "../../mm/internal.h"	/* munlock_vma_page */
  37#include <linux/percpu-rwsem.h>
  38#include <linux/task_work.h>
  39#include <linux/shmem_fs.h>
 
  40
  41#include <linux/uprobes.h>
  42
  43#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  44#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  45
  46static struct rb_root uprobes_tree = RB_ROOT;
  47/*
  48 * allows us to skip the uprobe_mmap if there are no uprobe events active
  49 * at this time.  Probably a fine grained per inode count is better?
  50 */
  51#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
  52
  53static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
  54
  55#define UPROBES_HASH_SZ	13
  56/* serialize uprobe->pending_list */
  57static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  58#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  59
  60static struct percpu_rw_semaphore dup_mmap_sem;
  61
  62/* Have a copy of original instruction */
  63#define UPROBE_COPY_INSN	0
  64
  65struct uprobe {
  66	struct rb_node		rb_node;	/* node in the rb tree */
  67	atomic_t		ref;
  68	struct rw_semaphore	register_rwsem;
  69	struct rw_semaphore	consumer_rwsem;
  70	struct list_head	pending_list;
  71	struct uprobe_consumer	*consumers;
  72	struct inode		*inode;		/* Also hold a ref to inode */
  73	loff_t			offset;
 
  74	unsigned long		flags;
  75
  76	/*
  77	 * The generic code assumes that it has two members of unknown type
  78	 * owned by the arch-specific code:
  79	 *
  80	 * 	insn -	copy_insn() saves the original instruction here for
  81	 *		arch_uprobe_analyze_insn().
  82	 *
  83	 *	ixol -	potentially modified instruction to execute out of
  84	 *		line, copied to xol_area by xol_get_insn_slot().
  85	 */
  86	struct arch_uprobe	arch;
  87};
  88
 
 
 
 
 
 
 
 
 
  89/*
  90 * Execute out of line area: anonymous executable mapping installed
  91 * by the probed task to execute the copy of the original instruction
  92 * mangled by set_swbp().
  93 *
  94 * On a breakpoint hit, thread contests for a slot.  It frees the
  95 * slot after singlestep. Currently a fixed number of slots are
  96 * allocated.
  97 */
  98struct xol_area {
  99	wait_queue_head_t 		wq;		/* if all slots are busy */
 100	atomic_t 			slot_count;	/* number of in-use slots */
 101	unsigned long 			*bitmap;	/* 0 = free slot */
 102
 103	struct vm_special_mapping	xol_mapping;
 104	struct page 			*pages[2];
 105	/*
 106	 * We keep the vma's vm_start rather than a pointer to the vma
 107	 * itself.  The probed process or a naughty kernel module could make
 108	 * the vma go away, and we must handle that reasonably gracefully.
 109	 */
 110	unsigned long 			vaddr;		/* Page(s) of instruction slots */
 111};
 112
 113/*
 114 * valid_vma: Verify if the specified vma is an executable vma
 115 * Relax restrictions while unregistering: vm_flags might have
 116 * changed after breakpoint was inserted.
 117 *	- is_register: indicates if we are in register context.
 118 *	- Return 1 if the specified virtual address is in an
 119 *	  executable vma.
 120 */
 121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 122{
 123	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 124
 125	if (is_register)
 126		flags |= VM_WRITE;
 127
 128	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 129}
 130
 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 132{
 133	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 134}
 135
 136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 137{
 138	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 139}
 140
 141/**
 142 * __replace_page - replace page in vma by new page.
 143 * based on replace_page in mm/ksm.c
 144 *
 145 * @vma:      vma that holds the pte pointing to page
 146 * @addr:     address the old @page is mapped at
 147 * @page:     the cowed page we are replacing by kpage
 148 * @kpage:    the modified page we replace page by
 149 *
 150 * Returns 0 on success, -EFAULT on failure.
 
 
 151 */
 152static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 153				struct page *page, struct page *kpage)
 154{
 155	struct mm_struct *mm = vma->vm_mm;
 156	spinlock_t *ptl;
 157	pte_t *ptep;
 
 
 
 158	int err;
 159	/* For mmu_notifiers */
 160	const unsigned long mmun_start = addr;
 161	const unsigned long mmun_end   = addr + PAGE_SIZE;
 162	struct mem_cgroup *memcg;
 163
 164	err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg,
 165			false);
 166	if (err)
 167		return err;
 
 168
 169	/* For try_to_free_swap() and munlock_vma_page() below */
 170	lock_page(page);
 171
 172	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 173	err = -EAGAIN;
 174	ptep = page_check_address(page, mm, addr, &ptl, 0);
 175	if (!ptep)
 176		goto unlock;
 
 177
 178	get_page(kpage);
 179	page_add_new_anon_rmap(kpage, vma, addr, false);
 180	mem_cgroup_commit_charge(kpage, memcg, false, false);
 181	lru_cache_add_active_or_unevictable(kpage, vma);
 
 
 
 182
 183	if (!PageAnon(page)) {
 184		dec_mm_counter(mm, mm_counter_file(page));
 185		inc_mm_counter(mm, MM_ANONPAGES);
 186	}
 187
 188	flush_cache_page(vma, addr, pte_pfn(*ptep));
 189	ptep_clear_flush_notify(vma, addr, ptep);
 190	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 191
 192	page_remove_rmap(page, false);
 193	if (!page_mapped(page))
 194		try_to_free_swap(page);
 195	pte_unmap_unlock(ptep, ptl);
 
 
 196
 197	if (vma->vm_flags & VM_LOCKED)
 198		munlock_vma_page(page);
 199	put_page(page);
 200
 201	err = 0;
 202 unlock:
 203	mem_cgroup_cancel_charge(kpage, memcg, false);
 204	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 205	unlock_page(page);
 206	return err;
 207}
 208
 209/**
 210 * is_swbp_insn - check if instruction is breakpoint instruction.
 211 * @insn: instruction to be checked.
 212 * Default implementation of is_swbp_insn
 213 * Returns true if @insn is a breakpoint instruction.
 214 */
 215bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 216{
 217	return *insn == UPROBE_SWBP_INSN;
 218}
 219
 220/**
 221 * is_trap_insn - check if instruction is breakpoint instruction.
 222 * @insn: instruction to be checked.
 223 * Default implementation of is_trap_insn
 224 * Returns true if @insn is a breakpoint instruction.
 225 *
 226 * This function is needed for the case where an architecture has multiple
 227 * trap instructions (like powerpc).
 228 */
 229bool __weak is_trap_insn(uprobe_opcode_t *insn)
 230{
 231	return is_swbp_insn(insn);
 232}
 233
 234static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 235{
 236	void *kaddr = kmap_atomic(page);
 237	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 238	kunmap_atomic(kaddr);
 239}
 240
 241static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 242{
 243	void *kaddr = kmap_atomic(page);
 244	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 245	kunmap_atomic(kaddr);
 246}
 247
 248static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 249{
 250	uprobe_opcode_t old_opcode;
 251	bool is_swbp;
 252
 253	/*
 254	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 255	 * We do not check if it is any other 'trap variant' which could
 256	 * be conditional trap instruction such as the one powerpc supports.
 257	 *
 258	 * The logic is that we do not care if the underlying instruction
 259	 * is a trap variant; uprobes always wins over any other (gdb)
 260	 * breakpoint.
 261	 */
 262	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 263	is_swbp = is_swbp_insn(&old_opcode);
 264
 265	if (is_swbp_insn(new_opcode)) {
 266		if (is_swbp)		/* register: already installed? */
 267			return 0;
 268	} else {
 269		if (!is_swbp)		/* unregister: was it changed by us? */
 270			return 0;
 271	}
 272
 273	return 1;
 274}
 275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276/*
 277 * NOTE:
 278 * Expect the breakpoint instruction to be the smallest size instruction for
 279 * the architecture. If an arch has variable length instruction and the
 280 * breakpoint instruction is not of the smallest length instruction
 281 * supported by that architecture then we need to modify is_trap_at_addr and
 282 * uprobe_write_opcode accordingly. This would never be a problem for archs
 283 * that have fixed length instructions.
 284 *
 285 * uprobe_write_opcode - write the opcode at a given virtual address.
 
 286 * @mm: the probed process address space.
 287 * @vaddr: the virtual address to store the opcode.
 288 * @opcode: opcode to be written at @vaddr.
 289 *
 290 * Called with mm->mmap_sem held for write.
 291 * Return 0 (success) or a negative errno.
 292 */
 293int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
 294			uprobe_opcode_t opcode)
 295{
 
 296	struct page *old_page, *new_page;
 297	struct vm_area_struct *vma;
 298	int ret;
 
 
 
 
 
 299
 300retry:
 
 
 301	/* Read the page with vaddr into memory */
 302	ret = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
 
 303	if (ret <= 0)
 304		return ret;
 305
 306	ret = verify_opcode(old_page, vaddr, &opcode);
 307	if (ret <= 0)
 308		goto put_old;
 309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310	ret = anon_vma_prepare(vma);
 311	if (ret)
 312		goto put_old;
 313
 314	ret = -ENOMEM;
 315	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 316	if (!new_page)
 317		goto put_old;
 318
 319	__SetPageUptodate(new_page);
 320	copy_highpage(new_page, old_page);
 321	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323	ret = __replace_page(vma, vaddr, old_page, new_page);
 324	put_page(new_page);
 
 325put_old:
 326	put_page(old_page);
 327
 328	if (unlikely(ret == -EAGAIN))
 329		goto retry;
 
 
 
 
 
 
 
 
 
 330	return ret;
 331}
 332
 333/**
 334 * set_swbp - store breakpoint at a given address.
 335 * @auprobe: arch specific probepoint information.
 336 * @mm: the probed process address space.
 337 * @vaddr: the virtual address to insert the opcode.
 338 *
 339 * For mm @mm, store the breakpoint instruction at @vaddr.
 340 * Return 0 (success) or a negative errno.
 341 */
 342int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 343{
 344	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
 345}
 346
 347/**
 348 * set_orig_insn - Restore the original instruction.
 349 * @mm: the probed process address space.
 350 * @auprobe: arch specific probepoint information.
 351 * @vaddr: the virtual address to insert the opcode.
 352 *
 353 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 354 * Return 0 (success) or a negative errno.
 355 */
 356int __weak
 357set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 358{
 359	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
 
 360}
 361
 362static struct uprobe *get_uprobe(struct uprobe *uprobe)
 363{
 364	atomic_inc(&uprobe->ref);
 365	return uprobe;
 366}
 367
 368static void put_uprobe(struct uprobe *uprobe)
 369{
 370	if (atomic_dec_and_test(&uprobe->ref))
 
 
 
 
 
 
 
 
 371		kfree(uprobe);
 
 372}
 373
 374static int match_uprobe(struct uprobe *l, struct uprobe *r)
 
 
 375{
 376	if (l->inode < r->inode)
 377		return -1;
 378
 379	if (l->inode > r->inode)
 380		return 1;
 381
 382	if (l->offset < r->offset)
 383		return -1;
 384
 385	if (l->offset > r->offset)
 386		return 1;
 387
 388	return 0;
 389}
 390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 392{
 393	struct uprobe u = { .inode = inode, .offset = offset };
 394	struct rb_node *n = uprobes_tree.rb_node;
 395	struct uprobe *uprobe;
 396	int match;
 
 397
 398	while (n) {
 399		uprobe = rb_entry(n, struct uprobe, rb_node);
 400		match = match_uprobe(&u, uprobe);
 401		if (!match)
 402			return get_uprobe(uprobe);
 403
 404		if (match < 0)
 405			n = n->rb_left;
 406		else
 407			n = n->rb_right;
 408	}
 409	return NULL;
 410}
 411
 412/*
 413 * Find a uprobe corresponding to a given inode:offset
 414 * Acquires uprobes_treelock
 415 */
 416static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 417{
 418	struct uprobe *uprobe;
 419
 420	spin_lock(&uprobes_treelock);
 421	uprobe = __find_uprobe(inode, offset);
 422	spin_unlock(&uprobes_treelock);
 423
 424	return uprobe;
 425}
 426
 427static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 428{
 429	struct rb_node **p = &uprobes_tree.rb_node;
 430	struct rb_node *parent = NULL;
 431	struct uprobe *u;
 432	int match;
 433
 434	while (*p) {
 435		parent = *p;
 436		u = rb_entry(parent, struct uprobe, rb_node);
 437		match = match_uprobe(uprobe, u);
 438		if (!match)
 439			return get_uprobe(u);
 440
 441		if (match < 0)
 442			p = &parent->rb_left;
 443		else
 444			p = &parent->rb_right;
 445
 446	}
 
 
 447
 448	u = NULL;
 449	rb_link_node(&uprobe->rb_node, parent, p);
 450	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
 451	/* get access + creation ref */
 452	atomic_set(&uprobe->ref, 2);
 453
 454	return u;
 455}
 456
 457/*
 458 * Acquire uprobes_treelock.
 459 * Matching uprobe already exists in rbtree;
 460 *	increment (access refcount) and return the matching uprobe.
 461 *
 462 * No matching uprobe; insert the uprobe in rb_tree;
 463 *	get a double refcount (access + creation) and return NULL.
 464 */
 465static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 466{
 467	struct uprobe *u;
 468
 469	spin_lock(&uprobes_treelock);
 470	u = __insert_uprobe(uprobe);
 471	spin_unlock(&uprobes_treelock);
 472
 473	return u;
 474}
 475
 476static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
 
 
 
 
 
 
 
 
 
 
 
 477{
 478	struct uprobe *uprobe, *cur_uprobe;
 479
 480	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 481	if (!uprobe)
 482		return NULL;
 483
 484	uprobe->inode = igrab(inode);
 485	uprobe->offset = offset;
 
 486	init_rwsem(&uprobe->register_rwsem);
 487	init_rwsem(&uprobe->consumer_rwsem);
 488
 489	/* add to uprobes_tree, sorted on inode:offset */
 490	cur_uprobe = insert_uprobe(uprobe);
 491	/* a uprobe exists for this inode:offset combination */
 492	if (cur_uprobe) {
 
 
 
 
 
 
 493		kfree(uprobe);
 494		uprobe = cur_uprobe;
 495		iput(inode);
 496	}
 497
 498	return uprobe;
 499}
 500
 501static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 502{
 503	down_write(&uprobe->consumer_rwsem);
 504	uc->next = uprobe->consumers;
 505	uprobe->consumers = uc;
 506	up_write(&uprobe->consumer_rwsem);
 507}
 508
 509/*
 510 * For uprobe @uprobe, delete the consumer @uc.
 511 * Return true if the @uc is deleted successfully
 512 * or return false.
 513 */
 514static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 515{
 516	struct uprobe_consumer **con;
 517	bool ret = false;
 518
 519	down_write(&uprobe->consumer_rwsem);
 520	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 521		if (*con == uc) {
 522			*con = uc->next;
 523			ret = true;
 524			break;
 525		}
 526	}
 527	up_write(&uprobe->consumer_rwsem);
 528
 529	return ret;
 530}
 531
 532static int __copy_insn(struct address_space *mapping, struct file *filp,
 533			void *insn, int nbytes, loff_t offset)
 534{
 535	struct page *page;
 536	/*
 537	 * Ensure that the page that has the original instruction is populated
 538	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 539	 * see uprobe_register().
 540	 */
 541	if (mapping->a_ops->readpage)
 542		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 543	else
 544		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 545	if (IS_ERR(page))
 546		return PTR_ERR(page);
 547
 548	copy_from_page(page, offset, insn, nbytes);
 549	put_page(page);
 550
 551	return 0;
 552}
 553
 554static int copy_insn(struct uprobe *uprobe, struct file *filp)
 555{
 556	struct address_space *mapping = uprobe->inode->i_mapping;
 557	loff_t offs = uprobe->offset;
 558	void *insn = &uprobe->arch.insn;
 559	int size = sizeof(uprobe->arch.insn);
 560	int len, err = -EIO;
 561
 562	/* Copy only available bytes, -EIO if nothing was read */
 563	do {
 564		if (offs >= i_size_read(uprobe->inode))
 565			break;
 566
 567		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 568		err = __copy_insn(mapping, filp, insn, len, offs);
 569		if (err)
 570			break;
 571
 572		insn += len;
 573		offs += len;
 574		size -= len;
 575	} while (size);
 576
 577	return err;
 578}
 579
 580static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 581				struct mm_struct *mm, unsigned long vaddr)
 582{
 583	int ret = 0;
 584
 585	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 586		return ret;
 587
 588	/* TODO: move this into _register, until then we abuse this sem. */
 589	down_write(&uprobe->consumer_rwsem);
 590	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 591		goto out;
 592
 593	ret = copy_insn(uprobe, file);
 594	if (ret)
 595		goto out;
 596
 597	ret = -ENOTSUPP;
 598	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 599		goto out;
 600
 601	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 602	if (ret)
 603		goto out;
 604
 605	/* uprobe_write_opcode() assumes we don't cross page boundary */
 606	BUG_ON((uprobe->offset & ~PAGE_MASK) +
 607			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
 608
 609	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
 610	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 611
 612 out:
 613	up_write(&uprobe->consumer_rwsem);
 614
 615	return ret;
 616}
 617
 618static inline bool consumer_filter(struct uprobe_consumer *uc,
 619				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 620{
 621	return !uc->filter || uc->filter(uc, ctx, mm);
 622}
 623
 624static bool filter_chain(struct uprobe *uprobe,
 625			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 626{
 627	struct uprobe_consumer *uc;
 628	bool ret = false;
 629
 630	down_read(&uprobe->consumer_rwsem);
 631	for (uc = uprobe->consumers; uc; uc = uc->next) {
 632		ret = consumer_filter(uc, ctx, mm);
 633		if (ret)
 634			break;
 635	}
 636	up_read(&uprobe->consumer_rwsem);
 637
 638	return ret;
 639}
 640
 641static int
 642install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 643			struct vm_area_struct *vma, unsigned long vaddr)
 644{
 645	bool first_uprobe;
 646	int ret;
 647
 648	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 649	if (ret)
 650		return ret;
 651
 652	/*
 653	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 654	 * the task can hit this breakpoint right after __replace_page().
 655	 */
 656	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 657	if (first_uprobe)
 658		set_bit(MMF_HAS_UPROBES, &mm->flags);
 659
 660	ret = set_swbp(&uprobe->arch, mm, vaddr);
 661	if (!ret)
 662		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 663	else if (first_uprobe)
 664		clear_bit(MMF_HAS_UPROBES, &mm->flags);
 665
 666	return ret;
 667}
 668
 669static int
 670remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 671{
 672	set_bit(MMF_RECALC_UPROBES, &mm->flags);
 673	return set_orig_insn(&uprobe->arch, mm, vaddr);
 674}
 675
 676static inline bool uprobe_is_active(struct uprobe *uprobe)
 677{
 678	return !RB_EMPTY_NODE(&uprobe->rb_node);
 679}
 680/*
 681 * There could be threads that have already hit the breakpoint. They
 682 * will recheck the current insn and restart if find_uprobe() fails.
 683 * See find_active_uprobe().
 684 */
 685static void delete_uprobe(struct uprobe *uprobe)
 686{
 687	if (WARN_ON(!uprobe_is_active(uprobe)))
 688		return;
 689
 690	spin_lock(&uprobes_treelock);
 691	rb_erase(&uprobe->rb_node, &uprobes_tree);
 692	spin_unlock(&uprobes_treelock);
 693	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 694	iput(uprobe->inode);
 695	put_uprobe(uprobe);
 696}
 697
 698struct map_info {
 699	struct map_info *next;
 700	struct mm_struct *mm;
 701	unsigned long vaddr;
 702};
 703
 704static inline struct map_info *free_map_info(struct map_info *info)
 705{
 706	struct map_info *next = info->next;
 707	kfree(info);
 708	return next;
 709}
 710
 711static struct map_info *
 712build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 713{
 714	unsigned long pgoff = offset >> PAGE_SHIFT;
 715	struct vm_area_struct *vma;
 716	struct map_info *curr = NULL;
 717	struct map_info *prev = NULL;
 718	struct map_info *info;
 719	int more = 0;
 720
 721 again:
 722	i_mmap_lock_read(mapping);
 723	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 724		if (!valid_vma(vma, is_register))
 725			continue;
 726
 727		if (!prev && !more) {
 728			/*
 729			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 730			 * reclaim. This is optimistic, no harm done if it fails.
 731			 */
 732			prev = kmalloc(sizeof(struct map_info),
 733					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 734			if (prev)
 735				prev->next = NULL;
 736		}
 737		if (!prev) {
 738			more++;
 739			continue;
 740		}
 741
 742		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
 743			continue;
 744
 745		info = prev;
 746		prev = prev->next;
 747		info->next = curr;
 748		curr = info;
 749
 750		info->mm = vma->vm_mm;
 751		info->vaddr = offset_to_vaddr(vma, offset);
 752	}
 753	i_mmap_unlock_read(mapping);
 754
 755	if (!more)
 756		goto out;
 757
 758	prev = curr;
 759	while (curr) {
 760		mmput(curr->mm);
 761		curr = curr->next;
 762	}
 763
 764	do {
 765		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
 766		if (!info) {
 767			curr = ERR_PTR(-ENOMEM);
 768			goto out;
 769		}
 770		info->next = prev;
 771		prev = info;
 772	} while (--more);
 773
 774	goto again;
 775 out:
 776	while (prev)
 777		prev = free_map_info(prev);
 778	return curr;
 779}
 780
 781static int
 782register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
 783{
 784	bool is_register = !!new;
 785	struct map_info *info;
 786	int err = 0;
 787
 788	percpu_down_write(&dup_mmap_sem);
 789	info = build_map_info(uprobe->inode->i_mapping,
 790					uprobe->offset, is_register);
 791	if (IS_ERR(info)) {
 792		err = PTR_ERR(info);
 793		goto out;
 794	}
 795
 796	while (info) {
 797		struct mm_struct *mm = info->mm;
 798		struct vm_area_struct *vma;
 799
 800		if (err && is_register)
 801			goto free;
 802
 803		down_write(&mm->mmap_sem);
 804		vma = find_vma(mm, info->vaddr);
 805		if (!vma || !valid_vma(vma, is_register) ||
 806		    file_inode(vma->vm_file) != uprobe->inode)
 807			goto unlock;
 808
 809		if (vma->vm_start > info->vaddr ||
 810		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
 811			goto unlock;
 812
 813		if (is_register) {
 814			/* consult only the "caller", new consumer. */
 815			if (consumer_filter(new,
 816					UPROBE_FILTER_REGISTER, mm))
 817				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
 818		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
 819			if (!filter_chain(uprobe,
 820					UPROBE_FILTER_UNREGISTER, mm))
 821				err |= remove_breakpoint(uprobe, mm, info->vaddr);
 822		}
 823
 824 unlock:
 825		up_write(&mm->mmap_sem);
 826 free:
 827		mmput(mm);
 828		info = free_map_info(info);
 829	}
 830 out:
 831	percpu_up_write(&dup_mmap_sem);
 832	return err;
 833}
 834
 835static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
 836{
 837	consumer_add(uprobe, uc);
 838	return register_for_each_vma(uprobe, uc);
 839}
 840
 841static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 842{
 843	int err;
 844
 845	if (WARN_ON(!consumer_del(uprobe, uc)))
 846		return;
 847
 848	err = register_for_each_vma(uprobe, NULL);
 849	/* TODO : cant unregister? schedule a worker thread */
 850	if (!uprobe->consumers && !err)
 851		delete_uprobe(uprobe);
 852}
 853
 854/*
 855 * uprobe_register - register a probe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856 * @inode: the file in which the probe has to be placed.
 857 * @offset: offset from the start of the file.
 858 * @uc: information on howto handle the probe..
 859 *
 860 * Apart from the access refcount, uprobe_register() takes a creation
 861 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 862 * inserted into the rbtree (i.e first consumer for a @inode:@offset
 863 * tuple).  Creation refcount stops uprobe_unregister from freeing the
 864 * @uprobe even before the register operation is complete. Creation
 865 * refcount is released when the last @uc for the @uprobe
 866 * unregisters.
 
 867 *
 868 * Return errno if it cannot successully install probes
 869 * else return 0 (success)
 870 */
 871int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 
 872{
 873	struct uprobe *uprobe;
 874	int ret;
 875
 876	/* Uprobe must have at least one set consumer */
 877	if (!uc->handler && !uc->ret_handler)
 878		return -EINVAL;
 879
 880	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
 881	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
 882		return -EIO;
 883	/* Racy, just to catch the obvious mistakes */
 884	if (offset > i_size_read(inode))
 885		return -EINVAL;
 886
 
 
 
 
 
 
 
 
 
 887 retry:
 888	uprobe = alloc_uprobe(inode, offset);
 889	if (!uprobe)
 890		return -ENOMEM;
 
 
 
 891	/*
 892	 * We can race with uprobe_unregister()->delete_uprobe().
 893	 * Check uprobe_is_active() and retry if it is false.
 894	 */
 895	down_write(&uprobe->register_rwsem);
 896	ret = -EAGAIN;
 897	if (likely(uprobe_is_active(uprobe))) {
 898		ret = __uprobe_register(uprobe, uc);
 
 899		if (ret)
 900			__uprobe_unregister(uprobe, uc);
 901	}
 902	up_write(&uprobe->register_rwsem);
 903	put_uprobe(uprobe);
 904
 905	if (unlikely(ret == -EAGAIN))
 906		goto retry;
 907	return ret;
 908}
 
 
 
 
 
 
 909EXPORT_SYMBOL_GPL(uprobe_register);
 910
 
 
 
 
 
 
 
 911/*
 912 * uprobe_apply - unregister a already registered probe.
 913 * @inode: the file in which the probe has to be removed.
 914 * @offset: offset from the start of the file.
 915 * @uc: consumer which wants to add more or remove some breakpoints
 916 * @add: add or remove the breakpoints
 917 */
 918int uprobe_apply(struct inode *inode, loff_t offset,
 919			struct uprobe_consumer *uc, bool add)
 920{
 921	struct uprobe *uprobe;
 922	struct uprobe_consumer *con;
 923	int ret = -ENOENT;
 924
 925	uprobe = find_uprobe(inode, offset);
 926	if (WARN_ON(!uprobe))
 927		return ret;
 928
 929	down_write(&uprobe->register_rwsem);
 930	for (con = uprobe->consumers; con && con != uc ; con = con->next)
 931		;
 932	if (con)
 933		ret = register_for_each_vma(uprobe, add ? uc : NULL);
 934	up_write(&uprobe->register_rwsem);
 935	put_uprobe(uprobe);
 936
 937	return ret;
 938}
 939
 940/*
 941 * uprobe_unregister - unregister a already registered probe.
 942 * @inode: the file in which the probe has to be removed.
 943 * @offset: offset from the start of the file.
 944 * @uc: identify which probe if multiple probes are colocated.
 945 */
 946void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
 947{
 948	struct uprobe *uprobe;
 949
 950	uprobe = find_uprobe(inode, offset);
 951	if (WARN_ON(!uprobe))
 952		return;
 953
 954	down_write(&uprobe->register_rwsem);
 955	__uprobe_unregister(uprobe, uc);
 956	up_write(&uprobe->register_rwsem);
 957	put_uprobe(uprobe);
 958}
 959EXPORT_SYMBOL_GPL(uprobe_unregister);
 960
 961static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
 962{
 963	struct vm_area_struct *vma;
 964	int err = 0;
 965
 966	down_read(&mm->mmap_sem);
 967	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 968		unsigned long vaddr;
 969		loff_t offset;
 970
 971		if (!valid_vma(vma, false) ||
 972		    file_inode(vma->vm_file) != uprobe->inode)
 973			continue;
 974
 975		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
 976		if (uprobe->offset <  offset ||
 977		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
 978			continue;
 979
 980		vaddr = offset_to_vaddr(vma, uprobe->offset);
 981		err |= remove_breakpoint(uprobe, mm, vaddr);
 982	}
 983	up_read(&mm->mmap_sem);
 984
 985	return err;
 986}
 987
 988static struct rb_node *
 989find_node_in_range(struct inode *inode, loff_t min, loff_t max)
 990{
 991	struct rb_node *n = uprobes_tree.rb_node;
 992
 993	while (n) {
 994		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
 995
 996		if (inode < u->inode) {
 997			n = n->rb_left;
 998		} else if (inode > u->inode) {
 999			n = n->rb_right;
1000		} else {
1001			if (max < u->offset)
1002				n = n->rb_left;
1003			else if (min > u->offset)
1004				n = n->rb_right;
1005			else
1006				break;
1007		}
1008	}
1009
1010	return n;
1011}
1012
1013/*
1014 * For a given range in vma, build a list of probes that need to be inserted.
1015 */
1016static void build_probe_list(struct inode *inode,
1017				struct vm_area_struct *vma,
1018				unsigned long start, unsigned long end,
1019				struct list_head *head)
1020{
1021	loff_t min, max;
1022	struct rb_node *n, *t;
1023	struct uprobe *u;
1024
1025	INIT_LIST_HEAD(head);
1026	min = vaddr_to_offset(vma, start);
1027	max = min + (end - start) - 1;
1028
1029	spin_lock(&uprobes_treelock);
1030	n = find_node_in_range(inode, min, max);
1031	if (n) {
1032		for (t = n; t; t = rb_prev(t)) {
1033			u = rb_entry(t, struct uprobe, rb_node);
1034			if (u->inode != inode || u->offset < min)
1035				break;
1036			list_add(&u->pending_list, head);
1037			get_uprobe(u);
1038		}
1039		for (t = n; (t = rb_next(t)); ) {
1040			u = rb_entry(t, struct uprobe, rb_node);
1041			if (u->inode != inode || u->offset > max)
1042				break;
1043			list_add(&u->pending_list, head);
1044			get_uprobe(u);
1045		}
1046	}
1047	spin_unlock(&uprobes_treelock);
1048}
1049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050/*
1051 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1052 *
1053 * Currently we ignore all errors and always return 0, the callers
1054 * can't handle the failure anyway.
1055 */
1056int uprobe_mmap(struct vm_area_struct *vma)
1057{
1058	struct list_head tmp_list;
1059	struct uprobe *uprobe, *u;
1060	struct inode *inode;
1061
1062	if (no_uprobe_events() || !valid_vma(vma, true))
 
 
 
 
 
 
 
 
1063		return 0;
1064
1065	inode = file_inode(vma->vm_file);
1066	if (!inode)
1067		return 0;
1068
1069	mutex_lock(uprobes_mmap_hash(inode));
1070	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1071	/*
1072	 * We can race with uprobe_unregister(), this uprobe can be already
1073	 * removed. But in this case filter_chain() must return false, all
1074	 * consumers have gone away.
1075	 */
1076	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1077		if (!fatal_signal_pending(current) &&
1078		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1079			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1080			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1081		}
1082		put_uprobe(uprobe);
1083	}
1084	mutex_unlock(uprobes_mmap_hash(inode));
1085
1086	return 0;
1087}
1088
1089static bool
1090vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1091{
1092	loff_t min, max;
1093	struct inode *inode;
1094	struct rb_node *n;
1095
1096	inode = file_inode(vma->vm_file);
1097
1098	min = vaddr_to_offset(vma, start);
1099	max = min + (end - start) - 1;
1100
1101	spin_lock(&uprobes_treelock);
1102	n = find_node_in_range(inode, min, max);
1103	spin_unlock(&uprobes_treelock);
1104
1105	return !!n;
1106}
1107
1108/*
1109 * Called in context of a munmap of a vma.
1110 */
1111void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1112{
1113	if (no_uprobe_events() || !valid_vma(vma, false))
1114		return;
1115
1116	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1117		return;
1118
1119	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1120	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1121		return;
1122
1123	if (vma_has_uprobes(vma, start, end))
1124		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1125}
1126
1127/* Slot allocation for XOL */
1128static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1129{
1130	struct vm_area_struct *vma;
1131	int ret;
1132
1133	down_write(&mm->mmap_sem);
 
 
1134	if (mm->uprobes_state.xol_area) {
1135		ret = -EALREADY;
1136		goto fail;
1137	}
1138
1139	if (!area->vaddr) {
1140		/* Try to map as high as possible, this is only a hint. */
1141		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1142						PAGE_SIZE, 0, 0);
1143		if (area->vaddr & ~PAGE_MASK) {
1144			ret = area->vaddr;
1145			goto fail;
1146		}
1147	}
1148
1149	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1150				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1151				&area->xol_mapping);
1152	if (IS_ERR(vma)) {
1153		ret = PTR_ERR(vma);
1154		goto fail;
1155	}
1156
1157	ret = 0;
1158	smp_wmb();	/* pairs with get_xol_area() */
1159	mm->uprobes_state.xol_area = area;
1160 fail:
1161	up_write(&mm->mmap_sem);
1162
1163	return ret;
1164}
1165
1166static struct xol_area *__create_xol_area(unsigned long vaddr)
1167{
1168	struct mm_struct *mm = current->mm;
1169	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1170	struct xol_area *area;
1171
1172	area = kmalloc(sizeof(*area), GFP_KERNEL);
1173	if (unlikely(!area))
1174		goto out;
1175
1176	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
 
1177	if (!area->bitmap)
1178		goto free_area;
1179
1180	area->xol_mapping.name = "[uprobes]";
1181	area->xol_mapping.fault = NULL;
1182	area->xol_mapping.pages = area->pages;
1183	area->pages[0] = alloc_page(GFP_HIGHUSER);
1184	if (!area->pages[0])
1185		goto free_bitmap;
1186	area->pages[1] = NULL;
1187
1188	area->vaddr = vaddr;
1189	init_waitqueue_head(&area->wq);
1190	/* Reserve the 1st slot for get_trampoline_vaddr() */
1191	set_bit(0, area->bitmap);
1192	atomic_set(&area->slot_count, 1);
1193	copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1194
1195	if (!xol_add_vma(mm, area))
1196		return area;
1197
1198	__free_page(area->pages[0]);
1199 free_bitmap:
1200	kfree(area->bitmap);
1201 free_area:
1202	kfree(area);
1203 out:
1204	return NULL;
1205}
1206
1207/*
1208 * get_xol_area - Allocate process's xol_area if necessary.
1209 * This area will be used for storing instructions for execution out of line.
1210 *
1211 * Returns the allocated area or NULL.
1212 */
1213static struct xol_area *get_xol_area(void)
1214{
1215	struct mm_struct *mm = current->mm;
1216	struct xol_area *area;
1217
1218	if (!mm->uprobes_state.xol_area)
1219		__create_xol_area(0);
1220
1221	area = mm->uprobes_state.xol_area;
1222	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1223	return area;
1224}
1225
1226/*
1227 * uprobe_clear_state - Free the area allocated for slots.
1228 */
1229void uprobe_clear_state(struct mm_struct *mm)
1230{
1231	struct xol_area *area = mm->uprobes_state.xol_area;
1232
 
 
 
 
1233	if (!area)
1234		return;
1235
1236	put_page(area->pages[0]);
1237	kfree(area->bitmap);
1238	kfree(area);
1239}
1240
1241void uprobe_start_dup_mmap(void)
1242{
1243	percpu_down_read(&dup_mmap_sem);
1244}
1245
1246void uprobe_end_dup_mmap(void)
1247{
1248	percpu_up_read(&dup_mmap_sem);
1249}
1250
1251void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1252{
1253	newmm->uprobes_state.xol_area = NULL;
1254
1255	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1256		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1257		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1258		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1259	}
1260}
1261
1262/*
1263 *  - search for a free slot.
1264 */
1265static unsigned long xol_take_insn_slot(struct xol_area *area)
1266{
1267	unsigned long slot_addr;
1268	int slot_nr;
1269
1270	do {
1271		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1272		if (slot_nr < UINSNS_PER_PAGE) {
1273			if (!test_and_set_bit(slot_nr, area->bitmap))
1274				break;
1275
1276			slot_nr = UINSNS_PER_PAGE;
1277			continue;
1278		}
1279		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1280	} while (slot_nr >= UINSNS_PER_PAGE);
1281
1282	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1283	atomic_inc(&area->slot_count);
1284
1285	return slot_addr;
1286}
1287
1288/*
1289 * xol_get_insn_slot - allocate a slot for xol.
1290 * Returns the allocated slot address or 0.
1291 */
1292static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1293{
1294	struct xol_area *area;
1295	unsigned long xol_vaddr;
1296
1297	area = get_xol_area();
1298	if (!area)
1299		return 0;
1300
1301	xol_vaddr = xol_take_insn_slot(area);
1302	if (unlikely(!xol_vaddr))
1303		return 0;
1304
1305	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1306			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1307
1308	return xol_vaddr;
1309}
1310
1311/*
1312 * xol_free_insn_slot - If slot was earlier allocated by
1313 * @xol_get_insn_slot(), make the slot available for
1314 * subsequent requests.
1315 */
1316static void xol_free_insn_slot(struct task_struct *tsk)
1317{
1318	struct xol_area *area;
1319	unsigned long vma_end;
1320	unsigned long slot_addr;
1321
1322	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1323		return;
1324
1325	slot_addr = tsk->utask->xol_vaddr;
1326	if (unlikely(!slot_addr))
1327		return;
1328
1329	area = tsk->mm->uprobes_state.xol_area;
1330	vma_end = area->vaddr + PAGE_SIZE;
1331	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1332		unsigned long offset;
1333		int slot_nr;
1334
1335		offset = slot_addr - area->vaddr;
1336		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1337		if (slot_nr >= UINSNS_PER_PAGE)
1338			return;
1339
1340		clear_bit(slot_nr, area->bitmap);
1341		atomic_dec(&area->slot_count);
1342		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1343		if (waitqueue_active(&area->wq))
1344			wake_up(&area->wq);
1345
1346		tsk->utask->xol_vaddr = 0;
1347	}
1348}
1349
1350void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1351				  void *src, unsigned long len)
1352{
1353	/* Initialize the slot */
1354	copy_to_page(page, vaddr, src, len);
1355
1356	/*
1357	 * We probably need flush_icache_user_range() but it needs vma.
1358	 * This should work on most of architectures by default. If
1359	 * architecture needs to do something different it can define
1360	 * its own version of the function.
1361	 */
1362	flush_dcache_page(page);
1363}
1364
1365/**
1366 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1367 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1368 * instruction.
1369 * Return the address of the breakpoint instruction.
1370 */
1371unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1372{
1373	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1374}
1375
1376unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1377{
1378	struct uprobe_task *utask = current->utask;
1379
1380	if (unlikely(utask && utask->active_uprobe))
1381		return utask->vaddr;
1382
1383	return instruction_pointer(regs);
1384}
1385
1386static struct return_instance *free_ret_instance(struct return_instance *ri)
1387{
1388	struct return_instance *next = ri->next;
1389	put_uprobe(ri->uprobe);
1390	kfree(ri);
1391	return next;
1392}
1393
1394/*
1395 * Called with no locks held.
1396 * Called in context of a exiting or a exec-ing thread.
1397 */
1398void uprobe_free_utask(struct task_struct *t)
1399{
1400	struct uprobe_task *utask = t->utask;
1401	struct return_instance *ri;
1402
1403	if (!utask)
1404		return;
1405
1406	if (utask->active_uprobe)
1407		put_uprobe(utask->active_uprobe);
1408
1409	ri = utask->return_instances;
1410	while (ri)
1411		ri = free_ret_instance(ri);
1412
1413	xol_free_insn_slot(t);
1414	kfree(utask);
1415	t->utask = NULL;
1416}
1417
1418/*
1419 * Allocate a uprobe_task object for the task if if necessary.
1420 * Called when the thread hits a breakpoint.
1421 *
1422 * Returns:
1423 * - pointer to new uprobe_task on success
1424 * - NULL otherwise
1425 */
1426static struct uprobe_task *get_utask(void)
1427{
1428	if (!current->utask)
1429		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1430	return current->utask;
1431}
1432
1433static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1434{
1435	struct uprobe_task *n_utask;
1436	struct return_instance **p, *o, *n;
1437
1438	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1439	if (!n_utask)
1440		return -ENOMEM;
1441	t->utask = n_utask;
1442
1443	p = &n_utask->return_instances;
1444	for (o = o_utask->return_instances; o; o = o->next) {
1445		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1446		if (!n)
1447			return -ENOMEM;
1448
1449		*n = *o;
1450		get_uprobe(n->uprobe);
1451		n->next = NULL;
1452
1453		*p = n;
1454		p = &n->next;
1455		n_utask->depth++;
1456	}
1457
1458	return 0;
1459}
1460
1461static void uprobe_warn(struct task_struct *t, const char *msg)
1462{
1463	pr_warn("uprobe: %s:%d failed to %s\n",
1464			current->comm, current->pid, msg);
1465}
1466
1467static void dup_xol_work(struct callback_head *work)
1468{
1469	if (current->flags & PF_EXITING)
1470		return;
1471
1472	if (!__create_xol_area(current->utask->dup_xol_addr))
 
1473		uprobe_warn(current, "dup xol area");
1474}
1475
1476/*
1477 * Called in context of a new clone/fork from copy_process.
1478 */
1479void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1480{
1481	struct uprobe_task *utask = current->utask;
1482	struct mm_struct *mm = current->mm;
1483	struct xol_area *area;
1484
1485	t->utask = NULL;
1486
1487	if (!utask || !utask->return_instances)
1488		return;
1489
1490	if (mm == t->mm && !(flags & CLONE_VFORK))
1491		return;
1492
1493	if (dup_utask(t, utask))
1494		return uprobe_warn(t, "dup ret instances");
1495
1496	/* The task can fork() after dup_xol_work() fails */
1497	area = mm->uprobes_state.xol_area;
1498	if (!area)
1499		return uprobe_warn(t, "dup xol area");
1500
1501	if (mm == t->mm)
1502		return;
1503
1504	t->utask->dup_xol_addr = area->vaddr;
1505	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1506	task_work_add(t, &t->utask->dup_xol_work, true);
1507}
1508
1509/*
1510 * Current area->vaddr notion assume the trampoline address is always
1511 * equal area->vaddr.
1512 *
1513 * Returns -1 in case the xol_area is not allocated.
1514 */
1515static unsigned long get_trampoline_vaddr(void)
1516{
1517	struct xol_area *area;
1518	unsigned long trampoline_vaddr = -1;
1519
1520	area = current->mm->uprobes_state.xol_area;
1521	smp_read_barrier_depends();
1522	if (area)
1523		trampoline_vaddr = area->vaddr;
1524
1525	return trampoline_vaddr;
1526}
1527
1528static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1529					struct pt_regs *regs)
1530{
1531	struct return_instance *ri = utask->return_instances;
1532	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1533
1534	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1535		ri = free_ret_instance(ri);
1536		utask->depth--;
1537	}
1538	utask->return_instances = ri;
1539}
1540
1541static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1542{
1543	struct return_instance *ri;
1544	struct uprobe_task *utask;
1545	unsigned long orig_ret_vaddr, trampoline_vaddr;
1546	bool chained;
1547
1548	if (!get_xol_area())
1549		return;
1550
1551	utask = get_utask();
1552	if (!utask)
1553		return;
1554
1555	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1556		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1557				" nestedness limit pid/tgid=%d/%d\n",
1558				current->pid, current->tgid);
1559		return;
1560	}
1561
1562	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1563	if (!ri)
1564		return;
1565
1566	trampoline_vaddr = get_trampoline_vaddr();
1567	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1568	if (orig_ret_vaddr == -1)
1569		goto fail;
1570
1571	/* drop the entries invalidated by longjmp() */
1572	chained = (orig_ret_vaddr == trampoline_vaddr);
1573	cleanup_return_instances(utask, chained, regs);
1574
1575	/*
1576	 * We don't want to keep trampoline address in stack, rather keep the
1577	 * original return address of first caller thru all the consequent
1578	 * instances. This also makes breakpoint unwrapping easier.
1579	 */
1580	if (chained) {
1581		if (!utask->return_instances) {
1582			/*
1583			 * This situation is not possible. Likely we have an
1584			 * attack from user-space.
1585			 */
1586			uprobe_warn(current, "handle tail call");
1587			goto fail;
1588		}
1589		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1590	}
1591
1592	ri->uprobe = get_uprobe(uprobe);
1593	ri->func = instruction_pointer(regs);
1594	ri->stack = user_stack_pointer(regs);
1595	ri->orig_ret_vaddr = orig_ret_vaddr;
1596	ri->chained = chained;
1597
1598	utask->depth++;
1599	ri->next = utask->return_instances;
1600	utask->return_instances = ri;
1601
1602	return;
1603 fail:
1604	kfree(ri);
1605}
1606
1607/* Prepare to single-step probed instruction out of line. */
1608static int
1609pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1610{
1611	struct uprobe_task *utask;
1612	unsigned long xol_vaddr;
1613	int err;
1614
1615	utask = get_utask();
1616	if (!utask)
1617		return -ENOMEM;
1618
1619	xol_vaddr = xol_get_insn_slot(uprobe);
1620	if (!xol_vaddr)
1621		return -ENOMEM;
1622
1623	utask->xol_vaddr = xol_vaddr;
1624	utask->vaddr = bp_vaddr;
1625
1626	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1627	if (unlikely(err)) {
1628		xol_free_insn_slot(current);
1629		return err;
1630	}
1631
1632	utask->active_uprobe = uprobe;
1633	utask->state = UTASK_SSTEP;
1634	return 0;
1635}
1636
1637/*
1638 * If we are singlestepping, then ensure this thread is not connected to
1639 * non-fatal signals until completion of singlestep.  When xol insn itself
1640 * triggers the signal,  restart the original insn even if the task is
1641 * already SIGKILL'ed (since coredump should report the correct ip).  This
1642 * is even more important if the task has a handler for SIGSEGV/etc, The
1643 * _same_ instruction should be repeated again after return from the signal
1644 * handler, and SSTEP can never finish in this case.
1645 */
1646bool uprobe_deny_signal(void)
1647{
1648	struct task_struct *t = current;
1649	struct uprobe_task *utask = t->utask;
1650
1651	if (likely(!utask || !utask->active_uprobe))
1652		return false;
1653
1654	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1655
1656	if (signal_pending(t)) {
1657		spin_lock_irq(&t->sighand->siglock);
1658		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1659		spin_unlock_irq(&t->sighand->siglock);
1660
1661		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1662			utask->state = UTASK_SSTEP_TRAPPED;
1663			set_tsk_thread_flag(t, TIF_UPROBE);
1664		}
1665	}
1666
1667	return true;
1668}
1669
1670static void mmf_recalc_uprobes(struct mm_struct *mm)
1671{
1672	struct vm_area_struct *vma;
1673
1674	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1675		if (!valid_vma(vma, false))
1676			continue;
1677		/*
1678		 * This is not strictly accurate, we can race with
1679		 * uprobe_unregister() and see the already removed
1680		 * uprobe if delete_uprobe() was not yet called.
1681		 * Or this uprobe can be filtered out.
1682		 */
1683		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1684			return;
1685	}
1686
1687	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1688}
1689
1690static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1691{
1692	struct page *page;
1693	uprobe_opcode_t opcode;
1694	int result;
1695
 
 
 
1696	pagefault_disable();
1697	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1698							sizeof(opcode));
1699	pagefault_enable();
1700
1701	if (likely(result == 0))
1702		goto out;
1703
1704	/*
1705	 * The NULL 'tsk' here ensures that any faults that occur here
1706	 * will not be accounted to the task.  'mm' *is* current->mm,
1707	 * but we treat this as a 'remote' access since it is
1708	 * essentially a kernel access to the memory.
1709	 */
1710	result = get_user_pages_remote(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
 
1711	if (result < 0)
1712		return result;
1713
1714	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1715	put_page(page);
1716 out:
1717	/* This needs to return true for any variant of the trap insn */
1718	return is_trap_insn(&opcode);
1719}
1720
1721static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1722{
1723	struct mm_struct *mm = current->mm;
1724	struct uprobe *uprobe = NULL;
1725	struct vm_area_struct *vma;
1726
1727	down_read(&mm->mmap_sem);
1728	vma = find_vma(mm, bp_vaddr);
1729	if (vma && vma->vm_start <= bp_vaddr) {
1730		if (valid_vma(vma, false)) {
1731			struct inode *inode = file_inode(vma->vm_file);
1732			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1733
1734			uprobe = find_uprobe(inode, offset);
1735		}
1736
1737		if (!uprobe)
1738			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1739	} else {
1740		*is_swbp = -EFAULT;
1741	}
1742
1743	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1744		mmf_recalc_uprobes(mm);
1745	up_read(&mm->mmap_sem);
1746
1747	return uprobe;
1748}
1749
1750static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1751{
1752	struct uprobe_consumer *uc;
1753	int remove = UPROBE_HANDLER_REMOVE;
1754	bool need_prep = false; /* prepare return uprobe, when needed */
1755
1756	down_read(&uprobe->register_rwsem);
1757	for (uc = uprobe->consumers; uc; uc = uc->next) {
1758		int rc = 0;
1759
1760		if (uc->handler) {
1761			rc = uc->handler(uc, regs);
1762			WARN(rc & ~UPROBE_HANDLER_MASK,
1763				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1764		}
1765
1766		if (uc->ret_handler)
1767			need_prep = true;
1768
1769		remove &= rc;
1770	}
1771
1772	if (need_prep && !remove)
1773		prepare_uretprobe(uprobe, regs); /* put bp at return */
1774
1775	if (remove && uprobe->consumers) {
1776		WARN_ON(!uprobe_is_active(uprobe));
1777		unapply_uprobe(uprobe, current->mm);
1778	}
1779	up_read(&uprobe->register_rwsem);
1780}
1781
1782static void
1783handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1784{
1785	struct uprobe *uprobe = ri->uprobe;
1786	struct uprobe_consumer *uc;
1787
1788	down_read(&uprobe->register_rwsem);
1789	for (uc = uprobe->consumers; uc; uc = uc->next) {
1790		if (uc->ret_handler)
1791			uc->ret_handler(uc, ri->func, regs);
1792	}
1793	up_read(&uprobe->register_rwsem);
1794}
1795
1796static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1797{
1798	bool chained;
1799
1800	do {
1801		chained = ri->chained;
1802		ri = ri->next;	/* can't be NULL if chained */
1803	} while (chained);
1804
1805	return ri;
1806}
1807
1808static void handle_trampoline(struct pt_regs *regs)
1809{
1810	struct uprobe_task *utask;
1811	struct return_instance *ri, *next;
1812	bool valid;
1813
1814	utask = current->utask;
1815	if (!utask)
1816		goto sigill;
1817
1818	ri = utask->return_instances;
1819	if (!ri)
1820		goto sigill;
1821
1822	do {
1823		/*
1824		 * We should throw out the frames invalidated by longjmp().
1825		 * If this chain is valid, then the next one should be alive
1826		 * or NULL; the latter case means that nobody but ri->func
1827		 * could hit this trampoline on return. TODO: sigaltstack().
1828		 */
1829		next = find_next_ret_chain(ri);
1830		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1831
1832		instruction_pointer_set(regs, ri->orig_ret_vaddr);
1833		do {
1834			if (valid)
1835				handle_uretprobe_chain(ri, regs);
1836			ri = free_ret_instance(ri);
1837			utask->depth--;
1838		} while (ri != next);
1839	} while (!valid);
1840
1841	utask->return_instances = ri;
1842	return;
1843
1844 sigill:
1845	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1846	force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1847
1848}
1849
1850bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1851{
1852	return false;
1853}
1854
1855bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1856					struct pt_regs *regs)
1857{
1858	return true;
1859}
1860
1861/*
1862 * Run handler and ask thread to singlestep.
1863 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1864 */
1865static void handle_swbp(struct pt_regs *regs)
1866{
1867	struct uprobe *uprobe;
1868	unsigned long bp_vaddr;
1869	int uninitialized_var(is_swbp);
1870
1871	bp_vaddr = uprobe_get_swbp_addr(regs);
1872	if (bp_vaddr == get_trampoline_vaddr())
1873		return handle_trampoline(regs);
1874
1875	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1876	if (!uprobe) {
1877		if (is_swbp > 0) {
1878			/* No matching uprobe; signal SIGTRAP. */
1879			send_sig(SIGTRAP, current, 0);
1880		} else {
1881			/*
1882			 * Either we raced with uprobe_unregister() or we can't
1883			 * access this memory. The latter is only possible if
1884			 * another thread plays with our ->mm. In both cases
1885			 * we can simply restart. If this vma was unmapped we
1886			 * can pretend this insn was not executed yet and get
1887			 * the (correct) SIGSEGV after restart.
1888			 */
1889			instruction_pointer_set(regs, bp_vaddr);
1890		}
1891		return;
1892	}
1893
1894	/* change it in advance for ->handler() and restart */
1895	instruction_pointer_set(regs, bp_vaddr);
1896
1897	/*
1898	 * TODO: move copy_insn/etc into _register and remove this hack.
1899	 * After we hit the bp, _unregister + _register can install the
1900	 * new and not-yet-analyzed uprobe at the same address, restart.
1901	 */
1902	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1903	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1904		goto out;
1905
 
 
 
 
 
 
 
 
 
1906	/* Tracing handlers use ->utask to communicate with fetch methods */
1907	if (!get_utask())
1908		goto out;
1909
1910	if (arch_uprobe_ignore(&uprobe->arch, regs))
1911		goto out;
1912
1913	handler_chain(uprobe, regs);
1914
1915	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1916		goto out;
1917
1918	if (!pre_ssout(uprobe, regs, bp_vaddr))
1919		return;
1920
1921	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1922out:
1923	put_uprobe(uprobe);
1924}
1925
1926/*
1927 * Perform required fix-ups and disable singlestep.
1928 * Allow pending signals to take effect.
1929 */
1930static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1931{
1932	struct uprobe *uprobe;
1933	int err = 0;
1934
1935	uprobe = utask->active_uprobe;
1936	if (utask->state == UTASK_SSTEP_ACK)
1937		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1938	else if (utask->state == UTASK_SSTEP_TRAPPED)
1939		arch_uprobe_abort_xol(&uprobe->arch, regs);
1940	else
1941		WARN_ON_ONCE(1);
1942
1943	put_uprobe(uprobe);
1944	utask->active_uprobe = NULL;
1945	utask->state = UTASK_RUNNING;
1946	xol_free_insn_slot(current);
1947
1948	spin_lock_irq(&current->sighand->siglock);
1949	recalc_sigpending(); /* see uprobe_deny_signal() */
1950	spin_unlock_irq(&current->sighand->siglock);
1951
1952	if (unlikely(err)) {
1953		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1954		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1955	}
1956}
1957
1958/*
1959 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1960 * allows the thread to return from interrupt. After that handle_swbp()
1961 * sets utask->active_uprobe.
1962 *
1963 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1964 * and allows the thread to return from interrupt.
1965 *
1966 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1967 * uprobe_notify_resume().
1968 */
1969void uprobe_notify_resume(struct pt_regs *regs)
1970{
1971	struct uprobe_task *utask;
1972
1973	clear_thread_flag(TIF_UPROBE);
1974
1975	utask = current->utask;
1976	if (utask && utask->active_uprobe)
1977		handle_singlestep(utask, regs);
1978	else
1979		handle_swbp(regs);
1980}
1981
1982/*
1983 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1984 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1985 */
1986int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1987{
1988	if (!current->mm)
1989		return 0;
1990
1991	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1992	    (!current->utask || !current->utask->return_instances))
1993		return 0;
1994
1995	set_thread_flag(TIF_UPROBE);
1996	return 1;
1997}
1998
1999/*
2000 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2001 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2002 */
2003int uprobe_post_sstep_notifier(struct pt_regs *regs)
2004{
2005	struct uprobe_task *utask = current->utask;
2006
2007	if (!current->mm || !utask || !utask->active_uprobe)
2008		/* task is currently not uprobed */
2009		return 0;
2010
2011	utask->state = UTASK_SSTEP_ACK;
2012	set_thread_flag(TIF_UPROBE);
2013	return 1;
2014}
2015
2016static struct notifier_block uprobe_exception_nb = {
2017	.notifier_call		= arch_uprobe_exception_notify,
2018	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2019};
2020
2021static int __init init_uprobes(void)
2022{
2023	int i;
2024
2025	for (i = 0; i < UPROBES_HASH_SZ; i++)
2026		mutex_init(&uprobes_mmap_mutex[i]);
2027
2028	if (percpu_init_rwsem(&dup_mmap_sem))
2029		return -ENOMEM;
2030
2031	return register_die_notifier(&uprobe_exception_nb);
2032}
2033__initcall(init_uprobes);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * User-space Probes (UProbes)
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Copyright (C) IBM Corporation, 2008-2012
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
  10 */
  11
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/pagemap.h>	/* read_mapping_page */
  15#include <linux/slab.h>
  16#include <linux/sched.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/coredump.h>
  19#include <linux/export.h>
  20#include <linux/rmap.h>		/* anon_vma_prepare */
  21#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
  22#include <linux/swap.h>		/* try_to_free_swap */
  23#include <linux/ptrace.h>	/* user_enable_single_step */
  24#include <linux/kdebug.h>	/* notifier mechanism */
  25#include "../../mm/internal.h"	/* munlock_vma_page */
  26#include <linux/percpu-rwsem.h>
  27#include <linux/task_work.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/khugepaged.h>
  30
  31#include <linux/uprobes.h>
  32
  33#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
  34#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
  35
  36static struct rb_root uprobes_tree = RB_ROOT;
  37/*
  38 * allows us to skip the uprobe_mmap if there are no uprobe events active
  39 * at this time.  Probably a fine grained per inode count is better?
  40 */
  41#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
  42
  43static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
  44
  45#define UPROBES_HASH_SZ	13
  46/* serialize uprobe->pending_list */
  47static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
  48#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
  49
  50DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
  51
  52/* Have a copy of original instruction */
  53#define UPROBE_COPY_INSN	0
  54
  55struct uprobe {
  56	struct rb_node		rb_node;	/* node in the rb tree */
  57	refcount_t		ref;
  58	struct rw_semaphore	register_rwsem;
  59	struct rw_semaphore	consumer_rwsem;
  60	struct list_head	pending_list;
  61	struct uprobe_consumer	*consumers;
  62	struct inode		*inode;		/* Also hold a ref to inode */
  63	loff_t			offset;
  64	loff_t			ref_ctr_offset;
  65	unsigned long		flags;
  66
  67	/*
  68	 * The generic code assumes that it has two members of unknown type
  69	 * owned by the arch-specific code:
  70	 *
  71	 * 	insn -	copy_insn() saves the original instruction here for
  72	 *		arch_uprobe_analyze_insn().
  73	 *
  74	 *	ixol -	potentially modified instruction to execute out of
  75	 *		line, copied to xol_area by xol_get_insn_slot().
  76	 */
  77	struct arch_uprobe	arch;
  78};
  79
  80struct delayed_uprobe {
  81	struct list_head list;
  82	struct uprobe *uprobe;
  83	struct mm_struct *mm;
  84};
  85
  86static DEFINE_MUTEX(delayed_uprobe_lock);
  87static LIST_HEAD(delayed_uprobe_list);
  88
  89/*
  90 * Execute out of line area: anonymous executable mapping installed
  91 * by the probed task to execute the copy of the original instruction
  92 * mangled by set_swbp().
  93 *
  94 * On a breakpoint hit, thread contests for a slot.  It frees the
  95 * slot after singlestep. Currently a fixed number of slots are
  96 * allocated.
  97 */
  98struct xol_area {
  99	wait_queue_head_t 		wq;		/* if all slots are busy */
 100	atomic_t 			slot_count;	/* number of in-use slots */
 101	unsigned long 			*bitmap;	/* 0 = free slot */
 102
 103	struct vm_special_mapping	xol_mapping;
 104	struct page 			*pages[2];
 105	/*
 106	 * We keep the vma's vm_start rather than a pointer to the vma
 107	 * itself.  The probed process or a naughty kernel module could make
 108	 * the vma go away, and we must handle that reasonably gracefully.
 109	 */
 110	unsigned long 			vaddr;		/* Page(s) of instruction slots */
 111};
 112
 113/*
 114 * valid_vma: Verify if the specified vma is an executable vma
 115 * Relax restrictions while unregistering: vm_flags might have
 116 * changed after breakpoint was inserted.
 117 *	- is_register: indicates if we are in register context.
 118 *	- Return 1 if the specified virtual address is in an
 119 *	  executable vma.
 120 */
 121static bool valid_vma(struct vm_area_struct *vma, bool is_register)
 122{
 123	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
 124
 125	if (is_register)
 126		flags |= VM_WRITE;
 127
 128	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
 129}
 130
 131static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
 132{
 133	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
 134}
 135
 136static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
 137{
 138	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
 139}
 140
 141/**
 142 * __replace_page - replace page in vma by new page.
 143 * based on replace_page in mm/ksm.c
 144 *
 145 * @vma:      vma that holds the pte pointing to page
 146 * @addr:     address the old @page is mapped at
 147 * @old_page: the page we are replacing by new_page
 148 * @new_page: the modified page we replace page by
 149 *
 150 * If @new_page is NULL, only unmap @old_page.
 151 *
 152 * Returns 0 on success, negative error code otherwise.
 153 */
 154static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
 155				struct page *old_page, struct page *new_page)
 156{
 157	struct mm_struct *mm = vma->vm_mm;
 158	struct page_vma_mapped_walk pvmw = {
 159		.page = compound_head(old_page),
 160		.vma = vma,
 161		.address = addr,
 162	};
 163	int err;
 164	struct mmu_notifier_range range;
 165
 166	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
 167				addr + PAGE_SIZE);
 168
 169	if (new_page) {
 170		err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
 171		if (err)
 172			return err;
 173	}
 174
 175	/* For try_to_free_swap() and munlock_vma_page() below */
 176	lock_page(old_page);
 177
 178	mmu_notifier_invalidate_range_start(&range);
 179	err = -EAGAIN;
 180	if (!page_vma_mapped_walk(&pvmw))
 
 181		goto unlock;
 182	VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
 183
 184	if (new_page) {
 185		get_page(new_page);
 186		page_add_new_anon_rmap(new_page, vma, addr, false);
 187		lru_cache_add_inactive_or_unevictable(new_page, vma);
 188	} else
 189		/* no new page, just dec_mm_counter for old_page */
 190		dec_mm_counter(mm, MM_ANONPAGES);
 191
 192	if (!PageAnon(old_page)) {
 193		dec_mm_counter(mm, mm_counter_file(old_page));
 194		inc_mm_counter(mm, MM_ANONPAGES);
 195	}
 196
 197	flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
 198	ptep_clear_flush_notify(vma, addr, pvmw.pte);
 199	if (new_page)
 200		set_pte_at_notify(mm, addr, pvmw.pte,
 201				  mk_pte(new_page, vma->vm_page_prot));
 202
 203	page_remove_rmap(old_page, false);
 204	if (!page_mapped(old_page))
 205		try_to_free_swap(old_page);
 206	page_vma_mapped_walk_done(&pvmw);
 207
 208	if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page))
 209		munlock_vma_page(old_page);
 210	put_page(old_page);
 211
 212	err = 0;
 213 unlock:
 214	mmu_notifier_invalidate_range_end(&range);
 215	unlock_page(old_page);
 
 216	return err;
 217}
 218
 219/**
 220 * is_swbp_insn - check if instruction is breakpoint instruction.
 221 * @insn: instruction to be checked.
 222 * Default implementation of is_swbp_insn
 223 * Returns true if @insn is a breakpoint instruction.
 224 */
 225bool __weak is_swbp_insn(uprobe_opcode_t *insn)
 226{
 227	return *insn == UPROBE_SWBP_INSN;
 228}
 229
 230/**
 231 * is_trap_insn - check if instruction is breakpoint instruction.
 232 * @insn: instruction to be checked.
 233 * Default implementation of is_trap_insn
 234 * Returns true if @insn is a breakpoint instruction.
 235 *
 236 * This function is needed for the case where an architecture has multiple
 237 * trap instructions (like powerpc).
 238 */
 239bool __weak is_trap_insn(uprobe_opcode_t *insn)
 240{
 241	return is_swbp_insn(insn);
 242}
 243
 244static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
 245{
 246	void *kaddr = kmap_atomic(page);
 247	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
 248	kunmap_atomic(kaddr);
 249}
 250
 251static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
 252{
 253	void *kaddr = kmap_atomic(page);
 254	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
 255	kunmap_atomic(kaddr);
 256}
 257
 258static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
 259{
 260	uprobe_opcode_t old_opcode;
 261	bool is_swbp;
 262
 263	/*
 264	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
 265	 * We do not check if it is any other 'trap variant' which could
 266	 * be conditional trap instruction such as the one powerpc supports.
 267	 *
 268	 * The logic is that we do not care if the underlying instruction
 269	 * is a trap variant; uprobes always wins over any other (gdb)
 270	 * breakpoint.
 271	 */
 272	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
 273	is_swbp = is_swbp_insn(&old_opcode);
 274
 275	if (is_swbp_insn(new_opcode)) {
 276		if (is_swbp)		/* register: already installed? */
 277			return 0;
 278	} else {
 279		if (!is_swbp)		/* unregister: was it changed by us? */
 280			return 0;
 281	}
 282
 283	return 1;
 284}
 285
 286static struct delayed_uprobe *
 287delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
 288{
 289	struct delayed_uprobe *du;
 290
 291	list_for_each_entry(du, &delayed_uprobe_list, list)
 292		if (du->uprobe == uprobe && du->mm == mm)
 293			return du;
 294	return NULL;
 295}
 296
 297static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
 298{
 299	struct delayed_uprobe *du;
 300
 301	if (delayed_uprobe_check(uprobe, mm))
 302		return 0;
 303
 304	du  = kzalloc(sizeof(*du), GFP_KERNEL);
 305	if (!du)
 306		return -ENOMEM;
 307
 308	du->uprobe = uprobe;
 309	du->mm = mm;
 310	list_add(&du->list, &delayed_uprobe_list);
 311	return 0;
 312}
 313
 314static void delayed_uprobe_delete(struct delayed_uprobe *du)
 315{
 316	if (WARN_ON(!du))
 317		return;
 318	list_del(&du->list);
 319	kfree(du);
 320}
 321
 322static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
 323{
 324	struct list_head *pos, *q;
 325	struct delayed_uprobe *du;
 326
 327	if (!uprobe && !mm)
 328		return;
 329
 330	list_for_each_safe(pos, q, &delayed_uprobe_list) {
 331		du = list_entry(pos, struct delayed_uprobe, list);
 332
 333		if (uprobe && du->uprobe != uprobe)
 334			continue;
 335		if (mm && du->mm != mm)
 336			continue;
 337
 338		delayed_uprobe_delete(du);
 339	}
 340}
 341
 342static bool valid_ref_ctr_vma(struct uprobe *uprobe,
 343			      struct vm_area_struct *vma)
 344{
 345	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
 346
 347	return uprobe->ref_ctr_offset &&
 348		vma->vm_file &&
 349		file_inode(vma->vm_file) == uprobe->inode &&
 350		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
 351		vma->vm_start <= vaddr &&
 352		vma->vm_end > vaddr;
 353}
 354
 355static struct vm_area_struct *
 356find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
 357{
 358	struct vm_area_struct *tmp;
 359
 360	for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
 361		if (valid_ref_ctr_vma(uprobe, tmp))
 362			return tmp;
 363
 364	return NULL;
 365}
 366
 367static int
 368__update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
 369{
 370	void *kaddr;
 371	struct page *page;
 372	struct vm_area_struct *vma;
 373	int ret;
 374	short *ptr;
 375
 376	if (!vaddr || !d)
 377		return -EINVAL;
 378
 379	ret = get_user_pages_remote(mm, vaddr, 1,
 380			FOLL_WRITE, &page, &vma, NULL);
 381	if (unlikely(ret <= 0)) {
 382		/*
 383		 * We are asking for 1 page. If get_user_pages_remote() fails,
 384		 * it may return 0, in that case we have to return error.
 385		 */
 386		return ret == 0 ? -EBUSY : ret;
 387	}
 388
 389	kaddr = kmap_atomic(page);
 390	ptr = kaddr + (vaddr & ~PAGE_MASK);
 391
 392	if (unlikely(*ptr + d < 0)) {
 393		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
 394			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
 395		ret = -EINVAL;
 396		goto out;
 397	}
 398
 399	*ptr += d;
 400	ret = 0;
 401out:
 402	kunmap_atomic(kaddr);
 403	put_page(page);
 404	return ret;
 405}
 406
 407static void update_ref_ctr_warn(struct uprobe *uprobe,
 408				struct mm_struct *mm, short d)
 409{
 410	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
 411		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
 412		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
 413		(unsigned long long) uprobe->offset,
 414		(unsigned long long) uprobe->ref_ctr_offset, mm);
 415}
 416
 417static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
 418			  short d)
 419{
 420	struct vm_area_struct *rc_vma;
 421	unsigned long rc_vaddr;
 422	int ret = 0;
 423
 424	rc_vma = find_ref_ctr_vma(uprobe, mm);
 425
 426	if (rc_vma) {
 427		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
 428		ret = __update_ref_ctr(mm, rc_vaddr, d);
 429		if (ret)
 430			update_ref_ctr_warn(uprobe, mm, d);
 431
 432		if (d > 0)
 433			return ret;
 434	}
 435
 436	mutex_lock(&delayed_uprobe_lock);
 437	if (d > 0)
 438		ret = delayed_uprobe_add(uprobe, mm);
 439	else
 440		delayed_uprobe_remove(uprobe, mm);
 441	mutex_unlock(&delayed_uprobe_lock);
 442
 443	return ret;
 444}
 445
 446/*
 447 * NOTE:
 448 * Expect the breakpoint instruction to be the smallest size instruction for
 449 * the architecture. If an arch has variable length instruction and the
 450 * breakpoint instruction is not of the smallest length instruction
 451 * supported by that architecture then we need to modify is_trap_at_addr and
 452 * uprobe_write_opcode accordingly. This would never be a problem for archs
 453 * that have fixed length instructions.
 454 *
 455 * uprobe_write_opcode - write the opcode at a given virtual address.
 456 * @auprobe: arch specific probepoint information.
 457 * @mm: the probed process address space.
 458 * @vaddr: the virtual address to store the opcode.
 459 * @opcode: opcode to be written at @vaddr.
 460 *
 461 * Called with mm->mmap_lock held for write.
 462 * Return 0 (success) or a negative errno.
 463 */
 464int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
 465			unsigned long vaddr, uprobe_opcode_t opcode)
 466{
 467	struct uprobe *uprobe;
 468	struct page *old_page, *new_page;
 469	struct vm_area_struct *vma;
 470	int ret, is_register, ref_ctr_updated = 0;
 471	bool orig_page_huge = false;
 472	unsigned int gup_flags = FOLL_FORCE;
 473
 474	is_register = is_swbp_insn(&opcode);
 475	uprobe = container_of(auprobe, struct uprobe, arch);
 476
 477retry:
 478	if (is_register)
 479		gup_flags |= FOLL_SPLIT_PMD;
 480	/* Read the page with vaddr into memory */
 481	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
 482				    &old_page, &vma, NULL);
 483	if (ret <= 0)
 484		return ret;
 485
 486	ret = verify_opcode(old_page, vaddr, &opcode);
 487	if (ret <= 0)
 488		goto put_old;
 489
 490	if (WARN(!is_register && PageCompound(old_page),
 491		 "uprobe unregister should never work on compound page\n")) {
 492		ret = -EINVAL;
 493		goto put_old;
 494	}
 495
 496	/* We are going to replace instruction, update ref_ctr. */
 497	if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
 498		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
 499		if (ret)
 500			goto put_old;
 501
 502		ref_ctr_updated = 1;
 503	}
 504
 505	ret = 0;
 506	if (!is_register && !PageAnon(old_page))
 507		goto put_old;
 508
 509	ret = anon_vma_prepare(vma);
 510	if (ret)
 511		goto put_old;
 512
 513	ret = -ENOMEM;
 514	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
 515	if (!new_page)
 516		goto put_old;
 517
 518	__SetPageUptodate(new_page);
 519	copy_highpage(new_page, old_page);
 520	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
 521
 522	if (!is_register) {
 523		struct page *orig_page;
 524		pgoff_t index;
 525
 526		VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
 527
 528		index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
 529		orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
 530					  index);
 531
 532		if (orig_page) {
 533			if (PageUptodate(orig_page) &&
 534			    pages_identical(new_page, orig_page)) {
 535				/* let go new_page */
 536				put_page(new_page);
 537				new_page = NULL;
 538
 539				if (PageCompound(orig_page))
 540					orig_page_huge = true;
 541			}
 542			put_page(orig_page);
 543		}
 544	}
 545
 546	ret = __replace_page(vma, vaddr, old_page, new_page);
 547	if (new_page)
 548		put_page(new_page);
 549put_old:
 550	put_page(old_page);
 551
 552	if (unlikely(ret == -EAGAIN))
 553		goto retry;
 554
 555	/* Revert back reference counter if instruction update failed. */
 556	if (ret && is_register && ref_ctr_updated)
 557		update_ref_ctr(uprobe, mm, -1);
 558
 559	/* try collapse pmd for compound page */
 560	if (!ret && orig_page_huge)
 561		collapse_pte_mapped_thp(mm, vaddr);
 562
 563	return ret;
 564}
 565
 566/**
 567 * set_swbp - store breakpoint at a given address.
 568 * @auprobe: arch specific probepoint information.
 569 * @mm: the probed process address space.
 570 * @vaddr: the virtual address to insert the opcode.
 571 *
 572 * For mm @mm, store the breakpoint instruction at @vaddr.
 573 * Return 0 (success) or a negative errno.
 574 */
 575int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 576{
 577	return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
 578}
 579
 580/**
 581 * set_orig_insn - Restore the original instruction.
 582 * @mm: the probed process address space.
 583 * @auprobe: arch specific probepoint information.
 584 * @vaddr: the virtual address to insert the opcode.
 585 *
 586 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 587 * Return 0 (success) or a negative errno.
 588 */
 589int __weak
 590set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
 591{
 592	return uprobe_write_opcode(auprobe, mm, vaddr,
 593			*(uprobe_opcode_t *)&auprobe->insn);
 594}
 595
 596static struct uprobe *get_uprobe(struct uprobe *uprobe)
 597{
 598	refcount_inc(&uprobe->ref);
 599	return uprobe;
 600}
 601
 602static void put_uprobe(struct uprobe *uprobe)
 603{
 604	if (refcount_dec_and_test(&uprobe->ref)) {
 605		/*
 606		 * If application munmap(exec_vma) before uprobe_unregister()
 607		 * gets called, we don't get a chance to remove uprobe from
 608		 * delayed_uprobe_list from remove_breakpoint(). Do it here.
 609		 */
 610		mutex_lock(&delayed_uprobe_lock);
 611		delayed_uprobe_remove(uprobe, NULL);
 612		mutex_unlock(&delayed_uprobe_lock);
 613		kfree(uprobe);
 614	}
 615}
 616
 617static __always_inline
 618int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
 619	       const struct uprobe *r)
 620{
 621	if (l_inode < r->inode)
 622		return -1;
 623
 624	if (l_inode > r->inode)
 625		return 1;
 626
 627	if (l_offset < r->offset)
 628		return -1;
 629
 630	if (l_offset > r->offset)
 631		return 1;
 632
 633	return 0;
 634}
 635
 636#define __node_2_uprobe(node) \
 637	rb_entry((node), struct uprobe, rb_node)
 638
 639struct __uprobe_key {
 640	struct inode *inode;
 641	loff_t offset;
 642};
 643
 644static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
 645{
 646	const struct __uprobe_key *a = key;
 647	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
 648}
 649
 650static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
 651{
 652	struct uprobe *u = __node_2_uprobe(a);
 653	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
 654}
 655
 656static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
 657{
 658	struct __uprobe_key key = {
 659		.inode = inode,
 660		.offset = offset,
 661	};
 662	struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
 663
 664	if (node)
 665		return get_uprobe(__node_2_uprobe(node));
 
 
 
 666
 
 
 
 
 
 667	return NULL;
 668}
 669
 670/*
 671 * Find a uprobe corresponding to a given inode:offset
 672 * Acquires uprobes_treelock
 673 */
 674static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
 675{
 676	struct uprobe *uprobe;
 677
 678	spin_lock(&uprobes_treelock);
 679	uprobe = __find_uprobe(inode, offset);
 680	spin_unlock(&uprobes_treelock);
 681
 682	return uprobe;
 683}
 684
 685static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
 686{
 687	struct rb_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688
 689	node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
 690	if (node)
 691		return get_uprobe(__node_2_uprobe(node));
 692
 
 
 
 693	/* get access + creation ref */
 694	refcount_set(&uprobe->ref, 2);
 695	return NULL;
 
 696}
 697
 698/*
 699 * Acquire uprobes_treelock.
 700 * Matching uprobe already exists in rbtree;
 701 *	increment (access refcount) and return the matching uprobe.
 702 *
 703 * No matching uprobe; insert the uprobe in rb_tree;
 704 *	get a double refcount (access + creation) and return NULL.
 705 */
 706static struct uprobe *insert_uprobe(struct uprobe *uprobe)
 707{
 708	struct uprobe *u;
 709
 710	spin_lock(&uprobes_treelock);
 711	u = __insert_uprobe(uprobe);
 712	spin_unlock(&uprobes_treelock);
 713
 714	return u;
 715}
 716
 717static void
 718ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
 719{
 720	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
 721		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
 722		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
 723		(unsigned long long) cur_uprobe->ref_ctr_offset,
 724		(unsigned long long) uprobe->ref_ctr_offset);
 725}
 726
 727static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
 728				   loff_t ref_ctr_offset)
 729{
 730	struct uprobe *uprobe, *cur_uprobe;
 731
 732	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
 733	if (!uprobe)
 734		return NULL;
 735
 736	uprobe->inode = inode;
 737	uprobe->offset = offset;
 738	uprobe->ref_ctr_offset = ref_ctr_offset;
 739	init_rwsem(&uprobe->register_rwsem);
 740	init_rwsem(&uprobe->consumer_rwsem);
 741
 742	/* add to uprobes_tree, sorted on inode:offset */
 743	cur_uprobe = insert_uprobe(uprobe);
 744	/* a uprobe exists for this inode:offset combination */
 745	if (cur_uprobe) {
 746		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
 747			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
 748			put_uprobe(cur_uprobe);
 749			kfree(uprobe);
 750			return ERR_PTR(-EINVAL);
 751		}
 752		kfree(uprobe);
 753		uprobe = cur_uprobe;
 
 754	}
 755
 756	return uprobe;
 757}
 758
 759static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
 760{
 761	down_write(&uprobe->consumer_rwsem);
 762	uc->next = uprobe->consumers;
 763	uprobe->consumers = uc;
 764	up_write(&uprobe->consumer_rwsem);
 765}
 766
 767/*
 768 * For uprobe @uprobe, delete the consumer @uc.
 769 * Return true if the @uc is deleted successfully
 770 * or return false.
 771 */
 772static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
 773{
 774	struct uprobe_consumer **con;
 775	bool ret = false;
 776
 777	down_write(&uprobe->consumer_rwsem);
 778	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
 779		if (*con == uc) {
 780			*con = uc->next;
 781			ret = true;
 782			break;
 783		}
 784	}
 785	up_write(&uprobe->consumer_rwsem);
 786
 787	return ret;
 788}
 789
 790static int __copy_insn(struct address_space *mapping, struct file *filp,
 791			void *insn, int nbytes, loff_t offset)
 792{
 793	struct page *page;
 794	/*
 795	 * Ensure that the page that has the original instruction is populated
 796	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
 797	 * see uprobe_register().
 798	 */
 799	if (mapping->a_ops->readpage)
 800		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
 801	else
 802		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
 803	if (IS_ERR(page))
 804		return PTR_ERR(page);
 805
 806	copy_from_page(page, offset, insn, nbytes);
 807	put_page(page);
 808
 809	return 0;
 810}
 811
 812static int copy_insn(struct uprobe *uprobe, struct file *filp)
 813{
 814	struct address_space *mapping = uprobe->inode->i_mapping;
 815	loff_t offs = uprobe->offset;
 816	void *insn = &uprobe->arch.insn;
 817	int size = sizeof(uprobe->arch.insn);
 818	int len, err = -EIO;
 819
 820	/* Copy only available bytes, -EIO if nothing was read */
 821	do {
 822		if (offs >= i_size_read(uprobe->inode))
 823			break;
 824
 825		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
 826		err = __copy_insn(mapping, filp, insn, len, offs);
 827		if (err)
 828			break;
 829
 830		insn += len;
 831		offs += len;
 832		size -= len;
 833	} while (size);
 834
 835	return err;
 836}
 837
 838static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
 839				struct mm_struct *mm, unsigned long vaddr)
 840{
 841	int ret = 0;
 842
 843	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 844		return ret;
 845
 846	/* TODO: move this into _register, until then we abuse this sem. */
 847	down_write(&uprobe->consumer_rwsem);
 848	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
 849		goto out;
 850
 851	ret = copy_insn(uprobe, file);
 852	if (ret)
 853		goto out;
 854
 855	ret = -ENOTSUPP;
 856	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
 857		goto out;
 858
 859	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
 860	if (ret)
 861		goto out;
 862
 863	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
 
 
 
 
 864	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
 865
 866 out:
 867	up_write(&uprobe->consumer_rwsem);
 868
 869	return ret;
 870}
 871
 872static inline bool consumer_filter(struct uprobe_consumer *uc,
 873				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 874{
 875	return !uc->filter || uc->filter(uc, ctx, mm);
 876}
 877
 878static bool filter_chain(struct uprobe *uprobe,
 879			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
 880{
 881	struct uprobe_consumer *uc;
 882	bool ret = false;
 883
 884	down_read(&uprobe->consumer_rwsem);
 885	for (uc = uprobe->consumers; uc; uc = uc->next) {
 886		ret = consumer_filter(uc, ctx, mm);
 887		if (ret)
 888			break;
 889	}
 890	up_read(&uprobe->consumer_rwsem);
 891
 892	return ret;
 893}
 894
 895static int
 896install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
 897			struct vm_area_struct *vma, unsigned long vaddr)
 898{
 899	bool first_uprobe;
 900	int ret;
 901
 902	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
 903	if (ret)
 904		return ret;
 905
 906	/*
 907	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
 908	 * the task can hit this breakpoint right after __replace_page().
 909	 */
 910	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
 911	if (first_uprobe)
 912		set_bit(MMF_HAS_UPROBES, &mm->flags);
 913
 914	ret = set_swbp(&uprobe->arch, mm, vaddr);
 915	if (!ret)
 916		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
 917	else if (first_uprobe)
 918		clear_bit(MMF_HAS_UPROBES, &mm->flags);
 919
 920	return ret;
 921}
 922
 923static int
 924remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
 925{
 926	set_bit(MMF_RECALC_UPROBES, &mm->flags);
 927	return set_orig_insn(&uprobe->arch, mm, vaddr);
 928}
 929
 930static inline bool uprobe_is_active(struct uprobe *uprobe)
 931{
 932	return !RB_EMPTY_NODE(&uprobe->rb_node);
 933}
 934/*
 935 * There could be threads that have already hit the breakpoint. They
 936 * will recheck the current insn and restart if find_uprobe() fails.
 937 * See find_active_uprobe().
 938 */
 939static void delete_uprobe(struct uprobe *uprobe)
 940{
 941	if (WARN_ON(!uprobe_is_active(uprobe)))
 942		return;
 943
 944	spin_lock(&uprobes_treelock);
 945	rb_erase(&uprobe->rb_node, &uprobes_tree);
 946	spin_unlock(&uprobes_treelock);
 947	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
 
 948	put_uprobe(uprobe);
 949}
 950
 951struct map_info {
 952	struct map_info *next;
 953	struct mm_struct *mm;
 954	unsigned long vaddr;
 955};
 956
 957static inline struct map_info *free_map_info(struct map_info *info)
 958{
 959	struct map_info *next = info->next;
 960	kfree(info);
 961	return next;
 962}
 963
 964static struct map_info *
 965build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
 966{
 967	unsigned long pgoff = offset >> PAGE_SHIFT;
 968	struct vm_area_struct *vma;
 969	struct map_info *curr = NULL;
 970	struct map_info *prev = NULL;
 971	struct map_info *info;
 972	int more = 0;
 973
 974 again:
 975	i_mmap_lock_read(mapping);
 976	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 977		if (!valid_vma(vma, is_register))
 978			continue;
 979
 980		if (!prev && !more) {
 981			/*
 982			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
 983			 * reclaim. This is optimistic, no harm done if it fails.
 984			 */
 985			prev = kmalloc(sizeof(struct map_info),
 986					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
 987			if (prev)
 988				prev->next = NULL;
 989		}
 990		if (!prev) {
 991			more++;
 992			continue;
 993		}
 994
 995		if (!mmget_not_zero(vma->vm_mm))
 996			continue;
 997
 998		info = prev;
 999		prev = prev->next;
1000		info->next = curr;
1001		curr = info;
1002
1003		info->mm = vma->vm_mm;
1004		info->vaddr = offset_to_vaddr(vma, offset);
1005	}
1006	i_mmap_unlock_read(mapping);
1007
1008	if (!more)
1009		goto out;
1010
1011	prev = curr;
1012	while (curr) {
1013		mmput(curr->mm);
1014		curr = curr->next;
1015	}
1016
1017	do {
1018		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1019		if (!info) {
1020			curr = ERR_PTR(-ENOMEM);
1021			goto out;
1022		}
1023		info->next = prev;
1024		prev = info;
1025	} while (--more);
1026
1027	goto again;
1028 out:
1029	while (prev)
1030		prev = free_map_info(prev);
1031	return curr;
1032}
1033
1034static int
1035register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1036{
1037	bool is_register = !!new;
1038	struct map_info *info;
1039	int err = 0;
1040
1041	percpu_down_write(&dup_mmap_sem);
1042	info = build_map_info(uprobe->inode->i_mapping,
1043					uprobe->offset, is_register);
1044	if (IS_ERR(info)) {
1045		err = PTR_ERR(info);
1046		goto out;
1047	}
1048
1049	while (info) {
1050		struct mm_struct *mm = info->mm;
1051		struct vm_area_struct *vma;
1052
1053		if (err && is_register)
1054			goto free;
1055
1056		mmap_write_lock(mm);
1057		vma = find_vma(mm, info->vaddr);
1058		if (!vma || !valid_vma(vma, is_register) ||
1059		    file_inode(vma->vm_file) != uprobe->inode)
1060			goto unlock;
1061
1062		if (vma->vm_start > info->vaddr ||
1063		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1064			goto unlock;
1065
1066		if (is_register) {
1067			/* consult only the "caller", new consumer. */
1068			if (consumer_filter(new,
1069					UPROBE_FILTER_REGISTER, mm))
1070				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1071		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1072			if (!filter_chain(uprobe,
1073					UPROBE_FILTER_UNREGISTER, mm))
1074				err |= remove_breakpoint(uprobe, mm, info->vaddr);
1075		}
1076
1077 unlock:
1078		mmap_write_unlock(mm);
1079 free:
1080		mmput(mm);
1081		info = free_map_info(info);
1082	}
1083 out:
1084	percpu_up_write(&dup_mmap_sem);
1085	return err;
1086}
1087
1088static void
1089__uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
 
 
 
 
 
1090{
1091	int err;
1092
1093	if (WARN_ON(!consumer_del(uprobe, uc)))
1094		return;
1095
1096	err = register_for_each_vma(uprobe, NULL);
1097	/* TODO : cant unregister? schedule a worker thread */
1098	if (!uprobe->consumers && !err)
1099		delete_uprobe(uprobe);
1100}
1101
1102/*
1103 * uprobe_unregister - unregister an already registered probe.
1104 * @inode: the file in which the probe has to be removed.
1105 * @offset: offset from the start of the file.
1106 * @uc: identify which probe if multiple probes are colocated.
1107 */
1108void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1109{
1110	struct uprobe *uprobe;
1111
1112	uprobe = find_uprobe(inode, offset);
1113	if (WARN_ON(!uprobe))
1114		return;
1115
1116	down_write(&uprobe->register_rwsem);
1117	__uprobe_unregister(uprobe, uc);
1118	up_write(&uprobe->register_rwsem);
1119	put_uprobe(uprobe);
1120}
1121EXPORT_SYMBOL_GPL(uprobe_unregister);
1122
1123/*
1124 * __uprobe_register - register a probe
1125 * @inode: the file in which the probe has to be placed.
1126 * @offset: offset from the start of the file.
1127 * @uc: information on howto handle the probe..
1128 *
1129 * Apart from the access refcount, __uprobe_register() takes a creation
1130 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1131 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1132 * tuple).  Creation refcount stops uprobe_unregister from freeing the
1133 * @uprobe even before the register operation is complete. Creation
1134 * refcount is released when the last @uc for the @uprobe
1135 * unregisters. Caller of __uprobe_register() is required to keep @inode
1136 * (and the containing mount) referenced.
1137 *
1138 * Return errno if it cannot successully install probes
1139 * else return 0 (success)
1140 */
1141static int __uprobe_register(struct inode *inode, loff_t offset,
1142			     loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1143{
1144	struct uprobe *uprobe;
1145	int ret;
1146
1147	/* Uprobe must have at least one set consumer */
1148	if (!uc->handler && !uc->ret_handler)
1149		return -EINVAL;
1150
1151	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1152	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1153		return -EIO;
1154	/* Racy, just to catch the obvious mistakes */
1155	if (offset > i_size_read(inode))
1156		return -EINVAL;
1157
1158	/*
1159	 * This ensures that copy_from_page(), copy_to_page() and
1160	 * __update_ref_ctr() can't cross page boundary.
1161	 */
1162	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1163		return -EINVAL;
1164	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1165		return -EINVAL;
1166
1167 retry:
1168	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1169	if (!uprobe)
1170		return -ENOMEM;
1171	if (IS_ERR(uprobe))
1172		return PTR_ERR(uprobe);
1173
1174	/*
1175	 * We can race with uprobe_unregister()->delete_uprobe().
1176	 * Check uprobe_is_active() and retry if it is false.
1177	 */
1178	down_write(&uprobe->register_rwsem);
1179	ret = -EAGAIN;
1180	if (likely(uprobe_is_active(uprobe))) {
1181		consumer_add(uprobe, uc);
1182		ret = register_for_each_vma(uprobe, uc);
1183		if (ret)
1184			__uprobe_unregister(uprobe, uc);
1185	}
1186	up_write(&uprobe->register_rwsem);
1187	put_uprobe(uprobe);
1188
1189	if (unlikely(ret == -EAGAIN))
1190		goto retry;
1191	return ret;
1192}
1193
1194int uprobe_register(struct inode *inode, loff_t offset,
1195		    struct uprobe_consumer *uc)
1196{
1197	return __uprobe_register(inode, offset, 0, uc);
1198}
1199EXPORT_SYMBOL_GPL(uprobe_register);
1200
1201int uprobe_register_refctr(struct inode *inode, loff_t offset,
1202			   loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1203{
1204	return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1205}
1206EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1207
1208/*
1209 * uprobe_apply - unregister an already registered probe.
1210 * @inode: the file in which the probe has to be removed.
1211 * @offset: offset from the start of the file.
1212 * @uc: consumer which wants to add more or remove some breakpoints
1213 * @add: add or remove the breakpoints
1214 */
1215int uprobe_apply(struct inode *inode, loff_t offset,
1216			struct uprobe_consumer *uc, bool add)
1217{
1218	struct uprobe *uprobe;
1219	struct uprobe_consumer *con;
1220	int ret = -ENOENT;
1221
1222	uprobe = find_uprobe(inode, offset);
1223	if (WARN_ON(!uprobe))
1224		return ret;
1225
1226	down_write(&uprobe->register_rwsem);
1227	for (con = uprobe->consumers; con && con != uc ; con = con->next)
1228		;
1229	if (con)
1230		ret = register_for_each_vma(uprobe, add ? uc : NULL);
1231	up_write(&uprobe->register_rwsem);
1232	put_uprobe(uprobe);
1233
1234	return ret;
1235}
1236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1238{
1239	struct vm_area_struct *vma;
1240	int err = 0;
1241
1242	mmap_read_lock(mm);
1243	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1244		unsigned long vaddr;
1245		loff_t offset;
1246
1247		if (!valid_vma(vma, false) ||
1248		    file_inode(vma->vm_file) != uprobe->inode)
1249			continue;
1250
1251		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1252		if (uprobe->offset <  offset ||
1253		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1254			continue;
1255
1256		vaddr = offset_to_vaddr(vma, uprobe->offset);
1257		err |= remove_breakpoint(uprobe, mm, vaddr);
1258	}
1259	mmap_read_unlock(mm);
1260
1261	return err;
1262}
1263
1264static struct rb_node *
1265find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1266{
1267	struct rb_node *n = uprobes_tree.rb_node;
1268
1269	while (n) {
1270		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1271
1272		if (inode < u->inode) {
1273			n = n->rb_left;
1274		} else if (inode > u->inode) {
1275			n = n->rb_right;
1276		} else {
1277			if (max < u->offset)
1278				n = n->rb_left;
1279			else if (min > u->offset)
1280				n = n->rb_right;
1281			else
1282				break;
1283		}
1284	}
1285
1286	return n;
1287}
1288
1289/*
1290 * For a given range in vma, build a list of probes that need to be inserted.
1291 */
1292static void build_probe_list(struct inode *inode,
1293				struct vm_area_struct *vma,
1294				unsigned long start, unsigned long end,
1295				struct list_head *head)
1296{
1297	loff_t min, max;
1298	struct rb_node *n, *t;
1299	struct uprobe *u;
1300
1301	INIT_LIST_HEAD(head);
1302	min = vaddr_to_offset(vma, start);
1303	max = min + (end - start) - 1;
1304
1305	spin_lock(&uprobes_treelock);
1306	n = find_node_in_range(inode, min, max);
1307	if (n) {
1308		for (t = n; t; t = rb_prev(t)) {
1309			u = rb_entry(t, struct uprobe, rb_node);
1310			if (u->inode != inode || u->offset < min)
1311				break;
1312			list_add(&u->pending_list, head);
1313			get_uprobe(u);
1314		}
1315		for (t = n; (t = rb_next(t)); ) {
1316			u = rb_entry(t, struct uprobe, rb_node);
1317			if (u->inode != inode || u->offset > max)
1318				break;
1319			list_add(&u->pending_list, head);
1320			get_uprobe(u);
1321		}
1322	}
1323	spin_unlock(&uprobes_treelock);
1324}
1325
1326/* @vma contains reference counter, not the probed instruction. */
1327static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1328{
1329	struct list_head *pos, *q;
1330	struct delayed_uprobe *du;
1331	unsigned long vaddr;
1332	int ret = 0, err = 0;
1333
1334	mutex_lock(&delayed_uprobe_lock);
1335	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1336		du = list_entry(pos, struct delayed_uprobe, list);
1337
1338		if (du->mm != vma->vm_mm ||
1339		    !valid_ref_ctr_vma(du->uprobe, vma))
1340			continue;
1341
1342		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1343		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1344		if (ret) {
1345			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1346			if (!err)
1347				err = ret;
1348		}
1349		delayed_uprobe_delete(du);
1350	}
1351	mutex_unlock(&delayed_uprobe_lock);
1352	return err;
1353}
1354
1355/*
1356 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1357 *
1358 * Currently we ignore all errors and always return 0, the callers
1359 * can't handle the failure anyway.
1360 */
1361int uprobe_mmap(struct vm_area_struct *vma)
1362{
1363	struct list_head tmp_list;
1364	struct uprobe *uprobe, *u;
1365	struct inode *inode;
1366
1367	if (no_uprobe_events())
1368		return 0;
1369
1370	if (vma->vm_file &&
1371	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1372	    test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1373		delayed_ref_ctr_inc(vma);
1374
1375	if (!valid_vma(vma, true))
1376		return 0;
1377
1378	inode = file_inode(vma->vm_file);
1379	if (!inode)
1380		return 0;
1381
1382	mutex_lock(uprobes_mmap_hash(inode));
1383	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1384	/*
1385	 * We can race with uprobe_unregister(), this uprobe can be already
1386	 * removed. But in this case filter_chain() must return false, all
1387	 * consumers have gone away.
1388	 */
1389	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1390		if (!fatal_signal_pending(current) &&
1391		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1392			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1393			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1394		}
1395		put_uprobe(uprobe);
1396	}
1397	mutex_unlock(uprobes_mmap_hash(inode));
1398
1399	return 0;
1400}
1401
1402static bool
1403vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1404{
1405	loff_t min, max;
1406	struct inode *inode;
1407	struct rb_node *n;
1408
1409	inode = file_inode(vma->vm_file);
1410
1411	min = vaddr_to_offset(vma, start);
1412	max = min + (end - start) - 1;
1413
1414	spin_lock(&uprobes_treelock);
1415	n = find_node_in_range(inode, min, max);
1416	spin_unlock(&uprobes_treelock);
1417
1418	return !!n;
1419}
1420
1421/*
1422 * Called in context of a munmap of a vma.
1423 */
1424void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1425{
1426	if (no_uprobe_events() || !valid_vma(vma, false))
1427		return;
1428
1429	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1430		return;
1431
1432	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1433	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1434		return;
1435
1436	if (vma_has_uprobes(vma, start, end))
1437		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1438}
1439
1440/* Slot allocation for XOL */
1441static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1442{
1443	struct vm_area_struct *vma;
1444	int ret;
1445
1446	if (mmap_write_lock_killable(mm))
1447		return -EINTR;
1448
1449	if (mm->uprobes_state.xol_area) {
1450		ret = -EALREADY;
1451		goto fail;
1452	}
1453
1454	if (!area->vaddr) {
1455		/* Try to map as high as possible, this is only a hint. */
1456		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1457						PAGE_SIZE, 0, 0);
1458		if (IS_ERR_VALUE(area->vaddr)) {
1459			ret = area->vaddr;
1460			goto fail;
1461		}
1462	}
1463
1464	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1465				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1466				&area->xol_mapping);
1467	if (IS_ERR(vma)) {
1468		ret = PTR_ERR(vma);
1469		goto fail;
1470	}
1471
1472	ret = 0;
1473	/* pairs with get_xol_area() */
1474	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1475 fail:
1476	mmap_write_unlock(mm);
1477
1478	return ret;
1479}
1480
1481static struct xol_area *__create_xol_area(unsigned long vaddr)
1482{
1483	struct mm_struct *mm = current->mm;
1484	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1485	struct xol_area *area;
1486
1487	area = kmalloc(sizeof(*area), GFP_KERNEL);
1488	if (unlikely(!area))
1489		goto out;
1490
1491	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1492			       GFP_KERNEL);
1493	if (!area->bitmap)
1494		goto free_area;
1495
1496	area->xol_mapping.name = "[uprobes]";
1497	area->xol_mapping.fault = NULL;
1498	area->xol_mapping.pages = area->pages;
1499	area->pages[0] = alloc_page(GFP_HIGHUSER);
1500	if (!area->pages[0])
1501		goto free_bitmap;
1502	area->pages[1] = NULL;
1503
1504	area->vaddr = vaddr;
1505	init_waitqueue_head(&area->wq);
1506	/* Reserve the 1st slot for get_trampoline_vaddr() */
1507	set_bit(0, area->bitmap);
1508	atomic_set(&area->slot_count, 1);
1509	arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1510
1511	if (!xol_add_vma(mm, area))
1512		return area;
1513
1514	__free_page(area->pages[0]);
1515 free_bitmap:
1516	kfree(area->bitmap);
1517 free_area:
1518	kfree(area);
1519 out:
1520	return NULL;
1521}
1522
1523/*
1524 * get_xol_area - Allocate process's xol_area if necessary.
1525 * This area will be used for storing instructions for execution out of line.
1526 *
1527 * Returns the allocated area or NULL.
1528 */
1529static struct xol_area *get_xol_area(void)
1530{
1531	struct mm_struct *mm = current->mm;
1532	struct xol_area *area;
1533
1534	if (!mm->uprobes_state.xol_area)
1535		__create_xol_area(0);
1536
1537	/* Pairs with xol_add_vma() smp_store_release() */
1538	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1539	return area;
1540}
1541
1542/*
1543 * uprobe_clear_state - Free the area allocated for slots.
1544 */
1545void uprobe_clear_state(struct mm_struct *mm)
1546{
1547	struct xol_area *area = mm->uprobes_state.xol_area;
1548
1549	mutex_lock(&delayed_uprobe_lock);
1550	delayed_uprobe_remove(NULL, mm);
1551	mutex_unlock(&delayed_uprobe_lock);
1552
1553	if (!area)
1554		return;
1555
1556	put_page(area->pages[0]);
1557	kfree(area->bitmap);
1558	kfree(area);
1559}
1560
1561void uprobe_start_dup_mmap(void)
1562{
1563	percpu_down_read(&dup_mmap_sem);
1564}
1565
1566void uprobe_end_dup_mmap(void)
1567{
1568	percpu_up_read(&dup_mmap_sem);
1569}
1570
1571void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1572{
 
 
1573	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1574		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1575		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1576		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1577	}
1578}
1579
1580/*
1581 *  - search for a free slot.
1582 */
1583static unsigned long xol_take_insn_slot(struct xol_area *area)
1584{
1585	unsigned long slot_addr;
1586	int slot_nr;
1587
1588	do {
1589		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1590		if (slot_nr < UINSNS_PER_PAGE) {
1591			if (!test_and_set_bit(slot_nr, area->bitmap))
1592				break;
1593
1594			slot_nr = UINSNS_PER_PAGE;
1595			continue;
1596		}
1597		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1598	} while (slot_nr >= UINSNS_PER_PAGE);
1599
1600	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1601	atomic_inc(&area->slot_count);
1602
1603	return slot_addr;
1604}
1605
1606/*
1607 * xol_get_insn_slot - allocate a slot for xol.
1608 * Returns the allocated slot address or 0.
1609 */
1610static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1611{
1612	struct xol_area *area;
1613	unsigned long xol_vaddr;
1614
1615	area = get_xol_area();
1616	if (!area)
1617		return 0;
1618
1619	xol_vaddr = xol_take_insn_slot(area);
1620	if (unlikely(!xol_vaddr))
1621		return 0;
1622
1623	arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1624			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1625
1626	return xol_vaddr;
1627}
1628
1629/*
1630 * xol_free_insn_slot - If slot was earlier allocated by
1631 * @xol_get_insn_slot(), make the slot available for
1632 * subsequent requests.
1633 */
1634static void xol_free_insn_slot(struct task_struct *tsk)
1635{
1636	struct xol_area *area;
1637	unsigned long vma_end;
1638	unsigned long slot_addr;
1639
1640	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1641		return;
1642
1643	slot_addr = tsk->utask->xol_vaddr;
1644	if (unlikely(!slot_addr))
1645		return;
1646
1647	area = tsk->mm->uprobes_state.xol_area;
1648	vma_end = area->vaddr + PAGE_SIZE;
1649	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1650		unsigned long offset;
1651		int slot_nr;
1652
1653		offset = slot_addr - area->vaddr;
1654		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1655		if (slot_nr >= UINSNS_PER_PAGE)
1656			return;
1657
1658		clear_bit(slot_nr, area->bitmap);
1659		atomic_dec(&area->slot_count);
1660		smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1661		if (waitqueue_active(&area->wq))
1662			wake_up(&area->wq);
1663
1664		tsk->utask->xol_vaddr = 0;
1665	}
1666}
1667
1668void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1669				  void *src, unsigned long len)
1670{
1671	/* Initialize the slot */
1672	copy_to_page(page, vaddr, src, len);
1673
1674	/*
1675	 * We probably need flush_icache_user_page() but it needs vma.
1676	 * This should work on most of architectures by default. If
1677	 * architecture needs to do something different it can define
1678	 * its own version of the function.
1679	 */
1680	flush_dcache_page(page);
1681}
1682
1683/**
1684 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1685 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1686 * instruction.
1687 * Return the address of the breakpoint instruction.
1688 */
1689unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1690{
1691	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1692}
1693
1694unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1695{
1696	struct uprobe_task *utask = current->utask;
1697
1698	if (unlikely(utask && utask->active_uprobe))
1699		return utask->vaddr;
1700
1701	return instruction_pointer(regs);
1702}
1703
1704static struct return_instance *free_ret_instance(struct return_instance *ri)
1705{
1706	struct return_instance *next = ri->next;
1707	put_uprobe(ri->uprobe);
1708	kfree(ri);
1709	return next;
1710}
1711
1712/*
1713 * Called with no locks held.
1714 * Called in context of an exiting or an exec-ing thread.
1715 */
1716void uprobe_free_utask(struct task_struct *t)
1717{
1718	struct uprobe_task *utask = t->utask;
1719	struct return_instance *ri;
1720
1721	if (!utask)
1722		return;
1723
1724	if (utask->active_uprobe)
1725		put_uprobe(utask->active_uprobe);
1726
1727	ri = utask->return_instances;
1728	while (ri)
1729		ri = free_ret_instance(ri);
1730
1731	xol_free_insn_slot(t);
1732	kfree(utask);
1733	t->utask = NULL;
1734}
1735
1736/*
1737 * Allocate a uprobe_task object for the task if necessary.
1738 * Called when the thread hits a breakpoint.
1739 *
1740 * Returns:
1741 * - pointer to new uprobe_task on success
1742 * - NULL otherwise
1743 */
1744static struct uprobe_task *get_utask(void)
1745{
1746	if (!current->utask)
1747		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1748	return current->utask;
1749}
1750
1751static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1752{
1753	struct uprobe_task *n_utask;
1754	struct return_instance **p, *o, *n;
1755
1756	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1757	if (!n_utask)
1758		return -ENOMEM;
1759	t->utask = n_utask;
1760
1761	p = &n_utask->return_instances;
1762	for (o = o_utask->return_instances; o; o = o->next) {
1763		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1764		if (!n)
1765			return -ENOMEM;
1766
1767		*n = *o;
1768		get_uprobe(n->uprobe);
1769		n->next = NULL;
1770
1771		*p = n;
1772		p = &n->next;
1773		n_utask->depth++;
1774	}
1775
1776	return 0;
1777}
1778
1779static void uprobe_warn(struct task_struct *t, const char *msg)
1780{
1781	pr_warn("uprobe: %s:%d failed to %s\n",
1782			current->comm, current->pid, msg);
1783}
1784
1785static void dup_xol_work(struct callback_head *work)
1786{
1787	if (current->flags & PF_EXITING)
1788		return;
1789
1790	if (!__create_xol_area(current->utask->dup_xol_addr) &&
1791			!fatal_signal_pending(current))
1792		uprobe_warn(current, "dup xol area");
1793}
1794
1795/*
1796 * Called in context of a new clone/fork from copy_process.
1797 */
1798void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1799{
1800	struct uprobe_task *utask = current->utask;
1801	struct mm_struct *mm = current->mm;
1802	struct xol_area *area;
1803
1804	t->utask = NULL;
1805
1806	if (!utask || !utask->return_instances)
1807		return;
1808
1809	if (mm == t->mm && !(flags & CLONE_VFORK))
1810		return;
1811
1812	if (dup_utask(t, utask))
1813		return uprobe_warn(t, "dup ret instances");
1814
1815	/* The task can fork() after dup_xol_work() fails */
1816	area = mm->uprobes_state.xol_area;
1817	if (!area)
1818		return uprobe_warn(t, "dup xol area");
1819
1820	if (mm == t->mm)
1821		return;
1822
1823	t->utask->dup_xol_addr = area->vaddr;
1824	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1825	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1826}
1827
1828/*
1829 * Current area->vaddr notion assume the trampoline address is always
1830 * equal area->vaddr.
1831 *
1832 * Returns -1 in case the xol_area is not allocated.
1833 */
1834static unsigned long get_trampoline_vaddr(void)
1835{
1836	struct xol_area *area;
1837	unsigned long trampoline_vaddr = -1;
1838
1839	/* Pairs with xol_add_vma() smp_store_release() */
1840	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1841	if (area)
1842		trampoline_vaddr = area->vaddr;
1843
1844	return trampoline_vaddr;
1845}
1846
1847static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1848					struct pt_regs *regs)
1849{
1850	struct return_instance *ri = utask->return_instances;
1851	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1852
1853	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1854		ri = free_ret_instance(ri);
1855		utask->depth--;
1856	}
1857	utask->return_instances = ri;
1858}
1859
1860static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1861{
1862	struct return_instance *ri;
1863	struct uprobe_task *utask;
1864	unsigned long orig_ret_vaddr, trampoline_vaddr;
1865	bool chained;
1866
1867	if (!get_xol_area())
1868		return;
1869
1870	utask = get_utask();
1871	if (!utask)
1872		return;
1873
1874	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1875		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1876				" nestedness limit pid/tgid=%d/%d\n",
1877				current->pid, current->tgid);
1878		return;
1879	}
1880
1881	ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1882	if (!ri)
1883		return;
1884
1885	trampoline_vaddr = get_trampoline_vaddr();
1886	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1887	if (orig_ret_vaddr == -1)
1888		goto fail;
1889
1890	/* drop the entries invalidated by longjmp() */
1891	chained = (orig_ret_vaddr == trampoline_vaddr);
1892	cleanup_return_instances(utask, chained, regs);
1893
1894	/*
1895	 * We don't want to keep trampoline address in stack, rather keep the
1896	 * original return address of first caller thru all the consequent
1897	 * instances. This also makes breakpoint unwrapping easier.
1898	 */
1899	if (chained) {
1900		if (!utask->return_instances) {
1901			/*
1902			 * This situation is not possible. Likely we have an
1903			 * attack from user-space.
1904			 */
1905			uprobe_warn(current, "handle tail call");
1906			goto fail;
1907		}
1908		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1909	}
1910
1911	ri->uprobe = get_uprobe(uprobe);
1912	ri->func = instruction_pointer(regs);
1913	ri->stack = user_stack_pointer(regs);
1914	ri->orig_ret_vaddr = orig_ret_vaddr;
1915	ri->chained = chained;
1916
1917	utask->depth++;
1918	ri->next = utask->return_instances;
1919	utask->return_instances = ri;
1920
1921	return;
1922 fail:
1923	kfree(ri);
1924}
1925
1926/* Prepare to single-step probed instruction out of line. */
1927static int
1928pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1929{
1930	struct uprobe_task *utask;
1931	unsigned long xol_vaddr;
1932	int err;
1933
1934	utask = get_utask();
1935	if (!utask)
1936		return -ENOMEM;
1937
1938	xol_vaddr = xol_get_insn_slot(uprobe);
1939	if (!xol_vaddr)
1940		return -ENOMEM;
1941
1942	utask->xol_vaddr = xol_vaddr;
1943	utask->vaddr = bp_vaddr;
1944
1945	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1946	if (unlikely(err)) {
1947		xol_free_insn_slot(current);
1948		return err;
1949	}
1950
1951	utask->active_uprobe = uprobe;
1952	utask->state = UTASK_SSTEP;
1953	return 0;
1954}
1955
1956/*
1957 * If we are singlestepping, then ensure this thread is not connected to
1958 * non-fatal signals until completion of singlestep.  When xol insn itself
1959 * triggers the signal,  restart the original insn even if the task is
1960 * already SIGKILL'ed (since coredump should report the correct ip).  This
1961 * is even more important if the task has a handler for SIGSEGV/etc, The
1962 * _same_ instruction should be repeated again after return from the signal
1963 * handler, and SSTEP can never finish in this case.
1964 */
1965bool uprobe_deny_signal(void)
1966{
1967	struct task_struct *t = current;
1968	struct uprobe_task *utask = t->utask;
1969
1970	if (likely(!utask || !utask->active_uprobe))
1971		return false;
1972
1973	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1974
1975	if (task_sigpending(t)) {
1976		spin_lock_irq(&t->sighand->siglock);
1977		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1978		spin_unlock_irq(&t->sighand->siglock);
1979
1980		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1981			utask->state = UTASK_SSTEP_TRAPPED;
1982			set_tsk_thread_flag(t, TIF_UPROBE);
1983		}
1984	}
1985
1986	return true;
1987}
1988
1989static void mmf_recalc_uprobes(struct mm_struct *mm)
1990{
1991	struct vm_area_struct *vma;
1992
1993	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1994		if (!valid_vma(vma, false))
1995			continue;
1996		/*
1997		 * This is not strictly accurate, we can race with
1998		 * uprobe_unregister() and see the already removed
1999		 * uprobe if delete_uprobe() was not yet called.
2000		 * Or this uprobe can be filtered out.
2001		 */
2002		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2003			return;
2004	}
2005
2006	clear_bit(MMF_HAS_UPROBES, &mm->flags);
2007}
2008
2009static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2010{
2011	struct page *page;
2012	uprobe_opcode_t opcode;
2013	int result;
2014
2015	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2016		return -EINVAL;
2017
2018	pagefault_disable();
2019	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
 
2020	pagefault_enable();
2021
2022	if (likely(result == 0))
2023		goto out;
2024
2025	/*
2026	 * The NULL 'tsk' here ensures that any faults that occur here
2027	 * will not be accounted to the task.  'mm' *is* current->mm,
2028	 * but we treat this as a 'remote' access since it is
2029	 * essentially a kernel access to the memory.
2030	 */
2031	result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2032			NULL, NULL);
2033	if (result < 0)
2034		return result;
2035
2036	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2037	put_page(page);
2038 out:
2039	/* This needs to return true for any variant of the trap insn */
2040	return is_trap_insn(&opcode);
2041}
2042
2043static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2044{
2045	struct mm_struct *mm = current->mm;
2046	struct uprobe *uprobe = NULL;
2047	struct vm_area_struct *vma;
2048
2049	mmap_read_lock(mm);
2050	vma = vma_lookup(mm, bp_vaddr);
2051	if (vma) {
2052		if (valid_vma(vma, false)) {
2053			struct inode *inode = file_inode(vma->vm_file);
2054			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2055
2056			uprobe = find_uprobe(inode, offset);
2057		}
2058
2059		if (!uprobe)
2060			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2061	} else {
2062		*is_swbp = -EFAULT;
2063	}
2064
2065	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2066		mmf_recalc_uprobes(mm);
2067	mmap_read_unlock(mm);
2068
2069	return uprobe;
2070}
2071
2072static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2073{
2074	struct uprobe_consumer *uc;
2075	int remove = UPROBE_HANDLER_REMOVE;
2076	bool need_prep = false; /* prepare return uprobe, when needed */
2077
2078	down_read(&uprobe->register_rwsem);
2079	for (uc = uprobe->consumers; uc; uc = uc->next) {
2080		int rc = 0;
2081
2082		if (uc->handler) {
2083			rc = uc->handler(uc, regs);
2084			WARN(rc & ~UPROBE_HANDLER_MASK,
2085				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2086		}
2087
2088		if (uc->ret_handler)
2089			need_prep = true;
2090
2091		remove &= rc;
2092	}
2093
2094	if (need_prep && !remove)
2095		prepare_uretprobe(uprobe, regs); /* put bp at return */
2096
2097	if (remove && uprobe->consumers) {
2098		WARN_ON(!uprobe_is_active(uprobe));
2099		unapply_uprobe(uprobe, current->mm);
2100	}
2101	up_read(&uprobe->register_rwsem);
2102}
2103
2104static void
2105handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2106{
2107	struct uprobe *uprobe = ri->uprobe;
2108	struct uprobe_consumer *uc;
2109
2110	down_read(&uprobe->register_rwsem);
2111	for (uc = uprobe->consumers; uc; uc = uc->next) {
2112		if (uc->ret_handler)
2113			uc->ret_handler(uc, ri->func, regs);
2114	}
2115	up_read(&uprobe->register_rwsem);
2116}
2117
2118static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2119{
2120	bool chained;
2121
2122	do {
2123		chained = ri->chained;
2124		ri = ri->next;	/* can't be NULL if chained */
2125	} while (chained);
2126
2127	return ri;
2128}
2129
2130static void handle_trampoline(struct pt_regs *regs)
2131{
2132	struct uprobe_task *utask;
2133	struct return_instance *ri, *next;
2134	bool valid;
2135
2136	utask = current->utask;
2137	if (!utask)
2138		goto sigill;
2139
2140	ri = utask->return_instances;
2141	if (!ri)
2142		goto sigill;
2143
2144	do {
2145		/*
2146		 * We should throw out the frames invalidated by longjmp().
2147		 * If this chain is valid, then the next one should be alive
2148		 * or NULL; the latter case means that nobody but ri->func
2149		 * could hit this trampoline on return. TODO: sigaltstack().
2150		 */
2151		next = find_next_ret_chain(ri);
2152		valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2153
2154		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2155		do {
2156			if (valid)
2157				handle_uretprobe_chain(ri, regs);
2158			ri = free_ret_instance(ri);
2159			utask->depth--;
2160		} while (ri != next);
2161	} while (!valid);
2162
2163	utask->return_instances = ri;
2164	return;
2165
2166 sigill:
2167	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2168	force_sig(SIGILL);
2169
2170}
2171
2172bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2173{
2174	return false;
2175}
2176
2177bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2178					struct pt_regs *regs)
2179{
2180	return true;
2181}
2182
2183/*
2184 * Run handler and ask thread to singlestep.
2185 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2186 */
2187static void handle_swbp(struct pt_regs *regs)
2188{
2189	struct uprobe *uprobe;
2190	unsigned long bp_vaddr;
2191	int is_swbp;
2192
2193	bp_vaddr = uprobe_get_swbp_addr(regs);
2194	if (bp_vaddr == get_trampoline_vaddr())
2195		return handle_trampoline(regs);
2196
2197	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2198	if (!uprobe) {
2199		if (is_swbp > 0) {
2200			/* No matching uprobe; signal SIGTRAP. */
2201			force_sig(SIGTRAP);
2202		} else {
2203			/*
2204			 * Either we raced with uprobe_unregister() or we can't
2205			 * access this memory. The latter is only possible if
2206			 * another thread plays with our ->mm. In both cases
2207			 * we can simply restart. If this vma was unmapped we
2208			 * can pretend this insn was not executed yet and get
2209			 * the (correct) SIGSEGV after restart.
2210			 */
2211			instruction_pointer_set(regs, bp_vaddr);
2212		}
2213		return;
2214	}
2215
2216	/* change it in advance for ->handler() and restart */
2217	instruction_pointer_set(regs, bp_vaddr);
2218
2219	/*
2220	 * TODO: move copy_insn/etc into _register and remove this hack.
2221	 * After we hit the bp, _unregister + _register can install the
2222	 * new and not-yet-analyzed uprobe at the same address, restart.
2223	 */
 
2224	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2225		goto out;
2226
2227	/*
2228	 * Pairs with the smp_wmb() in prepare_uprobe().
2229	 *
2230	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2231	 * we must also see the stores to &uprobe->arch performed by the
2232	 * prepare_uprobe() call.
2233	 */
2234	smp_rmb();
2235
2236	/* Tracing handlers use ->utask to communicate with fetch methods */
2237	if (!get_utask())
2238		goto out;
2239
2240	if (arch_uprobe_ignore(&uprobe->arch, regs))
2241		goto out;
2242
2243	handler_chain(uprobe, regs);
2244
2245	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2246		goto out;
2247
2248	if (!pre_ssout(uprobe, regs, bp_vaddr))
2249		return;
2250
2251	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2252out:
2253	put_uprobe(uprobe);
2254}
2255
2256/*
2257 * Perform required fix-ups and disable singlestep.
2258 * Allow pending signals to take effect.
2259 */
2260static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2261{
2262	struct uprobe *uprobe;
2263	int err = 0;
2264
2265	uprobe = utask->active_uprobe;
2266	if (utask->state == UTASK_SSTEP_ACK)
2267		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2268	else if (utask->state == UTASK_SSTEP_TRAPPED)
2269		arch_uprobe_abort_xol(&uprobe->arch, regs);
2270	else
2271		WARN_ON_ONCE(1);
2272
2273	put_uprobe(uprobe);
2274	utask->active_uprobe = NULL;
2275	utask->state = UTASK_RUNNING;
2276	xol_free_insn_slot(current);
2277
2278	spin_lock_irq(&current->sighand->siglock);
2279	recalc_sigpending(); /* see uprobe_deny_signal() */
2280	spin_unlock_irq(&current->sighand->siglock);
2281
2282	if (unlikely(err)) {
2283		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2284		force_sig(SIGILL);
2285	}
2286}
2287
2288/*
2289 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2290 * allows the thread to return from interrupt. After that handle_swbp()
2291 * sets utask->active_uprobe.
2292 *
2293 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2294 * and allows the thread to return from interrupt.
2295 *
2296 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2297 * uprobe_notify_resume().
2298 */
2299void uprobe_notify_resume(struct pt_regs *regs)
2300{
2301	struct uprobe_task *utask;
2302
2303	clear_thread_flag(TIF_UPROBE);
2304
2305	utask = current->utask;
2306	if (utask && utask->active_uprobe)
2307		handle_singlestep(utask, regs);
2308	else
2309		handle_swbp(regs);
2310}
2311
2312/*
2313 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2314 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2315 */
2316int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2317{
2318	if (!current->mm)
2319		return 0;
2320
2321	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2322	    (!current->utask || !current->utask->return_instances))
2323		return 0;
2324
2325	set_thread_flag(TIF_UPROBE);
2326	return 1;
2327}
2328
2329/*
2330 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2331 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2332 */
2333int uprobe_post_sstep_notifier(struct pt_regs *regs)
2334{
2335	struct uprobe_task *utask = current->utask;
2336
2337	if (!current->mm || !utask || !utask->active_uprobe)
2338		/* task is currently not uprobed */
2339		return 0;
2340
2341	utask->state = UTASK_SSTEP_ACK;
2342	set_thread_flag(TIF_UPROBE);
2343	return 1;
2344}
2345
2346static struct notifier_block uprobe_exception_nb = {
2347	.notifier_call		= arch_uprobe_exception_notify,
2348	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2349};
2350
2351void __init uprobes_init(void)
2352{
2353	int i;
2354
2355	for (i = 0; i < UPROBES_HASH_SZ; i++)
2356		mutex_init(&uprobes_mmap_mutex[i]);
2357
2358	BUG_ON(register_die_notifier(&uprobe_exception_nb));
 
 
 
2359}