Loading...
1/*
2 * RTC subsystem, base class
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * class skeleton from drivers/hwmon/hwmon.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/rtc.h>
19#include <linux/kdev_t.h>
20#include <linux/idr.h>
21#include <linux/slab.h>
22#include <linux/workqueue.h>
23
24#include "rtc-core.h"
25
26
27static DEFINE_IDA(rtc_ida);
28struct class *rtc_class;
29
30static void rtc_device_release(struct device *dev)
31{
32 struct rtc_device *rtc = to_rtc_device(dev);
33 ida_simple_remove(&rtc_ida, rtc->id);
34 kfree(rtc);
35}
36
37#ifdef CONFIG_RTC_HCTOSYS_DEVICE
38/* Result of the last RTC to system clock attempt. */
39int rtc_hctosys_ret = -ENODEV;
40#endif
41
42#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
43/*
44 * On suspend(), measure the delta between one RTC and the
45 * system's wall clock; restore it on resume().
46 */
47
48static struct timespec64 old_rtc, old_system, old_delta;
49
50
51static int rtc_suspend(struct device *dev)
52{
53 struct rtc_device *rtc = to_rtc_device(dev);
54 struct rtc_time tm;
55 struct timespec64 delta, delta_delta;
56 int err;
57
58 if (timekeeping_rtc_skipsuspend())
59 return 0;
60
61 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
62 return 0;
63
64 /* snapshot the current RTC and system time at suspend*/
65 err = rtc_read_time(rtc, &tm);
66 if (err < 0) {
67 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
68 return 0;
69 }
70
71 getnstimeofday64(&old_system);
72 old_rtc.tv_sec = rtc_tm_to_time64(&tm);
73
74
75 /*
76 * To avoid drift caused by repeated suspend/resumes,
77 * which each can add ~1 second drift error,
78 * try to compensate so the difference in system time
79 * and rtc time stays close to constant.
80 */
81 delta = timespec64_sub(old_system, old_rtc);
82 delta_delta = timespec64_sub(delta, old_delta);
83 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
84 /*
85 * if delta_delta is too large, assume time correction
86 * has occured and set old_delta to the current delta.
87 */
88 old_delta = delta;
89 } else {
90 /* Otherwise try to adjust old_system to compensate */
91 old_system = timespec64_sub(old_system, delta_delta);
92 }
93
94 return 0;
95}
96
97static int rtc_resume(struct device *dev)
98{
99 struct rtc_device *rtc = to_rtc_device(dev);
100 struct rtc_time tm;
101 struct timespec64 new_system, new_rtc;
102 struct timespec64 sleep_time;
103 int err;
104
105 if (timekeeping_rtc_skipresume())
106 return 0;
107
108 rtc_hctosys_ret = -ENODEV;
109 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
110 return 0;
111
112 /* snapshot the current rtc and system time at resume */
113 getnstimeofday64(&new_system);
114 err = rtc_read_time(rtc, &tm);
115 if (err < 0) {
116 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
117 return 0;
118 }
119
120 new_rtc.tv_sec = rtc_tm_to_time64(&tm);
121 new_rtc.tv_nsec = 0;
122
123 if (new_rtc.tv_sec < old_rtc.tv_sec) {
124 pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
125 return 0;
126 }
127
128 /* calculate the RTC time delta (sleep time)*/
129 sleep_time = timespec64_sub(new_rtc, old_rtc);
130
131 /*
132 * Since these RTC suspend/resume handlers are not called
133 * at the very end of suspend or the start of resume,
134 * some run-time may pass on either sides of the sleep time
135 * so subtract kernel run-time between rtc_suspend to rtc_resume
136 * to keep things accurate.
137 */
138 sleep_time = timespec64_sub(sleep_time,
139 timespec64_sub(new_system, old_system));
140
141 if (sleep_time.tv_sec >= 0)
142 timekeeping_inject_sleeptime64(&sleep_time);
143 rtc_hctosys_ret = 0;
144 return 0;
145}
146
147static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
148#define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
149#else
150#define RTC_CLASS_DEV_PM_OPS NULL
151#endif
152
153
154/**
155 * rtc_device_register - register w/ RTC class
156 * @dev: the device to register
157 *
158 * rtc_device_unregister() must be called when the class device is no
159 * longer needed.
160 *
161 * Returns the pointer to the new struct class device.
162 */
163struct rtc_device *rtc_device_register(const char *name, struct device *dev,
164 const struct rtc_class_ops *ops,
165 struct module *owner)
166{
167 struct rtc_device *rtc;
168 struct rtc_wkalrm alrm;
169 int of_id = -1, id = -1, err;
170
171 if (dev->of_node)
172 of_id = of_alias_get_id(dev->of_node, "rtc");
173 else if (dev->parent && dev->parent->of_node)
174 of_id = of_alias_get_id(dev->parent->of_node, "rtc");
175
176 if (of_id >= 0) {
177 id = ida_simple_get(&rtc_ida, of_id, of_id + 1,
178 GFP_KERNEL);
179 if (id < 0)
180 dev_warn(dev, "/aliases ID %d not available\n",
181 of_id);
182 }
183
184 if (id < 0) {
185 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
186 if (id < 0) {
187 err = id;
188 goto exit;
189 }
190 }
191
192 rtc = kzalloc(sizeof(struct rtc_device), GFP_KERNEL);
193 if (rtc == NULL) {
194 err = -ENOMEM;
195 goto exit_ida;
196 }
197
198 rtc->id = id;
199 rtc->ops = ops;
200 rtc->owner = owner;
201 rtc->irq_freq = 1;
202 rtc->max_user_freq = 64;
203 rtc->dev.parent = dev;
204 rtc->dev.class = rtc_class;
205 rtc->dev.groups = rtc_get_dev_attribute_groups();
206 rtc->dev.release = rtc_device_release;
207
208 mutex_init(&rtc->ops_lock);
209 spin_lock_init(&rtc->irq_lock);
210 spin_lock_init(&rtc->irq_task_lock);
211 init_waitqueue_head(&rtc->irq_queue);
212
213 /* Init timerqueue */
214 timerqueue_init_head(&rtc->timerqueue);
215 INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
216 /* Init aie timer */
217 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
218 /* Init uie timer */
219 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
220 /* Init pie timer */
221 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
222 rtc->pie_timer.function = rtc_pie_update_irq;
223 rtc->pie_enabled = 0;
224
225 strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE);
226 dev_set_name(&rtc->dev, "rtc%d", id);
227
228 /* Check to see if there is an ALARM already set in hw */
229 err = __rtc_read_alarm(rtc, &alrm);
230
231 if (!err && !rtc_valid_tm(&alrm.time))
232 rtc_initialize_alarm(rtc, &alrm);
233
234 rtc_dev_prepare(rtc);
235
236 err = device_register(&rtc->dev);
237 if (err) {
238 /* This will free both memory and the ID */
239 put_device(&rtc->dev);
240 goto exit;
241 }
242
243 rtc_dev_add_device(rtc);
244 rtc_proc_add_device(rtc);
245
246 dev_info(dev, "rtc core: registered %s as %s\n",
247 rtc->name, dev_name(&rtc->dev));
248
249 return rtc;
250
251exit_ida:
252 ida_simple_remove(&rtc_ida, id);
253
254exit:
255 dev_err(dev, "rtc core: unable to register %s, err = %d\n",
256 name, err);
257 return ERR_PTR(err);
258}
259EXPORT_SYMBOL_GPL(rtc_device_register);
260
261
262/**
263 * rtc_device_unregister - removes the previously registered RTC class device
264 *
265 * @rtc: the RTC class device to destroy
266 */
267void rtc_device_unregister(struct rtc_device *rtc)
268{
269 mutex_lock(&rtc->ops_lock);
270 /*
271 * Remove innards of this RTC, then disable it, before
272 * letting any rtc_class_open() users access it again
273 */
274 rtc_dev_del_device(rtc);
275 rtc_proc_del_device(rtc);
276 device_del(&rtc->dev);
277 rtc->ops = NULL;
278 mutex_unlock(&rtc->ops_lock);
279 put_device(&rtc->dev);
280}
281EXPORT_SYMBOL_GPL(rtc_device_unregister);
282
283static void devm_rtc_device_release(struct device *dev, void *res)
284{
285 struct rtc_device *rtc = *(struct rtc_device **)res;
286
287 rtc_device_unregister(rtc);
288}
289
290static int devm_rtc_device_match(struct device *dev, void *res, void *data)
291{
292 struct rtc **r = res;
293
294 return *r == data;
295}
296
297/**
298 * devm_rtc_device_register - resource managed rtc_device_register()
299 * @dev: the device to register
300 * @name: the name of the device
301 * @ops: the rtc operations structure
302 * @owner: the module owner
303 *
304 * @return a struct rtc on success, or an ERR_PTR on error
305 *
306 * Managed rtc_device_register(). The rtc_device returned from this function
307 * are automatically freed on driver detach. See rtc_device_register()
308 * for more information.
309 */
310
311struct rtc_device *devm_rtc_device_register(struct device *dev,
312 const char *name,
313 const struct rtc_class_ops *ops,
314 struct module *owner)
315{
316 struct rtc_device **ptr, *rtc;
317
318 ptr = devres_alloc(devm_rtc_device_release, sizeof(*ptr), GFP_KERNEL);
319 if (!ptr)
320 return ERR_PTR(-ENOMEM);
321
322 rtc = rtc_device_register(name, dev, ops, owner);
323 if (!IS_ERR(rtc)) {
324 *ptr = rtc;
325 devres_add(dev, ptr);
326 } else {
327 devres_free(ptr);
328 }
329
330 return rtc;
331}
332EXPORT_SYMBOL_GPL(devm_rtc_device_register);
333
334/**
335 * devm_rtc_device_unregister - resource managed devm_rtc_device_unregister()
336 * @dev: the device to unregister
337 * @rtc: the RTC class device to unregister
338 *
339 * Deallocated a rtc allocated with devm_rtc_device_register(). Normally this
340 * function will not need to be called and the resource management code will
341 * ensure that the resource is freed.
342 */
343void devm_rtc_device_unregister(struct device *dev, struct rtc_device *rtc)
344{
345 int rc;
346
347 rc = devres_release(dev, devm_rtc_device_release,
348 devm_rtc_device_match, rtc);
349 WARN_ON(rc);
350}
351EXPORT_SYMBOL_GPL(devm_rtc_device_unregister);
352
353static int __init rtc_init(void)
354{
355 rtc_class = class_create(THIS_MODULE, "rtc");
356 if (IS_ERR(rtc_class)) {
357 pr_err("couldn't create class\n");
358 return PTR_ERR(rtc_class);
359 }
360 rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
361 rtc_dev_init();
362 return 0;
363}
364subsys_initcall(rtc_init);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * RTC subsystem, base class
4 *
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 *
8 * class skeleton from drivers/hwmon/hwmon.c
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/module.h>
14#include <linux/of.h>
15#include <linux/rtc.h>
16#include <linux/kdev_t.h>
17#include <linux/idr.h>
18#include <linux/slab.h>
19#include <linux/workqueue.h>
20
21#include "rtc-core.h"
22
23static DEFINE_IDA(rtc_ida);
24struct class *rtc_class;
25
26static void rtc_device_release(struct device *dev)
27{
28 struct rtc_device *rtc = to_rtc_device(dev);
29
30 ida_simple_remove(&rtc_ida, rtc->id);
31 mutex_destroy(&rtc->ops_lock);
32 kfree(rtc);
33}
34
35#ifdef CONFIG_RTC_HCTOSYS_DEVICE
36/* Result of the last RTC to system clock attempt. */
37int rtc_hctosys_ret = -ENODEV;
38
39/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
40 * whether it stores the most close value or the value with partial
41 * seconds truncated. However, it is important that we use it to store
42 * the truncated value. This is because otherwise it is necessary,
43 * in an rtc sync function, to read both xtime.tv_sec and
44 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
45 * of >32bits is not possible. So storing the most close value would
46 * slow down the sync API. So here we have the truncated value and
47 * the best guess is to add 0.5s.
48 */
49
50static void rtc_hctosys(struct rtc_device *rtc)
51{
52 int err;
53 struct rtc_time tm;
54 struct timespec64 tv64 = {
55 .tv_nsec = NSEC_PER_SEC >> 1,
56 };
57
58 err = rtc_read_time(rtc, &tm);
59 if (err) {
60 dev_err(rtc->dev.parent,
61 "hctosys: unable to read the hardware clock\n");
62 goto err_read;
63 }
64
65 tv64.tv_sec = rtc_tm_to_time64(&tm);
66
67#if BITS_PER_LONG == 32
68 if (tv64.tv_sec > INT_MAX) {
69 err = -ERANGE;
70 goto err_read;
71 }
72#endif
73
74 err = do_settimeofday64(&tv64);
75
76 dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
77 &tm, (long long)tv64.tv_sec);
78
79err_read:
80 rtc_hctosys_ret = err;
81}
82#endif
83
84#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
85/*
86 * On suspend(), measure the delta between one RTC and the
87 * system's wall clock; restore it on resume().
88 */
89
90static struct timespec64 old_rtc, old_system, old_delta;
91
92static int rtc_suspend(struct device *dev)
93{
94 struct rtc_device *rtc = to_rtc_device(dev);
95 struct rtc_time tm;
96 struct timespec64 delta, delta_delta;
97 int err;
98
99 if (timekeeping_rtc_skipsuspend())
100 return 0;
101
102 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
103 return 0;
104
105 /* snapshot the current RTC and system time at suspend*/
106 err = rtc_read_time(rtc, &tm);
107 if (err < 0) {
108 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
109 return 0;
110 }
111
112 ktime_get_real_ts64(&old_system);
113 old_rtc.tv_sec = rtc_tm_to_time64(&tm);
114
115 /*
116 * To avoid drift caused by repeated suspend/resumes,
117 * which each can add ~1 second drift error,
118 * try to compensate so the difference in system time
119 * and rtc time stays close to constant.
120 */
121 delta = timespec64_sub(old_system, old_rtc);
122 delta_delta = timespec64_sub(delta, old_delta);
123 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
124 /*
125 * if delta_delta is too large, assume time correction
126 * has occurred and set old_delta to the current delta.
127 */
128 old_delta = delta;
129 } else {
130 /* Otherwise try to adjust old_system to compensate */
131 old_system = timespec64_sub(old_system, delta_delta);
132 }
133
134 return 0;
135}
136
137static int rtc_resume(struct device *dev)
138{
139 struct rtc_device *rtc = to_rtc_device(dev);
140 struct rtc_time tm;
141 struct timespec64 new_system, new_rtc;
142 struct timespec64 sleep_time;
143 int err;
144
145 if (timekeeping_rtc_skipresume())
146 return 0;
147
148 rtc_hctosys_ret = -ENODEV;
149 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
150 return 0;
151
152 /* snapshot the current rtc and system time at resume */
153 ktime_get_real_ts64(&new_system);
154 err = rtc_read_time(rtc, &tm);
155 if (err < 0) {
156 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
157 return 0;
158 }
159
160 new_rtc.tv_sec = rtc_tm_to_time64(&tm);
161 new_rtc.tv_nsec = 0;
162
163 if (new_rtc.tv_sec < old_rtc.tv_sec) {
164 pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
165 return 0;
166 }
167
168 /* calculate the RTC time delta (sleep time)*/
169 sleep_time = timespec64_sub(new_rtc, old_rtc);
170
171 /*
172 * Since these RTC suspend/resume handlers are not called
173 * at the very end of suspend or the start of resume,
174 * some run-time may pass on either sides of the sleep time
175 * so subtract kernel run-time between rtc_suspend to rtc_resume
176 * to keep things accurate.
177 */
178 sleep_time = timespec64_sub(sleep_time,
179 timespec64_sub(new_system, old_system));
180
181 if (sleep_time.tv_sec >= 0)
182 timekeeping_inject_sleeptime64(&sleep_time);
183 rtc_hctosys_ret = 0;
184 return 0;
185}
186
187static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
188#define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
189#else
190#define RTC_CLASS_DEV_PM_OPS NULL
191#endif
192
193/* Ensure the caller will set the id before releasing the device */
194static struct rtc_device *rtc_allocate_device(void)
195{
196 struct rtc_device *rtc;
197
198 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
199 if (!rtc)
200 return NULL;
201
202 device_initialize(&rtc->dev);
203
204 /*
205 * Drivers can revise this default after allocating the device.
206 * The default is what most RTCs do: Increment seconds exactly one
207 * second after the write happened. This adds a default transport
208 * time of 5ms which is at least halfways close to reality.
209 */
210 rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
211
212 rtc->irq_freq = 1;
213 rtc->max_user_freq = 64;
214 rtc->dev.class = rtc_class;
215 rtc->dev.groups = rtc_get_dev_attribute_groups();
216 rtc->dev.release = rtc_device_release;
217
218 mutex_init(&rtc->ops_lock);
219 spin_lock_init(&rtc->irq_lock);
220 init_waitqueue_head(&rtc->irq_queue);
221
222 /* Init timerqueue */
223 timerqueue_init_head(&rtc->timerqueue);
224 INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
225 /* Init aie timer */
226 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
227 /* Init uie timer */
228 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
229 /* Init pie timer */
230 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
231 rtc->pie_timer.function = rtc_pie_update_irq;
232 rtc->pie_enabled = 0;
233
234 set_bit(RTC_FEATURE_ALARM, rtc->features);
235
236 return rtc;
237}
238
239static int rtc_device_get_id(struct device *dev)
240{
241 int of_id = -1, id = -1;
242
243 if (dev->of_node)
244 of_id = of_alias_get_id(dev->of_node, "rtc");
245 else if (dev->parent && dev->parent->of_node)
246 of_id = of_alias_get_id(dev->parent->of_node, "rtc");
247
248 if (of_id >= 0) {
249 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
250 if (id < 0)
251 dev_warn(dev, "/aliases ID %d not available\n", of_id);
252 }
253
254 if (id < 0)
255 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
256
257 return id;
258}
259
260static void rtc_device_get_offset(struct rtc_device *rtc)
261{
262 time64_t range_secs;
263 u32 start_year;
264 int ret;
265
266 /*
267 * If RTC driver did not implement the range of RTC hardware device,
268 * then we can not expand the RTC range by adding or subtracting one
269 * offset.
270 */
271 if (rtc->range_min == rtc->range_max)
272 return;
273
274 ret = device_property_read_u32(rtc->dev.parent, "start-year",
275 &start_year);
276 if (!ret) {
277 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
278 rtc->set_start_time = true;
279 }
280
281 /*
282 * If user did not implement the start time for RTC driver, then no
283 * need to expand the RTC range.
284 */
285 if (!rtc->set_start_time)
286 return;
287
288 range_secs = rtc->range_max - rtc->range_min + 1;
289
290 /*
291 * If the start_secs is larger than the maximum seconds (rtc->range_max)
292 * supported by RTC hardware or the maximum seconds of new expanded
293 * range (start_secs + rtc->range_max - rtc->range_min) is less than
294 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
295 * RTC hardware will be mapped to start_secs by adding one offset, so
296 * the offset seconds calculation formula should be:
297 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
298 *
299 * If the start_secs is larger than the minimum seconds (rtc->range_min)
300 * supported by RTC hardware, then there is one region is overlapped
301 * between the original RTC hardware range and the new expanded range,
302 * and this overlapped region do not need to be mapped into the new
303 * expanded range due to it is valid for RTC device. So the minimum
304 * seconds of RTC hardware (rtc->range_min) should be mapped to
305 * rtc->range_max + 1, then the offset seconds formula should be:
306 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
307 *
308 * If the start_secs is less than the minimum seconds (rtc->range_min),
309 * which is similar to case 2. So the start_secs should be mapped to
310 * start_secs + rtc->range_max - rtc->range_min + 1, then the
311 * offset seconds formula should be:
312 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
313 *
314 * Otherwise the offset seconds should be 0.
315 */
316 if (rtc->start_secs > rtc->range_max ||
317 rtc->start_secs + range_secs - 1 < rtc->range_min)
318 rtc->offset_secs = rtc->start_secs - rtc->range_min;
319 else if (rtc->start_secs > rtc->range_min)
320 rtc->offset_secs = range_secs;
321 else if (rtc->start_secs < rtc->range_min)
322 rtc->offset_secs = -range_secs;
323 else
324 rtc->offset_secs = 0;
325}
326
327static void devm_rtc_unregister_device(void *data)
328{
329 struct rtc_device *rtc = data;
330
331 mutex_lock(&rtc->ops_lock);
332 /*
333 * Remove innards of this RTC, then disable it, before
334 * letting any rtc_class_open() users access it again
335 */
336 rtc_proc_del_device(rtc);
337 cdev_device_del(&rtc->char_dev, &rtc->dev);
338 rtc->ops = NULL;
339 mutex_unlock(&rtc->ops_lock);
340}
341
342static void devm_rtc_release_device(void *res)
343{
344 struct rtc_device *rtc = res;
345
346 put_device(&rtc->dev);
347}
348
349struct rtc_device *devm_rtc_allocate_device(struct device *dev)
350{
351 struct rtc_device *rtc;
352 int id, err;
353
354 id = rtc_device_get_id(dev);
355 if (id < 0)
356 return ERR_PTR(id);
357
358 rtc = rtc_allocate_device();
359 if (!rtc) {
360 ida_simple_remove(&rtc_ida, id);
361 return ERR_PTR(-ENOMEM);
362 }
363
364 rtc->id = id;
365 rtc->dev.parent = dev;
366 dev_set_name(&rtc->dev, "rtc%d", id);
367
368 err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
369 if (err)
370 return ERR_PTR(err);
371
372 return rtc;
373}
374EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
375
376int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
377{
378 struct rtc_wkalrm alrm;
379 int err;
380
381 if (!rtc->ops) {
382 dev_dbg(&rtc->dev, "no ops set\n");
383 return -EINVAL;
384 }
385
386 if (!rtc->ops->set_alarm)
387 clear_bit(RTC_FEATURE_ALARM, rtc->features);
388
389 rtc->owner = owner;
390 rtc_device_get_offset(rtc);
391
392 /* Check to see if there is an ALARM already set in hw */
393 err = __rtc_read_alarm(rtc, &alrm);
394 if (!err && !rtc_valid_tm(&alrm.time))
395 rtc_initialize_alarm(rtc, &alrm);
396
397 rtc_dev_prepare(rtc);
398
399 err = cdev_device_add(&rtc->char_dev, &rtc->dev);
400 if (err)
401 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
402 MAJOR(rtc->dev.devt), rtc->id);
403 else
404 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
405 MAJOR(rtc->dev.devt), rtc->id);
406
407 rtc_proc_add_device(rtc);
408
409 dev_info(rtc->dev.parent, "registered as %s\n",
410 dev_name(&rtc->dev));
411
412#ifdef CONFIG_RTC_HCTOSYS_DEVICE
413 if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
414 rtc_hctosys(rtc);
415#endif
416
417 return devm_add_action_or_reset(rtc->dev.parent,
418 devm_rtc_unregister_device, rtc);
419}
420EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
421
422/**
423 * devm_rtc_device_register - resource managed rtc_device_register()
424 * @dev: the device to register
425 * @name: the name of the device (unused)
426 * @ops: the rtc operations structure
427 * @owner: the module owner
428 *
429 * @return a struct rtc on success, or an ERR_PTR on error
430 *
431 * Managed rtc_device_register(). The rtc_device returned from this function
432 * are automatically freed on driver detach.
433 * This function is deprecated, use devm_rtc_allocate_device and
434 * rtc_register_device instead
435 */
436struct rtc_device *devm_rtc_device_register(struct device *dev,
437 const char *name,
438 const struct rtc_class_ops *ops,
439 struct module *owner)
440{
441 struct rtc_device *rtc;
442 int err;
443
444 rtc = devm_rtc_allocate_device(dev);
445 if (IS_ERR(rtc))
446 return rtc;
447
448 rtc->ops = ops;
449
450 err = __devm_rtc_register_device(owner, rtc);
451 if (err)
452 return ERR_PTR(err);
453
454 return rtc;
455}
456EXPORT_SYMBOL_GPL(devm_rtc_device_register);
457
458static int __init rtc_init(void)
459{
460 rtc_class = class_create(THIS_MODULE, "rtc");
461 if (IS_ERR(rtc_class)) {
462 pr_err("couldn't create class\n");
463 return PTR_ERR(rtc_class);
464 }
465 rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
466 rtc_dev_init();
467 return 0;
468}
469subsys_initcall(rtc_init);